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2. Abbrevations 

8-oxo-G  7,8-dihydro-8-oxoguanine  

β-ME  β-Mercaptoethanol  

AA Acrylamide 

Ab  Anti-body  

AP site  (Abasic) apurinic/apyrimidinic site  

ALS Alkali Labile Sites 

Ape1/APEX1  Mammalian AP Endonuclease 1  

ATM  Ataxia Teleangesica Mutated  

BER  Base Excision Repair  

bp  base pair  

BPB  Bromo Phenol Blue  

BrdU Bromodeoxyuridine (5-bromo-2-deoxyuridine) 

BSA  Bovine Serum Albumin  

DNA  Deoxyribonucleic acid  

DSB  

 

DNA Double Strand Break 

Fapy 2,6-diamino-4-hydroxy-5N-formamidopyrimidine 

Fpg  Formamidopyrimidine-DNA-glycolase  

FITC fluorescein isothiocyanate 
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GA Glycidamide 

GAPDH  Glyceraldehyde-3-Phosphate Dehydrogenase  

GGR  Global Genome Repair  

GO  Gene Ontology  

GSH  Glutathione  

GST  Gluthathione S-transferase  

HRP  Horseradish Peroxidase  

IARC  International Agency for Research on Cancer  

ROS  Reactive oxygen species  

RNA  Ribonucleid acid  

MMR Mismatch Repair  

N1-GA-Ade N1-(2-carboxy-2-hydroxyethyl)-2’-deoxyadenosine 

N3-GA-Ade N3-(2-carbamoyl-2-hydroxyethyl)-adenine 

N7-GA-Gua N-7-(2-carbamoyl-2-hydroxyethyl)guanine 

NER Nucleotide Excision Repair  

PCNA Proliferating Cell Nuclear Antigen  

PI Propidium Iodide  

PKC Protein Kinase C  

Pol β Polymerase β  

SDS Sodium Dodecyl Sulphate  
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SPR Short-Patch Repair  

SSBs DNA Single Strand Breaks  

WHO World Health Organisation 

3MeA 3-methyladenine 

7MeG 7-methylguanine 

AP1 AP endonuclease 1 

MMR Mismatch repair  

NHEJ nonhomologous end joining 

HR homologous recombination 

dRP deoxyribose phosphate 

GG-NER global genomic NER 

TCNER transcription coupled NER 

XPA Xeroderma pigmentosum group A 

XPC Xeroderma pigmentosum group C 

TCNER transcription coupled NER 

XPA Xeroderma pigmentosum group A 

XPC Xeroderma pigmentosum group C 
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3. Aims of the study 

Cooking and food processing at high temperatures generate various kinds of toxic substances. 

Acrylamide has been traced in many different types of processed food and beverages and 

there is a risk for human exposure. Acrylamide is metabolized to the genotoxic mutagen 

glycidamide. To contribute to a better estimation of the health risk associated with acrylamide 

intake, its biological effects must be understood at a cellular and molecular level. We 

therefore wanted to explore the genotoxic effect and the molecular impact of exposing human 

peripheral lymphocytes (PBL) and the lymphoblastoid cell line GM00130 to glycidamide in 

vitro. PBL and the cell line were both used for the genotoxic studies, while only the cell line 

was exploited in all other mechanistic experiments. 

 

Specific goals: 

1. Determine the genotoxic effect of GA on human lymphoid cells. We 

wanted to use the comet assay to determine the genotoxic effect of the 

metabolite glycidamide, and to study the type of DNA lesions caused by 

glycidamide. By introducing a specific repair enzyme to the comet assay, 

more specific types of lesions induced by glycidamide could be detected. In 

addition we wanted to explore the repair capability in lymphoid cells.  

 

2. Analyse GA-induced changes in the cell cycle. By using flow cytometry 

and DNA-staining, together with BrdU-incorporation, we were able to 

determine changes in the cell cycle distribution, in GM00130, after GA-

exposure. 
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3. Analyse the molecular mechanism of DNA damage responses of 

glycidamide. With the use of western blotting we wanted to study GA-

induced altered expression of selected proteins involved in cell cycle 

regulation, DNA repair or markers for genotoxic stress and apoptosis in 

GM00130. 

 

4. Analyse effects on cell viability. By using a cell viability assay such as 

PI/Hoechst, we wanted to detect cytotoxic effects of GA in GM00130, 

discriminating between the levels of apoptotic or necrotic cells induced by 

GA. 
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4. Summary 

Exposure to environmental toxicants is a contributing factor to health disorders such as 

cancer, asthma and allergy. A toxicant which has been studied more in depth the last years is 

the well known neurotoxicant acrylamide (AA) and its metabolite, glycidamide (GA). The 

reason for this is that AA have been traced in many different types of processed food and 

beverages. Although the genotoxic effect of AA has been widely studied, the molecular 

function remains mostly unclear. We therefore wanted to explore the molecular impact of the 

genotoxic effect of glycidamide, and to look more carefully into the mechanisms involved. In 

large biomonitoring studies, lymphocytes are an invaluable and often the only source of 

medium for such genotoxic analysis, and, therefore human lymphocytes and a lymphoblastoid 

cell line were used for the in vitro exposure studies.  

In correspondence with results from ongoing studies in our laboratory, we found that very low 

exposure of the GA, but not AA alone, induced high levels of DNA damage recognised by the 

repair enzyme, Formamidopyrimidine glycosylase (Fpg). Further, when relatively high 

concentrations of GA (1 mM and 0.5 mM) was used, together with long exposure duration, a 

marked increase in DNA damage without the Fpg-enzyme was apparent. Thus, since GA is 

found to be highly genotoxic we wanted to study GAs effect on lymphoid cell cycle and 

survival when relatively low GA(0.1 mM) concentrations were used. No cell cycle arrest of 

the lymphoblastoid cell line, GM00130, was seen with low GA concentrations. Instead, by 

increasing the GA dose, starting from 0.5 mM, an accumulation of cells in early S-phase 

became apparent after 24 hours exposure time. Preliminary results also indicated a reduction 

in the incorporation of bromodeoxyuridine (5-bromo-2-deoxyuridine, BrdU) following GA-

exposure, indicating a halt in DNA-replication and an S-phase arrest. At the same GA-

concentration used, the tumor suppressor protein p53 was highly phosphorylated at ser15, 

followed by a total p53 increase. An increase in the CDK inhibitor p21CIP1 was also notable at 

0.5 mM GA concentration, while no significant changes were observed in the case of p27Kip1. 

Further, the expression of cyclin A that drives S-phase did not decrease as expected. When 

increasing the concentration of GA to 1 mM and also the time of exposure, an increased level 

of cells arresting in S-phase was observed together with an elevation of cell undergoing 
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apoptosis. Additionally, since the transcription of the NER-enzymes, XPA and XPC, was 

previously found to be regulated by GA in other cell systems, we analysed the expression of 

these proteins after GA-exposure. However, in a preliminary experiment, no notable GA-

induced increase in the protein level of these enzymes was noted. 

Thus, unexpectedly, we found that the high number of Fpg-sensitive sites induced by low 

levels of GA did not lead to any cell cycle arrest or cell death or any changes in protein 

expression of important cell cycle parameters tested in the lymphoblastoma cell line. This 

may indicate that lymphoid cells are able to overcome or ignore these lesions at low levels of 

GA. However, continuous exposure may eventually lead to an accumulation of GA-induced 

lesions leading to mutations and cancerous development over time. When increasing the 

concentration and the exposure duration of GA, DNA-replication was markedly slowed down 

and cells were arrested in S-phase followed by a significant progression of apoptosis. This 

may be due to the observed GA-induced activation of p53 and the induction p21CIP1. All in all 

it shows that GA is genotoxic and affects the lymphoid cell cycle in a dose and time 

dependent matter. 
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5. Introduction 

5.1 Acrylamide 

Acrylamide (AA) (2-propenamid) is an important industrial monomer, and has been 

commercially available since the mid-1950s and is manufactured on a large scale world wide. 

In addition of being a well known neurotoxicant (Deng et al., 1993; He et al., 1989), AA has 

shown to induce the development of various tumors in several animal studies published in the 

1980s (Friedman et al., 1995; Johnson et al., 1986). Therefore, epidemiologic evaluations of 

cancer risk in workers who were exposed occupationally to AA were also undertaken in the 

1980s (Sobel et al., 1986). However, no consistent effect of AA exposure on cancer incidence 

was identified. Additional subsequent studies concluded the same (Collins et al., 1989; Marsh 

et al., 1999). 

AA is generated, predominantly, from the precursor aspargine (Stadler et al., 2002; 

Tareke et al., 2000) in a Maillard reaction involving asparagine and reducing sugars during 

the heating of carbohydrate-rich food with temperatures above 120˚C (Mottram et al., 2002; 

Stadler et al., 2002) and is therefore found in baked and fried starchy foods, such as French 

fries and chips (Svensson et al., 2003). Since AA surprisingly was found in measurable 

significant quantities in many common human foods in addition to its presence in coffee and 

smoke, it introduced a new dimension to carcinogenic risk assessment of AA. Therefore, 

based on its effect in animals and that AA is biotransformed in mammalian tissue to a 

genotoxic metabolite; the International Agency for Research on Cancer (IARC) classifies AA 

as a 2A, a probable human carcinogen (IARC, 1994). 

5.1.1 Toxic effects of Acrylamide 

Acrylamide can be conjugated with gluthation (GSH) for excretion (Sumner et al., 1992) or 

oxidized to the reactive epoxide glycidamide (GA) by cytochrome P450 2E1 (Cyp 2E1) 

(Ghanayem et al., 2005a; Settels et al., 2008; Sumner et al., 1992). GA can also be conjugated 

by gluthation or oxidated to glyceramide (Fennell et al., 2005). 
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Figure 1 Metabolism of acrylamide to its epoxide glycidamide (Martins et al., 2007) 

Acrylamide is metabolized via two competing pathways. Direct conjugation of AA with 

reduced glutathione results in a glutathione adducts, and the degradation results in the 

formation and urinary excretion of a mercapturic acid (Sumner et al., 1992). The second 

pathway involves oxidation of AA, leading to the formation of its epoxide, GA, mediated by 

cytochrome P450 2E1 (CYP2E1) (Ghanayem et al., 2005a; Sumner et al., 1992). When 

conversion of AA to GA is inhibited as in CYP2E1 knockout mice, the genotoxicity of AA is 

inhibited (Ghanayem et al., 2005b). This supports the conclusion that GA is the genotoxic 

form of AA and that the enzyme CYP2E1 is the primary enzyme responsible for the 

epoxidation of AA to GA, which further leads to DNA and hemoglobin adducts (Ghanayem et 

al., 2000; Ghanayem et al., 2005a).  
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Figure 2 Acrylamide metabolism showing the formation of glycidamide, glutathione 
conjugates, and hemoglobin and DNA adducts (Ghanayem et al., 2005a). 

GA forms adducts directly with DNA and protein and it is presumed that the GA induced 

adducts play a role in cytotoxicity, mutagenicity, reproductive toxicity and carcinogenicity by 

AA (Gamboa da Costa et al., 2003; Ghanayem et al., 2005a; Segerback et al., 1995). The 

relative contributions of AA and GA in the mode of action of AA are the subject of current 

research. Differences between species, exposure route and dose are important factors in risk 

assessment of the effects of AA exposure (Fennell et al., 2005).  

5.1.2 Genotoxicity of Acrylamide and Glycidamide 

AA has shown to be weakly genotoxic at high concentrations (>10mM) in micronucleus and 

TK gene mutation assays, causing chromosomal aberration and sister chromatid exchange in 

vivo and in vitro (Koyama et al., 2006; Martins et al., 2007; Tsuda et al., 1993). Further, since 

AA has been proven negative in bacterial gene mutation assays (Knaap et al., 1988; Tsuda et 

al., 1993) it seems that AA is weakly clastogenic without damaging DNA directly, acting 

through protein binding rather than DNA binding. In addition, AA have been reported to 

generate reactive oxygen species (ROS) that can attack cellular constituents such as proteins, 

nucleic acids, and lipids (Yousef and El-Demerdash, 2006).  
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Reactivity: 

Apparently, AA will react very slowly with DNA 

1985), forming adduct only under forced chemical conditions and after extended reaction time 

(>40 days) (Solomon et al., 1985)

possible mechanism for the production of mutations and/or subsequent carcinogenicity 

(Gamboa da Costa et al., 2003; Segerback et al., 1995)

rise to a number of DNA adducts including the two alkylating adducts N7

carbamoyl-2-hydroxyethyl)guanine), and to a lesser extent N3

hydroxyethyl)-adenine) (depurinating) 

2-hydroxyethyl)-2’-deoxyadenosine) (stable) 

2003; Segerback et al., 1995). 

Figure 3. Structures of GA derived adducts. 

The in vitro reaction of GA with DNA forms adduct in the following order: N7

N1-GA-dA > N3-GA-dA (Gamboa da Costa et al., 2003)

with other epoxides (Koskinen and Plna, 2000)

induced by GA and the predominant reaction of many alkylating chemicals 

et al., 2003; Maniere et al., 2005; Mei et al., 2008)

cell cycle - Glycidamide induced S-phase arrest followed by apoptosis i
Master thesis by Elin Bakken Ansok 2009 

will react very slowly with DNA (Friedman et al., 1995; Solomon et al., 

, forming adduct only under forced chemical conditions and after extended reaction time 

(Solomon et al., 1985). Although AA is a weak mutagen, the DNA adducts is a

possible mechanism for the production of mutations and/or subsequent carcinogenicity 

(Gamboa da Costa et al., 2003; Segerback et al., 1995). GA is much more reactive and gives 

rise to a number of DNA adducts including the two alkylating adducts N7

hydroxyethyl)guanine), and to a lesser extent N3-GA-Ade (N3

adenine) (depurinating) in vivo and in vitro, and N1-GA-Ade (N1

deoxyadenosine) (stable) in vitro (Figure 3) (Gamboa da Costa et al., 

.  

 

. Structures of GA derived adducts. Modified from (Gamboa da Costa 

The in vitro reaction of GA with DNA forms adduct in the following order: N7

(Gamboa da Costa et al., 2003), a pattern which also have been seen 

(Koskinen and Plna, 2000). Thus, N7-GA-Gua is the predominant adduct 

induced by GA and the predominant reaction of many alkylating chemicals 

et al., 2003; Maniere et al., 2005; Mei et al., 2008).  
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. Although AA is a weak mutagen, the DNA adducts is a 

possible mechanism for the production of mutations and/or subsequent carcinogenicity 

is much more reactive and gives 

rise to a number of DNA adducts including the two alkylating adducts N7-GA-Gua (N-7-(2-

Ade (N3-(2-carbamoyl-2-

Ade (N1-(2-carboxy-

(Gamboa da Costa et al., 

 et al., 2003) 

The in vitro reaction of GA with DNA forms adduct in the following order: N7-GA-Gua > 

, a pattern which also have been seen 

Gua is the predominant adduct 

induced by GA and the predominant reaction of many alkylating chemicals (Gamboa da Costa 
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5.1.3 Acrylamid on vital proteins of the mitotic spindle  

The neurotoxicity of AA is, among other effects, caused by interference with the kinesin-

related motor proteins in nerve cells (as reviewed in LoPachin, 2004). Effects on kinesin 

proteins could also explain some of the indirect genotoxic effects of AA. These proteins form 

the spindle fibers in the nucleus that function in the separation of chromosomes during cell 

division.  

Studies on the effects of AA on microtubules have shown very little effect. However, 

microtubule-associated motor proteins are also essential components of the spindle, therefore 

kinesin motors are logical targets due to their critical involvement in cell division and 

previous observations of AA-induced neuronal kinesin inhibition (Sickles et al., 1996; Sickles 

et al., 2007) Kinesins have shown AA-induced neuronal kinesin inhibition (Sickles et al., 

2007) and AA and GA specifically inhibit a type of kinesin motor proteins associated with the 

mitotic/meiotic spindle, in a similar concentration range as the neuronal kinesins (Sickles et 

al., 1996). So there seems to be a similar dose-response effect on dividing cells and 

neurotoxicity caused by AA. This inhibition is relevant in relation to mutagenicity, cell cycle 

effects and potential carcinogenicity of AA/GA. KRP2, a kinesin motor protein responsible 

for spindle assembly and disassembly of kinetochore microtubuli, have shown to be 

significantly inhibited by concentrations of GA of 5- to 10-fold less than AA.  GA may 

therefore act on multiple kinesin family members and produce toxicities in organs highly 

dependent on microtubule-based functions (Sickles et al., 2007). This may also explain some 

of the clastogen effects of AA and GA. 

Overall, Since epidemiological studies presume that 20-50% of all human cancers are due to 

dietary causes (Strickland and Groopman, 1995) food is likely to have an important impact on 

cancer development. In addition, since AA is found as a by-product in different popular food 

products, such as French fries and chips, and the carcinogenicity of AA in mice and rats is 

well documented, there should be room for concerns.   

The mode of action still remains unclear for AA-induced carcinogenicity. However, both AA 

and GA show clastogenic effects. Additionally, GA and have been positive for mutagenicity 

and DNA reactivity in a number of in vitro and in vivo assays. Thus, the potential for altered 
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cell cycle regulation and genotoxicity is highly likely. Lastly, since neurotoxicity of AA is, 

related to actions on proteins also important in cell division further research is still needed to 

investigate the relationship between AA, GA and the effects at the molecular level leading to 

carcinogenicity. For this reason, we have studied the affect of GA on DNA damage and cell 

cycle regulation. 

5.2 DNA damage 

Cellular DNA is susceptible to damage every day from different carcinogenic compounds in 

the environment or food, UV light, spontaneous hydrolytic events or normal reactive 

metabolites. DNA damage can be divided into two major classes, endogenous and exogenous, 

which may be partly overlapping although their cause is different. Endogenous DNA damage 

includes mainly hydrolytic and oxidative reactions. Exogenous factors include physical and 

chemical agents, especially electrophilic molecules and substances producing reactive oxygen 

species. 

 

Figure 4. Cellular responses to DNA damage (Friedberg, 2001). 
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5.2.1 DNA adducts  

Electrophilic compounds can interact with the ring nitrogens, exocyclic amino groups, 

carbonyl oxygens, and the phosphodiester backbone. This results in alkylation products that 

are covalent derivatives of reactive chemical species with DNA. Direct-alkylating agents 

induce preferential binding to highly nucleophilic centers such as the N7 guanine (Loeb and 

Preston, 1986).  

DNA adducts are mostly connected to the nucleophilic groups of adenine and guanine. 

The adduct can be stable or unstable (depurinating) depending on the position on the base at 

which the adduct is formed (Loeb and Preston, 1986). Stable adducts remain covalently 

bonded to DNA unless removed during repair, while depurinating adducts are spontaneously 

released from DNA by destabilization of the glycosidic bond (as reviewed in Cavalieri et al., 

2000). Depurination of adenine most often leads to A � T mutations, while depurination of 

guanine leads to G � T mutations (Cavalieri et al., 2000). 

 

Figure 5 Double-stranded DNA showing the sites of DNA adduct formation including important 
targets for alkylators (N7G, N3A etc.) (Jenkins et al., 2005). 

Depurination can occur spontaneously or following the formation of an unstable adduct (Loeb 

and Preston, 1986). Cleavage of the N-glycosyl bond results in loss of bases from nucleic 

acids leaving the sugar-phosphate behind as an abasic site (AP site). An AP site is denoted  

”apurinic”  with the loss of a purine,  or ”apyrimidinic” with the loss of pyrimidine;  these are 

the most common DNA lesions generated by both spontaneous and induced base loss (Loeb 

and Preston, 1986). During replication, a random nucleotide is incorporated opposite to the 
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AP site, usually adenine, producing mispairing and hence a mutation after DNA replication. 

The glycosyl bond at an AP site is susceptible to hydrolysis, which results in a single strand 

break. The biological consequences of unrepaired AP sites are numerous. AP sites can block 

progression of RNA and DNA polymerase, resulting in impairment of gene transcription and 

DNA replication. If polymerases manage to bypass these lesions during transcription or 

replication, the effect may be deleterious for genome stability since there is a high probability 

that a wrong base will be inserted opposite an AP site leading to gene mutations (Frosina et 

al., 1996). 

Alkylating agents comprise one of the broadest classes of DNA-damaging agents. Of 

particular interest are methylated bases, such as 3-methyladenine (3MeA) and 7-

methylguanine (7MeG) (Figure 6), that are formed i.e. by cancer chemotherapeutics, agents in 

the environment, and also by endogenous cellular processes (Sedgwick, 1997).  

 

Figure 6 N7-Methyleguanine (O'Connor et al., 1988) 

Each of these lesions, if not properly repaired, may have detrimental effects. Of these, 7MeG 

is considered to be the most harmless, since it does not appear to interfere directly with DNA 

replication in vivo or in vitro. However, 7MeG lesions may spontaneously depurinate to form 

potentially mutagenic abasic sites or the ring-opening formamidopyrimidines (Fapy) 

derivative Fapy-7MeG with DNA inhibition potential in vitro (O'Connor et al., 1988; Wyatt 

and Pittman, 2006).   

N1-MeA and N3-MeA could serve as a block to DNA synthesis since N3-MeA can slow S-

phase progression in the absence of its repair (Engelward et al., 1998; Smith and Engelward, 

2000) and has been shown to be a lethal lesion in vitro (Boiteux et al., 1984), while the N1 

lesion disrupts basepairing (Singer, 1975). N7-alkylated guanines can depurinate or be 

attacked by a hydroxyl group at the C-8 position leading to an opening of the imidazol ring 
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giving an alkyl-FaPy-G lesion (Figure 7). Unsubstituted FapyA and FapyG caused by DNA 

oxidation cause moderate inhibition of DNA synthesis, which is DNA polymerase and 

sequence dependent. Fapy-7MeG, the methylated version of FapyG, efficiently inhibits DNA 

replication in vitro, but is not mutagenic. FapyA and Fapy-7MeA on the other hand, possess 

miscoding potential. Though, Fapy lesions are actively eliminated by repair glycosylases 

specific for oxidized purines and pyrimidines (Tudek, 2003). 

