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Abstract 

Divergent selection pressures, induced by variations in environmental conditions, can be 

expected to favour different phenotypic expressions. Different populations show thus often 

local adaptations that could be attributed to their respective environments. Such local 

adaptations have even been demonstrated to occur at a contemporary time scale. Observing 

rapid local adaptations in the wild may shed more light on speciation and fundamental 

evolutionary processes. In this study, I have explored morphological variation among demes 

of European grayling (Thymallus thymallus) within a Norwegian lake, Lesjaskogsvatnet. The 

morphological variation has been quantified using geometric morphometric methods. The 

grayling inhabiting the lake shared common ancestors less than 25 generations ago. I 

hypothesised there to be a divergence in morphological traits affecting survival and 

reproduction due to variations in sexual and natural selection within the system. I found 

differences in sexual dimorphic traits among demes. Further, I found a small difference in the 

degree of sexual dimorphism between demes. This morphological pattern may be due to 

among-tributary differences in environmental conditions during spawning, and thus different 

natural and sexual selection gradients. The among-deme difference may also have occurred 

due to founder effects and genetic drift. I also found evidence of polymorphism, which might 

indicate there to be variations in resources or resource competition between different basins 

in the lake. All this morphological variations might have occurred due to either adaptive 

divergence or phenotypic plasticity.  
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Introduction  

Different phenotypic traits are often favoured under different environmental conditions 

(Futuyma, 2005). As a consequence, populations inhabiting dissimilar environments may 

deviate in fitness-related traits. Divergence of such traits may occur due to phenotypic 

plasticity, local adaptations (evolution), or a combination of both. Phenotypic plasticity is 

referred to as the interaction between the environment and the expressed phenotype, without 

genetic change (Scheiner, 1993). The relationship between the environment and the 

phenotype is termed the trait’s “norm of reaction”. Many such reaction norms are affected by 

irreversible “developmental switches” occurring during an organism’s ontogeny (Futuyma, 

2005). Local adaptations (with genetic change) through selection are expected to happen 

when a population is moved away from a local fitness peak in an adaptive landscape (Fisher, 

1930). The selection driving the among-populations difference could be of natural or sexual 

origin, or a combination of both (e.g. West-Eberhard, 1983; Taylor, 1991; Vantienderen, 

1991; Schluter, 1994; Lu and Bernatchez, 1999; Hendry, 2001; Hoekstra et al., 2001; 

Schluter, 2001). In sexual selection, it may be sensible to separate even further between intra- 

(often competition among males) and inter- (sexual conflicts and female choice) sexual 

selections as driving forces. Intra-sexual competition often favours traits like “weapons” 

(examples: deer antlers and hooknose in salmon) in the fight for a mating partner(s). Inter-

sexual competition could favour traits like exaggerated ornaments (examples: the extravagant 

tail of a peacock and enlarged, ornamented tailfins in guppies). Local adaptation to different 

environmental conditions has been documented numerous times and the process is even 

observable at a contemporary time scale (e.g.: Hendry and Kinnison, 1999; Huey et al., 2000; 

Bone and Farres, 2001; Haugen and Vøllestad, 2001; Grant and Grant, 2002; Svensson and 

Gosden, 2007). Such rapid evolution of diverging phenotypic traits is often associated with a 

novel host or food resource, a new biophysical environment, a new predator community, or a 

new coexisting competitor (reviewed in Reznick and Ghalambor, 2001).  

Phenotypic difference among populations may also represent a more random factor: 

Genetic drift (e.g. Lande, 1976). Such trait divergence should however be recognised as 

neutral, with no fitness consequences related to the different environments. However, the 

relative contribution to phenotypic difference by genetic drift is likely to increase with 
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decreasing population size, with small effective size, and in bottlenecked populations (Lande, 

1976; Carson and Templeton, 1984; Lynch, 1990). The latter are also conditions that are 

expected to constrain selection.       

The majority of the examples found of contemporary evolution seem to be the result 

of natural selection and related trade-offs, and to a lesser degree sexual selection itself 

(Svensson and Gosden, 2007). This is despite the observation that sexual selection gradients 

seem to be more pronounced than natural selection gradients (Hoekstra et al., 2001; 

Kingsolver et al., 2001). What also seems evident from the literature is that the morphology 

of an individual is often directly, and strongly, linked to fitness (Koehl, 1996). 

Morphological traits, affecting both survival and reproduction, are thus frequently observed 

to be under strong selection (Kingsolver et al., 2001; Kingsolver and Pfennig, 2007) and may 

diverge rapidly between populations (e.g. Hendry, 2001; Grant and Grant, 2002; Eberhard, 

2004; Collyer et al., 2005). It is, however, not fully known how, and where, contemporary 

evolution of traits between populations ultimately will result in speciation. Hence, in order to 

better understand the cause of contemporary adaptive evolution in nature, and its role in 

speciation processes, further explorations of morphological divergence, occurring on small 

spatial scales, should be conducted.  

