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Abstract 

 

The East African Mountains can be viewed as continental versions of oceanic archipelagoes, 

and are therefore great starting point for studying phylogeographic topics. Climatic 

variations during the past million years have alternately connected and disconnected the 

forests on these mountains, and this has had great impact on species dependent on 

montane habitats. The flightless grasshopper species within the genera Parasphena and 

Gymnobothroides inhabit different niches in these mountains. Gymnobothroides has a wider 

niche than Parasphena, thus, Gymnobothroides might have a greater capability to spread 

than Parasphena during the dry phases. Not many genetic analyses have been conducted on 

these species in the past, and so this study might help shed light on the evolutionary history 

of these genera. 

The main goal of this study was to investigate whether or the species within the grasshopper 

genera Parasphena and Gymnobothroides diverged because of climate induced forest 

fragmentation of the montane zone, or through adaptation novel niches on emerging 

volcanoes and mountains. Another aim was to find out whether congeneric lineages 

inhabiting the same mountain, but exploiting different niches were more related to each 

other than to other members of their genus inhabiting a similar niche, but on a different 

mountain (adaptive diversification) or whether niche sharing is related to common descent. 

The last question addressed was to what extent the phylogeny based on molecular markers 

would match the current classification and taxonomy of Parasphena and Gymnobothroides. 

I sequenced two mitochondrial genes and used Bayesian Inference to investigate the 

phylogeny of these grasshoppers. Additionally, I used a mismatch distribution approach, 

calculated the p-distances between the sequences and used a coalescent analysis to further 

investigate the evolutionary history of these taxa.  

This study finds evidence for diversification following a climate induced forest fragmentation 

for both genera, but certain populations within these genera show signs of having been able 

to spread and intermingle during periods of putative isolation. The evidence also supports 

the hypothesis that niche sharing is due to common descent since geographically dispersed 
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lineages with similar niches were found to be more closely related than were a pair of 

ecologically differentiated lineages living on the same mountain. Our study adds important 

data for a revised classification of the target genera. The grasshoppers inhabiting these 

different mountains are all very similar genetically, and there is little evidence for grouping 

them into separate species, as is often done in the current classification of these genera.  
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Introduction 

 

Allopatric speciation, genetic divergence in geographically isolated populations due to 

different selection pressures and genetic drift, is probably the most common way new 

species arise (Coyne & Orr 2004). Gene flow between populations will tend to counteract 

diversification of populations (e.g. Hartl & Clark 2007) and reproductive barriers are 

therefore less likely to form when geographic barriers are weak. Distance between habitable 

regions is an important geographic barrier (e.g. Schluter 2000). The theory of island 

biogeography states that the longer distance the island is from the mainland (or from other 

islands), the harder it is to colonize, and so the geographic barrier is quite strong, facilitating 

speciation (MacArthur & Wilson 1967). Island archipelagos are therefore attractive model 

systems for phylogeographic analyses, and floral and faunal systems on for instance Hawaii, 

the Canary Islands and the Galapagos have been studied extensively to address a range of 

evolutionary questions (e.g. Kambysellis et al. 1995; Juan et al. 2000; Grant & Grant 2008). 

The montane forest on mountains and volcanoes in East Africa can be understood as a 

continental version of an island archipelago system, making these forests an excellent model 

system to study biogeography and speciation (Voje et al. 2009). These forests are also well-

known biological diversity hotspots and the mountains in the Great Rift Valley and the 

Eastern Arc in East Africa are rich in endemic species (Myers et al. 2000; Matthee et al. 2004; 

Voelker et al. 2010). However, hypotheses explaining this high level of biodiversity in East 

Africa are few and only a small number of phylogeographic studies have been conducted on 

this continental archipelago system (but see e.g. Bowie et al. 2004; Stanley & Olson 2005; 

Kebede et al. 2007; Voje et al. 2009). 

The mountains vary in age and origin. Some, like Mt. Kilimanjaro, are dead or dormant 

volcanoes stemming from the formation of the Great Rift (Wilcockson 1956; Hemp 2005), 

while others like the Taita Hills date back to the Precambrian (Pohl & Horkel 1980). The 

vegetation along the mountain slopes varies with altitude and precipitation level and can be 

divided into different climatic zones: wet and arid savannah (up to about 1000 m asl), dry to 

moist grassland and banana plantations (1000-1600 m asl), forests and forest clearings in the 

montane zone (1600-3000 m asl), and finally subalpine grass and heathlands up to the afro-
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alpine zone (Hemp & Hemp, 2003). Savannah and grassland are the dominant vegetation 

types on the plains between the mountains. Accordingly, the vegetation zones above the 

grasslands have a very patchy distribution in the area.  

The ability of forest patches to expand and retract under different climatic regimes is an 

important difference between these continental archipelagos and the oceanic ones, thus 

making the inhabitants of montane forest islands to a greater extent only temporarily 

isolated from each other. The East-African montane forests have not always been islands in a 

sea of dry savannah, although drying seems to be the general trend in Africa in the past 

million years (deMenocal 1995; Fernandez & Vrba 2006). Climatic fluctuations during the 

past 40 Myr are associated with alternate spread and retreat of the montane forests, 

probably forming forest bridges between the mountains during the wetter phases (Burgess 

et al. 2007; Zachos et al. 2001; Voje et al. 2009). This knowledge is of great value, since such 

variable conditions may have established alternating opportunities for ecological 

fragmentation with subsequent genetic isolation of species dependent on forest and 

grassland habitats. Several paleoclimatic studies have been conducted in East Africa and it is 

therefore to some extent known when the forests were isolated on mountains and when 

they interconnected (Fernandez & Vrba 2006; Trauth et al. 2005). Forest bridges are 

believed to have been formed during the wetter phases between 2.7 - 2.5, 1.9 - 1.7 and 1.1 - 

0.9 million years ago (Trauth et al. 2005). Such bridges may have made differentiated 

montane populations able to exchange genes at the same time as species dependent on 

grassland might have been isolated in small patches of favorable habitat. When the forest 

retracted to higher altitudes during the subsequent dry and cold periods, forest dependent 

species got isolated at the same time as these conditions eased migration and gene flow 

between different populations of grassland species. It can therefore be assumed that species 

dependent on montane habitats and with low migration potential have been isolated from 

each other since the last time the forests on the mountains were interconnected due to 

climatic conditions favoring forest in the lowland. A relationship between climatically 

induced ecological fragmentation of forest habitats and speciation in East Africa has been 

found for some animal groups (e.g. Bowie et al. 2004; Stanley & Olson 2005; 2007, Voje et al. 

2009).   
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The mountains in the Eastern Arc and the Rift Valley contain a high number of flightless and 

endemic species of grasshoppers, compared to the more widespread and often fully winged 

species of grasshoppers on the savannah (Hochkirck 1998). Flightless insects have a reduced 

ability to disperse and are thus conservative indicators of past biogeographical change. The 

study organisms of this thesis are two genera of flightless acridid grasshoppers (Parasphena 

and Gymnobothroides, see Figures 1 and 2) inhabiting different niches on mountains in East 

Africa.  

