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Summary
Mobile genetic elements have had, and still have an impact on the evolution of the 

genomes providing means for adaptation and structural organization. These elements are 

one of the major driving forces for the general evolution of all life forms. For the 

organisms and their genomes these elements are essential for development and adaptation 

to different environments. 

The Bacillus cereus group of bacteria includes the related species B. cereus (sensu 

stricto), B. thuringiensis, B. weihenstephanensis, B. mycoides, B. pseudomycoides, and B.

anthracis. These bacteria are very closely related at the genomic level, both in terms of 

gene content and synteny. Nevertheless, they show different phenotypic characteristics 

and pathogenic properties, and are altogether found worldwide in diverse habitats. 

Several of the major phenotypic characteristics of the members of the B. cereus group are 

determined by the different plasmids they have acquired. Besides these vehicles of 

genetic information, mobile genetic elements like transposons and group II introns do 

also induce some of the genetic and phenotypic variation and could therefore influence 

the dynamic behavior of the B. cereus group of bacteria.  

Introns, or intervening sequences (IVS), are elements interrupting the sequence of 

genes. These are present in precursor mRNA and are removed by a process called 

splicing. The group II introns are a type of mobile retrotransposons that can also perform 

self-splicing. Group II introns are classified according to features of their RNA structure 

and the sequence of their intron-encoded reverse-transcriptase protein. The typical 

structure is made of six RNA domains (I-VI), which are involved in a network of tertiary 

interactions that fold the ribozyme into its catalytically active structure. Self-splicing 

proceeds in two steps via branching or hydrolysis pathways, releasing a lariat or linear 

intron, respectively In vivo the active intron need its own intron-encoded protein for 

splicing as well as for mobility.  

 

The work presented in this Thesis starts with the classification and functional 

characterization of a total of eight group II introns present in the genomes of two strains 

of B. cereus, ATCC 14579 and ATCC 10987. The splice boundaries were as expected 

except for the B.c.I4 intron of B. cereus ATCC 10987, which spliced 56 nucleotides 
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downstream of the predicted 3’ splice site. This extraordinary intron was then 

investigated in more detail. We showed that the extra 56-bp 3’ segment is an integral part 

of the intron RNA molecule downstream of domain VI, while splicing through branching 

still occurred at the expected site. B.c.I4 represented therefore a unique arrangement 

never seen before, and our studies imply that the intron must have adapted to splice with 

the 3’ extension. RNA secondary structure predictions suggest that the 56-bp segment 

folds into two stable stem-loop structures. 

We later identified four new group II introns, B.th.I5, B.th.I6(a and b), and B.th.I7 

from B. thuringiensis BGSC 4D1 that harbor a 3’ extension similar to that of B.c.I4. This 

showed that the presence of a 3’ extension was more common that previously thought 

and that B.c.I4 was not an isolated case. Surprisingly, these introns do not form a single 

evolutionary lineage even though the structure and sequence of the extensions are highly 

conserved. Furthermore, our in vitro splicing studies demonstrated that the larger of the 

two stems in the 3’ extension is important for an efficient second-step splicing with the 

extension. Though the initial studies showed that the whole extension of B.c.I4 was not 

essential for splicing, later studies suggested that it has an effect on the balance between 

splicing via hydrolyis and splicing via branching. Most remarkably, analysis of B.th.I6 

revealed that this intron does not appear to be able to perform an efficient second splicing 

step when the extension is removed as opposed to B.c.I4. This difference may come from 

evolutionary divergence that is accompanied by differences in specific (sub)domains of 

the secondary structure.  

We have further reported five divergent copies of the B.th.I6 group II intron in 

five B. cereus and B. thuringiensis strains. By using sequence comparisons and 

phylogenetic analysis of the host gene of these introns from 43 different B. cereus group 

strains, we could infer several separate events of mobility, thus strongly indicating that 

the B.th.I6 intron is mobile with the 3’ extension.  

Altogether, the results presented here indicate that the 3’ extension can be 

regarded as a functional domain VII that does contribute to the splicing properties, when 

present as an integral part of the intron. In addition to illustrating the adaptability and 

flexibility of group II introns, the study of these unusual introns has shed light on the 

structural and functional evolution of group II ribozymes in general. 
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Introduction of mobile genetic elements  
 
 “Mobile DNA has been described as the genome’s “dark matter”: a significant part of 

its mass, difficult to understand, and often ignored. Transposable elements may also be 

seen as “dark energy,” a dynamic force that not only accelerates expansion but also 

helps set the warp and weft of genomes, for better and for worse” (Goodier and Kazazian 

2008).  

 

Barbra McClintock first discovered mobile genetic elements in the 1940’s. She 

described a transposon in the chromosome of maize as a certain “mutable loci” 

responsible for phenotypic traits. Studies in the 1950’s showed that plasmids and viruses 

could insert or excise pieces of DNA in the bacterial chromosome (Craig 2002). When 

one later realized the ubiquity of mobile-genetic elements, one first suggested that these 

elements and other noncoding DNA were largely a byproduct (“junk” DNA) of “selfish” 

elements proliferating within host genomes until opposed by natural selection (Doolittle 

and Sapienza 1980; Orgel and Crick 1980). Many have doubted this view, assuming that 

these elements, which account for about 45% of the human genome as opposed to only 

1% that are dedicated to protein-coding sequences, would have been removed through 

natural selection and evolution if they were only useless and harmful. More and more 

evidence has pointed out that the genomes have coevolved with the mobile elements, 

restraining them from spreading all over and at the same time gaining from their 

presence. Mobile elements have and continue to impact the evolution of the genomes by 

providing means for adaptation and structural organization, and are also involved in 

regulating gene expression (Goodier and Kazazian 2008). The mobile DNA has certainly 

played an important role in the structure and evolution of genes and genomes from 

bacteria to humans.  

 

The prokaryotic genomes are much more streamlined than the more complex 

eukaryotic genomes due to a strong selection for metabolic efficiency in large 

populations that are under strong selection (Lynch and Conery 2003; Lynch 2006). This 

“burden of bureaucracy” is certainly one of the important factors that have influenced 

8 
 



prokaryotic genome size and complexity, whereas the emergence of large eukaryotic 

genomes is proposed to have occurred passively in response to long-term reductions in 

population size that accompanied increases in organism size. According to this 

hypothesis, the genomic restructuration that has lead to the eukaryotic complexity has 

been first mediated by events in a non-adaptive process, which has then provided a 

substrate for further evolution of multi cellular species via a selective process (Lynch and 

Conery 2003). Mobile genetic elements in prokaryotes, which will be the focus in this 

introduction, have been important in the evolution that has lead to the complex eukaryotic 

genomes, and are also essential in the prokaryotic organisms and their genomic 

development and adaptation to different environments. 

 

Impact of mobile elements on prokaryotic genome and evolution
 

Prokaryotic genomes can differ greatly in size, ranging from about 160 to 13 000 

kb, where nearly 90% of the sequences (in most bacterial and archaeal genomes) specify 

proteins. Usually mobile genetic elements in prokaryotes do not account for a substantial 

part of the genomes as they do for higher eukaryotes. Even so, they are clearly one of the 

driving forces, together with genome degradation and streamlining, in the evolution and 

adaptation of prokaryotic species, and have played key roles in the development of 

bacterial pathogens (Ochman 2005; Pallen and Wren 2007; Koonin and Wolf 2008) 

Figure 1 illustrates the different factors involved in genome evolution (Koonin and Wolf 

2008).  
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Figure 1. The figure is taken from (Koonin and Wolf 2008), and shows the principal forces of 
evolution in prokaryotes and their effects on archaeal and bacterial genomes. The colored triangles 
denote the effects of Genome degradation, Genome streamlining, and Innovation. They are 
positioned over the ranges of genome size for which the corresponding effects are thought to be most 
pronounced.  

 

Prokaryotic organisms use multiple strategies involving acquisition, loss, and/or 

development of genes to adapt to new environments and optimize functionality under the 

strong selection pressure. Bacteria have a low mutation rate of 10-6 to 10-9 per generation 

and do not have, unlike most eukaryotic organisms, a mode of sexual reproduction which 

can exchange alleles within a population (Lynch 2006). Mobile elements, including 

viruses (bacteriophages), plasmids and transposable elements, are therefore the most 

dominant and critical force for acquisition and development of genes in the prokaryotic 

world (Koonin and Wolf 2008). These elements, referred to as the mobilome, constitute 

an enormous source of genetic material that can be exchanged between different bacteria, 

and are in constant exchange with the more stable chromosomes. The mobilome also 

serve as vehicles for horizontal transfer for other genetic material that regularly becomes 

passenger under mobility (See ‘Intra- and Intercellular mobility’ section below).  

 

The content of mobile elements in the genomes varies with the ecology and 

lifestyle of the organism. This might reflect the importance of these elements in different 

environments and under certain conditions. Facultative and obligate intracellular bacteria 

that replicate within eukaryotic host cells usually have many and very few mobile 
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elements, respectively, while free-living bacteria generally have numbers in-between 

(Ochman and Davalos 2006). The reduced number of mobile elements in obligate 

intracellular bacteria can be explained by the accelerated deletion rates and the 

deleterious effects these elements have under the increased selection pressure and 

genome streamlining process affecting the former organisms (Lynch and Conery 2003; 

Moran and Plague 2004). In the initial stages when bacteria are becoming host-

dependent, facultative intracellular, there appears to be a rapid burst in frequency of 

transposable elements together with many genomic rearrangements, while ancient, 

obligate intracellular organisms appear to have lost these elements. The proliferation of 

mobile elements in newly host-restricted bacteria is explained by the reduced effective 

population size that lowers the efficiency by which purifying selection maintains genes 

and this allows the “selfish” mobile elements to multiply with resulting increase in 

genomic rearrangement and pseudogene formation (Lynch and Conery 2003; Moran and 

Plague 2004). This transition stage, with higher frequency in mobile elements, may have 

a beneficial effect with an increased possibility to adapt to specific hosts and niches. 

Increased horizontal gene transfer might give a greater opportunity to acquire genetic 

material of selective advantage (Koonin and Wolf 2008). The spread of mobile elements 

within the genome can give more genome plasticity, because they can mediate gene 

deletion, genome rearrangement or have a direct impact on neighboring gene expression 

(Moran and Plague 2004). It may also be that these events are setting the stage for the 

more deleterious effects leading to genome streamlining and reduction, as in the “typical” 

ancient host-dependent bacteria (Parkhill et al. 2003; Moran and Plague 2004). It has 

further been argued that, more generally, an expansion in mobile elements in any 

organism could give a transitory selective advantage to the host (Siguier et al. 2006a; 

Wagner 2006). The expansion can give a beneficial increase in lateral gene transfers and 

genomic rearrangements, but in the longer term this could be detrimental to the host.  
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The prokaryotic mobilome 
 

Mobility events of genetic material can be classified according to whether the 

mobility occurs within genomes (intracellular mobility) or between bacterial cells 

(intercellular mobility)- however, these two phenomena are usually closely connected. In 

the sections below, the main groups of mobile elements and mobility processes are 

presented briefly in the sections below.  

 

Intercellular mobility 
 

It has long been known that horizontal gene transfer occurs between different bacteria, 

but it was only with the rapid increase of genome sequences and the genome comparisons 

that the massive extent of genetic transfer has been recognized (Frost et al. 2005; Koonin 

and Wolf 2008). There are three classical mechanisms that mediate lateral exchange of 

genetic material between bacteria: natural transformation, transduction and conjugation 

(Frost et al. 2005). 

 

Natural transformation is the ability to take up naked DNA from the environment, 

integrate and functionally express the foreign DNA (Chen and Dubnau 2004). This free 

DNA may come from other dead, lyzed cells. The transformation usually require that the 

cells come in a physiological state named competence, which is a specific response to 

environmental conditions regulated by a specific set of genes (Thomas and Nielsen 

2005). The naked extracellular DNA is actively transported as single-stranded DNA 

(ssDNA) into the cytosolic compartment by a translocation machinery. 

Horizontal genetic transfer by conjugation differs from transformation as it involves 

direct cell-to-cell contact for the transfer of DNA. The two cells establish contact through 

specialized transfer pores, by which the DNA is translocated from donor to recipient cell 

(Frost et al. 2005). The exchanged DNA usually consists of independently replicating 

genetic elements such as conjugative plasmids or transposons, which encode specific sets 
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of genes mediating the transfer process.  Other plasmids that lack the conjugation system 

can be mobilized by conjugative elements.  

Transduction is the genetic transfer mediated by bacteriophages (see also 

‘Bacteriophages’ section below) (Lengeler et al. 1999). This transfer is an accident of the 

replication of the phages (general transduction). At a low frequency, DNA from the host 

is brought with the viral DNA and injected into the next infected cell (specialized 

transduction). Through recombination or phage integration, the foreign DNA becomes 

part of the host cell’s genetic material.  

Plasmids
 

Plasmids are extra chromosomal DNA elements that are common in prokaryotes. 

Plasmids can vary in size from 2 kb to more than 1 Mbp, i.e., larger than the smallest 

known chromosomes. This genetic material forms a stable, self-replicating entity 

(Phillips and Funnell 2004a). Plasmids encode the genes essential for their own 

replication, but also genes not required for essential cellular function. The latter ones 

might give a selective advantage in certain environments, encoding for example antibiotic 

resistance, secondary metabolic capabilities or virulence factors (Phillips and Funnell 

2004b). These genetic entities can usually be horizontally transferred by conjugation, but 

also by transformation. They display greater genomic plasticity than chromosomes, and 

are therefore more adaptable and can act as reservoirs for horizontal genetic transfer. 

Bacteriophages
 

Bacteriophages are viruses that infect bacteria, and are dependent on their host for 

replication. Phages are known to contribute to fitness and pathogenesis of the bacteria as 

they can be gene transfer particles to shuttle pathogenicity islets or random samples of 

chromosomal DNA (Brussow et al. 2004). The phages carry first of all their own genetic 

material that can either be double stranded DNA (dsDNA), singelstranded DNA 

(ssDNA), dsRNA or ssRNA. This material is usually enclosed by a protein capsid. The 
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phages recognize and attach to specific receptors features in the membranes of the 

bacterial cell wall before it injects the genetic material into the bacteria. This specificity 

for certain receptors do in turn determine what bacteria strains the phages can infect, 

though it has recently been shown that the infection can happen more interspecies than 

previously thought (Chen and Novick 2009).   

 

The phages can integrated their genome with host bacterial DNA or become 

established as plasmids, and then be reproduced with the host cell which is allowed to 

continue to survive and replicate. These, called prophages, may provide benefits to the 

host bacterium while they are dormant by adding new functions to the bacterial genome 

in a phenomenon called lysogenic conversion (Brussow et al. 2004).  

 

Intracellular mobility  
 

There are a wide variety of mobile elements that can mediate their own, and other 

genetic elements, transfer to new genomic locations. Transposons are a class of elements 

that is a defined segment of DNA with the ability to move, or copy itself, into a second 

location without requirement for DNA homology (Curcio and Derbyshire 2003). 

Transposable elements are the focus here, but other mobile elements as homing 

endonucleases and repeated sequences are presented. 

 

Intercellular mobility events may both activate and inactivate genes depending on 

the location of their target (upstream or within a gene, respectively). These elements can 

promote inversions and deletions of chromosomal DNA, as a result of an intramolecular 

transposition event or by providing dispersed regions of homology that can be recognized 

by the DNA recombination machinery of the host. Under mobility the DNA flanking 

certain elements can also be mobilized, as with transduction, and so provide yet another 

means of rearranging host genes. On the other side you have the group II introns, a 

retrotransposons, which by its ribozyme activity can splice the host gene exons and 

therefore minimize the effect of the transposition.  
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Transposons
 

Transposable elements can be divided into two major groups with the DNA 

transposons, class II elements, and the retroelements, class I elements by which mobility 

involve reverse transcription of an RNA intermediate. Both the two classes can be further 

divided into additional classes based on their variation of mechanisms (Curcio and 

Derbyshire 2003; Goodier and Kazazian 2008). Their might also be some confusion 

about class I and II transposons, as DNA transposons has also been divided into class I 

and II based on that the latter represented transposons that carried additional genes not 

needed for mobility (Craig 2002). Anyway, the major division here is by DNA 

transposon and retrotransposon (Curcio and Derbyshire 2003 ; Beauregard et al. 2008).

 

DNA transposons 

 

All the transposase enzymes possess a nuclease activity that allows them to cleave 

DNA in order to excise transposon DNA, which is subsequently inserted into a new 

location. Some of these transposons cut out the defined DNA sequence, whereas others 

only make a copy of the original sequences. Similarly, some of these elements ‘paste’, 

whereas others ‘copy’, themselves into the target. To cleave the DNA substrate different 

types of nucleophiles are used depending on the system. The phosphorus atom of a 

backbone phosphate group can be attacked by water that is activated by enzyme-bound 

metal ions, a hydroxyl group at the 5’ or 3’ end of a DNA strand, or a hydroxyl-group 

bearing amino acid in the active site of the transposase itself (Curcio and Derbyshire 

2003; Grindley et al. 2006). The different mechanisms are used to classify the transposase 

into four different protein families that mediate transposition (Curcio and Derbyshire 

2003). These families are DDE transposases, which are the most abundant class, Y- and 

S-transposases, and Y2 enzymes (Craig 2002; Curcio and Derbyshire 2003). 

Insertion sequences (IS) are the smallest and most frequent transposable 

elements in prokaryotes (Craig 2002; Curcio and Derbyshire 2003). IS elements are 

widespread in eukaryotes, prokaryotes, phages, and plasmids. These genetic elements are 
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usually flanked by inverted terminal DNA repeats (IRs) of between 10 and 40 bp, which 

is recognized by the transposase. There are several exceptions - for example the 

widespread class of IS200/605 that are defined by secondary DNA structures close to the 

cleavage site (Kersulyte et al. 2002; Ronning et al. 2005; Ton-Hoang et al. 2005).  

 

Retrotransposons

 

Retrotransposons generate a copy of their DNA (cDNA) by reverse transcription 

of their RNA. The insertion into new genomic locations can occur through different 

mechanisms, where they can be divided into two main classes (Beauregard et al. 2008). 

These two classes are named TP and EP retrotransposons, also known as non-LTR and 

LTR retrotransposons. TP retrotransposon, that stands for target-primed retrotransposon 

are defined by a mechanism where the cDNA copy is transcribed after the RNA element 

has inserted into the new DNA loci. EP retrotransposon on the other side, 

extrachromosomally primed retrotransposon transcribed its cDNA copy before inserting 

into the new site.  

EP retrotransposons encodes a recombinase or integrase in addition to reverse 

transcriptase, which through a recombination event inserts the reverse transcribed 

dsDNA. Examples of these longs terminal repeats elements are Ty elements of 

Saccharomyceerevisiae, but also retroviruses that also use a DNA based integration 

method (Curcio and Derbyshire 2003; Beauregard et al. 2008). The TP retrotransposons 

comprises of many different elements, such as the mammalian long interspersed nuclear 

elements (LINEs), short-interspersed nuclear elements (SINEs) and the group II introns. 

Homing endonucleases
 

Homing endonucleases are encoded by open reading frames that are usually 

embedded within group I, group II, archael introns and inteins (intervening sequences 

that splice out at the protein level), but can also be standalone copies (Stoddard 2005). 

The endonuclease recognizes and generates a double-strand break at homologous intron-

/homing endonuclease-less DNA sites, which is then repaired following the double-strand 

16 
 



break repair (DSBR) or the synthesis dependent strand annealing (SDSA) pathway 

(Mueller et al. 1996; Edgell et al. 2000; Craig 2002). Both these pathways are dependent 

on homologous recombination between exon sequences and lead to copy of the intron as 

well as conversion of part of the flanking exons from the intron donor DNA into the 

recipient DNA. Homing endonucleases are generally very site-specific, 10-40 bp target 

sequence, allowing insertion into cognate target sites as well as in additional ectopic sites 

that broaden the range homing endonuclease mobility (Stoddard 2005). 

 

Repeated sequences 
 

Noncoding repeated sequences are present in the genomes of various bacteria. 

These sequence elements can be non-autonomous miniature inverted repeat transposable 

elements (MITE) (Redder et al. 2001; Feschotte and Wessler 2002; Siguier et al. 2006b). 

The MITEs are sequences are relatively short and flanked by conserved terminal repeats. 

These sequences are believed to be derived from, and to be trans-mobilized by related 

transposons outside the repeated element with similar ends (Siguier et al. 2006b). 

Repeated elements as REP and ERIC are other classes of highly repeated elements with 

similar structures to MITE (De Gregorio et al. 2005; Tobes and Ramos 2005).  

 

The repeated elements have been associated with a diverse set of possible 

functions, where some are promoter activity, transcription termination, regulation of 

mRNA stability, and DNA uptake or recombination signals (Siguier et al. 2006b; Delihas 

2008). These sequences participate in maintenance and evolution of chromosome 

structure and function as suggested above other mobile elements in general by mediating 

genome plasticity. Suggestions have been made that repetitive DNA elements can act as a 

source of mutation that convey adaptive benefits likely to happen at a higher frequency in 

the genome (Schmidt and Anderson 2006).  
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Introduction of introns 
Introns are also called intervening sequence (IVS) and constitute the DNA regions 

in a gene that are not translated into proteins. These non-coding sections are present in 

precursor mRNA (pre-mRNA) and are removed by a process called splicing. The main 

classes of introns are the group I introns, group II introns and the spliceosomal introns. 

They are all characterized by that they splice by two transesterification reactions, but 

differ in RNA structure and what they use as catalyst for the reaction. Group I intron 

differentiate from the two other in RNA structure and sequence, but also by that it use 

primarily an external nucleophile (free guanine nucleoside) to initiate the first splicing 

step (Woodson 2005; Stahley and Strobel 2006). This intron was the first RNA molecule 

assigned with catalytic properties and Thomas Cech was awarded the Nobel Prize in 

chemistry for the discovery in 1989(Kruger et al. 1982).  Both the group I and II introns 

are true RNA enzymes, ribozymes that can catalyze their own splicing reaction. These are 

ribozymes that usually dependent on divalent ions to fold into their active structure 

(Lehmann and Schmidt 2003). The group II introns usually have an unpaired adenosine 

in their conserved secondary RNA structure which acts as the nuclophile that initiates the 

first splicing step (See later). Spliceosomal intron is a large ribonucleoprotein complex 

consisting of several small nuclear RNAs and proteins factors. These introns, that usually 

reside in the eukaryotic protein coding genes, are due to similarities in important 

structures features and splicing mechanisms believed to derive from the group II intron 

(Robart and Zimmerly 2005; Seetharaman et al. 2006). However all the similarities, it is 

still debated whether the huge spliceosomal complex is a true ribozyme or not (Collins 

and Guthrie 2000; Valadkhan 2007; Valadkhan et al. 2007; Abelson 2008; Michel et al. 

2009). There are other introns that are non-selfsplicing, tRNA and archeal introns, which 

rely on host factors for splicing (Calvin and Li 2008).  
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Group II Intron 
 

The group II introns are a type of mobile TP-retrotransposons that can also 

perform splicing. Group II introns were discovered more than 25 years ago (Michel and 

Dujon 1983). They are present in mitochondria and chloroplast of plants, fungi and lower 

eukaryotes, where they are relatively abundant. They are also found in ~25% of the 

sequenced bacterial genomes and in a few archaea (Dai and Zimmerly 2002a; 2003; Toro 

2003). Excision from RNA precursor molecule occurs primarily through a branching or 

hydrolytic splicing reaction, and the intron can subsequently insert into a new DNA site 

through the reverse reaction, reverse-splicing (Lehmann and Schmidt 2003; Lambowitz 

and Zimmerly 2004; Pyle and Lambowitz 2006; Fedorova and Zingler 2007; Toro et al. 

2007). The intron RNA is defined by a highly conserved secondary structure that 

typically consists of six domains (I to VI) connected by a network of tertiary interactions. 

Domain IV usually contains an open reading frame coding for a multifunctional intron-

encoded protein (IEP), which is required for both splicing and mobility events in vivo. 

Only a few introns have been functionally characterized in vitro or in vivo, but at least 

one for each of three major structural classes is represented. Further, most of the sections 

below build on the in vitro studies conducted without the IEP on an even narrower group 

of introns. 
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Splicing reactions 

 
Figure 2. Schematic drawings of the reaction pathways of group II introns. The intron is shown as a 
thick solid red line and the 5’ and 3’ exons as a grey and white box, respectively. The adenosine 
residue and the water molecule acting as nucleophiles are drawn with their 2’ hydroxyl group that 
initiates the first step of branchpoint splicing and hydrolytic splicing, respectively. The minor 
reaction pathway leading to intron circle formation is also drawn. This reaction is believed to result 
from the spliced-exon reopening reaction. Nucleophilic attacks are indicated by black arrows. Dark 
blue and grey arrows indicate the forward and reverse direction of a given reaction step, 
respectively) See text for more details  
 

Branchpoint splicing (Forward and reverse)  
 

Ribozyme activity was the first property assigned to group II introns, i.e., splicing 

is catalyzed by the intron RNA (van der Veen et al. 1986; Peebles et al. 1987).  A major 

pathway by which group II intron excise themselves from the exons is the branchpoint 

pathway (branching). Branch point splicing occurs by two transesterification reactions as 

a two-step process (Figure 2) (Lehmann and Schmidt 2003). This starts with a 

nucleophilic attack at the 5’ splice site by the 2’OH group of a specific unpaired 

adenosine in domain VI (the branchsite)(See Figure 2). The 5’ splice site is put by several 

interactions in close proximity for the 2’OH group to attack and break the phosphodiester 

bond of the 5’ junction in a SN2 displacement mechanism (Padgett et al. 1994; Podar et 

al. 1995). This releases the 3’OH group in the 5’exon and the intron forms a lariat 

intermediate with a 2’–5’ linkage between the branch site adenosine and the first intron 

nuclotide, i.e. a branched RNA circle with a 3’-tail still covalently attached to the 3’ exon 
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(van der Veen et al. 1986; Lehmann and Schmidt 2003). After the first cleavage reaction 

the 5’exon is still tightly linked to the intron via base-pairing interactions (Jacquier and 

Michel 1987; Jacquier and Jacquesson-Breuleux 1991), and its 3’hydroxyl group is 

positioned for attacking the 3’ splice site in the second splicing reaction. This leads to the 

release of a free intron lariat and ligated exons. The second step proceeds via a SN2 

displacement mechanism like the frist step, but a phosphate substitution at the two splice 

sites has revealed inverted stereoisomeric preferences (Padgett et al. 1994; Podar et al. 