 Salmonid study systems hold numerous benefits in the study of evolutionary 

processes, and have thus provided key insights on many evolutionary questions (reviewed in 

Hendry and Stearns, 2004). One of the greatest advantages is the long history of studying the 

phenotypic diversity within the family. This leaves a great deal of knowledge on the possible 

outcome of differential selection pressures, trait utility and diversifying factors. This enables 

comparisons between systems and, hence, greater insight in the wide range of diversifying 

processes and adaptive radiations in the wild.  

The study system in the lake Lesjaskogsvatnet (Norway) is remarkable in many ways. 

European grayling (Thymallus thymallus) colonised the lake in the 1880s. During a short 

period, they migrated freely through a man-made and temporary channel connecting the 

upper part of Gubrandsdalslågen and Lesjaskogsvatnet. This means that all grayling within 

the lake share a recent common ancestry some 20-25 generations ago (Haugen and Vøllestad, 

2001). Grayling are now found throughout the lake. It is, however, not yet known if the fish 

moves freely all over the lake, or if they are constrained to different basins within the lake. 
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Irrespective of the latter, the lentic grayling spawns in many of the tributaries connected to 

Lesjaskogsvatnet (Gregersen, 2005), and signs of reduced gene flow and genetic structuring 

has been observed between the grayling in the different spawning tributaries (demes) (Barson 

et al., 2008). Many of these tributaries differ in environmental conditions like temperature, 

flow regime and size, which may thus expose the various demes to different selection 

pressures during spawning (one to two weeks in spring time) and early ontogeny. The study 

system have indeed recently provided evidence of contemporary evolution of life history 

traits in grayling that can be attributed to differential tributary environments (Gregersen et 

al., 2008). Further, closely related grayling populations in neighbouring lakes (introduced 12-

22 generations ago, with common ancestry in Lesjaskogsvatnet) have also shown rapid 

evolution and divergence rates on important early life-history traits - despite signs of severely 

bottlenecked populations (Haugen, 2000; Haugen and Vøllestad, 2000, 2001; Koskinen et al., 

2002). Given the possible strong selection on reproductive traits and morphology affecting 

fitness (Kingsolver et al., 2001; Kingsolver and Pfennig, 2007), and variations in 

environmental conditions between spawning tributaries, one might also expect to observe 

among-deme variations in grayling morphology. Hence, in this thesis I will explore and 

quantify morphological divergence between grayling demes (tributaries) in Lesjaskogsvatnet. 

This study is a part of a larger ongoing project in the study system: “The early stages of 

adaptive radiation: sympatric divergence in grayling”. 

Four tributaries were chosen within Lesjaskogsvatnet: Two small and warm 

tributaries (SW-tributaries) and two large and cold tributaries (LC-tributaries). SW-

tributaries may offer fewer suitable spawning sites in relation to number of spawning 

grayling, and spawning individuals may thus here experience high densities. There are also, 

in general, less visual obstacles in the SW-tributaries which may result in male grayling 

demanding larger territory size (Northcote, 1995). Hence, the strength of sexual selection is 

hypothesised (H1) to be stronger in the SW-tributaries, which here should favour 

morphological traits enhancing male performance at the spawning ground. Such secondary 

sexual characters in salmonid are typically exaggerated jaws (e.g. Quinn and Foote, 1994) 

and large dorsal hump size (e.g. Berg, 1979). It is to my knowledge not yet know if these 

secondary sexual characters are present in grayling, but the large and colourful dorsal fin 

seen in males has been recognised as important in the spawning act (Fabricius and 
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Gustafson, 1955; Kratt and Smith, 1980). The LC-tributaries have, during the spawning 

period, a more turbulent flow compared to the more laminar flow experienced in the SW-

tributaries. This could influence the drag experienced by individuals in the different 

tributaries. A turbulent flow could impose a more energy demanding spawning migration 

(e.g. Hinch and Rand, 1998). Streamlining reduces however the net drag (Koehl, 1996). 

Hence, a more streamlined body could hypothetically (H2) be favoured by natural selection 

when migrations are more demanding (e.g. Blair et al., 1993; Hendry and Berg, 1999; 

Hendry, 2001; Kinnison et al., 2003). There might be differences in nutrition and prey 

composition among basins in the lake (Gammelsrud, 1982). However, all the grayling can, 

in theory, freely swim around the entire lake in non-spawning periods. Hence, I expect 

various possible selection agents within the lake to have a uniform effect on all the grayling 

(H3).  