 

Fig. 1 Gymnobothroides pullus - Mazumbai. Picture by Claudia Hemp. 
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Fig. 2 Parasphena teitensis – Taita Hills. Picture by Claudia Hemp. 

 

Parasphena are restricted to grasslands in the montane and sub-alpine zones and are not 

found below the forest belt. Gymnobothrides has a wider altitudinal span and can occupy a 

greater range of ecological niches compared to Parasphena. Most species of 

Gymnobothroides are found in sub-montane locations, but some species can also be found 

at higher altitudes. They can thrive in bush-land, coffee/banana plantations and forest 

edges, in addition to grasslands. Species within Gymnobothroides may therefore be able to 

spread more easily between mountains compared to the more niche-restricted Parasphena 

species.  

The main goal of this study is to investigate whether the patchily distributed grasshoppers 

within Parasphena and Gymnobothroides diverged because of climate-induced forest 

fragmentation of the zones they depend on (vicariant speciation), or through adaptation to 

novel niches made available on emerging volcanoes (adaptive speciation). These two models 

of speciation yield different predictions for the timing of speciation events. From the 

vicariant speciation hypothesis I predict that several speciation events would have occurred 

within a rather short time period following climate-induced forest fragmentation. Such a 

pattern is not expected according to the adaptive speciation hypothesis since the mountains 
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differ in age. From the adaptive speciation hypothesis I rather predict close correlations 

between the timing of speciation events and the age of different mountains and volcanoes.  

Geographically dispersed populations may be ecologically and phenotypically similar 

because of common descent and/or because they experience similar selection pressures 

(Schluter 2000). Rundle et al. (2000) provided a fascinating example of adaptive 

diversification, demonstrating repeated events of incipient sympatric speciation caused by 

parallel adaptation to alternative environments in geographically dispersed populations of 

three-spined sticklebacks (Gosterosteus aculeatus). A related assessment of speciation 

hypotheses can be done on Mt. Kilimanjaro, where (at least) two ecologically differentiated 

Parasphena species are found. P. meruensis occupies a niche in the montane zone, while P. 

pulchripes occupies a different niche in the sub-alpine to the alpine zone (C. Hemp, personal 

communication). Whether these species are more related to each other (adaptive 

diversification), or whether they are more closely related to species occupying analogous 

niches on different mountains (niche sharing due to common descent) is an important 

question in relation to the speciation mechanisms in this system. I will therefore test the 

hypothesis of adaptive diversification against the alternative hypothesis of common descent 

by investigating the relative relatedness among lineages sharing the same ecology or 

inhabiting the same mountain. Note that Kilimanjaro also houses a third Parasphena-

species, namely P. nairobaensis which otherwise is mainly distributed in Kenya. I do not have 

information on the ecology of that species, however. Hence, I will not put a similar emphasis 

on the phylogenetic placement of the latter species. 

Finally, I will investigate to what extent this first phylogeny based on molecular markers 

matches the current morphology and geography-based classification and taxonomy of 

Parasphena and Gymnobothroides. Very little work has been done on the genetics and 

phylogeny of African acrididae (Hemp & Hemp 2003), and the same can also be said for most 

of the other organisms inhabiting these mountains (Loader et al. 2006; Blackburn & Measey 

2009). The first survey of the fauna in this area was done during an expedition led by 

Sjöstedt (Sjöstedt 1909). The current classification and taxonomy of the grasshoppers 

inhabiting these mountains is mostly based on their morphology and their geographic 

distribution (e.g. Jago 1971; Grunshaw 1986). The morphological differences between the 

species within these genera are very small. However, during the field season in 2011, we 
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found a population of Parasphena meruensis on Mt. Meru that had much darker colorings 

than the other members of that genus. It is therefore interesting to investigate whether such 

morphological difference will be reflected in our genetic analysis of these taxa. 
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Methods 

 

2.1 Sampling and laboratory analyses 

A total of 52 samples of Parasphena and 15 of Gymnobothroides grasshoppers were 

collected between 2006 and 2011 from 19 localities in the East-African Mountains (Fig. 3 and 

Tab. T4). Twenty-four of them (all Parasphena species), were collected by me in 2011. Please 

note that the specimens called “G. lineaalba” have traditionally been classified as 

“Gymnobothrus lineaalba”. This was brought to my attention very recently (C. Hemp, 

personal communication), and I have therefore not had time to investigate if any of the 

specimens classified as “G. sp” also belong to the genus Gymnobothrus, and so they will all 

be analyzed together in this thesis.   

 

Fig. 3 Map over Tanzania and Kenya, showing all locations I have samples from (stars). As a sort of 
scale, Mt. Meru and Kilimanjaro are approximately 40 km apart. 
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The grasshoppers were caught using a net, or simply by hand, and then transferred to jars 

with cyanide in the lid – killing them swiftly. Most samples were stored in 75 - 90% ethanol, 

but a few were stored dryly prior to extraction of DNA.  

DNA was isolated from hind leg tissues using the Mole genetics isolation machine (Mole 

Genetics AS, Lysaker, Norway) with the Mole kit for tissue samples. The manufacturers’ 

instructions were followed without deviations.  

Segments from two mitochondrial genes were amplified using polymerase chain reaction 

(PCR); the 16s gene, using the primers 16a-M: (5’ – CGC CTG TTT ATC AAA AAC AT – 3’) and 

16b-M: (5’ – CCG GTC TGA ACT CAG ATC ACG T – 3’) (Simon et al. 1994) and the COI gene 

using the primers HCO2190: (5´- TAA ACT TCA GGG TGA CCA AAA AAT CA - 3´) and LCO1490: 

(5´ -GGT CAA CAA ATC ATA AAG ATA TTG G  - 3´) (Folmer et al. 1994).  

I added 2 µl template DNA, 2 µl primer, 2 µl buffer, 2 µl nucleotides, 1 µl MgCl2, 0.5 µl taq 

polymerase and 12.5 µl water, to gain a total reaction volume of 20 µl per sample. 

For the 16s-samples a pre-denaturation step for three minutes at 94    C was followed by 35 

cycles of 94   C for 45 seconds to denature the DNA chains, 54   C for 45 seconds for primer 

annealing, and finally 72   C for 1 minute and 20 seconds for extension. The corresponding 

PCR-profile for COI was three minutes at 95   C, followed by 34 cycles of 94   C (35 sec), 55   C 

(30 sec) and 72   C (1 min 30 sec). 

PCR products were cleaned for excessive primers and nucleotides using ExoSAP-IT (USB 

Corporation, Cleveland, OH, USA). The sequencing was performed on an Applied Biosystems 

(ABI) 3730 high-throughput capillary electrophoresis instrument and was conducted using 

the same primers as used in the PCR. The sequencing results were usually good, yielding 

sequences from 400-1000 base pairs, but some sequences were too short or too poor in 

quality and were consequently omitted from further analysis. Hence, the sample size for the 

16s and the COI analysis differs to some extent. The sequences were aligned in Mega version 

4 (Tamura et al. 2007) using ClustalW. Ambiguous nucleotide positions were determined 

manually by examining the chromatogram and by comparing the forward and reverse 

sequences. 
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2.2 Phylogenetic analyses 

Using the JModelTest (Posada 2008), I tested which evolutionary model fitted my sequence 

data best. This software compares different models of nucleotide evolution in a hierarchic 

hypotheses testing framework using both log-likelihood values and the Akaike information 

criterion (AIC). A general time reversible model with invariable sites (GTR+I) fitted all data 

sets best. Bayesian inference (BI) analyses were completed in MrBayes v.3.1.2 (Huelsenbeck 

& Ronquist 2001), using an Amytta species and two Ixalidium species as outgroups for the 

16S and COI datasets, respectively. The priors were set to match the GTR+I model, but I did 

not fix any of the parameters. All the searches were run with between 1.000.000 and 

3.000.000 generations, sampling every 1000th generation. The first 75% of the sampled runs 

were used as the burn-in, yielding between 250 and 750 trees.  

