Biofilm formation in *Bacillus thuringiensis*

Investigation of the roles of a putative cell surface adhesin and a chemotaxis-related protein responsive to cyclic-di-GMP

Eirik Berteig Rustan

Department of Pharmaceutical Biosciences, School of Pharmacy

Faculty of Mathematics and Natural Sciences

UNIVERSITY OF OSLO

31/5-2010
Acknowledgements

The work for this thesis was performed at the Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, from August 2009 to June 2010 under internal supervision by Associate professor Ole Andreas Økstad and post-doc Annette Fagerlund.

I would first like to thank my first supervisor, Associate professor Ole Andreas Økstad, for sacrificing his valuable time to give me invaluable input concerning practical matters in the lab as well as well as the writing process. Thank you for being an encyclopaedic portal to the world of microbiology and research available on Bacillus species, and your ability to distil complex problems down to comprehensive solutions.

I would also like to thank my second supervisor, post-doc Annette Fagerlund, for your ceaseless drive concerning research, serving as a personal inspiration for me during late hours in the lab, as well as your frankness, your ability to call a spade a spade, and last, but not least, the countless advices and the excellent supervision during my stay in the lab.

The people working in the lab and around the department during my stay, professor Anne-Brit Kolstø, Aniko (special thanks to you for the supervision during my first weeks), Jasmina, Roger, Mimmi, Ewa, and the other people working in the Department of Biosciences, a big thank you to you all for the company, the laughs and the input from meetings and other gatherings.

I am very grateful for the support from my family and friends, especially my mother Else-Britt, my father Arild and my fiancé, Payoun, who have been there for me throughout the last year.

Oslo, May 31th, 2010

Eirik Berteig Rustan,
Abstract

The *Bacillus cereus* group of bacteria is a subgroup in the *Bacillus genus* and consists of six different species. Research has evolved mainly around *B. cereus*, *B. thuringiensis* and *B. anthracis*, an opportunistic pathogen capable of food poisoning and infections in mammals, an insecticidal pathogen which can also be an opportunistic pathogen in mammals, and an opportunistic pathogen capable of causing cutaneous and/or systemic anthrax in mammals, respectively. These species are closely related based on analysis of chromosomal markers, but pathogenicity patterns vary mainly due to virulence factors carried on plasmids. Taxonomic differentiation has been, and continues to be, difficult, as many features used to classify the organisms are plasmid-borne.

Several studies have shown that many strains in the *B. cereus* group are capable of producing biofilms, multicellular aggregates of cells that may contribute to virulence, antibiotic resistance and to reservoirs forming in food production facilities and hospitals. *B. cereus*, ubiquitously found as spores in soil, has been implicated in several cases of food spoilage. Research of biofilm formation in *B. cereus* is, therefore, important for economic and health-related purposes.

One research group reported in 2008 that two c-di-GMP responsive riboswitches, non-translated regions of mRNA located at the 5’-end that may govern further expression of a downstream gene, had been identified in *Bacillus cereus* strains ATCC 14579 and ATCC 10987. Sequence searches based on the sequences of these riboswitches showed that two similar riboswitches were present in *B. thuringiensis* 407, and two genes were located downstream of these riboswitches, whose proteins contained domains typical of cell surface adhesion (Bt407_1060) and chemotaxis (Bt407_0422) proteins, respectively. As c-di-GMP is an important regulator of biofilm formation in gram-negative bacteria, it was decided to proceed with functional studies of these two proteins. The aim of this thesis was to expand on initial research performed on this topic in the group.

The functional studies performed in this thesis confirmed that a gene deletion in Bt407_1060 (cell surface adhesion protein) resulted in reduced biofilm formation in a microtiter plate screening assay. Previous studies on adhesion proteins in gram-positive bacteria have shown
an effect on biofilm formation when genes encoding the adhesion proteins were removed. No effect was observed on biofilm formation in a screening of the Bt407_0422 (methyl-accepting chemotaxis protein) gene deletion mutant compared to wildtype. Previous research in other bacteria has deemed chemotaxis as non-essential to biofilm formation, as opposed to the presence of flagella or motile behaviour, which seems of importance. However, in order to ratify these results, complementation and overexpression of the genes would be necessary. Future research should also focus on the role of c-di-GMP in the regulation of biofilm formation by *B. cereus* group bacteria to enhance our understanding of c-di-GMP regulated processes in gram-positive bacteria.
Contents

ACKNOWLEDGEMENTS..2

ABSTRACT..3

CONTENTS ..5

CHAPTER 1: INTRODUCTION ..12

1.1 THE BACILLUS GENUS ...12

1.1.1 Bacillus cereus group ..12

1.1.2 Genomics of the Bacillus cereus group ...13

1.2 STRAINS OF THE BACILLUS CEREUS GROUP ...14

1.2.1 Bacillus cereus ...14

1.2.2 Bacillus thuringiensis ..15

1.2.3 Bacillus anthracis ...16

1.2.4 B. mycoides ...17

1.2.5 Bacillus pseudomycoides ..17

1.2.6 Bacillus weihenstephanensis ...18

1.2.7 Bacillus cereus subsp. cytotoxica ...18

1.3 BIOFILM ..19

1.3.1 Biofilm formation ...19

1.3.2 Biofilm formation in B. cereus and B. subtilis ..21

1.3.3 Regulation of biofilm formation ...22

1.3.4 Regulation of biofilm formation in B. cereus and B. subtilis ...23

1.3.5 Screening biofilms in the lab ..25
1.4 Genomics Relevant to the Thesis ... 26

1.4.1 Riboswitches ... 26

1.4.2 C-di-GMP ... 27

Chapter 2: Background for the Thesis .. 29

Chapter 3: Materials ... 32

3.1 Bacterial Strains ... 32

3.2 Vectors (Plasmids) .. 32

3.3 Oligonucleotides (Primers) .. 33

3.4 Enzymes .. 34

 3.4.1 Restriction enzymes ... 34

 3.4.2 Other enzymes .. 35

3.5 Molecular Weight Standards .. 35

3.6 Chemicals ... 36

3.7 Commercial Kits ... 38

3.8 Miscellaneous ... 38

3.9 Growth Media .. 39

3.10 Buffers and Solutions .. 41

Chapter 4: Methods ... 44

4.1 Growth of Bacteria ... 44

 4.1.1 Escherichia coli ... 44

 4.1.2 Bacillus cereus .. 44

4.2 Preparation of Cells for Electroporation ... 45

 4.2.1 Electropotent E. coli ... 45
4.2.2 Electrocompetent Bacillus cereus ... 46

4.3 PREPARATION OF PURIFIED PLASMID DNA ... 47

4.3.1 PCR purification ... 47

4.3.2 Miniprep ... 48

4.3.3 Midiprep ... 48

4.4 DETERMINATION OF DNA CONCENTRATION IN FREE SOLUTIONS 48

4.4.1 Spectrophotometry .. 48

4.4.2 Quantitative electrophoresis ... 49

4.5 POLYMERASE CHAIN REACTION (PCR) ... 49

4.6 GEL ELECTROPHORESIS ... 51

4.7 ENZYMATICAL RESTRICTION DIGESTION .. 52

4.8 LIGATION OF DNA FRAGMENTS ... 53

4.9 MUTAGENESIS .. 54

4.9.1 Primer design .. 54

4.9.2 Protocol ... 54

4.10 DNA SEQUENCING .. 55

4.11 TRANSFORMATION OF CIRCULAR DNA (PLASMIDS) INTO BACTERIA 55

4.11.1 Transformation into E. coli ... 56

4.11.2 Transformation into Bacillus cereus .. 56

4.12 TOPO CLONING ... 57

4.13 BIOFILM SCREENING ASSAY ... 58

CHAPTER 5: RESULTS ... 60

5.1 BIOINFORMATIC ANALYSIS OF Bt407_0422 AND Bt407_1060 60
5.1.1 Sequence analysis of Bt407_1060 ... 61
5.1.2 Sequence analysis of Bt407_0422 ... 64

5.2 BIOFILM SCREENING OF BACILLUS THURINGIENSIS WT AND ITS ISOGENIC GENE DELETION STRAINS ΔBt407_0422 AND ΔBt407_1060 ... 68

5.3 PREPARATION OF ELECTROCOMPETENT CELLS .. 72

5.4 CLONING OF Bt407_0422 INTO PHT304-pXyl REPORTER VECTOR 75

5.4.1 PCR ... 75

5.4.2 TOPO cloning ... 76

5.4.3 Restriction testing ... 77

5.4.4 Subcloning of Bt407_0422 in pHT304-pXyl vector .. 78

5.4.5 Sequence analysis ... 83

5.4.6 First mutagenesis ... 83

5.4.7 Second mutagenesis ... 84

5.5 COMPLEMENTATION OF BACILLUS THURINGIENSIS 407 ΔBt407_0422 AND ΔBt407_1060 GENE DELETION MUTANTS ... 85

5.5.1 B. thuringiensis 407 (Bt 407) variant strains ... 85

5.5.2 Electrotransformation of insert-reporter vectors into Bt407 86

5.5.3 Optimization of xylose concentration for overexpression and complementation studies .. 89

5.5.4 Control of biofilm assay method .. 91

5.6 CLONING OF PROMOTER REGIONS FOR Bt407_0422 AND Bt407_1060 INTO PHT304-18Z REPORTER VECTOR TO CREATE LACZ FUSION CONSTRUCTS .. 92

5.6.1 PCR ... 93

5.6.2 TOPO cloning ... 93

5.6.3 Restriction test .. 94
5.6.4 Large digest, cutting, purification and ligation of insert and reporter plasmids97

5.6.5 Colony PCR screening of pHT304-18z constructs ..100

CHAPTER 6: DISCUSSION ..102

6.1 ROLE OF BT407_0422 AND BT407_1060 IN BIOFILM FORMATION BY B. THURINGIENSIS 407102

6.1.1 The role of Bt407_1060 in biofilm formation by B. thuringiensis 407102

6.1.2 The role of Bt407_0422 in biofilm formation by B. thuringiensis 407104

6.1.3 The role of c-di-GMP on Bt407_1060 and Bt407_0422 in biofilm regulation107

6.2 CLONING PROCEDURE OF BT407_1060 AND BT407_0422 PROMTER REGIONS IN pHT304-18Z VECTORS ..108

6.3 COMPLEMENTATION/OVEREXPRESSION OF BT407_0422 AND BT407_1060 PROTEINS IN BACILLUS THURINGIENSIS 407 (BT 407) ...110

6.3.1 Cloning of Bt407_0422 into pHT304-pxyl shuttle vector110

6.3.2 Xylose titration of Bt407_0422 and Bt407_1060- pHT304-pxyl constructs111

6.4 FUTURE ASPECTS ...112

APPENDIXES ..113

APPENDIX 1: SEQUENCE ANALYSIS OF PROMBT407_0422-TOPO (9-11-2009)113

Original sequence; pCR II-TOPO-promoter of Bt407_0422 in Bt 407, forward direction:113

Obtained sequence, pCR II-TOPO-promoter of Bt407_0422 in Bt 407, S2_pUC19R:113

Original sequence; pCR II-TOPO-promoter of Bt407_0422 in Bt 407, complementary, reverse strand: ...114

Obtained sequence, pCR II-TOPO-promoter of Bt407_0422 in Bt 407, S1_pUC19F:114

APPENDIX 2: SEQUENCE ANALYSIS OF PROMBT407_1060-TOPO (9-11-2009)115

Original sequence; pCR II-TOPO-promoter of Bt407_1060 in Bt 407, forward direction:115

Obtained sequence, pCR II-TOPO-promoter of Bt407_1060 in Bt 407, S2_pUC19R:115
Appendix 3: Sequence analysis of PCR product of promBt407_1060 from Bt 407 template (11-11-2009):

Original sequence; pCR II-TOPO-promoter of Bt407_1060 in Bt 407, complementary, reverse strand:

.. 116

Obtained sequence, pCR II-TOPO-promoter of Bt407_0422 in Bt 407, S1_pUC19F: 116

Appendix 4: Sequence analysis of Bt407_0422-pHT304-pXyl construct (8/1-2010) 118

Original sequence Bt407_0422 - pHT304-pXyl (forward): ... 118

Original sequence Bt407_0422 - pHT304-pXyl (reverse, complementary): 119

Obtained sequence Bt407_0422 with pHT304-pXyl_forward: 120

Obtained sequence Bt407_0422 with 00330-Bt407_0422-F2: 120

Obtained sequence Bt407_0422 with 00330-Bt407_0422-R2: 121

Obtained sequence Bt407_0422 with S2_pUC19R: .. 121

Appendix 5: Sequence analysis after first mutagenesis (28/1-2010) 122

Original sequence Bt407_0422: .. 122

Obtained sequence Bt407_0422 colony 1: .. 122

Obtained sequence Bt407_0422 colony 2: .. 123

Obtained sequence Bt407_0422 colony 3: .. 123

Obtained sequence Bt407_0422 colony 4: .. 123

Obtained sequence Bt407_0422 colony 5: .. 123

Obtained sequence Bt407_0422 colony 6: .. 124
APPENDIX 6: SEQUENCE ANALYSIS AFTER SECOND MUTAGENESIS (3/2-2010).................................124

Original sequence Bt407_0422: ..124

Obtained sequence Bt407_0422 colony 1: ...125

Obtained sequence Bt407_0422 colony 2: ...125

Obtained sequence Bt407_0422 colony 3: ...125

Obtained sequence Bt407_0422 colony 4: ...126

APPENDIX 7: PROTEIN SEQUENCE OF BT407_0422 AND BT407_1060 IN BT 407.......................126

BT407_0422: ...126

BT407_1060: ...127
Chapter 1: Introduction

1.1 The Bacillus genus

The Bacillus genus is in the family Bacillaceae and consists of rod-shaped, gram-positive, aerobe/facultative anaerobic, spore-forming bacteria. The natural habitat ranges from soil and vegetation to insect intestines, and some species are pathogenic to insects and/or animals/mammals while most are considered non-pathogenic.

The vegetative cells range from 0.5 by 1.2 to 2.5 by 10 µm in diameter and can grow at optimal temperatures ranging from 25 to 37°C, although thermophilic and psychrophilic members are capable of growth at temperatures as high as 75°C or as low as 3°C [6]. The members of the genus may grow at a variety of pH values ranging from 2 to 10 [6]. The G+C content of the DNA of species within the genus can vary from 32 to 69%. Most strains are catalase positive, possess peritrichous flagella, and sporulate in air, differentiating members of this genus from the clostridia [6].

1.1.1 Bacillus cereus group

The B. cereus group is a subgroup within the Bacillus genus, and consists of several species, all which are closely related and some share very similar chromosomal content. The species included in the group are B. cereus, B. anthracis, B. thuringiensis, B. mycoides, B. pseudomycoide and B. weihenstephanensis. The first three species are considered opportunistic pathogens in mammals and insects while the last three species are generally considered non-pathogenic [7]. In addition, a strain in the B. cereus group, Bacillus cereus subsp. cytotoxis, is also important, as it has been implicated in severe cases of food
poisoning leading to human death, and belongs to a phylogenetically remote subgroup of thermotolerant isolates [8].

Based on chromosomal phylogeny, the *B. cereus* group has been suggested to comprise variations of the same species, but with distinct phenotypic differences. Some scientists have suggested that they are all members of a single species, *B. cereus sensu lato* [9].

1.1.2 Genomics of the *Bacillus cereus* group

It has been difficult to establish a commonly accepted taxonomic classification between the species in the *Bacillus cereus* group. Several techniques, including PCR patterns [10], multi-locus enzyme electrophoresis [11], ribotyping [12] and carbohydrate profiles [13] have been employed in order to try to differentiate between different species in the *B. cereus* group. Additionally, DNA–DNA hybridization and comparison of 16S or 23S rRNA sequences or 16S–23S rRNA [9], have also been used.

Phenotypic traits have been used to distinguish *B. anthracis* from other *Bacillus* species in the lab due to a nonsense point mutation in the global transcriptional translator PlcR which results in no or severely reduced activity of PlcR- regulated genes within the bacteria [14]. These difference include being non-motile, non-hemolytic, negative for phospholipase C (PLC) production, and sensitive to γ phage [7].

Genes located on plasmids account for much of the differences in pathogenicity observed between *B. cereus*, *B. anthracis* and *B. thuringiensis*. A strain designated as *B. cereus* (*Bacillus cereus* G9241) has been found to contain two plasmids, one plasmid which closely resembles the pXO1 plasmid found in *B. anthracis* and a second plasmid carrying genes coding for a polysaccharide capsule. This particular strain caused a disease resembling anthrax in American patients [15]. *B. cereus* strains isolated from dead chimpanzees in Africa have been shown to contain plasmids which closely resemble pXO1 and pXO2 [7, 16]. These cases where the plasmids have been shown to be able to transfer between
different cells and strains have made characterization by plasmid content non-satisfactory. *B. thuringiensis* strains cured of their plasmids are indistinguishable from *B. cereus*. Several researchers have concluded that these three species share the same ancestor, and has successfully developed into an individual lineage.

1.2 Strains of the *Bacillus cereus* group

1.2.1 *Bacillus cereus*

Bacillus cereus is considered an opportunistic pathogen in animals and mammals. Most *B. cereus* strains are motile (flagella), form wide, opaque, irregular colonies when grown on solid surface mediums and utilize glucose as the main carbon source [17].

The *B. cereus* endosymbiotic life cycle consist of three distinct phases. *B. cereus* is ubiquitously found as spores in soil, but spores are able to germinate and colonize the gastro-intestinal system in mammals and in insects [5] and other organic matter. Vegetative cells sporulate upon depletion of nutrients and other environmental signals and return to the soil. There has been dispute whether the life cycle in *B. cereus* is pathogenic or not [5].

![Figure 1: Life cycle of *Bacillus cereus* (figure from Jensen et. al [5])]

Alternatively, *B. cereus* may establish an infection in mammalian tissue where it may cause severe infections, including non-gastrointestinal infections (eye, respiratory tract and nosocomial infections in hospitals) and gastrointestinal infections where it may cause food poisoning [6].
The food poisoning capabilities of *B. cereus*, reviewed by Stenfors Arnesen et al. [8], is due to synthesis of specific toxins. The emetic type of food poisoning is caused by a dodecadepsipeptide, cereulide, while the diarrheal type is linked to three different toxins, haemolysin BL (Hbl), nonhaemolytic enterotoxin (Nhe) and cytotoxin K (cytK).

B. cereus is regarded as one of the most common organisms that impair the quality of dairy products [18], and it is hypothesised that the highly adhesive properties of the *B. cereus* endospores are the main cause, leading to adherence of the bacterium to milk tanks and other food processing equipment, in combination with the ability of some strains to form stable biofilms at several different surfaces and under different conditions [19]. *B. cereus* carries several plasmids, but the function of these is not fully understood.

1.2.2 *Bacillus thuringiensis*

Bacillus thuringiensis is a ubiquitous bacterium deposited in the soil and which produces insecticidal δ- endotoxins during sporulation [20], hence its application as a biopesticide [21]. The toxins may contribute up to 25% of the total mass of the sporulated cells [22]. The genes encoding these toxins are located on large transferable plasmids, the loss of which makes *B. thuringiensis* indistinguishable to *B. cereus* [7]. *B. thuringiensis* carries the same chromosomal toxin genes as *B. cereus*, and may cause disease such as food poisoning [23].

Briefly, the life cycle of *B. thuringiensis*, consists of spores deposited in the soil, but introduction to the gut of earthworms, leather jacket larvae and plant rhizospheres result in germination and proliferation. Upon host death, the vegetative cells sporulate and return to the soil [5]. It has been speculated that insect larvae are the natural habitat for both *B. thuringiensis* and *B. cereus* [5].
1.2.3 *Bacillus anthracis*

Bacillus anthracis is the causative agent of anthrax disease in humans and animals, and has been identified sporadically worldwide. *B. anthracis* normally exists as a dormant spore in soil, but is capable of infecting most mammals. During the infection process, *B. anthracis* germinates, causing local infection of skin lesions (cutaneous anthrax), gastrointestinal infection or systemic anthrax through inhalation. The latter is the most severe form of disease, and is the main reason *B. anthracis* has become somewhat infamous due to its application as biochemical weapon. Upon host death, the spores are released back into the soil, completing the life cycle (figure 2) [5].