Based on the three hypotheses (H1-H3), I predict the following:  

H1:  

- P1: Male grayling in the SW-tributaries possesses more exaggerated sexual 

characters compared to males from the LC-tributaries.     

- P2: Sexual dimorphism, concerning morphological traits, is more pronounced in 

the SW-tributaries demes compared to the LC-tributaries demes.  

H2: 

- P: Grayling in the LC-tributaries possesses a more streamlined body (i.e. reduced 

body depth) compared to the grayling in the SW-tributaries. 

H3: 

- P: There should be no morphological divergence which could attributed to a basin 

effect. 
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Material and methods  

The grayling 

A general review of the grayling (Thymallus spp.) life cycle is available in Northcote 

(1995). The European grayling typically thrives in oxygen rich and clean freshwater 

systems throughout Europe. In Norway, grayling is naturally distributed in the northern 

part of the country and in larger river systems in the south-eastern part. The grayling has 

also been introduced to adjoining lakes and smaller river systems, as in the study system 

for this thesis. Grayling starts their spawning run in springtime, after ice-out, when mean 

water temperatures exceed 4–5 ºC in the spawning areas. Mature lentic grayling then return 

to their natal stream with high precision (Kristiansen and Døving, 1996). The spawning 

grayling stays in the stream for a short period, where it shows an extensive and complex 

courting behaviour (see Fabricius and Gustafson, 1955). The grayling is atypical in that 

males defend and hold territories, and females approach and deposit their eggs in the 

male’s “nest” (Northcote, 1995). The males show a strongly increased aggressive territorial 

behaviour, often with subsequent fighting among individuals, while guarding their 

spawning ground. Ability to effectively manoeuvre in the current, size and stamina seem to 

be important traits during these male to male encounters. However, sneaking acts by non-

territorial small males during spawning between females and larger males have also been 

observed (Kratt and Smith, 1980; Poncin, 1996). The large and coloured dorsal fin plays 

seemingly a very important role in the male sexual display, and males are indeed an 

impressive and eye-catching sight when showing the full extent of their fins. The females 

do also have fairly large dorsal fins, although not as impressive, colourful and large as the 

males.  

Study area 

The fish were collected in tributaries to lake Lesjaskogsvatnet (611 meter above sea level, 

surface area 4.52 km2; Figure 1) which is located in Lesja municipality, Oppland County, 

Norway. The lake consists of three shallow (mean depth 10 meter) continuous basins, 

which all are drained by two major outlets; Gubrandsdalslågen (flowing east) and Rauma 

(west). Besides grayling, the fish community consists of brown trout (Salmo trutta) and 
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European minnow (Phoxinus phoxinus). The general climate in the area during the year is 

dry and relatively hot during the summer (around June-August), and cold with relatively 

much precipitation (i.e. snow) during winter time (around November-Mars/April).  

The lake is situated in a U-shaped valley, where positioning of the valley (west to 

east) makes the one side (north) more sun exposed and warmer than the other side. Due to 

this general temperature divergence and variation in the timing of spring snow melting, the 

various tributaries are found to be very different in flow velocities, temperatures and also in 

mean width (Gregersen et al., 2008). In a k-mean cluster analysis between tributaries 

performed by Gregersen et al. (2008), using tributary mean width and tributary June-

August temperature sum as clustering covariates, two distinct cluster groups appeared:     

 - 1. Small and warm tributaries (SW-tributaries)  

 - 2. Large and cold tributaries (LC-tributaries)  

The SW-tributaries are mainly found at the warmer north side, while the LC-tributaries are 

mostly found on the colder south side (Figure 1). With steeper hillsides, closer to the lake, 

the tributaries at the south side also tend to be in general faster flowing compared to the 

tributaries at the north side. The LC-tributaries are in general large (i.e. wide and/or in 

general “deep”) throughout the year, while the SW-tributaries can almost dry up and be 

reduced to a minimum during hot and dry summers (personal observation).  
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Figure 1: Map of Lake Lesjaskogsvatnet. Grayling colonized the lake in the 1880s from 
Gubrandsdalslågen (east outlet) and have since then established over 20 sub-populations in the 
different tributaries to the lake. Tributaries marked in red are typical SW-tributaries (Søre Skotte = 
1, Steinbekken = 2), while blue are LC-tributaries (Hyrjon = 3 and Valåe = 4). 

 

Four tributaries were chosen for the study, two SW-tributaries (Søre Skotte and 

Steinbekken) and two LC-tributaries (Hyrjon and Valåe) (Figure 1; Table 1). 