1995). Group I introns differs in this contrast markedly as the two steps appear to be 

simple reversal of one another (McSwiggen and Cech 1989; Pyle and Lambowitz 2006). 

Group II introns are dependent on divalent metal ions for folding and catalysis and have a 

two-metal ion coordination for the leaving groups at the catalytic center, like group I 

introns and protein enzymes that catalyze phosphoester transfer (Piccirilli 2008; Toor et 

al. 2008a).  

Both these two splicing reactions are reversible (Figure 2)(Pyle and Lambowitz 

2006). The first step is the rate limiting for most self-splicing group II introns, and the 

rate constant is equal in the forward and reverse direction (Chin and Pyle 1995). The 

intermediates are usually not detected as the second forward reaction is much faster than 

the reverse and thus drives the forward reaction to completion. However, under suitable 

reaction conditions, reverse splicing can be rather efficient (Muller et al. 1991; Aizawa et 

al. 2003). This property is not limited to RNA substrates as reverse splicing also can 

introduce the introns into DNA molecules and thus provides the basis for intron mobility 

(Lambowitz and Zimmerly 2004). 

 

Hydrolytic splicing  

 

In addition to the lariat splicing pathway, where the nucleophile is internal, the 

group II intron can excise itself via a hydrolytic pathway where the nucleophile attacking 

the 5’exon-intron junction in the first splicing step is water or a hydroxyl ion (Lehmann 

and Schmidt 2003; Pyle and Lambowitz 2006). This releases the 5’ exon and a linear 

intron attached to the 3’ exon (Figure 2). In contrast to branching, hydrolysis is 
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irreversible. The second step is identical to that of the branching pathway and the end 

products are ligated exons and a linear intron. In vitro the balance between the branching 

and hydrolysis reactions is strongly influenced by the choice of monovalent cation used 

(Daniels et al. 1996). This balance may also depend on the sub class of group II intron 

and in vitro some introns have been shown to only splice only through the hydrolytic 

pathway(Granlund et al. 2001). Further, in vivo the hydrolytic reaction is an active 

pathway for introns lacking the branchpoint nucleotide (Podar et al. 1998; Vogel and 

Börner 2002). It has recently been shown that a linear intron can reverse the second 

splicing in a efficient way, and may suggest an alternative pathway for mobility  

(Roitzsch and Pyle 2009).  

Other reactions: circularization and exon reopening 

  

Both products the free lariat or linear intron, released during the branching and 

hydrolytic splicing pathway, respectively, have been shown in vitro to reopen spliced 

exons  (Jarrell et al. 1988; Daniels et al. 1996). This alternative reaction, shown for some 

group II introns, is the hydrolysis of the 5’ -3’ exon junction after recognition by excised 

intron molecule (Lehmann and Schmidt 2003; Fedorova and Zingler 2007). This is 

actually true ribozyme activity, leaving the intron unchanged, occurs surprisingly with 

same stereo chemistry as second reaction although it cleavages after the same position as 

the first (Podar et al. 1995; Lehmann and Schmidt 2003; Michel et al. 2009). This spliced 

exon reopening (SER) reaction has also been implicated for generation of intron circles. 

A fully circular intron form, first discovered as a by-product in in vitro splicing, has been 

shown in vivo for bacteria and in plant mitochondria (Murray et al. 2001; Li-Pook-Than 

and Bonen 2006; Molina-Sanchez et al. 2006). In the circularization pathway, a free 

5’exon, from the SER reaction is suggested to attack the 3’ splice site of an unspliced 

precursor mRNA, leaving a 5’exon still covalently linked to the intron. The free 3’ end of 

the intron then attacks the 5’ splice site, releasing the 5‘exon and a circular intron with a 

2’-5’linkage at the circle junction (Murray et al. 2001).  
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Structure / Folding / Compaction / Catalysis 

Overview of the group II intron RNA domains and their major features 

Group II introns are the largest catalytic RNAs known, with a size of about about 

400-1000 nt (excluding the IEP open reading frame (ORF)), and the size is one of the 

most diffucult challenges when analyzing the structure/function relationships of group II 

introns compared with other ribozymes. Strikingly, even though these RNA elements lack 

sequence conservation, they show conservation in secondary structure features and 

organization. Group II introns typically form a secondary structure made up of six 

domains, that radiate out from a central core bringing the 5’ and 3’ splice sites in close 

proximity (Figure 3)(Lehmann and Schmidt 2003; Pyle and Lambowitz 2006; Fedorova 

and Zingler 2007). These domains of group II introns have specific roles in folding, 

conformational rearrangements, and/or catalysis. Domain I serves as a scaffold for the 

assembly of other domains into a catalytically active structure, and is essential for exon 

recognition (see section below), which explain this domain’s importance for splicing and 

mobility (Pyle and Lambowitz 2006). Domain V is the main catalytic center (heart) of 

these ribozymes, and together with domain I are the only elements that are absolutely 

essential for minimal catalytic activity of the intron (Koch et al. 1992). Domain VI is 

necessary for the branching pathway, as it contains the branch point adenosine (Lehmann 

and Schmidt 2003). Domain II and III have been shown to enhance catalytic efficiency, 

but are not essential for the intron (Qin and Pyle 1998; Fedorova et al. 2003; Fedorova 

and Pyle 2005). The intron domain IV is the most varying region in secondary RNA 

structure, and can contain the multifunctional intron encoded protein (IEP). This structure 

does not directly contribute to catalysis under the splicing, but when present it influences 

both splicing and mobility (Fedorova and Zingler 2007).  Lastly, the linker regions 

between the different domains have been shown to be important in several aspects of 

intron folding and catalysis (De Lencastre and Pyle 2008).  Even though all group II 

introns fold into a similar overall secondary structure, they can divide into three major 

subclasses, IIA, IIB and IIC by IEP sequence analysis and correlating specific secondary 

structural features (Toor et al. 2001; Toro 2003; Simon et al. 2008).  
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Group II introns fold into a compact catalytically active tertiary structure by 

means of an extended network of long-range tertiary interactions that are distributed 

throughout the RNA secondary structure, forming a somewhat similar catalytic active 

center (Pyle and Lambowitz 2006; Fedorova and Zingler 2007; Waldsich and Pyle 2007; 

Dai et al. 2008).  

Until recently most work/studies related to interactions catalytic activity, folding 

has been done on IIA and B class introns and therefore most interactions classified has 

been based on them (Lehmann and Schmidt 2003; Noah and Lambowitz 2003; Pyle and 

Lambowitz 2006; Dai et al. 2008). The recently determined 3D X-ray crystal structures of 

the group IIC intron of Oceanobacillus iheyensis have confirmed and extended the 

conclusions of numerous biochemical and genetic studies and have given new insights 

into the compaction and tertiary arrangement of group II ribozymes, which will be 

reviewed the next two sections (Toor et al. 2008a; Toor et al. 2008b). However, some 

aspects of the 3D structure are still unresolved (Michel et al. 2009). 

24 
 



 

 
Figure 3. The figure  taken from (Pyle and Lambowitz 2006) and slightly) modified, is an illustrative 
model of the secondary and tertiary structure of group II introns from the IIA and IIB structural 
classes. The six main RNA domains are designated by Roman numerals (I-VI). Domain IV typically 
encodes the multifunctional IEP open reading frame (ORF). Tertiary interaction motifs are colored 
and denoted with their respective Greek letters. The motifs specific for IIA or IIB introns are 
indicated. The location of subdomains IC1 and ID1 in domain I, which are specifically discussed in 
the text below, has been included. 

Defining splicing boundaries

 

Group II introns RNAs recognize their targets sites, either being RNA or DNA in for the 

forward or reverse splicing reaction, via specific basepairing (bp) interactions with the 

exon sequences (Lehmann and Schmidt 2003; Lambowitz and Zimmerly 2004; Pyle and 

Lambowitz 2006). For group IIA and IIB introns the 5’ exon is defined through two 5-6 

bp interactions with domain I, where the exon binding sequences (EBS) 1 and 2 in the 

intron pair to their corresponding intron binding sequences (IBS) 1 and 2 spanning the 

last 12-15 bp of the 5’ exon (See Figure 3). The resulting two recognition duplexes are 

what mediates the high-interaction specificity and cleavage-site fidelity, giving the proper 

conformation of the 5’splice site for transesterification or hydrolytic cleavage (Jacquier 
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and Michel 1987). Class IIC introns differ from IIA and IIB introns with respect to 

5’exon definition, as they preferentially insert down-stream of a transcriptional terminator 

stem–loop structure which substitutes in part for the missing IBS2–EBS2 interaction 

(Toor et al. 2006; Robart et al. 2007). The 3’exon is defined by two, single-base-pair 

interactions, which also vary between the RNA structural classes. These interactions are: 

(1) �-�’, involving a nucleotide located in the J2/3 linker region between domains II and 

III (�) and the last intron base (�’); and (2) �-�’ for IIA introns or EBS3-IBS3 for IIB and 

IIC introns, where �/EBS3 are in different locations in domain I and �’/IBS3 is the first 

base of the 3’ exon (Jacquier and Michel 1990; Costa et al. 2000). Class IIB and IIC 

introns also have �-�’ interactions, but with a different �’ nucleotide positioned in the 

coordination loop of domain I and involved in a different aspect of exon recognition (see 

below). The �-�’ and EBS-IBS3 interactions seem to play a minor role in splice site 

recognition for IIB introns, as disruption of these interactions affect mainly the efficiency 

of the second splicing step but not the fidelity of 3’ splice site selection (Costa et al. 

2000; Lehmann and Schmidt 2003). In contrast, IIA introns appear to be somewhat more 

sensitive to substitutions in the �-�’ nucleotides, which can lead to the use of cryptic 3’ 

splice sites (Lehmann and Schmidt 2003). Furthermore,  domain VI is thought to guide 

the 3’ intron-exon junction into the catalytic active site in passive way, ensuring an 

efficiency second splicing step with high fidelity (Jacquier and Jacquesson-Breuleux 

1991; Lehmann and Schmidt 2003)   

Biochemical cross-linking experiments have shown that both exons, the branch 

site, domain V and other elements critical to splicing are proximal and aligned in the 

correct orientation in a single catalytic center before the first splicing reaction (de 

Lencastre et al. 2005). These and other studies showed that (the formation of) this active 

center is in part facilitated by an internal asymmetric loop in subdomain Id in class IIB 

and IIC introns, which is referred to as the coordination loop (See Figure 3)(Costa et al. 

2000; Noah and Lambowitz 2003; de Lencastre et al. 2005; Hamill and Pyle 2006). It 

plays a critical role in catalysis as it functions as a receptor for the branchsite and 

surrounding nucleotides in domain VI, and coordinates the docking of all components 

essential for splicing (de Lencastre et al. 2005; Hamill and Pyle 2006). The coordination 

loop contains EBS3 involved in the EBS3-IBS3 interaction, and the �’ nucleotide 
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involved in the �-�’ basepairing with the � base located 5’ of EBS1. Crystallization of the 

O. iheyensis class IIC intron with ligated exon substrate has revealed that the exon 

junction is presented as a continuous strand over the important active sites in domain V 

(Toor et al. 2008b). The study also confirmed that the EBS1 and EBS3 motifs are linked 

together in a common exon binding interface by the �-�’ interaction in the coordination 

loop. Biochemical cross-linking studies suggest that binding of the branch site and the 

3’exon bind the coordination loop independently and are energetically uncoupled (Hamill 

and Pyle 2006). Even though class IIA introns do not harbor the coordination loop, they 

are also suggested to form an overall topology with a similar catalytic core (Noah and 

Lambowitz 2003; Dai et al. 2008). These introns form the continuous binding interface 

for 5’ and 3’ exon recognition with EBS1 and the � nucleotide that respectively binds 

IBS1 and the first 3’ exon nucleotide �’(Jacquier and Jacquesson-Breuleux 1991). The 

main difference is presumed to be that for the class IIB introns the exons are largely 

internalized as opposed to the model for IIA introns, where they are mostly bound to the 

surface of the ribozyme beside the splice junction  (Pyle and Lambowitz 2006; Dai et al. 

2008).  
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The active catalytic site and stabilizing interactions  

 
Figure 4. The pictures are taken from (Toor et al. 2008a) and show A) the overall structure in a 
ribbon representation of the group IIC intron of Oceanobacillus iheyensis based on the X-ray crystal, 
and B) domain V and residues in its close proximity with the interactions between domain V, domain 
I and the linker region J2/3. The various domains or subdomains of the group II intron are indicated 
by roman letters and drawn in distinctive colors.   
 

Domain V (DV) is the catalytic heart of the intron. Almost every (most) nucleotide in DV 

has a major role in the intron’s function and this domain is the most phylogenetically 

conserved primary sequence part of the entire intron (Lehmann and Schmidt 2003; 

Fedorova and Zingler 2007). At the 5’ base of DV there is the catalytic triad AGC, or 

CGC, and together with a two-nucleotide bulge at the 3’ side forms a negatively charged 

pocket by its backbone moieties that binds the two coordinating metal ions, consistent 

with a two-metal ion mechanism for catalysis (Sigel et al. 2000; Zhang and Doudna 2002; 

Lehmann and Schmidt 2003; Sigel et al. 2004; Pyle and Lambowitz 2006; Toor et al. 

2008a; Toor et al. 2008b). The catalytic center is assembled via an extensive network of 

tertiary interactions between the multiple intron domains, which leads to a structure with 

a highly internalized core. As mentioned above, the exons are presented into the pre-
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formed intron structure, where DI forms a scaffold for all the domains, with DV in the 

middle and the other domain structures stacking upon each other (Dai et al. 2008; Toor et 

al. 2008a; Toor et al. 2008b; Michel et al. 2009). The large DI is held together through 

the �-�’ Watson-Crick basepairing interaction, and the additional �-�’ pairing in some 

intron subclasses (Toor et al. 2001; Simon et al. 2008), and takes part in the pre-

organization of the intron structure to the active form (Figure 3 and 4). The conserved �-

�’ pairing was shown to be functionally important (required) for self splicing in vitro 

(Harris-Kerr et al. 1993). DI folds independently of the other domains, which is the rate 

limiting step for the total folding of the intron (Fedorova and Zingler 2007). It has been 

demonstrated that the a small substructure/ region in domain, ID1, is the most crucial for 

compaction and folding (See figure 3 and 4) (Waldsich and Pyle 2007). This region, 

designated the folding control element,  harbors the docking sites for domains V (the � 

and � elements) and VI (the coordination loop), therefore suggesting that proper folding 

here ensures the specificity and accuracy of group II intron ribozyme catalysis (Fedorova 

and Zingler 2007; Waldsich and Pyle 2007). The interactions between ID1 and DV are 

named �-�’ and �-�’, where the former is a tetraloop-receptor interaction and the latter is 

similar but of less defined geometry (Figure 3) (Costa and Michel 1995; Boudvillain and 

Pyle 1998; Keating et al. 2008). Other motifs that are essential in (the formation of) the 

active site are the �-�’ and 	-	’ interactions that place the 5’ splice site near the catalytic 

core in DV (Jacquier and Michel 1990; Boudvillain et al. 2000; de Lencastre et al. 2005; 

De Lencastre and Pyle 2008). The X-ray crystal structure of the O. iheyensis IIC intron 

has revealed that the �-�’ and 	-	’ are components of a functional substructure in 

subdomain IC1(See Figure 3), called the z-anchor, that makes multiple contacts between 

domains I and V and nucleotides at the 5’ end of the intron, thereby mediating the 

structural integrity of the core (Toor et al. 2008a). The linker between domain II and III 

(J2/3), which is one of the most conserved sequences among group II introns, has long 

been known to be important for efficient splicing activity and placed it close to the core 

of the ribozyme (Fedorova et al. 2003; de Lencastre et al. 2005; Pyle and Lambowitz 

2006; De Lencastre and Pyle 2008). The x-ray structure shows that J2/3 and the bulge 

bases in DV form a triple helix with the DV catalytic triad, bringing together the catalytic 

essential residues of the intron (Toor et al. 2008a).  DIII is internalized in the core and 
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participates in interactions with J2/3, �-�’ and the bulge of DV, stabilizing the active site 

(Fedorova et al. 2003; Fedorova and Pyle 2005; 2008). Several studies has suggested that 

all reaction components are aligned in close proximity in a single active site prior to 

splicing and that the configuration of the core is maintained throughout the whole 

splicing process (de Lencastre et al. 2005; Hamill and Pyle 2006). This could suggest that 

there is no large conformational changes occurring between the two splicing steps- 

however the degree of such changes is r somewhat debatable (Chanfreau and Jacquier 

1996; Costa et al. 1997; Michel et al. 2009).    

The recent crystal structures has shown that most of the group II intron structure 

with all its interactions are essential for inducing the active catalytic (relevant) 

form/structure of DV that forms a metal binding platform and the active site (Toor et al. 

2008a).  The crosslinking studies and three-dimensional model built by Dai et al. for a 

IIA intron show the same, suggesting that the catalytic side of domain V is orientated 

inward (Dai et al. 2008). 

Protein-assisted splicing in vivo
 

Most studies of the mechanism of group II intron folding and catalysis in vitro are 

conducted in relatively extreme reaction settings, with high salt and magnesium 

concentrations (>100 mM) and elevated temperature (>40°C), compared to the 

physiological conditions in the cell (Jarrell et al. 1988; Lehmann and Schmidt 2003). This 

is necessary to ensure high enough splicing reactivity. Under near-physiological 

conditions, intron folding is very slow and the structure is unstable (Fedorova et al. 2007; 

Fedorova and Zingler 2007). Therefore, most or all group II introns probably require 

protein factors to stabilize active structure or resolve misfolded (non-native) 

intermediates and allow efficient splicing in vivo (Lehmann and Schmidt 2003; Pyle and 

Lambowitz 2006; Fedorova et al. 2007). The best-characterized protein factors that 

participate in splicing are the proteins encoded by the mobile group II introns themselves 

(IEPs), usually located in domain IV. These proteins usually have four conserved 

domains RT (reverse transcriptase), X (maturase/splicing), D (DNA binding) and En 

(endonuclease), where the latter two are required only for the mobility event (see next 
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section)  (Lambowitz and Zimmerly 2004). The RT and X domains participate in RNA 

binding and maturase activity of the IEP (Lehmann and Schmidt 2003; Cui et al. 2004; 

Lambowitz and Zimmerly 2004). Studies conducted with the Lactococcus lactis intron 

Ll.LtrB intron showed that the IEP binds specifically to the intron and exerts maturase 

activity by stabilizing the catalytically active RNA structure, enabling in vitro splicing at 

near-physiological conditions (Matsuura et al. 2001; Pyle and Lambowitz 2006). The 

binding is very strong and specific in a region including the Shine-Dalgarno sequence and 

start codon of the IEP ORF in domain IV, thereby providing a mechanism for 

autoregulating the translation of the ORF (Wank et al. 1999; Singh et al. 2002). The 

Ll.LtrB protein also makes contacts, though in a weaker fashion, to catalytically 

important regions in domains I, II and VI (Matsuura et al. 2001; Pyle and Lambowitz 

2006; Dai et al. 2008). The protein binds the intron RNA as a dimer, and it is suggested 

that it holds domain I together, and induces and stabilizes tertiary interactions between 

the domains, and therefore promotes the formation of the intron’s catalytically active 

structure (Rambo and Doudna 2004; Pyle and Lambowitz 2006; Dai et al. 2008). The IEP 

of the RmInt1 intron of Sinorhizobium meliloti has also been suggested to promote the 

formation of the correct EBS1/IBS1 exon-intron interaction (Molina-Sanchez et al. 

2006).  This study also implicates that this protein controls the balance between lariat and 

circle splicing pathway. 

While bacterial group II introns typically encode an IEP, organellar introns often 

lack the IEP and require host-encoded proteins for splicing (Dai and Zimmerly 2002a; 

Robart and Zimmerly 2005). A number of nuclear-encoded splicing factors have been 

shown to be involved in group II intron splicing in vivo, either alone or in conjunction 

with other proteins, in chloroplasts of plants and mitochondria of fungi. These proteins 

are very diverse and generally represent proteins with additional cellular functions that 

have been recruited for splicing by group II introns during evolution (reviewed in (Pyle 

and Lambowitz 2006; Fedorova and Zingler 2007)) 

31 
 



 Mobility: Retrohoming and retrotransposition  
 

 
Figure 5. The figure is taken from (Pyle and Lambowitz 2006), illustrating different mobility 
pathways of group II introns. (a) Endonuclease (En)-dependent retrohoming pathway. While 
associated with the IEP, forming the RNP, the intron lariat reverse splices into one strand of a duplex 
DNA. The En domain of the IEP cleaves the opposite strand and uses this 3’ end as a primer for 
reverse transcription. (b, c) Alternative En-independent pathways where the nascent strand in the 
DNA replication fork is used as primer for reverse transcription. In pathway (b) the intron reverse 
splices into double-stranded DNA before passage of the replication fork, while in pathway (c) the 
intron inserts at the replication fork, which is transiently single-stranded. These pathways can be 
used for retrohoming by introns whose IEP lacks the En activity, or for retrotransposition into 
ectopic sites. In (b) and (c) the black arrow indicates the direction of replication. See text for more 
details.  
 

After the splicing reaction has taken place, group II introns can invade genomic DNA 

sites. The ribonucleoprotein (RNP) complex formed by the IEP and the lariat intron RNA 

during splicing medites the mobility event of the group II intron (Lambowitz and 

Zimmerly 2004; Pyle and Lambowitz 2006; Toro et al. 2007). The mobility starts by 

recognition and binding of the DNA target site by the IEP. Group II introns usually insert 

into cognate sequences, which extend to 30-35bp (covering positions -25 to +10 relative 

to the insertion site), an event called retrohoming. A different substrate specificity is seen 

for IIC introns which insert downstream of intrinsic transcriptional terminator stem-loop 

structures (Robart et al. 2007). The IEPs of ~60% the bacterial group II introns lack the 

En domain, and the retromobility events of bacterial group II introns can be divided into 

endonuclease dependent or endonuclease-independent pathways (Lambowitz and 

Zimmerly 2004; Robart and Zimmerly 2005; Pyle and Lambowitz 2006). The best-
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characterized pathways are those of yeast mitochondrial ai1 and ai2 introns, the L. lactis 

Ll.LtrB and S. meliloti RmInt1 introns. Studies with ai1, ai2, and Ll.LtrB (which belong 

to class IIA and whose IEPs have an En domain) showed that the IEP first binds upstream 

of the insertion site and promotes local unwinding of the DNA (Singh and Lambowitz 

2001; Aizawa et al. 2003). This enables the intron RNA to base pair with rest of the target 

site and then reverse splice into the top strand (See Figure 5a)(Zimmerly et al. 1995a; 

Yang et al. 1996). This reaction is mechanistically the reverse of the splicing reaction, 

and requires the analogous (same) intron/ exon base-pairings with the target sequence 

(EBS1/IBS1, EBS2/IBS2, and �-�’) (Mohr et al. 2000; Singh and Lambowitz 2001). 

Then, the En domain of the IEP cleaves the bottom strand 9-10 bases inside the 3’exon. 

This generates a free 3’-OH group that the RT domain uses as a primer for reverse 

transcription and cDNA synthesis of the inserted intron RNA (Zimmerly et al. 1995b). 

Overall, this process is called target-primed reverse transcription (TPRT), which show 

many similarities to reactions performed by non-LTR retroelements (see earlier chapter 

on Retrotransposon) (Malik et al. 1999; Robart and Zimmerly 2005; Beauregard et al. 

2008).   

Many IEPs in bacteria lack the En domain, and these use the other mobility 

pathway that requires a primer provided by the DNA replication fork (Ichiyanagi et al. 

2003; Zhong and Lambowitz 2003). RmInt1, a IIB intron whose IEP lacks the En domain 

uses two endonuclease-independent retrohoming pathways. A major pathway occurs by 

reverse-splicing of the intron RNA into ssDNA at the replication fork and the nascent 

lagging strand is used as a primer for reverse-transcription(See Figure 5b) (Martinez-

Abarca et al. 2004; Pyle and Lambowitz 2006). A minor, replication-independent 

process, involves retrohoming in the opposite orientation using the nascent leading strand 

as primers(See Figure 5c)(Martinez-Abarca et al. 2004). For both the endonuclease and 

replication dependent/ -independent mobility pathway, the intron recruits several host 

factors to complete the integration into the new genomic location (Read et al. 2002; 

Beauregard et al. 2008). 