Figure 2: Life cycle of B. anthracis. Figure taken from Jensen et al. [5]

B. anthracis strains contain two large plasmids, pXO1 and pXO2, which contain virulence factors such as toxin and capsule genes, respectively. pXO1 encodes three different toxins; protective antigen (PA), lethal factor (LF) and oedema factor (EF), while plasmid pXO2 encodes a poly- D glutamic acid capsule which is important for pathogenicity; as it enables the bacterium to evade detection by the immune system in the infected host [5]. Loss of pXO2 results in severely decreased ability to establish an infection, and is the basis for the attenuated vaccine with the avirulent strain *B. anthracis* Sterne [5].
1.2.4 *B. mycoides*

Strains of *B. mycoides* were initially differentiated from *B. cereus* and *B. thuringiensis* by its non-motile behaviour and ability to form rhizoidal colonies. Comparison of DNA relatedness between the *B. mycoides* type strain NRRL NR-273 and selected strains of *B. cereus*, *B. thuringiensis*, and other strains of *B. mycoides* ranged from 24 to 34%, from 29 to 37%, and from 20 to 100% [24]. This study concluded that *B. mycoides* are not closely related to *B. cereus* and *B. thuringiensis*, therefore arguing for distinction as a separate species. Further analysis revealed that *B. mycoides* strains could be categorized into two groups, since then one of these groups has been classified as an independent species in the *B. cereus* group, *B. pseudomycoides* (1.2.5). These two groups were differentiated mainly based on their different fatty acid composition [24, 25].

1.2.5 *Bacillus pseudomycoides*

B. pseudomycoides was initially classified as a subgroup of *B. mycoides*, with approximately 98% identity in 16S rRNA sequences [25]. Studies of fatty acid composition [24], however, revealed differences in 12:0 iso, and 13:0 anteiso fatty acids. These results suggested a new species in the *Bacillus* group.
1.2.6 *Bacillus weihenstephanensis*

A sixth species in the *B. cereus* group was proposed in 1998 [26], *Bacillus weihenstephanensis* which consist of psychrotolerant isolates. This was based on specific sequence differences in 16S rDNA and 23S rDNA, as well as in the 16S-23S rDNA spacer region and the structural genes encoding the major cold-shock protein homologue cspA relative to mesophilic and psychrotolerant strains previously identified as *B. cereus* or *B. mycoides*. The type strain, WSBC 10 204T, can be differentiated from *B. cereus* by growth at 7°C or lower, no growth at 43°C and specific sequences in 16S rRNA and cspA genes. *B. weihenstephanensis* is considered a potential pathogen [26].

1.2.7 *Bacillus cereus subsp. cytotoxis*

The *Bacillus cereus* strain NVH391-98, later suggested as *Bacillus cereus subsp. cytotoxis*, was, after sequence analysis revealed several differences in gene regulation from other members of the *Bacillus cereus* group, proposed as a new species, *Bacillus cytotoxicus* [27]. The status as a novel species is yet to be approved. The strain was discovered after a serious food poisoning outbreak [28] and sequence analysis showed that the strain lacked σ^B^, which is unique to spore-forming *Bacillus* strains, contained no tryptophan synthesis genes and contained genes implicated in biosynthesis of a food-poisoning toxin, cytotoxin K, which has been postulated to constitute the main virulence factor [27, 29]. Later it has been discovered that many *B. cereus* group strains carry the cytK gene, and that the severe toxicity of the NVH391-98 strain is probably due to high production of the cytK cytotoxin [30].
1.3 Biofilm

1.3.1 Biofilm formation

Biofilms are multicellular aggregates or communities of microorganisms attached to a surface [31]. Biofilms have some general properties; they usually contain an extracellular matrix consisting of an extracellular polysaccharide (EPS), nucleic acids and/or proteins. Also, biofilm formation is triggered as a response to extracellular signals from the environment and may provide protection from antibiotics, predators and components of the immune system inside a host [32].

Biofilms may be mono-, bi- or multilayered and have complex three-dimensional structures (figure 3) [32]. Monolayer formation dominates when cell-surface interaction is more prevalent than cell-cell interaction and vice versa. Biofilms can form on environmental abiotic surfaces such as minerals, on the carapaces of dead organisms, or at air-water interfaces. They can also form on biotic surfaces in the natural environment, such as plants, other microbes, and animals.

Figure 3: Left figure shows a monolayer biofilm attached to a surface, while two clusters (multilayer) of bacteria attached to a surface can be seen on the right. Multilayer biofilms are comprised of cells and an extracellular matrix with proteins, exopolysaccharides and/or nucleic acids (figure taken from Karatan et. al [31]).
The general model for biofilm formation is different for motile and non-motile bacteria [32]. Non-motile bacteria usually initiate their biofilm formation through individual cells starting to produce surface adhesins. This promotes cell-to-cell interaction that is important for attaching to a surface and to other bacteria [32]. Other important components for the biofilm formation, exopolysaccharides (EPS) in particular, are also produced early in the process.

Motile bacteria are able to move close to a surface and undergo several changes. The cells may switch from expressing genes important for motility (e.g. flagella) to produce components important for biofilm formation such as matrix proteins and EPS [32, 33]. Early in the process, motility has been shown to be very important for the ability of these cells to produce a biofilm.

Lemon et. al [32] states that motile bacteria develop biofilm in five distinct phases:

1. Bacteria relocate/adhere to a surface
2. Monolayer formation
3. Multilayer formation (multiple colonies in layers)
4. Extracellular matrix production
5. Biofilm stabilisation

Just as bacteria might form a biofilm, and thereby adapt to a non-motile lifestyle, they may also disperse from the biofilm and return to a motile lifestyle when this is favourable (e.g. during depletion of nutrients or accumulation of toxic products due to high cell densities) [31].
1.3.2 Biofilm formation in *B. cereus* and *B. subtilis*

Several strains of *Bacillus cereus* have been shown to constitute biofilm production in low-nutrition media [18]. *B. cereus* biofilm formation has been observed on plastic, glass wool, and stainless steel, materials which have all been utilized for *in vitro* research on *B. cereus* biofilm formation [34-36]. The extracellular components making up the biofilm produced by *B. cereus* have not been heavily investigated, however, extracellular DNA (eDNA) has been shown to be a necessary component in *B. cereus* biofilms [37]. This is not unexpected since most characterized biofilms studied in other bacteria include exopolysaccharides, proteins and eDNA. eDNA has been observed in biofilms produced by other gram positive bacteria such as *Staphylococcus aureus* [38].

Bacillus subtilis, a model species for gram-positive bacteria, have been extensively studied for its biofilm and sporulation capabilities. *B. subtilis* tends to form pellicles of cells at the air-liquid interface in standing cultures after reaching a certain cell density [32]. Aerial projections formed after 5+ days of growth have been shown to be the preferential site of spore formation, on the basis of high expression of the gene *sspE* which has been shown to be expressed late in the sporulation process [39]. Characterization of biofilms produced by the natural wildtype *B. subtilis* strain 3610 showed that *eps* (genes responsible for exopolysaccharide production/*tasA* (gene responsible for production of the matrix protein TasA) mutants were not able to produce a proper biofilm [40]. This study underlined the importance of exopolysaccharides and TasA as matrix components.
1.3.3 Regulation of biofilm formation

Regulation of biofilm formation is highly complex and varies between different species of bacteria. A broad overview is given in a review by Karatan concerning research on biofilm formation and regulation \textit{in vitro} \[31\], with an emphasis on the development of multilayer biofilms. Regulation was split into seven categories; mechanical signals, nutritional and metabolic cues, inorganic molecules, osmolarity, host- derived signals, antimicrobials and quorum signals.

Mechanical signals; there are some evidence that bacteria are able to sense and initiate lifestyle changes/biofilm formation in close proximity to surfaces. The flagellar motor system has been identified as one possible regulator of this process since defective flagella in mutant strains results in less biofilm formation \textit{in vitro} for the motile bacterium \textit{Vibrio cholerae} \[41\].

Nutritional and metabolic cues; observations and studies of biofilm formation \textit{in vitro} have shown that the growth medium, especially the amount of nutrition, e.g. glucose levels have an effect on biofilm formation. Some species, such as \textit{V. cholerae}, may initiate biofilm formation in environments with high concentration of glucose \[42\] while other species repress biofilm formation \[43-45\]. Catabolite repression (utilization of one carbon source at a time, preferably glucose) has also been shown to affect biofilm formation for several species.

Inorganic molecules; levels of iron and phosphate in the environment surrounding the bacteria have both been shown to affect biofilm formation for some species such as \textit{Pseudomonas aeruginosa} and \textit{Pseudomonas fluorescens}, respectively \[46, 47\].

Osmolarity; increased levels of salt and/or sucrose in growth medium has been shown to inhibit biofilm formation in \textit{P. fluorescens} \[48\]. Salt levels has, indirectly, proven to affect expression and activity of several biofilm-related genes \[31\].
Host-derived signals; defense mechanisms of the host, such as bile acids and hydrogen peroxide secretion, may promote biofilm formation in *V. cholerae* and *P. aeruginosa*, respectively [49, 50].

Antimicrobials; several studies have shown that some species alter biofilm formation when antibiotics are present, and that biofilms might explain the elevated antibiotic resistance observed by some bacteria [51].

Quorom signals; quorum sensing is a signal system which enables the bacterium to change its metabolism in response to extracellular events such as high cell density or the presence of other species of bacteria. Most gram-negative bacteria have been shown to possess a system similar to the LuxI/LuxR system [52] while gram positive bacteria usually have a system where a species-specific autoinducing peptide is processed, pumped out of the cell and bind sensor kinases which phosphorylate response regulator proteins and thereby affect gene expression [52]. It has been shown that several species change biofilm formation in response to changes in cell density, such as *V. cholerae, S. aureus, P. aeruginosa* [31] and *B. cereus* [34].

1.3.4 Regulation of biofilm formation in *B. cereus and B. subtilis*

The regulation of biofilm in *Bacillus cereus* is not fully elucidated. More research has, however, been done on the model species *Bacillus subtilis*. Over the years, researchers have been able to identify some key genes and regulatory systems which affect biofilm formation. Studies of *B. subtilis*, which is related to *B. cereus*, show that biofilm formation predominates in low glucose environments [53], which is known to affect the positive transcription regulator Spo0A, probably due to metabolism of glucose to acetoin [54].
Spo0A is known to regulate the transcription factors SinI and SinR (often referred to as the master regulators for the switch between motile, vegetative and non-motile, sedentary behavior). SinI/SinR regulate the expression of two operons, \(EpsA-O \) (important for production of EPS) and \(yqm-sipW-tasA \) (three genes which code for two secreted matrix proteins), which are important for biofilm formation (see figure 4) [55]. It was shown that sinI expression varies considerably within cells in a biofilm. This has led to a discussion whether the matrix produced in a biofilm is produced by all cells to some degree or if a subgroup of cells produce matrix components while most cells do not [56]. The possibility of such a division has been ratified by in vitro studies done on other bacteria such as V. cholerae [57]. In this study, mixtures of biofilm positive and negative cells were able to produce biofilms with 10% or less biofilm positive cells.

![Diagram](image)

Figure 4: The regulation of expression of genes in B. subtilis by the bistable regulator Spo0A. When Spo0A is activated, SinI, the repressor of SinR, is expressed. SinI alleviate SinR repression of several operons, \(eps \), which produce extracellular polysaccharides, and \(yqm-sipW-tasA \), which produce two matrix proteins. Expression of these components have been shown to be vital for stable biofilm formation. Figure taken from Kearns et. al [56].

Another factor in \(B. subtilis \), EpsE, acts as a molecular clutch that immobilizes the flagellum by binding to a flagellar switch protein, FlIG. Interestingly, the \(epsE \) gene is located in an operon that codes for matrix components, suggesting that interruption of motility may promote production of biofilm components [33]. Finally, sigma H (\(\sigma^H \)) is a starvation-activated transcription factor which is required for \(B. subtilis \) developing complex structures in biofilms [39].
It is known that *B. cereus* strain may encode a quorum sensing system in which autoinducer-2 (AI-2) is a regulator [34]. Elevated levels of AI-2 resulted in lower biofilm production as well as dispersion of cells from a preformed biofilm.

Also, the pleiotropic regulator PlcR, which influence the expression of at least 45 genes in *Bacillus cereus* [58] by binding to an upstream palindromic motif, have been observed to influence biofilm formation in vitro. PlcR is regulated by a small peptide called PapR which is itself regulated by PlcR, making it a quorum-like signal system [59]. It has been shown that biosurfactants may be essential for biofilm formation in *B. cereus*, which is directly, or indirectly, regulated by PlcR [18]. A *B. cereus* ATCC14579 ΔPlcR- mutant produced >4x more biofilm compared to wt in a low-nutrient medium (EPS) (p< 0.05) [18].

Finally, the *codY* gene is recognised to affect biofilm formation by *B. cereus*, as a *codY* mutant developed four times less biofilm compared to wt in vitro and detached earlier from preformed biofilms [60]. The mechanism of action for the codY protein is largely unknown. It was shown that codY repressed the production of a 130 kDa protease, but its properties have not been thoroughly investigated.

1.3.5 Screening biofilms in the lab

It is difficult to measure biofilm formation *in vivo* in humans or animal subjects. Most, if not all, biofilm research has been done *in vitro* in the lab. Today, there exist several *in vitro* methods for studying biofilms. None of these are recognized as superior to the others [32]:

Flow cells are small chambers with transparent surfaces where submerged biofilms may be formed and receive nutrition continually. The biofilms can be easily observed with confocal scanning laser microscopy [61]. The strength of this particular approach is the possibility to
observe biofilm formation over time. The weakness when using flow cells is that high-throughput screening of different strains can be time consuming and difficult.

Floating pellicles that form in the liquid- air- interface in standing cultures may also be used for screening of different strains, and it is also an option to grow colonies on agar plates. Colonies which exhibit macroscopic, complex architecture are recognised as biofilms and may be easily detected by visual inspection [61]. This method may also be used for high-throughput screening.

Finally, microtiter plate based screening techniques can be useful to study submerged or air-liquid interface biofilms in a no- flow system. Microtiter plate assays are useful for high-throughput screening, and a number of genes involved in biofilm formation have been discovered by this method [32, 62]. This method was chosen for work in this thesis since it is relatively fast to perform on a range of different strains at the same time.

1.4 Genomics relevant to the thesis

1.4.1 Riboswitches

Riboswitches are typically RNA domains in the 5- untranslated region of certain mRNAs adjacent to open reading frames (ORF) that may alter gene expression in response to changing concentrations of a specific ligand [63]. The riboswitch domain forms a three-dimensional structure with receptor functions which has been shown to bind ligand with high affinity and specificity [64]. A whole range of riboswitches have been identified in different bacteria, including riboswitches that sense guanine, lysine, adenine, vitamin B12 and other ligands. One such domain is GEMM [65] which has been shown to possess high affinity for the second messenger c-di-GMP.
1.4.2 C- di- GMP

Bis-(3′-5′)-cyclic dimeric guanosine monophosphate (c-di-GMP) is a second messenger found in many bacteria [66]. C-di-GMP is produced from two GTP molecules by diguanylate cyclases that carry GGDEF domains, and is degraded by phosphodiesterases (PDEs) with one of two different domains, EAL or HD-GYP (see figure 5). Most of these enzymes contain sensory input domains in the N-terminal transmembrane helices which can sense extracellular signals such as oxygen levels and light radiation, and affect enzyme activity.

Intracellular concentrations of c-di-GMP are controlled by the amount and activity of these two groups of proteins. The intracellular concentration affects the extent of binding to specific effectors, which can be either proteins or riboswitches containing a GEMM domain in the 5′- untranslated region. Targets can be promoters in DNA (if the effector is a transcription factor), enzymes or complex cellular structures, such as the flagellar basal body or exopolysaccharide synthesis [66].

Figure 5: Intracellular c-di-GMP level-based regulation of bacterial cellular processes, two GTP molecules produce c-di-GMP by diguanylate cyclase activity (GGDEF domain), and is degraded by phosphodiesterase activity (with EAL and HD-GYP domains) to produce pGpG, and later two GMP molecules.
C-di-GMP is implicated in cell differentiation, conversion between motile and biofilm lifestyles (stimulation of biosynthesis of adhesins and exopolysaccharide matrix substances) and virulence gene expression in gram-negative bacteria. The role of c-di-GMP in gram-positive bacteria has, however, not been heavily investigated, and only seven proteins with GGDEF and EAL domains have been found [67]. This has led some researchers to be doubtful of c-di-GMP as a major regulator of lifestyle behaviour in gram-positive bacteria.
Chapter 2: Background for the thesis

In 2008, Sudarsan et al [63], identified a highly conserved RNA domain, GEMM. GEMM resides upstream of genes encoding DGC and PDE proteins in various organisms and upstream of genes that are known to sense the intracellular signal molecule cyclic di- GMP (1.4.2). The high conservation and genomic distributions of GEMM RNAs are characteristic of riboswitches (1.4.1), RNA domains in mRNA that may control translation.

In their paper, the researchers prepared transcriptional fusions for c-di-GMP riboswitches from *Bacillus cereus* called Bc1 and Bc2 (figure 6), and cloned the constructs into a *Bacillus subtilis* host strain. The expression patterns, using a β-galactosidase assay, revealed that Bc1 wildtype showed high activity while the isogenic mutant M3 did not. The Bc2 wildtype showed low activity while the isogenic mutant M3 showed high activity. These results indicated that Bc1 acted as an inducer of downstream gene expression (c-di-GMP-responsive “on” switch) whereas Bc2 acted as a repressor of downstream gene expression (c-di-GMP-responsive “off” switch) [63].

![Figure 6: Bc1 and Bc2 RNA sequence and 2D structure](image)

Figure 6: Bc1 and Bc2 RNA sequence and 2D structure. Figure taken from Sudarsan et al. support material [63]
It has been shown that c-di-GMP is implicated in the change from planktonic to a sedentary lifestyle, in biofilm-forming phase in bacteria such as Vibrio cholerae [68]. Putative role of c-di-GMP in regulation of biofilm formation in gram-positive bacteria is, however, not elucidated. Following the publication of the paper, DNA and protein searches were conducted by BLAST [69] to investigate whether these two riboswitches were present in a range of different strains in the Bacillus cereus group (Annette Fagerlund, personal communication). In one strain, known to be a stable biofilm producer, Bacillus thuringiensis 407, both riboswitches were present in the genome sequence.

B. thuringiensis 407 Cry÷ (Bt 407) was chosen as model organism for studying biofilm formation due to its well-known ability to produce biofilms and earlier experience in the lab. It is a model strain used in many previous studies of B. thuringiensis genetics and has recently been sequenced (taxid: 527021). The Bt 407 wildtype was isolated in Brazil by Dr. Sergio Batista Alves from an insect larva (Anagasta Kuhniella). It was later cured of plasmid encoding insecticidal crystal toxin by heat treatment by Olivia Arantes (Cry’). Both wild type and mutant strains were first described in 1989 [70]. The parental strain was serotyped at Institut Pasteur, and was defined as belonging to serotype H1 (Bacillus thuringiensis serovar thuringiensis). However, the serotyping of the 407 Cry÷ strain did not allow distinguishing this strain from a B. cereus strain (unpublished data). Plasmid analysis revealed the presence of at least six plasmids (ranging from about 4 to 70 kb) in the wildtype strain, Bt 407 Cry+. This analysis also showed that strain Bt 407 Cry÷ had lost the largest plasmid of about 70 kb (Olivia Arantes and Didier Lereclus, unpublished data).

The Bc1 riboswitch sequence was identified to be upstream from a gene, bhthu0002_3430 (locus tag), which will be referred to as Bt407_0422 in this thesis, and which is an ortholog of BC0422 in B. cereus ATCC 14579. This open reading frame is annotated to contain methyl-accepting chemotaxis protein properties. The Bc2 riboswitch was similarly identified at the end of a contig with no adjacent ORF in B. thuringiensis 407. However, an ORF was identified by manual inspection, and identified at the end of the contig and continuing on another contig. PCR, using genomic DNA from B. thuringiensis 407 as template, and subsequent sequence analysis of the PCR product closed the gap between the two contigs, revealing the sequence of the gene. The gene was identified to be an ortholog to BC1060 in
B. cereus ATCC 14579. BC1060 is annotated to contain collagen- binding adhesion protein properties. This gene will be referred to as Bt407_1060 in this thesis.

In order to control the Bt407_0422 and Bt407_1060 proteins for their effect on biofilm formation, Annette Fagerlund prepared gene deletion mutant B. thuringiensis 407 strains of both genes and did a preliminary biofilm assay which showed that biofilm formation was significantly less in the Bt407_1060 deletion mutant and possibly decreased during the first 24 hours in the Bt407_0422 deletion mutant compared to the B. thuringiensis 407 wildtype strain (unpublished results). The aim of this thesis was to expand on the initial investigation. The initial objectives were:

- Expand biofilm formation screening of the Bt407_1060 and Bt407_0422 gene deletion mutants.
- Clone promoter regions of Bt407_0422 and Bt407_1060 in pHT304-18z (lacZ reporter vector) in order to do lacZ assays.
- Clone the two genes, Bt407_0422 and Bt407_1060, into the pHT304-pXyl expression vector for overexpression and complementation assays for the gene deletion mutants.