Søre Skotte and Steinbekken are typically warm and small tributaries, which both drain 

farmland and cultural landscapes. The substrates in both of the slowly flowing SW-

tributaries consist of fine sand, gravel and smaller rocks. There are few, to none, large 

physical migration obstacles for the migrating grayling. The two SW-tributaries are 

connected to the north-western basin of the lake (Figure 1). This basin is known historically 

to have slightly higher nutrient level, and to be a little warmer compared to the other two 

basins found within the lake (Gammelsrud, 1982).  

Hyrjon and Valåe, with their cold and swift currents, differ a lot from the two SW-

tributaries. Both LC-tributaries drains from mountain areas, through steep slopes and birch 

(Betula spp.) and pine (Pinus spp.) forest areas. The tributaries have substrate consisting 

mainly of gravel and rocks with fine sand present near the outlets. There is no major 
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migration obstacles (i.e. water falls) found in the two LC-tributaries. Valåe is connected to 

the south-east basin of Lesjaskogsvatnet, and the outlet of Hyrjon is located in the junction 

area between the south-east and the mid basin (Figure 1).  
 

Table 1: Summary of some environmental characteristics typical for the four sampled spawning 
tributaries in lake Lesjaskogsvatnet. 

Tributary Temperature 
regime 

Mean tributary 
width (m)* Flow regime 

Søre Skotte  Warm 1.25 Slow flowing 
and laminar 

Steinbekken Warm 0.75 Slow flowing 
and laminar 

Hyrjon  Cold 5 Fast flowing 
and turbulent 

Valåe Cold 6 Fast flowing 
and turbulent 

* Mean tributary width  is calculated (in meters) by Gregersen et al. (2008), based on  
measurements made on detailed maps.  

 

Sampling 

Temperature was measured every second hour in each tributary (except Steinbekken) using 

HOBO® loggers during the whole spawning period. The two LC-tributaries were very 

similar in temperature during the period mature grayling were observed in the respective 

tributaries (Figure 2). Søre Skotte proved to be warmer in the same period (Figure 2). 

Although no temperature measurements were available for Steinbekken in 2006, 

measurements done in 2005 and 2007 indicate that Steinbekken and Søre Skotte have 

highly correlated and similar temperature regimes (r = 0.98 with 8,  and r = 0.98 with 109 

measurements for 2005 and 2007 respectively. Linear relationship: Y = -0.60944 + 1.0352 

X, where X is mean temperature in Søre Skotte at a given day, and Y is the mean 

temperature at the same day in Steinbekken). 

Migrating fish were caught in fish traps. The fish traps used were designed not to 

harm the fish, but to entrap them and still enable them to move. The traps were put out 

prior to spawning and surveyed once, or twice, daily during the spawning run in each 

tributary.  
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Figure 2: Mean water temperature trends for 3 tributaries, Sørskotte (red line), Valåe (dark blue line) and 
Hyrjon (light blue line), to Lake Lesjaskogsvatnet, 15.5-31.8 2006. Steinbekken is not shown by an 
individual trend. The temperature trend for Steinbekken is however calculated to be approximately 
similar to Søre Skotte. Arrows show when first spawning grayling was captured in the different 
tributaries. 
 

In Søre Skotte and Steinbekken, the first spawning grayling individuals were captured 

the 8th and 11th of June 2006, respectively, while they were captured the 16th and 20th 

of June 2006 in Hyrjon and Valåe, respectively (Figure 2). We tried to intercept all 

migrating fish to get as complete a sample as possible. Traps and leading nets were 

therefore positioned to cover the whole width of the tributaries (Figure 3), but heavy 

flooding of the LC-tributaries hindered the use of traps here during shorter periods. 

Some of the grayling migrating past the traps in LC-tributaries were, however, later 

caught by electrofishing upstream the traps. Since most of the spawning fish were 

captured in all four tributaries, the total caches indicate the spawning stock size for the 

various demes in 2006.   
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Figure 3: Pictures of Steinbekken with fish trap (top left), Hyrjon with fish traps (top right), Søre Skotte with 
fish traps (bottom left) and a flooded Valåe (bottom right). In the large tributaries, fences were put out to lead 
fish to the fish traps. In the small tributaries the fish trap in it self blocked the whole tributary. The picture 
from Valåe is taken by Finn Gregersen. 
 

When fish were observed in the traps (or electrofished), the captured fish were 

carefully transferred into larger tanks stationed in the respective tributary. The tanks had 

small ventilation holes, allowing for flow-through of natural water that secured good 

oxygenation and natural water temperatures. As soon as possible after capture, the 

individual grayling were sedated in a benzocaine solution. Fork length (in millimetres, mm) 

and mass (in grams, g) was then measured, sex determined and a sample of 5-10 scales 

taken for age determination. Following directly after this operation, the individual fish was 

photographed for morphometric measurements. 

