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Abstract 

Trichaptum fuscoviolaceum is a saprotrophic basidiomycete morphospecies growing on 

conifers. In the present study, the genetic structure in a circumboreal sample of T. 

fuscoviolaceum was analyzed using a multilocus sequencing approach. The analyses revealed 

a complex phylogeographic structure where two main lineages occurred; one European 

connected to Pinus and another circumboreal group connected to various coniferous hosts. 

The European group may have resided in South European refugia during the last glaciation 

followed by a northward range expansion. The circumboreal group probably have migrated 

into Europe from northeast. In Europe, in areas where the two main lineages occur in 

sympatry, some specimens possess heterozygous sequences, apparently because allelic 

versions from both lineages co-exist in the same dikaryons. The presence of alleles from both 

groups in the same individuals may reflect hybridization as a result of secondary contact 

between the two main groups. Additional data are needed to conclude whether the two main 

lineages represent cryptic species. The observed phylogeographic pattern resembles the 

pattern observed in other wood-inhabiting fungi, which could indicate that general 

phylogeographic trends exist across species. 
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Introduction  

Phylogeography has become a well established research area during the last twenty years. 

Based on gene genealogies, the field aims to construct hypothesis about species distributions 

in connection with recent and historical events (Avise 2000). In comparison to plants and 

animals, rather few phylogeograpic studies have been undertaken on fungi. Most fungi are 

able to disperse over long distances by air-borne spores and as such, fungal species are 

generally thought to be widespread (Lumbsch et al. 2008). However, recent studies have 

demonstrated that many widely distributed fungal morphospecies include cryptic species with 

more restricted geographic distributions and ecology (Dettman et al. 2003a; Fischer & Binder 

2004). For example, Geml et al. (2006) detected three distinct phylogenetic species in the 

cosmopolitan fungus Amanita muscaria, and that these groups are present in sympatry in 

Alaska. The identification of various phylogenetic species within the Heterobasidion 

complex is another example of cryptic speciation (Garbelotto et al. 1998; Karlsson & Stenlid 

1991). This species complex was first delimited into different intersterility groups based on 

mating studies (Korhonen 1978), and subsequent genetic studies (Johannesson & Stenlid 

2003) support the existence of three divergent species in Europe. Similarly, Carriconde et al. 

(2008) demonstrated that the morphospecies Tricholoma scalpturatum comprise two 

genetically distinct cosmopolitan lineages and suggested that this is best explained by 

allopatric speciation with secondary contact between the groups.  

The distribution of fungi is, to a varying extent, dependent on their hosts. While some fungi, 

especially biotrophic pathogens and mutualists, are host specialists; others can associate with 

multiple hosts. Murat et al. (2004) discussed the colonization route of Tuber melanosporum 

after the last glaciation. The migration pattern was similar to Quercus pubescens, a host tree 

of this truffle. They suggested that the fungus followed the oak's range expansion northwards, 

and that the host distribution influenced the distribution of Tuber melanosporum populations 

in France. In addition to affecting distribution patterns, a strong host – fungal association can 

eventually lead to co-speciation. Dixon et al. (2009) discovered that phylogenetic diversity 

among the fungal pathogen Corynespora cassiicola corresponds with the origin of various 

plant hosts, and they suggested that the occurrence of identical haplotypes connected to the 

same host could indicate host specialization. On the other hand, many saprotrophic fungi are 

able to decompose different types of substrates, and these generalists do not necessarily 

exhibit evolutionary patterns closely tied to those of their hosts. For example, in a recent 
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phylogeographic study of the saprotrophic polypore Gleoporus taxicola, it was shown that 

some haplotypes had a wide distribution on various hosts (Seierstad 2009).  

Fungal distributions have also been affected by human activities during the past several 

thousand years. This adds an extra layer of complexity to phylogeographic analysis of many 

fungi. When plants are transported around the world by humans and introduced to new 

habitats, fungi are often spread along with them (Vellinga et al. 2009). There are several 

examples of long-distance dispersal events of fungi with man as a vector. Pringle et al. (2009) 

discovered that the ectomycorrhizal fungus Amanita phalloides recently has been introduced 

from Europe to northwestern North America. The devastating root pathogen Heterobasidium 

annosum has also been introduced to new locations by man. A multilocus analysis revealed 

that Italian populations of this pathogen possessed genotypes originating from northeastern 

North America (Linzer et al. 2008). Similarly, there is evidence for the introduction of an 

Armillaria species into South Africa from the Netherlands (Coetzee et al. 2001). 

The establishment of secondary contact between previously isolated lineages can also 

complicate fungal phylogeography. Without the development of full intersterility barriers, the 

potential for hybridization is present. Fungal hybrids may in many cases experience low 

survival due to competition with both parents and backcrossed individuals (Giraud et al. 