MrBayes is a program using Bayesian inference to find the best tree possible. Bayesian 

inference is a relatively new, but strong method for getting good results fast. The strength 

and speed of this method is the reason MrBayes was the program of choice in this thesis. 

Bayes’ theorem is as follows: 

Pr[Tree I Data] = (Pr[Data I Tree] X Pr[Tree])/Pr[Data] 

It should be read as “the (posterior) probability of the tree given the data is depended on the 

prior probability of a phylogeny (Pr*Tree+)  combined with the likelihood (Pr*Data I tree+)” . 

The posterior probability is then the probability that the tree is correct (Huelsenbeck et al. 

2001). The Bayesian inference is similar to the maximum likelihood method, which also finds 

the most likely tree, but the former method is perhaps a faster and more efficient way to 

find the best trees and the support for these trees are usually higher than those returned by 

the maximum likelihood bootstrapping method (Holder & Lewis 2003). Instead of 

bootstrapping, MrBayes finds the posterior probabilities of each clade using Markov chain 

Monte Carlo (MCMC) method. This method starts with a tree, and then a new tree is 

proposed following defined rules. The new tree is either accepted or rejected with a certain 

probability. The posterior probability of a tree is calculated based on how many times that 

tree was encountered during the MCMC runs, so the essential part is to run the MCMC long 

enough to make the chains converge on the optimal tree (Huelsenbeck et al. 2001). To make 

sure that the program had run long enough, plots of the generation versus the log-
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probability of the data given the parameter values were analyzed. The analysis was regarded 

to have run sufficiently long when there was no trend in the scatter-plot.  

Trees calculated using MrBayes were opened in Treeview 3.2 (GubuSoft LLC).  

In total, four trees were created in MrBayes; one for the Gymnobothroides dataset with the 

16s gene, one for the Parasphena dataset with the 16s gene, one for the Parasphena dataset 

with the COI-gene, and one dataset was made merging the 16s and COI datasets for 

Parasphena together. Gymnobothroides was unfortunately not sequenced for the COI-gene, 

since this genus was included late in the process when there was no time left to do lab work. 

This means that the genus Parasphena will be more thoroughly investigated in this thesis 

compared to Gymnobothroides.  

To examine the robustness of the topologies estimated by the BI analysis, I also computed 

phylogenetic trees with bootstrap values, using the distance-based Neighbor Joining method 

implemented in MEGA. The model used for these trees was the maximum composite 

likelihood, with complete deletion of gaps and homogeneity of substitution patterns among 

lineages. 

 

2.3 Estimation of divergence rate and dating of speciation events 

The timing of divergences between species and populations provides an important test of 

phylogeographic hypotheses. In this respect, the time since the species split apart must be 

consistent with the putative historical events that are hypothesized to have driven their 

divergence. Molecular divergence rates applicable to the mitochondrial genome can be 

obtained from previous studies where divergence time between clades has been calibrated 

with, for example, geological events (e.g. Brower 1994; Juan et al. 1995) and a divergence 

rate of 1 % per lineage per million years has often been used for the COI-gene in 

phylogeographic studies on insects (e.g. Juan et al. 1995; Trewick & Morgan-Richards 2005; 

Spooner & Ritchie 2006). However, a recent study by Allegrucci and colleagues (2010) 

estimated a higher divergence rate (1.6 %) for this gene. It is therefore possible that the 

divergence rate of 1 % that I use in this study is a slight underestimation. 16S has been less 
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used in phylogeographic studies on insects and I therefore use the 0.7% divergence rate per 

million years estimated by Allegrucci et al. (2010) for this gene. 

In Mega version 4 (Tamura et al. 2007), p-distances were calculated between the sequences 

in all the datasets (appendix, Tab. 1-3). The p-distance is a simple measure of the percentage 

of differences between each of the sequences, which is an easy way to see how genetically 

different the various species have become. Only unique haplotypes were used when 

computing the distance matrices.  

A mismatch distribution approach (Slatkin & Hudson 1991; Rogers & Harpending 1992) as 

implemented in Arlequin 3.5 (Excoffier & Licher 2010) was used to detect sudden population 

expansions in haplogroups in the phylogenetic trees. In the case of multispecies phylogenies 

a signal for population expansion can be translated to rapid diversification of lineages or 

speciation events. The typical phylogenetic signal for such rapid species diversification is 

their short branch lengths and polytomies. The model assumes that a population at 

equilibrium at a certain time suddenly expands in size from N₀ to N₁, and then returns to an 

equilibrium state. Arlequin also calculates the raggedness index (Harpending 1994), and the 

significance (P-value) of this index. The raggedness test evaluates the null-hypothesis that 

the population has been expanding. If a population has been stable for a long time, the 

distribution is expected to be highly multimodal and “ragged”, giving a high raggedness 

index. A non-significant raggedness index indicates that there is no support for a stable 

population, but does not provide absolute evidence for an expanding population either. Low 

raggedness (and a unimodal mismatch distribution) is however typical for a population 

which has recently undergone a rapid expansion. The mismatch distribution model 

implemented in Arlequin estimates three different demographic parameters. One of these is 

the expected number of differences between two randomly drawn haplotypes at time t 

since the population expansion Τ (tau). This parameter can be used to estimate the time 

since the population expansion by dividing Tau by 2µ, where µ is the expected number of 

mutations per site per lineage per million years, multiplied by the number of base pairs in 

the sequence.  

Another method used for calculating divergence times and test for gene flow between the 

populations was a coalescent approach using the MDIV program (Nielsen & Wakely 2001). 
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The model implemented in MDIV assumes that two populations arose from a single 

ancestral population at generation t in the past. Bayesian inference is used to estimate three 

parameters and their posterior probability: Theta (θ, two times the effective population size 

times the mutation rate), T (the divergence time between two populations) and M (the 

migration rate between two populations). Both M and T are scaled by population size.  I ran 

three pair-wise comparisons using 4.000.000 generations of MCMC with 1.000.000 burn-in 

cycles between three P.meruensis populations found at Kilimanjaro using the combined 16S- 

and COI-dataset. The outputs from the runs are three graphs showing the estimated θ, T and 

M-parameters with their posterior probability. The parameters can be used to calculate the 

divergence times between the populations by using this formula: 

Tdiv = (Tθ) / (2µ) 

where µ is the expected number of mutations per site, per lineage, per million years, times 

the number of base pairs in the sequence. To calculate µ in this dataset containing two 

genes with different mutation rates, I multiplied each gene’s mutation rate per million years 

with its number of base pairs, and added them up.  
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Results 

 

3.1 Phylogenetic analyses 

The phylogeny of Gymnobothroides (Fig. 4) shows little structure, with many polytomies and 

short branch lengths. Many of the sampled specimens belong to unknown or undescribed 

species. The two G. lineaalba sequences (which traditionally have belonged to the genus 

Gymnobothrus) form a clade with high support, but individuals of another suggested species 

within this group, G. levipes, from different mountains and volcanoes, all appear in a large 

polytomy with a lower posterior probability. 