While retrohoming is the predominant mobility pathway, at a much lower 

frequency group II introns are also able to invade noncognate (ectopic) sites through 

retrotransposition. The retrotransposition mobility events of Ll.LtrB in L.latctis follow 
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the same mechanism as the main retrohoming pathway described above for RmInt1 with 

insert into ssDNA (Ichiyanagi et al. 2002; Ichiyanagi et al. 2003). The target sequences 

usually have good match for IBS1, but not for IBS2 or the sequence recognized by the 

IEP. Different host organism may also influence which mobility pathways each intron 

use, as the Ll.LtrB intron in E.coli retrotransposition by inserting into dsDNA with 

varying priming mechanism (Coros et al. 2005). The retrotransposition, with its relaxed 

sequence requirements is evolutionary important because this has allowed the spread of 

group II introns to new and different genomic locations. The reverse splicing under the 

mobility event ensures that the intron can splice out of mRNA transcript and thereby 

minimizing the damage on the host.  

 

Evolution: Origin and spread  
 

Among the three major families of group II introns, elements of the IIA and IIB 

classes are almost twice the size (~800 nt, excluding the IEP ORF) of those from the IIC 

class (~450nt), which is presumed to be the most ancient (Toor et al. 2001; Toro 2003; 

Pyle and Lambowitz 2006). Phylogenetic analysis of the IEP of the growing number of 

intron sequences has shown that the group II introns can be further subdivided into nine 

distinct groups; (IEP classes Mitochondrial-like, Chloroplast-like 1, Chloroplast-like 2, 

Bacterial B, C, D, E1/E2, and F correspond to RNA structural classes A1, B1, B2, B4 (or 

B2-like), C, B3, B5, and novel, respectively. (Figure 6, page 54))(Michel et al. 1989; 

Toor et al. 2001; Zimmerly et al. 2001; Toro 2003; Simon et al. 2008). The different 

subclasses can be found in a mix of host organisms, although some subclasses seem to be 

somewhat restricted to particular bacterial phylogenetic groups. Single species can harbor 

introns of several subclasses clearly showing that the introns are mobile elements or that 

there has been a lot of horizontal transfers of introns (Dai and Zimmerly 2002b; Robart 

and Zimmerly 2005; Simon et al. 2008). Interestingly, comparison of the RNA secondary 

structures between the different subclasses indicates that the catalytic RNA has specific 

features that are unique to each group and strongly suggests that RNA structure has co-

evolved with the sequences of the IEP (Toor et al. 2001; Simon et al. 2008). The co-

evolution is suggested to be due to the strong biochemical interactions that exist between 
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the IEP and the catalytic RNA. This relies on the fact that both the protein and ribozyme 

RNA are required for the splicing reaction and the mobility event of group II introns in

vivo (see two previous chapters)(Toor et al. 2001; Lambowitz and Zimmerly 2004). 

During evolution group II introns have developed different modes of target site 

recognition, especially IIC intron group (see chapter Defining splice boundaries above), 

but this differentiation is also reflected in differences in catalytic reactivity. IIA, IIB and 

IIC introns have been shown to exhibit quite different behaviors in autocatalytic splicing 

under various reaction conditions in vitro (Granlund et al. 2001; Lehmann and Schmidt 

2003; Toor et al. 2006; Toor et al. 2008a).  

The close relationship between the IEP and intron RNA structure and the presence 

of the IEP in all intron subclasses have also led to the hypothesis that the group II intron 

ancestor was essentially a retroelement (Toor et al. 2001; Dai and Zimmerly 2002b). The 

presence of the IEP in a similar location in domain IV suggests that the IEP was acquired 

once by insertion into an already catalytic ribozyme, or, alternatively, the self-splicing 

ability might have been developed later by a retroelement in order to prevent host 

damage. The “retroelement ancestor hypothesis” predicts that the various structural 

lineages of group II introns arose by coevolution with the IEP from an ancestor intron in 

bacteria, which had an RNA structure with a mix of features and a compact reverse 

transcriptase ORF (Toor et al. 2001; Robart and Zimmerly 2005). Bacterial introns are 

usually not found in important housekeeping genes, but rather they have inserted in 

intergenic regions or other mobile elements (Dai and Zimmerly 2002a; Ichiyanagi et al. 

2003; Robart and Zimmerly 2005). These properties also support their (selfish) 

retroelement character, as they insert in genomic locations that minimize their impact on 

the host and/or will favorer their spread. Two of the group II intron subclasses are 

predicted to have migrated to the organelles of eukaryotes (the mitochondrial and 

chloroplast-like lineages), which was followed by loss of the IEP and degeneration in 

several RNA features, especially in plants where almost all group II introns are ORF-less 

(Toor et al. 2001). Organellar group II introns are inserted in many highly conserved 

genes essential for respiration and photosynthesis and therefore must retain efficient 

splicing properties. As opposed to the bacterial introns, organellar elements behave more 
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like splicing-only elements and rely on host-encoded splicing factors (Toor et al. 2001; 

Lehmann and Schmidt 2003; Robart and Zimmerly 2005).  

There are several similarities in RNA structure and splicing mechanism between 

group II introns and the nuclear spliceosomal introns (Valadkhan 2007). An evolutionary 

hypothesis is that group II introns invaded the eukaryotic nucleus and then have been 

successively fragmented, while retaining the fundamental catalytic mechanism of self-

splicing with the evolution from cis-acting elements to trans-acting small RNAs that 

became dependent on host protein factors for the splicing reaction (Sharp 1991). This 

theory is based on, and supported by the fact that fragmented bacterial and organellar 

group II introns can perform efficient splicing in trans (Knoop et al. 1997; Belhocine et 

al. 2008)  

In addition, there is also a relationship between group II introns and the non-LTR 

retroelements found in higher eukaryotes (Malik et al. 1999; Robart and Zimmerly 2005). 

The RT segments of the two types of elements are phylogenetically and structurally 

related and mechanistically both are mobile through a similar TPRT mechanism (see 

Mobility section above) (Lambowitz and Zimmerly 2004; Beauregard et al. 2008). 

Together this has put up the scenario that mobile group II introns may be the ancestors of 

spliceosomal introns and non-LTR retroelements, and therefore may have played a 

substantial role in the evolution of the eukaryotic genome as predecessors of the 

spliceosome and retrotransposons (Pyle and Lambowitz 2006). 
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The Bacillus cereus group of bacteria 
The Bacillus cereus group is a group of endosporeforming bacteria belonging to 

the Firmicutes phylum, i.e. low G+C% Gram-positive bacteria, and is a subgroup of the 

genus Bacillus (Porwal et al. 2009). Bacteria in this genus are rod-shaped in appearance 

and are aerobic or facultatively anaerobic. 

  

  The Bacillus cereus group (B. cereus sensu lato) includes the related species B.

cereus (sensu stricto), B. thuringiensis, B. weihenstephanensis, B. mycoides, B. 

pseudomycoides, and B. anthracis, which show different phenotypical characteristics and 

pathologenic properties. Altogether, these Bacilli are found worldwide in diverse habitats 

including soil, the gut of soil-dwelling invertebrates, the plant rhizosphere, and food 

processing units (Jensen et al. 2003). 

Bacillus cereus sensu stricto has its primary ecological niche in soil 

environments, and can colonize invertebrate guts as a symbiont. It is an opportunistic 

human pathogen involved in food-poisoning incidents and contaminations in hospitals. 

Food poisoning is characterized by either diarrhea and abdominal distress or nausea and 

vomiting, where the latter case is due to the production of an emetic toxin encoded on a 

large plasmid (Hoton et al. 2005; Ehling-Schulz et al. 2006). B. cereus is also known to 

cause several other types of infections (Drobniewski 1993). Bacillus thuringiensis has for 

a long time only been regarded as an insect pathogen, but can also be an opportunistic 

human pathogen like B. cereus (Rasko et al. 2005). These two species are distinguishable 

only by the fact that B.thuringiensis produces during sporulation insecticidal crystal 

proteins (the cry and cyt proteins), which are in most cases encoded on large plasmids 

(Aronson 2002). Because of this property, B. thuringiensis is widely used for biological 

control of insects. Its natural environment is thought to be the insect intestinal system, but 

it is found ubiquitously in soil (Rasko et al. 2005). Bacillus anthracis is the causative 

agent of the animal and human disease anthrax, and full virulence is again dependent on 

two large plasmids named pXO1 and pXO2 (Okinaka et al. 1999a; Okinaka et al. 1999b; 
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Mock and Fouet 2001). These plasmids encode a toxin complex and a protective poly-�-

D-glutamic capsule, respectively. B. anthracis shares the same ecological niches as B. 

cereus and B. thuringiensis and can be found in the soil in most of the parts of the world, 

but it is not clear whether it can grow vegetatively outside the host (Mock and Fouet 

2001).  

The last three members of the B. cereus group, B. weihenstephanensis, B. 

mycoides and B. pseudomycoides, are less studied, but have been argued to have the 

potential to be pathogenic because they possess enterotoxins common to the B. cereus 

group (Stenfors et al. 2002; Hendriksen et al. 2006; Stenfors Arnesen et al. 2008). B.

weihenstephanensis is psychrotolerant, being able to grow at 4-7oC, and is a common 

contaminant in dairies. Specific signatures for this species are found in the sequences of 

the 16S rDNA and cspA cold shock genes (Lechner et al. 1998). Bacillus mycoides can 

also be cold-tolerant and is characterized by a rhizoidal colony shape (Nakamura and 

Jackson 1995). B. pseudomycoides is indistinguishable from B. mycoides by 

physiological and morphological characteristics, but is phylogenetically divergent from 

the other B. cereus group species and exhibits a distinct fatty acid composition 

(Nakamura 1998). 

 

The species of the B. cereus group are despite so different characteristics very 

closely related at the genomic level, both in terms of gene content and synteny (Read et 

al. 2003; Rasko et al. 2004; Rasko et al. 2007). Their genomes are usually 5.2–5.4 Mb in 

size including a single circular chromosome and most strains carry one or several extra-

chromosomal plasmids. In fact the B. cereus group is one of the most sequenced bacterial 

groups, with currently 36 genomes available in Genbank (including 17 B. anthracis 

strains), and more than 50 others are underway (Genomes Online database, 

http://www.genomesonline.org/). Genome sequence comparison of several B. cereus 

group members has revealed genetic elements on the chromosomes that appear to be 

unique to this group of bacteria and is not found in any other organism (Okstad et al. 

2004b; Tourasse et al. 2006). Sequencing of the 16S rDNA shows over 99% similarity 

for the members of the group and numerous studies have shown that, with the exception 

of B. anthracis which is highly homogeneous (monomorphic), strains of the other species 
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are often phylogenetically intermixed and thus the species are hard to distinguish on basis 

of their genetic background (Ash et al. 1991; Carlson et al. 1994; Helgason et al. 2004; 

Priest et al. 2004; Sorokin et al. 2006). Although the species share a common genetic 

background, the Bacillus cereus group is a dynamic population. This is reflected by 

certain lineages of isolates that have evolved to form clonal complexes when  adapting to 

a particular niche or host (Tourasse et al. 2006).   B. anthracis is the clearest example, but 

clonal complexes of B. thuringiensis as well as B. cereus isolates of clinical origin have 

also been identified. 

As mentioned above, several of the major phenotypic characteristics of the 

members of the B. cereus group are determined by the different plasmids they have 

acquired. Due to this, it has been suggested that the various members could be considered 

as one species based on their overall genetic similarities at the chromosomal level and 

represent different ecotypes, pathotypes, or plasmidovars of B. cereus (Helgason et al. 

2000b; Rasko et al. 2005). Species definition within the B. cereus group has been an 

intense debate but in regard to the importance of these bacteria in both economic and 

health issues the current species nomenclature is likely to be maintained. Plasmids are 

vehicles for exchange of genetic information and, as in other bacteria, have played a 

significant adaptive role in pathogenicity and ecology of the isolates (Rasko et al. 2005; 

Rasko et al. 2007). In addition to factors contributing to pathogenesis or niche adaptation, 

plasmids also carry mobile genetic elements such as transposons and group II introns 

which again could induce genetic and phenotypic variation and influence the dynamic 

behavior of the Bacillus cereus group of bacteria (Tourasse et al. 2006; Tourasse and 

Kolstø 2008). 

 

 

 

 

Bacillus cereus group “mobilome”
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B. cereus group organisms have numerous mobile and/or repeated genetic 

components indicative of a dynamic genome. These elements include plasmids, phages, 

transposons, mobile introns, and diverse repeat sequences. 

Plasmids

 

Isolates from the B. cereus group harbor a large range of plasmids and certain 

strains have more than 10 different plasmids. The diversity of these plasmids is great with 

sizes ranging from ~2 kb to almost 600 kb (Carlson et al. 1994; Helgason et al. 2000a; 

Rasko et al. 2005; Rasko et al. 2007). While some of these plasmids do encode genes 

responsible for critical differences in virulence and host specificity, many are cryptic.  

 

Much attention has been put on the two plasmids found in B. anthracis, pXO1 and 

pXO2. The anthrax toxin genes encoded on pXO1 and the capsule genes on pXO2 (and 

their associated regulators) are located in pathogenicity islands (PAI) (Okinaka et al. 

1999b; Van der Auwera and Mahillon 2005). Several B. cereus and B. thuringiensis 

strains have been identified to harbor plasmids sharing extensive sequence similarity and 

synteny with pXO1 or pXO2 (Pannucci et al. 2002; Rasko et al. 2005; Van der Auwera 

and Mahillon 2005; Ehling-Schulz et al. 2006; Rasko et al. 2007; Hu et al. 2009). In three 

cases of human pneumonia resembling anthrax the isolated strains were B. cereus that 

possessed a plasmid  that show ed as much as 99.6% similarities to pXO1 and including 

the anthrax toxin genes, however these strains do not carry pXO2 (Hoffmaster et al. 

2004; Hoffmaster et al. 2006). Other variants of the pXO1 and pXO2 plasmids have been 

identified in several B. cereus and B. thuringiensis strains, some of them being of clinical 

origin (Rasko et al. 2004; Rasko et al. 2005; Van der Auwera et al. 2005; Ehling-Schulz 

et al. 2006; Rasko et al. 2007). These plasmids lack the respective PAI region that is 

either replaced by unique DNA or missing. The plasmids are believed to harbor other 

genes that define the ecological or pathogenic potential of the isolate in a specific niche 

(Ehling-Schulz et al. 2005; Rasko et al. 2007). The pXO1 and pXO1-like plasmids share 

a common backbone of genes including similarity in the replication origin and genes, and 
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likewise for pXO2 and pXO2-like elements. Altogether, this indicates that pXO1-like and 

pXO2-like plasmids are two distinct groups of related plasmids that are in the genetic 

pool shared by the Bacillus cereus group of bacteria (Han et al. 2006; Rasko et al. 2007; 

Hu et al. 2009). The presence of different variants of these plasmids illustrate how these 

plasmids, like in other bacteria, are responsible for much of the genetic reservoir enabling 

adaption to a specific niche or to multiple niches.  

How these related groups of plasmids are horizontally transferred among the B.

cereus group of bacteria is not understood for all of them. The pXO2-like plasmids 

contain large conserved conjugation modules and direct evidence for transfer by 

conjugation in B. cereus and B. thuringiensis has been observed in both laboratory 

cultures and foodstuffs (Wilcks et al. 1998; Van der Auwera et al. 2005; Van der Auwera 

et al. 2007; Van der Auwera et al. 2008)  The pXO2 plasmid in B. anthracis harbors 

however critical mutations and, like pXO1, is not directly self-transmissible, but both 

plasmids can be mobilized by other conjugative plasmids such as pXO14 from B. 

thuringiensis (Reddy et al. 1987).  pXO1 and pXO1-like plasmids encode genes that that 

show weak similarity to conjugation genes, but these have not been experimentally 

characterized (Grynberg and Godzik 2004; Rasko et al. 2005). Transformation by natural 

competence has been little addressed in this group of bacteria (Heierson et al. 1987). 

Sequence comparison and analysis has though shown that many of the B. cereus group 

members have gene sets homologous to those involved in competence in Bacillus subtilis 

(Read et al. 2003) (N.J. Tourasse, unpublished data). 

 

Bacteriophages 

Bacteriophages, like plasmids, are important source of genetic drift in bacteria by 

facilitating horizontal gene transfer and promote genomic rearrangements which may 

contribute to the emergence of bacterial pathogens (Brussow et al. 2004). Some phages 

have been shown to infect a various members of the Bacillus cereus group (Koretskaia et 

al. 1989; Koehler 2002; Schuch et al. 2002). 

Several integrated prophages have been found in the various genomes that have 

been sequenced in the B. cereus group of bacteria (Rasko et al. 2005). Four prophages are 
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present in the genome of B. anthracis and are conserved in ~300 isolates sequenced 

(Sozhamannan et al. 2006). All four prophages can excise from the chromosome at low 

frequencies, but are apparently defective in phage production. B. cereus E33L shares, at 

least partly, one of these B. anthracis prophages, and quite remarkably, is predicted to 

contain up to 27 chromosomally-encoded prophages plus several more on plasmids 

(Rasko et al. 2005). The B. cereus type strain, ATCC 14579, and B. cereus G9241 both 

contain non-integrated phages, designated pBClin15 and pBClin29, respectively (Ivanova 

et al. 2003; Hoffmaster et al. 2004). The pBClin15 show close relationship with the other 

B. thuringiensis phages (Stromsten et al. 2003; Verheust et al. 2003; Verheust et al. 2005)  

The pBClin29 appears more cryptic as a phage, as it both encodes phage-like protein and 

a pXO2 like plasmid replicon (Hoffmaster et al. 2004).   

DNA transposons 

 

As mentioned earlier, transposable elements are contributors to the genome 

dynamics of all life forms. In the B. cereus group of bacteria several types of transposable 

elements have been discovered (Mahillon et al. 1994; Leonard et al. 1997). One of these 

is the insertion sequence (IS) element IS231 for which several copies have been found in 

all of B. cereus group members (Mahillon et al. 1985). The IS231 transposase has been 

shown to trans-mobilize related transposase-less cassettes (miniature insertion cassettes, 

MICs), where these cassettes can contain genes coding for putative antibiotic resistance 

or regulatory factors (De Palmenaer et al. 2004). Furthermore, a putative cointegrative 

transposon, named TnXO1, is present on the pXO1 plasmid of B. anthracis (Van der 

Auwera and Mahillon 2005). This element, that bears a transposase and a site-specific 

recombinase, appears also to contain a germination operon. Remarkably, this putative 

transposon is located inside the PAI region containing several of the B. anthracis 

virulence factors. This island is bordered by inverted IS1627 elements that are 

presumably capable of mobilizing the entire stretch of DNA between them, which is 

suggested by the fact that in some isolates of B. anthracis the PAI is inverted (Okinaka et 

al. 1999b; Read et al. 2002). Other examples of transposons in the B. cereus group of 

bacteria are the Tn916-like transposon that carries a tetracycline resistance gene or the 
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mercury resistance transposon, TnMERII, found among many Bacillus strains in the 

environment (Bogdanova et al. 1998; Agerso et al. 2002). Numerous insecticidal cry 

genes in B. thuringiensis plasmids are associated with IS elements and transposons, and 

this is thought to facilitate the spread, exchange, and creation of toxin diversity among B.

thuringiensis isolates (Mahillon et al. 1994; Berry et al. 2002). 

Interspersed DNA repeat sequences Bcr1-18

 

Sequence analysis of the intergenic regions of the growing number of genomes 

from the B. cereus group has revealed that there are as many as 18 groups of repeated 

sequence elements, named bcr1 to bcr18 (Tourasse et al. 2006). These are between 100 

and 400 bp in length and are found either at conserved locations or in unique loci in the 

different strains. About half of the repeats appear to be unique to these organisms. The 

first repeat discovered and the most studied is the ~155 bp bcr1 element that is found on 

the chromosome of B. cereus group organisms (Okstad et al. 1999a; Okstad et al. 1999b). 

bcr1 exhibits several characteristics of a mobile element, as it is found in variable copy 

numbers and often in different genomic locations between strains (Okstad et al. 2004a; 

Klevan et al. 2007). Furthermore, it is flanked by a pentameric TTTAT direct repeat 

motif, which is duplicated at the insertion site, a feature of certain transposable elements. 

Hybridization experiments demonstrated that bcr1 is present on transcripts of the size of a 

single repeat, but also on larger mRNA transcripts, and it has been suggested that the 

repeat could have some stabilizing effect on the mRNA or act as a small regulatory RNA 

(Okstad et al. 2004a; Klevan et al. 2007).  

Group I intron 

   

The group I intron inserted in the recA gene of B. anthracis, encoding a 

recombinase essential for DNA recombination and repair, was the first group I intron 

discovered that is inserted in a standalone bacterial chromosomal protein-coding gene and 

is not contained within a prophage (Ko et al. 2002). This intron was later identified in 

several B. cereus group bacteria (Tourasse et al. 2005; Tourasse et al. 2006; Tourasse and 
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Kolstø 2008). Furthermore, group I introns are located in other essential genes that do not 

have a phage associated copy. Many bacteria of the B. cereus group have introns inserted 

in the genes coding for the � and � subunits of ribonucleotide reductase (nrdE and nrdF), 

an enzyme critical for DNA synthesis (Tourasse et al. 2005; Tourasse et al. 2006; Nord 

and Sjöberg 2008). In fact, the nrdE gene contains four different group I introns in four 

insertion sites that are occupied in different subsets of isolates (Nord et al. 2007; Tourasse 

and Kolstø 2008). The recA and nrdEF introns (which belong to various structural 

classes) are predicted to have come from phage introns, as they share sequence 

homologies with introns present in similar host genes in various bacteriophages. In 

addition, several other group I introns are also found inserted in different prophage genes 

in B. cereus group organisms (Tourasse and Kolstø 2008).  Altogether, this indicates that, 

like in other bacteria, phages are important vectors for disseminating group I introns in 

the B. cereus group. 

IStrons

 

A 1.9-kb composite element, consisting of a group I intron and an IS element, 

similar to that found in Clostridium difficile and termed IStron has been identified in most 

of the genomes of the B. cereus group (Braun et al. 2000; Hasselmayer et al. 2004; 

Tourasse et al. 2006). Copies of this element, named BcISt1, are 94% identical and often 

found in unique chromosomal loci and inserted after a consensus pentanucleotide 

AAGGG. Such a distribution, with insertion in unique rather than conserved loci suggests 

that these elements are mobile and follow a pattern more similar to that of IS element 

mobility than of group I introns (Tourasse et al. 2006). Recent work demonstrates that the 

IS element does excise alone from the IStron sequence (Stabell, Tourasse et al. in 

preparation). Furthermore, this study also suggests that the IS element’s ORF can activate 

larger parts of the IStron. Though not proven directly in these assays, the results indicate 

that the whole IStron element may be mobilized at a low frequency and under certain 

conditions.
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Group II introns  

 

The B. cereus group of bacteria harbors a wide range of group II introns, from 

different structural classes and evolutionary origins. A recent survey has shown that 

among 77 group II introns identified in 29 B. cereus group genomes, 68 belong to the IIB 

class, eight were from the IIA class and there was a single one from the IIC class 

(Tourasse and Kolstø 2008). The introns, as in other bacteria, appear to use plasmids as 

vectors for horizontal spread between isolates. This can be seen from the fact that group 

II introns are common on large plasmids (>15 kb), including pXO1-like and pXO2-like 

plasmids, and identical intron copies are found on both chromosome and plasmids in the 

same and in different isolates(Tourasse et al. 2006; Tourasse and Kolstø 2008). In 

contrast to other bacteria, however, the group II introns in the B. cereus group are not 

particularly associated with IS elements or transposons (Tourasse and Kolstø 2008).  One 

of the most widespread introns in the B. cereus group is B.c.I1, which is always found in 

the 3’ untranslated region of various genes in the genome of several isolates (Tourasse et 

al. 2006; Tourasse and Kolstø 2008). This intron appears to have disseminated by site-

specific retrohoming as all insertion loci are well conserved in positions -22 to +11 

around the homing site (Tourasse and Kolstø 2008). The IEP of B.c.I1 lacks the En 

domain and most likely uses nascent strands at the replication fork as primers for cDNA 

synthesis (see ‘Group II intron’ chapter above). 

Besides the work reported in this thesis, only two studies have conducted 

functional analysis of group II introns in bacteria from the B. cereus group (Robart et al. 

2004; Van der Auwera and Mahillon 2008). Firstly, Robart and co-workers investigated 

the two introns found in the pXO1 plasmid of B. anthracis, both in vivo and in vitro. Both 

introns, B.a.I1 and B.a.I2, spliced in vivo, but only B.a.I2 showed efficient splicing in 

vitro (Robart et al. 2004). Further characterization of B.a.I2 revealed that this intron uses 

a 3’ splice site shifted one nucleotide downstream of the expected position, which 

disrupts its host gene. The study also revealed a minor splicing event occurring four 
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nucleotides downstream of this site both in vivo and in vitro, which restores the 

expression of the host gene. This flexibility in 3’ splice site selection was shown to be 

partly the result of structural irregularities in the base of the domain V stem and was 

suggested to be an adaptation to allow (regulate) expression of the host gene (Robart et 

al. 2004). 

Secondly, two introns on the pXO2-like pAW63 plasmid of B. thuringiensis 

kurstaki HD73, located in genes believed to be involved in conjugation, were analyzed 

for splicing in vivo (Van der Auwera et al. 2005; Van der Auwera and Mahillon 2008). 