 

Figure 7 FapyA and FapyG (Krishnamurthy et al., 2008) 

5.2.2 Single- and double-strand breaks 

Radiation, oxidative damage and depurination can lead to single- and double-strand breaks. 

Of the different types of DNA damage that occur in cells, single-strand breaks (SSBs) are the 

most common, arising at a frequency of tens of thousands per cell per day from direct attack, 

by intracellular metabolites and from spontaneous DNA decay. SSBs occur in three orders of 

magnitude more frequently than double-strand breaks (DSBs). SSBs can occur directly by 

disintegration of the oxidized sugar or indirectly during DNA base-excision repair (BER) of 

oxidized bases, abasic sites, or bases that are damaged.(as reviewed in Hegde et al., 2008). 

During BER, incision occurs at an AP site by the AP endonuclease 1 (AP1) or by the lyase 

activity of a bifunctional DNA glycosylase occurs (Hegde et al., 2008). Chromosomal SSBs 

can, if not repaired rapidly, block DNA replication forks during the S-phase of the cell cycle, 

possibly leading to the formation of DSB (Kuzminov, 2001). Even though this type of DSB is 

rapidly repaired by homologous recombination (HR), an acute increase in cellular SSB levels 

might saturate this pathway, leading to genetic instability and/or cell death (Kuzminov, 2001).  
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5.3 DNA repair  

Since the genome suffer from various kinds of damage every day a multitude of different 

mechanisms have evolved by which either damaged DNA is removed, or the potential 

dangerous or lethal effects are mitigated. There are two fundamental DNA repair mechanisms 

that involve either reversal of DNA damage or the excision of damaged elements (excision 

repair).  In excision repair the damaged bases can be excised as free bases in base excision 

repair (BER), or as nucleotides in nucleotide excision repair (NER). Mismatch repair (MMR) 

is another version of excision repair and involves the removal of mismatched bases in DNA. 

Cells also acquire fracture in the sugar-phosphate backbone that results in either single- or 

double-strand breaks. While strand breaks do not directly alter coding information in the 

genome, fracture of the covalent integrity of the genome can interfere with normal DNA 

transactions and lead to altered coding information.  

DNA damage resulting in modified bases and sugars, DNA-protein adducts, base-free sites 

and tandem lesions, can if unrepaired, impede DNA replication in dividing cells and provoke 

DSB formation. The repair of DBSs is primarily divided into two types of pathway: 

nonhomologous end joining (NHEJ) and homologous recombination (HR).Three different 

mechanisms can be distinguished within excision repair: BER, NER and MMR. Mismatch 

repair eliminated falsely paired bases or small DNA loops that occur during DNA slippage at 

microsatellites during replication (Cann and Hicks, 2007; Frosina et al., 1996; Hegde et al., 

2008).  

5.3.1 Base excision repair (BER) 

Base excision repair (BER) is the predominant pathway for copying with a broad range of 

small lesions resulting from oxidative, methylating, alkylating, deaminating and 

depurination/depyrimidation damage. Typically, only a small region (1 to 13 nucleotides), 

around the damaged base is removed and replaced during BER. It requires four to five 

enzymes to carry out repair of DNA containing AP sites or base damage. These include a 

specific DNA glycosylase that recognizes specific damaged bases and cleave the N-glycosidic 

bond, and creating an AP site. An AP endonuclease cleaves the phosphodiester bond and 

generates 3’OH and 5’deoxyribose phosphate (dRP) terminus. Then a DNA polymerase (Pol 
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b) adds a new nucleotide and the nick is sealed by a DNA ligase. In addition to catalyzing the 

cleavage of N-glycosidic bonds, some glycosylases have an additional AP lyase activity. The 

gap filling and rejoining can continue by either of two sub-pathways: short-patch or long-

patch BER, whereby only one or 2-13 nucleotides are replaced, respectively. The decision to 

proceed via the long-patch or short patch BER is not completely clear (Matsumoto et al., 

1994; Petermann et al., 2003). “Short-patch” repair represents approximately 80-90% of BER 

activity. Long-patch requires many of the same factors as are involved in short-patch repair, 

but unlike short-patch repair, long-patch is a PCNA dependent pathway (Frosina et al., 1996).  

5.3.2 Nucleotide excision repair (NER) 

NER is one of the most flexible DNA repair pathways, considering the diversity of DNA 

lesion it may act upon. The most significant of the lesions are pyrimidine dimers caused by 

UV. Other NER substrates include bulky chemical adducts, DNA intrastrand crosslinks, and 

some form of oxidative damage. The common features of these lesions that are recognized by 

NER are that they cause both helical distortion of the DNA duplex and a modification of the 

DNA chemistry. 

The NER process requires the action of more than 30 proteins in successive steps of damage 

recognition, local opening of the DNA double helix around the injury, and incision of the 

damaged strand on either side of the lesion.  After excision of the damage-containing 

oligonucleotide the resulting gap is filled by DNA repair synthesis, followed by strand ligation 

(as reviewed in Fousteri and Mullenders, 2008). 

There are two distinct forms of NER; global genomic NER (GG-NER) and transcription 

coupled NER (TCNER). In both cases, the Xeroderma pigmentosum group C  (XPC) protein 

acts as the damage sensor and recruiter, and initiates the NER process (Leibeling et al., 2006). 

Xeroderma pigmentosum group A (XPA) binds to the DNA and verifies the damage and 

recruit further NER proteins. GG-NER corrects damage in trancriptionally silent areas 

throughout the genome, and its repair efficiency varies across the genome most likely 

influenced by the chromatin environment. TC-NER repairs lesions on the actively transcribed 

strand of the DNA (as reviewed in Fousteri and Mullenders, 2008). The pathways are 

identical except in mechanism of damage detection. (as reviewed in Fousteri and Mullenders, 
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2008). The ability of certain proteins in the NER pathway to identify bulky DNA lesions that 

have undergone helical distortions enables NER proteins to discriminate between damaged 

and undamaged DNA. Three factors involved in the recognition step; XPC-RAD23B, XPA 

and RPA, all show a binding preference to damaged duplex DNA compared to undamaged (as 

reviewed in Shuck et al., 2008).  

5.4 DNA damage and cell cycle response 

Cell-cycle progression is a highly organized and tightly regulated process that controls cell 

growth and cell proliferation and is tightly coupled with the regulation of DNA damage 

repair. Changes in cell cycle regulators may lead to aberrant cell proliferation and 

development of cancer. In order to better understand the mechanisms involved in response to 

DNA damage it is essential to have a good knowledge of normal cell cycle regulation. 

5.4.1 Regulation of the cell cycle machinery 

The cell cycle is divided into four non-overlapping phases; G1, S, G2 and M. G1 and G2 are 

gap phases that allow the cells to grow and prepare for transition to the next phase. In 

addition, the cells may enter non-proliferative resting phase after mitosis (quiescent or 

terminally differentiated cells) referred to as G0-phase. During G1 the biosynthetic activities of 

the cell increases and the diploid cell has 2n chromosomes. Integration of proliferative and 

anti-proliferative signals may lead to progression, pause or exit of the cell cycle. The S-phase 

consists of DNA synthesis with doubling of the DNA content to 4n. Subsequently, cells enter 

the G- phase where it prepares for mitosis in the M phase. Mitosis involves segregation of the 

replicated genomes into separate nuclei and the division of the cell into two daughter cells 

(Guttinger et al., 2009). Several control mechanisms exist to avoid inappropriate cell 

proliferation. 
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Figure 8. The cell cycle with its four phases (G1, S, G2, and M).  
Progression through the cell cycle is promoted by CDKs, which are regulated positively by cyclins and 
negatively by CDKIs. (Schwartz and Shah, 2005) 

Progression through the different phases of the cell cycle is a highly regulated process 

mediated by cyclin-dependent kinases (CDKs), a group of serine-threonine kinases. 

Activation of CDKs is determined by their post-translational modification consisting of 

phosphorylation/dephosphorylation events, and by the association of their respective cyclin, 

the regulatory subunit of the CDK complex. Inhibition of CDK-cyclin complexes is 

determined by the increased association of the cdk inhibitors (CKI’s) which will negatively 

regulate the cell cycle (Jeffrey et al., 2000) (see Figure 8).  

Cyclins 

Cyclins are, as the name indicates, cycling proteins. They oscillate through the cell cycle and 

form a complex with their CDK partners, which have stable protein levels. The first cyclins to 

be expressed in G0/G1 are the D-type cyclins. Cyclin Ds complex with CDK4/6 and the 

resulting active kinase-complex phosphorylates pRB initially in G1 and promotes the pRb-

dependent exit from the quiescent state of the cell cycle (as reviewed in Maddika et al., 2007). 

Cyclin E is expressed in late G1-phase, with a peak in abundance at the G1/S boundary of the 

cell cycle (Dulic et al., 1994). E-type cyclins are thought to be required to activate Cdk2 for 

proper completion of the G1-phase and its activity is required for the G1-S transition and the 
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initiation of DNA replication. Cyclin A is the second partner of CDK2 and its activity is 

necessary for the passage through S-phase (as reviewed in Maddika et al., 2007).  

Cyclin-dependent kinase inhibitors, CKI’s 

CDKs, which in connection with their positive regulators, cyclins, allow the transition from 

one cell cycle to the other. They are, in addition, tightly regulated by inhibitory 

phosphorylation and by inhibitory molecules such as cdk inhibitors (CKI). Based on their 

sequence homology and specificity of action, CKIs are divided into two distinct families: 

INK4 and Cip/Kip. The INK4 family of CDKIs (p16INK4A, p15 INK4B, p18INK4C, p19INK4D) 

interact specifically with cdk4 and cdk6 kinase subunit (cyclin D-associated kinases), and are 

specific for early G1 phase regulation and prevent entry into S phase (Jeffrey et al., 2000). The 

second family, the Cip/Kip (CDK interacting protein/kinase inhibitory protein) family 

inlclude p21CIP1, p27KIP1 and p57KIP2 and inhibit a broader spectrum of cyclin-CDK 

complexes during all phases of the cell cycle (Denicourt and Dowdy, 2004), and are therefore 

not specific for a particular cell cycle phase.  

p21CIP1 and p27 KIP1 

Due to a high level of homology, p21CIP1 and p27KIP1 are believed to inhibit their targets 

through similar mechanisms (as reviewed in Coqueret, 2003). Following anti-mitogenic 

signals or DNA damage, p21CIP1 and p27KIP1 bind to cyclin-CDK complexes to inhibit their 

catalytic activity and induces cell cycle arrest (Denicourt and Dowdy, 2004; Sanchez-Beato et 

al., 1997; Vervoorts and Luscher, 2008). p27KIP1 protein levels significantly decrease once 

cyclinE/CDK2 is activated in late G1 as a result of decreased p27KIP1 protein stability. The 

main role of p21CIP1 in cell cycle regulation is to inhibit the activity of CDK4 and especially 

CDK2, required for G1/S transition and may therefore  lead to G1 arrest (Zhang et al., 1993). 

Induction and activation of the tumour suppressor p53 in response to DNA damage may in 

many cases lead to the induction of p21CIP , owing to the strong p53 binding element in the 

p21CIP1 gene promoter (Dulic et al., 1994). Further, may this lead to a G1 arrest, and in 

combination with other events, may lead to apoptosis (Deng et al., 1995). In addition, p21CIP1 

is able to bind and inhibit the proliferating cell nuclear antigen (PCNA) (Zhang et al., 1993), a 

subunit of the DNA-polymerase. This enables p21CIP1 to regulate DNA synthesis and thereby 

contributing to the p53-dependent checkpoint of cell cycle progression by impeding DNA-
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replication. Additionally, p21CIP1 can be regulated via p53 independent pathways as well 

(Somasundaram et al., 1997) (Coller et al., 2000). This may occur for example by post 

translational modification, such as phosphorylation leading to cytoplasmic localization and 

thereby inactivation of p21CIP1 (Zhou et al., 2001).  

5.4.2  Cell cycle checkpoints 

In conclusion, each phase of the cell cycle contains checkpoints that provide an opportunity to 

put the cells on halt in order to repair damaged DNA and complete replication before 

attempting further cell-cycle progression and entry into mitosis. After passing these 

checkpoints cells are irreversibly committed to the next phase. DNA damage and/or 

malfunction of the critical organelles or structures (e.g. faulty mitotic spindle) can activate 

cell cycle arrest and even apoptotic cascades, leading to cell death which allows selective 

removal of unwanted or damaged cells (Jeggo and Lobrich, 2006; Lukas et al., 2004; Su, 

2006). 

5.4.3 G1/S checkpoint 

The activation of the G1/S checkpoint leads to cell cycle arrest before the onset of DNA 

synthesis, giving time to repair the lesions in the DNA template. An important protein in this 

step is p53 which is rapidly activated following DNA damage.  In general, cell cycle arrest 

before or during S phase (G1-S and intra-S chekpoints, respectively) occurs via inhibition of 

cyclin-dependent kinase 2 (CDK2) activity, which is needed for S phase, either by binding of a 

Cdk inhibitor or by reduction of Cdc25 phosphatase activity an activator of Cdk2. ATM, 

Chk1- and Chk2-mediated phosphorylation, and subsequent degradation of Cdc25A, 

contribute to both G1-S and intra S checkpoints (Su, 2006).  

5.4.4 S-phase checkpoints  

Given the complexity of the DNA replication, there are several errors and lesions that occur 

spontaneously during the S-phase process of every cell. Protecting the integrity of the genome 

during this critical phase is more significant than in G1 or G2 via checkpoints of these phases, 

or the mitotic spindle checkpoint (Lukas et al., 2004). The S-phase checkpoints can be divided 
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into three categories. 1) The replication checkpoint is initiated when the progression of 

replication forks becomes stalled in response to stress. This checkpoint has two functions; 

first to inhibit the initiation of DNA replication from hitherto unfired origins through targeting 

cyclin-CDK complexes, and secondly to protect the integrity of the replication forks and 

allowing the recovery of cell-cycle progression after DNA repair and/or restoration of the 

dNTP pool.  2) The intra-S-phase checkpoint is activated by DSBs that are generated in the 

genomic loci outside the active replicons. This is in contrast to the other checkpoints 

independent of replication forks.  3) The S-M checkpoint ensures that cells do not attempt to 

divide before their entire genome becomes fully duplicated. Failure results in mitotic 

catastrophy of cells that have incompletely replicated DNA. None of these three S-phase 

checkpoints has p53 as an absolute requirement, which is the key target of sustained G1 arrest, 

but may contribute (Lukas et al., 2004).     

5.4.5 G2/M checkpoint 

The role of the G2/M checkpoint is to ensure that the chromosomes are intact and ready for 

separation before cells enter mitosis. This is important for the genomic stability, since the 

segregation of partially replicated or damaged chromosomes can result in DNA breakage and 

lead to chromosomal aberrations and aneuploidy. However, the control mechanisms are not 

absolute and cells with low levels of damage or incompletely separated/replicated DNA may 

in fact enter mitosis (Shimada and Nakanishi, 2006). If cells enter S-phase after an aberrant 

sister chromatide segregation during mitosis, known as mitotic slippage, this may result in 

endoreduplication of the DNA, thus the DNA is duplicated without mitosis. p53 was found to 

be activated during spindle checkpoint-mediated mitotic arrest thereby leading to a crucial 

postmitotic G1-checkpoint. Thus, p53 activation together with an intact spindle checkpoint is 

required to prevent endreduplication upon mitotic failure and therefore protects normal cells 

from polyploidisation (Tsuiki et al., 2001; Vogel et al., 2004). 

5.5 Tumor supressor protein, p53 

The p53 tumour suppressor protein is a short-lived transcription factor that becomes stabilised 

in response to a wide range of cellular stresses. Ubiquitination and the targeting of p53 for 
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degradation by the proteasome is mediated by Mdm2 (mouse double minute clone 2), a 

negative regulatory partner of p53. Serine 15 phosphorylation of p53 leads to a stabilization of 

p53 by reducing its interaction with Mdm2. p53 regulates various cellular events, such as the 

cell cycle, apoptosis and DNA repair in response to DNA damage, and plays an important role 

in maintenance of genomic stability (Hoeijmakers, 2001). Therefore, p53-mediated DNA 

repair may play an essential role in the maintenance of genomic stability. Moreover, p53 has 

been shown to be involved in various types of DNA repair, including NER, BER and repair 

DSBs (Smith and Seo, 2002; Zurer et al., 2004).   

Once activated, p53 transcribes a number of genes. There are three primary responses to a 

stress input signal by the p53 pathway; cell cycle arrest, apoptosis or cellular senescence. For 

instance, p21CIP1 is a target gene of p53 that mediates G1 arrest, and is phosphorylated and 

activated by p53 in response to cellular stress. This further inhibits CDK4/Cyclin D that 

normally phosphorylates pRB which ultimately leads to inhibition of transcription of S-phase 

genes required for G1 transition (Lavin and Gueven, 2006). 

5.6 Cell death 

Dying cells are engaged in a process that is reversible until an irreversible phase of “point-of-

no-return” is trespassed. This is not yet a clearly defines biochemical event, but the 

Nomenclature committee on Cell Death (NCDD) proposes that a cell should be considered 

dead when one of the following morphological criteria is met: (1) The cell integrity of the 

plasmamembrane is lost, as defined by the incorporation of vital dyes (eg., PI) in vitro; (2) 

complete fragmentation into discrete bodies (apoptotic bodies) of the cell and its nucleus; 

and/or (3) its corpse (or its fragments) has been engulfed by an adjacent cell in vivo (as 

reviewed in Kroemer et al., 2009). Thus, cell death can be classified according to its 

morphological appearance (apoptotic, necrotic, autophagic or associated with mitosis), 

enzymologial criteria (with or without the involvement of nucleases or proteases), functional 

aspects (programmed or accidental, physiological or pathological) or immunological 

characteristics (immunogenic and non-immunogenic) (Gorczyca, 1999). 
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5.7 Apoptosis 

Apoptosis is generally referred to as “programmed cell death” and is one of the main types of 

programmed cell death which involves a series of biochemical events leading to specific cell 

morphology characteristics and ultimately death of cells. 

The apoptotic process commence with specific signals that initiates a number of distinctive 

biochemical and morphological changes in the cell. A family of caspases and proteases are 

activated early in the process and they cleave cellular substrates necessary for normal cellular 

function, and activate other degradation enzymes which cleave the DNA. This results in the 

appearance of morphological changes in the cells and extensive DNA cleavage (Riccardi and 

Nicoletti, 2006). The morphological features of apoptosis include rounding up of the cell, 

retraction of pseudopodes, reduction of cellular and nuclear volume (pykonosis), modification 

of cytploasmic organelles, plasma membrane blebbing and engulfment of resident phagocytes 

in vivo (Kroemer et al., 2009). Because DNA fragments are lost from apoptotic cells, nuclear 

DNA content can be easily measured by flow cytometry, as they eventually end up in the sub- 

G1 population.  In contrast to apoptosis, the morphological features of necrosis include 

cytplasmic swelling (oncosis), rupture of the plasma membrane, swelling of cytplasmic 

organelles and moderate chromatin condensation, and is caused by a passive degenerative 

process (Kroemer et al., 2009).  

5.7.1 DNA-damage induced apoptosis 

A DNA-damaging agent not only targets DNA but also causes damage to other cellular 

components. Therefore targets other than DNA must also be taken into account when 

studying DNA-damage and apoptosis. However, apoptosis provoked by genotoxins is largely 

due to DNA damage (Roos and Kaina, 2006a). Apoptosis can be triggered by many different 

types of DNA damage induced by for instance UV light or different types of carcinogens, 

such as methylating agents found in tobacco smoke or food causing the killing lesion, O-6-

methyl-guanine. N-methylated bases that are induced by alkylating agents such as N3-methyl 

adenine or N7-methylguanine are cytotoxic and at high levels such lesions can trigger 

apoptosis(O'Connor et al., 1988). Chemical genotoxins like benzo(a)pyrene (BaP) from 
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combustion reactions or smoke cause bulky adducts in the DNA and can trigger apoptosis. 

One important pathway linking DNA damage to apoptosis is the ATM/ATR-triggered 

pathway involving the checkpoint kinases, CHK1 and CHK2, and p53. p53 induces 

transcriptional activation of pro-apoptotic factors such as FAS, PUMA and BAX leading to 

mitochondria dysfunction and thereby apoptosis (Roos and Kaina, 2006b). 
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6. Methods 

6.1 Cell cultures 

6.1.1 Lymphocytes versus lymphoid cell culture 

Circulating human peripheral blood lymphocytes (PBL) will only survive for a short period of 

time without undergoing morphological alterations, extensive synthesis of macromolecules or 

mitosis, when cultured in vitro. The resting peripheral blood lymphocytes normally remain in 

a quiescent state, described as G0, containing a diploid DNA content (2C). When stimulated, 

they will increase their RNA, protein and DNA synthesis. The stimulation can be brought 

about by several agents; in this case in this case phytohemagglutinin (PHA) was used. PHA 

stimulation triggers a set of metabolic events resulting in entering of the G1-phase, after 

approximately 12 hours, and RNA synthesis, which will continue to increase during the S-

phase, beginning about 30 hours after stimulation, in which DNA synthesis occurs.  