2008). Garbelotto et al. (2007) tested hybrid virulence compared to parental virulence in the 

Heterobasidion species complex. They observed that in cases where the parents were host 

specialists, the hybrid often performed less successful compared to their parents. However, 

on neutral hosts no differences in virulence were detected between the hybrids and the 

parents. Such a scenario can lead to hybrid proliferation in novel environments. A few studies 

have detected the occurrence of fungal hybrids in nature. Newcombe et al. (2000) have 

described a hybrid in the rust fungus Melampsora, and there has also been detected natural 

hybrids between two Flammulina species. Both these examples are probably results of 

survival due to novel host adaptation  (Hughes & Petersen 2001).  

In this study, the phylogeography of the saprotrophic fungus Trichaptum fuscoviolaceum 

(Dicks.:Fr.) Ryvarden is analyzed. Trichaptum is a basidiomycete genus in the order 

Hymenochaetales (Hibbett et al. 2007) that includes saprotrophic white rot fungi. Trichaptum 

species are mainly associated with conifers, but some are adapted to hardwood substrates. 

Trichaptum fuscoviolaceum occurs mainly on Pinus,  and produces small annual basidiocarps 

(Ryvarden & Gilbertson 1994) on standing or fallen trunks and branches (Ræstad 1940). It 
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has a worldwide distribution and it appears both in the Southern and the Northern 

Hemisphere. Like most other homobasidiomycetes, T. fuscoviolaceum has a tetrapolar 

heterothallic reproductive system (Ræstad 1940), which promotes high levels of outcrossing. 

The morphology and mating compatibility between the three closely related Trichaptum 

species, T. laricium, T. abietinum and T. fuscoviolaceum, has been investigated by Macrae 

(1967). While T. abietinum and T. laricinum produce poroid and lamelloid hymenophores, 

respectively, T. fuscoviolaceum has a toothed hymenophore (Ryvarden & Gilbertson 1994). 

Despite the high level of similarity between them in both macro- and microscopic features, 

the conclusion has been that they belong to three different species (Macrae 1967). Ræstad 

(1940) observed no mating compatibility between the sister species T. fuscoviolaceum and T. 

abietinum. Results from a molecular-based phylogenetic study were consistent with the 

morphological studies in the division of these species (Ko & Jung 2002). 

The main aim of this study was to examine the geographic distribution of the genetic 

variation within Trichaptum fuscoviolaceum. I wanted to determine whether T. 

fuscoviolaceum can be considered a single species or whether multiple cryptic species occur 

in this morphotaxon. Furthermore, I wanted to postulate hypotheses about mechanisms which 

have contributed to the current genetic pattern within the species. To answer these questions I 

have performed multilocus sequencing of a worldwide sampling of T. fuscoviolaceum with 

three nuclear and two mitochondrial markers. 
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Materials and methods 

Material 

A total of 130 specimens and cultures of Trichaptum fuscoviolaceum and six of T. abietinum 

were included in this study (see Appendix). Of these, 15 were cultures obtained from fresh 

fruiting bodies collected in the Oslo area. From the living cultures, mycelia were scraped off 

with a sterile scalpel and added to a tube with 600 µL cetyltrimethyl ammonium bromide 

(CTAB) for DNA extraction.  

Approximately 1 mm² hymenium of each herbarium specimen was added directly to 

eppendorf tubes with a sterile foreceps. Two sterile tungsten carbide beads were added to the 

tubes and the mycelia were crushed with a Retsch® MM301 machine (Andres Phil AAS, 

Dale, Norway) for four minutes with a frequency of 20 Hz. The tubes were then stored at -

80ºC prior to DNA extraction. 

 

Molecular methods  

DNA was extracted using the 2% CTAB protocol (Murray & Thompson 1980), modified for 

fungi by Gardes and Bruns (1993), with two additional minor modifications: 60 μL of 

distilled H2O was added in the final step of the extraction, and template was diluted 10 X 

before PCR amplification. Three different nuclear ribosomal DNA regions and two 

mitochondrial regions were amplified and sequenced for each sample. The primer pairs 

ITS3/ITS4 (White et al. 1990), CNL12/5SA (Anderson & Stasovski 1992; White et al. 1990), 

and  LR5/LR0R (Rehner & Samuels 1994; Vilgalys & Hester 1990) were used to target the  

nuclear ribosomal internal transcribed spacer 2 (nrITS), and parts of the nuclear ribosomal 

intergenic spacer (nrIGS), and the nuclear ribosomal large subunit (nrLSU) regions, 

respectively. A part of the mitochondrial ribosomal large subunit (mtLSU) region was 

amplified with the primer pairs ML5/ML6 (White et al. 1990), while a part of the 

mitochondrial ribosomal small subunit (mtSSU) region was amplified with MS1/MS4 (Bruns 

& Szaro 1992; White et al. 1990).  