Surprisingly, these experiments revealed that the intron named B.th.I2, which does lack 

the IEP, was able to splice in vivo, while the B.th.I1 intron, which has the IEP, did not. It 

was suggested that the B.th.I2 splicing could be trans-activated by the IEP of B.th.I1, 

which was shown to be transcribed due to the sequence similarities between the 

extremities of the two introns. However, this and the above results need to be confirmed 

and it is also possible that an IEP-containing intron more closely related to B.th.I2 is 

present elsewhere in the genome. 
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Aims of study 
 

The main aim of this theises was from the beging to identify and functional 

characterize group II introns in the Bacillus cereus group of bacteria. As a part of this 

characterization we wanted to classify structurally and phylogenetic those group II 

introns we identified in this bacteria group. These results were then to be compared with 

other studies of group II introns in bacteria. 

Under these studies an unprecedented group II introns with a 56-nucleotide long 

3’ extension was discovered in B.cereus ATCC 10987. Much of the further aim became 

therefore to study different aspects of this special variant of group II introns named 

B.c.I4. 

  

First, we wanted to show that that the extension was part of the intron that splice 

out of the mRNA and see what effects it had one the introns catalytic RNA splicing.  

We further wanted to identify if any specific part or residue(s) of the extension was 

important for splicing, and is so, could there be interaction partners in other domains of 

the intron.  

Our other goal was so to search for introns that harboured a similar 3’ extension. 

If so, we wanted to classify these structurally and phylogenetic, as well as functional 

characterize them. By comparing sequence and functional analysis with B.c.I4 and see if 

this could reveal the nature and origin of the special 3’ extension. In this context we also 

wanted to screen for more copies in similar positions in different bacteria, as this together 

with bacteria phylogeny could sheed more light on the origin of these unusual group II 

introns. 
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Summary of papers 

Paper 1 

 

In this study we define and functionally characterize the group II introns present 

in the genomes of two strains of Bacillus cereus ATCC 14579 and ATCC 10987. Four of 

the seven group introns identified in strain ATCC10987 were inserted on the plasmid, 

whereas in strain ATCC 14579 one intron is harboured on its chromosome. Sequence 

comparison and secondary structural predictions of the intron RNA revealed that they 

either fold into B1 class or B2-like structural class. Both B.c.I1 and B.c.I2 can be found 

in almost identical copies in different genomic locations and implicates therefore that 

these introns are mobile. 

  For functional analysis by RT-PCR on total RNA from both strains verified that 

all but B.c.I1a in B.cereus ATCC14579 were functional for splicing in vivo under the 

conditions tested. Sequencing of splice products revealed splice boundaries as expected 

besides for B.c.I4, which spliced 56 nucleotides downstream of the predicted 3’ splice 

site. Another striking observation is the B.c.I2a that is located on the antisense strand of a 

predicted cell surface protein. PCR screen of 92 strains revealed that those that harbored 

the host gene appeared to correlate to strains of clinical origin.  

Paper 2 

 

Here in this study we examine the splicing of the extraordinary group II intron 

B.c.I4 intron in more detail using in vivo and in vitro experiments. We show that the extra 

56-bp 30 segment is an integral part of the intron RNA molecule downstream of domain 

VI, while branching is still maintained at the expected site. This represents therefore a 

unique arrangement and shows that 3’ splice site selection can be more flexible than ever 

seen before. 

The results in vitro demonstrate that the wild-type intron splices somewhat more 

efficient than the construct deleted of the extension. Thus the intron must have adapted to 
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splice with the extension, maybe through some conformational changes as the B.c.I4 

appear to be as a usual intron. Secondary RNA structure predictions suggest that the 56 

bp segment folds into two stable stem-loop structures.      

 

 

Paper 3 

 

Here, we report of four new group II introns, B.th.I5, B.th.I6(a and b), and B.th.I7 

from  Bacillus thuringiensis 4D1 that harbor a 3’ extension similar to that of B.c.I4. 

These splice in vivo at analogous positions after the extensions that form the two 

conserved stem loop secondary structures. Sequence analysis show that they are only 47-

61% identical to each other , and surprisingly they do not form a single evolutionary 

lineage in the Bacterial B class intron they all belong to. In vitro mutagenesis showed that 

the larger of the two stems is important for an efficient second step splicing with the 

extension, and this unusual mode 3’ splice site positioning may suggest that these introns 

could form a new functional class.  

Paper 4 

 

Group II introns that harbor a conserved 3’extension have been identified in the 

Bacillus cereus group of bacteria. This element forms two stemloop structures where one 

of them, S2, has been shown to be important for positioning 3’ exon for efficient second 

splicing step with the extension. Here in, we show that the whole extension may also 

have an effect on the balance of first step of splicing by hydrolyis and transesterification. 

Most remarkable though, B.th.I6 analyzed here appears to not be able to have an efficient 

second step without the extension as opposed to B.c.I4, which do splice equally efficient 

without the extension. These two belong to different evolutionary branches and may have 

undergone changes that lead to the different splicing properties.  
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Paper 5 

 

Here we report the presence of additional atypical group II introns in the B. cereus 

group of bacteria. Several are identical or closely related copies of the previously 

identified B. thuringiensis intron B.th.I6. The study gives a detailed sequence and 

phylogenetic analysis of the B.th.I6 intron copies and the plasmid borne host gene. We 

conduct a detailed sequence and phylogenetic analysis of these intron copies and their 

host genes and strains, lending evidence that the unusual group II introns are mobile with 

their 3’ extension.  
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Discussion

General features of group II introns in the Bacillus cereus group 
 

Group II introns are widespread in the B. cereus group of bacteria 
 

The publications of the genome sequences of the B. cereus strains ATCC 14579 

and ATCC 10987 (Ivanova et al. 2003; Rasko et al. 2004) were instrumental in the 

discovery of the group II introns in these strains reported in paper 1. Genome comparison 

and detailed sequence analysis including the identification of the IEP and boundaries of 

introns and host genes revealed 1 and 7 group II introns in B. cereus ATCC 14579 and 

ATCC 10987, respectively. Together with RNA secondary structure prediction, this 

enabled intron characterization and structural classification. The experimental work in 

paper 1 confirmed the predicted intron boundaries and demonstrated that these introns 

spliced in vivo. Besides the identification and functional studies of the two group II 

introns in the B. anthracis pXO1 plasmid (Robart et al. 2004) no other work had been 

done on group II introns from the B. cereus group of bacteria prior to paper 1. In fact, the 

analysis done on the 7 B. cereus ATCC 10987 introns doubled the number of bacterial 

group II introns that had been functionally tested since the discovery of these elements in 

bacteria 15 years ago (Ferat and Michel 1993), and only a handful of introns have been 

tested since then. Later, in the whole genome or plasmid sequences of additional B.

cereus group strains a varying number of introns were identified (Tourasse and Kolstø 

2008; Van der Auwera and Mahillon 2008), ranging from zero to as much as 13 introns 

per strain. The genome analyses as well as screening by PCR for the host genes of 

specific introns (B.c.I2a, B.c.I4 and B.th.I6a) in papers 1, 2, and 5 revealed that group II 

introns are relatively widespread in the B. cereus group, and that virtually identical copies 

of introns are found in multiple strains of diverse origins and geographical locations. 

Although the observed distribution of introns can be interpreted as a result of both 

vertical inheritance and horizontal transfers, in particular via plasmid vectors, the 

presence of identical introns in spatially and temporally unrelated strains is puzzling. 

Possible explanations may be that the different strains have acquired introns from similar 
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donors, or that the donors and/or recipient strains have been disseminated by human and 

animal transport.  

 

With respect to the different number of group II introns found in B. cereus group 

strains, it should be pointed out that strains carrying the highest numbers of group II 

introns, B. cereus ATCC 10987 and the emetic B. cereus strains AH187 (F4810/72) and 

H3081.97, appear to have generally higher numbers of mobile elements such as group I 

introns, transposons, IS elements, IStrons and/or other putative mobile repeated elements 

compared to other known genomes of the B. cereus group of bacteria (Okstad et al. 

2004b; Rasko et al. 2004; Tourasse et al. 2006; Kolsto et al. 2009). The relative large 

number of such elements could imply that these strains are facultative intracellular 

strains, or are in a transition stage toward becoming host-restricted, and therefore have 

been subject to an increase in mobile element frequency (Lynch and Conery 2003; Moran 

and Plague 2004; Ochman and Davalos 2006). Little is known about the lifestyles of 

these three strains besides the fact that B. cereus ATCC 10987 was found in spoiled 

cheese almost 80 years ago (Rasko et al. 2004) and that B. cereus AH187(F4810/72) and 

H3081.97 produce an emetic food-poisoning toxin and have been isolated from vomit and 

food, respectively. Other explanations could be that each of these strains are found in 

unique environments that have an influence on mobility of genetic elements or it could be 

differences in content of bacterial-cell factors available to be recruited for the mobility 

events (Coros et al. 2005; Smith et al. 2005; Coros et al. 2009).  

 

Different structural classes of group II introns in the B. cereus group 
 

The features of the RNA secondary structure of the eight group II introns identified in the 

two B. cereus strains analyzed in paper 1 revealed that these introns belonged to the same 

two structural classes as the introns identified earlier in B. anthracis (Robart et al. 2004), 

i.e., the B2-like and B1 structural classes within the main group IIB intron class (Toro 

2003; Toro et al. 2007; Simon et al. 2008). These structural classes correlate with the IEP 

phylogenetic classes “Bacterial B” and “Chloroplast-like class 1” (CL1), respectively. 

The four additional introns discovered in papers 3 and 5 also belonged to the B2-like 
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class, which appears to be the dominant class of group II introns found  in the B. cereus 

group of bacteria (Tourasse and Kolstø 2008; Van der Auwera and Mahillon 2008). 

Striking is the fact that all but ten of 174 copies of the 80 different known introns that 

belong to the ”Bacterial B” group are found in Firmicutes, essentially in Bacilli and 

Clostridia (Paper 3, (Simon et al. 2008) and N.J. Tourasse, unpublished results). Unless 

this is the result of sampling bias, as the B. cereus group and Clostridia are among the 

most sequenced Gram-positive bacteria, one could think that this class of group II introns 

has adapted to the molecular and/or physiological conditions in Firmicutes. There may 

also be unique properties in their RNA structure or IEP that give them an advantage in 

splicing and/or easier propagation in these genomes (Coros et al. 2005; Coros et al. 2008; 

Simon et al. 2008; Coros et al. 2009). It could also be that there are less lateral transfers 

between Firmicutes and distantly related bacteria.  

 

In papers 3 and 5 we showed that the Bacterial B IEP class can be divided into 

two subgroups (� and �) and that these coincide with subtle changes in RNA secondary 

structure. In paper 5 point out that many of the unique RNA features of the � subgroup 

are shared with introns belonging to the Bacterial A phylogenetic IEP class. The RNA 

secondary structure of introns from the � subgroup and the Bacterial A class is hybrid, 

showing features common to group IIA and IIB introns (Toor et al. 2001; Dai and 

Zimmerly 2002b). In contrast, the structure of the � subgroup is IIB. In addition, introns 

of the mitochondrial-like (ML) IEP class, which are IIA, emerge in-between the Bacterial 

A and B groups  (see Figure 6 below and (Simon et al. 2008)). One parsimonious way to 

interpret this complex phylogenetic and structural pattern would be that all these classes 

evolved from a common ancestral intron group that had a IIA/IIB hybrid structure. In 

such a scenario, introns on the ML line became true IIA introns, while others evolved to 

form the Bacterial B class. While elements from the � subgroup retained most of 

ancestral hybrid features, those evolving into the � subgroup became true IIB introns.  
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Figure 6. Unrooted phylogenetic tree of 277 bacterial group II intron-encoded proteins (N.J. 
Tourasse, unpublished). As in paper 3, Figure 3A, and in (Simon et al. 2008), the tree was 
reconstructed using the maximum likelihood method (RAxML program) and was based on the RT 
domains of the proteins. The major intron classes are named as in (Simon et al. 2008): A-F, ML 
(mitochondrial-like), CL (chloroplast-like), and UC (unclassified). The unusual B. cereus and B. 
thuringiensis group II introns carrying a 3’ extension are indicated by red names and red squares. 
These are all found in the bacterial B class, that is shown in more detail in Figure 10. In light blue is 
indicated the B. cereus intron B.c.I1 that is found in the CL1B class. Numbers next to branch nodes 
indicate bootstrap support percentage values (out of 1000 replicates).  
 

Localization and impact on host 

Introns in non-coding regions 

 

Although introns from the “Bacterial B” class are the most common in the B.

cereus group, the B1 class intron B.c.I1 appears to be among the most widespread introns 
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in this group of bacteria (Tourasse et al. 2006; Tourasse and Kolstø 2008). In paper 1 

three copies of this intron were found on three different genomic entities (replicons) in 

the B. cereus strains ATCC 10987 and ATCC 14579. All these elements are inserted into 

genomic locations predicted to be non-coding intergenic regions. One to three copies of 

the B.c.I1 intron were subsequently found in four additional strains and are all located in 

the 3’ untranslated region (3’ UTR) of predicted mRNA transcripts of unrelated genes 

(Tourasse and Kolstø 2008). Whether this distribution is specific only to this particular 

intron, given some structural RNA or IEP features that have developed to specifically 

recognize 3’ UTRs in the genome, is not known. Among the introns listed in the Mobile 

group II intron database (http://www.fp.ucalgary.ca/group2introns/), not all B1 class 

introns target 3’ UTRs,  and it is therefore not a general feature for this structural class 

(Dai et al. 2003). The B1 class intron Avi.groEL of Azotobacter vinelandii on the other 

hand belongs to a peculiar clade of bacterial group II introns with a 5
-subterminal 

insertion, whose members are preferentially associated with signals for translation 

termination and initiation (Adamidi et al. 2003; Ferat et al. 2003; Michel et al. 2007). 

What makes the target so specifically associated with genetic signals is unknown, but it is 

suggested to affect the protein expression (Michel et al. 2007). Similarly, most introns of 

the IIC class specifically recognize transcriptional signals and the mobility events are 

guided and associated with rho-independent terminators (Dai and Zimmerly 2002a; Toro 

2003; Toor et al. 2006; Robart et al. 2007). In this context of development of specialized 

lineages, it is interesting to see from the phylogenetic tree in paper 3 and Figure 6 that the 

B.c.I1 intron is part of a single lineage branching out at the bottom of the CL1 class, 

within the CL1B subclass (Michel et al. 2007; Simon et al. 2008). This could suggest that 

B.c.I1 has developed features reflecting adaptation to 3’ UTR targets. The preference of 

the B.c.I1 group II intron for insertion in 3’ UTRs might also not be due to specific RNA 

or IEP features; mobility events occurring in coding loci may be selected against, as for 

example a low splicing efficiency could have a negative effect on host gene or protein 

expression. The strategy to insert in non-coding regions is quite common for bacterial 

group II introns, and fits with the picture of group II introns in bacteria being true selfish, 

mobile retrolements rather than “splicing-only” entities (Dai and Zimmerly 2002a; 

Lambowitz and Zimmerly 2004; Robart and Zimmerly 2005). Therefore, B.c.I1 
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represents yet another variant of the strategy used by group II introns to spread in non-

coding regions.  

 

 

Introns in coding regions 

 

Previously group II introns were believed to be relatively rare in bacteria, and if 

present they would usually be found associated with other mobile elements, in intergenic 

regions, or in non-conserved genes (Dai and Zimmerly 2002a). However, an increasing 

amount of group II introns described are inserted in single-copy, important bacterial 

genes (Michel et al. 2007). Of the 7 B. cereus group intragenic introns investigated in 

papers 1, 3 and 5 all but a single one (B.c.I2a) are located in an ORF predicted to be 

involved in aspects of DNA replication, recombination, repair, or the metabolism of 

nucleotides. Indeed, a clear majority of the intragenic group II introns identified in 29 B.

cereus group genomes recently surveyed are located in these types of genes ((Tourasse 

and Kolstø 2008) and N.J. Tourasse, personal communication). A similar host gene 

preference has been observed for other bacterial group II introns in other organisms (Liu 

et al. 2003; Chee and Takami 2005; Michel et al. 2007). This host gene bias is 

reminiscent of the distribution of group II introns in organellar genomes and is also seen 

for group I introns and inteins (Dai and Zimmerly 2002a; Robart and Zimmerly 2005; 

Tourasse and Kolstø 2008). One suggestion for this bias is that the intron will be 

expressed together with the proteins required for repairing DNA breaks under mobility 

events and therefore increase the probability of successful retromobility (Edgell et al. 

2000; Michel et al. 2007; Coros et al. 2009). Another hypothesis suggests that the 

presence of introns in functionally related genes provides an opportunity for coordinated 

regulation of expression at the level of splicing (Michel et al. 2007).  

 

The � region (ID(ii))
 
 The ���’ tertiary interaction between domains I and V is an important part of the 

network of interactions that form the structural unit that supports splicing (Toor et al. 
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2009). In subdomain ID(ii) of many introns there is a three-way junction where one finds 

the � tetraloop, which interacts with the �‘ receptor basepairs in domain V, as well as 

another possible tetraloop adjacent to � (shown in green in Figure 7A) (Boudvillain and 

Pyle 1998). Another study suggested that this loop lies close to the bulged branchpoint 

adenosine in domain VI in the intron 3D structure because these regions formed 

crosslinks (de Lencastre et al. 2005; Hamill and Pyle 2006). However, the two recent 

crystal structures of the O. iheyensis group IIC intron indicate that the � tetraloop and the 

additional tetraloop are on the side of the domain V helix opposite to that from which 

domain VI with the bulged A resides when attacking the 5’ junction (Toor et al. 2008a; 

Toor et al. 2008b; Michel et al. 2009).  

In paper 3 we searched for tetraloops that could be candidates for interacting with 

the internal loop of stem S2 in the 3’ extension, as this loop shows characteristics of the 

11-nt tetraloop receptor motif (Costa and Michel 1995). In B.c.I4 a putative GAAA 

tetraloop next to the ��loop can be predicted if the guanosine in position 311 forms a G:C 

pair with the cytosine in position 334 (Figure 7A B.c.I4v2). This additional tetraloop 

would have a form somewhat similar to � and would be followed by a short helix with a 

terminal loop (ID(ii)a). This predicted structure is conserved in many B2-like introns, 

including B.th.I7, while in others it may take a different form, if present, as exemplified 

by B.th.I5 and B.th I6 (that do not have the short stem following the two GAAA loops) 

(Figure 7A).  
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Figure 7. Secondary structure predictions and effects of mutations of nucleotides in possible tetraloop 
structure close to the � tetraloop in subdomain ID(ii). (A) Predicted secondary structure of subdomain 
ID(ii) for B.th.I6a and B.c.I4 wildtype (WT) and mutant intron constructs. Two possible secondary 
structures are shown for B.c.I4. Structure v1 refers to that shown in paper 2. Nucleotides of the �
tetraloop, which interacts with the �’ receptor basepairs in domain V, are boxed in blue. Nucleotides 
participating in a possible additional candidate tetraloop are colored in green, and mutated residues 
are boxed in green. (B and C) Time-course analysis of in vitro self-splicing of B.c.I4 WT and mutants 
B.c.I4m312-313 and B.c.I4dS1S2m312-313. Splicing was performed in 40 mM MOPS, pH=7.5, 100 
mM MgCl2 and 500 mM (NH4)2SO4 at 47oC. In (B) the relative fractions of unspliced precursor RNA 
and released lariat intron were computed from the intensities of the radioactive bands using a 
phosphorimager. In (C) the 7 M urea 4% polyacrylamide gel with samples used for quantification. 
Schematic drawings of the different reaction products are shown on the right.  

 

Mutations conducted on the analogous GAAA loop in the yeast mitochondrial 

ai5� group II intron revealed no effect on the branching reaction studied by a trans-

splicing assay (Boudvillain and Pyle 1998). In contrast, when the last two adenosines of 

the potential GAAA loop next to � were substituted into cytosines in B.c.I4, in positions 

312-313(mutants B.c.I4m312-313 and B.c.I4dS1S2m312-313), there was a clear negative 

effect on the efficiency of splicing (see Figure 7B). This effect appeared to be mainly on 
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the first step of splicing with a ~50 % reduction, and the results were similar with or 

without the presence of the 3’ extension. The reduced splicing efficiency observed for the 

mutations in this potential GAAA loop can suggest that this loop is functionally 

important, although it may also result from an indirect effect due to that the mutations 

may affect the folding of the critical � loop region.  

In any case, the most striking observation may be that the relative fraction of released 3’ 

exon is clearly reduced for the tetraloop mutants compared to the wild type B.c.I4 intron, 

as judged from the gel picture (Figure 7C). Free 3’ exon is only known to come from the 

SER reaction, where the released lariat catalyzes the hydrolysis of the spliced exons (see 

‘Other reactions’ section above; (Jarrell et al. 1988; Podar et al. 1995; Lehmann and 

Schmidt 2003; Michel et al. 2009). Interestingly, the SER reaction has mainly been 

observed for the structural class IIB introns and can rarely be observed for IIA class 

introns (Lehmann and Schmidt 2003). This reaction actually represents a true ribozyme 

activity of a group II intron since the intron RNA remains unaltered when hydrolyzing 

the ligated exons (Michel et al. 2009). Comparing the consensus secondary structures for 

the different phylogenetic groups in the Mobile group II intron database reveals that the 

additional GNRA tetraloop next to the � loop is conserved in many IIB class introns, but 

not all, and none of the IIA class introns (Dai et al. 2003). The close proximity of this 

possible GNRA loop to the ��loop and possible domain V and VI could suggest some 

involvement in the ribozyme catalytic activity. The wild speculation would be that it is 

for example involved in some switch that can activate the ribozyme structure for the SER 

reaction. Anyway, possible side effects of the mutations on other residues will have to be 

ruled out before any conclusion can be drawn from these interesting, though preliminary 

results. 
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Group II introns with an unusual 3’ extension 

The 3’ extension may represent a new functional domain 

As mentioned in the Introduction group II introns are divided into classes based 

on phylogenetic analysis of their IEP and predicted RNA secondary structure (Michel et 

al. 1989; Toor et al. 2001; Simon et al. 2008). The numbers of classes have been growing 

with the increasing number of introns identified, revealing the great diversity of these 

ribozymes. The major structural classes IIA, IIB and IIC, and their subgroups have in 

many cases revealed different splicing properties in vitro that could be linked to their 

structural differences (Granlund et al. 2001; Lehmann and Schmidt 2003; Toor et al. 

2006; Michel et al. 2007). These structural differences are often due to addition or 

deletion of particular stem-loop substructures within the different RNA domains (Toor et 

al. 2001; Toor et al. 2006; Michel et al. 2007).  

While the secondary structure of typical group II introns is made up of six 

domains, the major contribution of the work presented in this Thesis was the discovery 

and characterization of unusual introns carrying an extension of 53-56 bases at the 3’ end. 

The unusual 3’ extension of the B.c.I4 intron in B. cereus ATCC 10987, identified in 

paper 1 and further functionally characterized in paper 2, first represented an 

extraordinary example of the group II introns’ ability to acquire structural elements. This 

extension is predicted to form two stem-loop structures, S1 and S2. The discovery in 

papers 3 and 5 of additional introns with the same conserved 3’ stem-loop structures 

would have suggested that these introns were part of a specialized lineage. It was 

therefore a big surprise when phylogenetic analysis demonstrated that these unusual 

introns did not represent a single lineage of group II introns, but are distributed among 

the � and � subgroups in the ”Bacterial B” class of group IIB introns. However, these 

introns exhibit a unique structural arrangement with the addition of an extra element at 

the 3’ end. Other structural classes do often only have variants of the six structural 

domains and therefore, as suggested in a recent review (Fedorova and Zingler 2007), the 
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two conserved stem-loop structures constituting the extension could be referred to as a 

domain VII. Furthermore, the functional evidence presented in papers 3 and 4 shows that 

the extension can influence different aspects of splicing, both in the first and second 

steps, and implicate that the extension could represent a new domain, a structural tool that 

can confer different properties to different group II intron ribozymes, as exemplified by 

the B.c.I4 and B.th.I6a introns.  

 

 

Does the 3’ extension fit into the active ribozyme, and if yes, how?  

 

The different results obtained when deleting the 3’ extension from unusual introns 

in papers 2 and 4 imply that introns must have adapted differently to function with the 

extension. In the case of B.c.I4 the extension influences the balance between hydrolysis 

and branching in the first splicing step, whereas in B.th.I6a the extension is required for 

an efficient second splicing step. On the other hand, the results from paper 3 point to that 

the S2 stem within this conserved 3’ intron segment may have a similar role and function 

for all the unusual introns, as it is important for efficient second-step splicing in several 

unusual introns. This would imply that there is a common type of interaction to position 

the 3’ splice site in an efficient manner when the extension is present. Whether this 

involves similar sites or whether it is specific for each individual intron is an open 

question.  

Ensuring an efficient second splicing step with the extension 

 

The mutational studies in paper 3 did not reveal any alternative 3’ splice site when 

mutating various sites in the extension, thus implying that the extension does not have 

any impact on the fidelity of 3’ splice site selection. In paper 2, mutations in the 3’ splice 

site were conducted, disrupting the ����’ and EBS3-IBS3 interactions. These studies 

showed that a 3’ splice site located 2 nt downstream of the wildtype site could be used, 

but still the wildtype site was used by 55% of the intron molecules. These results fit with 
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those observed for other (typical) class IIB introns, for which these two interactions have 

been shown to play a minor role in recognition of the 3’ splice site, supporting correct 

recognition only when the 3’ splice site is in position in the catalytic center (Jacquier and 

Michel 1990; Schmidt et al. 1993; Costa et al. 2000; Lehmann and Schmidt 2003). For 

the structural class IIB the domain VI is believed to play a dominant role in correct 

positioning of the 3’ splice site, while the ����’ and EBS3-IBS3 interactions ensure the 

efficiency of the second splicing step (Lehmann and Schmidt 2003). An assumption one 

could draw from this and the above results would be that the extension does not interfere 

with the action of domain VI in positioning the 3’ splice site and the S2 stem ensures the 

efficiency of the second splicing step together with the ����’ and EBS3-IBS3 interactions. 