In order to standardize photo conditions in the field and to minimize fish handling 

and transportation, a specially designed transportable photo box was made. The camera 

was fixed at one position on top of the box, with a constant distance to the specimen (no 

camera zoom was used during photographing). Sun light was kept out with a covering 
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tarpaulin and by the box itself. The light conditions inside the photo box were held 

approximately constant, with a L.E.D. light and a flash bulb as the only light sources. The 

bottom of the box consists of polystyrene, with a drawn horizontal line and a measuring 

tape (see Figure 4). The sedated individual fish was placed along the horizontal line in the 

box, with the left side facing up. The dorsal fin was spread out to its maximum and fixed 

with small needles. A unique ID-label for each individual was also included in their 

respective picture.   

 

 
Figure 4: A picture illustrating the placement of fish and the set-up, with an ID-mark and 
dorsal fin fixed with needles, within the photo box.  
 

All pictures were taken using an Olympus μ 720 SW digital camera. Two 

independent pictures of each specimen were taken, where the best picture (i.e. best 

alignment of fish and best focus) was used for further analysis. The fish was then 

transferred to a recovery tank and allowed to recover after the handling, and then released 

to the tributary of capture, above the traps, to continue their spawning.  

The original goal was to catch 100 specimens (50 males and 50 females) in every 

tributary. This goal turned out to be too optimistic. However, the number of fish caught in 

each tributary (see Table 2) should be statistically sufficient to get an estimate of the 

morphological variation ( Svanbäck and Eklöv, 2002; Olsson et al., 2006). In all, a total of 

355 individuals were caught and used in this study.  

Ageing of the fish was done in the lab based on the scale samples (Hellawell, 1969). 

All scale samples used showed nice and clear annuli and were consequently easy to 
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interpret. Ageing was done twice independently, with the same outcome in 336 of the 355 

specimens (94.6%), demonstrating the ageing method to be consistent.  

Morphological analysis and statistics 

General morphology was assessed based on the digital images. Landmark-based geometric 

morphometrics involving thin-plate spline (tps) analyses (Bookstein, 1989; Adams et al., 

2004) were used to quantify morphological differences between specimens, sex and demes. 

This is a broadly used and easily interpreted method to assess a wide range of 

morphological data and aspects (e.g. Zelditch et al., 2004; Collyer et al., 2005 and 

references herein).  

All the fish-photos were converted into one tps-file using tpsUtil (Rohlf, 2006c). It 

is then easy to import the tps-file, including all the photos, into tpsDig2 (Rohlf, 2006a). 

Here, 18 homologous landmarks were digitized, chosen to be able to visualize the overall 

body morphology on each specimen (Figure 5) and the x and y coordinates for each 

landmark were captured. The homology of the landmarks was first tested for by 

independently placing identical landmarks on the same fish 30 times and then measure the 

variation in each landmark configuration. This variation was found to be very low, S2 < 

0.0095 (calculated in tpsRelw (Rohlf, 2006b)), at every landmark configurations, indicating 

low human error in placing the landmarks homologous on every photo. The coordinates 

obtained from all the grayling in tpsDig2 were further analysed using tpsRelw. Non-shape 

variation (i.e. size) is here mathematically excluded, by performing a Generalized 

Procrustes Analysis (GPA) which, in short, scales the landmark configurations to a 

common unit size and then rotates the configuration to minimize the squared differences 

between corresponding landmarks (Adams et al., 2004). TpsRelw then produces a set of 

variables (partial warps and uniform scores) for each specimen which reflects the deviation 

in shape from the consensus specimen. 
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Figure 5: Positions of the 18 landmarks, with their corresponding numbers, digitized in tpsdig2 and used for 
morphological analysis of the grayling. Drawing is made by Andreas Bærum. 
 

The individual partial warps (which describes local deformations) and uniform scores 

(shape changes over the whole body) can be treated as multivariate data representing shape, 

and be used for further statistical analyses (Svanbäck and Eklöv, 2003). To be able to 

visualize the morphological differences between tributaries, tpsRegr (Rohlf, 2007) was 

used. This program performs a multivariate multiple regression of shape onto the 

independent variables obtained from the statistics. 

To get an indication of the dorsal fin size, the length of the 4th fin ray was 

measured. This was done on the digital pictures using linear measurements in pixels and 

then converted into millimetres (mm). 