When the constructs were complete, the aim was to perform different assays and collect data relevant to the role of these two genes in biofilm formation. The initial aims would be expanded on if time allowed it.
Chapter 3: Materials

3.1 Bacterial strains

<table>
<thead>
<tr>
<th>Strains</th>
<th>Note(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacillus thuringiensis strain 407 (Bt 407)</td>
<td>Further information in chapter 2</td>
</tr>
<tr>
<td>Escherichia coli (E. coli) XL-1 Blue</td>
<td>Manufacturer: Stratagene.</td>
</tr>
<tr>
<td>Escherichia coli (E. coli) electrocompetent cells (TOP10)</td>
<td>Manufacturer: Invitrogen</td>
</tr>
</tbody>
</table>

Table 3.1: Overview of bacterial strains used in the thesis

3.2 Vectors (plasmids)

<table>
<thead>
<tr>
<th>Vectors</th>
<th>Characteristics</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>pHT304-18z</td>
<td>pHT304 containing lacZ promoterless gene</td>
<td>Arantes (1991) [71]</td>
</tr>
<tr>
<td>pHT304-pXyl</td>
<td>pHT304 containing xylA promoter</td>
<td>Arantes (1991) [71]</td>
</tr>
<tr>
<td>pMAD</td>
<td>Vector for cloning in gram-positive bacteria, contain β-galactosidase-encoding gene and erm</td>
<td>Arnaud (2004) [72]</td>
</tr>
<tr>
<td>pUC19</td>
<td>Shuttle vector, contains lacZ gene and amp</td>
<td>Yanisch-Perron et al. (1985) [73]</td>
</tr>
</tbody>
</table>

Table 3.2: Overview of vectors (plasmids) used in the thesis
3.3 Oligonucleotides (primers)

<table>
<thead>
<tr>
<th>Primer name</th>
<th>Sequence (5'-3')</th>
</tr>
</thead>
<tbody>
<tr>
<td>02561_F2</td>
<td>aaaggtgggaagccaaaaat</td>
</tr>
<tr>
<td>Bt407_0422-F-XbaI</td>
<td>ttatctagattaaggggaagggggataatgaaaaa</td>
</tr>
<tr>
<td>Bt407_0422-R-KpnI</td>
<td>atcggtaggagattccccctttgat</td>
</tr>
<tr>
<td>00330-Bt407_0422-R2</td>
<td>gtcaccccaagaaacctattca</td>
</tr>
<tr>
<td>S2_pUC19R</td>
<td>taacaaattccacacaggaacacg</td>
</tr>
<tr>
<td>S1_pUC19F</td>
<td>gtttccccagtaagctgtt</td>
</tr>
<tr>
<td>pH304-pXyl_F2</td>
<td>ggtttgatcagcgcgatatcacad</td>
</tr>
<tr>
<td>pH304-pXyl_forward</td>
<td>tcaaccttcatccactcatttg</td>
</tr>
<tr>
<td>PU</td>
<td>cgccagggtttcctcagtcgaagc</td>
</tr>
<tr>
<td>OVG</td>
<td>cgtaaccttacctgtaatctccacagta</td>
</tr>
<tr>
<td>P-Bt407_0422-F</td>
<td>acaagcttggaaatctcattgcagttaggaat</td>
</tr>
<tr>
<td>P-Bt407_0422-R</td>
<td>tttagatcggaccctttaatcataaatcataat</td>
</tr>
<tr>
<td>P-Bt407_1060-F</td>
<td>agactgcagcggcaggttacaggaagaaag</td>
</tr>
<tr>
<td>P-Bt407_1060-R</td>
<td>taccgatcttctgcattgcacacttctcctcct</td>
</tr>
<tr>
<td>Bt407_0422_mut1_F</td>
<td>cttggaaaaatctcagactgacagctgtgttaagataag</td>
</tr>
<tr>
<td>Bt407_0422_mut1_R</td>
<td>cttgatctgttatagattgtgggatgttggatggatgg</td>
</tr>
<tr>
<td>Bt407_0422_mut2_F</td>
<td>caacagctgttagtagtttgaagagaagcgtgtgagaacag</td>
</tr>
<tr>
<td>Bt407_0422_mut2_R</td>
<td>cttgctgtttcatgtttctcaacattactactgtg</td>
</tr>
</tbody>
</table>

Table 3.3: Overview of oligonucleotides used in the thesis
3.4 Enzymes

3.4.1 Restriction enzymes

<table>
<thead>
<tr>
<th>Restriction enzyme name</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>BamHI</td>
<td>Biolabs</td>
</tr>
<tr>
<td>HindIII</td>
<td>Biolabs</td>
</tr>
<tr>
<td>KpnI</td>
<td>Biolabs</td>
</tr>
<tr>
<td>PstI</td>
<td>Biolabs</td>
</tr>
<tr>
<td>EcoRV</td>
<td>Biolabs</td>
</tr>
<tr>
<td>EcoRI</td>
<td>Biolabs</td>
</tr>
</tbody>
</table>

Table 1.4: Overview of restriction enzymes used in the thesis
3.4.2 Other enzymes

<table>
<thead>
<tr>
<th>Enzyme name</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynazyme II DNA polymerase</td>
<td>Finnzymes</td>
</tr>
<tr>
<td>pfu Ultra polymerase</td>
<td>Stratagene</td>
</tr>
<tr>
<td>T4 DNA ligase</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>DpnI</td>
<td>Stratagene</td>
</tr>
</tbody>
</table>

Table 3.5: Overview of enzymes (- restriction enzymes) used in the thesis

3.5 Molecular weight standards

<table>
<thead>
<tr>
<th>Name</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>100bp GeneRuler + DNA ladder (figure 7)</td>
<td>Fermentas</td>
</tr>
<tr>
<td>1kb GeneRuler DNA ladder (figure 8)</td>
<td>Fermentas</td>
</tr>
</tbody>
</table>

Table 3.6: Overview of molecular weight standards used in the thesis
3.6 Chemicals

Nr.1 bacterial agar (Oxoid)

Acetic acid (Merck)

Acetone (J.T Baker)

Agarose (Sigma)

Ampicillin (Sigma)
Bactopeptone (Oxoid)

Bromophenol blue (Sigma)

Boric acid (H$_3$BO$_3$) (Sigma)

Crystal violet (Sigma)

Di- Sodium hydrogen phosphate 2-hydrate (Na$_2$HPO$_4$ x 2H$_2$O) (Merck)

dNTP (Qiagen)

Erythromycin (Sigma)

Ethidium bromide (EtBr) (Sigma)

Ethanol (EtOH) (Arcus)

Ethylenediaminetetraacetic acid (EDTA) (M&B)

Hydrochloric acid (HCl) (Prolab)

Isopropanol (Arcus)

Kanamycin (Arcus)

Methanol (Prolab)

Magnesium chloride (MgCl$_2$) (Merck)

Magnesium sulphate (MgSO$_4$) (Merck)

Monopotassium phosphate (KH$_2$PO$_4$) (Merck)

Potassium chloride (KCl) (Merck)

Sodium chloride (NaCl) (JT Baker)

Tetracyclin (Arcus)
Tris base (Sigma)

Tryptone (Oxoid)

Yeast extract (Oxoid)

Note: Chemicals provided in the commercial kits are not included in this list.

3.7 Commercial kits

E.Z.N.A.® Gel Purification Kit (Omega Bio-Tek)

E.Z.N.A.® Plasmid Miniprep Kit I (Omega Bio-Tek)

QIAprep Spin Miniprep Kit (50) (Qiagen)

QIAGEN Plasmid Midi Kit (25) (Qiagen)

QIAquick PCR Purification Kit (50) (Qiagen)

QIAquick Gel Extraction Kit (50) (Qiagen)

3.8 Miscellaneous

0.25µm filter paper (Millipore)

Eppendorf tubes (2ml) (Treff lab)

NUNC tubes (15 and 50ml) (Corning)

8x PCR tubes (0.2ml) with lids (Axygen)
Round-bottomed PVC microtiter plates with 96 wells (Falcon 353911)

Sterilin tubes (15ml) (Sterilin)

0.2cm electroporation cuvettes (Bio-Rad)

3.9 Growth media

Lysogeny Broth medium (LB)

10g tryptone

5g yeast extract

10g NaCl

Dissolved in ~900ml dH$_2$O, pH adjusted to 7.0 with HCl and total volume adjusted to 1000ml with dH$_2$O. Autoclaved and stored at 4°C.

LB agar plates

10g tryptone

5g yeast extract

10g NaCl

15g NR 1 bacterial agar

Dissolved in ~900ml dH$_2$O, pH adjusted to 7.0 with HCl and volume adjusted to 1000ml with dH$_2$O. Autoclaved and stored at 4°C.
Bactopeptone medium

10g bactopeptone
5g yeast extract
10g NaCl

Dissolved in ~900ml dH₂O, pH adjusted to 7.0 with HCl and volume adjusted to 1000ml with dH₂O. Autoclaved and stored at 4°C.

Super Optimal broth with Catabolite repression (SOC) medium

20g tryptone
5g yeast extract
0.5g NaCl
0.18g KCl
0.95g MgCl₂
1.2g MgSO₄
3.6g glucose

Dissolved in 1000ml dH₂O and pH adjusted to 7.0 with NaOH. Autoclaved, aliquoted and stored at -20°C.
3.10 Buffers and solutions

0.3% crystal violet solution (for biofilm assay)

0.6g crystal violet

Dissolved in 200ml dH2O over night, then sterile filtered and stored at room temperature.

6x Loading buffer (for agarose gel electrophoresis)

15ml glycerol

0.125ml bromophenol blue

Volume adjusted with ~20ml TBE buffer and dH2O to 50ml total volume. Prepared by Annette Fagerlund, aliquoted for own use.
Aceton/ethanol (1:4) (for biofilm assay)

250ml acetone
750ml ethanol
Mixed and stored at room temperature in sealed container

50x TAE buffer (Tris/Acetate) (for gel electrophoresis)

242 g tris base
57.1 ml acetic acid
100ml 0.5M EDTA (pH 8.0)
Dissolved in 1000ml dH$_2$O and stored at room temperature.

PBS (for biofilm assay)

16g NaCl
0.4g KCl
0.54g Na$_2$HPO$_4$ x 2H$_2$O
3.56g KH$_2$PO$_4$
Dissolved in 1900ml dH$_2$O, pH adjusted to 7.4 with HCl. Total volume adjusted to 2000ml with dH$_2$O. Autoclaved, stored at room temperature in a suitable bottle.
10x TBE buffer (Tris/Borate) (for gel electrophoresis)

- 108g tris base
- 55g boric acid
- 9.3g EDTA

Dissolved in 950ml dH$_2$O. Final volume adjusted to 1L with dH$_2$O in an erlenmeyer bottle. Stored at room temperature for further dilution into working concentration (1x).

50x TAE buffer (Tris/Acetate) (for gel electrophoresis)

- 242 g tris base
- 57.1 ml acetic acid
- 100ml 0.5M EDTA (pH 8.0)

Dissolved in 1000ml dH$_2$O and stored at room temperature.
Chapter 4: Methods

4.1 Growth of bacteria

4.1.1 *Escherichia coli*

Escherichia coli (*E. coli*) was an essential bacterium in the cloning procedure. *E. coli* was grown in either LB medium or on LB agar plates at 37°C, the optimal growth temperature for this bacterium. Liquid cultures were subject to rotation at ~220 rpm throughout incubation.

4.1.2 *Bacillus cereus*

The different strains of *Bacillus cereus* used in this thesis were grown either in LB or on LB agar plates at 30°C, the optimal growth temperature for this bacterium ranges between 28 and 35°C [17]. Liquid cultures were subject to a rotation of ~220 rpm throughout incubation.
4.2 Preparation of cells for electrotransformation

4.2.1 Electrocompetent *E. coli*

Electrocompetent *E. coli* was made for use in the cloning procedure due to its well-known properties regarding transformation of plasmids and fast growth rate.

Protocol

An appropriate amount of glycerol stock *E. coli* XL-1 Blue were streaked onto a 20µg/ml tetracyclin LB agar plate and incubated at 37°C over night. One colony was picked and used to inoculate 50 ml LB medium which was grown at 37°C (220rpm) over night. 10ml of the inoculate was transferred to two erlenmeyer bottles, each containing 1000ml LB medium and incubated at 37°C (220rpm) until an OD600 value of 0.4- 0.5. Cells were transferred to four 500ml centrifuge tubes and chilled on ice for 20 minutes.

The cultures were then centrifuged for 3750x g for 10 minutes at 4°C in a Beckman JA-10 rotor. The supernatant was then removed by turning the tubes upside down and draining on filter paper for a short time. The pellets were then resuspended in 10ml ice-cold MilliQ dH₂O, and transferred to two centrifuge tubes. After adding 340ml ice-cold MilliQ dH₂O, the tubes were gently mixed and centrifuged as before. This step was repeated three times.

After washing, the pellets were resuspended in 10ml ice-cold 7% DMSO. The suspensions were then transferred to a 50ml NUNC- tube and the original centrifuge tubes were washed thoroughly with another 10ml 7% DMSO and transferred to the NUNC tube (total volume 40ml). The NUNC tubes with cell suspensions were then centrifuged at 3750x g for 10
minutes in a Sorvall RC3C centrifuge. The pellet was resuspended in 4ml 7% DMSO, the suspension was dispensed into pre-chilled eppendorf tubes (80µl aliquot) and then frozen on a dry ice/ethanol bath prior to transfer and storage at -80°C. The cells were tested for transformation effectiveness (5.3).

4.2.2 Electrocompetent *Bacillus cereus*

Electrocompetent *Bacillus cereus* was made in small batches for immediate transformation of different reporter vectors for use in the biofilm assay.

Protocol

The strains to be used for transformation was plated out on LB plates (with appropriate antibiotics) and incubated at 30°C overnight. One colony was then transferred to 5ml LB medium (with appropriate antibiotics) and incubated at 30°C and ~220rpm overnight.

The overnight culture was diluted 1:200 in 200ml LB medium in a 1L erlenmeyer bottle and incubated at 30°C until an OD600 of 0.4- 0.6. The cultures were harvested by centrifugation at 4°C, 4000x g for 10 minutes in a Sorvall RC3C centrifuge. The pellets were washed three times with 2ml and once with 1ml 10% glycerol and spun down for 1 minute at 8000rpm (4°C) between each wash in a Thermo Heraeus BioFuge table top centrifuge. The cells were finally resuspended in an appropriate volume of 10% ice cold glycerol. The cells were used for transformation the same day.
4.3 Preparation of purified plasmid DNA

Purification of DNA from cell suspensions and liquid reactions was done extensively for this thesis. Commercial kits (3.7) from Qiagen and Omega Bio-Tek (E.Z.N.A) were used for this purpose, and protocols issued from the manufacturer were followed. The kits are all based on the same principle for purification of DNA. If the DNA content was located inside bacteria, an alkaline lysis based on the method of Birnboim and Doly [74] was applied. The lysate was then neutralized and adjusted to high-salt binding conditions in one or two steps prior to application onto a silica membrane for DNA absorption.

However, if the DNA content was located in a liquid solution (e.g. PCR reactions), the volume was adjusted to 100µl and applied directly onto a silica membrane for DNA absorption. After 2-3 washes with different buffers to remove RNA, cellular proteins, and other metabolites, a low-salt buffer with appropriate pH (usually between 7.0 and 8.5) was used to elute the purified DNA from the silica membrane into an eppendorf tube for use in other procedures.

4.3.1 PCR purification

PCR purification was done with EZNA Gel Extraction kit and Qiagen PCR purification kit (3.7). Protocols provided by the manufacturer were followed [75, 76].
4.3.2 Miniprep

Minipreps of plasmid DNA were prepared with EZNA Miniprep kit and Qiagen miniprep kit (3.7). Protocols provided by the manufacturers were followed [77, 78].

4.3.3 Midiprep

Midipreps of plasmid DNA was prepared with Qiagen Midiprep kit (3.7). Protocol provided by the manufacturer was followed [77].

4.4 Determination of DNA concentration in free solutions

Several stages in the cloning procedure depended on knowledge of the DNA concentration in liquid solutions. Two different techniques were used for determining DNA concentrations, spectrophotometry and/or quantitative electrophoresis.

4.4.1 Spectrophotometry

Absorption spectroscopy of nucleic acids is carried out at 260nm (absorption spectra maximum), 1 unit corresponds to ~50µg/ml DNA. To estimate the purity of the solution (especially amount of protein contamination), the sample is usually also measured at 280nm
(absorption spectra maximum for aromatic amino acids) and a 260/280 ratio is calculated. A 260/280 ratio of 1.8 indicates 100% DNA and 0% protein [79]. Spectrophotometry was carried out using either Eppendorf Bio Photometer or PicoDrop using Picodrop v2.07 software.

4.4.2 Quantitative electrophoresis

Spectrophotometry was used almost exclusively for samples where the concentration of DNA was expected to be high (>500µg/ml). Quantitative electrophoresis was carried out when yield of DNA was expected to be uncertain/very low. This was done running several dilutions of the test sample on a gel and compare the intensity of the bands with a size marker (3.5) where the concentration was known (eg. 5µl 100bp GeneRuler DNA ladder (Fermentas)).

4.5 Polymerase chain reaction (PCR)

Polymerase chain reaction (PCR) is a well-known and common technique to produce large quantities of a specific DNA fragment in vitro [80]. PCR requires detailed knowledge of the sequence of the DNA segment for precise design of forward and reverse primers. All primers used had optimal melting point of ~55°C, and length varied between 15-25 nucleotides, except primers used for mutagenesis (see 4.9).
Protocol

For practical application, the PCR reaction requires template DNA, forward and reverse primers, a heat- stable enzyme with DNA polymerase properties, DNA polymerase buffer, a solution containing the four different nucleotides (cytosine, thymine, adenine and guanine) and a programmable, automated heat- block.

General setup of PCR reactions (total volume 50µl):

-~50ng chromosomal DNA (usually 1-2µl of solution, either purified plasmid prep or resuspended bacterial culture for colony screening)

1µl DNA polymerase (last component added to the reaction)

1µl forward primer (20µM)

1µl reverse primer (20µM)

5µl 10x DNA polymerase buffer (appropriate for the chosen polymerase)

dH₂O to 50µl

A general PCR cycle could be like this:

1. 94°C for 3 minutes, 1 cycle
2. 94°C for 30 seconds, 50°C for 30 seconds, 72°C for 30 seconds, 30 cycles
3. 72°C for 3 minutes, 1 cycle, then hold at 4°C until use

It should be noted that the different temperatures and time intervals (especially for the last part of the second cycle rotation (where the polymerase copy the template)) could vary, depending on the length of the DNA segment to be replicated. PCR in the lab was done either on a Thermo PXE 0.2 Thermal Cycler or Applied Biosystems GeneAmp PCR system 2700.
4.6 Gel electrophoresis

Agarose gel electrophoresis was used for separation and purification of specific DNA fragments, and was also used for quantitative analysis of DNA concentration in liquid solutions (4.4.2).

DNA fragments of different lengths are separated by several mechanisms [80] p. 16. DNA is uniformly, negatively charged, which means that it will travel towards the positive electrode in an electric field. However, DNA fragments of different sizes are not separated by their size in a free solution with electrodes at either side. A matrix where the DNA has to travel through it is important; hence the use of agarose gels. The three-dimensional composition of the agarose gel is important, especially the size of the pores. Small, flexible DNA fragments are able to migrate faster through a gel compared to longer, less flexible fragments. A gel with a high amount of agarosis is usually ideal for separating smaller DNA fragments, and vice versa.

To visualize DNA, ethidium bromide is added to the agarose gels. Ethidium bromide intercalates with the DNA, and fluoresces when subjected to UV illumination.

Protocol

For practical application, the agarose gels used were between 0.5 to 2%, the agarosis was added to the buffer used in the electrophoresis chamber in an erlenmeyer bottle (usually TBE, but also TAE) and heated until fully dissolved in a microwave oven. Ethidium bromide was added to the erlenmeyer bottle in a concentration of 0.5µg/ml and then poured into a gel mould for cooling.
The gel was then placed into an electrophoresis chamber, a 6x loading buffer (3.10) were added to the mixtures of DNA fragments to be separated. A suitable volume of the mixture was applied to a separate well in the gel, then ran on 60-120V (adjusted according to the size of the gel) for an appropriate time. The DNA fragments were then visualised with an UV illuminator (Biorad Gel Doc 1000) and photographed using Multi-Analyst software.