To explain why B.th.I6a is dependent on the extension for splicing, one could suggest that 

there may have been some structural changes that made the ����’ and EBS3-IBS3 

interactions not work as they should, and the intron thus totally relies on the extension for 

an efficient exon ligation. Such changes could for example be reflected in the RNA 

features that distinguish introns of the � and � subgroups in the Bacterial B class (papers 

3 and 5).  

 
Figure 8. The figure illustrates that domain VI appears to be more conserved in sequence among the 
group II introns that harbor the 3’ extension than between these and closely related introns that do 
not carry an extension. The B. cereus and B. thuringiensis group II introns with (A) and without (B) 
the extension used to compare the conservation of domains V and VI are respectively colored in blue 
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and green in the phylogenetic tree of Bacterial B class introns (C). In (A) and (B) red-colored 
nucleotides are conserved among all four introns listed on the top, and lighter shades of grey indicate 
less conservation. The comparisons were made using RNAForester (Höchsmann et al. 2003; 
Höchsmann et al. 2004). The tree in panel C is redrawn from Figure 3B in paper 3.  

 

Domains V and VI are the most conserved domains with respect to sequence and 

structure in group II introns, due to their critical activity in splicing. Nevertheless, it is 

interesting to see that these domains are more conserved among the introns carrying an 

extension, which may be relatively distant in the phylogenetic tree of the Bacterial B 

class than between these introns and their closest neighbors without such an extension 

(See Figure 8). The joint conservation of domains V and VI and the 3’ extension among 

the unusual introns could possibly reflect a functional relationship. For example, could 

there be an interaction between the S2 stem and domain VI that ensures continued correct 

and efficient positioning of the 3’ splice site? If yes, this would support the importance of 

domains V and/or VI for the extension, but it could also merely reflect the general 

importance of these domains in catalysis.  

 

Splicing effects due to the extension resemble those related to the interaction 
between domains II and VI. 
  

We suggest in paper 4 that the extension could be involved in an interaction 

similar to the ���’ interaction involving domains II and VI. This is based on t the 

observation that deletion of the whole extension from B.c.I4 and B.th.I6a are similar to 

those reported when modifying and/or deleting nucleotides in domain II or VI, more 

specifically the residues involved in the ���’ interaction (Chanfreau and Jacquier 1996; 

Costa et al. 1997). Disrupting the ���’ interaction in a class IIB intron or the equivalent 

interaction in a IIA intron leads to either a dramatic slowdown of the second splicing step 

or a shift in balance between hydrolysis or transesterification occurring in the first step 

(Chanfreau and Jacquier 1996; Costa et al. 1997). These effects are analogous to those 

resulting from the deletion of the extension in B.th.I6a and B.c.I4, respectively. The ���’ 

interaction is conserved in most IIB introns and usually takes the form of a GNRA 

terminal loop in domain VI interacting with two conserved C:G pairs in domain II 

(Lehmann and Schmidt 2003). In IIA class introns this is less preserved and suggests 
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replacement by other variants of such interaction partners or by an exchange of location 

of the loop and receptor. Remarkably, it has also been shown that replacing a domain VI 

from a IIA intron with one from a IIB gave an increase in first step splicing by 

transesterification (Schmidt et al. 1993). 

It has also been demonstrated that when rendering the ���’ interaction stronger 

than the wildtype, the first splicing step is shifted towards hydrolysis only instead of 

primarily a transesterification reaction (Costa and Michel 1995; Costa et al. 1997). For 

B.c.I4 there is more hydrolysis when the extension is removed and could therefore 

indicate that the ���’ interaction is increased in strength. This could suggest that any 

interaction involving the extension works in the opposite orientation of the ���’ 

interaction. For the B.th.I6a intron it may be that the interaction of the extension 

completely compensates for a non-existing ���’ interaction. On the other hand, the 

functional difference involving the ���’ interaction between the IIA and IIB structural 

classes may imply that interaction to similar places/residues may lead to a somewhat 

different outcome (Costa et al. 1997; Michel et al. 2009).  

Furthermore, the conservation of domain VI among the introns with an extension 

may be interesting as the theory above would suggest that the extension interacts with 

domain VI and/or II. The different splicing effects observed for the two introns may again 

rely on the secondary structural differences that are predicted to divide the introns of the 

Bacterial B class into two different subgroups, with B.th.I6a residing in the � subgroup 

and B.c.I4 in the � subgroup. Comparing the members of the � subgroup from paper 3 as 

well as additional introns recently identified (Figure 9C; N.J. Tourasse, unpublished 

results) revealed an interesting structural pattern. For some introns, the terminal loop of 

domain VI contains a GUAAUG loop matching the generic GNn/RA tetraloop motif 

(Costa and Michel 1995; Abramovitz and Pyle 1997; Costa and Michel 1997), and those 

also have a branched stem in domain II (see schematic figures in Figure 9 A and B). In 

contrast, the introns without that particular terminal tetraloop have a single stem in 

domain II. These include B.th.I6a/b/c, B.c.I16 B.th.I5, and the recently discovered introns 

from B.mycoides and pseudomycoides that carry an extension (colored red), as well as 

two without an extension (colored pink). These introns have two internal loops within 

domain VI, both being adenosine–rich, and the topmost one has a guanosine on the 5’ 
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side, except in B.th.I6/B.c.I16 (which has only an adenosine). One may speculate that this 

internal loop could be the tetraloop that interacts with domain II (e.g., with the two 

conserved G:C pairs), thus maintaining a ���’ interaction in these introns. This would 

imply that those introns colored red in figure 9C, except B.th.I6/B.c.I16, should be 

independent of the extension for an efficient second splicing step. This could be 

supported by the pink introns which has a similar structure in domain II and VI, but do 

not harbor an extension. It would be of great interest to investigate the splicing properties 

in vitro of B.th.I5 deleted of the extension, as this could narrow down and shed light on 

these possible candidates. A further test in that regard would be to see if “re-installing” 

such a ���’ interaction in B.th.I6a could render this intron independent of the extension.  
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Figure 9. Panels A, B and C illustrate a possible co-variation between domains II and VI in group II 
introns in the � subgroup of the Bacterial B class. Introns, where non harbor the extension, are 
indicated by blue-colored names in the phylogenetic tree in (C) and their characteristic features and 
motifs in domains II and VI are boxed in blue in the representative schematic secondary structure 
shown in (A), which is based on B.c.I5. Introns with the extension are colored red in (C) and their 
domain II and VI features are boxed in red in the representative secondary structure in (B), which is 
based on B.th.I5. In (B) the displayed nucleotides in domain VI are from B.th.I5, while the adenosine 
in parentheses is unique to B.th.I6/B.c.I16. The pink names refer to group II introns without an 
extension, but that show domains II and VI similar to the introns with the extension (colored red). 
Asterix in phylogenetic tree in (C) suggests a division point for these possible structural subgroups. 
The pound sign is ment to point to mutation of the guanosine to adenosine in domain VI, as 
illustrated in (B), that might the cause for the dependency of B.th.I6a and closely related introns. The 
phylogenetic tree shown in (C) is a subset of the tree in Figure 10 (see legend of the latter figure for 
details).  

 
 

Both B.c.I4 and B.th.I7 of the���subgroup do harbor a conserved terminal loop 

with the characteristics of a tetraloop in domain VI, which is conserved between them 

and could play a similar role in a ���’ interaction. However, no obvious receptor site in 

domain II can be found and it is difficult to conclude from only two introns with an 

extension in the � subgroup. B.th.I7 and B.th.I5 intron constructs deleted of the extension 

need to be tested if one wants to draw some more generalized conclusion about the 

properties of the two subgroups within the bacterial B class.  

 

 

The conserved residues in subdomain IC1 

 

It is interesting in the light of the discussion above to remember that the 

conserved nucleotides in subdomain IC1 investigated in paper 3 showed a possible link 

between the extension and the first splicing step in B.c.I4. Mutation of these nucleotides 

gave a somewhat reduced first step of splicing, but no shifting of the balance between 

hydrolysis and branching, and the effects disappeared when removing the extension. In 

light of the new data in paper 4 showing that the extension of B.c.I4 also influences the 

first splicing step, these effects may appear more meaningful. For many group II introns 

there is an established 	�	’ interaction between subdomain IC1 and domain II, again in 

the form of a terminal tetraloop and a receptor site, respectively (Costa et al. 1997). This 

interaction is not obvious in all group II introns, but is believed to take place in some 
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other form (Lehmann and Schmidt 2003). Mutations of the 	�	’ interaction sites have 

indicated a primary role in stabilization of the correct folding of the catalytic core (Costa 

et al. 1997). Structurally, this interaction has been shown to position the 
’ site, also 

residing in the IC1 stem, inside the core (Toor et al. 2008a). The 3’ extension could in the 

scenario above replace or compensate for domain II in the ���’ and 	�	’ interactions, 

and therefore share a common interface with domains VI and IC1, bringing the 
�
’ 

interaction and the 5’ intron-exon junction close to the bulged branchpoint A. In that way 

the extension could influence the balance between hydrolysis and transesterification in 

addition to the first step kinetics, along with efficient guiding of the 3’ splice site. 

Removing the extension however improves the first splicing step when the two conserved 

basepairs in subdomain IC1 are mutated, therefore in B.c.I4 these basepairs may have a 

role in stabilizing the core only when the 3’ extra segment is in place. It could be for 

example, as suggested in paper 3, that the two basepairs in IC1 have a role in guiding or 

positioning the extension properly in the ribozyme and the effects seen on first-step 

splicing are only secondary results. 

A conformational change in the group II intron core? 

 

The hypothesis about the extension replacing the ���’ interaction and/or domain 

II is based on the fact that the splicing effects are similar when the sites are deleted. There 

is however some “controversy” on how these results should be interpreted, or at least how 

significant they are. Chanfreau and Jacquier (1996) suggested that the ���’ interaction 

initiates a conformational switch between the two splicing steps, allowing the 3’ splice 

site to enter the catalytic core and the second step to take place. In other studies this has 

been deemed unlikely or at least that there can be no major rearrangements in the core 

(Costa et al. 1997; de Lencastre et al. 2005; Fedorova and Zingler 2007). UV 

photocrosslinking experiments showed that all the important residues in the (model) class 

IIB intron ai5� that are involved in each of the splicing reactions are situated in close 

proximity before the onset of the first step (de Lencastre et al. 2005). A recent study 

revealed on the other hand several splicing-dependent crosslinks close to the ���’ 

interaction of a (model) class IIA intron Ll.LtrA (Dai et al. 2008). The recent crystal 
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structure of a group IIC intron with both exons indicates that both splicing steps are 

tightly coordinated within the active site with a continuous exon binding interface (Toor 

et al. 2008b). Supporting the notion that there are no major changes in the catalytic center 

is a study of the ai5�� intron showing that the bulged branchsite A crosslinked to the 5’ 

end of the intron and still retained some splicing activity, suggesting that there would be 

no drastic change before the second splicing step (Hamill and Pyle 2006). The study does 

not rule out that there could be some additional catalytic strategies required for chemical 

reactivity, and a recent review points to aspects that could support a change in 

conformation in the core (Michel et al. 2009). The argumentation is that the triple helix 

constituted by domain V and the J2/3 linker region revealed by the crystal 3D structure 

should be put in place after the first step because the highly conserved GA dinucleotide in 

J2/3 is known to affect only the second step of splicing (Mikheeva et al. 2000; Michel et 

al. 2009). The various studies mentioned above were done on different intron classes and 

this could reflect why there is currently no clear uniform data on whether the catalytic 

core of group II introns undergoes some conformational changes or not. If there are such 

conformational changes under splicing of the group II intron, our scenario above implies 

that the 3’ extension, instead of domain II, initiates these changes. 

 
 

The origin of the extension 
 

With the initial discovery of B.c.I4 in papers 1 and 2 the new 3’ extension was 

thought to be only a single instance that demonstrated an extreme example of the 

flexibility and adaptability of group II introns. The discovery of the additional introns in 

papers 3 and 5 changed this view, suggesting that the 3’ extension may be a more general 

feature among group II intron ribozymes. One of the most remarkable findings revealed 

by the phylogenetic analysis of the IEP in paper 3 is the fact that these special group II 

introns do not form a single lineage and, as discussed above, suggests that these group II 

introns do not represent a clonal evolutionary group or branch that developed due to the 

acquisition of the extension. Underlining the fact that these unusual introns are not all 

closely related are the different splicing effects observed when removing the extension 

from B.th.I6 and B.c.I4 in papers 2 and 4. These observations can suggest that one intron 
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(B.th.I6) has undergone an evolution rendering it dependent on the extension for splicing 

whereas the other (B.c.I4) has not. This makes it difficult to understand the origin and 

evolution of the extension as there appears to be different reasons for maintaining the 

extension.  

 

The various unusual group II introns may have adapted differently to splice with 

the extension when they each obtained it or they may have diverged from each other after 

one common acquisition event. One could suggest at least two scenarios; either the 

extension was acquired independently for each of the different introns, or the element has 

been part of these introns’ evolution for a long time and the introns evolved into different 

lines as a part of the general evolution of group II introns. Both suggestions are 

reasonable and it could be a combination of the two. How the first acquisition happened 

in either case is a puzzling question, but it is more likely to be a single event that did not 

affect the splicing capabilities in any drastic way, as with B.c.I4, rather than a result of 

several events “building” the extra structural 3’ element. 

The joint conservation in sequence and structure of domains V, VI and the 

extension between the unusual introns could suggest that these elements are 

evolutionarily more closely related than other domains in these introns (see Figure 10). 

One explanation may be that they are the result of some sort of recombination of DV-

DVII in events involving group II introns from the � and � subgroups of the Bacterial B 

class at the RNA or DNA level (Draper et al. 2008) (A theory that could, if domain IV is 

involved, explain why the extension is only present in introns from only one evolutionary 

class). However, as mentioned earlier, the similarities are likely to be due to that the 

conserved domains are important in general and/or that these are involved in 

interaction(s) with the extension and have therefore been conserved throughout the 

evolution for the unusual introns. Another type of independent acquisition event might be 

that the extension mediates its own mobility, and thus can target group II introns that are 

not very close evolutionarily. This would probably suggest some sort of new mobility 

mechanism. 
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Figure 10. Detailed rooted phylogenetic tree of 85 Bacterial B class group II introns, built the same 
way as in paper 3, Figure 3B, based on amino acid sequences covering the full length of the intron 
encoded ORF. Group II introns that harbor a 3’ extension have their name colored in red. Numbers 
next to branch nodes indicate bootstrap support percentage values (out of 1000 replicates). The 
phylogenetic tree shows several new Bacterial B class introns, with and without the 3’ extension, 
compared to that presented in paper 3 (N.J. Tourasse, unpublished data). 

 

The other scenario would be that the extension has been part of the group II intron 

evolution from the early ancestors. The extension could originate as far back as the RNA 

world, and merely followed the general evolution of bacterial group II introns (Toor et al. 

2001). If the extension has been part of the general intron evolution for a long time one 

would expect to find related extensions in other classes of group II introns (see Figure 6). 

However, these might deviate in structure and/or sequence, and therefore might not have 

been detected by sequence and structural searches. Alternatively, the extension could 

have entered at a later stage during intron evolution, e.g., in the ancestor of the Bacterial 

B class. In any case, the first acquisition event may have been neutral for ribozyme 

activity, being neither beneficial nor disadvantageous. The difference in distribution may 

suggest that in the � subgroup the extension may have been lost more frequently and only 

been kept in those two instances where it may have given some selective advantage. The 

close relatedness of the introns with the extension in the � subgroup could imply that they 

have become more or completely dependent on the extension for activity (See Figure 10). 

Either did all unusual introns in this subgroup become dependent on the extension 

because of the overall structural changes, or did the dependency occur specifically in 

B.th.I6. This could have happened, as suggested above, with the structural evolution of 

domains II and VI. The difference in distribution may suggest that the introns with the 

extension in the � subgroup have become more or completely dependent on the extension 

for activity. For the introns in the � subgroup, this theory suggests that the extension may 

have been lost more frequently and only been kept in those two instances where it may 

have given some selective advantage. To verify such a theory, B.th.I5 and B.th.I7 must be 

tested to determine if they are dependent on the extension or not. However, the 

distribution pattern may merely arise due to sampling bias, as there are many more group 

II introns known from the � subgroup than from the � subgroup.  
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It is striking to see that the unusual introns are only found in the Bacterial B class 

so far, but it is maybe more striking that these introns are actually only found in the B.

cereus group of bacteria. Whether that means that the extension can only work in this 

group II intron class and bacterial species is not known. This peculiar distribution could 

suggest that the first example of these unusual introns may have arisen after group II 

introns entered these organisms, although this could also be sampling bias as discussed in 

papers 3 and 5.  

 

Concluding remarks
 

The work described herein shows how a new structural element can be acquired to 

fulfill properties/functions that are solved by other elements in other (typical) group II 

introns. However, this study does not present new catalytic reactions or properties that 

can be assigned to the novel extension. This work has also given some insights to 

formulate and test hypotheses regarding how the 3’ segment may fit into the large 

ribozyme structure and its subsequent effects on splicing. The open question of origin of 

the extension is also of great interest.  

 

Future perspectives 
 

If the extension does actively interact with the ribozyme structure, (which has to 

be presumed from the results of this work), what type of interaction does that involve and 

to what intronic element(s) or sites? As discussed above, there are several candidate 

domains and areas that could be interacting with the extension. In paper 3 we point out 

that the asymmetric internal loop in stem S2 shows strong resemblance to the 11-nt 

tetraloop receptor motif, which is a common building block of catalytic RNAs (Costa and 

Michel 1995), and this conserved region would be an obvious site of interaction creating 

a strong, compact interaction with a GAAA loop. Quite intriguing is that the S1 stem with 

its terminal loop shows a strong resemblance to a generic GNn/RA loop, either GAAAU 

or GUAAA, and similarly this is also a strong candidate for interaction with other 

73 
 



intronic elements. Although most of the mutations in the S1 and S2 regions conducted on 

B.c.I4 in ammonium sulfate buffer did not give any clear effect on splicing, more visible 

effects may be detected under other splicing conditions or in other introns. Therefore, it 

would be of great interest to test some of the previously studied extension mutants in the 

potassium chloride buffer and/or conduct similar mutations in B.th.I6a, which might give 

a clearer picture of any important sites inside the extension due to the dependency of this 

intron. Besides the terminal loop of S1 and the internal loop of S2, the basal stem of S2 

may be a candidate for further functional studies in vitro as it contains several conserved 

basepairs.  

Identifying any important areas or residues might also give some indications of 

what type of residues or sequence motifs one should look for in other parts of the intron. 

The lack of conservation between the unusual introns outside domains V, VI, and the 

extension may of course make it hard to find one specific site, but on the other hand 

analysis of the phylogenetic and structural differences between the introns might give 

clues on possibly different strategiesfor adaptation to the extension. In this regard, as 

mentioned above, it will be important to determine if the two other introns B.th.I5 and 

B.th.I7 are dependent, or not, on the extension for function. Such comparative analyses 

might provide valuable information, but further functional biochemical studies will have 

to be conducted to give hard evidence for any interaction with the ribozyme structure. 

These biochemical studies could include nucleotide modification by DMS or DEPC, 

incorporation of nucleotide analogues (such as NAIM or NAIS technique) or 

photoreactive residues for photocrosslinking experiments that can be used to determine or 

identify intronic residues that are in direct contact or close proximity of the S1 and/or S2 

stem. This may provide insights into how the 3’ extension is acommodated in the overall 

tertiary structure of the group II ribozyme, which is a fascinating question.  
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ABSTRACT

All group II introns known to date fold into six
functional domains. However, we recently identified
an intron in Bacillus cereus ATCC 10987, B.c.I4, that
splices 56nt downstream of the expected 30 splice
site in vivo (Tourasse et al. 2005, J. Bacteriol., 187,
5437–5451). In this study, we confirmed by ribonu-
clease protection assay that the 56-bp segment is
part of the intron RNA molecule, and computational
prediction suggests that it might form a stable
stem-loop structure downstream of domain VI. The
splicing of B.c.I4 was further investigated both
in vivo and in vitro. Lariat formation proceeded
primarily by branching at the ordinary bulged
adenosine in domain VI without affecting the fidelity
of splicing. In addition, the splicing efficiency of the
wild-type intron was better than that of a mutant
construct deleted of the 56-bp 30 extension. These
results indicate that the intron has apparently
adapted to the extra segment, possibly through
conformational adjustments. The extraordinary
group II intron B.c.I4 harboring an unprecedented
extra 30 segment constitutes a dramatic example of
the flexibility and adaptability of group II introns.

INTRODUCTION

Group II introns are a class of genetic retroelements that
are capable of self-splicing and mobility. They are able to
excise out of RNA transcripts and to ligate their flanking
exons (self-splicing), and excised introns may subse-
quently insert (reverse splice) into identical intron-less
DNA sites (process called homing) or into novel genomic
locations (retrotransposition) [see (1–4) for reviews].
Group II introns are found in bacteria, archaea and the
organelles of fungi, plants and lower eukaryotes, and they

either interrupt genes or are inserted in intergenic regions
(5–7). These retroelements typically consist of a catalytic
RNA (ribozyme) containing an internal open reading
frame (ORF) encoding a multifunctional reverse-
transcriptase protein, although ORF-less introns do
exist, especially in eukaryotic organelles (5). While some
introns have been shown to self-splice in vitro in the
absence of protein, demonstrating that the splicing
reactions are intrinsically catalyzed by the intron RNA,
the intronic protein is required for both the splicing and
insertion events in vivo (1–4).

To date, known group II intron ribozymes normally
fold into conserved secondary structures consisting of six
domains that are linked by tertiary interactions, where
domain V contains a nucleotide triad that is the presumed
catalytic center (3,8,9). However, many degenerate introns
in eukaryotic organelles lack RNA substructures (4,10).
Differences in structure are used to divide the introns into
subclasses (9). Typically, the splicing occurs via a two-step
transesterification mechanism that requires magnesium
(Mg2þ) ions as cofactors (2–4). In the first transesterifica-
tion step, the 20 hydroxyl (20-OH) group of a bulged
adenosine (A) located in domain VI makes a nucleophilic
attack on the 50 exon–intron junction phosphodiester
bond, leading to cleavage of the 50 exon and formation of
a lariat (circle with tail) with 20–50 linkage. Due to
similarities in this splicing mechanism that involves the
formation of a branched lariat RNA molecule and shared
structural features group II introns are thought to be the
ancestors of the nuclear spliceosomal introns of eukar-
yotes (11,12). In the second transesterification step, the
free 30-OH of the cleaved 50 exon attacks the 30 splice
junction, leading to exon ligation and release of the intron
lariat. However, an alternative hydrolytic pathway, in
which the first splicing reaction is initiated by nucleophilic
attack by a water molecule leading to release of a linear
intron after transesterification in the second step of
splicing has been shown to occur both in vitro and
in vivo (13–15). Group II introns have also been reported
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to be excised as full or partial circles and several pathways
have been suggested (13,16).

Splice-site selection is determined by base-pairing
interactions between the intron and its flanking exons
that help position the splice junctions in the active site of
the intron (Figure 1). At the 50 splice site two 5–6
nucleotide motifs, IBS1 and IBS2 (intron binding sites),
located just upstream of the intron insertion site base-pair
with the complementary EBS1 and EBS2 (exon binding
sites) in intron domain I. Two single base pair interactions
guide 30 splice-site selection, but they differ between major
intron classes. For introns of class IIB, the first nucleotide

of the 30 exon (IBS3) pairs with a nucleotide within
domain I [EBS3; (2–4,17)]. The second interaction
involves the last base of the intron (g0) and a base between
domain II and III (g) (Figure 1). The location of the 30
splice-site relative to the base of domain VI is also
important. For group IIB introns, the 30 splice site occurs
3 or 4 nt past domain VI (10,18,19). It should be noted
that the correct positioning of the 30 splice site is actually
highly dependent on domain VI, which helps stabilize the
intron structure and the catalytic center (3).
We have recently reported a group IIB intron (B2-like

class), B.c.I4, on the pBc10987 plasmid of Bacillus cereus
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Figure 1. Predicted secondary structure of the B.c.I4 group II intron from B. cereus ATCC 10987. Exon nucleotides are in lowercase. Roman
numerals (I to VI) indicate the six typical functional RNA domains and their subdomains are designated by combinations of letters, numbers and
superscripts according to the nomenclature of (10). The extra 56-nt 30 segment harbored by B.c.I4 is boxed in grey. Sites corresponding to consensus
positions involved in tertiary interactions (8,9) are indicated by pairs of Greek letters or EBS/IBS (exon binding sites and intron binding sites).
Sites of tertiary base-pairing interactions are boxed or circled in red with arrows indicating the orientation of complementarity. Sites implicated in
other tertiary contacts are boxed or circled in blue. The IBS3–EBS3 and g–g0 base-pair interactions involved in 30 splice-site selection are indicated
by black dotted lines. The d0 nucleotide was set at the expected location (C:350) according to (17), however it is not complementary to the d site,
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ATCC 10987 that splices in vivo 56 nt downstream of
domain VI and the 30 splice site that would be expected
from secondary structure predictions (19). That is, an
extra 56-bp segment downstream of the intron was not
present in the ligated exons, as indicated by RT-PCR and
sequencing. B.c.I4 is inserted within a gene encoding a
hypothetical protein with a DNA primase domain
(BCEA0033þBCEA0036), and, interestingly, the unusual
splicing puts the ligated exons in-frame and would
produce a protein of exactly the same size as the intron-
less counterpart in other B. cereus group strains.
Furthermore, the observed 30 splice site would also give
the correct g–g0 and IBS3–EBS3 interactions, while non-
canonical pairings would form three or four bases
downstream of domain VI. In the present study, we
have examined the splicing of this extraordinary B.c.I4
intron in more detail using in vivo and in vitro experiments.
We show that the extra 56-bp 30 segment is an integral part
of the intron RNA molecule downstream of domain VI,
which represents a unique arrangement, and that 30 splice-
site selection can be more flexible than ever seen before,
while branching is still maintained at the expected site.