PCR was performed either using puRe Taq™Ready-To- Go™ PCR beads (GE Healthcare, 

Milwakee, Wisconsin) with 23 μL 10X diluted DNA and 1 μL of each 5 µM primer or 

performed in 40 µL reaction volumes containing 4µL 10X buffer, 4µL of 5 µM dNTP, 4µL 
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of each 5µM primer, 0.4 µL Dynazyme™II DNA polymerase (Finnzymes, Espoo, Finland) 

and 23.6 µL 10X diluted DNA. The following PCR program was used for the nrITS and the 

nrLSU regions: 4 min denaturation at 94ºC, followed by 35 cycles with 25s denaturation at 

94ºC, 30s annealing at 50ºC and two minutes extension at 72ºC, and ending with  72ºC 

extension for 10 minutes and then storage at 4ºC. For the nrLSU region the penultimate 

extension step was run for 1 minute before the final extension step that lasted for 5 min 

before storage. For the nrIGS, mtLSU and mtSSU regions the PCR program started with a 4 

min denaturation step at 94ºC, followed by 40 cycles of 20s denaturation at 94ºC, 20s 

annealing at 55ºC and 1 min extension at 72ºC, and ending with a final elongation step of 10 

minutes at 72ºC before storage at 4ºC. 

The PCR amplicons were sequenced in both directions with the corresponding PCR primers 

using the ABI BigDye v3.1 Cycle Sequencing kit (Applied Biosystems, Foster City, CA) and 

visualized on an ABI PRISM 3730 Genetic analyzer (Applied Biosystems). The 5SA primer 

was not suitable as a sequencing primer, so only CNL12 was used in the sequencing of the 

nrIGS region. 

DNA sequences were edited manually and aligned using the program BIOEDIT Sequence 

Alignment Editor v.7.0.0 (Hall 1999). The mtSSU region was discarded from all further 

analyses due to the absence of intraspecific genetic variation in T. fuscoviolaceum. As both 

NeighborNet and Neighbor Joining analyses are sensitive to missing data, samples with more 

that 10% missing data were removed from the datasets used in these analyses.  

 

Phylogenetic and statistical analyses 

Phylogenetic analyses can be complex when dealing with data at the species and intraspecies 

level due to factors like incomplete lineage sorting, intra-locus recombination and the 

presence of heterozygous sites in diplophase (or dikaryophase) sequences. Traditional  

phylogenetic trees may give the wrong visualization of the intraspecific relationships because 

of conflict in the dataset due to e.g. intralocus recombination (Posada & Crandall 2001). To 

avoid the constraints of the tree-based analyses, the intraspecific genetic relationships in this 

study, were investigated using a NeighborNet analysis as implemented in the program SPLITS 

TREE4 (Huson 1998). The program is based on the idea that any dataset can be partitioned 

into a set of splits and the resulting networks visualize both compatible and incompatible 
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splits. In this way, possible conflict in the dataset will be visualized, leading to a more 

detailed presentation of the phylogenetic information at the population level (Posada & 

Crandall 2001).  The NeighborNet analyses were performed using the Jukes Cantor model to 

generate distance measures on each DNA region independently, and on a concatenated 

dataset of the three nuclear markers. For the concatenated dataset 1000 bootstrap replicates 

were run. All datasets were also analyzed by Neighbor Joining (NJ) analyses to visualize the 

presence of heterozygote sites in the dataset, as heterozygous sequences tend to cluster 

intermediately between the homozygous alternatives. NJ analyses were conducted in PAUP* 

4.0b10 (Swofford 2000) with 1000 bootstrap replicates were run.  

The program PHASE as implemented in DNASP version 5 (Librado & Rozas 2009) was used 

to convert all the diplophase sequences into hypothetic haplophase data prior to haplotype 

network analysis. Haplotype networks were then calculated for each DNA region using 

ARLEQUIN version 3.5 (Excoffier et al. 2005), but the resulting haplotype networks were 

judged as too complex to be visualized and these results are therefore not shown.
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Results 

Characteristics of the four analyzed DNA regions are given in Table 1. Results from the 

NeighborNet and NJ analyses are given in Figs. 1 and 2, respectively. Results of a 

NeighborNet analysis of the concatenated dataset is given in the Appendix. 

 

The mtLSU dataset 

The NeighborNet analysis of the mtLSU dataset revealed four main groups, referred to as A-

D in Fig. 1a. Out of the 17 individuals in group A, 14 are from North America, 1 is from 

Cuba, and 2 are from Europe. Group B includes specimens from Norway, Finland and 

Russia. It is noteworthy that all members of group D are of Norwegian origin. Group C 

primarily includes samples from Fennoscandia, with the exception of one specimen from 

Russia and one from North America. The NeighborNet analysis of this dataset demontrates 

the occurrence of conflicting splits. In the NJ analysis (Fig. 2) only three clusters were 

recognized, corresponding to group A, D and C. Specimens from group B form a 

paraphyletic group with the exclusion of groups A and C. The splitting of group B into two 

groups may be due to an artefact of the tree building method, as identical individuals are 

located at different positions in the tree. Nevertheless, the two analyses generally concurred. 