As a model system for studying the effect of AA/GA on human lymphoid cells, we used a 

continuously growing Epstein-Barr Virus (EBV) transformed B-lymphoid cell line already 

available in our laboratory (GM00130C). The advantages of using a cell line are: 1) access to 

a practically unlimited number of cells, 2) they can be grown for an extended time period and 

3) easier handling and less time consuming cell isolation, than required for PBL. However, 

there are also disadvantages using cell lines, especially when studying cell cycle control and 

responses to DNA-damage. Obviously the cell cycle is altered in these cells and therefore 

should be taken into consideration when interpreting the data. 

6.1.2 EBV transformed B-lymphocytes 

In this project, the GM00130C cell line was utilized as a model system resembling stimulated 

normal lymphocytes. GM00130C is derived from B-lymphocytes immortalized by the 

Epstein-Barr virus (EBV) and was obtained from Coriell Cell Repositories (Coriell Institute 

for Medical Research, Camden, New Jersey). These cell lines are usually polyclonal in 

derivation. The lymphoblasts were grown as a suspension culture in RPMI with 10% heat 
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inactivated calf serum and 1% penicillin and streptomycin with 5% CO2 in air under saturated 

humidity at 370C. Their morphology is small (7-9 micron) round cells that grow as loose 

aggregates in suspension. The cells were cultured at a density between 0.2 x 106  – 1 x 106  

cells/ml. 

Cell culture treatment. 

The cells were seeded out in Costar cell culture dishes at a concentration of 0.2 x 106 cells/ml. 

Cells were exposed to AA or its metabolite GA at concentrations varying from 20 µM to 1 

mM. GA or AA was always prepared in fresh solutions the same day (diluted in PBS). All cell 

treatment was performed under sterile conditions. 

6.1.3 Isolation of primary lymphocytes from whole blood 

Blood samples were obtained by venepuncture from healthy volunteers. Lymphocytes were 

isolated by Ficoll-Hypaque density gradient as follows: 

1. Whole blood was diluted 1:1 with PBS and transferred to pre-made lymphoprepTM 

tube (Axis-Shield PoC AS). The tubes was centrifuged for 20 min 500 x G at room 

temperature. 

2. The layer of mononuclear cells was transferred to a new falcon tube and washed with 

medium and centrifuged at 500 x G at room temperature for 5 minutes. 

3. The pellet was resuspended in medium, counted and diluted in prewarmed RPMI-

medium containing 10% FCS and 1% PS to the desired cell concentration, preferably 

2x106/ml. 

6.1.4 Stimulation of resting peripheral blood lymphocytes (PBL) 
into late G1 

In order to obtain good control lysates for the Western procedure when detecting the cell 

cycle parameters such as p21CIP1, p27, cyclin A and cyclin E, we stimulated PBL into late G1.  

In resting cells, G0, the protein content of p21CIP/KIP is low and the content of p27KIP is high 

due to p27 KIP contribution to maintain lymphocytes in a quiescent state (Vervoorts and 

Luscher, 2008).When PBL are stimulated by PHA into late G1, around 30 hours post 
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stimulation, the cyclins and p21KIP are upregulated while p27KIP is down regulated (Vervoorts 

and Luscher, 2008). 

1. The cells were seeded out at a concentration of 2 x 106 cells/ml and 

phytohemagglutinin (PHA) added to a final concentration of 1µg/ml. 

2. The cells were incubated at 37oC with 5% CO2 for 31 hours until cells had reached 

late G1. For western procedure, cells were pelleted by centrifugation at 500 x G for 5 

minutes and lysed according to the protocol in section 6.9.5. 

6.2 Metabolism of acrylamide to glycidamide using liver S9 
fractions 

In order to metabolize AA to GA in cell cultures we used liver S9 fractions which are 

subcellular fractions that contain several drug-metabolizing enzymes, including the 

cytochromes P450, flavin monooxygenases and UDP gluronyl transferases, and are therefore 

expected to metabolize AA. Pooled human liver S9 obtained from In Vitro Technologies was 

prepared form several donors with mixed sexes. 

Procedure: 

1. The final culture medium should contain 10% of S9-mix. 

2. The NADPH Regenerating System (NRS) was prepared fresh every time and kept on 

ice. 

3. All ingredients were mixed except the G-6-P dehydrogenase and the S9-fraction. 

4. Immediately before exposure to AA the S9-fraction and the G-6-P dehydrogenase was 

added to the mixture. 

From the stock solutions, the amount of S9-mix needed was prepared according to the 

volumes (µl) in the Table 1: 
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Table 1: Ingredients used in S9 mix 

Total S9-mix volume  Stock 

solutions 

100 

µl 

End conc. 

(mM) 

S9 fraction 

NRS (stored stock 

solutions at at 4˚C) 

 

1 M KCl 

0,25 M MgCl2*6H20 

0,2 M G-6-P 

G-6-P DH (140 U/ml) 

0,04 M NADP 

RO water 

PBS x 

 

1.118 g/15ml 

0.762 g/15ml 

0.913 g/15ml 

 

0.473 g/15ml 

 

30 

3.3 

3.2 

2.5 

2.7 

10 

21.0 

30.0 

 

33 

8 

5 

263.75 U/ml 

4 

 

0.3x 

 

6.3 Methods to detect DNA damage and repair 

6.3.1 The comet assay 

The comet assay (single cell gel electrophoresis or SCGE) is a simple and sensitive technique 

for measuring DNA strand breaks in single cells (Olive et al. 259-67;Ostling and Johanson 

291-98;Singh et al. 184-91). The comet assay can be performed under neutral or alkaline 

conditions. The neutral version is generally less sensitive. It was thought that the DNA of the 

head and tail  primarily was double-stranded and that only double strand breaks was 

measured, whereas under alkaline conditions ssDNA appears in the tail while the head largely 

consist of dsDNA (Collins et al., 1997), but this is still debated. However, the alkaline version 

detects both DNA double strand breaks (DSB), DNA single strand breaks (SSB) and alkali-

labile sites (ALS) leading to an increased DNA migration (Collins et al., 1997). In our studies 

we have only used the alkaline version.  

The method is based on embedding exposed cells in agarose and lysing the cells with 

detergents and high salinity. After lysing, we are left with the ‘nucleoids’ in the gel. 

Nucleoids are protein depleted nuclei containing intact supercoiled DNA loops. After 

incubating the gel and running electrophoresis at high pH (13.2) the DNA unwinds and if 
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damaged, migrates out of the nucleoid resulting in structures resembling comets. This alkaline 

comet assay detects both ss- and dsDNA breaks. The ssDNA breaks, which dominate largely 

in numbers, are generally quickly repaired and maybe not the most interesting type of lesions 

since they are not regarded as a significant lethal or mutagenic lesion. When exposing cells to 

genotoxic compounds the DNA may encounter AP (Apurinic or Apyrimidinic) sites and not 

strand breaks directly. The high pH of the electrophoresisbuffer causes the transformation of 

these alkali-labile AP sites to single strand breaks by introducing breaks in the phosphodiester 

backbone. Thus, the supercoiled DNA becomes relaxed and can be pulled out of the nucleoide 

towards the anode (Collins et al., 1993). Additionally, to make the comet assay more sensitive 

and more specific, the DNA can be incubated with lesion-specific endonucleases that detect 

and digest specific base lesions and thereby produce single strand breaks. The more strand 

breaks that exist in the DNA the more loops can be pulled out and therefore, the percentage of 

DNA in the tail is a direct measurement of the amount of damage the DNA possess. The net 

damage obtained by the specific enzyme can be calculated by subtracting the damage 

obtained without adding the enzyme, giving an estimate of the percentage of a specific lesion 

the DNA has attained. 

Lesion specific endonucleases 

By introducing lesion-specific repair endonucleases any lesion for which a repair 

endonuclease exist can be detected. This is a necessary step to allow detection of lesions that 

are not frank breaks. 

Formamido pyrimidine N-glycosylase (FPG) 

The bacterial enzyme from Escherichia coli, formamido pyrimidine N-glycosylase (FPG) 

protein is widely used and is recommended for the detection of oxidative DNA base damage 

and frequently used in our laboratory. The Fpg-enzyme function is part of the BER-pathway 

and it preferentially recognises 8-oxo guanine, but also ring-opened Fapy lesions. The ring-

opened Fpg-substrates include for instance Fapy-Gua (2,6-diamino-4-hydroxy-5-

formamidopyrimidine) and  Fapy-Ade (4,6-diamino-5-formamidopyrimidine) (Boiteux et al. 

106-10;Chetsanga and Lindahl 3673-84). The ring-opened purines of guanin will be excised 

at the N-7 and C-8 position (Boiteux et al., 1987). Since the glycosylases in general have an 

associated AP lyase or AP endonuclease activity, they cleave the DNA at the AP-sites and 
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baseless sugars are left as BER intermediates. Since there might be other AP-sites not related 

to oxidation, these too will be detected and cleaved by FPG. So, the enzyme specificity is not 

absolute (Azqueta et al., 2008; Collins et al., 1993). 

The comet assay protocol 

DNA strand breaks and alkali labile sites were measured using the comet assay which was 

performed using the method described by Singh et al. 1998 and Tice et al. 2000 with some 

modifications. 

1. After cell exposure, harvesting and washing the pellet, the cells were resuspended 

carefully in PBS at a concentration of approximately 1 million cells per ml and kept on 

ice.  

2. The cells were then mixed 1:10 with 0,75% low melting agarose and dissolved in 10 

mM EDTA in PBS at 37˚C. The cell suspension was mixed carefully and immediately 

moulded out in the wells on a cold GelBond film with the use of a casting frame, 

producing 12 gels on one film. Three technical replicates per sample were added each 

time.  

3. The GelBond films were then placed in cold lysis buffer at 4˚C for minimum 2 hours, 

or overnight. Furthermore, the films were rinsed quickly in cold, distilled water before 

equilibrating the gels in enzyme reaction buffer for 10 minutes followed by 50 minutes 

prior to enzyme treatment. 

4.  The enzyme, Fpg, was added to a final concentration of 1 µg/ml to the preheated 

enzyme reaction buffer, including 0.2 mg/ml bovine serum albumin (BSA) and 

incubated at 37˚C for one hour. 

5. The films were placed in electrophoresis buffer (pH 13.2) at 4˚C for 5 minutes + 35 

minutes. This will stop the enzyme reaction and unwind the DNA.  

6. Gel electrophoresis was performed in electrophoresis buffer (pH 13.2) at 8˚C for 20 

minutes at 20 V and approximately 300mA, with an approximately voltage drop of  

0.74 V/cm across the platform. 

7. The films were neutralized in neutralizing buffer 2 x 5 min, to prevent further 

unwinding. The gels were then fixed in absolute ethanol, dried and stored dark until 

scoring. 
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6.3.2 Scoring of comets 

The DNA was stained with SYBR®Gold in TE-buffer for 20 minutes. The comets were 

scored using the image analysis software “Comet assay IV” from Perceptive Instruments and 

using a Leica DMLB with an Osram Mercury Short ARC HBO® 50W/2 light bulb or or an 

Olympus BX51 microscope with an Osram Mercury Short ARC HBO 100® W/2 light bulb. 

The comets were selected by the operator. For each comet, the software calculates the total 

intensity (amount of DNA) of the comet, the intensity of the tail (from the middle of the head 

and to the end of the tail) and of the head, and then calculates per cent DNA in the tail versus 

that of the total comet. This “per cent tail intensity” was used as a measure of damage. It 

increases linearly with break frequency. In each gel 50 comets were scored, overlapping 

comets were avoided since the software cannot discriminate between them and this would 

lead to an incorrect per cent tail DNA. Importantly, the cell density is critical when moulding 

the cells in order to avoid overlapping cells or comet tails. 

6.3.3 Determination of repair capacity 

To determine the repair capacity of GA-induced lesions in GM00130C, suspension cells were 

exposed to 0.1 mM and 0.5 mM GA in a cell incubator under standard conditions at 37˚C with 

5% CO2. The cells were exposed to different concentrations of GA for 2 or 4 hours, washed 

twice with medium and incubated further in medium for 2 and 20 hours, respectively. The 

DNA damage and repair was then analyzed by the Comet assay procedure. 

6.4 Flow cytometric analysis of cell cycle distribution 

Flow cytometric analysis is a widely used method that allows simultaneous multi-parameter 

analysis of single cells, and is predominantly used to measure fluorescence intensity produced 

by fluorescent-labelled antibodies detecting proteins or ligands that bind to specific cell-

associated molecules, such as DNA binding by Propidium Iodide. All analysis was performed 

on BD LSRII TM flow cytometer from BD Biosiences. 
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Two of the most popular flow cytometric applications are the measurement of cellular DNA 

content and determining the stages of the cell cycle within a population of cells. This can be 

carried out on fixed or live cells using different fluorescent DNA binding dyes in conjunction 

with antibodies to analyse antigen expression. 

Cellular DNA content: 

By adding a fluorescent dye that binds stoichiometrically to the DNA, the nuclear DNA 

content can be quantitatively measured. The principle is based on that the stained material has 

incorporated an amount of dye proportional to the amount of DNA. When measured in the 

flow cytometer the emitted fluorescent signal yields an electronic pulse with a height 

(amplitude) proportional to the total fluorescence emission from the cell. These data are 

considered as a measurement of the cellular DNA content (Shapiro, 2003).  

Cell cycle analysis: 

The determination of the relative DNA content enables discrimination between the various 

phases of the cell cycle. There are four distinct phases G1- S-, G2 and M-phase in a 

proliferating cell cycle, However since both G2- and M-phase contain the same amount of 

DNA they cannot be discriminated based on differing DNA contents. 

One important aspect of DNA analysis by flow cytometry is the ability of the cytometer to 

exclude cell doublets. A doublet is formed when two cells with a G1-phase DNA content are 

recorded by the flow cytometer as one event with a cellular DNA content similar to a G2/M-

phase cell. If the sample analyzed contains many doublets this would yield an overestimation 

of the G2/M-phase population.  By looking at pulse width (i.e duration) versus pulse area one 

can exclude cell doublets since a true G2 cell will have a smaller width compared to a pair of 

G1 cells passing through the laser beam simultaneously. Since the width of the fluorescence 

from the DNA dye increases with the diameter of the doublet particle, while both the 

G1doublet and the G2/M single produce the same fluorescence area signal, one can 

discriminate the G1-doublet from a single G2-cell (Figure 9). Therefore, in a dot plot 

histogram it is possible to isolate or “gate” the population of singlet G1, S and G2/M cells in 

order to study the population of interest (Nunez, 2001). Once the single cell population is 
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identified, the percentage of cells in G

subjectively setting gates or by using a program that will mathematically deconvolute the 

DNA histogram and thus give a more accurate measureme

phase (Shapiro, 2003).  

Figure 9 Gating of single cells in flow cytometry

Cell cycle analysis software

Several manufacturers have developed software for cell cycle analysis. These provide 

mathematical models for fitting the DNA histogram. We used MultiCycle AV for Windows 

from Phoenix flow systems and BD FACSDiva

mathematical models for fitting the DNA histogram. However in most cases a su

the background is required in order to remove events caused by debris, which will produce a 

better fit with the models given by the software. Before the calculation of the phases, two 

main regions at the left of G1

lower left region consists of debris and is excluded from the analysis by defining it as 

background in the software. The upper left region is set by the position of G

starting point of the phase analysis. 

the upper right region is gated out and excluded (
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Gating of single cells in flow cytometry 

Cell cycle analysis software 

Several manufacturers have developed software for cell cycle analysis. These provide 

mathematical models for fitting the DNA histogram. We used MultiCycle AV for Windows 

from Phoenix flow systems and BD FACSDivaTM Software. These software programs provide 

mathematical models for fitting the DNA histogram. However in most cases a su

the background is required in order to remove events caused by debris, which will produce a 

better fit with the models given by the software. Before the calculation of the phases, two 

1 and the right part of G2/M of the histogram are excluded. The 

lower left region consists of debris and is excluded from the analysis by defining it as 

background in the software. The upper left region is set by the position of G

starting point of the phase analysis. The lower right region marks the end of G

the upper right region is gated out and excluded (Figure 10). 
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Several manufacturers have developed software for cell cycle analysis. These provide several 

mathematical models for fitting the DNA histogram. We used MultiCycle AV for Windows 

Software. These software programs provide 

mathematical models for fitting the DNA histogram. However in most cases a subtraction of 

the background is required in order to remove events caused by debris, which will produce a 

better fit with the models given by the software. Before the calculation of the phases, two 

of the histogram are excluded. The 

lower left region consists of debris and is excluded from the analysis by defining it as 

background in the software. The upper left region is set by the position of G1, and marks the 

The lower right region marks the end of G2/M –phase and 
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Figure 10: Gating of cell cycle population. 

 

6.5 Cell Cycle Analysis by Propidium Iodide (

Propidium iodide (PI) form complexes with double stranded DNA and RNA by intercalating 

between the bases with a stoichiometry of one dye per 4

both double-stranded DNA (dsDNA) and double

treated with RNAse to ensure that the PI staining is DNA specific. Otherwise one would get 

artificial broadening of the DNA content distribution due to fluore

stranded RNA. When excited by 488nm of laser light, the PI staining can be detected with 

562-588nm band pass filter using flow cytometry 

6.5.1 Fixation of cells:

1. After exposure, the cells were harvested

washed twice in ice cold Dulbecco’s PBS without Ca

2. The pellet was resuspended in PBS and added ice cold 100% ethanol, to give a final 

concentration of 70% ethanol, and stored at 

Propidium Iodide (PI) Staining procedure:

1. To facilitate the pelleting of ethanol fixated cells, the ethanol concentration of the 

fixated cells were diluted to 50% or below with Dulbeccos PBS without Ca

and added 1% FCS to avoid clumping.
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: Gating of cell cycle population.  

Analysis by Propidium Iodide (PI) Staining

Propidium iodide (PI) form complexes with double stranded DNA and RNA by intercalating 

between the bases with a stoichiometry of one dye per 4–5 base pairs of DNA

stranded DNA (dsDNA) and double-stranded RNA (dsRNA), cells must be 

treated with RNAse to ensure that the PI staining is DNA specific. Otherwise one would get 

artificial broadening of the DNA content distribution due to fluorescence dye bound to double 

stranded RNA. When excited by 488nm of laser light, the PI staining can be detected with 

588nm band pass filter using flow cytometry (Riccardi and Nicoletti, 2006)

Fixation of cells: 

After exposure, the cells were harvested by centrifugation at 310 x G at 4

washed twice in ice cold Dulbecco’s PBS without Ca2+ or Mg2+.  

The pellet was resuspended in PBS and added ice cold 100% ethanol, to give a final 

concentration of 70% ethanol, and stored at -20˚C until analysis. 

) Staining procedure: 

To facilitate the pelleting of ethanol fixated cells, the ethanol concentration of the 

fixated cells were diluted to 50% or below with Dulbeccos PBS without Ca

and added 1% FCS to avoid clumping. 
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stranded RNA (dsRNA), cells must be 

treated with RNAse to ensure that the PI staining is DNA specific. Otherwise one would get 

scence dye bound to double 

stranded RNA. When excited by 488nm of laser light, the PI staining can be detected with 

(Riccardi and Nicoletti, 2006).  

by centrifugation at 310 x G at 4˚C and 

The pellet was resuspended in PBS and added ice cold 100% ethanol, to give a final 

To facilitate the pelleting of ethanol fixated cells, the ethanol concentration of the 

fixated cells were diluted to 50% or below with Dulbeccos PBS without Ca2+ or Mg2+, 
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2. The pellet was resuspended in 0.5 ml PBS with 40 µg/ml RNase, to remove any 

residual RNA, and 20 µg/ml PI to stain the DNA, and incubated for 10 minutes at 

37˚C. 

The samples were then analyzed on a BD LSR II flow cytometry (BD Biosience) to determine 

PI (red) staining and cell count. 

6.6 Cell Cycle Analysis by Bromodeoxyuridine 

The limitation of using only a single fluorochrome, such as PI, is that we do not get any 

kinetic information. It is difficult to tell if cells that have an S-phase amount of DNA actually 

are cycling. To assess this problem we can use bromodeoxyuridine (BrdU) which is an 

analogue of thymidine that will be incorporated into the DNA of cycling cells. The BrdU 

incorporation can be detected by unwinding the DNA and then using a FITC (fluorescein 

isothiocyanate)-labelled antibody against BrdU. The result is a better separation of the S-

phase population from the G1 and G2 cells (Shapiro, 2003). Therefore, we can get a bivariate 

analysis of total DNA content using propidium iodide staining along the X-axis, plotted 

against BrdU incorporation detected by the FITC-labelled antibodies against BrdU on the Y-

axis. In addition, the rate of cell division can be monitored by puls labelling the cells with 

BrdU and harvesting at different time points. In our experiments BrdU was added 1 hour prior 

to harvesting the exposed cells. The cells were then fixed according to the protocol. After 

labelling the cells with FITC-anti-BrdU and resuspending in RNAse/PI solution, cells that 

synthesize DNA during the BrdU pulse labelling will be positive for FITC and thereby easily 

detected. The benefit of using BrdU incorporation is that we are able to distinguish cells in 

early S-phase from cells in G1- and late S-phase from those in G2-phase without the need of 

mathematical software to deconvolute DNA histograms. 

 BrdU-FITC procedure: 

Cells were exposed and harvested the same way as for PI-staining and flowcytometry. 

1. To facilitate the pelleting of ethanol fixated cells, the ethanol concentration of the 

fixated cells was diluted to 50% or below with Dulbeccos PBS (without Ca2+ or Mg2+), 

and added 1% FCS to avoid clumping. Centrifugation for 20 minutes 250 x G. 
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2. Pellet was resuspended in 1ml 2M HCl  with 0.3 mg/ml pepsin, slowly while 

vortexing carefully, and left for 30 minutes at room temperature to denature the DNA. 

3. The HCl was neutralized by adding 3ml 0.1M sodium tetraborate. 

4. Cells were pelleted by centrifugation at 250 x G for 10 minutes, then washed in IFA 

buffer (10 mM HEPES [pH 7.4], 25 mM NaCl, 4% FCS) and pelleted again. 