MATERIALS AND METHODS

Secondary structure predictions

The secondary structure of the B.c.I4 intron RNA (ORF
removed) was computationally predicted by constrained
folding using the MFOLD 3.1 package (20) following the
consensus structure of group IIB introns from B2-like
class (9,19). That is, conserved and identifiable sequence
motifs corresponding to the consensus structure were
forced during the folding computation.

DNA and RNA isolation

Bacillus cereus ATCC 10987 was grown on Luria Bertani
(LB) agar plates at pH 7 and 308C. An overnight culture
(16 h) was inoculated for 3.5 h in 10ml LB, and then cells
were lysed with 10mg/ml lysozyme. DNA isolation was
performed using the Genomic DNA Midi kit (Qiagen) as
described by the supplier. Total RNA isolation was
conducted as in (19).

PCR and RT-PCR

PCR was performed with Dynazyme II using both the
forward and reverse primers at a concentration of 0.4 mM,
each deoxynucleoside triphosphate at a concentration
of 0.8mM, and 1U of Dynazyme (Finnzymes). PCR was
primarily run with one denaturation step at 948C for
5min, followed by 30–38 cycles of 1min denaturation at
948C, 50 s annealing at 588C and 50 s extension at 728C,
followed by a final extension step of 7min at 728C. For
RT-PCR, the synthesis of cDNA was initiated with the
reverse primers using Superscript III (Invitrogen) and 5 mg
of total RNA or 0.1 mg in vitro spliced RNA as a template
according to the supplier’s protocol. A negative control
was conducted without addition of reverse transcriptase.
A portion of the cDNA and negative control was then
amplified by PCR. A complete listing of all the primers
used in this study is given in Table 1.

PCR performed with 2.5U of Pfu Turbo DNA
polymerase (Stratagene), with same primers and dNTP
concentrations as earlier, was run with one denaturation
step at 958C for 2min, followed by 30 cycles of 30 s
denaturation at 958C, 30 s annealing at 588C and 1min/kb
extension at 728C, followed by a final extension step of
10min at 728C.

Table 1. List of primers used in the study

Name Sequence Location

I4A_left TCGGATTTTTGCCGTTAGAG 50 exon
I4A_right ACCCCTTCTTATGTCGCAAA intron (50 end)
I4A_right_nested CAATCTTAATTCGTTGTGGGTGT intron (50 end)
I4B_left CCTGATGTGATCGGAGGTCT intron (30 end)
I4B_left_lariat GACATTAAACAGTCGATGGAACG intron (30 end)
I4B_left_BamHIa CCCGGATCCCCTGATGTGATCGGAGGTCT intron (30 end)
I4B_right TGGTTTCGGAATGGAATCAT 30 exon
I4B_right_T7a TAATACGACTCACTATAGGGAGAGCGGGATCCTGGTTTCGGAATGGAATCAT 30 exon
5p_left_BamHIa CGGGATCCCGAAATTGTGTTGGAAGATGATAATACG 50 exon
3p_right_ClaIa CCATCGATGGGGTCCAGATTTCACATGAACAG 30 exon
5p_right ATTCCATGAGCGATTGAGGT intron
3p_left AACCTTTAGATTGAGGAAACACAAA intron
d3ps_senseb CCTTTGGGATGCGTCACAAATTATGAAATGAAGAAAGGACAAC 30 splice junction
d3ps_antisenseb GTTGTCCTTTCTTCATTTCATAATTTGTGACGCATCCCAAAGG 30 splice junction
d56_senseb CATCAAAGATTTACCTATCGCA[ ]ATTTTATGAAATGAAGAAAGGAC 30 splice junction
d56_antisenseb GTCCTTTCTTCATTTCATAAAAT[ ]TGCGATAGGTAAATCTTTGATG 30 splice junction
Restore_senseb CATCAAAGATTTACCTATCGCAATTGAAATGGGTAGGCGCTAC intron (30 end)
Restore_antisenseb GTAGCGCCTACCCATTTCAATTGCGATAGGTAAATCTTTGATG intron (30 end)

aNucleotides in boldface have been added to the primers in order to include restriction sites or promoters. The restriction sites for BamHI or ClaI are
underlined. The T7 promoter sequence is in italics.
bThe sense and antisense primers are complementary to each other and were used to generate the d3ps, d56, and ‘Restore’ mutant constructs using
Quikchange II (Stratagene). The mutated nucleotides are in bold. For the d56 mutant, the deletion point is indicated by brackets.
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Radioactive RT-PCR assay

The radioactive RT-PCR assay was mainly conducted
as described by Robart et al. (21). Primer I4B_right was
50-end-labeled with g[32-P]ATP (3000Ci/mmol, 10mCi/ml)
using T4 kinase (New England Biolabs). Labeled primer
was purified with Nucleotide purification kit (Qiagen).
Reverse transcription (cDNA synthesis) and PCR were
conducted as described earlier, except that PCR was
conducted with �5000 cpm of labeled primer I4B_right
together with unlabeled counterpart (1 pmol) and primer
I4A_left (4 pmol) (Table 1). Amplification products were
phenol–CIA (25:24:1 phenol:chloroform:isoamyl alcohol)
extracted, ethanol-precipitated with 0.3M NaOAc, pH 5.2
and digested with SnaBI (New England Biolabs) to ensure
homogeneous ends, and these samples were again
precipitated and eluted in formamide loading buffer
(Ambion). Samples were separated on 7M urea 6%
polyacrylamide gel after heating at 908C for 2min and
cooling on ice.

Cloning and site-directed mutagenesis

RT-PCR products, either taken directly or gel-purified
from 1X TAE gel (QIAquick gel extraction Kit, Qiagen),
were cloned into TA cloning vector (Invitrogen) and
subsequently sequenced.

Plasmid constructs for in vitro self-splicing experiments
were made by cloning a PCR product covering the entire
B.c.I4 intron and parts of the flanking exons, amplified
with primers 5p_left_BamHI and 3p_right_ClaI (Table 1),
into the BamHI site of pBluescript II KSþ (Stratagene), in
orientation for T7 transcription. The intron-containing
inserts were then amplified by inverse PCR with outward
primers, 5p_right and 3p_left, using Pfu Turbo in order to
remove the ORF encoded in domain IV of B.c.I4, and
then ligated with T4 ligase (New England Biolabs), giving
a wild-type construct containing 96 bp of the 50 exon,
884 bp of intron and 151 bp of the 30 exon.

Site-directed mutagenesis to generate point mutation
and deletion constructs was performed with Quikchange
II (Stratagene) according to the manufacturer’s instruc-
tions using two complementary oligonucleotides (of �40
bases) containing the desired mutation(s) (see Table 1 for
details). All constructs were verified by sequencing.

In vitro transcription

One microgram of plasmid construct was linearized by
XhoI for transcription reactions with 30U T7 RNA
polymerase (Ambion) according to the manufacturer’s
instructions. For radiolabeled transcripts, transcription
was performed using 20 mCi[a–32P] UTP (800Ci/mmol,
Amersham Pharmacia Biosciences), 0.1mM UTP and
0.5mM other NTPs. After DNAse treatment, transcripts
were gel-purified and resuspended in 10mM MOPS,
pH 7.5. Unlabeled transcripts were synthesized and
purified as for labeled transcripts, but with concentrations
of 0.5mM for each NTP and transcripts were gel-purified
after visualization with Fluor-coated TLC plates
(Ambion).

Ribonuclease protection assay

RNase T1/A protection assay (RPA) was performed using
the Ambion RPA III kit following the manufacturer’s
protocol. The RNA probe was synthesized from a PCR
product made using primers I4B_right_T7, containing a
T7 promoter and a 9-nt non-homologous sequence, and
I4B_left_BamHI (Table 1), creating a 422-nt long product
spanning over the 30 splice junction of intron B.c.I4.
The probe was synthesized by in vitro transcription as
described earlier, using 0.2 mg of PCR product as template.
RPA reactions were performed using 10–25 mg total RNA
and �60 000 cpm of gel-purified probe as described by the
manufacturer. After hybridization and digestion, probe
was separated on a denaturing 6% polyacrylamide/7M
urea gel. For imaging, gels were exposed and analyzed
using a Molecular Dynamics Storm 860 Phosphorimager.

In vitro self-splicing of ribozyme

In vitro generated transcripts were denatured and refolded
using a GenAmp 2700 PCR machine (Applied
Biosystems), by incubating the transcripts in 20mM
MOPS, pH 7.6 at 908C for 1min, 758C for 5min and
then cooling to the splicing temperature over 5min. Intron
transcripts were spliced with 50 000 cpm RNA or �0.1 mg
unlabeled transcripts in 40mM MOPS, pH 7.6, 100mM
MgCl2 and 500mM (NH4)2SO4, NH4Cl or KCl at the
temperatures indicated in the text. Reactions were
initiated by adding pre-warmed splicing buffer to the
transcript RNA giving a total reaction volume of 40 ml. At
each time point 2 ml were taken, quenched with loading
buffer (Ambion) and by placing samples on dry ice.
Samples were then heated to 958C and cooled on ice
before being separated on a 7M urea 4% polyacrylamide
gel. Gels were then vacuum dried, exposed and analyzed
using a Molecular Dynamics Storm 860 Phosphorimager.
For subsequent RT-PCR and sequencing of these

splicing products either unlabeled spliced transcripts,
purified with Nucleotide purification kit (Qiagen), or
labelled spliced transcript species, excised from gels, were
used as templates.
For kinetic analysis the intensities of the radioactive

bands were quantified using the ImageQuant 5.0 software
and corrected by the number of uridines. The relative
fraction of unspliced precursor RNA was computed from
the intensities of the radioactive bands. Data were fitted to
a biphasic exponential kinetic model [Equation (6) in (22)]
by the non-linear least squares method using the GNU
gretl 1.5.1 software (http://gretl.sourceforge.net/).

Reverse transcriptase primer extension

The I4B_right primer was 50-end-labeled with 40 mCi of
g-[32P]ATP and 15U of T4 polynucleotide kinase. Lariat,
lariat with 30 exon and precursor RNA were incubated
with 4 ml of 5� first-strand buffer (Invitrogen), 0.5 ml of
RNasOUT (40U/ml), 2 pmol labeled primer at 858C for
10min and then transferred to 558C for 15min. The
reaction mixture was supplemented with 1 ml of 0.1M
DTT, 40U of SuperScript III (Invitrogen), 1 ml of 10mM
dNTPs. For primer extension reactions with precursor
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RNA 1 ml of 4mM ddCTP was also added. The reaction
mixtures with total volume of 20 ml were incubated at 558C
for 25min, and stopped by heating to 708C for 15min.
Reaction products were ethanol-precipitated in 0.3M
NaOAc, resuspended in Gel loading buffer II (Ambion),
heated to 958C for 2min and resolved in 7.5% poly-
acrylamide 7M urea gels and visualized using a Storm 860
scanner (Molecular Dynamics).

RESULTS

The extra 56-bp segment downstream ofB.c.I4 is part of the
intron RNAmolecule that splices in vivo

A ribonuclease protection assay was performed to
investigate whether the 56-bp sequence immediately
downstream of the B.c.I4 intron was part of the excised
intron in vivo as it was known to be absent from the
spliced exons (19). RNase digestion using a riboprobe
covering the intron-30 exon junction, including the
56-bp sequence, hybridized to total RNA from B. cereus
ATCC 10987 gave two bands: (1) a band migrating
at �400 nt, which matches the size expected for the
unspliced (precursor) RNA (398 nt) and (2) a band at
319 nt that corresponds to the size of the spliced intron
with the extra 30 56-bp segment (Figure 2A). The assay
gave no indication of an excised intron without the extra
30 segment. To detect if there could be a small amount
of ligated exons that include the extra 56 nt a sensitive
radioactive RT-PCR assay with total RNA was conducted
where spliced exons were amplified with 50-end-
labeled primer I4B_right and unlabeled primer I4A_left
(see Methods section). A single band at �147 bp was
obtained, corresponding to the size of the splice junction
sequenced previously with the same primers (19), but no
band containing the extra element was detected
(Figure 2B). We therefore conclude that the 56-bp
sequence 30 of B.c.I4 is part of the spliced intron RNA
in vivo.

The extra 30 segment of B.c.I4 is predicted to fold into a
stable stem-loop structure

Computational secondary structure predictions suggest
that the 56-bp element at the 30 end of B.c.I4 would be
able to form a long stable stem-loop structure as
shown in Figure 3, although the folding of the first part
of the element is unsure. If folding is conducted by
constraining the structure of domain VI to be as it would
be in a typical group IIB intron, then the first 12 nt of
the 56-nt segment would fold into a small stem–loop
element (Figure 3A), whereas they would partly extend the
base of the domain VI stem if no constraint is applied on
domain VI (Figure 3B). The overall secondary structure
of B.c.I4 (excluding the extra segment) displays all
the characteristics typical of group IIB introns belonging
to the B2-like class (9), in particular two stem–loop
structures inserted between subdomains I(i) and I(ii),
absence of subdomain IA, a 3-nt linker between domains
V and VI and a stretch of 4 bp below the bulged A (A:899;
Figure 1 and ref. (19)). Furthermore, all sites involved in
tertiary interactions, with the exception of g0 and IBS3,

can be predicted at the expected locations and the
motifs match the consensus elements of group IIB2-like
introns (Figure 1). Therefore, the structure shown in
Figure 3B, which would imply important changes like
the disruption of the V–VI linker and an extension of
domain VI, might be less likely to form than the structure
shown in Figure 3A. Interestingly, no canonical g–g0
and IBS3–EBS3 base-pairings could form at the expected

A

B 1         2         3         4

1   2   3  4  5          6

100 nt

200 nt

245 nt

304 nt

400 nt

B.c.I4    3′ exon

B.c.I4    3′ exon
422 nt

398 nt

319 nt 

147 bp

217 bp

B.c.I4

Figure 2. RNase T1/A protection assay (A) and radioactive RT-PCR
(B) showing that the extra 56-nt element 30 of the B.c.I4 intron is part
of the intron RNA and not part of the exons. In A, lanes 1, 2 and 3
show positive controls based on mouse RNA, and lanes 4, 5 and 6
show the results based on B. cereus RNA. Lane 1: digested antisense
mouse b-actin RNA probe hybridized with mouse liver RNA; lane 2:
same probe as in lane 1, undigested; lane 3: same probe as in lane 1,
digested, without mouse liver RNA; lane 4: undigested B.c.I4-30exon
junction probe hybridized to B. cereus ATCC 10987 total RNA; lane 5:
same probe as in lane 4, digested, without RNA sample; lane 6: same
probe as in lane 4, digested, with RNA sample. A schematic of the
experiment illustrating the location of the probe and the expected
products is shown on the right. The black area represents the extra
56-nt element. In B, lanes 1, 2 and 3: RT-PCR conducted with exon-
specific primers I4B_right (radiolabeled) and I4A_left (Table 1) using
as template total RNA sample isolated from B. cereus ATCC
10987 at 3, 4 and 6 h of growth, respectively. Lane 4: g[32-P]ATP
50-end-labeled pBR322 DNA digested with MspI (New England
Biolabs), as marker.
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splice site three or four bases downstream of domain VI,
and both structure predictions suggest that the
potential g0 and IBS3 nucleotides (C:906 and C:907) at
this site would already be base-paired and unable to

interact with any other nucleotides. The stem–loop
structure(s) in the extra segment might enable the 30 end
of the intron to get in closer contact with the rest of the
intron core and bring the observed 30 splice site to a
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Figure 3. Predicted secondary structure of the 30 end of the B.c.I4 group II intron from B. cereus ATCC 10987. Domains V and VI and the extra
56-nt 30 segment are shown. A and B; two alternative structures for the wild-type intron. C; d56 mutant construct, in which the 56-nt element was
removed. D; ‘restore’ construct, in which the 30 splice site was restored at the expected location typical for group II introns, three bases downstream
of domain VI. The nucleotides at the expected 30 splice site in the wild-type intron, CCC, are colored in blue. These bases were mutated to AUU
(colored in red) in the ‘restore’ mutant. The observed 30 splice junction is indicated by an arrow. Exon residues are in lowercase. The three uridine
residues that might create potential 30 splice sites within the 56-nt 30 segment, which were not observed to be used, are colored in green. Nucleotides
boxed in blue were found to be linked to the intron’s 50 end in inverse RT-PCR experiments. The ordinary branchpoint bulged adenosine (A:899)
in domain VI is marked by an asterisk.

Nucleic Acids Research, 2007, Vol. 35, No. 5 1617



location close to the site expected for typical group IIB
introns.

In vitro splicing analysis of the B.c.I4 intron

To study the role or impact of the extra 30 segment on the
splicing of the B.c.I4 intron, in vitro self-splicing experi-
ments were conducted using wild-type and mutant
constructs in the absence of intron-encoded protein. As
can be seen in Figure 4A, splicing of the B.c.I4 wild-type
(WT) intron done with 40mM MOPS (pH 7.5), 500mM
(NH4)2SO4 and 100mM MgCl2 at 458C followed by
separation of the splicing products on a polyacrylamide
gel revealed that the B.c.I4 intron could splice out as a true

ribozyme. The size of the ligated exon band observed on
the gel (Figure 4A) and RT-PCR with primers I4B_right
and 5p_left_BamHI (Table 1) and subsequent sequencing
confirmed that the 56 nt 30 of the intron were not part of
the ligated exons, verifying that in vitro splicing of B.c.I4
was the same as in vivo (Figure 4B). When the extra 30
segment was deleted from the intron (d56 construct), while
maintaining the last three nucleotides before the 30 splice
site (Figure 3C), the intron could still splice. As expected
the spliced exons were of the same sizes as for the wild
type, while the size of the lariat was smaller than the wild-
type lariat (Figure 4A). The smaller size of the d56 lariat
compared to wild type also confirms that the extra element
was part of the lariat form of the wild-type intron that had

Figure 4. In vitro self-splicing (A) of B.c.I4 wild-type and mutant constructs and subsequent RT-PCR (B). In A, lane M shows the marker, g[32-P]ATP
50-end-labeled RNA Century-Plus Marker (Ambion). Splicing was performed in 40mM MOPS (pH 7.5), 500mM (NH4)2SO4, and 100mM MgCl2 at
458C. Samples were separated on a 7M urea 4% polyacrylamide gel. Schematic drawings are shown next to the bands corresponding to the different
splicing products. The light grey box represents the extra 56-nt element. In B, RT-PCR with I4B_right and 5p_left_BamH1 primers (Table 1) using
in vitro splicing products as templates, confirming the size of the ligated exons. Lane M, pBR322 DNA digested with MspI (New England Biolabs),
as marker. Samples were separated on a 1% agarose gel.
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spliced out. RT-PCR and sequencing confirmed that the
ligated exons had the same sequence as in the wild-type
case and therefore the intron had spliced at the correct site
(Figure 4B). These results indicate that extra 30 element is
not essential for splicing in vitro.

We then investigated whether an intron construct
carrying the extra 30 sequence could splice at the location
expected for typical group IIB introns by restoring the
30 splice site three bases downstream of domain VI, i.e.
upstream of the extra 30 segment. In the ‘Restore’
construct, the nucleotides ACCC immediately after
domain VI were changed to AATT, thus providing a
potential 30 splice site that could interact with the g0
and EBS3 nucleotides of B.c.I4, without changing the
wild-type 30 splice-site sequence (Figure 3D). Remarkably,
the intron was able to splice at the restored site, as judged
by the spliced exons being �50 nt longer in size than the
wild-type exons, but no product indicative of splicing at
the wild-type site 56 bp downstream of domain VI could
be observed (Figure 4A). RT-PCR and sequencing of
splicing products using primers located in the exons
(I4B_right and 5p_left_BamHI; Table 1) confirmed that
ligated exons corresponded to splicing at the restored site
(Figure 4B). Interestingly, secondary structure predictions
using the restored mutant only produced one possible
folding in the 30 end of B.c.I4, whether or not constraints
are applied to domain VI. In that structure (Figure 3D),
domain VI would adopt the same conformation as in
typical group IIB introns, which might explain why
the restored site is preferred over the wild-type site.
In addition, the possible long linker that may form
between the restored site and the stem of the extra 56-bp
element may bring the wild-type site too far away from the
central core of the intron, thus preventing it from splicing
there.

Comparing the splicing of the wild-type B.c.I4 intron
with different salts such as (NH4)2SO4, NH4Cl and
KCl at the same concentration (500mM) by a 90-min
quantitative time-course analysis showed that the splicing
efficiency was best with (NH4)2SO4. Splicing with this latter
salt at various temperatures revealed that the rate of
splicing, as judged by the fraction of unreacted precursor
RNA, was highest between 47 and 508C (Figure 5A). While
previous results obtained with the d56 mutant construct
showed that the B.c.I4 intron could splice without the extra
56-bp segment (Figures 3C and 4), a time-course compar-
ison under the presumed optimal conditions revealed that,
overall, the d56 mutant intron was not more efficient in
splicing than the wild-type B.c.I4 (Figure 5B).

30 splice-site selection

The use of an alternative 30 splice site by a bacterial group
II intron has been shown to occur both in vivo and in vitro
in B. anthracis, a close relative of B. cereus (21).
Interestingly, the 30 splice junction of B.c.I4, which is
delimited by two uridines (U) corresponding to the g0 and
IBS3 residues, is immediately followed by two more
uridines (Figure 3A and B). These latter nucleotides could
thus make two possible alternative splice sites where the
g–g0 and EBS3–IBS3 pairings with the g and EBS3

adenosines would be maintained. However, sequencing
of eight clones of RT-PCR products from in vivo ligated
exons did not reveal any use of either two possible
alternative splice sites by the B.c.I4 intron, and no
alternatively spliced exons could be observed in radio-
active RT-PCR assays performed on splicing products
from the wild-type RNA both in vivo and in vitro
(Figures 2B and 6). Nevertheless, this absence of detection
could be due to tiny amounts of alternative splicing.
To investigate further whether use of alternative splice
sites could be possible, the two first U residues at the
intron-30 exon junction of the wild-type construct were
mutated to A nucleotides. Splicing of this mutant, d3ps
(Figure 4A), followed by RT-PCR (Figure 4B), cloning
and sequencing of five clones of ligated exon products
revealed that, in one case, the B.c.I4 intron could splice in
between the two uridines at the alternative 30 site located
at position þ2 downstream of the wild-type splice site.
Very surprising was the fact that the other four clones
showed sequences corresponding to splicing at the
mutated 30 splice site, i.e. in between the two adenosines.
In this case, no canonical IBS3–EBS3 pairing would form
as no U is present in the EBS3 internal loop, while a
uridine located in the linker between domain II and III
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Figure 5. Time-course analysis of in vitro self-splicing of B.c.I4 wild-
type (WT) and d56 mutant constructs. Splicing was performed in
buffers containing 100mM MgCl2 and 500mM (NH4)2SO4. The
relative fractions of unspliced precursor RNA were computed from
the intensities of the radioactive bands using a phosphorimager.
Reactions were repeated 3� for each construct, and are expressed as
averages with standard deviations. Data were fitted to a biphasic
exponential kinetic model (Equation (6) in (22); rate constant estimates
are provided in supplementary Table 1).
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would be the only nucleotide complementary to g0
adenosine, the last nucleotide of the d3ps intron
(Figure 1). This suggests that either splicing occurs
without g–g0 and/or IBS3–EBS3 pairings or that non-
canonical interactions form. Quantification of the 30 splice
site usage by the d3ps intron using radioactive RT-PCR
indicated that the mutated and alternative sites were used
in 55 and 45% of the splicing, respectively (Figure 6). It
should also be noted that there is a potential 30 splice site
inside the extra element, as three uridines can be found
(U:943–U:945; green bases in Figure 3), where no splicing
was observed.