The phylogeny of Parasphena based on the COI-gene can be seen in Figure 5. In this tree the 

branch lengths are also short, and the phylogeny is somewhat unresolved. The relationship 

between P. nairobaensis and P. chyulensis provides one example of such an unresolved 

phylogenetic group (Fig. 5). The morphologically distinct P. meruensis population found at 

1700 meters on Mt. Meru forms a separate group and is clustering with the P. meruensis 

from Kidia Kilimanjaro, rather than with the other P. meruensis specimens from Mt. Meru. 

Another interesting aspect of this tree is that the P. meruensis from Mkweseko Kilimanjaro 

form a monophyletic group together with P. teitensis collected from the Taita Hills. 

Kilimanjaro houses (at least) two ecologically divergent species of Parasphena, namely P. 

meruensis and P. pulchripes. According to this tree, these two species form two well-

differentiated lineages where P. pulchripes cluster with various species mainly distributed in 

Kenya, rather than with P. meruensis.  

The phylogeny of Parasphena based on the 16s gene can be seen in Figure 6. This tree has 

several polytomies, and the branch lengths are generally very short. However, a few 

interesting clades can be seen: P. teitensis from the Taita Hills stand out and cluster with a 

few P. meruensis specimens, and the population of P. meruensis from Kidia form a 

monophyletic group of their own. The morphologically distinct grasshoppers from Mt. Meru 

(1700 m) do not form a separate clade in this genetic tree, but join the rest of the P. 

meruensis in a large polytomy. Again P. pulchripes cluster with various Kenyan species rather 

than with the P. meruensis populations from Kilimanjaro.  
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I also combined the two genes I had sequenced for Parasphena into a large dataset to see if 

a tree based on these data could give any additional information (Fig. 7). This tree is very 

similar to the COI-tree, probably because that gene showed the highest level of interspecific 

variation. P. meruensis specimens found at the lowest altitude on Mt. Meru is also in this 

tree forming a clade with the P. meruensis specimens found in Kidia (Kilimanjaro), while the 

other population on Kilimanjaro (Mkweseko) clusters together with P. teitensis from the 

Taita Hills. An important difference in this tree compared with the other Parasphena trees is 

that this tree resolves the polytomy within the specimens collected at different altitudes on 

Mt. Meru (M1850, M2150 and M2500), and the specimens from 2150 and 2500 m asl cluster 

together. This tree contains fewer specimens than the other trees, since this tree only 

contains those specimens where both a 16s-sequence and a COI-sequence were available. 

This also accounts for some of the other differences between the trees shown in Figures 5, 6 

and 7. 

The corresponding Neighbor Joining trees (see the appendix, Figures F1-F4) are generally 

confirming the topology found in the Bayesian inference analyses. 

3.2 Mismatch distribution results 

Mismatch distributions and their corresponding raggedness indices were calculated for 

selected groups that showed phylogenetic signals consistent with rapid species 

diversification. One for the large polytomy in the Gymnobothroides tree, one for the entire 

in-group in the Parasphena-tree based on the COI-gene, and one for the subgroup in the 

same tree containing the grasshoppers from Kidia (Kilimanjaro) and Mt. Meru. Figure 8 

shows the mismatch distribution of the haplogroup within the Gymnobothroides tree. The 

distribution has a unimodal shape and a corresponding low raggedness index. The model 

(the line in Fig. 8)  seems to follow the same general pattern as the bars, and the P-value is 

non-significant, supporting a recent population expansion. Tau was found to be 4.023, and 

using the formula 

t = T/2µ 
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where the evolutionary rate of the 16s-gene is assumed to be 0.7 % per site per lineage per 

million years, and the sequence contains 413 base pairs, the divergence time for this group is 

calculated to be 0.696 (95 % confidence interval (CI): 0.185 - 1.866) million years ago.  

Figure 9 shows the mismatch distribution for the entire Parasphena in-group in the COI-tree. 

The observed distribution (the bars) is not a smooth unimodal curve, but is not deviating 

enough from the expansion model to falsify it since the raggedness index has a non-

significant P-value. The estimated time of divergence in this group, based on an evolutionary 

rate of 1 % per site per lineage per million years, sequences with 524 base pairs and a Tau of 

7.766, was calculated to be 0.741 (CI: 0.0037 - 3.45) million years ago. The wide confidence 

interval reflects the fact that the observed distribution is not strictly unimodal. 

Figure 10 shows the mismatch distribution of haplogroup 2, the Parasphena meruensis 

specimens from Mt. Meru and Kidia on Kilimanjaro. The fit between the expansion model 

and the observed differences between haplotypes is good, and the raggedness index comes 

out as non-significant. This group had a Tau of 1.256, sequences with 573 base pairs, and the 

estimated time of divergence was then calculated to be 0.109 (CI:  0 - 0.25) million years ago. 

 

3.3 Coalescent analysis 

I used a coalescent analysis to test specifically when the three closely related populations of 

P. meruensis from Mt. Meru and Kilimanjaro diverged from each other. The results of the 

analysis suggest that they all diverged less than 300.000 years ago (Table 1). The two 

populations estimated to have split apart most recently are the population found at 1700 

meters above sea level on Mt. Meru and the population near Kidia on Kilimanjaro. The 

population from Kidia and the P. meruensis population found at the highest altitudes on Mt. 

Meru have the oldest estimated divergence time, but not very much older than the split 

between the two populations on Mt. Meru. Figures 11 to 13 show the posterior probabilities 

of the three parameters for all three pair wise comparisons. The posterior probabilities 

overlap quite much between all the comparisons for all the parameters, but note the rather 

flat curve of posterior probabilities for the divergence time parameter, meaning that both 

shorter and especially longer divergence times cannot be ruled out.  
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3.4 Distance matrices 

The calculated P-values show that the specimens in the Gymnobothroides dataset differ by 

between 0.1 and 2.4 % (see appendix, Tab. T1 –T 3). The Parasphena sequences from the 