5. Pellet was resuspended in 1ml IFA with 0.5% tween for 10 minutes at room 

temperature, then pelleted by centrifugation at 250 x G for 10 minutes. 

6. The pellet was subsequently resuspended in 100 µl IFA together with the FITC 

conjugated anti-BrdU antibody diluted 1:10 and incubated for 30 minutes at room 

temperature. 

7. After the final IFA wash and centrifugation, the pellet was resuspended in 0.5 ml PBS 

with 40 µg/ml RNase to remove any residual DNA, and 20 µg/ml PI was added to 

stain the DNA. 

6.7 Methods for detection of cell death 

6.7.1 Flow cytometric analysis for identification and quantification 

of apoptotic or necrotic cells 

Apoptotic cells show reduced DNA stainability following staining with a variety of 

fluorochromes such as propidium iodide (PI), DAPI (4',6-diamidino-2-phenylindole), acridine 

orange or Hoechst dyes. Therefore, the appearance of cells with lower DNA stainability than 

that of G1 cells, sub-G1 peak, is considered to be a marker of cell death by apoptosis. This 

reduced stainability is a consequence of partial loss of DNA due to activation of an 

endogenous endonuclease and subsequent diffusion of the low molecular weight DNA 

products from the apoptotic cell(Darzynkiewicz et al., 1992). A necrotic cell, on the other 

hand, does generally not show an immediate reduction in DNA stainability. Thus the 

discrimination by live- and necrotic- cells is not recommended based on single-parameter 

DNA content analysis alone (Darzynkiewicz et al., 1992).  
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Due to chromatin condensation and nuclear fragmentation during the process of apoptosis, the 

apoptotic cells and bodies arising from G
1 

emit fluorescent signals that are lower than those of 

G
1 

cells. The fluorescent signals can be much smaller than expected in non-apoptotic G
1 

cells 

and thus represent only a fraction of the original amount of DNA in a whole nucleus. 

Therefore, if the treatment causes a great increase in the percentage of apoptotic bodies, it 

must be remembered that one G
1 

nucleus can fragment into many smaller condensed 

chromatin units. As apoptosis progresses, the size of the fluorescent signal become 

progressively smaller and at some point will be gated out together with the background 

fluorescence. In this way, apoptotic G2/M- and S-phase nuclei progress backwards through S-, 

G1- and eventually sub G1-phase as the apoptotic process progress. 

6.7.2 Fluorescence microscopy 

1. The integrity of the plasma membrane of cells undergoing apoptosis is preserved and 

most functions of the membrane remain unchanged. Thus, apoptotic cells exclude dyes such 

as PI or trypan blue, often used as “viability assays” dyes. This is in contrast to necrotic cells 

where one of the earliest changes is loss of membrane function and its structural integrity. By 

using PI and Hoechst 33342 staining simultaneously one can discriminate between live versus 

apoptotic versus necrotic cells. In this method PI is not excluded by necrotic cells, and after 

entering the cell PI intercalates with DNA, causing red fluorescence of the necrotic nucleus. 

Vital cells actively take up Hoechst 33324 and show blue fluorescence of the cellular DNA. 

When applied to apoptotic cells, Hoechst 33342 emits a more intense blue fluorescence than 

live cells due to the condensation of the cell and nucleus. For a period of 4-6 hours the 

apoptotic cells are still able to exclude PI. Thus, this method offers differentiation between 

viable (blue fluorescence), apoptotic (intense blue fluorescence, unstained or only faintly red 

fluorescence) and necrotic cells (red fluorescence), as well as the feasibility to discriminate 

between early and late phases of apoptosis, apoptotic/necrotic cells, based on the difference in 

membrane permeability to PI. 
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6.8 Determining the vitality of cells by staining with 
propidium iodide and Hoechst 33342 

A cell that is undergoing apoptosis demonstrates nuclear condensation and DNA 

fragmentation, which can be detected by staining with the DNA stain, Hoechst 33342 (H342) 

and by using a fluorescence microscope. 

Hoechst 33342 (H342) is a rather large molecule (MW 616) but readily crosses intact cell 

membranes, and specifically stains DNA (bluish-grey fluorescence). It binds both specifically 

and quantitatively to DNA, preferably to AT-rich regions in the small grove of DNA and 

fluoresces blue when excited by UV light (Shapiro, 2003). Thus, all nuclei stain blue.  

 

Propidium iodide (PI) is a rather large molecule (MW 668.4) that does not cross intact cell 

membranes. However, it is able to pass through compromised plasma membranes. Thus, a red 

or pink-stained cell indicates damage to the plasma membrane. 

A) Normal, healthy cells (H342 positive) with normal heterochromatic nuclei are stained 

blue. 

B) Cells with compromised plasma membranes are normally reddish or pinkish blue. 

C) Dead cells with compromised plasma membranes are PI positive and the nucleus is 

red. Cells are typically swollen. 

D) Apoptotic cells that are either PI+ or PI-, are characterized by condensed chromatin 

which may appear as small, round homogeneously-stained nuclear fragments. 

 

Procedure: 

1. An eppendorf tube with 1 ml of cell suspension (0.5 to 1.0 x 106 cells/ml medium) was 

added 10 µl PI and 10 µl H342 (both stock solutions: 0.5 mg/ml distilled water) and 

incubated for 15 minutes in the dark at room temperature. 

2. Cells were pelleted at 300 x G for 5 minutes and washed once with culture medium. 
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3. Supernatant was removed and pellet was resuspended in 5 µl FCS. Suspending the 

cells in serum helps to eliminate salt crystals and helps to maintain cell shape.  

4. Two 2 µl drops of the cell suspension were placed on a microscope slide and smeared 

out with another slide, drawn behind the leading slide. 

5. The slides were left to dry and stored in a dark slide box. 

6. Using an oil immersion objective (magnification x400), approximately 400 cells were 

counted using Leica DMLB with an Osram Mercury Short ARC HBO® 50W/2 light 

source and with an UV-2A excitation filter 330-380 nm, each cell was placed into one 

of the four categories defined above. 

6.9 Protein detection methods 

SDS Polyacrylamide Gel Electrophoresis (SDS-PAGE)  

Polyacrylamide Gel Electrophoresis (PAGE) is used to separate macromolecules on the basis 

of their molecular weight. The mobility of a molecule in an electric field is inversely 

proportional to molecular friction which is the result of its molecular size and shape, and is 

directly proportional to the voltage and the charge of the molecule  

In PAGE, proteins charged negatively by the binding of the anionic detergent SDS (sodium 

dodecyl sulfate) are separated within a matrix of polyacrylamide gel in an electric field 

according to their molecular weights. Prior to this process, denaturation of proteins is 

performed by heating them in a buffer containing a soluble thiol reducing agent 

(mercaptoethanol) and SDS. Mercaptoethanol reduces all disulfide bonds of cysteine residues 

to free sulfhydryl groups. SDS is an anionic detergent, and heating in SDS disrupts all intra- 

and intermolecular protein interactions and all protein aquire a high negative charge. Sampled 

proteins therefore move to the positively charged electrode through the acrylamide mesh of 

the gel. Smaller proteins migrate faster through this mesh and the proteins are thus separated 

according to size  
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6.9.2 Western Blot 

Western blotting is a technique used to identify and locate proteins based on their ability to 

bind to specific antibodies. By using gel electrophoresis one can separate proteins by their 

size. The most common type of gel electrophoresis is the SDS-PAGE as described above. 

In order to make the proteins accessible to antibody detection, they are transferred from the 

gel onto a membrane while maintaining their relative position and resolution. This step is 

called blotting, and can be done in different ways. Electroblotting uses an electric current to 

pull proteins from the gel onto the membrane. This protein binding is based upon hydrophobic 

interactions, as well as charged interactions between the membrane and protein. After the 

blotting procedure the proteins can be detected on the membrane by adding specific 

antibodies after the remaining membrane has been blocked by milk proteins to avoid 

unspecific binding of antibodies. During the detection process the membrane is probed with a 

primary antibody specific for the protein of interest. The primary (antibody) Ab is then 

recognised by a secondary antibody which is conjugated to a reporter enzyme, such as 

horseradish peroxidase (HRP). HRP and the reporter enzyme causes a chemiluminescent 

reaction is based on the catalyzed oxidation of luminol by peroxide. Oxidized luminol emits 

light as it decays to its ground state. The resulting light is detected using an x-ray film which 

is developed manually by standard procedures. 

6.9.3 Preparation, separation and detection of proteins: 

Preparation of cell extract: 

Cell extract was prepared in order to run and separate proteins through a polyacrylamide gel. 

Treated cells were harvested at different time points, washed in PBS and lysed in SDS buffer 

according to the following procedure: 

1. The cells were washed twice in ice cold PBS and centrifuged at 500 x G for 10 

minutes. 

2. Protein extracts were prepared by resuspending the pellet on ice in 200-400 µl 

(depending on cell density) of lysis buffer (Table 2) containing freshly added 

phosphatase inhibitors such as, 1 mM sodium orthovanadate, 50 mM sodium fluoride 
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(tyrosinphosphate inhibitor), 10 mM β-glycerol 2-phosphate disodium salt, a stock of 

Complete Mini pill (Roche) was added as a cocktail of protease inhibitors. The lysates 

were transferred to eppendorf tubes and incubated further on ice for 10 min.  

3. The cell lysate was sonicated on ice (one pulse per second, 40 amplitude, 3 x 10 sec 

with 5 sec intervals). Sonication breaks DNA strands thereby reducing the to 

solution’s viscosity, and membrane bound proteins are released. 

4. The lysates was boiled for 5 minutes, centrifuged at 16100 x G and the supernatant 

was frozen in liquid nitrogen and stored at -70oC until use. 

 

Table 2: Lysis buffer with inhibitors 

2 ml lysis buffer 2ml 

SDS-buffer 

NaF 20x 

NaVO 200x 

Complete 25x 

Β-glyc 100x 

 

1.790 ml  
 
100 µl 

10 µl 

80 µl 

20 µl 

 

6.9.4 Protein concentration: 

Protein concentration was determined using Bio-Rad DC (detergent compatible) protein assay 

which is a colorimetric assay for protein concentration. The assay is based on the reaction of 

protein with an alkaline copper tartrate solution and Folin reagent. The reaction takes place in 

two steps which leads to colour development: The reaction between protein and copper in an 

alkaline medium and the subsequent reduction of Folin reagent by the copper-treated protein. 

The colour development is primarily due to the amino acids tyrosine and tryptophan. The 

proteins causes a reduction of the Folin reagent by loss of one to three oxygen atoms, thereby 
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producing several possible reduced species which have a characteristic blue colour with 

maximum absorbance at 750 nm and minimum absorbance at 405 nm ref. 

BSA diluted in lysis buffer with concentrations ranging from 0 - 10 µg/µl in was prepared to 

make a standard curve. Basically, the procedure according to the manufactures (Bio Rad) 

protocol was followed: 

1. Three replicates of each sample (5 µl) were added to a microtiterplate. 

2. 25 µl of reagent A containing 2% of reagent S was added. 

3. 200 µl of reagent S was added. 

4. After 15 minutes of colour development, absorption was measured in a plate-reader 

(Sunrise) at 750 nmd and analyzed with the software Magellan V.1.11. 

 

6.9.5 Seperation of proteins and Western Blot Procedure: 

Polyacrylamide gels: 

Polyacrylamide is formed by the polymerization of the monomer molecule acrylamide 

crosslinked by N,N'-methylene-bis-acrylamide (BIS). Free radicals generated by ammonium 

persulfate (APS) and a catalyst acting as an oxygen scavenger (-N,N,N',N'-

tetramethylethylene diamine [TEMED]) are required to start the polymerization since 

acrylamide and BIS are nonreactive by themselves or when mixed together. 

The concentration of acrylamide and BIS controls the hardness and degree of cross linking of 

the gel. This subsequently controls the friction that macromolecules encounter as they move 

through the gel in an electric field, and therefore affects the resolution of the components to 

be separated. Hard gels (12-20% acrylamide) retard the migration of large molecules more 

than they do with the small ones. In loose gels (4-8% acrylamide), high molecular weight 

molecules migrate much further down the gel due to less friction caused by acrylamide and 

BIS. 

A separation gel was made by first adding the ingredients listed below in Table 3, in the exact 

order to avoid premature polymerization. Water was added on top of the gel to even out the 
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top layer of the gel. The gel was left to polymerize for approx. 30 minutes. Then the stacking 

gel was made the same way (Table 4), and added on top of the separation gel. 

Table 3: Separation gel ingredients 

Separation gel 2 gels, 6 % 2 gels, 8 % 2 gels, 10 % 2 gels, 12 % 2 gels, 15 % 

dH20 7,9 ml 6,9 ml 5,9 ml 4,9 ml 3,4 ml 

Acrylamide mix – 
30% 

3,0 ml 4,0 ml 5,0 ml 6,0 ml 7,5 ml 

1,5 M Tris (pH 
8,8) 

3,8 ml 3,8 ml 3,8 ml 3,8 ml 3,8 ml 

10 % SDS 150 µl 150 µl 150 µl 150 µl 150 µl 

10% APS 150 µl 150 µl 150 µl 150 µl 150 µl 

TEMED 12 µl 9 µl 6 µl 6 µl 6 µl 

 

Table 4: Stacking gel ingredients 

4 % stacking gel 2 gels 

dH20 4,05 ml 

Acrylamide mix – 30% 0,85 ml 

0,5 M Tris (pH 6,8) 1,65 ml 

10 % SDS 67 µl 

10% APS 34 µl 

TEMED 7 µl 

 

1. All the samples were diluted in lysis buffer in order to obtain equal amounts of protein 

loaded to each lane. Bromophenol blue (2.5%) and β-mercaptoethanol (5%) were 

added to the samples, and heated at 95-98oC for 5 min to sustain inactivation of 

proteases and denaturation of proteins. 
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2. Proteins were separated by SDS-Polyacrylamide gel electrophoresis (PAGE) by using 

8-16% preciseTM Protein Gels (Thermo Fischer Scientific) or self made gels with the 

appropriate acrylamide concentration ranging from 10-12% acrylamide in the 

separation gel and a 4% stacking gel. 10µl Precision Plus ProteinTM Standard, 

KaleidoscopeTM were applied to the first well in order to allow direct visualization of 

protein mobility during electrophoresis and for precise sizing of proteins. 25-50 µg of 

proteins of each sample was applied to the different wells. 

3. Electrophoresis was run at 30-40 mA and 120 V in electrophoresis buffer until the 

Brophenol blue stain had reached the bottom of the gel. Then the gels were 

equilibrated in transferbuffer before blotting. 

4. Proteins were transferred onto nitrocellulose membrane using Protran BA 85 

nitrocellulose membrane from Whatman®. The Blotting was carried out in 

transferbuffer for 1 hour at 100 V, with ice blocks to keep the temperature low. 

5. Further, the membrane was blocked for 30 minutes using Starting Block (TBS) 

Blocking Buffer at room temperature, in order to cover the remaining membrane with 

proteins to avoid unspecific binding of primary or secondary antibodies and to avoid 

background noise. Blocking Solution contains milk proteins that bind to the 

membrane. 

6. Incubation with primary antibody (Ab) was performed over night at 4˚C with shaking. 

Subsequently, the membrane was washed 3 x 10 minutes with TBST 

7. Next day, the membrane was incubated with an HRP-conjugated secondary Ab for 1.5 

hour at room temperature prior to washing for 3 x 10 minutes with TBST and 1x 10 

minutes with TBS. 

8. Detection of protein was performed by using Supersignal® West Dura Extended 

Duration substrate (Bio Rad). By incubating the membrane with a chemiluminescent 

substrate that emits light in a reaction with horse radish peroxidase (HRP), the HRP-

conjugated secondary Ab attached to the primary Ab will emit light at the spot where 

the protein of interest is positioned on the membrane. 

9. Equal amounts of SuperSignal® West Dura Luminol/Enhancer Solution and 

SuperSignal® West Dura Stable Peroxide buffer were added to the membrane and 

incubated for 5 minutes. 
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10. The development of the proteins was carried out by placing the membrane in a photo 

development cassette and placing an X-ray film on top. The X-ray film is exposed by 

the light from the chemiluminiscent reaction and after developing and fixation of the 

film, dark spots or bands can be seen on the film. These dark bands may in turn be 

quantified since their intensity is proportional to the amount of fluorescence and hence 

to the protein content. 

 

6.10 Statistical analysis 

All statistical analysis of DNA damage, cell cycle distribution was done with the software 

programme SPSS v.14.0. 

To perform statistical analysis, one would in general want at least three independent 

experiments, but due to time limitations, this was not possible for all analyses in this thesis, 

e.g. the comet data. The data was analysed statistically to show possible trends and should not 

be thought of as conclusive statements.  The data from the comet assay were analyzed in a 

hierarchical model using univariate nested ANOVA with experimental number as random 

factors, and exposure as the fixed factor for the dependent variable %-tail DNA. The nesting 

was done by specifying exposure as fixed factor and the nested factor, experiment, as random 

factor. The SPSS syntax was altered to allow nesting by applying: /DESIGN = Exposure 

experiment(exposure). In the resulting ANOVA table, a significant “nestedfactor(main 

factor)” effect means that the dependent variable varies by the nested factor event within the 

same level of (controlling for) the main factor.  

The normality of the data was evaluated using the Kolmogorov-Smirnov test, and the 

homogeneity of variances was evaluated with Levene’s test. Violation of homogeneity will 

increase type I errors in the F test (wrongly rejecting the null hypothesis). However the failure 

to meet the assumption of homogeneity of variances is not fatal to ANOVA, which is 

relatively robust, particularly when groups are of equal sample size as in the comet assay. 
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Pairwise comparison, with Bonferroni confidence interval adjustment, was used to determine 

significant differences among the various exposures. This was applied to determine whether 

there are significant differences among the groups, as post-hoc comparisons can not be done 

with nested ANOVA. A P value of 0.05 was considered significant. 

Parametric tests such as ANOVA rely on the assumption of independence, equal variance and 

normality (Lovell and Omori, 2008). Comet data usually fail the normality test, which also 

applies to Log transformation of the data due to some left skewed data in highly damaged 

samples. Less damaged samples skew to the right, which can be taken care of by the Log 

transformation. A further limitation of the Log transformation is that it may result in 

heterogeneity of variances (Lovell and Omori, 2008). One might use non-parametric test 

when the data violate the assumptions of parametric tests, however they are slightly less 

powerful than their parametric equivalents. Non-parametric tests such as Kruskal-Wallis and 

Mann Whitney tests have a tendency to be oversensitive in detecting small differences 

between samples, and is therefore not suitable when detecting genotoxic effects(Duez et al., 

2003). 

A univariate ANOVA was also conducted to explore the impact of GA on the different cell 

cycle phases, which were analysed separately. Experimental number was used as random 

factors, and exposure as the fixed factor for the particular cell cycle. 
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7. Results 

In the results to follow, we first report on the ability of AA and GA to induce DNA damage; 

this damage was partly characterised by employing the Fpg enzyme which recognises and 

cleaves certain types of base alterations. Subsequently, we show cellular repair of such 

damage in cultured cells. These experiments were carried out using the comet assay. Specific 

effects of GA on cell cycle progression were then investigated using flow cytometry, followed 

by changes in the expression of specific and relevant gene products.  

7.1 Glycidamide, but not acrylamide, induces DNA damage 

recognised by the Fpg-enzyme in lymphoid cells in vitro. 

DNA damage induced by AA and its metabolite, GA, was measured by the alkaline comet 

assay. This assay detects single strand breaks and alkali labile sites in the DNA. In addition, 

when introducing an exogenous repair enzyme, some other lesions not leading to direct strand 

breaks are detected; with Fpg these lesions are preferentially oxidized purines (i.e.8-oxo 

guanine) but also ring-opened formamidopyrimidine lesions (both denoted as Fpg sensitive 

sites) (Krokan et al., 1997). 
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Figure 11. Acrylamide exposure of normal human lymphocytes.
Normal human lymphocytes (PBL) were exposed to different AA concentration for 2 hours with (green) 
or without (blue) S9 fraction. The level of DNA damage was measured by the comet assay (see 
method section).  The lysed cells were incubated in enzyme buffer alone (A), or together with the  Fpg 
-enzyme (B). The level of DNA damage is presented as % tail DNA intensity. One experiment is 
performed (n=1). 150 comets are scored for each exposure. The line ac
value (50th percentile), the length of the box is the interquartile range (IQR) (25th and 75th percentile, 
50% of the cases), the circles represent outliers (> 1.5 x IQR) and 
points (> x IQR).  