To determine size (and to some extent amount of DNA) of the different DNA fragments, different size markers were applied on the gels (3.5).

4.7 Enzymatical restriction digestion

Enzymatical restriction digestion was used both for practical purposes during the cloning procedure (cutting and joining of DNA fragments) and for analytical purposes (restriction testing). A range of different enzymes were used (3.4.1), but the general setup of each reaction was essentially the same.

Protocol

General setup of restriction digest reaction (total volume 10µl):

1-2µl template (dependent on concentration of DNA)

0.5µl restriction enzyme

1µl 10x reaction buffer (specific to the restriction enzyme)

If the particular enzyme reaction was dependent on bovine serum albumin (BSA):

1µl 10x BSA

dH₂O until 10µl
It should be noted that the amount of enzyme was changed when necessary, and this general setup did not apply for the big digests of plasmid DNA used in parts of the cloning procedure.

4.8 Ligation of DNA fragments

Ligation of two DNA fragments (typically a small insert with a larger reporter vector) was done to join digested DNA fragments after DNA purification. The setup of these reactions varied with the concentration of insert and vector, but a general rule-of-thumb reaction was based on a 1:3 molar ratio between vector and insert. However, it was important to ensure that the reaction contained sufficient insert DNA, therefore, the molar ratio could vary between 1:3-1:10.

Protocol

Ligation reaction (total volume 15µl):

1µl T4 DNA ligase (last component added to the reaction)

1.5µl 10x T4 DNA ligase reaction buffer (thawed and vortexed to ensure no precipitation)

12.5µl vector and insert mixture (depended on the DNA concentrations)

The reactions were then put in a MJ Research Programmable Thermal Controller at 16°C overnight. Next day, the reactions were dialyzed for 30 minutes on filter paper to remove salts prior to electrotransformation.
4.9 Mutagenesis

Mutagenesis can be applied when removal of mutations that could result in erroneous translation in a DNA sequence is necessary.

4.9.1 Primer design

Design was done after guidelines from Quikchange [81] by Annette Fagerlund. The most important features of the primers was length (between 25 and 45bp), estimated melting temperature at 78°C, a minimum of 40%GC content and termination in one or more G or C-molecules. The mutated base-pair was located in the middle of the primer with >10–15 bases of correct sequence on both sides.

4.9.2 Protocol

The protocol from Quikchange [81] was followed. The procedure is based on a polymerase chain reaction where the primers with the correct sequence are designed to overlap the mutation and copy the plasmid. After intial PCR reaction, both original, bacterial plasmids and newly synthesized plasmids are present.

Figure 9: Overview of mutagenesis using PCR
A restriction enzyme, *DpnI*, that digest target sequence 5´-Gm6ATC-3´ in methylated DNA, will then digest the original plasmids while leaving the newly synthesized plasmids intact. The reaction is transformed into a proper bacterium, e.g. electrocompetent *E. coli* and sequencing of minipreps from colonies will ratify whether the mutagenesis was successful. This procedure can be done several times if more than one mutation is present.

4.10 DNA sequencing

Sequencing of different constructs was outsourced to the ABI-lab at CEES, Department of Biology and Molecular Biosciences, University of Oslo, Oslo, Norway. The lab employs 3730 high-throughput capillary electrophoresis machines (Applied Biosystems).

The lab could analyse reactions with 8µl of PCR product with 2µl of a 5µM primer added, the general setup was 1-2µl miniprep (>200µg DNA) with 1µl 10mM primer and dH₂O to 10µl for each reaction.

Analysis of the sequence chromatography diagrams was carried out using Sequence Scanner v1.0 (Applied Biosystems).

4.11 Transformation of circular DNA (plasmids) into bacteria

Zimmerman & Vienken (1983) observed that cells can take up exogenous DNA from the surrounding environment when treated with high-voltage electric pulses [80]. It has been shown that electroporation is as, or more, effective compared to chemical transformation.
4.11.1 Transformation into *E. coli*

Transformation of plasmids into *E. coli* was done extensively in the cloning procedure. The general reaction was 1µl (if TOPO-plasmid) to 15µl (ligation reaction (4.8)) added to ~40µl electrocompetent cells.

The mixture was added to a chilled 0.2cm electroporation cuvette, dried thoroughly and it was made sure that no air bubbles were present in the mixture. The cuvette was then placed in a Biorad Gene Pulser II machine and electroporated using 2,5kV, 25µF and 400Ω. The RC time constant, an estimate of pulse length [82], was expected to be ~10msec. Immediately after applying electric shock to the cells, 500µl SOC medium was added and the mixture transferred to a 15ml Sterilin tube. Another 500µl SOC medium was added to wash out the remaining cells and added to the Sterilin tube. The cells were then incubated at 37°C (220rpm) for 1 hour before they were plated out on LB plates with appropriate antibiotics.

4.11.2 Transformation into *Bacillus cereus*

The electrocompetent cells were prepared the same day as transformation (4.2.2). The general reaction setup consisted of 50µl cells and 4µl purified plasmid (~1000-2000µg DNA). One or more reactions were prepared (depended on the effectiveness of transformation).

The mixture was added to a chilled 0.2cm electroporation cuvette, dried thoroughly and it was made sure that no air bubbles were present in the mixture. The cuvette was then placed in a Biorad Gene Pulser II machine and electroporated using 2kV, 25µF and 200Ω. The RC
time constant, an estimate of pulse length [82], was expected to be ~4-5msec. Immediately after shocking the cells, 500µl SOC medium was added and the mixture transferred to a 15ml Sterilin tube. Another 500µl SOC medium was added to wash out the remaining cells and added to the Sterilin tube. The cells were then incubated on 30°C and ~220rpm for 2-3 hours before they were plated out on LB plates with appropriate antibiotics.

4.12 TOPO cloning

Insertion of a PCR product into the TOPO II plasmid was done to ease the cloning process due to the possibility of indentifying one clone with correct sequence and restriction sites.

TOPO vectors contain replication sites for *E. coli* ampicillin/kanamycin resistance genes and two distinct properties for insertion of PCR products. Single 3’-thymidine (T) overhangs for TA cloning and Topoisomerase I covalently bound to the vector (see figure 10).

The TOPO cloning reaction setup:

- 0.5-4µl fresh PCR product
- 1µl TOPO vector
- dH2O until 5µl

![Figure 10: TOPO vector, two topoisomerases located close to the TA overhangs.](image-url)
After mixing, the reaction was left for incubation in room temperature for 5 minutes. The entire reaction was then added to electrocompetent *E. coli* for transformation.

4.13 Biofilm screening assay

Biofilm formation by *Bacillus thuringiensis* 407 was studied with a microtiter plate assay used in several studies of biofilm formation by *Bacillus cereus* and other bacteria [34, 62]. In order to screen bacterial strains with this assay, the bacteria have to form biofilm at the liquid-air interface and it needs to adhere to a plastic surface. Both these properties have to be present. The *B. thuringiensis* 407 strain used in this thesis are known to form biofilms in a low nutrition medium (e.g. bactopeptone), and it readily form biofilms which adhere to plastic.

Stock strains were plated onto LB agar plates with appropriate antibiotic(s) and grown at 30°C over night. One colony were picked and transferred to 5ml LB medium and grown at 30°C for precisely 18 hours. Then, 50µl were transferred to 5ml LB and grown for 3 hours (precultures). The precultures were then diluted 1:200 (usually 50µl in 5ml medium) in bactopeptone (with appropriate antibiotics, and for pHT304-pXyl constructs, xylose in appropriate concentrations (see results)).

The bactopeptone cultures were then transferred to 96-well polyvinylchloride (PVC) plates, 125µl in each well. The plates were put in a moist compartment with a lid, and put inside an incubator on 30°C and 50 rpm. Two different incubators were tested, but with no significant differences. After growth (24, 48, 72 or 96 hours), the plates were washed and the cultures stained with crystal violet in the following manner:

1) Each well was washed with 130µl PBS
2) Cells in each well were stained with 130µl crystal violet (0,3%-1%) for 20 minutes
3) Each well were washed with 180µl PBS
4) To solubilise the bound, stained cells, 150µl 1:4 acetone/ethanol solution was added to each well
The absorbance of each well was then measured on 490nm with a HTS 7000 Bio Assay Reader (Perkin Elmer). The absorbance for crystal violet is optimal around 590nm, but the lab lacked appropriate filters for the assay reader.
Chapter 5: Results

5.1 Bioinformatic analysis of Bt407_0422 and Bt407_1060

As stated in background for the thesis (chapter 2), Bt407_0422 and Bt407_1060 are two genes located downstream of the Bc1 and Bc2 riboswitches originally identified by Sudarsan and co-workers [63] in Bacillus cereus ATCC 14579 and ATCC 10987, respectively. Initial analysis of the gene sequences asserted that the protein products may be important for chemotaxis and adhesion, two functions that are known to be important for biofilm formation. It was decided to expand the analysis further to ascertain 1) what domains the proteins contain, 2) where the domains are located in the protein sequence and 3) identify where the protein probably is situated in the bacteria. A limited BLAST search of the protein sequences was also done to get an indication on prevalence of resembling proteins in other fully, closed sequenced Bacillus strains. A list of the strains included in the BLAST search is given below:

- Bacillus cereus 03BB102
- Bacillus cereus AH187
- Bacillus cereus AH820
- Bacillus cereus ATCC 10987
- Bacillus cereus ATCC 14579
- Bacillus cereus B4264
- Bacillus cereus E33L
- Bacillus cereus G9842
- Bacillus cereus Q1
- Bacillus anthracis Ames
- Bacillus anthracis Ames Ancestor
- Bacillus anthracis Sterne
- Bacillus anthracis str. A0248
- Bacillus anthracis str. CDC 684
- Bacillus cytotoxicus NVH 391-98
- *Bacillus thuringiensis* serovar konkukian str. 97-27
- *Bacillus thuringiensis* str. Al Hakam
- *Bacillus thuringiensis* 407
- *Bacillus weihenstephanensis* KBAB4

5.1.1 Sequence analysis of Bt407_1060

A BLAST search of the protein sequence (Appendix 7) of Bt407_1060 was performed to investigate the prevalence of Bt407_1060 in the *Bacillus cereus* group using the 19 closed genomes available in Genebank. The search resulted in several hits for various proteins with adhesive properties in members of the *B. cereus* group. Results from the search are summarized in table 5.1, showing that only 5 of 19 strains contained a designated ortholog (>90% similarity, full query length (2185/2185 amino acids)).

<table>
<thead>
<tr>
<th>Strain (s)</th>
<th>Identity</th>
<th>Similarity</th>
<th>Query coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacillus cereus G9842</td>
<td>2111/2185 (96%)</td>
<td>2138/2185 (97%)</td>
<td>100%</td>
</tr>
<tr>
<td>Bacillus weihenstephanensis KBAB4</td>
<td>1936/2168 (89%)</td>
<td>2019/2168 (93%)</td>
<td>99%</td>
</tr>
<tr>
<td>Bacillus cereus ATCC 14579</td>
<td>1872/2062 (90%)</td>
<td>1949/2062 (94%)</td>
<td>100%</td>
</tr>
<tr>
<td>Bacillus cereus B4264</td>
<td>1805/2050 (88%)</td>
<td>1913/2050 (93%)</td>
<td>100%</td>
</tr>
<tr>
<td>Bacillus thuringiensis str. Al Hakam</td>
<td>1613/1773 (90%)</td>
<td>1672/1773 (94%)</td>
<td>100%</td>
</tr>
</tbody>
</table>

Table 5.1: BLAST search results of the 19 closed genome sequences available from the *B. cereus* group bacteria, Bt407_1060 protein sequence as query sequence.
Homologous protein sequences found in other strains in the BLAST query contained <30% identity and 50% similarity to the original sequence. These results were not included since the intent of this search was to identify the extent of closely resembling genes in the *Bacillus cereus* group (orthologs). These paralogous gene sequences may certainly carry similar functions, but this is difficult to establish on the basis of this query alone.

An InterPro scan [1] of the Bt407_1060 protein sequence revealed several key aspects which may be important for its function. Two domains resembling Cna protein B-type domain [83] and collagen binding domain [84], two domains previously identified in *Staphylococcus aureus* to be vital parts of the collagen-binding adhesion protein Cna located at the bacterial surface. The Cna protein B-type domain is necessary to elevate the ligand-binding domain, collagen binding domain, away from the cell membrane while the collagen binding domain contain adhesion properties. This domain is part of the bacterial adhesins superfamily.

Furthermore, the InterPro scan also identified an LPXTG anchor in the C-terminal, which indicates that sortase or a related enzyme could potentially cleave between the amino acids
threonine and glycine in the region, which is known to result in a covalent anchoring of the C-terminal to the cell wall. An N-terminal signal sequence and transmembrane helix regions were also identified (figure 11).

SignalP [2] output revealed a signal peptide cleavage site, which is indicative of proteins transported out of the cell by the general secretion machinery, between amino acids 31 and 32 from the N-terminal (figure 12). A search for twin-arginine peptide cleavage sites (TaTP) turned out negative (not shown).

Transmembrane helix domains were identified in InterPro near both the N and C-terminal of the protein. TMHMM [3] output gave the same result (figure 13).

Figure 12: SignalP output using the entire Bt407_1060 protein sequence as query [2] showing a possible N-terminal signal sequence between amino acids 31 and 32.

Figure 13: Output from TMHMM analysis of the complete Bt407_1060 protein sequence, indicating the presence of two transmembrane regions in the protein [3]
On the basis of the accumulated data, it seems probable that Bt407_1060 is a protein transported out of the bacteria, anchored to the cell wall extracellularly at the C-terminal and carry adhesion properties. The InterPro scan identify the sensory domains at the N-terminal while a repetitive domain make up the back bone of the protein, elevating the sensory areas of the protein away from the cell membrane of the bacteria (figure 14).

5.1.2 Sequence analysis of Bt407_0422

A BLAST [85] search of the protein sequence (Appendix 7) was performed to investigate the prevalence of Bt407_0422 in the B. cereus group, using the 19 closed genomes available in Genebank. The search resulted in several hits for various methyl-accepting chemotaxis protein(s) in members of the Bacillus cereus group. Results are summarized in table 5.2, showing that 4 of 19 strains contained a clear ortholog to Bt407_0422 (99% identity, full query length (580/580 amino acids)), and that 15/19 strains contained a protein with >80% similarity in sequence.

Homologous protein sequences were also found in other strains by the BLAST query, which contained <30% identity and 50% similarity to the original sequence. These results were not included since the focus was on identifying the extent of closely resembling genes in the Bacillus cereus group (orthologs). These paralogous gene sequences may certainly carry similar functions, but this is difficult to establish on the basis of this query alone.
<table>
<thead>
<tr>
<th>Strain(s)</th>
<th>Identity</th>
<th>Similarity</th>
<th>Query coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacillus thuringiensis Bt407</td>
<td>580/580 (100%)</td>
<td>580/580 (100%)</td>
<td>100%</td>
</tr>
<tr>
<td>Bacillus cereus G9842</td>
<td>578/580 (99%)</td>
<td>579/580 (99%)</td>
<td>100%</td>
</tr>
<tr>
<td>Bacillus cereus ATCC 14579</td>
<td>576/580 (99%)</td>
<td>579/580 (99%)</td>
<td>100%</td>
</tr>
<tr>
<td>Bacillus cereus B4264</td>
<td>576/580 (99%)</td>
<td>579/580 (99%)</td>
<td>100%</td>
</tr>
<tr>
<td>Bacillus weihenstephanensis KBAB4</td>
<td>475/579 (82%)</td>
<td>524/579 (90%)</td>
<td>99%</td>
</tr>
<tr>
<td>Bacillus cereus NVH391-98 ("cytotoxicus")</td>
<td>450/580 (77%)</td>
<td>515/580 (88%)</td>
<td>100%</td>
</tr>
<tr>
<td>Bacillus thuringiensis serovar konkukian Str. 97-27</td>
<td>445/579 (76%)</td>
<td>508/579 (87%)</td>
<td>99%</td>
</tr>
<tr>
<td>Bacillus cereus 03BB102</td>
<td>445/579 (76%)</td>
<td>508/579 (87%)</td>
<td>99%</td>
</tr>
<tr>
<td>Bacillus cereus AH820</td>
<td>444/579 (76%)</td>
<td>507/579 (87%)</td>
<td>99%</td>
</tr>
<tr>
<td>Bacillus cereus AH187</td>
<td>445/579 (76%)</td>
<td>504/579 (87%)</td>
<td>99%</td>
</tr>
<tr>
<td>Bacillus cereus Q1</td>
<td>445/579 (76%)</td>
<td>504/579 (87%)</td>
<td>99%</td>
</tr>
<tr>
<td>Bacillus anthracis str. Ames</td>
<td>443/579 (76%)</td>
<td>506/579 (87%)</td>
<td>99%</td>
</tr>
<tr>
<td>Bacillus cereus ATCC 10987</td>
<td>443/579 (76%)</td>
<td>503/579 (86%)</td>
<td>99%</td>
</tr>
<tr>
<td>Bacillus thuringiensis str. Al Hakam</td>
<td>440/580 (75%)</td>
<td>505/580 (87%)</td>
<td>99%</td>
</tr>
<tr>
<td>Bacillus cereus E33L</td>
<td>441/579 (76%)</td>
<td>503/579 (86%)</td>
<td>99%</td>
</tr>
</tbody>
</table>

Table 5.2: BLAST search results of the 19 closed genome sequences available from the *B. cereus* group bacteria, using the Bt407_0422 protein sequence as query sequence.
An InterPro [1] search was performed to identify characterized domains in the protein sequence, and showed that the Bt407_0422 protein sequence carried domains known to be a part of various chemotaxis methyl-accepting proteins (MCP’s) (figure 15). One such domain, a methyl-accepting chemotaxis protein (MCP) signalling domain found in *Bacillus subtilis*, has been shown to be homologous to CheW in *E. coli*, which is important for intracellular signalling resulting in flagellar rotation. A *B. subtilis cheW* mutant displayed impaired chemotaxis behaviour [86]. The HAMP linker domain is found in several bacterial sensor and chemotaxis proteins [87] and is important for conformational changes in the receptor when exposed to ligand [88].

<table>
<thead>
<tr>
<th>HAMP linker domain</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PF00672</td>
<td>HAMP</td>
</tr>
<tr>
<td>SM00304</td>
<td>HAMP</td>
</tr>
<tr>
<td>PS50885</td>
<td>HAMP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chemotaxis methyl-accepting receptor, signalling</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PF00155</td>
<td>MCPsignal</td>
</tr>
<tr>
<td>SM00008</td>
<td>MA</td>
</tr>
<tr>
<td>PS55111</td>
<td>CHEMOTAXIS_TRANSDUC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chemotaxis methyl-accepting receptor</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PF00266</td>
<td>CHEMTRN_SDUC</td>
</tr>
</tbody>
</table>

Figure 15: Putative conserved domains in the protein sequence of Bt407_0422 analyzed by InterProScan [1].

The InterPro scan also revealed a possibility that the Bt407_0422 protein sequence contained a SignalP domain, a signal peptide cleavage site which is indicative of proteins transported out of the cell by the general secretion machinery. A SignalP [2] search confirmed the most likely cleavage site between amino acid 30 and 31 from the N-terminal (figure 16). A search for twin-arginine signal peptide cleavage sites common in bacteria [89] did not produce any positive hits (not shown).
Figure 16: SignalP output using the entire Bt407_0422 protein sequence as query [2] showing a possible N- terminal signal sequence between amino acids 30 and 31.

In order to investigate for transmembrane helixes in Bt407_0422, a TMHMM [3] search of the protein sequence was done (figure 17).

Figure 17: Output from TMHMM analysis of the complete Bt407_0422 protein sequence, indicating the presence of two transmembrane regions in the protein [3]
The TMHMM output indicated two transmembrane regions with a large intracellular part. The output does not correlate with the general model for methyl-accepting chemotaxis proteins (MCP’s, figure 18), where the general notion is that the N-terminal is on the cytoplasmic side, followed by a cytosolic region where ligands may be anchored and a cytoplasmic region containing the HAMP domain and other domains necessary for intracellular signalling [4]. However, the TMHMM software is prone to not identify intracellular and extracellular regions correctly, and thus the knowledge of two membrane-spanning regions is valuable.