COI-dataset differ by 0.2 - 5.7 %. The distance matrix for the 16s-dataset for both genera 

combined shows that within-genus variation is lower than 3 %, while nucleotide difference 

between genera is between 20 - 25 %.  
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Fig. 4 Bayesian inference of the phylogeny of the genus Gymnobothroides based on the 16s-gene. 
Priors were set to match the GTR+I model. Each sequence is represented with its corresponding 
species name and the location it was found. Amytta sp from Ol Donyo was used as the outgroup. The 
scale bar represents five changes per 100 nucleotide positions, and the branch support values are the 
posterior probabilities of each clade. Only nodes that were supported in 50 % or more of the 
sampled trees are shown. The colored bar represents the haplogroup that was used in the mismatch 
distribution approach. 
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Fig. 5 Bayesian inference of the phylogeny of the genus Parasphena based on the COI-gene. Priors 
were set to match the GTR+I model. Each sequence is represented with its corresponding species 
name and the location it was found. One Ixalidium sp the North Pares, and one Ixalidium sjostedti 
were used as the outgroup. The scale bar represents five changes per 100 nucleotide positions, and 
the branch support values are the posterior probabilities of each clade. Only nodes that were 
supported in 50 % or more of the sampled trees are shown. The colored bars represent the 
haplogroups chosen for further analyses. 
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Fig. 6 Bayesian inference of the phylogeny of the genus Parasphena based on the 16s-gene. Priors 
were set to match the GTR+I model. Each sequence is represented with its corresponding species 
name and the location it was found. Amytta sp from Ol Donyo was used as the outgroup. The scale 
bar represents five changes per 100 nucleotide positions, and the branch support values are the 
posterior probabilities of each clade. Only nodes that were supported in 50 % or more of the 
sampled trees are shown. 
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Fig. 7 Bayesian inference of the phylogeny of the genus Parasphena based on both the 16s-gene and 
the COI-gene. Priors were set to match the GTR+I model. Each sequence is represented with ots 
corresponding species name and the location it was found. One Ixalidium sp from the North Pares 
and one Ixalidium sjostedti were used as the outgroup. The scale bar represents five changes per 100 
nucleotide positions, and the branch support values are the posterior probabilities of each clade. 
Only nodes that were supported in 50 % or more of the sampled trees are shown. 
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Fig. 8 Mismatch distribution of the sequences within haplogroup 1 from the Gymnobothroides tree 
(see Fig. 4). The line represents the expected values given the sudden expansion model 
implementedin Arlequin, while the bars are the observed values. The raggedness index and its P-
value indicates whether or not the null-hypothesis (a stable, non-expanding population) can be 
rejected. 

 

  

Fig. 9 Mismatch distribution of all the species except the outgroup from the Parasphena COI-tree 
(see Fig. 6). The line represents the expected values given the sudden expansion model, while the 
bars are the observed values. The raggedness index and its P-value indicates whether or not the null-
hypothesis (a stable, non-expanding population) can be rejected. 
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Fig. 10 Mismatch distribution of the sequences within haplogroup 2 from the Parasphena COI- tree 
(see Fig. 6). The line represents the expected values given the sudden expansion model, while the 
bars are the observed values. The raggedness index and its P-value indicates whether or not the null-
hypothesis (a stable, non-expanding population) can be rejected. 

 

Tab. 1 Estimated divergence times in years before present (ybp) between three populations of P. 
meruensis based on the parameters T and Theta estimated in the coalescent analysis implemented in 
MDIV. 

 

 Divergence time  

Mt. Meru 1700 m.asl. and Kidia Kilimanjaro 56 228 (ybp) 

Mt. Meru 1700 m.asl. and Mt. Meru 1800-2500 m.asl. 196 829 (ybp) 

Mt. Meru 1800-2500 m.asl. and Kidia Kilimanjaro 259 093 (ybp) 

 



31 
 

 

Fig. 11 The posterior probabilities of theta (θ) for pairwise comparisons between three populations 
of P. meruensis. Comparison of the population from Mt. Meru (1700 m asl) and the population from 
Kidia on Kilimanjaro in green, the comparison of the two populations on Mt. Meru in red, and the 
comparison of the populations on Mt. Meru from the highest altitudes and the population from Kidia 
on Kilimanjaro in blue. 

 

Fig. 12 The posterior probabilities of the migration rates (M) for all pairwise comparisons between 
three populations of P. meruensis. Comparison of the population from Mt. Meru (1700 m asl) and the 
population from Kidia on Kilimanjaro in green, the comparison of the two populations on Mt. Meru in 
red, and the comparison of the populations on Mt. Meru from the highest altitudes and the 
population from Kidia on Kilimanjaro in blue. 
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Fig. 13 The posterior probabilities of the divergence time (T) for all pairwise comparisons between 
three populations of P. meruensis. Comparisons of the population from Mt. Meru (1700 m asl) and 
the population from Kidia on Kilimanjaro in green, the comparison of two populations on Mt. Meru in 
red, and the comparison of the population on Mt. Meru from the highest altitudes and the 
population from Kidia on Kilimanjaro in blue. 
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Discussion 

 

The main goal of this study was to investigate whether the genera Parasphena and 

Gymnobothroides diverged because of climate induced forest fragmentation of the montane 

zone or through adaptation to novel niches made available on emerging volcanoes.  

The results of my study mainly support the fragmentation hypothesis. All of the mismatch 

distributions failed to reject the stable population hypothesis, and they pointed towards a 

sudden expansion consistent with the climatically induced habitat fragmentation hypothesis. 

All the grasshoppers seem to be genetically very similar based on the distance matrices and 

the phylogenetic trees, with short branch lengths and frequent polytomies, as expected if 

many new lineages emerged more or less at the same time. In further support of the 

speciation-through-fragmentation hypothesis is the fact that all the estimated divergence 

times are much more recent than the emergence of the mountains and volcanoes the 

species inhabit. Many of the East-African volcanoes emerged in the past millions of years. 

For instance, Mt. Kenya is approximately 4 million years old, while Kilimanjaro and Mt. Meru 

are about 1 million years old. Many of the non-volcanic mountains in the area are a lot older; 

like the Taita Hills which arose in the Precambrian. The estimated times of divergence of 

Gymnobothroides and Parasphena is on the other hand matching reasonably well with the 

last wet phase that ended about 0.9 million years ago (Trauth et al. 2005). Although having 

large confidence intervals, the estimated divergence events for the Gymnobothroides 

haplogroup (0.7 Mya), and the entire Parasphena genus (0.74 Mya) are very similar and both 

just a few hundred thousand years after the last wet maximum. Based on the fact that 

Gymnobothroides occupy a wider niche than Parasphena, I expected to find a less clear link 

between the climatic events and the divergence events within this genus, than for the other 

genus. On the contrary, it seems that the savannah is a strong barrier for gene flow for 

Gymnobothroides, and that this genus also underwent a sudden expansion some time after 

the retraction of the forests about 900.000 years ago. However, the supposedly niche-

constricted Parasphena contain haplogroups where different populations seem to have 

intermingled despite fragmentation of their favored habitat. The less unimodal shape of the 

mismatch distribution of Parasphena also supports this hypothesis. More than one peak can 
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be seen in the observed distribution of the pair-wise differences, indicating that some 

diversification within Parasphena probably happened both before and after the estimated 

radiation about 700.000 to 800.000 years ago. It is for example possible that different 

populations of Parasphena were trapped in islands of grassland during the wet phase where 

the forests spread where they started diverging due to genetic drift and perhaps adaptation 

to their habitat. Indications that some populations of Parasphena seem to have intermingled 

during times of fragmentation of their favored habitat also comes from the analyses of the 

third haplogroup examined. P. meruensis from Mt. Meru and Kidia (Kilimanjaro) seem to 

have diverged around 100.000 years ago. This haplogroup was also examined with a 

coalescent approach. The results from this method fit the divergence times found with the 

mismatch distribution approach quite well: all three populations within this haplogroups 

diverged less than 300.000 years ago according to the latter estimate. These two mountains 

are quite close to each other (see Fig. 3), so it appears that it has not been impossible for 

these grasshoppers to intermingle even though the climate has been quite dry the past 

900.000 years. This indicates that the savannah is not as strong a barrier for these grass-

living grasshoppers as for the forest-dwelling grasshoppers previously studied (Voje et al. 