 

The nrITS dataset 

Four clusters (named A-D in Fig. 1a) also appeared in the nrITS NeighborNet analysis, as 

seen in the mtLSU analysis. Two groups (B and C) were linked to the outgroup, while the 

remaining groups (A and D) protrude from groups B and C, respectively. Both groups A and 

B include specimens from the entire distribution area, while groups C and D are restricted to 

Europe. The NJ tree (Fig. 2) separated the specimens into two different groups that 

correspond to the geographic separation between groups A and B, and groups C and D 

depicted in the NeighborNet analysis. The various groups detected were not supported in the 

bootstrap analysis 
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Fig. 1a. 

 

Figure 1. Results from  NeighborNet analyses.  a. Splits trees of mtLSU and nrITS. Four groups 

were detected in both regions, named A-D. Groups A, B and mtLSU group C have a 

circumboreal  distribution while groups C (ITS) and D are  distributed in Europe. However, the 

mtLSU group C includes specimens that goes into all the four groups in the nrITS analysis.  

b. Splits trees for nrIGS and nrLSU. Three groups were detected in both regions, indicated with 

A-C. The group A are widely distributed in both regions, while group B and nrLSU group C are 

European. nrIGS group C has an Eurasian distribution. 
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Fig.1b. 
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The nrLSU dataset 

Three distinct groups (referred to as A-C in Fig. 1b) appeared in the nrLSU NeighborNet 

analysis. The majority of the specimens were included in the widely distributed group A, 

which is connected to the outgroup. Both groups B and C are limited to Europe. Group B is 

united due to the presence of one heterozygote site which included the allelic versions from 

the A and C groups. The same three groups were also present in the NJ analysis with low 

bootstrap support (Fig. 2). Again, the delimiting of specimens into pure European groups and 

a wider distributed group is consistent with the nrITS dataset and partly with the mtLSU 

dataset.     

 

The nrIGS dataset 

Three main groups (referred to as A-C in Fig. 1b) appeared in the nrIGS NeighborNet 

analysis. The two distinct clusters A and C appeared distantly related, with group B in an 

intermediate position and most closely connected to the outgroup. The B group comprises a 

European cluster with 12 specimens, while the majority of the individuals belong to the 

widely distributed group A. The well-defined C group includes specimens from Eurasia. The 

NJ-analysis (Fig. 2) is consistent with the NeighborNet analysis. The NJ analysis splits group 

B into two clusters, which is again likely an artefact due to the tree building method. 

Sequences in group B are placed in-between group A and C due to the presence of a 

heterozygote site, which seems to be due to a mixture of haplotypes from group A and C. The 

nrIGS marker is not fully consistent with the delimitation between Europe and the widely 

distributed circumboreal groups and the presence of a separate Eurasian cluster is also 

unique.  

A NeighborNet analysis of the concatenated dataset gave four subgroups similar to those 

obtained in the ITS analysis (see Appendix).  

 

Host affinities 

The majority of specimens in the European group were derived from Pinus (>90%). 

Specimens included in the widely distributed circumboreal groups were also collected on 

Abies, Picea and Tsuga.  
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Figure 2. Neighbor-joining (NJ) trees of the mtLSU, nrITS, nrLSU and nrIGS regions. 

Bootstrap values >50 are given below branches. The same colors as in Fig. 1 are used to indicate 

subgroups (black = group A, blue = group B, green = group C, and red = group D). CB = 

circumboreal, EU = European, EA = Eurasian. 
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Figure 3. A rough summary of the main patterns revealed by the NeighborNet analyses. Each 

circle represents the different sub-groups detected by the four regions and the lines indicate the 

genetic relationship among them. The dotted line represent the delimitation between the 

European (EU) and the circumboreal (CB) main group. The arrows indicates that mtLSU group 

C is present in all the four groups in the nrITS region. The different colors reflect the 

geographic distribution of the groups.  

 

 

 

 

Table 1. Characteristics of the four analyzed DNA regions 

Locus ntaxa nchar var.char. var.inform. 

nrITS 76 291 7 3 

nrLSU 96 840 1 1 

nrIGS 106 329 2 1 

mtLSU 63 564 12 10 
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Discussion 

In this study, the phylogeographic pattern in the morphotaxon T. fuscoviolaceum has been 

investigated using sequencing of four different DNA regions. However, it must be 

emphasized that three of the regions, nrIGS, nrITS and nrLSU, are physically linked in the 

nrDNA cistron and do not segregate independently.  