On the basis of the accumulated data, it seems probable that the Bt407_0422 protein is a methyl-accepting chemotaxis protein and several orthologs exists in various strains belonging to the Bacillus cereus group. The presence of the signalP cleavage site indicates that the Bt407_0422 protein is probably transported by the general secretion system out of the cell where it is located in the membrane, containing two membrane-spanning regions. This correlates well with the domains found in the InterPro scan, the designated extracellular region may contain sensory functions while the intracellular region contain HAMP and other signalling domains.

5.2 Biofilm screening of Bacillus thuringiensis wt and its isogenic gene deletion strains ΔBt407_0422 and ΔBt407_1060

The first biofilm assay was done to screen for the efficiency of biofilm formation from wt and its isogenic gene deletion strains ΔBt407_0422 and ΔBt407_1060 in B. thuringiensis 407. The two isogenic gene deletion strains were already prepared by Annette Fagerlund

![General model for methyl-accepting chemotaxis proteins in bacteria](image)
prior to the thesis, and a small scale microtiter plate assay had been done where it was indicated that ΔBt407_1060- mutant produce less biofilm compared to wildtype, and the ΔBt407_0422 mutant produce less biofilm during the first 24 hours compared to wildtype, but no difference after 48 and 72 hours.

5.2.1 Microtiter plate assay

In order to screen several Bacillus strains under identical conditions, a microtiter plate assay was chosen. The microtiter plate assay is useful for the study of biofilm formed at the air-liquid interface, and it is easy to carry out high-throughput screening of several strains at the same time. General protocol (4.13) had been established prior to this thesis by collaboration with Michel Gohar, INRA, France, and has been used for earlier research on biofilm in Bacillus cereus [34, 90]. The protocol was tested and put to practical use in the lab by a former master student, Johan Bjørnstad.

Figure 19: Falcon 353011 96-wells PVC microtiter plate used in the microtiter plate assay.
5.2.2 Biofilm screening of Bt 407 wt, ΔBt407_0422 and ΔBt407_1060 strains

B. thuringiensis 407 wildtype, ΔBt407_0422 and ΔBt407_1060, were grown and prepared according to protocol (4.13). The setup of the plates (table 5.3) was designed to get 16 replicates for each strain on every plate. The design with bactopeptone in between the lanes containing a *B. thuringiensis* 407 strain was done to control whether application of bacteria would spread from the designated well to wells adjacent to it, and practical control of the researcher. Eight identical plates were prepared in order to get two replicates for every time interval, 24h, 48h, 72h and 96h.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AH1423 (wt)</td>
<td>Bactopeptone (blank)</td>
<td>AH1539 (Δ0422)</td>
<td>Bactopeptone (blank)</td>
<td>AH1570 (Δ1060)</td>
<td>Bactopeptone (blank)</td>
<td>AH1423 (wt)</td>
<td>Bactopeptone (blank)</td>
</tr>
<tr>
<td>2</td>
<td>AH1539 (Δ0422)</td>
<td>Bactopeptone (blank)</td>
<td>AH1570 (Δ1060)</td>
<td>Bactopeptone (blank)</td>
<td>AH1539 (Δ0422)</td>
<td>Bactopeptone (blank)</td>
<td>AH1570 (Δ1060)</td>
<td>Bactopeptone (blank)</td>
</tr>
</tbody>
</table>

Table 5.3: Design of microtiter plate assay for surface biofilm formation for *B. thuringiensis* 407 and its isogenic gene deletion mutants ΔBt407_0422 and ΔBt407_1060.
The first biofilm assay revealed problems with the initial protocol. The HTS 7000 Bio Assay Reader used for OD measurements had a cutoff at OD 3. OD measurements of wt and Δ0422 strains after 48h and 72h exceeded the cutoff of the assay reader and every well had to be diluted 1:2.5 (50µl:125µl) in order to get a proper reading. Diluting the wells after solubilization with acetone/ethanol was performed quickly in order to avoid extensive vaporization. Following crystal violet staining of the biofilm structures, the degree of biofilm formation was measured by optical density measurements (4.13). Results are shown in figure 20.

![Figure 20: Microtiter plate biofilm assay, three different strains, AH1423 (Bt407 wildtype), AH1539 (ΔBt407_0422) and AH1570 (ΔBt407_1060) were grown in 32 wells each on two sets of microtiter plates for 24, 48, 72 and 96 hours. The wells were washed, stained with 1% crystal violet, solubilized with acetone/ethanol and optical density (OD) was measured at 492nm. Vertical bars indicate standard deviation from µ.](image-url)
This experiment showed significantly reduced biofilm formation by the ΔBt407_1060 mutant compared to wildtype after 24, 48 and 72 hours of incubation which is a strong indicator that Bt407_1060 is important for biofilm formation in B. thuringiensis 407. However, the experiment did not reveal any significant difference in biofilm formation by the ΔBt407_0422 mutant compared to wildtype, which is a difference from the previous, smaller study done by Annette Fagerlund where a small difference in biofilm formation could be seen after 24 hours.

5.3 Preparation of electrocompetent cells

In order to study complementation of Bt407_0422 and Bt407_1060 in the isogenic gene deletion mutants Bacillus thuringiensis 407 ΔBt407_0422 and ΔBt407_1060, as well as overexpression studies in B. thuringiensis 407 wildtype, it was necessary to prepare constructs where these two genes were inserted into expression vectors specially made for cloning in Bacillus strains, pHT304-pXyl and pHT304-18z. These vectors are constructed to express ampicillin resistance in both E. coli and Bacillus cereus, enabling the researcher to do the preliminary cloning work done in E. coli prior to transformation into B. cereus. This is an advantage since cloning and commercial kits are readily available for E. coli, whereas cloning work in B. cereus are more complicated (further information concerning these vectors, see 5.4.3 and 5.6.3). In order to perform electrotransformation of plasmid DNA in the cloning procedure, it was necessary to prepare electrocompetent cells of E. coli.

Electrocompetent E. coli, using the strain Escherichia coli (E. coli) XL-1 Blue, were made following lab protocol (4.2.1). After washing and storage at -80°C, ~40-50 µl cells from the new batch, as well as commercially prepared cells (TOP10, 3.1), were transformed with 10 pg of three different plasmids, pUC19, pMAD and pHT304-18z (3.1.2), 1000 µl SOC medium was added and the cells were incubated at 37°C for one hour. 1 µl, 10 µl and 100 µl cell-medium suspension were plated out in duplicate LB plates with 100 µg/ml ampicillin, and incubated at 37°C overnight. The cells were then counted using a colony counter (Gerber
Instruments), and colony forming units (CFU)/µg transformed DNA was estimated for the different plasmids. In order to estimate CFU/µg DNA, the mean of the three different plates (duplicate) were calculated and corrected for dilution. E.g. if 1 colony appeared on the LB plate after applying 1µl medium (1000µl=10pg):

$$\frac{1 \text{CFU}}{10 \text{pg DNA}} \cdot \frac{1 \times 10^6 \text{CFU}}{0.01 \mu g} = 1 \times 10^8 \text{CFU}/\mu g$$

CFU/µg for each plate was then estimated, and an overall mean calculated for each plasmid:

<table>
<thead>
<tr>
<th>pUC19</th>
<th>CFU electrocompetent cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>1µl medium</td>
<td>18.5</td>
</tr>
<tr>
<td>10µl medium</td>
<td>372.5</td>
</tr>
<tr>
<td>100µl medium</td>
<td>2543</td>
</tr>
<tr>
<td>Mean CFU/µg DNA</td>
<td>2.706x10^7CFU/µg</td>
</tr>
</tbody>
</table>

Table 5.4: Estimation of CFU/µg DNA after transformation of 10pg pUC19 plasmid into *E. coli* and corrected for dilution (see above for calculation).

<table>
<thead>
<tr>
<th>pMAD</th>
<th>CFU electrocompetent cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>1µl medium</td>
<td>5</td>
</tr>
<tr>
<td>10µl medium</td>
<td>47</td>
</tr>
<tr>
<td>100µl medium</td>
<td>540</td>
</tr>
<tr>
<td>Mean CFU/µg DNA</td>
<td>5.033x10^8CFU/µg</td>
</tr>
</tbody>
</table>

Table 5.5: Estimation of CFU/µg DNA after transformation of 10pg pMAD plasmid into *E. coli* and corrected for dilution (see above for calculation).
Table 5.6: Estimation of CFU/µg DNA after transformation of 10pg pHT304-18z plasmid into *E. coli* and corrected for dilution (see above for calculation).

<table>
<thead>
<tr>
<th></th>
<th>CFU electrocompetent cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>pHT304-18z</td>
<td></td>
</tr>
<tr>
<td>1µl medium</td>
<td>2</td>
</tr>
<tr>
<td>10µl medium</td>
<td>34</td>
</tr>
<tr>
<td>100µl medium</td>
<td>512</td>
</tr>
<tr>
<td>Mean CFU/µg DNA</td>
<td>4.26x10⁸CFU/µg</td>
</tr>
</tbody>
</table>

The estimated CFU/µg for this batch was satisfactory, and the cells were expected to work well during the following cloning procedures. The results indicated that the transformation efficiency of the different plasmids varied, pUC19 (table 5.4) was the most efficient plasmid, and vastly more efficient compared to the vector pMAD (table 5.5).

Table 5.7: Estimation of CFU/µg DNA after transformation of 10pg pHT304-pXyl plasmid into *E. coli* and corrected for dilution (see above for calculation).

<table>
<thead>
<tr>
<th></th>
<th>CFU electrocompetent cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>pHT304-pXyl</td>
<td></td>
</tr>
<tr>
<td>1µl medium</td>
<td>12</td>
</tr>
<tr>
<td>10µl medium</td>
<td>103</td>
</tr>
<tr>
<td>100µl medium</td>
<td>972</td>
</tr>
<tr>
<td>Mean CFU/µg DNA</td>
<td>9.985x10⁸CFU/µg</td>
</tr>
</tbody>
</table>
5.4 Cloning of Bt407_0422 into pHT304-pXyl reporter vector

In order to study complementation of Bt407_0422 in Bacillus thuringiensis 407 ΔBt407_0422 and overexpression of Bt407_0422 in B. thuringiensis 407 wt, it was decided that the gene Bt407_0422 first would be cloned in a TOPO II vector and transferred, after proper verification of correct sequence, into the expression vector pHT304-pXyl. The Bt407_0422 – pHT304-pXyl construct would then be transferred to the various strains of B. thuringiensis 407 for the functional studies concerning biofilm formation.

The pHT304-pXyl vector is a shuttle vector constructed for cloning in B. thuringiensis and E. coli; it contains two antibiotic resistance markers, an ampicillin resistance gene functional in E. coli and an erythromycin resistance gene functional in both E. coli and B. thuringiensis [71]. Additionally, this particular vector contain the xylA promoter from Bacillus subtilis, which is induced by increasing xylose concentrations, reaching a plateau at 16,7mM [91].

5.4.1 PCR

Initial PCR (4.5) amplification of the Bt407_0422 gene was performed with primers Bt407_0422-F-XbaI/Bt407_0422-R-KpnI (3.3), which would initiate replication upstream and downstream of the gene Bt407_0422 in the B. thuringiensis 407 genome. A genome prep made from B. thuringiensis 407 was used as template. The length of the PCR product was expected to be ~1816bp. 10µl of the PCR product was applied to a gel (4.6) for control, along with a negative control lacking template DNA. The PCR product was of the expected size (figure 21).

![Figure 21: Lanes: 1: 1kb st. (Fermentas), 2: PCR product Bt407_0422 . Lane 3: Negative control without genome as template, no bands (not shown)]
5.4.2 TOPO cloning

For the next step, it was desirable to clone the Bt407_0422 PCR product into a TOPO vector to be able to do qualitative control of the Bt407_0422 fragment prior to transfer into the shuttle vector pHT304-pXyl. The PCR product was inserted into a TOPO II vector following standard protocol (4.12). The Bt407_0422 – pHT304-pXyl construct was then transformed into electrocompetent *E. coli* XL-1 blue MRF- cells (4.11.1) and incubated on LB plates containing 100 µg /ml ampicillin / 50 µg/ml kanamycin / 80µg/ml x-gal. Ten white colonies were picked and controlled using colony PCR (4.5) with primers S2_pUC19R/00330-Bt407_0422-R2 (3.3) and controlled by agarose electrophoresis for size and specificity (4.6). The expected size of the PCR product was ~673bp.

![Figure 22: Colony PCR of the Bt407_0422 – TOPO construct. Lanes: 1: 100bp st. (Fermentas), lanes 2-11: PCR products from colony 1-10 picked from LB plates.](image)

Electrophoresis showed that nearly all colonies seemed to contain the desired PCR product - TOPO plasmid (figure 22), but it was speculated that some of the wells were overflowed after application of reactions on the gel. Two colonies were prepared for miniprep and restriction testing, while four other were prepared for glycerol stocks.
5.4.3 Restriction testing

Plasmid minipreps were prepared (4.3.2) from the two colonies from lane 3 and 7, and were tested by restriction digestion using enzymes EcoRV and KpnI (4.7). The colony from lane 7 had expected sizes after analysis by agarose electrophoresis (4.6)(figure 23 and 24) whereas the colony from lane 3 lacked the KpnI restriction site.

![Figure 23: In silico restriction test, expected band size with EcoRV, KpnI and XbaI restriction enzymes](image)

![Figure 24: Restriction test of 2 colonies containing Bt407_0422- TOPO. Lanes: 1: 1kb st. (Fermentas), 2: Colony 1 cut with EcoRV, 3: Colony 2 cut with EcoRV, 4: Colony 1 cut with KpnI, 5: Colony 2 cut with KpnI, 6-7: Colony 1 and 2 without restriction enzymes.](image)

It was decided to proceed with a large digest and subcloning the Bt407_0422 insert from the colony from lane 7 into the pHT304-pXyl expression vector.
5.4.4 Subcloning of Bt407_0422 in pHt304-pXyl vector

In order to express Bt407_0422 in *B. thuringiensis* 407, we wished to move the cloned Bt407_0422 fragment from the Bt407_0422 – TOPO vector to pHt304-pXyl. Bt407_0422-TOPO and pHt304-pXyl were both double digested with XbaI and KpnI and separated on a preparative agarose gel (4.6). The XbaI/KpnI double digest had produced DNA bands of the expected sizes (figure 25).

![Figure 25: Large restriction digest. Lanes: 1: Bt407_0422 –TOPO double digested with XbaI and KpnI, 2: Uncut pHt304-pXyl vector, 3: 1kb st. (Fermentas), 4: pHt304-pXyl double digested with XbaI and KpnI. The Bt407_0422 band can be seen on the left (~2000bp) and was excised. It was separated from the TOPO vector and uncut vector (~4000-6000bp). On the right, the pHt304-pXyl vector is separated from uncut vector (top band on the right) and was excised.](image)

As can be seen in figure 25, the Bt407_0422 fragment (~2000bp) was separated from the TOPO vector and uncut vector, and was excised carefully from the gel. The digested pHt304-pXyl vector (clearly visible band with ~8000bp) was separated from uncut vector (top band) and was also excised from the gel. Both DNA fragments were purified by using a commercial PCR purification kit (4.3.1) and concentrations of DNA was measured using both spectrophotometry (4.4.1) and quantitative gel electrophoresis (4.4.2).
The next step was to ligate the digested Bt407_0422 insert with the digested pHt304-pXyl vector. Two reactions were set up, one reaction with 1:3 molar ratio of vector/insert and one reaction with 1:5 molar ratio, and ligated overnight at 16°C (4.8). Ligation reactions were then dialyzed on filter paper for 30 minutes, transformed into electrocompetent *E. coli* (4.11.1) and plated out on LB plates containing 100µg/ml ampicillin / 200µg/ml erythromycin. No colonies were detected after 24 hours of growth at 37°C. A second identical cloning experiment did not produce any colonies.

It was discovered that the Bt407_0422-TOPO construct did not contain the restriction site for *XbaI* when the Bt407_0422 – TOPO vector was tested with *XbaI* and *KpnI* separately. The reason why this was not discovered earlier was that the BC0422-TOPO vector contains two restriction sites for both *XbaI* and *KpnI* (figure 26) which are located close to each other. When *XbaI* was not present, the fragment produced by digest with *KpnI* would still be approximately the same length and, therefore, not possible to discover with a double digest.

![Figure 26: Bt407_0422 – TOPO vector with restriction sites marked. The Bt407_0422 insert is located from the *XbaI* site (340) to the *KpnI* site (2148).](image)
Unfortunately, the original restriction test did not include XbaI, only KpnI and EcoRV. Restriction tests with XbaI and KpnI on minipreps from the four untested, positive colonies (5.3.3) turned out to be negative. It was decided to start the cloning procedure with a new PCR amplification of the Bt407_0422 gene in *B. thuringiensis* 407.

Cloning of Bt407_0422 PCR product and insertion into TOPO vector was done as previously described (5.4.1-5.4.3). Minipreps from four colonies supposed to contain Bt407_0422 – TOPO was prepared (4.3.2) and restriction tested with XbaI, KpnI and EcoRI (figure 27). Two of the colonies turned out to have both restriction sites intact, and the DNA fragments had the correct size. It was decided to proceed with colony 4.

Two new attempts at ligating the Bt407_0422 fragment with the pHT304-pXyl vector did not give any colonies (not shown). Visual inspection of the LB plates after ligating the fragments, transformation into *E. coli* and 24 hours of growth at 37°C showed a viscous layer of cell debris. It was attempted to streak samples of this layer onto fresh LB plates containing 100µg/ml ampicillin / 200µg/ml erythromycin, but no colonies were detected. It was then discovered by comparing protocols in the lab that the erythromycin concentration for growth
of *E. coli* containing pHT304-pXyl constructs preferably should’ve been 400µg/ml, not 200µg/ml.

A fourth attempt resulted in several colonies (>100) on the plates after 24 hours of growth. Colony PCR with primers pHT304-pXyl_forward/00330-Bt407_0422-R2, which would amplify a part of the pHT304-pXyl vector and a part of the Bt407_0422 fragment (expected size 780bp), turned out negative for 19 colonies. A positive control with an empty vector turned out to be positive (figure 28).

![Figure 28: Colony PCR of colonies supposed to contain Bt407_0422 – pHT304-pXyl. Lanes: 1: 100bp st. (Fermentas), 2-18: Colony 1-18, 19: Positive control with empty vector (pHT304-pXyl), 20: 100bp st. (Fermentas)](image)

In order to understand what plasmid was present in the colonies that appeared on the plates, several tests were done. A miniprep was prepared for one colony (4.3.2) and tested with *XbaI* and *KpnI*, but no DNA bands were detected after gel electrophoresis (4.6, not shown).

A colony PCR with three different primer sets (pHT304-pXyl_forward/S2_pUC19R, S1_pUC19F/S2_pUC19R and Bt407_0422-XbaI-forward/00330-Bt407_0422-R2) turned out negative (not shown).

However, an identical cloning procedure done by Annette Fagerlund gave several colonies. It was discovered that colonies would develop both after 24 and 48 hours of growth, all colonies tested previously was picked after 24 hours. In this cloning experiment, colonies were counted after 24 hours and 48 hours, and 40 colonies that appeared after 48 hours were tested by colony PCR with primers pHT304-pXyl_forward/00330-Bt407_0422-R2.
The colony PCR, done by Annette Fagerlund, showed that >20 colonies contained the Bt407_0422- pHT304- pXyl construct (not shown). It was decided to proceed with four colonies. Minipreps were made (4.3.2), and each plasmid prep was restriction tested with XbaI-KpnI (double digest), EcoRV, SacI and a non-digested miniprep to be able to separate digested and non-digested DNA (figure 29 and 30). All four colonies had the expected number and sizes of bands.

Figure 29: In silico restriction test, expected band sizes after digest with 3 enzymes in Bt407_0422- pHT304-pXyl construct

Figure 30: Restriction test of four colonies supposed to contain Bt407_0422 – pHT304-pXyl. Lanes: 1: 1kb st. (Fermentas), 2-5: Colony 1 cut with KpnI-XbaI, EcoRV, SacI and uncut, 6-9: Colony 2 with KpnI-XbaI, EcoRV, SacI and uncut, 10-13: Colony 3 cut with KpnI-XbaI, EcoRV, SacI and uncut, 14-17: Colony 4 cut with KpnI-XbaI, EcoRV, SacI and uncut, 18: 1kb st. (Fermentas).
5.4.5 Sequence analysis

It was decided to proceed with colony 1. Plasmid DNA was prepared for sequencing (4.10) with primers pHT304-pXyl_forward, S2_pUC10R, 00330-Bt407_0422-F2 and 00330-Bt407_0422_R2. The first and second primers are located upstream and downstream of the Bt407_0422 insert while the third and fourth primers are located inside the Bt407_0422 fragment, with opposite directions. Analysis (Appendix 4) revealed two mutations in the Bt407_0422 sequence compared to the published sequence in Genebank. Since the cloning procedure up to this point had been difficult, it was decided to apply in vitro mutagenesis (4.9) to correct the mutations.