2009). Dry savannah landscape is obviously a barrier, since we find a radiation consistent 

with the climate induced speciation hypothesis for the entire group, but apparently it is not 

an impossible barrier to cross if the distance is short enough. It is also interesting to see that 

the P. meruensis population living the farthest down on Mt. Meru (the dark morph) is 

genetically more similar to the population on Kilimanjaro than other populations on Mt. 

Meru. These two populations cluster together in the combined dataset-tree and the COI-

tree, and they were estimated to have split apart only about 50.000 – 60.000 years ago.  

P. teitensis and P. meruensis seem to be very closely related based on all the phylogenetic 

trees and the distance matrices. One population of P. meruensis (the one found in 

Mkweseko on Kilimanjaro) is actually more similar to P. teitensis than to other P. meruensis-

populations. The Taita Hills and Kilimanjaro are of different origin and different age, and so 

the ancestors of these species must have intermingled, or migrated from one mountain to 

the other long after the formation of the mountains. 

Another set of hypotheses investigated in this thesis is whether geographically dispersed 

lineages occupying the same niches are more related to each other than species that inhabit 
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the same mountains or whether niche separation on the same mountain is due to recent 

adaptive diversification in situ. P. meruensis and P. pulchripes both live on Mt. Kilimanjaro, 

but occupy different niches. P. meruensis inhabits grasslands in the montane zone, while P. 

pulchripes lives in the sub-alpine zone. The two Kilimanjaro taxa should cluster together 

according to the adaptive differentiation hypothesis. I found that P. pulchripes cluster with 

several of the species found in Kenya, rather than to the P. meruensis occupying the same 

mountain. This indicates that geographically dispersed groups occupying the same niche 

have a common descent, and have managed to spread to new mountains and finding the 

same niche there, without intermingling with other species in other niches on the way. 

Differentiated habitat preferences may constitute a significant pre-mating barrier in itself 

(Coyne & Orr 2004). Additionally, habitat choice may be connected to other differences; 

such as timing of breeding or song further reducing gene flow (see e.g. Sætre & Sæther 2010 

for a case of multiple reproductive barriers). 

Unfortunately, ecological differentiation has not been investigated between other species or 

populations of Parasphena in any detail. It is possible, however, from the results I have 

found regarding P. meruensis on Mt. Meru, that the population living closest to the 

mountain foot is genetically more similar to a population on another mountain. This might 

represent a parallel to the pattern found in the ecologically differentiated P. meruensis and 

P. pulchripes on Kilimanjaro, as described above. Kidia on Kilimanjaro is also at a quite low 

altitude, so it is possible that this is a similar habitat as the 1700 m asl area on Mt. Meru. 

Possibly these populations have adapted to a warmer climate, or to some other ecological 

characteristic of these altitudes that reduces gene flow with other populations on their 

respective mountains. The fact that the population farthest down on Mt. Meru is 

morphologically distinct from the other populations on that mountain can be a sign that pre-

zygotic barriers have evolved. Similarly, P. nairobaensis also resides on Kilimanjaro, but 

clusters with Kenyan conspecifics (and other species) rather than with the other Parasphena 

taxa on Kilimanjaro. The presence of such genetically differentiated lineages on the same 

mountain suggests that distinct ecotypes have evolved, of which some may constitute 

distinct species. 

The pattern of common descent of lineages occupying different mountains, and 

differentiated lineages living on the same mountain, could be explained by two not mutually 



36 
 

exclusive hypotheses. First, as mentioned earlier some diversification of the Parasphena 

genus may have started before the last episode of forest fragmentation, as is suggested by 

the peak around 17 differences in the mismatch distribution for this group. 

Second, grasshoppers may have been able to disperse between mountains despite forest 

fragmentation. As discussed above, recent gene flow between Kilimanjaro and Mt. Meru 

does seem likely. However, dispersal between Kilimanjaro and Kenyan mountains seems less 

likely simply because of the long distance. Hence I suggest that some of the diversification of 

Parasphena actually may be more ancient than my divergence estimates would suggest. 

I also set out to investigate whether the phylogeny based on molecular markers matched the 

current classification and taxonomy of Parasphena and Gymnobothroides. The traditional 

morphology- and geography-based classification of these grasshoppers (e.g. Jago 1971; 

Grunshaw 1986) deviates from the results of my study. For instance, the grasshoppers living 

in the Taita hills definitely seem to be a part of the P. meruensis species complex, and should 

perhaps rather have a sub-species status. I also conclude that there is probably no need to 

distinguish between the genera Gymnobothroides and Gymnobothrus. They cluster together 

in the phylogenetic tree without any obvious split that would indicate two separate genera, 

and the distance matrix shows that the number of nucleotide differences between the 

proposed genera is about as large as the number of nucleotide differences within each 

genus.  

As for the rest of the species, it is virtually impossible to draw any firm conclusions on 

species status or phylogenetic relations now, partly because the sample sizes are relatively 

small. However, it appears that all the species within both genera are genetically very 

similar, and it might be that some of the genetic differences would break down if the forests 

were to venture down again. According to the biological species concept (Mayr 1963), these 

would not be different species if that were the case. However, as discussed above in 

connection with the genetically distinct lineages found on Kilimanjaro, reproductive isolation 

might have developed between some of the lineages. It has also been shown that the calling 

songs of genetically very similar species of bush-crickets are different (Hemp et al. 2010). 

In conclusion, it seems that these grasshopper genera diverged in a large degree due to the 

climatic shift that took place about 900.000 years ago, but gene flow has occurred since that 
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time. Niche dependency appears to keep grasshoppers genetically separated despite them 

sharing the same mountain. A thorough investigation of the taxonomy for these East-African 

grasshoppers appears to be needed as the current classification does not match the 

molecular one depicted in this study.   