Overall, a complex phylogeographic pattern appears in T. fuscoviolaceum. The main patterns 

in the data are summarized in Fig. 3. Two of the regions (nrIGS and nrLSU) identified three 

main groups while in the two other regions (mtLSU and nrITS) the sequences clustered into 

four main groups. Both nrITS and nrLSU identified two European groups, while mtLSU 

identified one European group. The nrLSU region identified one circumboreal group, while 

this group was split into two circumboreal groups in the nrITS analyses. One group (C) in the 

mtLSU region belonged to both the European and the circumboreal group defined by nrLSU 

and nrITS, so its origin is not that evident, but it seems to belong to the circumboreal group 

based on the NJ analysis. Furthermore, one circumboreal group and one European group 

were identified with nrIGS, while another group had a Eurasian distribution. Hence, although 

the resolution varied somewhat, the nrITS, nrLSU and mtLSU regions were to a great extent 

congruent, segregating into a European (hereafter referred to as EU) and a circumboreal 

group (hereafter referred to as CB), with nrIGS deviating somewhat from this pattern. The 

nrIGS region is closely linked to nrITS and nrLSU and it is therefore somewhat surprising 

that nrIGS gives a divergent phylogenetic pattern. 

 Noteworthy, only the mitochondrial region show alternative connections between the 

subgroups in the NeighborNet analysis. Intra-locus recombination may give rise to this kind 

of pattern, but recombination is not expected to occur in the mitochondrial genome, due to 

uniparental inheritance. However, Saville et al. (1998) have shown that in natural populations 

of Armillaria gallica mitochondrial recombination may occur. Alternatively, but less likely, 

the observed pattern may be due to reoccurrency mutations within this region leading to 

homoplasy. 
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The origin of various geographic groups 

The EU group is distributed in Norway and Sweden, in eastern Europe and Spain. As T. 

fuscoviolaceum is a saprotrophic basidiomycete, it is dependent on its hosts. The changing 

climate throughout the Quaternary (last 2.4 million years) (Hewitt 2001; Hubberten et al. 

2004; Svendsen et al. 2004) has affected host tree distributions. Pinus sylvestris is the main 

host for the EU group and a phylogeographic analysis supports the hypothesis of a recent 

common origin of P. sylvestris in northern Europe from a southern European refugium 

(Soranzo et al. 2000). As pointed out by Bennett et al. (1991), P. sylvestris was probably 

present close to the ice margin. The northward migration of the host made it possible for T. 

fuscoviolaceum to also extend its range northwards. The presence of a unique Norwegian T. 

fuscoviolaceum mtLSU haplotype indicates that a founder event may have happened during 

the range expansion into this region.  

A sub-structuring of the EU group was detected in two of the nuclear regions (nrITS and 

nrLSU). Substructure within the nrLSU marker and the presence of the nrIGS EU sub-group 

can be fully explained by introgression of alleles from the CB group leading to heterozygous 

individuals clustering into a sub-group (see below). However, in the nrITS region, one of the 

EU sub-groups (D) is apparently derived from the other and was only sampled from P. 

sylvestris. The other sub-group (C) is also collected from P. pinaster and P. halepensis and 

includes specimens from Southern Europe (including Spain). In theory, this group could 

represent the ancestral population from which group D spread northwards. Alternatively, the 

two groups could reflect origin from different refugia. Notably, some specimens included 

alleles from both EU sub-groups, which could be a result of secondary contact between them. 

The CB group is distributed over Central and North America and throughout Asia to Europe. 

Some substructure is also found within the CB group, but it is interesting that there is no 

distinct separation between Eurasian and North American samples. The CB group occurs on 

various hosts, including both North American conifers such as Abies balsamea and Asian 

conifers such as Pinus sibirica. This indicates that the CB group survived on both continents 

during the ice ages. This hypothesis is supported by the mtLSU marker as one mitochondrial 

CB sub-group is mainly North American (A), one is Eurasian (B) and the last (C) is mainly 

distributed in Fennoscandia. Some specimens included alleles from both CB sub-groups, 

indicating secondary contact between the two sub-groups. The presence of multiple rare 
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genotypes associated with one of the nrITS CB sub-groups (B), indicates additional genetic 

diversity in this widely distributed group.  

The observation of two geographic groups in T. fuscoviolaceum, one mainly European and 

the other circumboreal, parallels the phylogeographic pattern observed in the wood-

inhabiting fungus Gloeoporus taxicola, where a similar structure appeared (Seierstad 2009). 

A wide distribution pattern is also seen in the basidiomycete Heterobasidion annosum 

complex where the intersterility group connected to Pinus is genetically differentiated 

between North America and Eurasia, and further substructuring within North America is 

detected (Linzer et al. 2008). Similarly, the ectomycorrhizal morphotaxon Amanita muscaria 

is widely distributed, and includes two cryptic species with an Eurasian distribution and one 

cryptic species distributed in North America (Geml et al. 2006). 

 

Secondary contact and hybridization 

Range expansions of the two evolutionary groups of T. fuscoviolaceum have apparently led to 

secondary contact between them and sympatric occurrence in parts of Europe. Since T. 

fuscoviolaceum is an outcrossing fungus, there is possibility for hybridization in these areas. 