The DNA damaging effect of AA exposure of resting human lymphocytes (PBL) with or 

without human S9 fractions is shown in 

drug-metabolizing enzymes, i.e. CYP2E1 (see methods) and are therefore expected to 

contribute to the metabolism of AA to GA. As shown in 

significant increase in DNA damage even at high concentrations of AA (4mM). In addition, 

the S9 fraction did not facilitate the DNA damaging effect of AA, instead it lead to a small 

decrease both in the control and 

enzyme treatment step in the comet assay, 

detected (Figure 11), however AA did not induce any increased Fpg
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. Acrylamide exposure of normal human lymphocytes. 
Normal human lymphocytes (PBL) were exposed to different AA concentration for 2 hours with (green) 
or without (blue) S9 fraction. The level of DNA damage was measured by the comet assay (see 

ction).  The lysed cells were incubated in enzyme buffer alone (A), or together with the  Fpg 
enzyme (B). The level of DNA damage is presented as % tail DNA intensity. One experiment is 

150 comets are scored for each exposure. The line across the box marks the median 
value (50th percentile), the length of the box is the interquartile range (IQR) (25th and 75th percentile, 
50% of the cases), the circles represent outliers (> 1.5 x IQR) and asterisk (*) represent extreme 

he DNA damaging effect of AA exposure of resting human lymphocytes (PBL) with or 

without human S9 fractions is shown in Figure 11. Human liver S9 fractions contain several 

metabolizing enzymes, i.e. CYP2E1 (see methods) and are therefore expected to 

contribute to the metabolism of AA to GA. As shown in Figure 11A, AA did not induce any 

significant increase in DNA damage even at high concentrations of AA (4mM). In addition, 

the S9 fraction did not facilitate the DNA damaging effect of AA, instead it lead to a small 

decrease both in the control and in the exposed samples. When including the one

enzyme treatment step in the comet assay, a general increase in Fpg-sensitive sites where 

), however AA did not induce any increased Fpg-sensitive sites. 
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Normal human lymphocytes (PBL) were exposed to different AA concentration for 2 hours with (green) 
or without (blue) S9 fraction. The level of DNA damage was measured by the comet assay (see 

ction).  The lysed cells were incubated in enzyme buffer alone (A), or together with the  Fpg 
enzyme (B). The level of DNA damage is presented as % tail DNA intensity. One experiment is 

ross the box marks the median 
value (50th percentile), the length of the box is the interquartile range (IQR) (25th and 75th percentile, 

(*) represent extreme 

he DNA damaging effect of AA exposure of resting human lymphocytes (PBL) with or 

ions contain several 

metabolizing enzymes, i.e. CYP2E1 (see methods) and are therefore expected to 

A, AA did not induce any 

significant increase in DNA damage even at high concentrations of AA (4mM). In addition, 

the S9 fraction did not facilitate the DNA damaging effect of AA, instead it lead to a small 

including the one-hour Fpg 

sensitive sites where 

sensitive sites.  
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Figure 12: Glycidamide-induced DNA damage in PBL
Normal human lymphocytes (PBL) were exposed to different concentrations of GA for 2 h. The level of 
DNA damage was measured by the comet assay (se
lysed cells were incubated in enzyme buffer alone (A), or together with the  Fpg 
level of DNA damage is presented as % tail DNA intensity. 
of DNA damage compared to the control
experiments combined  (n= 2). The line across the box marks the median value (50th percentile), the 
length of the box is the interquartile range (IQR) (25th and 75th percentile, 50% of the cases), the 
circles represent outliers (> 1.5 x IQR) and 

Due to the lack of DNA damaging effect 

GA during short exposure times, even in the presence of S9, 

subsequent studies only with its directly 

different concentrations of GA for two hours and the resulting DNA damage was analyzed by 

the comet assay (Figure 12).  As 

alkali labile sites were seen at relatively low 

when including Fpg, an increase in the DNA

0.05 mM GA exposure, with Fpg

control. At a concentration of 

significantly. A nested one-way ANOVA was performed to show that there was a significant 

increase in GA-induced DNA 

indicated that both 50 µM and 100 µM GA (both F = 273.645, p < 0.001) (n = 2) had 

significantly more DNA damage than the control, but not at 20 µM of GA (n = 1). 
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induced DNA damage in PBL 
Normal human lymphocytes (PBL) were exposed to different concentrations of GA for 2 h. The level of 
DNA damage was measured by the comet assay (see Methods section). The agarose embedded and 

cells were incubated in enzyme buffer alone (A), or together with the  Fpg -enzyme (B).
level of DNA damage is presented as % tail DNA intensity. GA induced a significantly increased level 

e compared to the control p < 0.001, F = 179.407).  The figure show
The line across the box marks the median value (50th percentile), the 

length of the box is the interquartile range (IQR) (25th and 75th percentile, 50% of the cases), the 
circles represent outliers (> 1.5 x IQR) and asterisk (*) represent extreme points (>

lack of DNA damaging effect of AA, which reflects a limited activation of AA into 

GA during short exposure times, even in the presence of S9, we decided to 

subsequent studies only with its directly genotoxic metabolite GA. PBL 

of GA for two hours and the resulting DNA damage was analyzed by 

).  As Figure 12A shows, no GA-induced DNA

seen at relatively low concentrations of GA (up to 0.1 mM). However, 

an increase in the DNA-damaging effect of GA was noticed. Already at 

exposure, with Fpg the tail DNA intensity had increased compared to the 

At a concentration of GA of 0.1 mM, the tail DNA intensity had increased 

way ANOVA was performed to show that there was a significant 

induced DNA with Fpg (p < 0.001, F = 179.407). Pairwise comparison 

indicated that both 50 µM and 100 µM GA (both F = 273.645, p < 0.001) (n = 2) had 

DNA damage than the control, but not at 20 µM of GA (n = 1). 
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Normal human lymphocytes (PBL) were exposed to different concentrations of GA for 2 h. The level of 
agarose embedded and 

enzyme (B). The 
GA induced a significantly increased level 

The figure shows two independent 
The line across the box marks the median value (50th percentile), the 

length of the box is the interquartile range (IQR) (25th and 75th percentile, 50% of the cases), the 
(*) represent extreme points (> x IQR).  

, which reflects a limited activation of AA into 

we decided to perform 

PBL was exposed to 

of GA for two hours and the resulting DNA damage was analyzed by 

induced DNA-stand breaks or 

of GA (up to 0.1 mM). However, 

damaging effect of GA was noticed. Already at 

the tail DNA intensity had increased compared to the 

NA intensity had increased 

way ANOVA was performed to show that there was a significant 

Fpg (p < 0.001, F = 179.407). Pairwise comparison 

indicated that both 50 µM and 100 µM GA (both F = 273.645, p < 0.001) (n = 2) had 

DNA damage than the control, but not at 20 µM of GA (n = 1).  
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However, the experiments performed in 

damage after GA exposure and Fpg treatment

performed by others in our laboratory 

cultures and the methodologies used in the present thesis,

performed using X-rays as a positive control (

level was observed. At 0.1mM GA concentration

increased from 7% (control) 

Figure 10. The low DNA damage observed in the two first experiments

GA stock that may have lost reactivity or perhaps individual differences in DNA damage 

susceptibility between th

Figure 13: GA compared to x-ray
Normal human lymphocytes (PBL) were exposed to different concentrations of GA for 2 
different concentrations; 0.05mM GA (purple box) and 0.1mM (yellow box). The level of DNA damage 
was measured by the comet assay (see method section).
buffer alone (A), or together with the Fpg 
10 Gy (grey box) were included as a positive control.
DNA intensity.. The line across the box marks the median value (50th percentile), the length of the box 
is the interquartile range (IQR) (25th and 75th percentile, 50% of the cases), the circles represent 
outliers (> 1.5 x IQR) and asterisk

A lymphoblastoid cell line, GM00130, was introduced to study more in depth the mechanisms 

of GA-induced DNA damaging effect on lymphoid cells. 
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he experiments performed in Figure 12 showed unexpectedly low levels of D

after GA exposure and Fpg treatment, when compared with previous

in our laboratory (Hansen, 2007). To test the overall response of the cell 

cultures and the methodologies used in the present thesis, an additional e

as a positive control (Figure 13). This time a higher

0.1mM GA concentration and Fpg treatment, the tail DNA intensity 

(control) to 50% DNA, i.e. nearly the double of what was observed in 

The low DNA damage observed in the two first experiments may be due to an old 

GA stock that may have lost reactivity or perhaps individual differences in DNA damage 

susceptibility between the different blood donors. 

ray- induced DNA damage 
Normal human lymphocytes (PBL) were exposed to different concentrations of GA for 2 
different concentrations; 0.05mM GA (purple box) and 0.1mM (yellow box). The level of DNA damage 
was measured by the comet assay (see method section). The lysed cells were incubated in enzyme 
buffer alone (A), or together with the Fpg -enzyme (B). PBL X-ray irradiated with 3 Gy (green box) and 

as a positive control. The level of DNA damage is presented as % tail 
. The line across the box marks the median value (50th percentile), the length of the box 

is the interquartile range (IQR) (25th and 75th percentile, 50% of the cases), the circles represent 
asterisk (*) represent extreme points (> x IQR).  

A lymphoblastoid cell line, GM00130, was introduced to study more in depth the mechanisms 

induced DNA damaging effect on lymphoid cells. In particular, unlike lymphocytes 
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To test the overall response of the cell 

an additional experiment was 

). This time a higher DNA damage 

the tail DNA intensity 

, i.e. nearly the double of what was observed in 

may be due to an old 

GA stock that may have lost reactivity or perhaps individual differences in DNA damage 

e different blood donors. 

 

Normal human lymphocytes (PBL) were exposed to different concentrations of GA for 2 hours with 
different concentrations; 0.05mM GA (purple box) and 0.1mM (yellow box). The level of DNA damage 

The lysed cells were incubated in enzyme 
ray irradiated with 3 Gy (green box) and 

The level of DNA damage is presented as % tail 
. The line across the box marks the median value (50th percentile), the length of the box 

is the interquartile range (IQR) (25th and 75th percentile, 50% of the cases), the circles represent 

A lymphoblastoid cell line, GM00130, was introduced to study more in depth the mechanisms 

In particular, unlike lymphocytes 
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these cells can be incubated for long periods of time, allowing a study of DNA repair. 

cells were exposed to various concentration

was analysed with the comet assay with and without Fpg treatment.

that GA exposure for 2 hours with 0.1mM GA

damage, and only a minor increase in DNA

was seen (Figure 14A). However, a

and 0.5 mM GA concentration 

period of 24 hours gave a small increase in DNA damage

concentrations but much higher 

induced after long-time GA-exposure (after 6 hours) increased dramatically and apparently 

saturated the assay as the dose response with 0.1 mM GA levelled off 

Figure 14:  DNA-damage measured in GM00130 cells after GA exposure over time
GM00130 cells were exposed to 0.1mM (green box) and 0.5 mM GA (yellow box) for several time 
periods and analyzed by the comet assay (see method section) to measure DNA damage expressed 
as % tail DNA intensity. After lysis, cells were incubated in enzyme bu
the Fpg -enzyme (B). The line across the box marks the median (50th percentile), the length of the box 
is the interquartile range (IQR) (25th and 75th percentile, 50% of the cases), the circles represent 
outliers (> 1.5 x IQR) and asterisk
independent experiments combined (n= 2), 
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these cells can be incubated for long periods of time, allowing a study of DNA repair. 

exposed to various concentrations of GA over time and the DNA

s analysed with the comet assay with and without Fpg treatment.  Firstly, 

for 2 hours with 0.1mM GA exposure gave no significant increase in DNA 

increase in DNA damage with 0.5mM GA exposure

However, a dramatic induction of Fpg-sensitive sites at 

mM GA concentration was seen in Figure 14B. Secondly, GA exposure over a time 

period of 24 hours gave a small increase in DNA damage, without Fpg, at low GA

but much higher with a GA concentration of 0.5 mM.  The Fpg sensitive sites 

exposure (after 6 hours) increased dramatically and apparently 

saturated the assay as the dose response with 0.1 mM GA levelled off (Figure 

damage measured in GM00130 cells after GA exposure over time
GM00130 cells were exposed to 0.1mM (green box) and 0.5 mM GA (yellow box) for several time 
periods and analyzed by the comet assay (see method section) to measure DNA damage expressed 

After lysis, cells were incubated in enzyme buffer alone (A), or together with 
The line across the box marks the median (50th percentile), the length of the box 

is the interquartile range (IQR) (25th and 75th percentile, 50% of the cases), the circles represent 
asterisk (*) represent extreme points (> x IQR). The figure show two 

independent experiments combined (n= 2),  
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these cells can be incubated for long periods of time, allowing a study of DNA repair. The 

of GA over time and the DNA-damaging effect 

Firstly, the results show 

no significant increase in DNA 

with 0.5mM GA exposure without Fpg 

sensitive sites at both 0.1 mM 

B. Secondly, GA exposure over a time 

at low GA (0.1 mM) 

The Fpg sensitive sites 

exposure (after 6 hours) increased dramatically and apparently 

Figure 14B) 

 

damage measured in GM00130 cells after GA exposure over time 
GM00130 cells were exposed to 0.1mM (green box) and 0.5 mM GA (yellow box) for several time 
periods and analyzed by the comet assay (see method section) to measure DNA damage expressed 

ffer alone (A), or together with 
The line across the box marks the median (50th percentile), the length of the box 

is the interquartile range (IQR) (25th and 75th percentile, 50% of the cases), the circles represent 
(*) represent extreme points (> x IQR). The figure show two 
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A nested univariate ANOVA of the comet data without Fpg treatment showed at all time 

points that the GA exposure led to a statistically significant higher %tail DNA intensity than 

the control at a p < 0.001 level. F-values at 2 hours is F = 179.407, at 4 hours is F = 643.214, 

at 6 hours is F = 1152.049 and at 24 hours F = 680.331. Pairwise comparisons indicated  p ≤ 

0.001 at all concentrations and time points. The Fpg treated cells have all significantly higher 

DNA damage than the control, without the need for statistical analysis. 

7.2 Repair of GA-induced DNA damage in lymphoid cells. 

The repair of GA-induced DNA breaks was evaluated using the alkaline comet assay. GA-

exposed GM00130 cells for 2 or 4 hours were harvested and rinsed prior to seeding the cells 

in fresh growth medium. These cells were then incubated at 370C for 2 or 20 hours in order 

allow repair of any induced DNA-damage (Figure 15 and Figure 16). The most prominent 

result shown in Figure 15 and Figure 16 was the reduction in Fpg-sensitive sites. After 2 

hours incubation at 370C, some reduction in DNA damage indicates that the cells are repairing 

the Fpg sensitive sites. After 4 hours GA exposure and 20 hours incubation time,  at 370C, a 

marked reduction in Fpg-sensitive sites was seen (Figure 16). There was also an indication of 

repair of SSB or AP sites as seen in Figure 14 without Fpg treatment.  
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Figure 15: The repair of GA
The DNA repair capacity of GM00130 cells after 2 hours of 0.1 mM GA (green box) or 0.5 mM GA 
(grey box) exposure was measured with 
followed by comet analysis with (B) or without (A) Fpg
marks the median (50th percentile), the length of the box is the interquartile range (IQR) (25th and
75th percentile, 50% of the cases), the circles represent outliers (> 1.5 x IQR) and asterix (*) represent 
extreme points (> x IQR). 

This experiment is only performed once

incubations are consistent. Ta

treatment, a reduction in tail DNA intensity was observed 

period, implying repair of both Fpg

sites.  

cell cycle - Glycidamide induced S-phase arrest followed by apoptosis i
Master thesis by Elin Bakken Ansok 2009 

: The repair of GA-induced DNA damage in GM00130 cells. 
The DNA repair capacity of GM00130 cells after 2 hours of 0.1 mM GA (green box) or 0.5 mM GA 
(grey box) exposure was measured with the comet assay after 2 hours incubation in fresh medium, 
followed by comet analysis with (B) or without (A) Fpg-treatment (n = 1). The line across the box 
marks the median (50th percentile), the length of the box is the interquartile range (IQR) (25th and
75th percentile, 50% of the cases), the circles represent outliers (> 1.5 x IQR) and asterix (*) represent 

This experiment is only performed once, but the results of the various exposures and repair 

incubations are consistent. Taken together, the data show that, both with and without Fpg 

treatment, a reduction in tail DNA intensity was observed during a post-exposure incubation 

implying repair of both Fpg-sensitive sites, and also of strand breaks and alkali labile 
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The DNA repair capacity of GM00130 cells after 2 hours of 0.1 mM GA (green box) or 0.5 mM GA 

the comet assay after 2 hours incubation in fresh medium, 
treatment (n = 1). The line across the box 

marks the median (50th percentile), the length of the box is the interquartile range (IQR) (25th and 
75th percentile, 50% of the cases), the circles represent outliers (> 1.5 x IQR) and asterix (*) represent 

of the various exposures and repair 

both with and without Fpg 

exposure incubation 

strand breaks and alkali labile 
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Figure 16. The repair of GA-induced DNA damage in GM00130 cells
The DNA repair capacity of GM00130 cells after 4 hours of 0.1 mM GA (green box) or 0.5 mM
(grey box) exposure was measured with the comet assay after 20 hours incubation in fresh medium , 
with (B) or without (A) Fpg  treatment, (n=1). The line across the box marks the median (50th 
percentile), the length of the box is the interquartile rang
cases), the circles represent outliers (> 1.5 x IQR) and asterisk (*) represent extreme points (> x IQR). 
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induced DNA damage in GM00130 cells 
The DNA repair capacity of GM00130 cells after 4 hours of 0.1 mM GA (green box) or 0.5 mM
(grey box) exposure was measured with the comet assay after 20 hours incubation in fresh medium , 
with (B) or without (A) Fpg  treatment, (n=1). The line across the box marks the median (50th 
percentile), the length of the box is the interquartile range (IQR) (25th and 75th percentile, 50% of the 
cases), the circles represent outliers (> 1.5 x IQR) and asterisk (*) represent extreme points (> x IQR). 
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The DNA repair capacity of GM00130 cells after 4 hours of 0.1 mM GA (green box) or 0.5 mM GA 
(grey box) exposure was measured with the comet assay after 20 hours incubation in fresh medium , 
with (B) or without (A) Fpg  treatment, (n=1). The line across the box marks the median (50th 

e (IQR) (25th and 75th percentile, 50% of the 
cases), the circles represent outliers (> 1.5 x IQR) and asterisk (*) represent extreme points (> x IQR).  
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7.3 Cell cycle analysis by PI staining and flow cytometry 

The comet assay revealed high levels of DNA damage recognised by Fpg. We were therefore 

interested in analysing the cell cycle distribution of GA-exposed cells after prolonged 

exposure and thus comparing the cell cycle distribution with the level of DNA damage after a 

24 hour exposure period. To test whether long time GA exposure had an effect on cell cycle 

progression, flow cytometric analysis with PI staining of asynchronously proliferating GA 

exposed GM00130C cells was performed.  

 

Figure 17. Cell cycle distribution following GA-exposure for 8 h.  
GM00130C cells were treated with 0.1, 0.5, and 1 mM GA, harvested at the respective time points and 
analysed for cell cycle distribution by PI staining and flow cytometric analysis. The x axis represents 
the DNA content (PI staining) and the y axis represents number of cells analysed (cell count). The 
figure shows one representative experiment of three independent (n=3). 
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Figure 18: Cell cycle distribution following GA-exposure for 24 h.  
GM00130C cells were treated with 0.1, 0.5, and 1 mM GA, and harvested at the respective time points 
for cell cycle distribution analysis by PI staining and flow cytometry. The x axis represents the DNA 
content (PI staining) and the y axis represents number of cells (cell count). The figure shows one 
representative experiment of three independent (n=3). 
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Figure 19: Cell cycle distribution following GA-exposure for 31 h.  
GM00130C were treated with 0.1, 0.5, and 1 mM GA and harvested at the respective time points and 
analysed for cell cycle distribution by flow cytometry by PI staining The x axis represents the DNA 
content (PI staining) and the y axis represents number of cells (cell count). The figure shows one 
experiment (n=1). 

The cell cycle distribution was apparently not affected by GA at 0.1 mM even after long 

exposure times, up to 31 hours. However, when exposing the cells to 0.5 mM and 1mM GA 

the cells clearly accumulated in S-phase together with a reduction of cells in G1 noted after 24 

hours exposure as seen with PI-staining and flow cytometric analysis (Figure 18 and Figure 

19) 

After 24 hours exposure with 1 mM GA there was an increase in apoptotic/necrotic cells seen 

as increased cell debris accumulating to the left of the G1 peak (Figure 18). Also with GA 

exposure for up to 31 hours (performed only once), there was an increase in apoptotic/necrotic 

cells which was notable at 0.5 mM GA and even more prominent at 1 mM GA (Figure 19). 

The percentage of cells in each cell cycle phase indicated in Figure 18 and Figure 19 include 

only live cells. Accumulation of apoptotic cells/debris is seen to the left of the G1 population.  
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Figure 20 show a combined histogram of three independent flow cytometry experiments with 

PI staining of GM00310C exposed to various concentrations of GA up to 24 hours (Similar to 

Figure 17 and Figure 18). A univariate one-way ANOVA was conducted to explore the 

impact of GA on the different cell cycle phases. There was a statistically significant change in 

G1 and S phase (relative to control, p < 0.05) at 24 hours only, of GA exposure at all 

concentrations tested. 
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Figure 20: Cell cycle distribution following GA exposure of GM00130C.  
GM00130C was treated with 0.1mM (green bar), 0.5mM (grey bar), and 1mM GA (purple bar) and 
harvested at the respective time points. Cell cycle distribution was analysed by PI staining and flow 
cytometry as described in the method section. The figure represents three independent experiments 
(n=3) 

The G1 phase: F( 3, 8) = 8.577, p = 0.007. The actual difference in mean scores between the 

groups is considerably different. The effects size, calculated using partial eta squared, was 

0.763. Post -hoc comparison using the Tukey HSD test indicated that the mean score for the 

control (M = 65.42, SD = 4.43) was significantly different from 1 mM GA (M = 42.40, SD = 
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8.27), p = 0.007. And that the mean score for 0.1 mM GA (M = 61.82, SD = 5.10) was 

significantly different from 1 mM GA (M = 42.40, SD = 8.27), p = 0.019. 

The S phase: F( 3, 8) = 18.828 , p = 0.001. The actual difference in mean scores between the 

groups is considerably different. The effects size, calculated using partial eta squared, was 

0.876. Post -hoc comparison using the Tukey HSD test indicated that the mean score for the 

control (M = 26.15, SD = 2.99) was significantly different from 1 mM GA (M = 44.22, SD 

=3.01), p = 0.001, and 0.5 mM GA (M =37.66, SD =3.80), p = 0.011, but not 0.1 mM. The 

mean score for 0.1 mM GA (M = 29.14, SD = 3.27) was also significantly different from 1 

mM GA (M = 29.14, SD = 3.27), p = 0.002, and borderline significant from 0.5 mM GA (M 

=37.66, SD = 3.80), p = 0.052. 