There is a long way yet to go before we fully understand the processes driving speciation in 

this system. I would recommend further studies on ecological differentiation and potential 

reproductive barriers, for instance using common garden experiments in order to properly 

revise their taxonomy and in order to learn more about speciation events and their 

phylogeography. Additionally, more individuals from all the localities should be included in 

future phylogenetic studies. My study indicates that the well-sampled localities provide 

more in-depth knowledge about the phylogeny and evolutionary history of the taxa. We see 

the clearest pattern where I had the most samples: namely the Taita Hills, Mt. Kilimanjaro 

and Mt. Meru. Finally, additional traits, including nuclear genes and traits that may be 

important for reproductive isolation, such as morphology of genitalia, habitat preferences, 

song, and timing of breeding, should be included in future studies on these fascinating 

animals.  
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Appendix 

 I1 G.lineaalba Kiverenge

 I2 G.lineaalba Kilimanjaro

 J G.flex

 U19 G.sp Mt.Elgon

 U15 G.sp Rubeko

 U16 G.sp Uluguru

 U18 G.sp Uluguru

 K3 G.levipes OlDonyo

 K4 G.levipes OlDonyo

 K5 G.levipes Kilimanjaro

 U14 G.sp Githunguri

 U21 G.sp Ngong

 K2 G.levipes Olitokitok

 O4 G.levipes Olokitok

 O5 G.sp Uluguru

 O6 A.sp OlDonyo

99

100

85
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Fig. F1 Neighbor joining tree of the phylogeny of the genus Gymnobothroides based on the 16S-gene. 
The nucleotide substitution model used was the maximum composite likelihood. The branch support 
values are bootstrap values based on 100 replicates.   
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Fig. F2 Neighbor joining tree of the phylogeny of the genus Parasphena based on the 16S-gene. The 
nucleotide substitution model used was the maximum composite likelihood. The branch support 
values are bootstrap values based on 100 replicates.   
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Fig. F3 Neighbor joining tree of the phylogeny of the genus Parasphena based on the COI-gene. The 
nucleotide substitution model used was the maximum composite likelihood. The branch support 
values are bootstrap values based on 100 replicates.   
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Fig. F4 Neighbor joining tree of the phylogeny of the genus Gymnobothroides based on both the 16S 
and COI-genes. The nucleotide substitution model used was the maximum composite likelihood. The 
branch support values are bootstrap values based on 100 replicates.   

 



47 
 

Tab. T1 P-distances between all Gymnobothroides samples on the 16S-gene. 
 

1 2 3 4 5 6 7 8 9 10 11 12

1)#I1_G.lineaalba_Kiverengi

2)#I2_G.lineaalba_Kilimanjaro 0.001

3)#U14_G.sp_Githunguri 0.021 0.019

4)#U15_G.sp_Rubeko 0.025 0.024 0.023

5)#U16_G.sp_Uluguru 0.021 0.02 0.017 0.01

6)#O5_G.sp_Uluguru 0.024 0.025 0.012 0.021 0.016

7)#U19_G.sp_Mt.Elgon 0.018 0.017 0.017 0.027 0.018 0.024

8)#U21_G.sp_Ngong 0.021 0.019 0.003 0.02 0.014 0.009 0.017

9)#J_G.flex 0.016 0.017 0.021 0.021 0.021 0.022 0.024 0.019

10)#O4_G.levipes_Olitokitok 0.019 0.021 0.006 0.021 0.016 0.006 0.018 0.004 0.018

11)#K2_G.levipes_Olitokitok 0.018 0.019 0.005 0.021 0.017 0.009 0.02 0.002 0.017 0.004

12)#K3_G.levipes_OlDonyo 0.019 0.021 0.006 0.02 0.016 0.008 0.018 0.004 0.018 0.002 0.004

13)#K4_G.levipes_OlDonyo 0.021 0.019 0.005 0.018 0.014 0.009 0.017 0.002 0.019 0.004 0.005 0.001  
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Tab. T2 P-distances between both Parasphena and Gymnobothroides for the 16S-gene. 

[1]
[2]

[3]
[4]

[5]
[6]

[7]
[8]

[9]
[10]

[11]
[12]

[13]
[14]

[15]

[1] #B
1_P

.te
ite

n
sis_T1800

[2] #A
b

3_P
.m

e
ru

e
n

sis_K
id

ia
0.053

[3] #A
b

2_P
.m

e
ru

e
n

sis_K
id

ia
0.039

0.013

[4] #A
a6_P

.m
e

ru
e

n
sis_M

1700
0.053

0.025
0.013

[5] #A
c2_P

.m
e

ru
e

n
sis_K

itu
m

b
e

in
e

0.013
0.039

0.026
0.039

[6] #A
e

1_P
.m

e
ru

e
n

sis_z_N
go

n
go

ro
0.026

0.052
0.039

0.026
0.013

[7] #O
6_A

.sp
_O

lD
o

n
yo

0.342
0.352

0.377
0.352

0.377
0.352

[8] #G
3_P

.ch
yu

le
n

sis_K
e

n
ya

0.053
0.025

0.013
0.025

0.039
0.052

0.377

[9] #G
2_P

.ch
yu

le
n

sis_C
h

yu
lu

_K
e

n
ya

0.08
0.081

0.067
0.081

0.095
0.11

0.341
0.053

[10] #C
1_P

.kin
an

go
p

a_A
b

e
rd

are
0.098

0.067
0.053

0.04
0.082

0.068
0.401

0.067
0.128

[11] #C
2_P

.kin
an

go
p

a_A
b

e
rd

are
0.067

0.038
0.025

0.013
0.052

0.039
0.328

0.038
0.095

0.026

[12] #E2_P
.p

u
lch

rip
e

s_M
ara

0.053
0.052

0.039
0.025

0.039
0.025

0.303
0.052

0.11
0.04

0.013

[13] #H
3_P

.ke
n

ie
n

sis_ke
n

ie
n

sis
0.177

0.142
0.158

0.174
0.158

0.174
0.35

0.158
0.128

0.197
0.158

0.142

[14] #D
2_P

.n
go

n
ge

n
sis_N

go
n

g
0.053

0.052
0.039

0.052
0.039

0.052
0.302

0.052
0.081

0.068
0.039

0.025
0.111

[15] #U
4_P

.sp
_G

ith
u

n
gu

ru
0.133

0.099
0.084

0.069
0.115

0.1
0.268

0.099
0.165

0.087
0.055

0.07
0.241

0.1

[16] #U
8_P

.sp
_K

ilim
an

jaro
0.068

0.039
0.026

0.013
0.053

0.039
0.361

0.039
0.082

0.054
0.026

0.039
0.176

0.053
0.085

[17] #U
11_P

.sp
_M

t.K
e

n
ya

0.026
0.025

0.013
0.025

0.013
0.025

0.35
0.025

0.081
0.067

0.039
0.025

0.142
0.025

0.099

[18]#U
12_P

.sp
_M

t.K
e

n
ya

0.039
0.039

0.025
0.039

0.025
0.039

0.35
0.013

0.067
0.082

0.052
0.038

0.142
0.039

0.114

[19] #L1_P
.h

an
age

n
sis_M

t.H
an

an
g

0.068
0.067

0.053
0.067

0.053
0.067

0.272
0.067

0.096
0.083

0.053
0.039

0.128
0.013

0.117

[20] #I1_G
.lin

e
aalb

a_K
ive

re
n

ge
0.23

0.236
0.254

0.236
0.235

0.217
0.361

0.254
0.195

0.265
0.218

0.2
0.068

0.199
0.32

[21] #U
14_G

.sp
_G

ith
u

n
gu

ri
0.174

0.177
0.193

0.21
0.193

0.21
0.361

0.21
0.141

0.236
0.193

0.176
0.054

0.144
0.285

[22] #U
15_G

.sp
_R

u
b

e
ko

0.218
0.223

0.241
0.26

0.241
0.26

0.327
0.241

0.165
0.291

0.241
0.222

0.055
0.186

0.291

[23] #U
18_G

.sp
_U

lu
gu

ru
0.196

0.218
0.236

0.254
0.217

0.235
0.361

0.236
0.162

0.285
0.236

0.217
0.054

0.182
0.341

[24] #O
5_G

.sp
_U

lu
gu

ru
0.193

0.197
0.214

0.231
0.214

0.231
0.327

0.214
0.144

0.26
0.214

0.196
0.04

0.162
0.312

[25] #U
19_G

.sp
_M

t.Elgo
n

0.235
0.214

0.231
0.249

0.213
0.23

0.426
0.231

0.199
0.278

0.231
0.213

0.053
0.179

0.332

[26] #J_G
.fle

x
0.21

0.214
0.231

0.214
0.231

0.214
0.303

0.231
0.159

0.241
0.197

0.179
0.053

0.179
0.291

[27] #K
3_G

.le
vip

e
s_O

lD
o

n
yo

0.21
0.214

0.231
0.249

0.231
0.249

0.327
0.231

0.159
0.278

0.231
0.213

0.053
0.179

0.312  
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[16]
[17]