5.4.6 First mutagenesis

For the first mutation, a miniprep (4.3.2) of Bt407_0422-pHT304-pXyl was prepared. Primer set Bt407_0422_mut1_F/Bt407_0422_mut1_R (3.3) was used in the first mutagenesis. Following the Quikchange II protocol (4.9.2), 4µl of the sample and control (reaction identical to sample except that no primers are added) reaction, respectively, were transformed into electrocompetent E. coli XL-1 blue MRF cells (4.11.1) and plated on LB plates containing 100µg/ml ampicillin / 400µg/ml erythromycin. After incubation for 24 hours at 37°C, sample and control plates were counted. There were ~5x more colonies on the sample plates compared to control. This is a control of whether the restriction enzyme DpnI successfully digested the plasmids replicated in E. coli while leaving the newly synthesized plasmids from the PCR intact. Six colonies were picked and minipreps prepared (4.3.2). Samples from the six minipreps were sent for DNA sequencing with S2_pUC19R as primer. This primer is located downstream of the Bt407_0422 gene in the Bt407_0422 – pHT304-pXyl vector. Analysis (Appendix 5) showed that the mutation had been corrected for colony 3, 4 and 6.
5.4.7 Second mutagenesis

For the second mutation, a miniprep of Bt407_0422- pHT304-pXyl from colony 3 from the first mutagenesis (5.4.6) was prepared. Primer set Bt407_0422_mut2_F/Bt407_0422_mut2_R (3.3) was used in the second mutagenesis. Following the Quikchange II protocol (4.9.2), 4µl of the sample and control reaction (reaction identical to sample except that no primers are added) were transformed into electrocompetent E. coli XL-1 blue MRF cells (4.11.1) and plated out on LB plates with 100µg/ml ampicillin/400µg/ml erythromycin. After incubation for 24 hours at 37°C, sample and control plates were counted. The amount of colonies on the sample and control plates was ~equal. This is a control of whether the restriction enzyme DpnI successfully digested the plasmids replicated in E. coli while leaving the newly synthesized plasmids from the PCR intact. In this case, the procedure had seemingly not been able to eradicate the original, mutated vector. Minipreps from four colonies were prepared and sent to sequence with S2_pUC19R as primer. This primer is located downstream of the Bt407_0422 gene in the Bt407_0422 – pHT304-pXyl vector. Analysis (Appendix 6) of the four sequences showed that colony 2 and 4 no longer contained any of the two original mutations (5.4.5). Colony 2 from this procedure was chosen for further work. Bt407_0422-pHT304-pXyl from this colony was transformed into electrocompetent E. coli XL-1 Blue MRF (4.11.1), and glycerol stocks were prepared and stored at -80°C (registered as AH1661 in the AH registry).
5.5 Complementation of *Bacillus thuringiensis* 407 ΔBt407_0422 and ΔBt407_1060 gene deletion mutants

Biofilm assays done with *Bacillus thuringiensis* 407 ΔBt407_0422 and ΔBt407_1060 isogenic gene deletion mutants and wild type strains had previously shown that the deletion of Bt407_1060 seemingly resulted in impaired biofilm formation (5.2).

In order to determine the role of Bt407_0422 and Bt407_1060 in biofilm formation in *B. thuringiensis* further, constructs of Bt407_0422-pHT304-pXyl and Bt407_1060-pHT304-pXyl were transformed into wildtype (wt) and gene deletion mutant strains of Bt 407 for over-expression and complementation studies on biofilm formation over time using the microtiter plate assay (4.13).

5.5.1 *B. thuringiensis* 407 (Bt 407) variant strains

In order to do complementary/over-expression studies, 10 variants of the *B. thuringiensis* 407 (Bt 407) strain were needed.
Table 5.8: Schematic overview over Bt 407 variant strains for use in the biofilm screening to determine the effect of Bt407_0422 and Bt407_1060 on biofilm formation.

5.5.2 Electrotransformation of insert-reporter vectors into Bt407

The two gene deletion mutants of Bt 407 had been prepared by Annette Fagerlund prior to the thesis. Stock strains AH1660 (Bt407_1060 - pHT304-pXyl in E. coli XL-1 blue MRF, construct cloned by Annette Fagerlund) and AH1661 (Bt407_0422-pHT304 - pXyl in E. coli
XL-1 blue MRF) were grown (4.1.1) and minipreps of both plasmids prepared prior to transformation (4.3.2).

Bt 407 wildtype, Bt 407Δ0422 and Bt 407Δ1060 were prepared for electrotransformation (4.2.2). ~50µl cells were mixed with vector, transformed (4.11.2) and plated on LB plates with 10µg/ml erythromycin. The plates were grown over night at 30°C. Two to three colonies were picked and streaked onto new LB plates containing 10µg/ml erythromycin and grown for another 24 hours at 30°C. One to ten colonies were then inoculated in 50µl LB medium, 5µl of the inoculate was used to inoculate 5ml LB to prepare glycerol stocks, while 45µl was heated at 94°C for 15 minutes and 1µl was then used as template for colony PCR. Primers were chosen to give PCR products <1000bp.

Cells transformed with pHT304-pXyl were screened using primer set pHT304-pXyl_forward/ S2_pUC19R. The expected size of the PCR product was 327bp.

Cells transformed with Bt407_0422-pHT304-pXyl were screened using primer set pHT304-pXyl_forward/ 00330-Bt407_0422-R2. The expected size of the PCR product was 800bp.

Cells transformed with Bt407_1060-pHT304-pXyl were screened using primer set S2_pUC19R/02561_F2. The expected size of the PCR product was 800bp.

Altogether, the five transformations (designated AH1684, AH1686, AH1688, AH1689 and AH1690) were performed in the first round of experiments, and all five were transformed successfully (figure 31).

The two remaining Bt 407 variant strains, Bt 407 wildtype + Bt407_0422 - pHT304-pXyl and Bt 407 Δ0422 + Bt407_0422 - pHT304-pXyl, were subsequently successfully transformed afterwards (designated AH1685 and AH1687), similar to the first Bt 407 variant strains (figure 32). Three glycerol stocks were prepared of each of the seven clones, and stored at -80°C.

Figure 32: Colony PCR of colonies of *B. thuringiensis* 407 strains with Bt407_0422 - pHT304-pXyl. Lanes: 1: 100bp st. (Fermentas), 2-4: AH1423 (Bt 407 wildtype) + Bt407_0422 - pHT304-pXyl, 5-7: AH1539 (Bt 407Δ0422) + Bt407_0422 - pHT304-pXyl.
5.5.3 Optimization of xylose concentration for overexpression and complementation studies

To be able to do overexpression and complementation studies with Bt 407-based strains containing the Bt407_4022 and Bt407_1060 - pHT304-pXyl, it was necessary to do a xylose titration study to ascertain the xylose concentration needed for appropriate expression levels.

The experimental setup of the microtiter plate screening assay is shown in table 5.9. We started out doing a complementation study of Bt 407Δ1060 with Bt407_1060 - pHT304-pXyl (AH1689) set up according to the protocol (4.13). To be certain that the pHT304-pXyl vector itself did not change biofilm formation, Bt 407Δ1060 with pHT304-pXyl (AH1686) was included for control. Four identical microtiter plates were set up, and biofilm formation was measured after 24, 48, 72 and 96 hours, respectively (4.13).

However, the biofilm formation at the air-liquid interface for this assay was highly unstable. Visual inspection of the plates, after initial wash and staining with crystal violet, showed that large fragments of biofilm ring had been lost during plate handling. The results from OD measurements of the Bt 407 wt, Bt 407Δ0422 and Bt 407 Δ1060 strains did not comply with results generated in previous assays in the lab (5.2). The unstable biofilms were observed in every well, both the strains where xylose was added and the strains without xylose.
Table 5.9: Microtiter plate design for complementation assay for deletion of Bt407_1060 with Bt 407 wildtype, Bt 407Δ0422 and Bt 407Δ1060 strains. AH1689: Bt407Δ1060 with Bt407_1060-pHT304-pXyl, AH1690: Bt407Δ1060 with pHT304-pXyl. Wells containing bacteria carrying plasmids were added 10µg/ml erythromycin.

A repeated biofilm assay designed in the same manner as the first xylose titration assay (5.5.3, table 5.9) showed the same problems with biofilm stability, as did a similar complementation titration assay with the Bt407Δ0422 strains containing the Bt407_0422-pHT304-pXyl plasmid.
5.5.4 Control of biofilm assay method

To control whether another external unknown factor was affecting biofilm formation, a microtiter plate assay was set up in the same manner as the previous biofilm screening assay with Bt 407 wildtype (AH1423) and Bt 407Δ0422 (AH1539)/ Bt 407Δ1060 (AH1570) gene deletion mutant strains. Visual inspection and OD measurements showed no problem with biofilm stability after 24 hours of growth at 30°C (figure 33). This small study did not show the significant difference between Bt 407 wt and Bt 407Δ1060 on biofilm formation as was observed in the biofilm screening assay described in 5.2, but the aim here was to ascertain whether the biofilm formation was disrupted in the same manner as the xylose titration assays or not. No such disruption was observed.

![Figure 33: Control of biofilm screening assay results using Bt 407 wt (AH1423), Bt 407Δ0422 (AH1539) and Bt 407Δ1060 (AH1570). The bacteria were applied to a microtiter plate (8 wells each) for 24 hours of growth at 30°C, washed, stained and OD measured as stated in the protocol (4.13).]
Since no problems were present in the biofilm assay described above, it was speculated that xylose or erythromycin could have a destabilizing effect on biofilm formation since only the biofilm assays where these two chemical components were present exhibited unstable biofilm formation. A second theory was that the design of the plates itself, with wells containing bacteria adjacent to each other could result in biofilm instability. The stable biofilm screening assays had wells containing bactopeptone medium to separate the wells containing bacteria. The third theory was that the bactopeptone medium used was not prepared correctly. A 24h and 48h control of these three theories did not resolve the biofilm instability issue (not shown).

5.6 Cloning of promoter regions for Bt407_0422 and Bt407_1060 into pHT304-18z reporter vector to create lacZ fusion constructs

In order to study the regulation of Bt407_0422 and Bt407_1060 in *Bacillus thuringiensis* 407, it was decided that the promoter regions identified upstream of these two genes that was similar to the Bc1 and Bc2 riboswitches described by Sudarsan [63] should be cloned in a TOPO II vector and transferred, after proper verification of correct sequence, to the reporter vector pHT304-18z in order to do lacZ studies.

pHT304-18z is a shuttle vector constructed for cloning in *B. thuringiensis* and *E. coli*. It contains two antibiotic resistance markers, an ampicillin resistance gene functional in *E. coli* and an erythromycin resistance gene functional in both *E. coli* and *B. thuringiensis*. It also contains a promotorless lacZ gene which codes for a β-galactosidase enzyme [71].
5.6.1 PCR

Promoter regions, hereby designated as promBt407_0422 for the promoter region upstream from Bt407_0422 and promBt407_1060 for the promoter region upstream from Bt407_1060, were amplified by PCR (4.5) with primers P-Bt407_0422-F/P-Bt407_0422-R for promBt407_0422 and P-Bt407_1060-F/P-Bt407_0422-R for promBt407_1060 (3.1.3), using genome DNA from *B. thuringiensis* 407 as template. The estimated lengths of the PCR products were expected to be 498bp and 404bp, respectively.

10µl of the PCR products were applied on an agarose gel for electrophoresis, along with a negative PCR control lacking template DNA (figure 34) for each primer set.

![Figure 34: Initial PCR of promBt407_0422 and promBt407_1060. Lanes: 1: 100bp st. (Fermentas), 2: PCR product of promBt407_0422, 3: Negative control of PCR of promBt407_0422 without genome as template, 4: PCR product of promBt407_1060, 5: Negative control of PCR of promBt407_1060 without genome as template.](image)

5.6.2 TOPO cloning

The PCR products covering the promoter regions (5.6.1) were then inserted into a TOPO II vector (4.12), hereby designated promBt407_0422 – TOPO and promBt407_1060 – TOPO,
respectively, and the constructs were transformed into electrocompetent *E. coli* XL-1 blue MRF- cells (4.11.1) and plated on LB plates containing 100µg/ml ampicillin / 50µg/ml kanamycin. Several colonies were picked and screened by colony PCR (4.5) with primers S2_pUC19R/P-Bt407_0422-R for promBt407_0422 and S2_pUC19R/P-Bt407_1060-R for promBt407_1060 (3.1.3). The PCR products were checked on agarose gels for size and specificity. The expected sizes of the PCR products were 643bp and 549bp, respectively. The colony PCR revealed one positive colony for each promoter region (figure 35 and 36).

![Figure 35](image1)

Figure 35: Colony PCR of colonies supposed to contain promBt407_0422 – TOPO. Lanes: 1: 100bp st. (Fermentas), 2-11: Colony 1-10.

![Figure 36](image2)

Figure 36: Colony PCR of colonies supposed to contain promBt407_1060 – TOPO. Lanes: 1: 100bp st. (Fermentas), 2-11: Colony 1-10.

5.6.3 Restriction test

In order to verify whether the promoter regions had been inserted correctly into the TOPO vector, restriction digest tests were done using enzymes known to be present in the
promBt407_0422 – TOPO and promBt407_1060 plasmids. Plasmid minipreps of each promoter- TOPO construct were prepared (4.3.2).

A restriction test (4.7) with a 1:10 dilution of the minipreps, using BamHI and EcoRI for each promoter, gave bands with correct sizes for promBt407_1060 - TOPO, but not for promBt407_0422 – TOPO (figure 37,38 and 39).
An additional restriction test using plasmid DNA from two additional colonies supposed to contain
promBt407_0422 – TOPO, using the enzymes \textit{BamHI} and \textit{EcoRI}, respectively,
resulted in the identification of one positive clone (figure 40).

Figure 39: Restriction test of minipreps made from 2 colonies supposed to contain
photos show the same gel, but more light is applied to the photo on the right to
iluminate the 438bp band produced when promBt407_1060 - TOPO is digested with
\textit{BamHI}.

Figure 40: Restriction test of minipreps made from 2 colonies supposed to contain
promBt407_0422 – TOPO. Lanes: 1: 1kb st. (Fermentas), 2: Colony 1 cut with
\textit{BamHI}, 3: Colony 2 cut with \textit{BamHI}, 4: Colony 1 cut with \textit{EcoRI}, 5: Colony 2 cut with \textit{EcoRI}, 5: Uncut miniprep from colony 1, 6: Uncut miniprep from colony 2.
An additional restriction test with \textit{PstI} and \textit{SspI} for the previously identified, positive colonies for each promoter gave a positive result (not shown). It was decided to continue to transfer the promoter to the reporter vector, pHT304-18z.

5.6.4 Large digest, cutting, purification and ligation of insert and reporter plasmids

The aim of the next step was to digest promBt407_0422 - TOPO and pHT304-18z with \textit{BamHI} and \textit{HindIII}, purify and finally ligate the DNA fragments together. Similarly, promBt407_1060-TOPO and pHT304-18z would be digested with \textit{BamHI} and \textit{PstI} and be purified and ligated (table 5.10).

<table>
<thead>
<tr>
<th>promBt407_0422-TOPO</th>
<th>pHT304-18z</th>
<th>promBt407_1060-TOPO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digest with BamHI</td>
<td></td>
<td>Digest with PstI</td>
</tr>
<tr>
<td>DNA purification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>promBt407_0422-TOPO</td>
<td>pHT304-18z</td>
<td>promBt407_0422-TOPO</td>
</tr>
<tr>
<td>digested with BamHI</td>
<td>digested with BamHI</td>
<td>digested with BamHI</td>
</tr>
<tr>
<td>Digest with HindIII</td>
<td>Digest with PstI</td>
<td></td>
</tr>
</tbody>
</table>

Tabell 5.10: Schematic overview of transfer of inserts to reporter vector

Both inserts (~25µg) and reporter vector (~2µg) was digested with \textit{BamHI}. All reactions were purified using a commercial DNA purification kit (3.7). The reporter vector sample was digested with \textit{BamHI} and equally split into two different reactions; one reaction was digested with \textit{HindIII} and one reaction with \textit{PstI} (table 5.10). The double digested vector samples were then separated on a 0.7% SeaKem GTG preparative agarose gel (4.6)(figure 41).
Figure 41: Large restriction digests. Lanes: 1: pHT304-18z digested with BamHI and HindIII, 2: uncut vector, 3: 1kb st. (Fermentas), 4: pHT304-18z digested with BamHI and PstI

BamHI- digested promBt407_0422 - TOPO and promBt407_1060 - TOPO were then digested with HindIII and PstI, respectively, and separated on a 1.2% NuSieve GTG preparative agarose gel (4.6)(figure 42).

Figure 42: Large digest of promBt407_0422 – TOPO and promBt407_1060 – TOPO. Lanes: 1: promBt407_0422 –TOPO digested with BamHI and HindIII, 2: 100bp st. (Fermentas), 3: promBt407_1060 – TOPO digested with BamHI and PstI.

DNA bands were excised from the gels and purified with a commercial DNA purification kit (4.3.1). After purification of DNA from the gel, the different DNA fragments were quantified by spectrophotometry or quantitative gel electrophoresis (4.4.1 and 4.4.2). Two ligation reactions were set up, one with 1:3 molar ratio of vector/insert and one with 1:5 molar ratio of vector/insert. The reactions were then ligated at 16°C overnight (4.8). The ligation
reactions were then dialyzed on filter paper for 30 minutes the next day, transformed into *E. coli* (4.11.1) and plated on LB plates containing 100µg/ml ampicillin / 200µg/ml erythromycin / 80µg/ml X-gal. After incubation at 37°C overnight, no colonies were detected.

An additional restriction test revealed that promBt407_0422-TOPO and promBt407_1060-TOPO had both restriction digest sites intact (not shown). However, sequence analysis revealed a single mutation in the promoter region of promBt407_1060-TOPO (appendix 1 and 2). An additional analysis of the original PCR template turned out to contain no mutations (appendix 5). It was decided to start the cloning procedure for promBt407_1060 from the beginning, following the same protocol. A miniprep of promBt407_1060-TOPO was generated from a new colony, and restriction tested with *BamHI, PstI* and *SspI* (not shown). It was decided to again attempt to transfer the promoter regions to the pHT304-pXyl reporter vector.

Two addition attempts turned out negative, visual inspection of the LB plates showed a viscous layer of cell debris on the plates. The third attempt included several ligation controls where the vector pHT304-18z was digested with *BamHI* and ligated together, as well as double digested promBt407_0422 – TOPO and promBt407_1060 was transformed without ligase added to the ligation reaction. The controls suggested that nothing was wrong with the procedure. It was then discovered by comparing protocols in the lab that the erythromycin concentration for growth of *E. coli* containing pHT304-18z constructs preferably should’ve been 400µg/ml, not 200µg/ml.

For the last attempt, the amount of erythromycin was changed from 200 to 400µg/ml erythromycin. Transformed cells plated on LB plates containing 100µg/ml ampicillin / 400µg/ml erythromycin / 80µg/ml X-gal gave several colonies (>100) for both promBt407_0422 - pHT304-18z and promBt407_1060 - pHT304-18z constructs.
5.6.5 Colony PCR screening of pHT304-18z constructs

Twenty colonies of each construct were picked and screened by colony PCR using primers PU and OVG (3.1.3). The PU primer is located upstream from the insert site in pHT304-18z while OVG is located downstream. The expected size of the PCR products was between 500-1000bp. Electrophoresis (figure 43 and 44) indicated that none of the colonies contained the expected constructs.

![Figure 43: Colony PCR of colonies supposed to contain promBt407_0422 - pHT304-18z. Lanes: 1: 100bp st. (Fermentas), 2-21: Colony 1-20, 22: 100bp st. (Fermentas).](image1)

![Figure 44: Colony PCR of colonies supposed to contain promBt407_1060 - pHT304-18z. Lanes: 1: 100bp st. (Fermentas), 2-19: Colony 1-18, 20-21: Positive control with midiprep of empty vector (pHT304-18z), 22: 100 bp st. (Fermentas).](image2)

The colonies were screened by two additional primer sets each; both sets contained one primer upstream and one primer downstream of the insert site in pHT304-18z, but none of the PCR’s produced the expected bands, indicating that the clones did not carry the expecting
Plasmids. Plasmid minipreps were prepared (4.3.2) followed by restriction testing using

BamHI, HindIII and PstI, but no bands were detected after gel electrophoresis (4.6).