The nrIGS, nrITS and nrLSU regions indicate that hybridization occurs, as both EU and CB 

alleles appeared admixed in some specimens. It is noteworthy that the presence of these 

heterozygous individuals were the only reason why two European sub-groups appeared in 

nrLSU and nrIGS analyses. The sub-structuring in these two regions can fully be explained 

by introgression between the CB and EU groups. However, the potential hybrid specimens in 

T. fuscoviolaceum were not heterozygous across all DNA regions; several of the specimens 

clustered either in CB or EU in other regions. This inconsistency could be a result of repeated 

backcrossing and recombination, implying that the investigated specimens are persistent 

hybrids and do not represent first generation hybrids. Although hybridization is a common 

phenomenon in plants, it has rarely been recognized in fungi. However, hybridization has 

been detected in the root rot pathogen Heterobasidion annosum (Garbelotto et al. 1996), 

while Hughes and Petersen (2001) discovered a putative interspecific hybrid between 

Flammulina velutipes and F. rossica. In a study of Ophistoma ulmi and O. novo-ulmi, hybrids 

appeared very infrequently, but nevertheless functioned as a genetic link between the two 

taxa (Brasier et al. 1998). Also in Gloeoporus taxicola, putative hybrids were observed in 

Europe where the two sub-groups had overlapping ranges (Seierstad 2009).  
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Alternatively, the observed pattern is also compatible with a recent speciation event in 

Europe leading to the EU and CB groups, followed by rapid worldwide range expansion of 

the CB group. 

A further step to separate between the different evolutionary scenarios could be to conduct 

mating studies between the different populations. A higher interfertility rate between 

allopatric compared to sympatric populations of recently diverged lineages has been reported 

in several fungi (Le Gac & Giraud 2008). Using an experimental approach, Dettman et al. 

(2003b) observed higher fertility between allopatric compared to sympatric species of 

Neurospora. In Trichaptum abietinum it was demonstrated that two intersterility groups in 

North America were partly interfertile with a European group (Macrae 1967). The same 

pattern also appeared in crossings between cryptic lineages in the Heterobasidion annosum 

complex (Korhonen 1978). Whether the same also holds true for T. fuscoviolaceum, remains 

to be investigated.  

 

Substrate  

The CB group is connected to several substrates while Pinus species are the main hosts for 

the EU group. In a field survey of wood-inhabiting basidiomycetes, generalists on Pinus and 

Picea in China had a tendency of substrate specialization in Fennoscandia (Dai & Penttila 

2006). At least in the EU group there seems to be a host specialisation in Europe, which 

could lower the viability of CB x EU hybrids through reduced fitness (i.e. reinforcement of 

barriers). However, the greater host range in North American and Asian CB populations 

could also just be a consequence of wider host availability compared to Europe. Interestingly, 

the very same pattern as observed in T. fuscoviolaceum was seen in the saptrotrophic 

basidiomycete Gloeoporus taxicola; one cirumboreal lineage was found on a number of 

hosts, while the European lineage were mostly connected to Pinus (Seierstad 2009).  

 

Concluding remarks 

Based on current data, there seem to be two main evolutionary groups present within T. 

fuscoviolaceum: one European and another widely distributed circumboreal group. The EU 

group has apparently recolonized northern Europe from one or several southern European 
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refugia, while the CB group may have expanded into Europe from the northeast, leading to 

secondary contact in Europe. Lack of complete intersterility barriers has apparently led to 

hybridization and subsequent introgression between these groups. Although judged less 

likely, a recent speciation event in Europe could also have given rise to a similar genetic 

pattern. Mating experiments in combination with additional genetic markers with higher 

resolution (e.g. microsatellites or AFLPs) might be valuable tools to discern between the 

different scenarios. Analyses of additional genetic markers that segregate independently from 

the nrDNA markers used herein are also needed to fully conclude whether the two main 

groups (CB and EU) represent two cryptic species.  
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Appendix 

 

 

Splits tree of a concatenated nrDNA dataset including ITS, IGS and LSU. Four main groups 

were detected named A-D. Groups A and B belong to a circumboreal (CB) group, and groups C 

and D belong to a European (EU) group. Bootstrap values >50 are given next to the connections. 
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Appendix. List of specimens included in the study. Crosses indicate sequences obtained for each individual. Each individual has a lab code 

number that can be recognized in the phylogenetic analyses. 

 

Lab code Isolate code Herbarium Origin Substrate nrITS nrIGS nrLSU mtLSU 

TF1 DAOM53076 Culture Canada Abies balsamea x x x x 

TF2 DAOM53117 Culture Canada Abies balsamea x  x x 

TF3 DAOM72244B Culture Canada Tsuga canadensis x x x  

TF4 DAOM53116 Culture Canada Abies balsamea   x x 

TF5 DAOM53118 Culture Canada Abies balsamea x  x x 

TF6 F7521 Culture Estonia Pinus sylvestris x  x x 

TF7 DAOM72244A Culture Canada Tsuga canadensis   x x 

TF8 DAOM53300 Culture Canada Tsuga canadensis x  x x 

TF10 DAOM53127 Culture Norway Pinus sylvestris  x  x 

TF11 DAOM9517 Culture Canada Abies balsamea  x x x 

TF12 10943.1 Culture Finland Unknown  x x x 

TF13 OM10944.1 Culture Finland Unknown   x x 

TF14 DOOM2788.2 Culture Sweden Unknown x x x  

TF15 HK11 Culture Russia Unknown   x x x 

TF16 OM10946.2 Culture Finland Unknown x  x x 
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Lab code Isolate code Herbarium Origin Substrate nrITS nrIGS nrLSU mtLSU 