 All statistical analyses were performed using JMP 5.0. To facilitate the 

interpretation of the morphological differences between specimens a discriminant analysis 

was used (Svanbäck and Eklöv, 2003). Gender plus tributary (each specimen was labelled 

with both gender and their respective tributary, this to effectively visualise both variables in 

one figure) was used as a grouping variable and the partial warps plus uniform scores as 

independent variables. This analysis maximally discriminates between the defined groups 

and produces a set of different functions, which each explains specific morphological 

deviations found in the sample. Each specimen is assigned with an individual canonical 

score for every general morphological variation recognised. A general morphological 

deviation in the data sample is represented as a function. Because of this, each canonical 

score given for the individual fish could be treated as a morphological value for the specific 
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function. The discriminant analysis also predicts the level of classification into the groups, 

based on how close the set of measured variables are to the means of the groups being 

predicted. Separate full factorial ANCOVAs were initially used to assess effects on each 

function and on the dorsal fin area. Here sex and tributary were included as factors. Length 

of the fish was used as a covariate to assess possible interactions of length on fish 

morphology. Insignificant interactions and effects (i.e. P > 0.05) were excluded from the 

different models as they appeared, and the model was then re-analyzed. This procedure was 

repeated until only significant effects were present. In addition, Tukey-Kramer honestly 

significant difference (HSD) tests were performed to test for morphological differences 

between sets of tributaries. 

 

 17



Results 

Length, mass and age 

There were significant differences between sexes in length, mass and age (two-way 

ANOVAs on each variable, all yielding a sex effect, all P < 0.0001) of the grayling 

sampled. There were, however, no significant differences between the tributaries, except 

for age (two-way ANOVA yielding a significant tributary effect on age, F3,354 = 7.09, P < 

0.0001; for tributary effects on length and mass, both P > 0.05). Number of grayling 

caught, mean length, mean mass and mean age in the different tributaries are summarized 

in Table 2. Males were in general larger and older than females and the general grayling 

from Hyrjon was significant younger than the general grayling from the other tributaries 

(obtained from a Tukey-Kramer HSD-test, Alpha = 0.05).  
 

Table 2: An overview of number of fish caught, mean length (±std), mean mass (±std) and mean age (±std) 
in the four sampled tributaries for females and males respectively.  

   Females    

Tributary Sample size Length Mass Age 
Søre Skotte 94 295 (± 23) 261 (± 67) 4.8 (± 1.0) 
Steinbekken 27 291 (± 20) 244 (± 57) 4.9 (± 0.8) 
Hyrjon 16 283 (± 33) 227 (± 83) 4.1 (± 1.0)* 
Valåe 38 299 (± 24) 257 (± 65) 5.0 (± 0.9) 

    Males     

Tributary Sample size Length Mass Age 
Søre Skotte 100 324 (± 20) 314 (± 64) 5.6 (± 0,9) 
Steinbekken 35 324 (± 22) 312 (± 64) 5.8 (± 0,8) 
Hyrjon 11 314 (± 30) 280 (± 75) 4.5 (± 1,1)* 
Valåe 34 319 (± 45) 303 (± 114) 5.3 (± 1,3) 

* Shown, by a Tukey-Kramer HSD test, to be significantly different from all other tributaries.  
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Morphology 

Seven functions, which together describe the total morphological variance in the sample, 

were yielded by the discriminant analysis (Table 3). The discriminant analysis correctly 

classified 72.7% of the 355 individuals to their respective “tributary x sex” group based 

upon the seven functions. The two first functions explain almost 77% of the total variation 

(Table 3). I therefore focused on the grouping, and the spread, of the canonical scores into 

these two different functions. The distribution of the mean canonical scores for each group, 

associated with the two functions, is visualised in Figure 6. The most evident divergence in 

the first functions is the deviation between sexes, but there seems to be differences between 

the tributaries as well. The second function gives the general impression that specimens 

from Valåe deviate from the three other demes, which in turn show some among-deme 

differences.  

 
Table 3: Results of the seven morphological functions yielded by the discriminant analysis performed on the 
morphological differences between four demes of grayling in Lesjaskogsvatnet. Both males and females are 
included. The two first functions, in bold, explained the majority (76,8%) of the total morphological variation. 

Morph. 
Function Eigenvalue Percent of total variance explained Cum percent 

1 2.581 56.3 56.3 

2 0.937 20.5 76.8 

3 0.480 10.5 87.3 

4 0.232 5.1 92.4 

5 0.173 3.8 96.1 

6 0.098 2.1 98.3 

7 0.077 1.7 100 
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Figure 6: Plot of mean (± 2 x se) canonical scores on functions 1 (Can. 1) and 2 (Can. 2) yielded by a 
discriminant analysis for the different groups. ▲ = Hyrjon, ■ = Valåe, ● = Steinbekken, ♦ = Sørskotte. Filled 
symbols represent females and unfilled represent males. Letters and numbers above each symbol represent 
the relationship (obtained by a Tukey HSD test) among the groups. Letters relates to the morphological 
differences found in the 1.function, and numbers to the morphological differences found the 2.function. 
Groups not sharing a common letter or number are significantly different from each other on the respective 
morphological function. Grid plots are graphical visualisations of the four extreme values for the two 
functions. Shape differences shown by the grid plot have been magnified 3 times to ease interpretation. 