Due to lack of time, no further work was done on the promBt407_0422 and
promBt407_1060 inserts.
Chapter 6: Discussion

6.1 Role of Bt407_0422 and Bt407_1060 in biofilm formation by *B. thuringiensis* 407

Preliminary results by Annette Fagerlund indicated that gene deletion of Bt407_1060 in *B. thuringiensis* 407 resulted in lower biofilm formation after 24, 48 and 72 hours of growth compared to wt. Gene deletion of Bt407_0422 seemed to result in a slightly lower biofilm formation after 24 hours compared to wt, but not after 48 and 72 hours.

6.1.1 The role of Bt407_1060 in biofilm formation by *B. thuringiensis* 407

The more extensive screening performed for this thesis (5.2.2) confirmed that gene deletion of Bt407_1060 in *B. thuringiensis* 407 results in significantly lower biofilm formation after 24, 48 and 72 hours using a microtiter plate screening assay *in vitro* (4.13). However, the mutant was able to produce biofilm to a certain extent. Bt407_1060 should, therefore, be considered an important/highly influential gene in biofilm formation by *B. thuringiensis* 407, but not essential.

BLAST search of the protein sequence (5.1.1) revealed that orthologs of Bt407_1060 are not heavily distributed throughout the nineteen strains with closed genomes included in the search, and the presence of these orthologs did not absolutely correlate with strong biofilm producer capabilities (table 6.1). A biofilm producing strain such as *B. cereus* ATCC 10987 did not contain any Bt407_1060 ortholog, which means that Bt407_1060 is not a determining factor of biofilm formation in this strain.
<table>
<thead>
<tr>
<th>Strains</th>
<th>Biofilm</th>
<th>Bt407_1060 ortholog</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacillus cereus ATCC 10987</td>
<td>Positive (+) [19, 90]</td>
<td>Not present</td>
</tr>
<tr>
<td>Bacillus cereus ATCC 14579</td>
<td>Negative (-) [90]</td>
<td>Present</td>
</tr>
<tr>
<td>Bacillus cereus AH187</td>
<td>Negative (-) [90]</td>
<td>Not present</td>
</tr>
<tr>
<td>Bacillus cereus NVH391-98</td>
<td>Negative (-) [90]</td>
<td>Not present</td>
</tr>
<tr>
<td>Bacillus thuringiensis 407</td>
<td>Positive (+) [90]</td>
<td>Present</td>
</tr>
<tr>
<td>Bacillus anthracis Sterne</td>
<td>Positive (+) [92]</td>
<td>Not present</td>
</tr>
</tbody>
</table>

Table 6.1: Overview of a selection of *B. cereus* group strains where data on 1) biofilm formation and 2) the presence of Bt407_1060 orthologs is available.

In order to explain the results from the functional studies, information regarding the putative properties of Bt407_1060 and knowledge of key factors in biofilm formation by *B. thuringiensis* 407 is important. Bt407_1060 and its orthologs in other sequenced strains were, initially, annotated as a collagen-binding protein. Analysis of the Bt407_1060 protein sequence (5.1.1) showed that it contains two domains which closely resemble the collagen-binding domain and Cna-like B-type domain characterized in *Staphylococcus aureus* [83], constituting the ligand binding domain and the domain responsible for elevation of the binding domain away from the cell wall, respectively. Furthermore, an LPXTG-motif was identified near the C-terminal which meant that it may be anchored extracellularly to the cell wall. Supporting this theory, a SignalP cleavage site was also discovered which meant that the protein may be transported by the general bacterial secretion apparatus (Sec). Based on these results, it seems probable that the initial annotation is correct and the Bt407_1060 protein may be involved in adhesion/cell-to-cell interactions, however, whether is the real ligand remains to be functionally established.

The importance of adhesion for establishing a monolayer attached to a surface and cell-to-cell interactions in development of multilayer biofilms is well known [32]. Not much
research has been done on protein-mediated adhesion by *B. cereus* and *B. subtilis*, biofilm research in *Bacillus* species have focused almost exclusively on components of the biofilm matrix and their regulators. However, it has been shown that *B. subtilis* SpoOA gene deletion mutants were not able to develop biofilm beyond a monolayer [93], and it was suggested that this effect was due to impaired cell-cell interaction. EPS and TasA, two components regulated by SpoOA and is secreted out of the bacterium, have been shown to be important since mutant strains are not able to produce a stable biofilm [40].

In other gram-positive bacteria, such as *S. epidermidis* and *S. aureus*, initiation of biofilm formation has been linked to cell-surface interactions [94]. Several studies have implicated a polysaccharide intercellular adhesin (PIA) to be important for cell-cell interactions and formation of cell aggregates on a surface [94, 95]. Deletion of the ica locus coding for this adhesin resulted in impaired biofilm formation compared to wildtype in one study [96]. Additionally, the protein Bap (biofilm associated protein) is a surface protein with adhesin properties that has been observed to affect biofilm formation on a polystyrene surface by *S. aureus* [62].

To conclude, results from screening assays indicate that Bt407_1060 may have a functional role in biofilm formation since a *B. thuringiensis* 407 ΔBt407_1060 mutant exhibited impaired biofilm formation. The theoretical adhesion properties of the Bt407_1060 protein, as well as the potential role of c-di-GMP in regulation of the expression of Bt407_1060, are intriguing since research concerning adhesion in biofilm formation by *Bacillus* species is scarce. However, complementation studies are necessary to rule out any possible polar effects from unexpected, additional mutations arising from the gene deletion procedure.

6.1.2 The role of Bt407_0422 in biofilm formation by *B. thuringiensis* 407

The more extensive screening in this thesis (5.2.2) showed no difference in biofilm formation between Bt 407 wt and the ΔBt407_0422 gene deletion mutant.
This is in conflict with previous preliminary assays where a small difference was observed during the first 24 hours of growth. Thus, it seems probable that Bt407_0422 is not an essential gene in biofilm formation by *B. thuringiensis* 407. However, the results do not rule out that an effect may be observed when applying other screening techniques.

Annotation in sequenced *B. cereus* group genomes indicated that the Bt407_0422 protein was a methyl-accepting chemotaxis protein (MCP). Analysis of the Bt407_0422 protein sequence (5.1.2) revealed a HAMP domain and other intracellular domains usually found in chemotaxis proteins. Furthermore, a signal cleavage site and two transmembrane regions were identified, indicating that the protein is transported by the general secretion apparatus (Sec) out of the cell and constitute a transmembrane protein, respectively. The positioning of these domains indicated that Bt407_0422 contains an extracellular helix with sensory functions and an intracellular region with signalling properties. This correlates well with the general model for methyl-accepting chemotaxis proteins [4] and the initial annotation is considered correct.

Chemotaxis is responsible for sensing chemical gradients in close proximity to the cell and, through intracellular signaling for motility towards favorable conditions by affecting the flagellar apparatus [97]. Bacteria usually contain several different receptors; 10 different chemotaxis receptors have been identified in *B. subtilis* which are able to sense a wide range of different ligands [97]. Methyl-accepting chemotaxis proteins undergo a conformational change after binding of ligand, and, through several signalling steps, result in phosphorylation of the effector protein CheY which determines the direction of flagellar rotation [4].

A role of chemotaxis in biofilm formation has not been described. One possibility could be that chemotaxis is required for the bacteria to swim towards nutrients associated with a surface. Chemotaxis is linked to, and influences motility by regulation of flagellar movement, but one study done in *E. coli* showed that motility and flagellar movement mutants produced a severely impaired biofilm while chemotaxis mutants produced biofilms similar to wt [98].
Transcriptional studies have indicated that genes encoding methyl-accepting chemotaxis proteins are highly activated during monolayer formation [31]. This suggests that chemotaxis may have a role either in further development into a multilayer biofilm or in dispersion of the biofilm, two actions which require motility.

B. thuringiensis 407 is motile, contains an extensive flagellar apparatus and shows swimming/swarming behaviour in vitro [99]. *B. subtilis* cells with a dysfunctional flagellar apparatus exhibit lower biofilm forming capabilities compared to wt [100]. In that study, chemotaxis is shown not to be a determining factor for biofilm formation. Thus, the results in *B. subtilis* correlate well with the results experienced with the ΔBt407_0422 mutant strain. The design of the microtiter plate screening assay for this thesis, however, is arguably not the ideal model to investigate whether the theoretical chemotaxis protein Bt407_0422 has an effect on biofilm formation. Since one of the key factors for initiation of biofilm formation by motile bacteria is the ability to move towards a surface or the air-liquid interface, the rotation during incubation could theoretically bring most cells in close proximity by rotational force.

To conclude, Bt407_0422 is a gene which is most likely coding for a methyl-accepting chemotaxis protein. However, functional studies did not show any effect on biofilm formation. This was not entirely unexpected since several studies on biofilm formation have concluded that chemotaxis was not essential for biofilm formation. Since it is possible to observe differences in biofilm formation behaviour in different screening systems [32], it would be interesting to perform additional studies in other systems where chemotaxis may be more favourably modelled.
6.1.3 The role of c-di-GMP on Bt407_1060 and Bt407_0422 in biofilm regulation

In gram-negative bacteria, the general effect of c-di-GMP on biofilm formation is that elevated c-di-GMP levels in the cell increase adhesion, while suppressing motility [66], causing a shift from a motile lifestyle to a biofilm-forming lifestyle. However, this seemingly doesn’t apply to the control of Bt407_0422 and Bt407_1060, where the opposite effect was seemingly found. Elevated c-di-GMP was found, by Sudarsan and co-workers, to increase Bc1 (c-di-GMP- responsive “on” switch) activity [63] which will increase Bt407_0422 expression and, therefore, potentially increase chemotaxis. Elevated c-di-GMP was found to decrease Bc2 (c-di-GMP- responsive “off” switch) activity [63] which will suppress Bt407_1060 expression and, therefore, potentially reduce adhesion [63]. Lower c-di-GMP will produce the opposite effects. C-di-GMP levels and regulatory processes in different environments in *Bacillus* species are, however, poorly investigated. It has been claimed that extracellular c-di-GMP added to the growth medium inhibits biofilm formation by *Staphylococcus aureus* [101]. This study is, however, more concerned about the action of c-di-GMP on cell-to-cell interaction and biofilm formation as a possible drug candidate, and the intracellular signalling during biofilm formation has not been properly investigated. In the paper, the researchers pondered whether the observed effect was due to extracellular rather than the more biologically relevant intracellular actions of c-di-GMP [101].

In order to enhance our understanding of Bt407_0422 and Bt407_1060, further studies on c-di-GMP level variations in *Bacillus* species would be of great interest and is one of the future aspects of this project (6.4).
6.2 Cloning procedure of Bt407_1060 and Bt407_0422 promoter regions in pHt304-18z vectors

The original aim, to produce constructs of the promoter regions of Bt407_0422 and Bt407_1060 with the pHt304-18z reporter vector, was not met. There are several reasons for this. The first, and most important reason, is the complexity of the cloning procedure itself which meant that initial negative results was more likely to be a result of imprecise laboratory technique. Although most procedures in the beginning included negative and/or positive controls if it was deemed prudent, troubleshooting was not always done after initial negative attempts.

The initial TOPO cloning procedure did not present any problems. The qualitative control of promoter-TOPO constructs, however, turned out to be insufficient. The procedure was based on restriction testing with a selection of enzymes, including the restriction sites incorporated in the primers for the initial PCR. Restriction testing is a fast and cheap technique that may reveal if the bulk of the DNA is correct, and if the expected restriction sites are present. However, point mutations in the sequence might be left undiscovered if DNA sequencing is not applied, as it did with the sequence for the promoter region for Bt407_1060. When obtained, it was discovered that two point mutations were present and the entire cloning procedure up to that point had to be redone.

The cloning procedures could then progress to the transfer of promoter regions from the TOPO vector to the pHt304-18z vector. Several attempts were made following the original protocol but no colonies were detected. This procedure was done twice prior to troubleshooting. Control of the ligation procedure with positive controls (single- cut vector which was ligated and produced colonies) and negative controls (double- cut vectors without insert and which produced no colonies) suggested no systematic problems with the procedure. Comparison of other lab protocols revealed that 400\(\mu \)g/ml erythromycin, not 200\(\mu \)g/ml as was stated in the original protocol, was prudent. A layer of cell debris had been
observed on the LB plates during previous attempts, the same phenomenon was observed with LB plates older than a month containing 400µg/ml erythromycin. One suggestion is that the previous attempts possibly were successful in joining the promoter regions with the reporter vector, but the lack of antibiotics might have resulted in low natural selection pressure which meant that bacteria not containing the plasmids were not eradicated as thorough as they should have been. However, the cloning attempts with 400µg/ml erythromycin turned out to only give contaminants, and extensive testing with colony PCR, using primers designed to detect the other vectors employed regularly in the lab, and restriction digests gave no answers to what these colonies contained. In other studies, such as the initial construction of the shuttle vector pHT304 [71], 150µg/ml erythromycin was used.

Due to time issues, focus was shifted from the cloning procedure to get the Bt407_0422 and Bt407_1060 pHT304-pXyl constructs ready for biofilm assay.
6.3 Complementation/overexpression of Bt407_0422 and Bt407_1060 proteins in *Bacillus thuringiensis* 407 (Bt 407)

In order to control whether the effect observed by the ΔBt407_1060 and ΔBt407_0422 gene deletion mutants was due to some other, external factor present, both genes were inserted into pHt304-pXyl expression vectors in order to do complementation studies in the mutant strains and overexpression in the Bt 407 wildtype strain. The cloning procedure was successful, but the necessary titration of xylose with the constructs was not.

6.3.1. Cloning of Bt407_0422 into pHt304-pXyl shuttle vector

The cloning of Bt407_0422 into pHt304-pXyl was riddled with similar problems as the promoter regions (6.2), however, there were some additional issues which had to be solved. At least two attempts of transferring the Bt407_0422 fragment to TOPO to pHt304-pXyl were performed before it was discovered that the restriction site for *XbaI* was missing from the TOPO construct. The reason for this may have been either an error in the primer itself, or a point mutation that developed later in the procedure. The cloning procedure up to this point had to be redone.

Although the attempts to transfer the Bt407_0422 insert into pHt304-pXyl were riddled with difficulties, one cloning attempt done by Annette Fagerlund was successful. Sequence analysis of these clones revealed two point mutations in the sequence. The most probable
reason for this was the use of Dynazyme II polymerase for the initial PCR reaction (Finnzymes, [102], an enzyme with less proofreading properties compared to e.g. *Pfu* (Promega, [103]) which contains 3’-5’ exonuclease activity. In the end, the mutations were dealt with using mutagenesis; the construct was finished and transformed into *E. coli* and *B. thuringiensis* 407.

6.3.2 Xylose titration of Bt407_0422 and Bt407_1060- pHT304- pXyl constructs

Xylose titration experiments, where the goal was to ascertain optimal concentrations of xylose in the bactopeptone medium for expression of Bt407_0422 and Bt407_1060 from the pHt304-pXyl shuttle vector, for complementation and overexpression studies, respectively, did not work. The reason for this is enigmatic. The biofilm assay performed satisfactory when comparing the ΔBt407_1060 and ΔBt407_0422 gene deletion mutant strains to wt, but even these strains, with no xylose or antibiotics added to the wells, produced unstable biofilms when xylose or antibiotics were added to other strains in other wells on the same microtiter plate. This particular effect was observed no less than three times, followed by a control screening with Bt 407 wt and the gene deletion mutants Bt 407 ΔBt407_1060 and ΔBt407_0422, where no xylose or antibiotics was added to the plate, which reproduced the formation of stable biofilms seen in the first screening assay experiment (5.2.2).

It was speculated whether xylose, or the presence of antibiotics for selection of bacteria containing plasmids, could have an inhibitory effect on biofilm formation. However, it is known that most *Bacillus* species utilize glucose, not xylose, as a carbon source [17]. Glucose is known to inhibit biofilm formation in *Bacillus subtilis* [53], but this mechanism does not seem to be affected by xylose, and there are no other data concerning this available. Additional experiments are absolutely required to resolve whether the effect of xylose, or antibiotics for plasmid selection, is truly inhibitory of biofilm formation for *B. thuringiensis*.
6.4 Future aspects

In the end, some of the aims of the thesis were met and some were not. There are several interesting possibilities to expand on the work done in this thesis. The first priority would be to ascertain the correct xylose concentration for the Bt407_0422 and Bt407_1060 – pH304-pXyl vectors and proceed with the complementation and overexpression studies. Due to the collected results from the functional studies, complementation of Bt407_1060 would be of great interest in order to ratify the results from the functional studies (5.2.2).

The next priority for future work on the biofilm project would be to finish the transfer of the promoter regions from the TOPO constructs to the pH304-18z reporter vector. The finished constructs could be used in lacZ studies to 1) investigate time of activation during growth or 2) transform the constructs into c-di-GMP synthesis gene deletion mutants and identify what genes in *Bacillus thuringiensis* 407 regulate the riboswitches controlling Bt407_1060 and Bt407_0422 expression.
Appendixes

Appendix 1: Sequence analysis of promBt407_0422-TOPO (9-11-2009)

Original sequence; pCR II-TOPO-promoter of Bt407_0422 in Bt 407, forward direction:

```
aacaagcttcgaattcatagttagatatctcgaaatgtttaatttgaatgaaaattaaataataccgaaagaatctcttggtttatatcattttatatataacctgcgaaattcattagttaagatatattcgaatagtttaatttgaatgaaaattaaataaatacccgaagaaatccttgttgtttatacatattttttatattatataacacaaaaaaagtaacattcacgtactttttgaaattattttgaa
```

Obtained sequence, pCR II-TOPO-promoter of Bt407_0422 in Bt 407, S2_pUC19R:

```
aagcttcgaattcatagttagatatctcgaaatgtttaatttgaatgaaaattaaataataccgaaagaatctcttggtttatatcattttatatataacctgcgaaattcattagttaagatatattcgaatagtttaatttgaatgaaaattaaataaatacccgaagaaatccttgttgtttatacatattttttatattatataacacaaaaaaagtaacattcacgtactttttgaaattattttgaa
```

Original sequence; pCR II-TOPO-promoter of Bt407_0422 in Bt 407, complementary, reverse strand:

```
ggatccacctcccttaatttcatttcaccttccttaattaacatatgttgaatattttgttttgaataatgtttctcaatagttgcggagagaataaaaaaaa
gccaataaatgaaagcatggcaggagccaccaactcctcgtccagtaactgttcggtagcttccggttatataatatgaatattttgtttgaaaatgtttc
tatgctctactgtgtcttgccttttctgcggactgaagccatgtcagcttctgctctgctttccgctttctctgttttctaattttcttaattttctctcaat
```

Obtained sequence, pCR II-TOPO-promoter of Bt407_0422 in Bt 407, S1_pUC19F:

```
ggatccacctccttaatttaacatatgatatattttctcaatatagttgcggagagaataaaaaaaa
gccaataaatgaaagcatggcaggagccaccaactcctcgtccagtaactgttcggtagcttccggttatataatatgaatattttgtttgaaaatgtttc
tatgctctactgtgtcttgccttttctgcggactgaagccatgtcagcttctgctctgctttccgctttctctgttttctaattttcttaattttctctcaat
```

Appendix 2: Sequence analysis of promBt407_1060-TOPO (9-11-2009)

Original sequence; pCR II-TOPO-promoter of Bt407_1060 in Bt 407, forward direction:

cctgcagcgcgttaagagaaaaagtgattcaagctttatttgtgtaattcaatatagtaatataacatatatatatcgcgaaatatacctgagcttcctttaatgcagtcgtgaattataattttttttattagaaaaatagaacaattttatagagtattgaaattataaccgtccagacgggtatagtaatatgttttgttaagagagaaaaatagatatatattttagcatacatattctctctacgtgacacattttttgatgtcgcacagggactttttttgatataataataaaaaa

taggaggaactagtgcaaggatcc

Obtained sequence, pCR II-TOPO-promoter of Bt407_1060 in Bt 407, S2_pUC19R:

cctgcagcccgggttaagagaaaaagtgattcaagctttatttgtgtaattcaatatagtaatataacatatatatatcgcgaaatatacctgagcttcctttaatgcagtcgtgaattataattttttttattagaaaaatagaacaattttatagagtattgaaattataaccgtccagacgggtatagtaatatgttttgttaagagagaaaaatagatatatattttagcatacatattctctctacgtgacacattttttgatgtcgcacagggactttttttgatataataataaaaaa

taggaggaactagtgcaaggatcc

Emboss analysis (http://www.ebi.ac.uk/Tools/es/cgi-bin/jobresults.cgi/needle/needle-20100428-1516547298.html, 28/4-2010) revealed a single mutation. Complementary, reverse sequence was analyzed.
Original sequence; pCR II-TOPO-promoter of Bt407_1060 in Bt 407, complementary, reverse strand:

```plaintext
ggatcctttgcata tgtccctcctat ttttatatttatataacaaaaagaccgtccggtgcata ccaaatatat taccactgtagact ctaatcttttgc gcttaaatat cattttaaattct aacatatcacg gacgtcctag
```

Obtained sequence, pCR II-TOPO-promoter of Bt407_0422 in Bt 407, S1_pUC19F:

```plaintext
ggatcctttgcata gtctcctcctat ttttatattatatataacaaaaagaccgtccggtgcata ccaaatatat taccactgtagact ctaatcttttgc gcttaaatat cattttaaattct aacatatcacg gacgtcctag
```

Emboss analysis (http://www.ebi.ac.uk/Tools/es/cgi-bin/jobresults.cgi/needle/needle-20100428-1519535130.html, 28/4-2010) revealed the same mutation on the complementary strain.
Appendix 3: Sequence analysis of PCR product of promBt407_1060 from Bt407 template (11-11-2009):

Original sequence; promBt407_1060 from Bt 407, forward direction*:

tgcagcccgagtaagagaaaaagtgattcaagctctttatgtgtaatctataaatagaattatacgaacctataaatgcgaaatattc
accatgtctcttttaatgcagtcgtgaatattatatttttattagaaaaatagaacaattttatagagtatggaattataacccgtccagacggftata
gtaatatgtgttaagaagggaaatgaacaaaaaagaaaaaaagataatfftttagcacactattgaaaggatagggccgcaagctta
gagtctacgttaataataattggttactaatagatgtctgtgtgcacatattttgtatgcaacctatttttgcgtat
agagggcagacgtttttttgtatatataaaaaatgagggg
aactatgcaaaggatcc

Obtained sequence; promBt407_1060 from Bt 407, S2_pUC19R:

atagagtatggaattataacccgtccagacgggtatagtttattttggtttaagagggaaaatgaaac
aaaaaaagaataaaagatatttttagcacactattcgaaagغا
aggtctacgttaataataattggttactaatagatgtctgtgtgcacatatttttgcgtat
agagggcagacgtttttttgtatatataaaaaatgagggg
aactatgcaaaggatcc

Analysis of the marked region showed no sign of the mutation previously discovered.