Lariat and circle formation

In typical group II introns domain VI contains a bulged
A, which is the branchpoint of the lariat, and has been
shown to be important for guiding 30 splice-site selection
usually 7–8 nt downstream of the branchpoint (3). Since
intron B.c.I4 splices 56-nt downstream of domain VI, it
raises the question of whether the extra 30 element could
have an impact on the branchpoint selection.
B.c.I4 harbors a bulged A at the expected location in

domain VI (A:899). To investigate lariat formation in vivo
inverse nested RT-PCR experiments were performed using
outward-directed primers I4A_right/I4A_right_nested
and I4B_left (Table 1), located in the 50 and 30 end of
the intron, respectively, and total RNA isolated from
B. cereus ATCC 10987 (Figure 7A). Gel electrophoresis of
products revealed three different bands, of which only the
smallest one was clearly visible each time the assay was
reproduced (Figure 7B). This band matched the size of a
lariat branching at the expected bulged A:899 in domain
VI and this was confirmed by cloning and sequencing.
In the sequence, the bulged A residue was converted to T,
which is a characteristic error due to the reverse-
transcriptase which incorporates an A at the cDNA level
when it passes through a branched adenosine (15,23). This
result shows that B.c.I4 can branch at the typical site
within domain VI despite the presence of the extra 30
segment. The sequence of the largest inverse RT-PCR
product (Figure 7B, black arrow) corresponded to

molecules in which the first and last intron nucleotides
were linked, potentially representing full-length intron
circles, while in the middle-size product (Figure 7B, grey
arrow) the first intron nucleotide was linked to an internal
guanosine residue (G:921; Figure 3A and B) in the extra
30 element, i.e. the last 38 bases of the intron were missing.
In the radioactive RT-PCR experiment shown in
Figure 2B, no product corresponding to ligated exons
containing the last 38 bases of the intron could be
observed, indicating that the G:921 residue was not used
as an alternative 30 splice site. The middle-size product
could then represent an alternative lariat form or a partial
circle. Therefore, from the earlier results it appears that
B.c.I4 can generate a variety of heterogeneous products
in vivo. The band corresponding to lariat branching in the
expected bulged A:899 was by far the strongest
(Figure 7B, white arrow), indicating that this pathway
was the major one in vivo under the growth conditions
used.

When inverse RT-PCR was conducted on the products
of in vitro splicing with the WT construct using primers
I4A_right and I4B_left_lariat (Table 1), similar results

B

3′5′
5′ exon            B.c.I4 intron                    3′ exon

M       WT     NC

A

C

307 bp

238 bp

180 bp

WT      M

in vivo

in vitro

5′ intron end

A:899

5′ intron end

G:921

5′ intron end

5′ intron end

A:935

T:959

Figure 7. Inverse RT-PCR analysis for detection of B.c.I4 lariat and
other circular molecules. A; schematic drawing illustrating the inverse
PCR strategy and the location of primers. B; in vivo analysis; gel
electrophoresis of nested RT-PCR products obtained from total RNA
isolated from B. cereus ATCC 10987 cultures. C; in vitro analysis; gel
electrophoresis of RT-PCR products obtained from in vitro self-splicing
of B.c.I4 wild-type (WT). Sequencing chromatograms of selected
inverse RT-PCR products are shown to the right. The black, grey
and white arrows indicate full-length circles, molecules linked within
the extra 56-nt segment, and lariats branched in the bulged A:899,
respectively. In B and C, lane M shows the size marker, pBR322 DNA
digested with MspI (New England Biolabs); in B, lane NC shows a
negative control done without reverse-transcriptase. Primers I4A_right/
I4A_right_nested and I4B_left were used in B; I4A_right and
I4B_left_lariat were used in C (Table 1). Samples were separated on
a 3.5% NuSieve GTG agarose gel (Cambrex).

WT
+2

WT d3ps

100%         55%       WT
0%         45%    +2
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GUCACA AAUU
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intron   3′ exon
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Figure 6. Radioactive RT-PCR assay for detecting the use of
alternative 30 splice sites. The assay was conducted with exon-specific
primers I4B_right (radiolabeled) and 5p_left_BamHI (Table 1) with
wild-type (WT) and d3ps mutant constructs spliced in vitro in 40mM
MOPS (pH 7.5), 500mM (NH4)2SO4 and 100mM MgCl2 at 458C.
While no alternative splicing was detected for the WT B.c.I4 intron, the
d3ps mutant could use a 30 splice site at position þ2 downstream of the
mutated wild-type site. Quantification of the bands using a phosphor-
imager is shown, expressed as percentage of total radioactivity. The
intron-30 exon splice junction is shown on the right, with mutated
nucleotides boxed.

1620 Nucleic Acids Research, 2007, Vol. 35, No. 5



were obtained (Figure 7C). The three mutant introns
(d3ps, d56 and restore) also gave rise to clones corre-
sponding to full circles (data not shown). To investigate
whether the molecules linked within the 56-bp 30 segment
could be lariats, inverse RT-PCR was run separately on
the fractions corresponding to ‘lariat’ and ‘lariatþ 30 exon’
for the WT construct (top two bands in Figure 4A).
Although most of the clones (8 of 13 in ‘lariat’ and 12 of
17 in ‘lariatþ 30 exon’) were lariats branched in A:899,
molecules in which the 50 intron nucleotide was linked to
G:921 were found in both fractions, and clones linked to a
variety of other sites present in either fraction (Figure 3A
and B and 7). Furthermore, a primer extension analysis
was conducted on the ‘lariatþ 30 exon’ fraction (top band
in Figure 4A) using primer I4B_right located in the 30
exon. The strongest stop to reverse-transcription was by
far at position A:899 confirming that this position is the
main branch site (Figure 8). There were no clear other
bands that could be indications of stops representing
minor ectopic branching events within the extra 56-bp
segment of B.c.I4, although this could also be due to a

very low frequency of these events, in agreement with the
observed frequencies in clones of inverse RT-PCR run on
the same fraction.

DISCUSSION

In this article, we have investigated the splicing of the
atypical group IIB (B2-like class) intron B.c.I4 of B. cereus
ATCC 10987 which splices, both in vivo and in vitro, 56 nt
downstream of the 30 site that would be predicted from
the classical 6-domain secondary structure of group II
introns (19). Here, we present data from three different
types of experiments, i.e. ribonuclease protection assay,
radioactive RT-PCR and in vitro self-splicing, clearly
demonstrating that the extra 30 56-nt sequence is a part of
the intron that splices out and is not part of the ligated
exons (Figures 2 and 4). This is further supported
by the fact that this 56-nt sequence stretch is not present
in the sequence of the orthologous intron-less gene in
B. anthracis (ORF pXO1-70), B. cereus ATCC 43881 and
B. thuringiensis ATCC 33679 (19,24). This extraordinary
arrangement raises the question of how the intron
ribozyme can accommodate the extra element and be
functional. In this respect, it is remarkable that the
predicted secondary structure of B.c.I4 (apart from the
extra segment) conforms perfectly to the consensus
structure of group IIB2-like introns (Figure 1). All
motifs involved in tertiary interactions are also conserved
and no obvious feature deviating from the B2-like
consensus is apparent. This might suggest that B.c.I4 has
been able to accommodate the extra 30 segment without
major reorganization of the core structure. Use of the
downstream 30 splice site may be facilitated by the
formation of a long stable stem–loop structure in
the extra 56-nt element that could bring the observed 30
site closer to the (catalytic) core of the folded intron
(Figure 3). The predicted folding of this unusual sequence
is supported by the fact that no splicing was observed to
occur in the U:943–U:945 stretch, which could make a
potential 30 splice site with IBS3–EBS3 and g–g0 pairings,
as would be expected if these nucleotides are part of a
double-stranded stem (green bases in Figure 3A and B).
Furthermore, the nucleotides at the expected 30 splice site
are probably paired with other nucleotides either from the
56-nt element or the linker between domains V and VI
(blue bases in Figure 3A and B), therefore preventing
splicing at the location typical of group II introns.
Even though a more precise determination of the
secondary structure would require experimental probing,
it is likely that the structure downstream of domain VI is
important for the intron to be able to splice after the 56-nt
long 30 element. It would also be interesting to determine
whether this element is involved in tertiary interactions
with the other intron domains and/or the intron-encoded
protein.
When the downstream 30 segment is removed, as in the

d56 construct, the intron can still splice in vitro, indicating
that the extra sequence is not essential for B.c.I4 to splice
(Figure 4A). On the other hand, the splicing efficiency of
the d56 mutant in vitro in (NH4)2SO4 buffer is not better

A:935

A:899

G:921

G      A

lariat   |   3′  exon

Figure 8. Reverse transcriptase primer extension for detection of B.c.I4
lariat RNA. Primer extension was conducted on the ‘lariatþ 30 exon’
fraction obtained from in vitro splicing of the wild-type B.c.I4 intron
(top band in Figure 4a) using primer I4B_right located in the 30 exon.
The same reaction was performed on precursor RNA using ddCTP and
ddTTP to produce the G and A ladder, respectively. A schematic of the
experiment is drawn to the right.
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than that of the wild-type overall (as judged from fractions
of unspliced precursor during in vitro time-course analysis
in Figure 5), implying that the intron has adapted to
function with the extra 30 segment. Another sign of
adaptation is given by the fact that the expected
branchpoint (A:899) is still the most predominant both
in vivo and in vitro, and that B.c.I4 has a high fidelity in
branch-site selection (Figures 7 and 8). It has been
extensively demonstrated that branch-site selection
occurs with a very high fidelity in typical group II
introns (25). Thus, this observed fidelity of B.c.I4 is
quite remarkable compared to other group II introns
in which the bulged A in domain VI is normally located
7–8 nt upstream of the 30 splice site (3), as opposed to 60
bases.
Mutation of the 30 splice site (UU!AA) revealed

that the B.c.I4 intron could use an alternative site 2 nt
downstream in vitro (Figure 6), indicating that B.c.I4
retains some flexibility allowing the selection of an
alternative 30 site. This suggests that the 30 splice site
could come in close proximity to the catatylic center of
B.c.I4. On the other hand, the d3ps mutant also spliced
at the mutated site, where canonical IBS3–EBS3 and/or
g–g0 interactions are not expected to occur, implying
that there may be structural constraints limiting some-
what the flexibility of the B.c.I4 intron. It could also be
that the IBS3–EBS3 and/or g–g0 interactions are not
critical for 30 splice-site selection by B.c.I4, as these
interactions support correct 30 splice-site choice only
when the 30 splice site is located near the active center
of the intron (3). Alternative splicing of a bacterial
group II intron has been reported in B. anthracis, a
close relative of B. cereus (21). However, no evidence
for such an event could be obtained for the wild-type
B.c.I4 intron both in vivo and in vitro under the
conditions tested (Figures 2B and 6).
Although the B.c.I4 intron follows a two-step transes-

terification splicing reaction using the bulged A in domain
VI, results from inverse RT-PCR could indicate that
minor products may be formed, as suggested by the
detection of molecules in which the 50 end of the intron
was linked to a nucleotide inside the extra 56-nt 30 element
or linked to the 30 end of the intron. These products were
obtained both in vivo and in vitro, thus indicating that
their formation is not due to the action of the intron-
encoded protein or host factors (e.g. RNA ligase).
Molecules in which the 50 and 30 intron ends are joined
are suggestive of fully circularized intron RNAs.
Alternatively, they could be the result of reverse splicing
into precursor RNA (26,27) or template switch by the
reverse-transcriptase during cDNA synthesis (28,29) lead-
ing to head-to-tail intron tandems. Fully circular group II
intron RNAs have been reported for a number of elements
from organelles of fungi and plants (13,15,16) and recently
in the bacterium Sinorhizobium meliloti (30,31),
either in vitro or in vivo, and some of these introns exhibit
obvious unusual features in their 30 ends. If circle
formation does occur, it seems to be a minor pathway
for the wild-type B.c.I4 intron under the in vivo
and in vitro conditions tested in this study. With respect
to the molecules that are linked within the extra 56-nt 30

segment, whether they represent ectopic lariats or
small circles is unclear. Circular products lacking
30 terminal nucleotides of the intron have been observed
in vivo in plant mitochondria (13) and chloroplasts (15). In
the case of B.c.I4, this type of molecules does not seem to
be a result of splicing or hydrolysis at these ligation points,
as the corresponding exonic products were not observed
(Figures 2B, 4A and 6). Another alternative is that
these molecules are lariats branched within the extra
30 segment. As shown by Chu et al. (25), intron mutants
exhibiting ectopic branching still give correct joined exon
products. Recently, ectopic branching was suggested
to explain different splicing products obtained when
mutating the bulged A in the Lactococcus lactis LtrB
intron (32). Similar events in B.c.I4 could be due to
structural interference by the 56-nt 30 element, e.g. when
domain VI docks into domain I (33), in a minority of
cases. However primer extension assay did not reveal
evidence for ectopic branchpoints and we cannot exclude
the possibility that these products may be the result of RT-
PCR artifacts or structural effects.

The intron characterized in this study, B.c.I4,
carrying a 30 extra segment gives a dramatic new
example of the flexibility and adaptability of group II
introns. B.c.I4 has been able to accommodate an
additional 56 nt and still remains functional for splicing
with high fidelity of branch-site and splice-site selection.
This is probably due to some favorable conformational
adjustments. The versatility of group II introns can also
be seen in the splicing ability of elements lacking the
branching A or exhibiting various unusual features in
domains V and/or VI, which are still able to splice
via alternative pathways like hydrolytic splicing or
formation of various circular forms (13,15). This
adaptability may have contributed to the survival and
maintenance of group II introns in genomes where they
have to cope with varying physiological conditions
affecting splicing.

Finally, a puzzling question relates to the origin of this
extra 56-bp element. How did B.c.I4 acquire it and from
where? Since the 30 element is absent from the intron-less
gene orthologous to B.c.I4’s host gene in other B. cereus
group strains, this element probably originated from
another genomic context. A PCR screening of a set of
25 B. cereus group strains from our collection using
primers specific to B.c.I4 and the 30 exon (BCEA0036)
covering the intron-30 exon junction indicated that similar
B.c.I4 copies including the 56-nt segment are present in
homologous host genes in three other strains from the
group (results not shown). Therefore, B.c.I4 and its
30 extra segment are not unique to B. cereus ATCC
10987. However, the latter segment does not show
similarity to any other sequence in the public databases
(both at the nucleotide and amino-acid levels), thus
providing no clues about its origin. It would also be
interesting to determine whether B.c.I4 is capable of
mobility and whether the extra 56-nt segment has any
impact on the ability to reverse splice into DNA sites.
Indeed, the B.c.I4-encoded protein contains the endonu-
clease motif involved in mobility (19).
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ABSTRACT

The B.c.I4 group II intron from Bacillus cereus
ATCC 10987 harbors an unusual 3’ extension.
Here, we report the discovery of four additional
group II introns with a similar 3’ extension in
Bacillus thuringiensis kurstaki 4D1 that splice at
analogous positions 53/56nt downstream of
domain VI in vivo. Phylogenetic analyses revealed
that the introns are only 47–61% identical to each
other. Strikingly, they do not form a single evolution-
ary lineage even though they belong to the same
Bacterial B class. The extension of these introns is
predicted to form a conserved two-stem–loop struc-
ture. Mutational analysis in vitro showed that the
smaller stem S1 is not critical for self-splicing,
whereas the larger stem S2 is important for efficient
exon ligation and lariat release in presence of
the extension. This study clearly demonstrates that
previously reported B.c.I4 is not a single example
of a specialized intron, but forms a new functional
class with an unusual mode that ensures proper
positioning of the 3’ splice site.

INTRODUCTION

Group II introns are self-splicing ribozymes that are able
to excise themselves from precursor mRNA transcripts.
They are also retroelements which encode a multifunc-
tional reverse-transcriptase (RT) open reading frame
(ORF) and through reverse-splicing they are able to
invade new DNA locations (1–5). They are found in the
genomes of bacteria, archaea and eukaryotic organelles.
Phylogenetically, group II introns can be divided into
several major subfamilies based on RNA secondary struc-
ture features and ORF sequences [Figure 3A; (1,5–7)]. The
secondary structure of group II intron RNA consists
of six domains that are linked by a network of tertiary
in-
te-

ractions (2,8–10). In particular, domain I forms the scaf-
fold for intron assembly and domain V is essential for
catalysis. The other structural elements are important
for compaction, stabilization and/or catalysis. Group II
intron splicing proceeds through two transesterification
reactions. The first reaction is mediated via nucleophilic
attack on the 50 intron–exon junction either by the 20
hydroxyl group of the bulged adenosine in domain VI or
by water. Subsequently the flanking exons are ligated and
a branched intron lariat or a linear intron form is respec-
tively released (1–3).

We previously showed that a group II intron B.c.I4,
from Bacillus cereus ATCC 10987, has unusual properties
by splicing 56 nt downstream of the predicted 30 splice site
(11,12). In vivo and in vitro analyses revealed that this
intron harbors a 30 extension that is a part of the RNA
molecule that splices out. In addition, these studies
showed that B.c.I4 has adapted to splice with the extra
element, as the splicing efficiency in vitro is slightly better
than that of a construct deleted of the 30 extension,
and this extra substructure has been referred to as a
domain VII (13). In this study we report four new group
II introns, B.th.I5, B.th.I6(a and b) and B.th.I7 from
Bacillus thuringiensis 4D1 that harbor a 30 extension sim-
ilar to that of B.c.I4. Bacillus cereus and B. thuringiensis
are genetically very closely related and are members of
the B. cereus group of bacteria (14,15). The extensions
of all these introns form two conserved stem–loop second-
ary structures and in vitro mutagenesis showed that the
larger of the two stems is needed for an efficient second-
step splicing with the extension.

MATERIAL AND METHODS

Bioinformatic searches

The unusual group II introns B.th.I5, B.th.I6(a and b) and
B.th.I7 in B. thuringiensis kurstaki 4D1 were identified
in preliminary genome sequence data (Økstad,O.A. and
Nederbragt,L., University of Oslo, Norway, unpublished
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data) or in fragments from private sequence data
(Papazisi,L. and Peterson,S.N., J. Craig Venter Institute,
USA, unpublished data), using BLASTN (16) search with
the B.c.I4 group II intron and its 56-nt 30 extension as
query. The extensions of B.th.I5, B.th.I6(a and b) and
B.th.I7 were also used to search the Genbank and
EMBL nucleotide sequence databases. BLASTN was
run using two sets of parameters, one using lowered gap
penalties (opening cost G=2 and extension cost E=1),
and the other using increased reward for nucleotide match
(match reward, r=2). Other parameters set to nondefault
values were: word size of 7 (W=7), E-value of 1 (e=1),
and no filtering of low-complexity regions (F=F).

For structural searches, domains V and VI of the bac-
terial group II intron sequences available at the Group
II intron database [http://www.fp.ucalgary.ca/group2in
trons/; (17)] were used as queries to search the Genbank
and EMBL databases using BLASTN. The hits were
extracted along with 150 bases of downstream flanking
sequence. This set of sequences was then scanned using
the RNAMotif program (18) with a descriptor represent-
ing the 30 extensions of the unusual introns.

Secondary structure predictions

The secondary structures of the B.th.I5, B.th.I6 and
B.th.I7 intron RNAs (ORF removed) were computation-
ally predicted by constrained folding using the MFOLD
3.1 package (19) following the consensus structures of
group IIB (B class) introns (6,11). That is, conserved
and identifiable sequence motifs corresponding to the
consensus structures were forced during the folding
computation.

Phylogenetic analysis

Bacterial group II intron sequences were taken from the
Group II intron database (17). Amino acid sequences of
the ORFs of these introns and the new B. thuringiensis
kurstaki 4D1 introns were aligned using CLUSTALW
(20) followed by manual correction. An unrooted phylo-
genetic tree of a total of 221 introns was reconstructed
using the maximum likelihood method as in ref. 21,
based on all the RT domains, by means of the program
RAxML 7.0.4 with the amino acid substitution model
RtREV+�+F (22). After removing ambiguously aligned
regions, the alignment contained 221 amino acid sites.
Statistical support for the groupings in the tree was
assessed using 1000 bootstrap replicates (23). The same
procedure was employed to build a tree of B class introns
only, except that in this case the full-length intron-encoded
ORFs could be aligned (438 amino acid positions).

DNA and RNA isolation

Bacillus thuringiensis kurstaki 4D1 was grown on Luria
Bertani (LB) agar plates at pH 7 and 308C. An overnight
culture (16 h) was inoculated for 3.5 h in 10ml LB, and
then cells were lyzed with 10mg/ml lysozyme. DNA iso-
lation was performed using the Genomic DNA Midi
kit (Qiagen) as described by the supplier. Total RNA iso-
lation was conducted as in (12).

PCR and RT-PCR

PCR and RT-PCR were performed as described in (11),
with the exception that the annealing temperature was set
to 598C for PCR. A listing of all the primers used in this
study is given in Supplementary Table 1.

Cloning and site-directed mutagenesis

RT-PCR products, either taken directly or gel purified
from 1� TAE gel (QIAquick gel extraction Kit,
Qiagen), were cloned into TA cloning vector
(Invitrogen) and subsequently sequenced.
B.th.I5 and B.th.I6a were cloned into pBluescript KS+

or TA-topo vector pCRII respectively, using primers
B.th.I5_right/left and B.th.I6a_right/left, based on
sequence fragments of B. thuringiensis kurstaki 4D1 and
orthologous genes in Bacillus anthracis or B. cereus ATCC
10987. The intron-containing inserts were then amplified
by PCR with outward primers, B.th.I5dORF_right/left
and B.th.I6adORF_right/left, in order to remove the
ORF encoded in domain IV.
Site-directed mutagenesis to generate point mutation

and deletion constructs was performed with Quikchange
II (Stratagene) according to the manufacturer’s instruc-
tions using two complementary oligonucleotides (of �40
bases) containing the desired mutation(s) with B.c.I4,
B.th.I5 or B.th.I6a �ORF as a template (11). Primers
are listed in Supplementary Table 1. All constructs were
verified by sequencing.

In vitro transcription

One microgram of plasmid construct was linearized by
XhoI for transcription reactions with 30U T7 or Sp6
RNA polymerase (Ambion) according to the manufac-
turer’s instructions. Transcription and gel-purification
of radiolabeled and unlabeled RNA were conducted as
previously described (11).

In vitro self-splicing of ribozyme

In vitro generated transcripts were denatured and refolded
using a GenAmp 2700 PCR machine (Applied
Biosystems), by incubating the transcripts in 10mM
MOPS, pH 7.5 at 908C for 1min, 758C for 5min, and
then slow cooling to the splicing temperature at 478C.
Intron transcripts were spliced with 70 000 c.p.m. RNA
or �0.1 mg unlabeled transcripts in 40mM MOPS, pH
7.5, 100mM MgCl2 and 500mM (NH4)2SO4 at 478C.
Reactions were initiated by adding prewarmed splicing
buffer to the transcript RNA giving a total reaction
volume of 40 ml. At each time point, 2 ml were taken out,
quenched with loading buffer (Ambion) and storing sam-
ples on dry ice. Samples were then heated to 958C and
cooled on ice, before being separated on a 7M or 8.5M
Urea 4% polyacrylamide gel. Gels were then vacuum
dried, exposed and analyzed using a Molecular
Dynamics Storm 860 Phosphorimager.
For subsequent RT-PCR and sequencing of these

splicing products, either unlabeled spliced transcripts, pur-
ified with Nucleotide purification kit (Qiagen), or labeled
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spliced transcript species, excised from gels were used as
templates.
For kinetic analysis, the intensities of the radioactive

bands were quantified using the ImageQuant 5.0 software
and corrected for the number of uridines. The relative frac-
tions of unspliced precursor and free lariat RNAwere com-
puted from the intensities of the radioactive bands of all
intron-containing products. Data were fitted to a biphasic
exponential kinetic model [Equations (6) and (8) in ref. 24]
by the nonlinear least squares method using the GNU gretl
1.6.5 software (http://gretl.sourceforge.net/).

Sequence availability

The nucleotide sequences of the B.th.I5, B.th.I6a, B.th.I6b
and B.th.I7 group II introns have been deposited in the
EMBL database under accession numbers FM992108,
FM992109, FM992110 and FM992111, respectively.

RESULTS

New group II introns with a 3’ extension in
B. thuringiensis kurstaki 4D1

Through a sequence similarity search of private sequence
collections using BLAST (16) and the 30 extension of the
unusual B.c.I4 intron of B. cereus ATCC 10987 (11,12)
as query, four sequence fragments exhibiting similarity
to the B.c.I4 extension were identified in B. thuringiensis
kurstaki BGSC 4D1 (also known as AH248 or KB004).
Further cloning, sequencing and computational sec-
ondary structure predictions revealed that all of these
sequences contained a full group II intron with the six
typical domains and a 30 extension (Figure 1). No addi-
tional group II introns with this unusual extension were
identified in a similar search of public sequence data-
bases, as well as in a structural search with RNAMotif
(18) (see ‘Material and Methods’ section). Three of the

Figure 1. Predicted secondary structures of the B.th.I5, B.th.I6 and B.th.I7 group II introns from B. thuringiensis kurstaki 4D1. Exon nucleotides are
in lowercase. Roman numerals (I to VI) indicate the six typical functional RNA domains, and subdomains within domain I are designated following
the nomenclature of (40). The extra 53/54-nt 30 segment harbored by the three introns is boxed in gray. Sites corresponding to consensus positions
involved in tertiary interactions (6,41) are indicated by pairs of Greek letters or EBS/IBS (exon/intron-binding sites). Sites of tertiary base-pairing
interactions are boxed or circled in red with arrows indicating the orientation of complementarity. Sites implicated in other tertiary contacts are
boxed or circled in blue. For B.th.I5 and B.th.I7, the d0 nucleotide was set at the expected location (C:290 and C:332, respectively) according to (26),
however it is not complementary to the d site, while the adenosine 50 of d0 is. Two copies of the B.th.I6 intron (B.th.I6a and B.th.I6b) were found in
separate genomic locations and the nucleotide differences in B.th.I6b compared to B.th.I6a are shown by green boxes and letters. ORF, intron-
encoded multifunctional open reading frame. Numbering of residues does not include the ORF. The lengths of the B.th.I5, B.th.I6a and B.th.I7
RNAs (excluding the ORF) are 1044, 936 and 905 nt, respectively (B.th.I6b has one extra adenosine compared to B.th.I6a). A-U, G-C and G-U base
pairs are linked by blue, red and green dots, respectively.
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B. thuringiensis kurstaki introns were located in genes
homologous to genes from the pXO1 plasmid of
B. anthracis (Table 1). These introns were named
(according to the nomenclature used in ref. 25) B.th.I5,
B.th.I6a and b. The latter two are inserted in different
genomic contigs and homologs of a predicted conjuga-
tion gene (�80% nucleotide sequence identity). B.th.I6a
and b are 98.4% identical overall and inserted in the
same sites thereby representing two copies of the same
intron B.th.I6. The remaining intron B.th.I7 was
inserted in a homolog of a hypothetical gene from the
pBc10987 plasmid of B. cereus ATCC 10987 (Table 1).
RT-PCR conducted on total RNA from B. thuringiensis
kurstaki 4D1 with host gene-specific primers showed
that the B. thuringiensis introns spliced and thus were
functional in vivo (Figure 2 and Supplementary Table 1).
Sequencing of the RT-PCR products confirmed that
the 30 splice sites of B.th.I5, B.th.I6 and B.th.I7 were
located respectively 53, 54 and 54 nucleotides downstream
of domain VI, as opposed to the usual three or four bases.