The first morphological function 

The first morphological function, explaining 56.3% of the total variance, describes 

translocations mainly of landmark positions 1, 3, 4, 10, 11 and 18 (see landmark positions 

in Figure 3). This represents a deviation in the dorsal area; the abdomen region; angling of 

the maxilla bone; and the anal fin as viewed in tps-Regr (Figure 6 and Figure 7).The 

movement of landmark 3, 4, 10 and 11 are of greatest magnitude, and have thus largest 

impact on the morphological variance observed. Figure 6 also reveals a clear difference in 

mean canonical scores between males and females. 

Males, which in general have been assigned with positive canonical scores (Figure 

6), tend to have a powerful and elevated dorsal “hump” (Figure 7a). In contrast, the 

females, which in general have been assigned with low negative canonical scores (Figure 

6), have a less expressed and more levelled dorsal hump (Figure 7b). In addition, males 
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tend to have a steeper angled maxilla bone and a longer proximal end of the dorsal fin 

compared to the females. Females show in general to have a more swollen abdomen than 

males, which is expected during spawning considering their large ovaries.  

 

a) 

   
b) 

   
Figure 7: A closer look at the morphological deviation found in the first function. To the left, a visualisation 
(from tps-Regr) of the two extreme values for the first morphological function. a) represent positive scores, 
which is typically males, and b) represents negative scores (females). To the right, original pictures of the 
specimens expressing the extreme values. Red lines indicate areas with apparent morphological divergence. 
Grid plots are obtained from tpsRegr (Rohlf, 2007). The morphological variations in the grid plots are 
magnified 3 times to ease interpretation. 

  

There were significant tributary effects on morphology within both sexes (Tabel 4). 

The males from Valåe differed significantly from the males from the SW-tributaries, 

having in general lower canonical scores (Tukey-Kramer HSD-test). Males from Hyrjon 

had canonical scores in between males from Valåe and the highly scored males from the 

SW-tributaries (Figure 6). The females from the SW-tributaries had higher canonical scores 

compared to females from the LC-tributaries. Females from Søre Skotte had significant 

higher scores compared to both the LC-tributaries, while females from Steinbekken had 

only significant higher scores when compared to Hyrjon (Tukey-Kramer HSD-test). 

Females from Valåe had scores in between females from the two SW-tributaries and 

females from Hyrjon which in general had the lowest scores.  
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Table 4: a): Summary of an ANCOVA of tributary and length effects on the canonical scores at the first 
function for male grayling. b): Summery of an ANOVA of a tributary effect on the canonical scores at the 
first function for female grayling.  
a) 
Source DF Sum of Squares F Ratio P 

Tributary 3 24.54 10.36 <.0001 

Length 1 41.99 53.20 <.0001 

Error 172 138.12   

Total 179 210.60   
 
b) 
Source DF Sum of Squares F Ratio P 

Tributary 3 25.35 8.66 <.0001 

Error 167 166.90   

Total 174 192.25   
 

There seemed also to be some small variations in the degree of sexual dimorphism 

among demes. The Søre Skotte deme and the Steinbekken deme had approximately similar 

differences between sexes with mean canonical distance of 3.0 and 3.1, respectively, 

between the sexes. The Hyrjon deme and the Valåe deme seemed respectively to have 

larger (3.9) and smaller (2.7) differences between males and females. 

Male morphology, as measured by the first canonical scores from the first function, 

varied with fish size (Table 4; Figure 8), indicating a change in overall morphology with 

size. The length effect was the same in all four tributaries, as indicated by the non-

significant interaction between tributary and length (P > 0.05) 
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Figure 8: The relationship between lenght of the males and the canonical scores on the first 
morphological function. Fitted line represent the linear correlation (R2 = 0.23 with  N = 180, P < 
0.0001).  

 

The second morphological function 

The second morphological function, explaining 20.5% of the total variance, shows a large 

variation in landmark positions 1-3, 6-9, 11-16 and 18 (see landmark positions in Figure 3). 

This represents a variation in body depth, head, operculum and tail morphology as 

visualised in Figure 9. Here, specimen with low canonical scores (i.e. below zero) tends to 

have a somewhat deeper midsection of their bodies compared to specimens with higher 

canonical scores (Figure 9). What is more visually obvious is the tendency for specimens 

with a low score to have a more or less dorsoventral symmetry anterior of the dorsal fin 

(Figure 9a). This is in contrast to specimens assigned with a high canonical score, which 

are more convex at their dorsal side compared to the ventral side, anterior of the dorsal fin 

(Figure 9b). The differences found in the shape of the operculum, seem to be linked to the 

overall divergence in head morphology. The difference observed in the tail region is mainly 

the movement of landmark 6 (see landmark positions in Figure 3). This makes the tail 

appear wider and more powerful whereas specimens assigned with a low canonical score 

obtain the apparently wider tail. 
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a) 

   
b) 

   

Figure 9: Visualisation of the morphological variation found in the second function. In a), the extreme low 
score is shown (left) with the corresponding picture (right). In b), the extreme high score is shown (left) and 
the related picture (right). Red lines indicate areas with clear morphological divergence. Left of broken lines 
are areas with differences in dorsoventral symmetry. Grid plots are obtained from tps-regr. The 
morphological variations in the grid plots are magnified 3 times to ease interpretation.  