Thus, the results show a statistical significantly change in the cell cycle distribution after GA-

exposure with a prominent S-phase accumulation following 0.5 mM and 1 mM GA-exposure 

for 24 hours. 

7.3.1 Cell cycle analysis with BrdU incorporation 

Asynchronously proliferating GM00130C cells were cultured in the absence or presence of 

0.5 mM GA, for 2, 4, 12 or 24 hours. Cells were pulse-labeled with BrdU during the last 60 

min of treatment before being harvested at the indicated time points. Cells were stained with 

FITC-coupled anti-BrdU antibody and PI prior to flow cytometric analysis to determine BrdU 

incorporation and cell cycle distribution. The figure shows scatter plots with the log FITC 

anti-BrdU staining (FITC-A) versus PI staining (PI-A). From Figure 21, a GA-induced 

reduction in BrdU-incorporation was seen as a reduced FITC-staining of S-phase cells 

(measured at the y-axis), after 24 hours exposure time only. However, we did not observe a 

prominent accumulation of cells in S-phase as expected from the previous PI and flow 

cytometry analysis (Figure 18). Due to a low population of single cells detected in the 4 hours 

control, it is not an optimal representative figure of untreated cells at that time point. 

Unfortunately, due to methodological difficulties, the BrdU experiment could only be carried 

out successfully once. 
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Figure 21: Level of BrdU incorporation following GA treatment. 
GM00130C cells were treated with 0.5 mM GA and harvested at the respective time points following 
BrdU incorporation for 60 minutes. Cells were stained with FITC-coupled anti-BrdU antibody and PI 
and analyzed by flow cytometry as described in the method section. The figure shows contour plots 
with the log FITC anti-BrdU staining (FITC-A) versus PI staining (PI-A). The figure shows only gated 
populations for G1 (green), S (purple) and G2/M (blue). The area over the dotted line represents BrdU 
incorporated cells. The figure shows one experiment performed (n=1). 
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7.4 GA-induced phosphorylation and expression of p53 

Genotoxic stress is shown to rapidly i

also to increase protein expression of total p53 as described earlier 

induced changes in p53 level and activity was therefore explored.

Figure 22: GA-induced phosphorylation on serin 15 of p53.
GM00130 cells were exposed to different concentrations of GA and cells were harvested at different 
time points. 25 µg of lysate was sep
Methods section) to detect phosphorylation of serin15 on p53
samples, a GADPH antibody was used.

Figure 23:  Upregulation of total
GM00130 cells were exposed to different concentrations of GA and cells were harvested at different 
time points.  25 µg of lysate was sep
Methods section) to detect the expression of p53. To check for equal loading of the samples, a 
GADPH antibody was used. One representative experiment is shown

Phosphorylation of p53 at Ser-

exposure time with 0.5 mM GA (

increase in phosphorylation of p53 was seen starting from 0.1

Total p53 was also increased after prolonged GA

phosphorylation of p53 increases prior to total p53 upregulation

time- and dose dependent manner 
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induced phosphorylation and expression of p53 

Genotoxic stress is shown to rapidly induce phosphorylation of serin 15 (ser 15) on p53 and 

also to increase protein expression of total p53 as described earlier (Shieh et al., 1997)

induced changes in p53 level and activity was therefore explored. 

 

induced phosphorylation on serin 15 of p53.  
GM00130 cells were exposed to different concentrations of GA and cells were harvested at different 

of lysate was separated through an SDS-PAGE followed by immunoblotting (see 
section) to detect phosphorylation of serin15 on p53. To check for equal loading of

samples, a GADPH antibody was used. One representative experiment out of three 

:  Upregulation of total p53 in response til GA exposure. 
GM00130 cells were exposed to different concentrations of GA and cells were harvested at different 
time points.  25 µg of lysate was separated through an SDS-PAGE followed by immunoblotting (see 

the expression of p53. To check for equal loading of the samples, a 
One representative experiment is shown (n = 3).  

-15 was induced by GA exposure and was apparent after 6

mM GA (Figure 22, left). However after 24 hours a dose dependent 

increase in phosphorylation of p53 was seen starting from 0.1 mM GA (

Total p53 was also increased after prolonged GA-exposure (Figure 

phosphorylation of p53 increases prior to total p53 upregulation, which appear

and dose dependent manner in response to GA exposure.  

53kD 
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induced phosphorylation and expression of p53  

nduce phosphorylation of serin 15 (ser 15) on p53 and 

(Shieh et al., 1997). GA 

GM00130 cells were exposed to different concentrations of GA and cells were harvested at different 
PAGE followed by immunoblotting (see 

. To check for equal loading of the 
out of three is shown (n = 3).  

 

GM00130 cells were exposed to different concentrations of GA and cells were harvested at different 
PAGE followed by immunoblotting (see 

the expression of p53. To check for equal loading of the samples, a 

15 was induced by GA exposure and was apparent after 6 hours 

, left). However after 24 hours a dose dependent 

mM GA (Figure 22, right). 

Figure 23). Apparently, 

which appears in both a 

53kD 
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7.5 Protein expression of the CDK inhibitors, p21
p27KIP1. 

DNA damage very often lead

(CDK) through the induction or translocation of the CDK inhibitors, p21

We were particularly interested to see whether DNA damage induced by GA 

upregulation of p21CIP1/WAF1 as a consequence of the p53 activation and upregulation.

therefore studied the effect of GA on the protein

Figure 24: Protein expression of the CDK inhibitors p21
exposure. 
GM00130 cells were exposed to different concentrations of GA and cells were harvested at different 
time points. 45 µg of lysate was seperated through an SDS
method section) to detect the expression of p2
samples, a GADPH antibody was used.
2)  
 

The results show no upregulation

concentrations of GA, compared to the control. In the case of  p21

of the protein was noted when 

used, although this expression di

Due to the lack of a clear upregulation, we tested both a mono

against p21CIP1/WAF1
 without any changes in the result. However, 0.5 mM GA treatment of 

PBL induced an upregulation of p21

shown).   

cell cycle - Glycidamide induced S-phase arrest followed by apoptosis i
Master thesis by Elin Bakken Ansok 2009 

Protein expression of the CDK inhibitors, p21

damage very often leads to cell cycle arrest by inhibiting cell cycle dependent kinases 

(CDK) through the induction or translocation of the CDK inhibitors, p21CIP1/WAF1

interested to see whether DNA damage induced by GA 

as a consequence of the p53 activation and upregulation.

the effect of GA on the protein expression of these inhibitors

pression of the CDK inhibitors p21
CIP1

 or p2
 KIP1

 in response to GA 

GM00130 cells were exposed to different concentrations of GA and cells were harvested at different 
time points. 45 µg of lysate was seperated through an SDS-PAGE followed by immu
method section) to detect the expression of p2

 KIP1
 or p21

CIP1
. To check for equal loading of the 

samples, a GADPH antibody was used. One representative experiment is shown 

upregulation of the p27 KIP1inhibitor at any exposure times or 

compared to the control. In the case of  p21CIP1/WAF1

of the protein was noted when a higher concentration of  GA (0.5 mM and 1.0 mM)  was 

expression did not increase in a clear time dependent manner

Due to the lack of a clear upregulation, we tested both a mono- and polyclonal antibody 

without any changes in the result. However, 0.5 mM GA treatment of 

PBL induced an upregulation of p21CIP1/WAF1 at 2, 4 and 14 hours with 0.5 mM GA (data not 
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Protein expression of the CDK inhibitors, p21CIP1 and 

to cell cycle arrest by inhibiting cell cycle dependent kinases 

CIP1/WAF1 and p27 KIP1. 

interested to see whether DNA damage induced by GA would lead to an 

as a consequence of the p53 activation and upregulation. We 

expression of these inhibitors.   

 

in response to GA 

GM00130 cells were exposed to different concentrations of GA and cells were harvested at different 
PAGE followed by immunoblotting (see 
. To check for equal loading of the 

(p21: n = 3, p27: n = 

inhibitor at any exposure times or 

CIP1/WAF1 a small induction 

of  GA (0.5 mM and 1.0 mM)  was 

time dependent manner  (Figure 22). 

and polyclonal antibody 

without any changes in the result. However, 0.5 mM GA treatment of 

at 2, 4 and 14 hours with 0.5 mM GA (data not 

27kD 

21kD 
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7.5.1 Protein expression of cyclin A after GA-exposure 

 Cyclin D and E are important for the G1/S transition and cyclin A is especially needed for the 

passage through the S-phase (Maddika et al., 2007). Cyclins are the regulatory unit of the 

CDK enzymes and are rapidly up- or downregulated in response to mitogens. We therefore 

wanted to see whether the genotoxic stress after GA exposure leads to a change in protein 

expression of these cyclins. Cyclin A showed no downregulation after GA exposure, rather a 

small increase in protein expression occurred with higher concentrations of GA (Figure 25). 

However, no clear time dependent response was observed. Cyclin E and cyclin D was also 

tested, however the results were difficult to interpret due to high background with the Abs that 

we had in hand (data not shown). 

 

Figure 25: Protein expression of cyclin A in reponse to GA exposure.  
GM00130 cells were exposed to different concentrations of GA and harvested at different time points. 
25 µg of lysate was separated using SDS-PAGE followed by immunoblotting (see method section) to 
detect the expression of cyclin A. One representative experiment is shown (n = 2). 

 

7.5.2 Protein expression of the NER proteins, XPA and XPC, 

following GA-exposure 

The NER-pathway is one of the most flexible DNA repair pathways, when looking at the 

diversity of DNA lesions it may act upon. The XPC protein is needed for DNA damage 

recognition in global genome repair of the NER pathway and XPA plays a crucial role in 

confirming correct assembly of the NER complex and in incision of the DNA damage. 

Previous results in our laboratory indicate a GA-induced upregulation of XPA, and to some 

extent XPC transcription by RT-PCR in the testicular germ cell tumor cell line 833K (data not 

shown). For this reason, using western blot analysis we examined wether GA induced any 

regulation of these repair proteins.  
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However, our preliminary data indicate

noteworthy up- or down regulation of XPA 

However, only one experiment was performed.

this is caused by background on the film and the digitalization process. No notabl

these proteins was noted, indicating that 

GM00130C cells in response to the GA 

of the limited experimental data, this interpretation should be taken

Figure 26: Protein expression of XPA in reponse to GA exposure
GM00130 cells were exposed to different concentrations of GA
25 µg of lysate was separated through an SDS
section) to detect the level of expression of XPA. To check for equal loading of the samples, a GADPH 
antibody was used. Data from one experiment.

Figure 27: Protein expression of XPC in reponse to GA exposure
GM00130 cells were exposed to different concentrations of GA and harvested at different time points.  
25 µg of lysate was separated through an SDS
section) to detect the level of expression of 
antibody was used. Data from one experiment.

As observed by flow cytometry, an increase in apoptotic 

after prolonged exposure to high 

DNA staining assay of cells, v

apoptotic and necrotic cells 
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However, our preliminary data indicated that the GA concentrations used did not induce any 

or down regulation of XPA (Figure 26) or XPC (Figure 

However, only one experiment was performed. Even though it may look like an upregulation, 

this is caused by background on the film and the digitalization process. No notabl

noted, indicating that these NER proteins are not up- or downregulated 

in response to the GA concentrations and treatment periods 

of the limited experimental data, this interpretation should be taken with some caution.

: Protein expression of XPA in reponse to GA exposure 
GM00130 cells were exposed to different concentrations of GA and harvested at different time points

rated through an SDS-PAGE followed by immunoblotting (see 
expression of XPA. To check for equal loading of the samples, a GADPH 

Data from one experiment. 

: Protein expression of XPC in reponse to GA exposure  
GM00130 cells were exposed to different concentrations of GA and harvested at different time points.  

rated through an SDS-PAGE followed by immunoblotting (see method 
n) to detect the level of expression of XPC. To check for equal loading of the samples, a GADPH 

Data from one experiment.Cell viability /Induction of Apoptosis

As observed by flow cytometry, an increase in apoptotic and/or necrotic cells was 

after prolonged exposure to high concentrations of GA (Figure 18). Therefore a standard 

DNA staining assay of cells, visualized by fluorescent microscopy, was used 
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used did not induce any 

Figure 27) proteins. 

Even though it may look like an upregulation, 

this is caused by background on the film and the digitalization process. No notable increase in 

or downregulated in 

treatment periods used. Because 

with some caution.  

 

harvested at different time points. 
PAGE followed by immunoblotting (see Methods 

expression of XPA. To check for equal loading of the samples, a GADPH 

 

GM00130 cells were exposed to different concentrations of GA and harvested at different time points.  
PAGE followed by immunoblotting (see method 

XPC. To check for equal loading of the samples, a GADPH 
Cell viability /Induction of Apoptosis 

or necrotic cells was prominent 

). Therefore a standard 

was used to look for 
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7.6 Cell viability 

Flow cytometric analysis of cell cycle revealed apoptotic behaviour, though apoptosis 

measurement with only PI staining does not give reliable results. Therefore, a cell viability 

assay based on morphological changes was conducted. As can be seen in Figure 28, GA 

concentrations of 0.5 mM and 1 mM induced apoptosis, but no necrosis, commencing already 

after 8 hours exposure. For exposure up to 6 hours, no significant induction of apoptosis was 

measured with this method. Figure 29 shows the typical morphology of apoptotic cells (bold 

arrow) and the red necrotic cells (thin arrow). Apoptotic cells include both regular apoptotic 

cells and apoptotic-necrotic cells (cells with condensed nuclei, and a compromised plasma 

membrane (PI positive) secondary to the apoptotic process) 

 

Figure 28: GA-induced cell death.  
GM00130C cells were treated with 0.5, or 1 mM GA and harvested at the time points indicated. Cells 
were stained with Hoechst 33342 and PI and analyzed in a fluorescence microscope as described in 
the Methods section.   Results are presented as % living cells (A), apoptotic cells (B) and necrotic cells 
(C). The data are means ± SD from 3 separate experiments (n=3). 
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Figure 29: Effects of GA on cell morphology.  
GM00130C cells treated with 0.5 mM and 1 mM GA for different hours as indicated. The cells are 
stained with Hoechst 33342 and PI and analyzed by fluroecense microscopy.  Bold arrow indicate 
apoptotic cells, thin arrow indicate apoptotic-necrotic cells. The figure represent one representative 
experiment (n = 3). Magnification 400x with oil immersion. 

 



 75    
 

 

Effects of a food contaminant on cell cycle - Glycidamide induced S-phase arrest followed by apoptosis in a 
lymphoblastoid cell line.  Master thesis by Elin Bakken Ansok 2009 

 

8. Discussion: 

8.1 Methodological considerations 

8.1.1 An Epstein–Barr virus (EBV) immortilized B-cell, as a model system for 

stimulated normal human peripheral lymphocytes. 

Lymphocytes are a convenient and easily available source for genotoxic studies, and as 

biomarkers. Though, they do possess limited lifetime, therefore are lymphoid cell lines 

convenient to use as a modelsystem.  The EBV-transformed lymphoblastoid cell line, 

GM00130C, was chosen because of its availablility in the laboratory, and because of its 

apparent wild type (wt) features compared to stimulated lymphocytes. A further important 

reason for using this cell line was that our laboratory has previous experience with various 

types of lymphoblastoid cell lines, i.e. the same cell type but being isolated from patients with 

various types of deficiencies in the NER path for excision repair (XPA, XPC, CSB). As 

described in 5.5.2, we observed no clear indication that the NER pathway is involved in repair 

of GA-induced DNA damage. Furthermore, recently we obtained strong evidence that DNA 

glycosylases involved in BER are good candidates for repair of the DNA base changes that 

are induced by BER (Hansen, 2009). If this had not been so, and if the time frame of this 

thesis had allowed it, then the whole set of lymphoblastoid cell lines would have appeared to 

be highly useful for the study of effects of GA on cell-cycle.   

Stimulation of PBL is a time consuming procedure and requires large amounts of donated 

blood, and the resulting cells can only be cultured for a limited time period. Working with cell 

lines has several advantages as described in the Methods section. However, since normal cell 

cycle regulation has been altered in immortalised cells, there are several important issues with 

this cell line that also need to be addressed and taken into consideration when interpreting the 

data. In addition, the cells are asynchronous in all experiments performed. The disadvantages 

of using asynchronous cells emerge when looking at discrete cell cycle alterations. Such 

alterations would have been more apparent if using synchronous cells, but they become 

masked due to the presences of cells in every cell cycle phase; this is particularly the case 

when studying weak responses in protein expression. Several of the common methods for cell 
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culture synchronization involve the use of pharmacological agents acting at various points 

throughout the cell cycle. This often leads to adverse cellular perturbations that may lead to 

false positive or negative results. Other methods for synchronizing cells involve less dramatic 

perturbations of the biological system, such as serum deprivation. However, due to time 

limitations, attempts to synchronize the cells were not performed.  

Although the tumour virus EBV apparently drives cell proliferation by stimulation of B cell 

activation and growth programmes, rather than by subverting cell cycle regulatory 

mechanisms (Bornkamm and Hammerschmidt, 2001), there is some evidence that EBV latent 

proteins, such as EBNA3C and LMP1, can disrupt normal cell cycle control and even normal 

responsiveness to some DNA checkpoints, upon exposure to genotoxic drugs(Chen et al., 

1998; Parker et al., 2000; Wade and Allday, 2000).  

Apparently, EBNA3C is essential for growth transformation of primary B-lymphocytes in 

vitro and regulates a number of viral and cellular genes important for the immortalization 

process (Subramanian et al., 2002). The latent proteins have been suggested to facilitate cell 

survival by suppressing the apoptotic program in addition to continuous cell division (Chen et 

al., 1998). For instance, the EBV nuclear antigen, EBNA3C, has been shown to disrupt both 

G1/S and G2/M checkpoints (Allday et al., 1993; Allday and Farrell, 1994; Parker et al., 

2000), enhance the kinase activity of the cyclin A/cdk2 complex, and regulate components of 

the SCFSkp2E3 ubiquitin ligase complex (Knight et al., 2005; Knight and Robertson, 2004). 

EBNA3C have also been shown to complete the cell cycle in cells lacking mitogen signals 

from the external medium in vitro(Parker et al., 2000). Overall, it may indicate that these 

cells, to some extent, overcome or ignore normal DNA damage activated checkpoints, and 

that this may be the case in our studies as well. When discussing the results obtained from the 

GA-treated lymphoblastoid cell line these issues must be taken into consideration.  

8.1.2 The Comet assay 

The comet assay is a very sensitive and well established assay for genotoxic screening. In 

addition, it is an easy assay to run and can be performed at a low cost. However, there are a 

few shortcomings that need to be addressed, especially concerning scoring the comets and 

analysing the data. Especially one need to be certain that the DNA staining of the comets is 
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optimal and that the settings and configuration of the fluorescence microscope and 

programme to analyse the comets are optimized and not subject to change during scoring of 

one experiment. Even so, one may obtain both false positive and false negative results. False 

positive results, meaning too high DNA damage response in the comet assay, can be due to 

DNA degradation resulting from cell death, thereby reflecting secondary effect of a cytotoxic 

effects of a compound, and not genotoxicity per se. False negative results, meaning too low 

damage response, may be obtained if – which is particularly relevant for GA –the initial DNA 

lesion is not measurable in the traditional comet assay, i.e. does not lead to DNA strand 

breaks even at high pH. A negative result may also result if the GA-exposure is too short. 

Both cytotoxicity and induction of DNA damage may take some time to develop and may 

require prolonged exposure times. However, this situation was addressed by using a wide 

concentration range of GA and by exposing over a 24 hour time period. In general, false 

negative results may occur in in vitro toxicological experiments if the compound(s) involved 

are unstable under experimental conditions. With GA this was obviously not the case since 

the measured DNA damage was high all through the time course of the GA-exposure. To 

avoid degradation, GA was routinely prepared fresh and diluted in PBS shortly before being 

added to the cell cultures. In addition, loss of heavily damaged cells (apoptotic or necrotic) 

may occur during washing steps and therefore lead to less recorded damage or even false 

negative results.  

8.1.3 Metabolizing AA with human S9 extract  

In order to metabolise AA in our cell culture treatment we introduced a human liver S9-

fraction during the exposure, which is standard procedure when using cell cultures with 

limited capacity for metabolic activation. However the results showed that the S9 fraction did 

not facilitate the DNA damaging effect of AA, instead it lead to a small decrease in the level 

of damage in the exposed samples. AA alone did not induce any significant increase in DNA 

damage compared the control even at 4 mM. The lack of DNA damaging effect of AA, even 

in combination with the S9 fraction for metabolic activation, is in accordance with previous 

experiments performed in our laboratory (Hansen, 2007; Sipinen, 2007).. The function of the 

S9 fraction was tested using human HPBL and benzo(a)pyrene (BaP) as a positive control, 

since the BaP- metabolite, benzo[a]pyrene -7,8-dihydrodiol-9,10-epoxide, has previously 
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been shown to induce DNA-damage detectable in the comet-assay  in the presence of S9 

(Speit et al., 1996), however no increased DNA-damaging effect was observed. The CYP2E1 

activity is the main oxidative metabolic step of activation of AA into GA; however, the 

activity level of CYP2E1 in the commercial S9 preparation was unknown to us.  A high GSH 

activity in S9 may also contribute to a rapid deactivation of GA.Segerbäck and coworkers 

tested AA together with an S-9 mix prepared from rats in the Ames test without any positive 

effect, which is in correspondence with our findings. They concluded that the amount of GA 

produced in microsomal suspensions with AA is insufficient to produce a statistically 

significant response (Segerback et al., 1995). Koyama et al (2006) tested AA together with rat 

liver S9 for cytotoxicity and genotoxicity without any influence on cytotoxicity or 

genotoxicity of AA, even up to 15 mM. On the other hand, an enhanced activity of N-di-N-

butylnitrosamine (DBN), a positive control chemical, was seen with S9 (Koyama et al., 2006). 