Original sequence; promBt407_1060 from Bt 407, complementary, reverse strand*:

ggatcttltgcatagtttccctctatatatatatatatatatatataacaaaaaagaccgtccgggttgtacaaaaatgtgcaacaccagcatcttag
aaccatagtattaccggactactacaggtttgccgtactctctttggaaataggtgctaaaaatatcttttattttttttgtttcattttcc
cttaaaccaaatattactataccgtctggacggttataattcaatactctataaaattgttctatttttctataaaaaataartctcagacgtgc
attaaagaagcaatggtgaattattttcgcattatata
gtctgtatattctatttatagattaccaataagagctgtggaactttttctttacactcgggctgcag
Obtained sequence, promBt407_1060 from Bt 407, S1_pUC19F:

Gacgatcttagaaccataatgtattacccgtacaacctcaggtctcagtaatctggtgctaaatattttttttttttttt gttcattttttcttttaaaccataatatactaccttgctgaggggctaatatttattattttttttttttttttta ctcagactgcaaaaagaatgtt
Original sequence Bt407_0422 - pH304-pXyl (reverse, complementary):
 Obtained sequence Bt407_0422 with pHT304-pXyl_forward:

 TTGAAACATGTTGAAACTTAGTGCACCCATACTTCCAACAATAACTAATACGGTTAA
 TAAGACGTCTTTTTGAAGGAACGATAACTTATGCAATATT

 Obtained sequence Bt407_0422 with 00330-Bt407_0422-F2:

 GTAATATGAAAGATGAAATAGGGTTGAAAATATTGAGACATACGATGGAGAAA
 CAATATTGTTGCAATATTTGACCTGACTATATTGCCAATATT

 GGAATGCGAAGTCTGACAGGAGACAGGAGAAGTCTGCTTCTAAGTGAAGTG
 CTTGAAAAATTTAATTTAAGGCTTATTACAGGAGAAGTCTGCTTCTAAGTGAAGTG

Obtained sequence Bt407_0422 with 00330-Bt407_0422-R2:

ATGACTTTTATCGTATGCGCCCTCATCCAATGAGCGGGTTGTCATAATAATCTCCCGGCCCGTTATAGGG
AAGCTTTTGTAACTCGTAGTCAAAACCCAGGATCGTAAATTCTCGCTTTTCAATTCCGCTTTCGCTTTC
CTGTAACATACGTTTGTCCAACACCTTTTCAATCTTTTGCACACCTATCTAAATTTCTCTGTTAACTT
TTTCTTTTACCTTAAATGGGGCTGTCATCTCTCAACTAATTCTACATGCAATTTTCTTCAATACGTTT
TCAATACTATTTTCTCCTGTGTTCAATAGACTGCTCCTTTCAAAAAATAGACATGATATTTTTGAAACAT
GTTGAACTTAGTGCAACCCATACCTTCCAAACAGTGATATTTACACTAATAGACGTCTTTGAAGGACAA
CTTATTAATATCCACCTTCTTATAACATGTTG

Obtained sequence Bt407_0422 with S2_pUC19R:

TGAACCTTTTCTCCTTATTCGCTTTTAAACTCACCACAAGCTTTGGAATTCTCGAGAAGAAAGCCAACCTT
AAAGAAGTCGCTTAATTGCAATATCTTCTGTAGTATTTCTCTGTCTTTCTAGCTTGCTCAACCATAT
TACATCTGCTGTGGCATAAGTTGATAGATAATATCATCTTTACAGCAGCTGAGATATCTCT
GGCTATTTTGGGAATTTGCAATTTTACAGGTCACTTTTCCTGTGCTACATCGAGATGCTATGGA
CTGATTGAGAATTTTACCATCTCCTGTGAGATATCTTTTCAAAAGATCCAGTTTGTCTAAAACCTCCT
TTTTAATTTTCCAGGAGATATGTTGTGTAATATATATGACATTACA

TGATTTGAAATACCTGTAATTACAGTTACGATATCTCATCTTTTCCTGTGTTTCAACGGTATTTTACG
GACCT
Analysis of the obtained sequences with the original sequence showed two mutations (marked red).

Appendix 5: Sequence analysis after first mutagenesis
(28/1-2010)

Original sequence Bt407_0422:

tgaactttcctatttgcctttaaactcacaataagactcttgtaatctctgtgaaagcaacttaaaagacgctaatcctgcaatatctgatcttgtactgatattttcttgctctttcatgcttccttcaacattactactgctgtttggcataagtgtttgcaatatgtgataattcatttacgactttgaactttcactttttcatcatttttgaacagtggaaaattccactactttgaacaagtgaaattccagtttctacttttgccatttttggcatttttgc
Obtained sequence Bt407_0422 colony 2:

Tgaactttctcattttgttcaccaataaggacatcctgataaatctgtgcatttctcgacaatattcttgtactgtatattctgttgcatttcattacctgttgcatttttggtggaataagttcactgatcttcttttctttttggtt
Obtained sequence Bt407_0422 colony 6:

Tgaacttttcttcattgccttttaacctaccaataagctcttgtaattctctgagaagccacttaaagaagtctgtaattctgaatatctt
tgtactgatattttctctctttcatgcttt
cttcaactactactactctctggtgccacatatgtgacatctgtaacagatgtgattgggagattttttcaagctatccaagctttcactactttgcaacattacacagatctgtaacagattgcgctgatttggagaatttttcaagctatccaatttacttatctttgagacgtcc

Colony 3, 4 and 6 did not contain the original mutation.

Appendix 6: Sequence analysis after second mutagenesis (3/2-2010)

Original sequence Bt407_0422:

Tgaacttttctttttcattgccttttaacctaccaataagctcttgtaattctctgagaagccacttaaagaagtctgtaattctgaatatctttgtactgatattttctctctttcatgctttntcttcaactactactactctctggtgccacatatgtgacatctgtaacagatgtgattgggagattttttcaagctatccaagctttcactactttgcaacattacacagatctgtaacagattgcgctgatttggagaatttttcaagctatccaatttacttatctttgagacgtcc
Obtained sequence Bt407_0422 colony 1:

Not generated, error done by the DNA sequence lab.

Obtained sequence Bt407_0422 colony 2:

Tgaacctttcctatggtttttaactcacaataaagctttgtaatctctgagaagaagcactttaaaagaagtttcacttctgcaaatctgtactgatattctttgctcatttcattacattactgtctttgctctttcatgctttctttcaacattactactgctgttggcataagtgtttgtgacatcgtgactaatttactgcaaatctgtactgatattctggctattttgtaagatttcacactcgaattacccgaaatgtcgacttcaatttggaatatttcaaaaagaaattccactactttgaacaagttgccctacttcttcttttgaaacgttttactcgacacatgatattctggctattttgtaagatttcacactcgaattacccgaaatgtcgacttcaatttggaatatttcaaaaagaaattccactactttgaacaagttgccctacttcttcttttgaaacgttttactcgacacatgatattctggctattttgtaagatttcacactcgaattacccgaaatgtcgacttcaatttggaatatttcaaaaagaaattccactactttgaacaagttgccctacttcttcttttgaaacgttttactcgacacatgatattctggctattttgtaagatttcacactcgaattacccgaaatgtcgacttcaatttggaatatttcaaaaagaaattccactactttgaacaagttgccctacttcttcttttgaaacgttttactcgacacatgatattctggctattttgtaagatttcacactcgaattacccgaaatgtcgacttcaatttggaatatttcaaaaagaaattccactactttgaacaagttgccctacttcttcttttgaaacgttttactcgacacatgatattctggctattttgtaagatttcacactcgaattacccgaaatgtcgacttcaatttggaatatttcaaaaagaaattccactactttgaacaagttgccctacttcttcttttgaaacgttttactcgacacatgatattctggctattttgtaagatttcacactcgaattacccgaaatgtcgacttcaatttggaatatttcaaaaagaaattccactactttgaacaagttgccctacttcttcttttgaaacgttttactcgacacatgatattctggctattttgtaagatttcacactcgaattacccgaaatgtcgacttcaatttggaatatttcaaaaagaaattccactactttgaacaagttgccctacttcttcttttgaaacgttttactcgacacatgatattctggctattttgtaagatttcacactcgaattacccgaaatgtcgacttcaatttggaatatttcaaaaagaaattccactactttgaacaagttgccctacttcttcttttgaaacgttttactcgacacatgatattctggctattttgtaagatttcacactcgaattacccgaaatgtcgacttcaatttggaatatttcaaaaagaaattccactactttgaacaagttgccctacttcttcttttgaaacgttttactcgacacatgatattctggctattttgtaagatttcacactcgaattacccgaaatgtcgacttcaatttggaatatttcaaaaagaaattccactactttgaacaagttgccctacttcttcttttgaaacgttttactcgacacatgatattctggctattttgtaagatttcacactcgaattacccgaaatgtcgacttcaatttggaatatttcaaaaagaaattccactactttgaacaagttgccctacttcttcttttgaaacgttttactcgacacatgatattctggctattttgtaagatttcacactcgaattacccgaaatgtcgacttcaatttggaatatttcaaaaagaaattccactactttgaacaagttgccctacttcttcttttgaaacgttttactcgacacatgatattctggctattttgtaagatttcacactcgaattacccgaaatgtcgacttcaatttggaatatttcaaaaagaaattccactactttgaacaagttgccctacttcttcttttgaaacgttttactcgacacatgatattctggctattttgtaagatttcacactcgaattacccgaaatgtcgacttcaatttggaatatttcaaaaagaaattccactactttgaacaagttgccctacttcttcttttgaaacgttttactcgacacatgatattctggctattttgtaagatttcacactcgaattacccgaaatgtcgacttcaatttggaatatttcaaaaagaaattccactactttgaacaagttgccctacttcttcttttgaaacgttttactcgacacatgatattctggctattttgtaagatttcacactcgaattacccgaaatgtcgacttcaatttggaatatttcaaaaagaaattccactactttgaacaagttgccctacttcttcttttgaaacgttttactcgacacatgatattctggctattttgtaagatttcacactcgaattacccgaaatgtcgacttcaatttggaatatttcaaaaagaaattccactactttgaacaagttgccctacttcttcttttgaaacgttttactcgacacatgatattctggctattttgtaagatttcacactcgaattacccgaaatgtcgacttcaatttggaatatttcaaaaagaaattccactactttgaacaagttgccctacttcttcttttgaaacgttttactcgacacatgatattctggctattttgtaagatttcacactcgaattacccgaaatgtcgacttcaatttggaatatttcaaaaagaaattccactactttgaacaagttgccctacttcttcttttgaaacgttttactcgacacatgatattctggctattttgtaagatttcacactcgaattacccgaaatgtcgacttcaatttggaatatttcaaaaagaaattccactactttgaacaagttgccctacttcttcttttgaaacgttttactcgacacatgatattctggctattttgtaagatttcacactcgaattacccgaaatgtcgacttcaatttggaatatttcaaaaagaaattccactactttgaacaagttgccctacttcttcttttgaaacgttttactcgacacatgatattctggctattttgtaagatttcacactcgaattacccgaaatgtcgacttcaatttggaatatttcaaaaagaaattccactactttgaacaagttgccctacttcttcttttgaaacgttttactcgacacatgatattctggctattttgtaagatttcacactcgaattacccgaaatgtcgacttcaatttggaatatttcaaaaagaaattccactactttgaacaagttgccctacttcttcttttgaaacgttttactcgacacatgatattctggctattttgtaagatttcacactcgaattacccgaaatgtcgacttcaatttggaatatttcaaaaagaaattccactactttgaacaagttgccctacttcttcttttgaaacgttttactc
Obtained sequence Bt407_0422 colony 4:

Tgaactttctcttattcgcttttaaactcacaataagctcttgtaattctcagagaagccacccaacttaaagaagctegtaattctgcaatatcttgataattctctgtcctttcattactactgctgttggcataagtgtgcaatatagtgaatattacgacttgcgatattctggctattttgtaaaatgtcactcgaattacccgaaacagcttttaacttgatctgtaacagattgcgctgatttggagtttttcaagaaat

Appendix 7: Protein sequence of Bt407_0422 and Bt407_1060 in Bt 407

Bt407_0422:

MKKYWHKLQVKNVLTIVLVIILVSVGMLALSFQNSMMSLQLFERQSIETGEIVLFKKLDVELVRD
MADPNFAEVKKKEKLTEKLEDVKEKLSKSGQTYVTGAKPPNEKRELQLVGLTTELTAKAFPKPGYDYE
QPAHWMKAYDKVIDTKQAQMTVEYDEIGSWVTILEPITDGENVIAIAADLDASIVPTKEIFKMIQG
LLFIIISIAATITQFFIVHRSLAPKLKDLREGLRIGEGLDLHIKLKERPDIGINYVNNTIEKFKGIIDKVR
QTAEQVSSSQELSASTEENSMAVQIEASIEGLRVAQGQKTSVQVQCLGIVHGMDKVEEITGAAKQV
AVASEGMEQHISGIEGNEVIGQINQMSLQNAVQDLSSIHSLETRSKESDIVTVGITGQSTNQLALNASIE
ASRAGAAAGRGFADVAVDEVRKLAEQTSEASAKDIKLGETQAETEDAVSMQKGSKEVEGTVISLQSSG
NFFEKISKQSVTDQVAVSNSDQILQNSQNZIVQVNVNLHINTYANSSSNVEEMKQEISVDIA
ELATSLSWLSQELIGEFKSE
Bt407_1060:

MKSTKRHISMVSLVFLVLSVNVWAPVIQAAVMKSPVDEINISRTDGTSEPYQASDGMKVEVKS
AKEKKGSDQFTIDMPKEKFLDLNMSFPLDAEGKTVGTCMKKLLTCTGMNYVEGKNNIKGSLF
VEFYLFLEAYDGKEIPLENFDNVQINVKNERVNNTTERPKQQNDTNNLWKGSYNQEDPSIALDLVY
VNAATGTEMQDLKLTDLGPHELSDVLEEDVFEYGAAPTNIKDPADLSNIKINATKGFETFIDSSK
GYLRYRKYTKVTPAASKPHKNTVKLEGKNKITEKVQGVFVSVGGSFGSDGNNPSIENKIVDENGKL
VENEQLTMQDIQVYQVGTIPNDTPQYTMSTMVSDDLLDVLVEALVKVYDQNGQDTSKGLNLIDKQR
SEVTFTFESFYKSYEDQINLSISAIKIKNNADLSYVDKKIIPNKAELHFDDKTLTSKEVTITPPAEKDG
TVSLHKOISNPKGLKAAEFERNSANAEVAVKLKTDKEGFSVPQTLAPGTIVKYVETVAPEGYKQLTS
PVEVTILQAGGETKIEKNTMQKGQIEVVKIDSENENGKPLANAEDIVKVGGYHEVTDKDAISKPL
APGKYILKTEKAEPIQLKETFEVNTGDDIFIPIQVENAMDVKGNNIEYKVDKENGAVLAVGVEFEVQ
DEKDGVKVTVTDKEGANVSDFSLGVYKLVEKSLPQYKMNLEIPVLFEITKGMTKALVIKVENQVL
DKGSEVKIDKDSQKVLEGVVFVFVQDEQKVTVEKTDKGAKISDLSVGKYKLVEKSLPQYKK
LTPEVSFEITKGMMTTVLKLINQVLKDGSVEITKVDKSDKAALGKVYFVQDEAGTVVKEVTDKD
GKAKISDLVGYKLVEKSLPQYKLTLQVFLEFEIKKGMKTVLSKLNEMVDTGNVEITKIDKDNK
PACNGTVFIFDEKGNENVKVTDDKGKANVSDLPVGKYELVEESLPSYYKLEKPSFEIKKGMTEV
LSKVENEMVDTGNVEITKIDKPSAPLVNVEFVREVLGKGVAKVTDKEGANVSLPDGYKELYLV
EVETPAGYKPLEKPSFEIKEIKGRVTALKLTVENELVTGNEITKVDKNEKDAFVEIDQEQVQ
AKITDDKKGQAQQTVNLSTVYKLVEKVPAPKYGKYQVLPDFIFQIEKGMTKSLATLVENELMDKVGN
VE TKVDKDSQKVLEGVVFVFVQDEQKVTVEKTDKGKANVSDLPVGKYKLVEKSLPQYKLLEKPSFEI
FEIKKGMTEVLKLKVENEMVDTGNVEITKIDKDNKAPLVNVEFVREVLGKGVALKVVDKEGANVSL
PSYKLVEKSLPQYKLTLQVFLEFEIKKGMKTVLSKLINEMVDTGNVEITKIDKDNKAPLVNVEFV
REVLGKGVALKVVDKEGANVSLPSYKLVEKSLPQYKLTLQVFLEFEIKKGMKTVLSKLTVEN
EQLDKGSEITKVDKDSQKVLEGVVFVFVQDEQKVTVEKTDKGKANVSDLPVGKYKLVEKSLPQ
YKLTLQVFLEFEIKKGMTEVLSKLNEMVDTGNVEITKIDKDNKAPLVNVEFVREVLGKGVALKV
VDKEGANVSLPSYKLVEKSLPQYKLTLQVFLEFEIKKGMKTVLSKLNEMVDTGNVEITKIDK
DSKARLVNVFVEVRDSKGKVVTDKEGANVSLPSYKLVEKSLPQYKLTLQVFLEFEIKKGMKTV
LSKLTVENELMDKGNVEITKVDKNEKDAFVEIDQEQVQAKITDDKKGQAQQTVNLSTVY
KLVEKVPAPKYGKYQVLDPITQIEKGMTKSLATLVENELMDKGNVEITKVDKNEKDAF
VEIDQEQVQAKITDDKKGQAQQTVNLSTVYKLVEKVPAPKYGKYQVLDPITQIEKGM
TKSLATLVENELMDKGNVEITKVDKNEKDAFVEIDQEQVQAKITDDKKGQA
QQTVNLSTVYKLVEKVPAPKYGKYQVLDPITQIEKGM
TKSLATLVENELMDKGNVEITKVDKNEKDAFVEIDQEQVQAKITDDKKGQA
QQTVNLSTVYKLVEKVPAPKYGKYQVLDPITQIEKGM
TKSLATLVENELMDKGNVEITKVD

References

1. InterPro. InterProScan web tool. [cited 2010 7/5]; Available from: http://www.ebi.ac.uk/Tools/InterProScan/.