TF17 OM10816 Culture Russia Unknown  x x x 

TF18 HK12 Culture Russia Unknown x x x x 

TF19 HK10 Culture Russia Unknown  x   

TF20 OM10813 Culture Russia Unknown  x x x 

TF21 HK1 Culture Russia Unknown x x x x 

TF22 M10942.1 Culture Finland Unknown x  x x 

TF23 OM10812 Culture Russia Unknown   x  

TF24 OM10912.1 Culture Finland Unknown x x x x 

TF25 OM10817 Culture Russia Unknown x x  x 

TF26 HK7 Culture Russia Unknown x x x x 

TF27 M10808.2 Culture Russia Unknown  x x  

TF28 niemelä 6568 Culture Finland Unknown  x   

TF29 niemelä 6694 Culture Finland Unknown  x x x 

TF31 om10416 Culture China Unknown  x   

TF33 oht17 Culture Japan Unknown  x x  

TF34 oht19 Culture Japan Abies firma  x   

TF35  Culture Norway Pinus sylvestris   x  



 

26 

Lab code Isolate code Herbarium Origin Substrate nrITS nrIGS nrLSU mtLSU 

TF37  Culture Norway Pinus sylvestris  x x  

TF38  Culture Norway Pinus sylvestris  x x x 

TF39  Culture Norway Pinus sylvestris  x x  

TF40  Culture Norway Pinus sylvestris  x x x 

TF41  Culture Norway Pinus sylvestris  x x x 

TF42  Culture Norway Pinus sylvestris   x x 

TF43  Culture Norway Pinus sylvestris  x x x 

TF44  Culture Norway Pinus sylvestris  x x x 

TF45  Culture Norway Pinus sylvestris  x x x 

TF46  Culture Norway Pinus sylvestris  x x  

TF47  Culture Norway Pinus sylvestris  x x  

TF48  Culture Norway Pinus sylvestris  x x x 

TF49 OM12537 Culture Bulgaria Unknown  x   

TF51 O 145859 O Norway Pinus sp. x x x x 

TF52 O 242064 O Norway Pinus sp.  x   

TF53 O 284408 O Norway Pinus sp. x x x x 

TF54 O 105837 O Norway Pinus sp. x   x 
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Lab code Isolate code Herbarium Origin Substrate nrITS nrIGS nrLSU mtLSU 

TF56 O 230777 O Norway Pinus sylvestris x x  x 

TF57 O 67021 O Norway Pinus sylvestris x x  x 

TF58 O 283649 O Norway Pinus sylvestris x    

TF62 O 83535 O Norway Pinus sp. x x x  

TF63 O 60068 O Norway Unknown x x x  

TF64 O 223518 O  Norway Pinus sp. x x x x 

TF66 O 171137 O  Norway Pinus sp. x x x x 

TF67 O 159382 O  Norway Pinus sp.  x x x 

TF69 O 283714 O  Norway Pinus sp.  x x x 

TF70 O 145861 O  Norway Pinus sp.  x x  

TF71 O 145875 O  Norway Pinus sylvestris  x x  

TF72 O145870 O  Norway Pinus sp.  x x  

TF73 O145871 O  Norway Pinus sp.  x x  

TF75 O 145874 O  Norway Pinus sp. x x x  

TF76 O 145782 O  Norway Pinus sp. x x x  

TF77 O 82585 O  Norway Pinus sp. x x x  

TF79 O 145887 O  Sweden Unknown  x x  
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Lab code Isolate code Herbarium Origin Substrate nrITS nrIGS nrLSU mtLSU 

TF81 O 145884 O  Sweden Unknown  x x  

TF82 O 145785 O  Norway Pinus sp.  x x  

TF84 O 159867 O  Norway Pinus sp. x x x x 

TF85  O  Spain Unknown  x x  

TF87 O 170121 O  Norway Pinus sp. x x x x 

TF88 O 145786 O  Norway Pinus sp. x  x  

TF89 O 145789 O  Norway Pinus sp.  x x x 

TF90 O 145812 O  Norway Pinus sp. x    

TF91 O 145813 O  Norway Pinus sp. x x x  

TF92 O 82589 O  Norway Pinus sp. x x x x 

TF93 O 82588 O  Norway Pinus sp. x x x x 

TF94 O 145774 O  Norway Picea sp.  x   

TF95  Culture Norway Pinus sp. x x x x 

TF96  Culture Norway Pinus sp. x x x x 

TF98 FP-103470-Sp Culture USA Unknown x  x x 

TF100 HHB-245-Sp Culture USA Pinus sp.  x x x 

TF102 L-15382-Sp Culture USA Abies balsamea x x x x 
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Lab code Isolate code Herbarium Origin Substrate nrITS nrIGS nrLSU mtLSU 