In addition no GA-derived DNA adducts were found in cells treated with concentrations of 2-

18 mM of AA and S9, consistent with a lack of metabolic conversion of AA to GA(Mei et al., 

2008). 

8.1.4 Cell cycle analysis by Flow cytometry 

A major advantage of flow cytometry is that it offers the possibility of mulitparametric 

analysis of several cell attributes, including cell cycle position. In this way we were able to 

analyse whether GA-treatment lead to an accumulation of cells in a particular phase of the cell 

cycle by staining the DNA with PI/Hoechst in addition to a BrdU-staining in order to look at 

replicating cells in particular. In general one has to be aware of cell clumping during fixation 

of cells since doublets of G1 cells may be falsely detected as a G2/M, and cell aggregates in 

general may give high background noise during flow cytometric analysis. 

The BrdU-staining procedure is a somewhat stringent procedure with many steps and 

incubations. Unfortunately we experienced problems with obtaining enough cells throughout 

the procedure. Different spinning procedures was attempted but without improvement. The 

source of error was sadly never revealed, therefore we had to continue only using PI staining.  

In this study, GA-exposed cells seem to enter apoptosis or necrosis at high concentrations and 

long exposure times. The major drawback of flow cytometric methods is that the 
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identification of apoptotic or necrotic cells is not based on morphology and cannot be 

correlated with morphological characterization and therefore difficult to detect in a regular PI 

staining. Other methods must therefore be applied such as the TUNEL (Terminal 

Deoxynucleotide Transferase dUTP Nick End Labeling) assay where the amount of DNA 

fragmentation is detected. In addition, flow cytometric analysis of apoptosis, regardless of 

method used, is associated with selective loss of apoptotic cells during sample preparation. 

Morphological alterations were therefore examined with PI and Hoechst 342 staining in a 

fluorescent microscopy, which enables us to distinguish some of the different types of cell 

death as described it the method section. 

Because of the difference between apoptotic and necrotic cells in plasma membrane integrity 

one can preincubate with a mixture of Dnase I and trypsin that results in total loss of necrotic 

and late apoptotic cells from the suspension due to lack of the ability to exclude these 

enzymes. Live and early apoptotic cells exclude these enzymes and remain in the suspension. 

Such treatment prior flow cytometry analysis ensures that only early apoptotic and live cells 

are analyzed (Darzynkiewicz et al., 1992). Hence, explaining whether the accumulation of 

cells in the S-phase area with 1 mM GA treatment for 24 or 31 hours is due to an arrest or 

perhaps an increase of apoptotic and even necrotic cells from late S or G2/M.   

8.1.5 Cell viability/Cell death 

Many pathways leading to apoptosis exists, and DNA fragmentation and loss of DNA 

fragments is not a universal finding in apoptotic death. Necrotic cells may also display some 

degree of DNA degradation that may result in hypodiploid nuclei. The sub- G1 peak can also 

represent nuclear fragments, chromosome clumps, micronuclei or nuclei with normal DNA 

(i.e., cells undergoing differentiation) (Darzynkiewicz et al., 2001). Therefore morphological 

analysis by microscopic observation of apoptotic bodies was performed. However, this 

method can be time consuming, lacking objectivity and reproducibility, and making it 

difficult to identify subtle changes in large populations. Thus, additional applications to detect 

apoptosis such as biochemical analysis by DNA ladder in agarose gel, or specific 

demonstration of DNA breaks such as in the TUNEL assay should be used to confirm 

apoptosis. One should also remember that apoptosis is a dynamic process and there is a short 
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”time window” during which apoptotic cells display their characteristic features. Therefore, 

different methods can produce different results depending on the time of the apoptotic 

process. 

8.1.6 Western 

Problems which may arise when detecting proteins on western blot include; fuzzy bands ,low 

signal, high background, spots on film, too many bands on the blot and weak signal. 

We mainly experienced problems with too many non-specific bands on the film, making it 

difficult to analyse the protein of interest.  This may be caused by old or poor primary 

antibody quality, or insufficient blocking.  This can be optimised by testing different blocking 

procedures since dry non-fat milk or BSA may give different results, depending on the 

primary antibody. In addition to increase or decrease both incubation time and concentration 

of milk/BSA. Also, the recommended primary antibody concentration given by the datasheet 

is usually higher than necessary, resulting in unspecific binding, and therefore optimisation 

experiments need to be performed in order to determine the proper antibody dilutions.  

Nonspecific signals due to weak antibody binding may be removed by increasing washing 

times and volumes. Using a stronger detergent in the washingbuffer than TBST may provide 

more stringent wash and reduce background. Though, only if the band is strong since washing 

also removes some of the band of interest. 

Different protein/antibodies require different exposure time. Without experience with the 

protein of interest, and cell type one might overlook results due to lack of long enough 

exposure, since exposure time can be from seconds and up to a day (especially phosphor 

proteins). Low or weak signal may also be due to insufficient protein loaded on the gel, which 

often applies to small proteins. In order to concentrate the protein of interest, one might 

perform immunoprecipitation which concentrate a particular protein from the sample 

containing many different proteins. 
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8.2 Statistical analysis  

All comet assay experiments were performed twice. To be able to perform proper statistical 

analysis, at least three independent experimental runs are necessary. Due to time constraints, 

this was not possible. Nonetheless, the data obtained in the two experimental runs are 

analyzed statistically to look for trends. 

Comet data failed normality test and homogeneity of variance, which suggest the use of non-

parametric tests. Duez et al. (2003) looked at the use of non-parametric test and found the 

tests to be overly sensitive, detecting significant, but objectively unimportant, differences. 

However this might be due to the erroneous use of the single comet to be the experimental 

unit which result in a very large n. Non-parametric tests of the comet data was attempted but, 

due to only two independent experiments statistical significance of obvious differences were 

not detected (data not shown). The 95% confidence intervals of the mean values were also 

examined and showed no overlap in the statistical significant exposures analyzed by ANOVA. 

The experimental design is nested which can not be used in non-parametric tests. A possibility 

would have been to analyse the data with a parametric analysis of median values obtained in 

each gel, but this would lead to loss of information, as experiment and gel number can not be 

factors in this analysis. The power of this analysis would also be low. The distribution of the 

data is quite different in control and treatment groups with Fpg treatment and long exposure 

times and high concentrations of GA (0.5 mM) due to highly damaged cells which are left 

skewed while some damaged cells are right skewed. Non-parametric tests do not require 

normality, but similar distributions in all groups. Transformation of data using Log 

transformation could work on right skewed, but not left skewed, and might result in 

heterogeneity of variances (Lovell and Omori, 2008). ANOVA is thought to be robust enough 

to conduct with some differences in the variances, and with a minor violation of the normality 

(Lovell and Omori, 2008).  

Effects size, using partial eta squared obtained from SPSS were evaluated with each ANOVA 

analysis, and gave a value above 0.8 at all cases. Partial eta squared effect size indicate the 

proportion of variance of the dependent variable that is explained by the independent variable, 

with values ranging from 0 to 1. Though, with a large enough sample, quite small differences 
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can become statistically significant, even if the difference between the groups is of little 

practical significance. The use of raw data in the comet analysis may have affected this value. 

8.3  GA-induced DNA damage  

We showed that AA exposure alone or together with the S9 extract did not lead to any 

increased DNA-damage even at high AA concentrations in the lymphoblastoid cell line as 

well as in normal human peripheral lymphocytes, when exposed for 2 hours. Apparently, Fpg-

treatment did not detect any additional lesions either, indicating no induction of oxidative 

damage or ring opened structures recognised by Fpg after 2 hours AA exposure in vitro. The 

lack of damage response with AA in the comet assay is in contrast to studies by Blasiak and 

coworkers and Jiang and his group, who observed induced DNA damage with lower 

concentrations of AA in human lymphocytes and hepatoma cells, respectively (Blasiak et al., 

2004; Jiang et al., 2007). Nevertheless, our results are in accordance with other studies where 

no or low observed DNA damaging effect of AA was observed (Baum et al., 2005; Koyama 

et al., 2006; Puppel et al., 2005). Therefore, AA seems to be only slightly genotoxic in vitro 

when analysed in the comet assay.   

In addition, GA did not induce any significant increase in SSB or AP-sites at concentrations 

up to 0.5 mM GA following two hours exposure time as no increase in DNA damage was 

observed. Nevertheless, longer exposure periods with GA lead to an increase in GA-induced 

SSB and AP-sites. On the other hand, Fpg treatment induced high levels of DNA-damage 

even at very low  GA concentrations (down to 0.05 mM GA) indicating either a high level of 

oxidative damage or ring opened structures, recognised by Fpg. Previous reports have shown 

that GA forms adducts directly with DNA and protein, making GA highly genotoxic (Gamboa 

da Costa et al., 2003; Ghanayem et al., 2005a; Segerback et al., 1995) Our results are in 

favour of previous in vitro observations that GA is the directly DNA reacting compound and 

that AA is rather inactive towards DNA (Baum et al., 2005; Koyama et al., 2006; Puppel et 

al., 2005). 
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8.3.1 GA induced DNA damage recognized by Fpg 

Using Fpg highly increased the detection of GA-induced lesions as detected in the comet 

assay, both with the normal human lymphocytes and with the lymphoblastoid cell line. Fpg 

recognizes a variety of substrates, and excises preferentially 8-oxoG but also FaPy-G, FaPyA 

and methylated FaPyG (Me-FaPyG) (Asagoshi et al., 2000; Boiteux et al., 1984; Boiteux et 

al., 1992). This wide substrate affinity is in contrast to the more specific hOGG1 enzyme 

which has a high affinity for 8-oxoG although FaPy-G is also recognised (Asagoshi et al., 

2000; Graves et al., 1992). Preliminary and very recent experiments in our laboratory 

comparing the Fpg enzyme with a commercial hOGG1-enzyme showed that hOGG1 gave 

nearly no GA-induced damage detection compared to Fpg (Hansen, 2009). This suggests that 

the Fpg-sensitive sites caused by GA exposure are not likely to represent oxidative damage. In 

these experiments, a photoactive compound (Ro 12-9786 plus visible light, inducing 

predominantly oxidated purines) was used as a positive control for the activity of the hOGG1 

enzyme to recognise and cleave 8-oxoG. Nevertheless, based on the chemical properties of 

GA, it is not likely to cause significant levels of oxidative damage of the DNA. However, 

exposure to GA at high concentrations and for extended periods may lead to GSH depletion 

(Kurebayashi and Ohno, 2006)which in turn may lead to increased ROS formation and 

secondary oxidative effects. 

Apparently, when exposing the cells to GA, the lysing procedure in the comet assay may 

affect the results when treating with the Fpg-enzyme. The standard procedure has previously 

been to lyse the cells for a minimum of 1.5 hours, to overnight. However, according to 

preliminary results in our laboratory when lysing GA-exposed cells overnight, a striking 

increase in Fpg-sensitive sites was noted (Hansen, 2009). This is believed to be caused by 

alkali catalyzed ring-opening of GA-adducts during lysis, (favoured during alkaline 

conditions, relative to depurination) (Gates et al., 2004) thereby increasing the number of 

ring-opened GA-lesions recognised by Fpg. 

Since GA preferably forms N7-GA-Gua adducts (Gamboa da Costa et al., 2003) there may be 

a number of ring opened structures identified by Fpg. To address this problem, in each 

experiment the lysis conditions should be carefully controlled with respect to temperature, 
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duration and pH. Previous studies have also shown that Fpg detects DNA damage from other 

classical alkylated agents (Smith et al., 2006; Speit et al., 2004). Additionally, in vivo 

experiments with wild-type and the Ogg1-knockout mice showed minor differences in their 

repair capability of GA-induced damage (Hansen, 2009), further strengthening the hypothesis 

that the GA-induced DNA lesions are not oxidative. Rather, it seems that the DNA-damage 

caused by GA in vitro is mainly due to alkylated adducts and not oxidative lesions. 

8.3.2 GA induced DNA adducts 

It has been shown that the in vitro reaction of GA with DNA results in the formation of  

different adducts in the following order: N7-GA-Gua > N1-GA-dA > N3-GA-dA (Gamboa da 

Costa et al., 2003). Depurination of N7-alkyl-Gua and N3-alkyl-Ade, and the imidazole ring 

opening of N7-alkyl-Gua yielding Alkyl-Fapy-G are acid- and alkali-catalysed, respectively, 

but occur even at physiological conditions. Depurination is usually the predominant reaction 

observed for N7-alkylguanine residues in double stranded DNA under physiological 

conditions (Gates et al., 2004). Therefore, GA adducts may spontaneously depurinate in cells 

and form AP-sites which are converted into strand breaks. This may be the case when GA 

(0.5 mM) exposure was performed for 24 hours and high levels of DNA-damage without Fpg-

treatment were observed. Otherwise they may transform into ring-opened GA-lesions, GA-

FaPy-G during the alkaline lysis in the comet assay. Both AP sites and ring-opened lesions 

are recognised by the Fpg-enzyme and excised as previously described (Boiteux et al., 1984; 

Boiteux et al., 1987; Graves et al., 1992).  

Both N7-GA-Gua and N3-GA-dA are promutagenic due to the spontaneous depurination 

(Gamboa da Costa et al., 2003; Segerback et al., 1995). The N7G and N3A adducts formed by 

binding of GA to DNA are not involved in the hydrogen bond basepairing region and 

therefore do not mispair during replication (as reviewed in Jenkins et al., 2005), but are prone 

to spontaneously formed AP sites (Besaratinia and Pfeifer, 2004). But the N3 atom is 

important in stabilising contact between the polymerase and the template (Engelward et al., 

1998). N1-GA-dA adducts are also highly promutagenic because of the impaired base pairing 

potential (Gamboa da Costa et al., 2003; Segerback et al., 1995). The N3-alkylated adenine 

adducts are considerably more labile than those of the N7-guanines (Koskinen and Plna, 
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2000) Since AP sites and Alkyl-Fapy-G can persist in DNA for extended periods, they may 

have biological implications since these lesions are both mutagenic and cytotoxic (Chetsanga 

et al., 1982; Koskinen and Plna, 2000; O'Connor et al., 1988; Tudek, 2003).  

The resulting GA-adduct density may influence the stability of adducts in dsDNA. Distortion 

of the DNA duplex in heavily adducted DNA may be responsible for the decreased stability as 

seen in the case of the Aflatoxin lesion (Gates et al., 2004). Thus in our case, the continuous 

exposure to GA over time (Figure 14), may lead to heavily adducted DNA which may further 

decrease the stability, since a large number of structures are excised by Fpg. For this reason, 

cells exposed to 1 mM GA for up to 31 hours are prone to exhibit apoptotic or necrotic 

behaviour as our results show. 

The rate at which different N7-alkylguanine lesions undergo depurination from dsDNA varies 

widely, and is dependent of the structure of the substituent in the N7 position of guanine. The 

half-life of  N7-GA-Gua in salmon testis DNA incubated with GA at 37˚C was determined to 

be 42 h, while the half-life of N3-GA-Ade was measured as 14 h, and increasing with lower 

temperatures (Gamboa da Costa et al., 2003). Even though N3-Ade adducts typically undergo 

spontaneous depurination of DNA at higher rates than N7-Gua adducts (Koskinen and Plna, 

2000) they can also block transcription which can lead to sister chromatid exchange and S-

phase arrest (Engelward et al., 1998). Therefore, a possible depurination of N3-Ade adducts 

due to the continuous GA-exposure may occur in great numbers and contribute to the 

apparent S-phase accumulation observed with 0.5 mM and 1 mM GA and 24 hours exposure 

time. 

8.4 Repair of GA-induced DNA-damage 

The GA-induced DNA damage detected by Fpg was apparently subjective to repair. The high 

level of damage obtained with Fpg treatment in the comet assay saturated the system and 

made it more difficult to measure and calculate the repair-kinetics of Fpg sensitive sites. 

However there was a marked reduction over time both with and without Fpg treatment 

implying a repair of strand breaks, ALS and the Fpg-sensitive sites in lymphoid cells. The 

repair of GA-lesions has according to Johansson et al 2005 been associated with the small 
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patch BER pathway (Johansson et al., 2005), although this has never been disproven or 

confirmed by others. However, the fact that Fpg recognises the GA-induced lesions supports 

this notion. Further, DNA glycosylases in the BER pathway, such as Fpg, are involved in 

repairing alkylated DNA by the removal and replacement of alkylated bases (Frosina et al., 

1996; Petermann et al., 2003). This is especially important for the N7G and N3A adducts 

(Jenkins et al., 2005). 

Previous results in our laboratory indicated a GA-induced  upregulation of XPA, and to some 

extent XPC transcription by RT-PCR in the testicular germ cell tumor cell line 833K  (data 

not shown). For this reason we examined whether GA induced any changes in the expression 

of these repair proteins by western blot analysis. However, neither XPA nor XPC, two of the 

enzymes responsible for damage detection and initiation of DNA damage repair in NER, 

showed any protein upregulation. This does not exclude the possibility that NER is involved 

in repair of GA-induced DNA damage. However, based on the Fpg-comet observations, we 

interprete our preliminary results as suggesting little or no contribution of NER in the repair 

of GA-induced DNA lesions. Taken together, our results support the involvement of a short 

patch BER-pathway in the repair of GA-induced DNA lesions. On the other hand, we can not 

exclude the possibility that other repair pathways are induced additionally, especially when 

higher GA-concentrations are used. For instance, HR may be involved when high numbers of 

SSB are induced by exposing to high GA-concentrations over time, which my lead to DSB.  

Once BER is initiated, damage-specific glycosylases give rise to accumulation intermediates 

that can cause a partial or complete block to replication fork progression possibly inducing 

fork regression(Sobol et al., 2003). We observed an accumulation of cells in S-phase (high 

exposure <8 hours) and a seemingly reduced DNA-replication, and the former mechanism 

may be an explanation to these observations. Further, if the BER pathway is initiated during 

continuous GA-exposure, this might lead to an accumulation of BER intermediates that in 

combination with the adducts, AP sites and potentially Fapy lesions leads to cell death with 

high GA-exposures as observed. 
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8.5 Biological consequences of GA-induced lesions 

Proliferating cells in G1 or G2 phases may respond to genotoxic stress by activating 

checkpoints that impose shorter or lasting arrest in G1 or G2 before they enter S phase or M 

phase, respectively. In contrast, cells that experience genotoxic stress during DNA replication 

will only delay their progression through S phase in a transient manner, and if damage is not 

repaired during this delay they exit S phase and should arrest later when reaching the G2 

checkpoint (Bartek et al., 2004). The mammalian S phase checkpoints are thought to only 

have a minor role, compared to the more robust G1 and G2 checkpoints. The S phase is the 

most vulnerable period of the cell cycle, and protecting the integrity of the genome during this 

critical phase is important. Though DNA damaging insult during this period have more repair 

opportunities than in the G1-phase (Bartek et al., 2004).  

It has been published that AA and GA can inhibit the microtubule-depolymerizing kinesin 

leading to failure of the migration of chromosomes from the metaphase plate and reduced 

mitotic activity (Adler et al., 1993; Gassner and Adler, 1996). However, our results did not 

indicate any accumulation in the G2/M phase by GA which one might expect. We did not test 

AA effect on cell cycle, such an experiment might have revealed some more insight on this 

matter. It is probable that inhibition of kinesin involved in the mitotic/meotic spindle is related 

to blocks in cell division by AA and/or GA (Sickles et al., 2007) However we did not 

investigate direct effects on kinesins, but we observed transient arrest in S-phase rather than 

G2/M and may only speculate if this effect might have be caused by kinesin-effects in our 

experiments. 

8.5.1 GA-induced S-phase arrest and apoptosis 

N1-GA-Ade and N3-GA-Ade may serve as a block to DNA synthesis (Boiteux et al., 1984; 

Engelward et al., 1998; Singer, 1975). Inhibition of DNA synthesis by Fapy-7MeG is stronger 

than that of 8-oxoG, but weaker than that of AP site (Tudek, 2003). The extensison step 

constitutes a major kinetic barrier to DNA synthesis, and thus DNA polymerase incorporates 

nucleotide opposite Fapy-7MeG and  stops. FapyA and Fapy-7MeA also possesses miscoding 

potential. Though, Fapy lesions are actively eliminated by repair glycosylases, specific for 

oxidized purines and pyrimidines (Tudek, 2003). GA adducts and secondary lesions therefore 
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possess the potential to inhibit DNA replication, however we do not know the amount of 

adduct, Fapy lesions or AP sites that may be present. However, Fapy lesions are not likely the 

most prominent lesion since it is preferentially formed under alkali conditions. 8-oxo-G is 

also not likely to be present in high amounts due to low levels of oxidative damage detected 

with hOGG1 enzyme in the comet assay (Hansen, 2009). Therefore, due to the fact that it has 

been shown that the in vitro reaction of GA with DNA forms adduct in the following order: 

N7-GA-Gua > N1-GA-dA > N3-GA-dA (Gamboa da Costa et al., 2003) there might be a 

large number of adducts with long exposure duration, that has DNA synthesis block property 

due to possibly depurination of  N7-GA-Gua and replication block by N1-GA-Gua and N3-

GA-Gua. In addition to possible BER intermediates, leading to replication block that with 

high exposure becomes overwhelming for the cell and leads to apoptosis. 