In addition, in vitro splicing of B.th.I5 and B.th.I6a con-
firmed the splice boundaries observed in vivo for these
introns (see below). Furthermore, as in the B.c.I4 intron,
potential EBS3-IBS3 and g–g0 base-pair interaction sites,
which are important for 30 splice site selection (2,26,27)
could be identified at the observed 30 splice site
(Figure 1). B.th.I5, B.th.I6 and B.th.I7 therefore represent
new examples of bacterial group II introns carrying a
30 extension. Overall, the four different B. cereus and
B. thuringiensis introns are only 47–61% identical at the
nucleotide level (31–52% amino acid sequence identity
between the ORFs). Phylogenetic analysis of the ORFs
of 221 bacterial group II introns available at the group
II intron database (17) revealed that these four unusual
introns belong to the B class (according to the nomencla-
ture mentioned in ref. 6; Figure 3). However, they do
not group in a single lineage but are located in two sub-
groups herein named a and b. B.c.I4 and B.th.I7 belong
to subgroup a, while B.th.I5 and B.th.I6 are in subgroup
b. The division of the four introns harboring an extra 30

Figure 1. Continued.
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segment based on ORF sequence relatedness is supported
by the fact that the introns share structural features
common to each subgroup (Supplementary Figure 1).
These features are all located in domain I of the RNA
secondary structure. Despite this divergence, sequence
and secondary structure comparisons done both manually
and using RNAForester (28,29) revealed that all four
introns share several conserved regions (see
Supplementary Figures 2 and 3). Besides domains V and
VI, which are highly conserved, several nucleotides within
the 30 extra segment are identical (marked in red in
Figure 4A). The 30 extension of the B. thuringiensis introns
could fold into two stem–loop structures (S1 and S2) simi-
lar to those in B.c.I4 of B. cereus, where the most con-
served sites in structure and sequence are within the small
stem S1 and the asymmetric internal loop of the longer
stem S2. The sequence and folding conservation, together

with the occurrence of compensatory mutations in S2,
strongly suggest that the 30 extension forms a stable struc-
ture downstream of domain VI for these four unusual
introns, and thus might indicate the importance of main-
taining this structure for intron function. Remarkably, the
S2 internal loop and its surrounding base pairs show a
striking resemblance to, and matches the consensus of,
the 11-nt tetraloop receptor motif 50 [CCUAAG . . .UA
UGG] 30 (30). This is a common RNA motif that partici-
pates in the tertiary folding of several catalytic RNAs by
interacting with tetraloops of the generic GNn/RA family
(30–32). In addition to the 30 end, there is a high sequence
and structure conservation in the stem of subdomain
IC1 in B.c.I4, B.th.I5 and B.th.I6, while B.th.I7 shows
a lower sequence conservation (see Figures 1 and 4F).
Intriguingly, the conserved area is contiguous to the
bulged region containing the e0- and � sites (z-anchor)

Figure 1. Continued.
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that form interactions with the 50 end of the intron and/or
domain V (9,33).

Mutational analysis of the B.c.I4 intron’s 3’ extension

Since the extra 30 element is conserved in structure and
partially in sequence between the four B. cereus and
B. thuringiensis introns described here, we conducted an
in vitro mutational analysis of this element in B.c.I4 in
order to investigate whether it contributes to the splicing
activity of the intron. In vitro splicing was conducted
under the same conditions as in (11), i.e. at 478C in

0.5M ammonium sulfate ((NH4)2SO4), 40mM MOPS,
pH=7.5 and 100mM MgCl2 (see ‘Material and
Methods’ section). First, two deletion mutants were
made by removing separately each of the two stem–loop
structures of the 30 extension (S1 and S2) from the B.c.I4
wild-type (WT) �ORF construct (Figure 4B and C). For
the mutant dS2 in which the longer S2 stem was deleted,
there was a drastic reduction of the amount of free lariat
formed after the second step of splicing, together with
a clear increase of the first step intermediate ‘lariat
with 30 exon’, compared to WT intron (Figure 5, two
top bands). A time-course kinetic analysis showed that
the fraction of unreacted dS2 precursor RNA was
�20% higher than that of WT, while the relative fraction
of lariat released by dS2 was decreased by �60% on aver-
age (Figure 6A and B). Altogether, these results indicate
it is mostly the second splicing reaction that is severely
slowed down when the S2 stem–loop structure of the
30 extension is removed from the intron. To support
this argument no clear band corresponding to the
ligated exons could be observed for this deletion
mutant, even though RT-PCR analysis revealed that
it did occur, suggesting that the efficiency of exon liga-
tion was decreased. To determine whether the observed
phenomenon applies for other introns carrying the exten-
sions, corresponding deletions of S2 were performed
on the B. thuringiensis B.th.I5 and B.th.I6a intron
constructs. For both introns, a drastic reduction in the
efficiency of the second splicing step was also observed
compared to the WT, thus pointing to a general impor-
tance of S2 for the splicing of the unusual introns

Table 1. Unusual group II introns with 30 extensions in B. cereus and B. thuringiensis

Species and
strains

Intron
name

Intron
ORF
domainsa

Intron
ORF
length
(bp/aa)

Intron
length
(bp)

Intron
ORF
phylogenetic
classb

Host gene Closest intron
relative
(% aa identity)c

B. cereus
ATCC 10987

B.c.I4 RT-X-En 1884/627 2843 B BCEA0036 +BCEA0033;
hypothetical protein (DNA
primase domain)

Clostridium perfringens
CPE F4969 (BAE79013,
61%)

B. thuringiensis
kurstaki 4D1

B.th.I5 RT-X-En 1866/621 2910 B Homolog of pXO1-08 from
B. anthracis, hypothetical
protein with two helicase
domains

Bacillus sp. EA1
(ABN04186, 40%)

B.th.I6ad RT-X-En 1875/624 2811 B Homolog of pXO1-42 from
B. anthracis, conjugation
protein of the traG/traD
family

Geobacillus sp. WCH70
(EDT35839, 41%)

B.th.I6bd RT-X-En 1875/624 2812 B Homolog of pXO1-42 from
B. anthracis, conjugation
protein of the traG/traD
family

Geobacillus sp. WCH70
(EDT35839, 41%)

B.th.I7 RT-X-En 1797/598 2702 B Homolog of BCEA0037 gene
from B. cereus ATCC 10987,
encoding a hypothetical
protein.

B. thuringiensis
kurstaki HD73
(AAZ06578, 47%)

aRT, reverse transcriptase domain; X, maturase (splicing) domain; En, endonuclease domain.
bAccording to the classification of Toor et al. (6). See also Figure 3.
cGenbank accession numbers and amino acid sequence identity between intron ORFs are given in parentheses (top hit of BLAST search of the
Genbank database).
dB.th.I6a and b are overall 98.4% identical at the nucleotide sequence level and represent two copies of the same intron, B.th.I6, inserted in different
genomic locations.

M B.th.I5 B.th.I6a
NC NC NC NC

B.th.I6b B.th.I7 M

622bp
527bp

404bp

307bp

Figure 2. In vivo splicing of unusual group II introns in B. thuringiensis
kurstaki 4D1. RT-PCR was conducted on total RNA with primers
located in the flanking exons. The gel picture shows the RT-PCR pro-
ducts of the spliced exons (names of the products related to each intron
are given on top) and the corresponding negative controls run without
reverse transcriptase (lanes marked with NC). Lane M, pBR322 DNA
digested with MspI (New England Biolabs), as marker. Samples were
separated on a 2.8% NuSieve GTG agarose gel (Cambrex).
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(Figures 5 and 6A and B, and Supplementary Figure 4). In
sharp contrast to the dS2 mutant, the B.c.I4 construct in
which the smaller S1 stem–loop structure was deleted,
dS1, showed a splicing efficiency equal or better than
that of the WT construct with respect to both the
amount of precursor processed and lariat formed
(Figure 6A and B). Furthermore, mutating the sequence
of the terminal loop of S1 (mutant mS1, Figure 4C)
revealed no negative effect on either of the two splicing
steps. Therefore, the smaller S1 stem–loop part of the
30 extension does not appear to be critical for splicing
under the conditions tested in this study.

To further investigate whether the deficiency in the
second step of splicing observed for the dS2 constructs
could be due to specific sites within the S2 stem, a
number of modifications were made within that stem
in B.c.I4 (Figure 4B) in order to test for structural
or sequence-dependent effects. Mutations of the con-
served internal asymmetric loop within S2 were first
considered. These included closing the internal loop by
re-establishing base pairings (mIntclosed mutant), shuf-
fling the sequence of either one or both sides of the
loop while preserving its asymmetry (mutants mIntL,
mIntR and mIntL/R), and substituting the conserved
C922:G951 bp 50 to this loop to a A:U pair (mutant
m922_951). Unlike the dS2 construct, none of these
modifications had a major effect on the second step of
splicing and the rate of lariat formation (Figure 6D).
They led to slightly higher fractions of unreacted pre-
cursor suggesting a less efficient first step of splicing
(Figure 6C). In contrast, mispairing C922:G951 by sub-
stituting C:922 with A (mutant m922), which would create
a larger internal loop, had a drastic effect with respect
to the second splicing step comparable to that of the
dS2 construct (�30% decrease in free lariat fraction;
Figures 5 and 6C). We then addressed the upper part of
S2 possessing a 8–9-bp stem with a terminal (top) loop
that appears to be conserved in structure by compensatory
mutations in the four introns (Figure 4A). Changing the
sequence of the terminal loop of S2 from AAAUA to C
ACGA (mS2_TL construct; Figure 4B) or shortening the
upper stem by 5 bp with or without modifying the internal
and terminal loop (dS2_SL and dS2_SS mutants) had
little effect on the amount of spliced intron overall,
compared to the WT construct (Figure 6C and D),
although the rate of the first splicing reaction was
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Figure 3. (A) Unrooted phylogenetic tree of 221 bacterial group II
intron-encoded proteins. The tree was reconstructed using the maxi-
mum-likelihood method (RAxML program) and was based on the
RT domains of the proteins. The major intron classes are named as
in ref. 21: A-F, ML (mitochondrial-like), CL (chloroplast-like) and UC
(unclassified). B-class introns are shaded, with the unusual B. cereus
and B. thuringiensis group II introns carrying the 30 extension indicated
by name and a black square. Unlike in the tree as in ref. 21, introns

from the CL2A and CL2B subclasses are grouped together in the pre-
sent tree. (B) Detailed rooted phylogenetic tree of the B class group II
introns, built the same way as in (A), but based on amino acid
sequences covering the full length of the intron encoded ORF. The
unusual introns are shown in bold and indicated with asterisks.
Information, sequences and secondary structure models of all other
introns can be found in the Group II intron database [http://www.fp.
ucalgary.ca/group2introns/; (17)]. Species names are abbreviated as
follows: Ba.sp, Bacillus sp.; B.a, Bacillus anthracis; B.c, Bacillus
cereus, B.me, Bacillus megaterium, B.th, Bacillus thuringiensis, C.d,
Clostridium difficile, Cl.pe, Clostridium perfringens, E.f, Enterococcus
fæcalis, En.fm, Enterococcus fæcium; and G.k, Geobacillus kaustophilus.
In (A) and (B) numbers next to branch nodes indicate bootstrap
support values (in percentage out of 1000 replicates). Scale bars are
in average numbers of amino acid substitutions per site. Proposed
subgroupings within the B class are labeled a and b.
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reduced for dS2_SL and dS2_SS (Supplementary Table 2).
This could indicate that the upper section of the S2
stem is less important for splicing under the conditions
tested here.

Mutational analysis of the subdomain IC1 of B.c.I4

The area adjacent to the e0 and � sites in subdomain IC1
is highly conserved in sequence and structure between
the B.c.I4, B.th.I5 and B.th.I6 unusual group II introns,
and therefore it was mutated in B.c.I4 in order to assess

its possible role in intron function and whether there
could be a relationship with the extra 30 segment.
There was no clear effect on the efficiency of either
splicing steps when base pairing or changing the con-
served mispairs U153:C186 and G156:G183 in the IC1
stem (mutants mIC1a or mIC1a2; Figures 4F, 6E and F).
These observations, combined with the fact that these
nucleotide positions are not conserved in B.th.I7 imply
that they are less important for splicing. However,
when mutating both of the two pairs G154:U185 and
C155:G184, which are shared between all four introns

Figure 4. Mutational analysis of the group II introns B.c.I4 from B. cereus ATCC 10987 and B.th.I6a from B. thuringiensis kurstaki 4D1. (A)
Predicted secondary structure of the extra 53/56-nt 30 segment of B.c.I4 and the newly discovered group II introns B.th.I5, B.th.I6 (a and b) and
B.th.I7, forming stems S1 and S2. Nucleotides within the 30 extension that are identical between all four introns are colored in red. The observed 30
splice junction is indicated by an arrow. Exon residues are in lowercase. (B) and (C) B.c.I4 constructs mutated in the S2 or S1 stem of the 56-nt 30
extension, respectively. Substituted nucleotides are boxed. (D) B.c.I4 construct deleted of the whole 30 extension (previously named d56; see ref. 11).
Domain VI is drawn in gray. (E) B.th.I6a construct deleted of the S2 stem. (F) B.c.I4 constructs mutated in the IC1 stem of domain I. Nucleotides
that are identical between all four introns are colored in red, and substituted nucleotides are boxed. WT, wild-type B.c.I4.
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into U:A pairs (mutants mIC1b and mIC1b2; Figure 4F),
a visible reduction in the first splicing reaction was
observed as indicated by the fraction of unreacted pre-
cursor RNA, which was �25% higher than for the WT
intron (Figure 6E). The fraction of released lariat was
also decreased and this could be a consequence of the
slower first splicing step. These results are similar to the
results of the mutations within the internal loop of S2,
although they are somewhat stronger (compare
Figure 6C and E). Interestingly, the reduction in the
first splicing reaction was abolished when the extra
56-nt 30 element was deleted from the mIC1b2 mutant
(mIC1b2_dS1S2).
Finally, it should be noted that sequencing of the

spliced exons generated by all the mutant introns used
in this study confirmed that they all used the same 50
and 30 splice sites as the WT construct with the 56-nt
extension, indicating that none of the mutations created
affected the fidelity of the splicing process.

DISCUSSION

In this study we have discovered four additional group II
introns from B. thuringiensis kurstaki 4D1 with a 53/54-nt
30 extension. This extension is similar in structure and
partly in sequence to that of the unusual B.c.I4 intron
identified earlier in B. cereus ATCC 10987 (11,12). These
four additional introns, named B.th.I5, B.th.I6a and
b and B.th.I7, all splice in vivo in B. thuringiensis
(Figure 2), and imply that the unusual 30 extension may
be common to more group II introns than previously
thought. Strikingly, all the introns carrying a 30 extension
belong to the same phylogenetic class in terms of
ORF sequence (B class); however they do not form a
single evolutionary branch within that class (Figure 3).
This subgrouping correlates with subtle differences in
the RNA secondary structure and is in agreement with
the demonstrated coevolution of group II intron structure
and ORF (6) (Supplementary Figure 1). Thus, it is not

mIC1b2_
dS1S2

mIC1b2 dS1S2 WTm922 mIntL/R dS2 dS1dS2 WT

B.th.I6a B.c.I4

Figure 5. In vitro self-splicing of B.c.I4 and B.th.I6a wild-type (WT) and mutant constructs. Splicing was performed in 40mM MOPS (pH 7.5),
500mM (NH4)2SO4 and 100mM MgCl2 at 478C. Samples were separated on a 7M urea 4% polyacrylamide gel. Schematic drawings are shown next
to the bands corresponding to the different splicing products. The light gray box represents the extra 54/56-nt element. Lariat-containing products,
precursor and ligated exons were identified by gel excision, and subsequent RT-PCR and sequencing. The linear intron form and free exons were
determined by size. The mutants are described in Figure 4.
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Figure 6. Time-course analysis of in vitro self-splicing of B.c.I4 and B.th.I6a wild-type (WT) and mutant constructs carrying changes in the 30
extension or in subdomain IC1 (see Figure 4). dS1S2 is a B.c.I4 construct lacking the entire 30 extension (previously named d56; see ref. 11). Splicing
was performed in 40mM MOPS, pH=7.5, 100mM MgCl2 and 500mM (NH4)2SO4 at 478C. The relative fractions of unspliced precursor RNA
(A, C and E) and released lariat intron (B, D and F) were computed from the intensities of the radioactive bands using a phosphorimager. Reactions
were repeated three times for each construct, and are expressed as averages. Data were fitted to a biphasic exponential kinetic model [Equations (6)
and (8) in ref. 24, and rate constants are given in Supplementary Table 2].
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clear whether the extension was acquired from a common
ancestor. The extra segment might represent a kind of
mobile element targeting group II introns. Alternatively,
the extension may have been acquired independently
by each of these introns, or one of the introns ancestral
to the B class obtained the extra segment and spread in
different environments and bacterial hosts, and still
evolved like the other group II introns in the B class.
Indeed, several introns in this class appear to be more
flexible in their 30 splice-site selection, a property that
could have enabled some of them to acquire and adapt
to this extra segment (21,34). Interestingly, the fact that
B. thuringiensis kurstaki 4D1 contains representatives of
the two different subgroups of the B class (B.th.I7 and
B.th.I5/I6 in a and b subgroup, respectively) suggests
that these introns have been acquired separately by the
bacterium via different mobility events. Furthermore,
the nucleotide sequence identity between the B.th.I6a
and b introns is significantly higher than the similar-
ity between their homologous host genes (98.4% as
opposed to �80%). Unless this is the result of a duplica-
tion event and a strong selective pressure to maintain
intron sequence and structure, this observation implies a
recent mobility event of B.th.I6 with the extra segment
within B. thuringiensis kurstaki 4D1. It could therefore
support the hypothesis of an ancestral origin and spread
of a group II intron carrying this 30 extension. All B class
introns known to date are in Gram-positive host bacteria
and the unusual introns are only found in the B. cereus
group of bacteria so far. However, the unusual elements
are not typical of the group II introns found in this
bacterial group as they only represent a small number
of them; 5 out of 81 (35). No similar segment could be
identified through sequence and secondary structure
search of public databases. It cannot be excluded that
additional variants of the extension were not detected
by the search procedure used in this study. Therefore, it
would be necessary and of great interest to find more
examples to determine if this is just sampling bias (as
half of the B class introns known are from the B. cereus
group of bacteria; Figure 3B) or if this is due to a specific
property of this type of introns or hosts.
The 53/56-nt 30 segment is predicted to fold into two

stem–loop structures (S1 and S2) and the observation
of compensatory substitutions between the B. cereus
and B. thuringiensis introns strongly suggests that the 30
element forms a stable structure that must be maintained
for intron structure and/or activity (Figure 4A). Indeed,
deletion of the S2 stem from the B. cereus B.c.I4 intron
led to an accumulation of the ‘lariat with 30 exon’ inter-
mediate and very little exon ligation, i.e. a slower second
step of splicing under the conditions tested here (ammo-
nium sulfate splicing buffer; Figures 5 and 6A and B).
Similar results were obtained for B. thuringiensis B.th.I5
and B.th.I6a constructs indicating that this is a general
effect. However, the complete deletion of the extension
did not affect splicing (11). Therefore, while the 30 exten-
sion is not essential for splicing, the S2 stem is important
for maintaining an efficient second step of splicing in pres-
ence of the extension.

The conserved asymmetric internal loop of S2, which
resembles a tetraloop receptor could be a candidate for
facilitating the second splicing step through interaction
with other parts of the intron. However, mutational
analysis of these nucleotides showed no visible impact
on the second step of splicing, but rather a moderate
reduction of the first step. Thus, these residues do not
appear to be directly responsible for the effect observed
when deleting S2. Interestingly, a more pronounced
slowdown of the first step also occurred when mutating
the two conserved base pairs in subdomain IC1 (mutant
mIC1b2), an effect that was abolished when removing
the whole 30 extension (mutant mIC1b2_dS1S2;
Figure 6E and F). The faster first step for the latter
mutant could be explained by more splicing through the
hydrolytic pathway, as constructs without the extension
(mIC1b2_dS1S2 and dS1S2) appear to release more
linear form of the intron in addition to the lariat
(Figure 5). Another possibility is that the two conserved
base pairs in IC1 may be involved in accommodating
the extension properly into the intron structure via some
interactions. The negative effect on the first splicing step
observed when mutating the residues within IC1 or in
the S2 internal loop may be a consequence of disrupted
interaction(s) and/or subtle changes in RNA structure
or conformation which may interfere with elements
involved in the first step of splicing, e.g. the coordination
loop in domain I with the branch point in domain VI, and
the z-anchor in subdomain IC1 with the 50 end of the
intron (9,33,36–39). The S2 deletion also had an effect
on the first step, but the clearly reduced exon ligation
and lariat release strongly suggest that this stem is
mainly required for efficient 30 splice site recognition
with the extension. This could be due to specific inter-
action sites other than those investigated in this study,
and/or to structural constraints of stem S2. The strong
effect of mispairing basepair C922:G951, which is pre-
dicted to form a larger internal loop within S2, could
point to the latter interpretation. Furthermore, in a
trans-splicing assay conducted with a B.c.I4 construct con-
taining the 50 exon and domains I to VI and one covering
the 30 extension and the 30 exon, the ligated exon product
was detected by RT-PCR, which may suggest that the
30 extra segment has interacted with the rest of the
intron in a way permitting correct splicing (data not
shown). Additional thorough mutagenesis and biochemi-
cal experiments will be needed in order to reveal and
characterize any interaction partners.

The four new group II introns discovered in this study,
which carry a 30 extension, show that the previously
reported B.c.I4 is not a single example of a specialized
intron, but forms a new functional class with an unusual
mode of ensuring proper positioning of the 30 splice site.
All these introns have a conserved two-stem–loop struc-
ture at the 30 end and splice at analogous positions
53/56-nt downstream of domain VI. Mutagenesis
showed that the larger stem S2 is important for self-
splicing, while the smaller stem S1 is not, and suggests
that the S2 stem helps bring the 30 splice site close to the
ribozyme’s active site. These findings add support to the
proposal of the extension as domain VII (13). A surprising
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finding was that the five introns do not form a monophy-
letic group within class B introns. Therefore, the origin
of this extension and why the introns maintain it (as it is
not essential for splicing) are open questions. Further
work is needed to elucidate how the introns have adapted
to the extra segment, which would shed light on the struc-
tural and functional evolution of these ribozymes.
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Abstract

Five group II introns harboring a conserved extension of 53/56 nucleotides at the 3’ end 

have been identified previously in the Bacillus cereus group of bacteria. The extra 

segment forms two stem-loop structures where the largest, S2, has been shown to be 

important for positioning the 3’ exon for efficient second-step splicing with the extension. 

Here, we show, by in vitro mutational and kinetic analysis, that for the B.c.I4 intron of B.

cereus the entire extension also affects the balance between hydrolysis and 

transesterification in the first step of splicing. Most remarkably, the B.th.I6 intron of B.

thuringiensis is unable to perform an efficient second step when the extension is removed 

as opposed to B.c.I4 which splices equally efficiently whether or not the extension is 

present. These two introns belong to different evolutionary branches and may have 

undergone sequence and/or structural changes that led to the different splicing properties.  
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Five unusual group II introns carrying a unique 3’ extension of 53/56 bases have 

been identified previously in bacteria of the Bacillus cereus group. In the present study, 

we report the identification of additional copies of these atypical elements. Remarkably,

the predicted secondary structure of most of these introns is hybrid, exhibiting features of 

group IIA and IIB introns. Five of the new introns are highly similar to B.th.I6, originally 

discovered in B. thuringiensis kurstaki BGSC 4D1, and inserted in the same location in 

homologues of the pXO1-42 gene from the pXO1 plasmid of B. anthracis. From

combined sequence comparisons and phylogenetic analyses of introns, host gene, plasmid

and chromosome of 43 B. cereus group strains, several possible separate events of 

mobility involving plasmids and B.th.I6-like introns could be identified. Altogether this 

study lends further evidence that the unusual group II introns are mobile with their 3’ 

extension.
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