[18]
[19]

[20]
[21]

[22]
[23]

[24]
[25]

[26]

0.039

0.053
0.013

0.067
0.039

0.053

0.24
0.235

0.235
0.221

0.213
0.176

0.192
0.162

0.053

0.264
0.222

0.222
0.207

0.068
0.04

0.259
0.217

0.217
0.203

0.025
0.026

0.04

0.235
0.196

0.196
0.182

0.039
0.013

0.026
0.013

0.253
0.213

0.213
0.199

0.039
0.054

0.069
0.026

0.04

0.217
0.213

0.213
0.199

0.026
0.026

0.04
0.026

0.013
0.053

0.253
0.213

0.213
0.199

0.052
0.026

0.026
0.026

0.013
0.053

0.025
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Tab. T3 P-distances between all Parasphena species on the COI-gene. 

1
2

3
4

5
6

7
8

9
10

11

1) #B
4_P

.te
ite

n
sis_T1480

2) #B
3_P

.te
ite

n
sis_T1480

0.002

3) #B
1_P

.te
ite

n
sis_T1800

0.005
0.002

4) #A
b

6_P
.m

e
ru

e
n

sis_M
kw

e
se

ko
0.017

0.014
0.017

5) #A
b

4_P
.m

e
ru

e
n

sis_K
id

ia
0.024

0.021
0.024

0.007

6)#A
a7_P

.m
e

ru
e

n
sis_M

1700
0.021

0.019
0.021

0.005
0.002

7)#A
c2_P

.m
e

ru
e

n
sis_K

itu
m

b
e

in
e

0.059
0.057

0.059
0.042

0.039
0.037

8)#A
d

2_P
.m

e
ru

e
n

sis
0.026

0.024
0.026

0.009
0.007

0.005
0.032

9)#A
d

3_P
.m

e
ru

e
n

sis_K
ilim

an
jaro

0.031
0.029

0.026
0.014

0.012
0.009

0.037
0.005

10)#G
3_P

.ch
yu

le
n

sis_C
h

yu
lu

0.051
0.048

0.051
0.034

0.031
0.029

0.057
0.024

0.024

11)#G
2_P

.ch
yu

le
n

sis_C
h

yu
lu

0.056
0.054

0.056
0.039

0.036
0.034

0.062
0.029

0.029
0.005

12)#F1_P
.n

airo
b

ae
n

sis
0.056

0.054
0.056

0.041
0.039

0.036
0.057

0.031
0.031

0.031
0.031

13)#C
1_P

.kin
an

go
p

a_A
b

e
rd

are
0.031

0.029
0.026

0.019
0.017

0.014
0.042

0.009
0.005

0.024
0.029

14)#E2_P
.p

u
lch

rip
e

s_M
ara

0.039
0.036

0.039
0.022

0.019
0.017

0.044
0.012

0.012
0.021

0.021

15)#H
2_P

.ke
n

ie
n

sis_re
h

n
i

0.036
0.034

0.036
0.024

0.021
0.019

0.042
0.014

0.014
0.024

0.029

16)#D
2_P

.n
go

n
ge

n
sis_N

go
n

g
0.029

0.026
0.029

0.012
0.009

0.007
0.039

0.007
0.007

0.021
0.026

17)#U
5_P

.sp
_G

ith
u

n
gu

ri
0.034

0.031
0.029

0.021
0.021

0.019
0.047

0.014
0.009

0.024
0.029

18)#U
6_P

.sp
_G

ith
u

n
gu

ri
0.034

0.031
0.029

0.021
0.021

0.019
0.047

0.014
0.012

0.031
0.036

19)#U
4_P

.sp
_G

ith
u

n
gu

ri
0.034

0.031
0.034

0.017
0.014

0.012
0.039

0.007
0.007

0.017
0.021

20)#U
3_P

.sp
_G

ith
u

n
gu

ri
0.034

0.031
0.034

0.017
0.014

0.012
0.037

0.007
0.007

0.021
0.026

21)#U
9_P

.sp
_K

ilim
an

jaro
0.021

0.019
0.021

0.014
0.012

0.009
0.037

0.005
0.009

0.029
0.034

22)#U
11_P

.sp
_M

t.K
e

n
ya

0.059
0.057

0.059
0.044

0.041
0.039

0.054
0.034

0.034
0.039

0.039

23)#U
12_P

.sp
_M

t.K
e

n
ya

0.054
0.051

0.054
0.036

0.034
0.031

0.06
0.026

0.026
0.007

0.002
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12
13

14
15

16
17

18
19

20
21

22

0.031

0.024
0.012

0.024
0.014

0.012

0.029
0.012

0.009
0.012

0.031
0.005

0.012
0.014

0.012

0.039
0.007

0.019
0.021

0.019
0.007

0.024
0.007

0.005
0.007

0.005
0.007

0.014

0.024
0.007

0.009
0.012

0.009
0.012

0.014
0.005

0.034
0.009

0.017
0.014

0.012
0.014

0.014
0.012

0.012

0.007
0.034

0.026
0.022

0.031
0.034

0.041
0.026

0.026
0.036

0.029
0.026

0.019
0.026

0.024
0.026

0.034
0.019

0.024
0.031

0.036

 

 

Tab. T4 List of species included in this thesis, the location they were found (when known), and the 
number of samples from each species. 

Species name Location (when known) 
No. 
Samples 

Parasphena meruensis Kilimanjaro, Mt. Meru, Monduli, Kitumbeine, Ngorongoro 26 

Parasphena chyulensis Chyulu  3 

Parasphena teitensis Taita Hills 4 

Parasphena nairobaensis Kilimanjaro 4 

Parasphena kinangopa Aberdare 2 

Parasphena pulchripes Mara 2 

Parasphena keniensis Mt. Kenya 2 

Parasphena ngongensis Ngong 1 

Parasphena hanangensis Hanang 1 

Parasphena sp   7 

Gymnobothroides levipes Oloitokitok, OlDonyo, Kilimanjaro 5 

Gymnobothrus lineaalba Kiverengi, Kilimanjaro 2 

Gymnobothroides flex   1 

Gymnobothroides sp   7 

 

 