0.1 mM GA did not seem to induce any typical arrest behaviour at any of the cell cycle phases 

for up to 24 hours exposure time when analyzed with PI staining and flow cytometry. Though, 

preliminary results indicated a small accumulation between G1 and early S phase with GA 

exposure of 0.3 mM after 72 hours (results not shown). Further, with BrdU incorporation, the 

major S-phase population of cells after GA-exposure indicated a reduction in both PI- and 

FITC-staining, shown in Figure 21. Thus, the reduced BrdU-incorporation at 24 hours and 

maybe even at 12 hours, indicates a lower replication rate induced by GA. The number of 

cells residing in S-phase increased prominently after 24 hours exposure time, while the 

number of cells in G1 decreased, implying that the cells are arrested in early S- phase. 

However it is important to point out that this assumption is only based on one experiment, and 

variations may apply. Unfortunately we experienced difficulties with the BrdU-incorporation 

method, which is a more sensitive method to visualize more discrete alterations in the 

different cell cycle phases, especially the S-phase. Therefore, transient arrests may have 

occurred, which was not detectable with the PI-staining method used. Therefore, BrdU-

incorporation with both low and high GA-concentrations and with different exposure times up 

to 24 hours would maybe reveal new insight into the actions of GA on cell cycle. 

However, at 24 hours the 0.5 mM and 1 mM GA exposure with PI staining had induced 

significant amounts of apoptosis. This was markedly increased after 31 hours exposure time, 

implying that the DNA damage caused by GA at these concentrations is lethal. No time points 
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between 8 and 24 hours in the cell viability assay were tested (Figure 28), making it difficult 

to state the onset of apoptosis in our assay. However, after 30 hours, a large amount of 

apoptotic-necrotic cells appeared when high GA concentrations were used, implying that a 

large number of cells become apoptotic at an earlier stage. It is noteworthy that we did not see 

a more prominent arrest in any of the cell cycle phases after cells were exposed to low GA 

concentrations, in order to attempt DNA repair. For instance, no arrest in the G1-phase after 

GA-exposure was detected. Rather, the cells were able to continue cell cycle even with high 

numbers of Fpg-sensitive lesions. The cells may be able to rapidly repair these lesions without 

disturbing the cell cycle, for instance with short-patch BER. In addition, since the cell line 

used may have malfunctional checkpoints and may override the GA-induced lesions, the next 

step would therefore be to test GA-exposure on normal stimulated human lymphocytes. 

The comet assay shows a sustained saturation in Fpg sensitive sites when exposing the 

lymphoid cells to 0.1 mM GA starting at 6 hours exposure time. This does not seem to affect 

cell cycle regulation but induces phosphorylation of p53 at serine 15, and an up-regulation of 

total p53. Activation of p53 is normally associated with DNA repair, cell cycle arrest and 

apoptosis (Vazquez et al., 2008). The lack of cell cycle responses to the high levels of Fpg-

sensitive sites seen at lower GA concentrations may imply that these lesions are repaired 

without the need for cell cycle arrest or ignored by the cell system used, as already mentioned.  

The high levels of DNA damage seen with 0.5 mM GA after 24 hours exposure time without 

Fpg-treatment implies high levels of SSB and AP-sites. These high levels of Fpg-independent 

lesions may be responsible for the apoptosis observed. It has been shown that chromosomal 

SSBs can, if not repaired rapidly, block DNA replication forks during the S-phase of the cell 

cycle, possibly leading to the formation of DSB (Kuzminov, 2001). Even though this type of 

DSB is rapidly repaired by homologous recombination (HR), an acute increase in cellular 

SSB levels might saturate this pathway, leading to genetic instability and/or cell death 

(Kuzminov, 2001). 

8.5.2 Regulation of cyclin A following GA-exposure  

Since cyclin A is especially needed for the passage through S-phase (S. Maddika et al.,  2007) 

we would expect a decrease in cyclin A level after GA-exposure and the observed S-phase 
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arrest. Nevertheless, cyclin A showed no down regulation after GA exposure at any time 

points, rather a small increase in protein expression with higher concentrations of GA. We can 

of course not exclude the fact that the kinase activity of the cyclinA/cdk2 complex was 

reduced by i.e. binding of a CDK inhibitor, or modified by 

phosphorylation/dephosphorylation events. The slight induction of p21CIP1 observed after GA-

treatment might be sufficient to inhibit CDK2/cyclin A activity. In addition, p21CIP1 may be 

translocated from the cytoplasm to the nucleus and thereby able to inhibit CDK2 without any 

observed up regulation of the inhibitor protein, p21CIP1, on the western blot. A CDK2/cyclin A 

kinase activity assay or a co-precipitation experiment with p21CIP1 -CDK2/cyclinA would be 

an appropriate assay to perform to evaluate this. On the other hand, the overexpression of the 

EBV-protein EBNA3C may result in constitutive cyclin A-overexpression and kinase activity 

(Knight and Robertson, 2004) which may mask any effect of GA on cyclin A and might 

explain why we do not see any down regulation. Cyclin E and cyclin D was also tested, 

however the results were difficult to interpret due to high background on the immunoblot with 

the Abs that we had in hand (data not shown).  

8.5.3 Regulation of p53 and p21CIP1 following GA-exposure 

While cell-cycle arrest depends on the ability of p53 to induce the transcription of target genes 

such as the CDK inhibitor p21CIP1  (W. S. El-Deiry et al., 1993), apoptosis depends on 

induction of a distinct class of target genes.  

We observed that GA induced a stress response leading to a phosphorylation on serine15 of 

p53. The ser15-phosphorylation increased in a both time and dose dependent manner. This 

phosphorylation stabilizes p53 (Lavin and Gueven, 2006). When detecting the protein level of 

total p53 an increase following phosphorylation was observed which is in accordance with the 

literature. Increased p53 levels have several downstream effects such as cell cycle arrest, 

repair or apoptosis. In our case, increased p53 as a result of GA-exposure may have resulted 

in the induction of p21CIP1 protein expression. This pathway has been described in several 

other genotoxic studies (M. Mahyar-Roemer et al., 2001,D. L. Persons et al., 2000). A small 

induction of p21CIP1 protein in GM00130C was noted with higher concentrations of GA (0.5 

mM and 1.0 mM) used. We expected a much more prominent induction of p21CIP1 and also a 
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time dependent induction of p21CIP1 following p53-phosphorylation and expression. In 

general, upon DNA damage induction, the protein ATM is recruited to DSBs, and 

phosphorylate proteins such as p53 leading to the stabilization of p53 and further p21CIP1 

induction (as reviewed in Kurz and Lees-Miller, 2004). Due to the lack of a clear upregulation 

of p21CIP1, we tested both a mono- and polyclonal antibody against p21CIP1
 without any 

changes in the result. However, preliminary results using normal PBL showed that 0.5 mM 

GA exposure induced a more pronounced upregulation of p21CIP1 already at 2, 4 and 14 hours 

(data not shown). The different p21CIP1 responses in PBL and GM00130C may be caused by 

actions of latent EBV in GM00130 which have been reported to inhibit p21CIP1 accumulation 

(J. O'Nions et al., 2003,L. S. Young et al., 2003). Further, several studies have established that 

EBNA3C have potential inhibitory effects on p53 functional activities (Yi et al., 2009). 

According to the authors, this include repression of p53 mediated transactivation, due to 

binding of EBNA3C to p53 (Yi et al., 2009). This could, for example, have an effect on 

p21CIP1 expression since we do not see any clear upregulation of p21CIP1 or a G1 arrest in 

GM00130C. 

The genotoxic drug cisplatin, which generates DNA adducts and triggers the ATM-p53- 

p21CIP1 response (S. L. Colton et al., 2006), was used to trigger checkpoints on proliferating 

B-blast infected with EBV. Latent EBV did not appear to affect the activity of p53 but rather 

downstream of p53 and interfered with the regulation p21CIP1. By preventing the 

accumulation of p21CIP1 it appears to prevent the inactivation of CDK2, and therefore DNA 

replication continued instead of being inhibited (O'Nions and Allday, 2003). p53 does not 

seem to be affected by EBV in our case either, but a downstream effect is highly likely since 

p21CIP1 and p27KIP1does not appear to be significantly regulated despite the high level of GA-

induced DNA damage. How EBV actually may prevent the accumulation of p21CIP1  is not 

fully clear. Never the less, since there is an observed increase in the level of p21CIP1 mRNAs, 

it is possible that there is a block to its translation (O'Nions and Allday, 2003). Another 

explanation to the lack of accumulation could be that EBV direct the degradation of this 

newly synthesized by acting on either p21CIP1 or CDK2 in a way that prevents p21CIP1 from 

forming complexes with CDK2 and therefore exposing it for degradation by the proteasome. 

Alternatively, EBV may increase the access to or affinity of p21CIP1 for proteasomes (J. 

O'Nions et al.,  2003,L. S. Young et al.,  2003) which leads to degradation. Cells with 
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insufficient p21ClP1 to exert an antiproliferative effect are highly prone to apoptosis when their 

genome is severely damaged. This could be related to altered repair capacity, since p21CIP1 

have been reported to be involved in different forms of repair (Gartel and Tyner, 2002).  

A dose and time dependent apoptotic response was observed, but no G1 arrest. However we 

did see an accumulation in S-phase together with apoptosis when cells were exposed to high 

concentrations of GA over time. Reports have shown that p21CIP1 can inhibit as well as induce 

apoptosis. The anti- or pro-apoptotic character of p21CIP1 partly depends on its subcellular 

localization (Gartel and Tyner, 2002). Nuclear localized p21CIP1 have shown to be pro-

apoptotic, whereas cytosolic localized p21CIP1 has anti-apoptotic properties (Coqueret, 2003). 

p21CIP1 may therefore have performed apoptotic actions which are not visible to us without 

checking the subcellular localization of p21CIP1 i.e. using immuno fluorescence microscopy 

techniques. Another possibility may be EBV latent genes affecting p21CIP1. These genes, if 

affecting p21CIP1 actions, may disrupt the G1 checkpoint that otherwise might have been 

triggered by GA, which make the cells prone for apoptosis. This could have been examined 

by exposing our cells to genotoxic drugs known to initiate a G1 arrest, but was not performed 

due to time limitations. 

8.5.4 Regulation of p27 following GA exposure 

As already mentioned in the introduction, anti-mitogenic signals result in an increased 

p27KIP1level (J. Vervoorts et al.,  2008,Z. Wang et al., 2003)  and that p27KIP1 is involved in 

the induction of apoptosis when overexpressed (Vervoorts and Luscher, 2008). However, no 

upregulation in the protein content of p27KIP1 was observed at any exposure times or 

concentrations of GA used, when compared to the control. This may again be due to the EBV 

latent gene EBNA3C shown to inhibit accumulation of p27KIP1  similar to p21CIP1 inhibition 

(Knight and Robertson, 2004). This inhibition might be achieved through the reqruitment of 

SCFSkp2 E3 ligase complex activity to cyclin A complexes by EBNA3C which results in 

ubiquitination and SCFSkp2 dependent degradation of p27KIP1or destabilisation  (as reviewed in 

J. S. Knight et al.,  2004,J. S. Knight et al.,  2005). Also, EBNA3C have shown to overcome 

the restriction checkpoint that causes cells to arrest in G1 of the cell cycle in reduced serum. 

This failure to respond to normal anti-proliferative signals is consistent with the 
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demonstration of failed p27KIP1accumulation when mitogens are withdrawn (G. A. Parker et 

al.,  2000).  

To exert its CDK inhibitory functions, p27KIP1 is required to be localized to the nucleus by 

phosorylation events of its nuclear localization signal (NLS) (as reviewed in Denicourt and 

Dowdy, 2004). In quiescent normal cells, p27KIP1 is nuclear. Then in early G1, p27KIP1 export 

may be required to support assembly and nuclear import of newly translated D-type cyclins 

and Cdks. Both p27 KIP1 and p21CIP1 facilitate assembly of D-type cyclin complexes in vitro 

and in vivo and direct nuclear import (Chu et al., 2008). Since the activated form of CDK2 is 

located in the nucleus (Dietrich et al., 1997), only the nuclear forms of Cip/Kip proteins could 

be considered as CDK inhibitors. However p21CIP1 and p27KIP1 are also located in the 

cytoplasm where they even activate D-type complexes through an enhanced association and 

nuclear accumulation (as reviewed in Coqueret, 2003). Therefore, a study of the sub cellular 

localization of p21WAF1 and p27KIP1in accordance with cell cycle arrest and apoptosis would 

be of great interest in order to clarify their roles in cell cycle arrest, repair and apoptosis. In 

addition we could maybe exclude or verify if in fact the EBV latent genes have affected a 

normal response of p21WAF1 and p27KIP1 to GA exposure of GM00130.  
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9. Conclusions and future work 

In summary, we found GA to be highly genotoxic at relatively low levels. However, although 

we were able to measure high levels of Fpg-sensitive sites after exposure to low concentration 

of GA in vitro, no effect on the cell cycle of the lymphoblastoid cell line was observed. 

Nevertheless, genotoxic stress response such as phosphorylation of p53 and a small induction 

of p21CIP1 was observed. On the other hand, higher concentration of GA (0.5 mM – 1 mM) 

resulted in a putative halt in the DNA-replication and an accumulation of cells in S-phase 

together with an increased apoptotic progression. Therefore, it seems that the EBV-

transformed cells are able to overcome or ignore the initial Fpg-recognised lesions induced by 

GA. When higher levels of strand breaks are introduced with increasing GA-concentrations, 

the cells eventually undergo apoptosis.  

Since several studies indicate an EBV-mediated interference with regular stress responses as 

already discussed, it may be that the latent EBV in our cell system affects the B-blasts from 

GA-induced stress responses. Therefore, further studies using stimulated normal PBL are 

highly relevant in order to confirm or compare the responses observed with GA-induced 

genotoxic stress on GM00130C cell cycle. In this way we may able to explore whether the 

EBV latent viral genes are affecting important DNA damage checkpoints in our system. In 

addition, it will be important to establish how normal lymphoid cell cycle responds to low 

levels of GA. If lymphoid cells in general are able to ignore low levels of GA-induced lesions 

without triggering a sufficient repair process, it may eventually lead to an accumulation of 

mutations in the cell and eventually lead to cancerous development over time.   

In addition, further studies to reveal what type of lesions GA induces will be important to 

explore in order to understand the mechanisms by which these lesions are repaired and dealt 

with by the cell. There are already good indications in our laboratory that the hOGG1 does not 

recognise GA-induced lesions and thus no induced oxidative damage such as 8-oxo-G. 

Therefore, further analysis to reveal the amount of the different GA-adducts introduced will 

be important, especially in connection with cell cycle arrest.  
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Additionally we may take advantage of the different NER defective cell lines available in our 

laboratory in order to reveal whether this repair pathway is involved or not. If GA-induced 

lesions are repaired less efficient in these defective cell lines, the NER-pathway may well be 

involved and vice versa. 

The GA concentrations used in this thesis is much higher than what an average person is 

exposed to on a daily basis. The general belief regarding toxicity of AA dietary intake is not 

alarmingly, though there is an increasing awareness regarding genotoxic compounds in food, 

which in the case of AA, is quite popular; coffee, chicken, crisp bread and chips. GA-induced 

adducts has shown to have a relative long half-life, and may therefore lead to accumulation 

with continuous dietary exposure. With the observed cell DNA damage, cycle alterations and 

the induction of p53 there is potentially risk of carcinogenesis and therefore more knowledge 

is important.   
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10. Appendix 

Chemicals Producer  

8-16% Precise Protein Gels (15-well) 
Thermo Fischer 
Scientific 

β-Mercaptoethanol  Sigma-Aldrich  

Absolute alcohol prima  Arcus Kjemi, Norway  

Anti-mouse HRP-conjugate  Jackson Laboratories  

Anti-rabbit HRP-conjugate  Jackson Laboratories  

Bio-Rad CD Protein Assay Kit  BioRad  

BrdU Sigma-Aldrich 

Bromophenol Blue  Sigma-Aldrich  

Bovine serum, albumin (BSA)  Sigma, USA  

Bio Whittaker® RPMI 1640 medium with and L-Gluthamine Lonza, Belgium  

Bio-Rad DC (detergent compatible) protein assay Bio-Rad, USA 

Complete  Roche  

Cyclin A (rabbit) BD Bioscience, USA 

Developer (LX 24)  Kodak  

Dubeccos`s Phosphate Buffer solution (PBS)  Locally produced  

Dimetyhylsulfoxide (DMSO)  Merck, Germany  

EDTA  Sigma-Aldrich  

Ethanol (Absolute)  Arcus Kjemi, Norway 

Ethylenediaminetetraacetic acid disodium salt dihydrate (EDTA)  Sigma, USA  

Fetal calve serum (FCS)  Gibco, NY, USA  

Fpg crude enzyme extract  Locally produced  

FITC antibody BD Bioscience, USA 

Fixer (AL 4)  Kodak  

GAPDH ab (mouse)  Biogenesis  

GelBond® Film  Cambrex, USA  

  
Glycerol  Sigma-Aldrich , USA 

Glycine  Sigma-Aldrich , USA 
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Hydrogen chloride (HCl)  Merck, Germany  

Hepes  Sigma, USA  

Hoechst 33342 Calbiochem 

Lymphoprep Tube Axis-Shield, Norway 

Medical X-ray film, Super RX  FUJI  

Methanol  Merck  

NuSieve GTG Low melting agarose  Cambrex, USA  

P21 (mouse) Santa Cruz, USA 

P27 (mouse) Santa Cruz, USA 

p-53 serin 15 (mouse) Cell Signalling, USA 

p-53 (rabbit) Cell Signalling, USA 

Potassium hydroxide (KOH)  Merck, Germany  

Potassium chloride (KCl)  Merck, Germany  

Penicillin/Streptomycin (P/S)  Sigma, Norway 

PBS  Dulbecco  

Pierce Supersignal West Dura Extended Duration substrate  
Thermo Fisher 
Scientific  

Precision Plus ProteinTM Standards, Kaleidoscope  BioRad  

Protran BA 85 Nitrocellulose  Whatman  

S9-mix In Vitro Technologies 

Sodium chloride (NaCl)  Merck, Germany  

Sodium Hydroxide (NaOH)  Merck, Germany  

Sodium lauryl sarcocinate  Sigma, UK  

SYBR Gold  Invitrogen, USA  

Starting block™ blocking buffer  
Thermo Fisher 
Scientifc  

Trizma® base (Tris (hydroxymethyl)-aminomethane, Tris-base)  Sigma, USA  

Triton-X  Sigma, USA  

Thimerosal  Sigma, USA  

Trypan Blue Stain  Cambrex, USA  

Tween 20 BioRad, USA 

XPC (mouse) Pharmingen 

XPA (rabbit) Santa Cruz, USA 
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10.1 Solutions and media  

Medium: 

RPMI 1640 added 10% FCS and 1% P/S  

Lysis stock solution:  
2,5 M NaCl, 100 mM EDTA, 10mM Trizma base, 12g/l NaOH. Adjust pH to 10. Add 1% 
Sodium lauryl sarcocinate.  

Lysis solution:  
Dilute stock solution 10 times, add 10% DMSO and 1% Triton-X  

Fpg-enzyme reaction buffer:  
40mM Hepes, 0,1 M KCl, 0,5mM EDTA. pH adjusted to 7,6.  

Unwinding and electrophoresis stock solution:  
10N NaOH, 200mM EDTA  

Unwinding and electrophoresis buffer:  
Dilute electrophoresis stock solution 10 times, adjust pH to 13,2  

Neutralization solution:  
0,4 M Trizma base, pH adjusted to 7,5.  

TE-buffer:  
1mM EDTA, 10mM Tris HCl, pH adjusted to 8,0.  
 

1X Loading buffer (for preparation of protein extract):  

SDS-buffer: 

60 mM Tris-HCL (50 ml 0.5 M Tris-HCL pH 6.8) 

10 % glycerol (40 ml 100 % glycerol) 

2 % SDS (80 ml 10 % SDS) 

1 mM EDTA (4 ml 0.1 M EDTA) 

pH is adjusted to 6.8 with NaOH and dH2O is added up to 400ml. 
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2 ml of loading buffer were made using:  

SDS-buffer: 1.79 ml  

Protease inhibitor, Complete (25X): 80 µl  

Phosphatase inhibitors: Sodium fluoride (NaF) (50 mM stock): 100 µl  

Β-glycerolphosphate (Stock 100X): 20 µl Na3VO4 (stock 200mM): 10 µl  

 

10X Running buffer 

2000 ml: 

60g TRIS Base (Tris-hydroxsymethyl-aminomethane) 

88g Glycine 

20g SDS (Sodium Dodecyl Sulphate) 

Distilled water up to 2000 ml 

 

1X Running buffer  

1000 ml:  

100 ml of 10X Electrophoresis buffer  

900 ml distilled water  

10X Transfer buffer  

2000 ml:  

TRIS base 60 g 

288 g Glycine  

Distilled water up to 2000 ml  

1X Transfer buffer  

1000 ml:  

100 ml of 10X Transfer buffer  

700 ml distilled water 200 ml methanol  

The methanol was added just before use to avoid evaporation.  

10X TBS-T (Tris buffer with Tween 20) – wash buffer: 

5000 ml: 

10 mM Trizma base (60,5g) 

137 mM NaCl (400g) 

0.1%Tween 20 (50ml) 

350 ml of 1M HCl 
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Distilled water was added up to 5000 ml and pH adjusted to 7.6.  

The solution was then diluted 1:10 before use. 

10X TBS (Tris buffer): 

5000 ml: 

10 mM Trizma base (60,5g) 

137 mM NaCl (400g) 

350 ml of 1M HCl 

Distilled water was added up to 5000 ml and pH adjusted to 7.6.  

The solution was then diluted 1 : 10 before use. 

IFA buffer: 

10 mM HEPES [pH 7.4]  

25 mM NaCl 
 

4% fetal calf serum  

 

 