TF103 MJL-3547-Sp Culture Canada Abies sp. x x x x 

TF105 B73,OMC505 Culture Norway Unknown x x x x 

TF106 B7,OMC503 Culture Norway Unknown x x x x 

TF107 C18,OMC504 Culture Norway Unknown x x x x 

TF108 13284,OMC508 Culture Finland Unknown x x x x 

TF112 1699 Culture Finland Pinus sp. x x x x 

TF113 1894 Culture Sweden Pinus sp. x x x x 

TF114 TJV-94-24 CFMR USA Abies fraseri x x x x 

TF115 DLF95-26 CFMR USA Abies balsamea x x x x 

TF116 MA-Fungi 1034 MA Spain Pinus sp.   x x   

TF117 MA-Fungi 7516 MA Spain Pinus sp. x x x  

TF118 MA-Fungi 23444 MA Spain Pinus pinaster x    

TF120 MA-Fungi 33486 MA Spain Pinus pinaster x x x  

TF123 MA-Fungi 69221 MA Spain Pinus halepensis  x x  

TF124 MA-Fungi 44345 MA Spain Pinus halepensis x x x  

TF125 MA-Fungi 44793 MA Spain Pinus sp. x    

TF128 DAOM-53116 NY Canada Abies balsamea  x x  
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Lab code Isolate code Herbarium Origin Substrate nrITS nrIGS nrLSU mtLSU 

TF129 NY-00520148 NY USA Pinus sp. x x x  

TF130 NY-00520147 NY USA Pinus sp. x x x  

TF132 WU 3133 WU Austria Pinus sp.  x x  

TF133 WU 7475 WU Austria Pinus sp. x  x  

TF134 WU 9093 WU Austria Pinus sp. x    

TF136 WU 13561 WU Austria Pinus sp. x x x  

TF137 WU 13795 WU Austria Pinus sp.  x x x 

TF139 M-0147770 M Sweden Pinus sylvestris x x x  

TF140 M-0147771 M Yugoslavia Pinus halepensis x x x  

TF141 M-0147772 M Spain Pinus halepensis x x   

TF146 M-0147777 M Slovakia Picea abies x x   

TF147 M-0147778 M Germany Pinus sylvestris  x   

TF148 M-0147779 M Germany Unknown x x x  

TF151 MUCL44123 Culture Cuba Unknown x x x x 

TF153 CNF 6/350 CNF Croatia Pinus sp. x x   

TF154 CNF 6/351 CNF Croatia Pinus sp. x x   

TF155 CNF 6/352 CNF Croatia Pinus sp.  x   
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Lab code Isolate code Herbarium Origin Substrate nrITS nrIGS nrLSU mtLSU 

TF156 CNF 6/353 CNF Croatia Pinus halepensis x x   

TF157 CNF 6/354 CNF Croatia Pinus halepensis x x   

TF158 CNF 6/355 CNF Croatia Pinus halepensis x x   

TF159 CNF 6/356 CNF Croatia Pinus sp. x x   

TF160 K(M) 20548 K Slovakia Picea abies x    

TF162 K(M) 109409 K Belize Pinus caribaea x x  x 

TF163 K(M) 98043 K Japan Pinus densiflora  x   

TF167 BPI 841892 BPI Japan Unknown  x   

TF168 DAOM 197633 DAOM Canada Abies balsamea  x   

TF169 DAOM 232297 DAOM Canada Unknown  x x x 

TF170 DAOM 231501 DAOM Canada Unknown x x x x 

TF176 LE235538 LE Russia Pinus sibirica x    

TF177 LE203863 LE Russia Unknown x    

TF179 LE206239 LE Russia Unknown x    

TF180 LE234499 LE Russia Unknown x    
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Lab code Isolate code Herbarium Origin Substrate nrITS nrIGS nrLSU mtLSU 

Outgroup 

TF59   O 65466 Norway Picea sp. x x x x 

TF97 ECS-3133 CFMR Unknown  Unknown x x x x 

TF101 L-15378-Sp Culture USA Abies balsamea x x x x 

TF144 M-0147775 M Spain Pinus sp. x x x x 

TF145 M-0147776 M Spain Pinus sp. x x x x 

TF152 MUCL51615 Culture China Unknown x x x x 

 

(O) - University of Oslo, (CFMR) - Forest Service, Northern Research Station,USA, (MA) - Madrid herbarium, (NY) - New York Botanical 

Garden, (WU) - University of Wien, (M) - München herbarium, (CNF) - Croatian Mycological Society, (K) - Royal Botanical Garden, Kew, 

(BPI) - National Fungus Collections, USA,  (DAOM) - Ottawa herbarium, (LE) - Komarov Botanical Institute, St. Petersburg.  

 

 