 

Specimens from Valåe tend to have higher canonical scores compared to specimens 

from either one of the other tributaries (Figure 6). However, there seems also to be 

significant differences among the grayling from the three other tributaries. This was 

confirmed by a two-way ANOVA (Table 5), yielding significant tributary and sex effect on 

morphology. A Tukey-Kramer HSD-test demonstrated specimens from Hyrjon and 

Steinbekken to be morphologically similar, with the overall lowest canonical scores (Figure 

6). Specimens from Sørskotte have significant higher canonical scores than specimens from 

Hyrjon and Steinbekken, but significant lower scores compared to specimens from Valåe 

(Figure 6). Males tended to have somewhat higher canonical score (least sq mean: 0,08) 

compared to females (least sq mean: - 0,24). 

 
Table 5: Summary of a two-way ANOVA used to quantify effects on variation in the second function.  

Source DF Sum of squares F Ratio Prob > F 

Sex 1 9.00 9.02 0.0029 

Tributary 3 317.47 105.98 <.0001 

Error 350 349.50   

Total 354 672.27   
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The dorsal fin  

There was a significant divergence in dorsal fin size between sexes (F1, 252 = 48.612, P < 

.0001), where males had larger dorsal fins compared to females (Figure 10) There was also 

a small, but significant interaction between sex and tributaries on dorsal fin size (F3, 252 = 

4,328, P = 0.005). Separate ANCOVAs were thus used for each sex to assess the effect of 

tributaries on dorsal fin size (Table 6). Tributary effects explained more of the variation in 

fin size in females than in males. Length of fish had a large effect on fin size in both sexes, 

where larger fish had larger dorsal fins. A HSD-test revealed that males from Hyrjon had 

significantly smaller fin size compared to the other demes which had similarly sized dorsal 

fins (Figure 10). Females from Søre Skotte and Valåe proved to have significantly larger 

dorsal fins when compared to females from Steinbekken and Hyrjon (Figure 10). 
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Figure 10: Mean dorsal fin size (± 2se), adjusted for length effect, for male grayling (blue) and female 
grayling (red) in the four sampled tributaries. Similar numbers for male grayling indicates similar sized fins, 
while non-similar numbers are significant different in size when compared to each other (Tukey-Kramer 
HSD-test). The same hold for females, only here in letters. 
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Table 6: Summary of two separate ANCOVAs on effects on dorsal fin size for males and females .  

  Males   
Source DF Sum of Squares F Ratio P 

Tributary 3 32.53 3.34 0.022 
Length 1 1014.22 311.96 <.0001 
Error 112 364.12   
Total 116 1461.08   

 

  Females   
Source DF Sum of Squares F Ratio P 

Tributary 3 146.14 17.37 <.0001 
Length 1 957.27 341.26 <.0001 
Error 131 367.47   
Total 135 1647.58   
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Discussion 

In this study I have shown there to be significant differences in morphology between sexes 

and four demes in Lesjaskogsvatnet. The clear difference between sexes was seen both in 

general body morphology and also dorsal fin size. There were also differences between 

demes of these same traits. There seemed, however, not to be any large variation in the 

degree of sexual dimorphism among the demes. I also observed a second divergence 

among demes in body morphology. Here, especially one deme, the Valåe population, 

deviated from all the other demes in having significant different morphology. The 

morphological divergence observed could be an effect of sexual selection and/or natural 

selection.  

Effect of sexual selection 

Sexual dimorphism 

There was a clear morphological difference between sexes in the sample. In general, males 

possessed a more dorsoventral angled maxilla bone; smaller abdomen; longer proximal 

end of the anal fin; and a larger dorsal hump and dorsal fin compared to females. The 

differences in these traits could be a result of either sexual selection or natural selection. 

Biting among rivalling males is commonly observed at the spawning ground 

(Fabricius and Gustafson, 1955; Kratt and Smith, 1980). The more dorsoventrally angled 

maxilla bone observed in males could represent a response in the mouth morphology (e.g. 

larger or more powerful mouth) to a more specialized biting weapon. If this is so, the trait 

is likely to be selected for by sexual selection. Large elongated jaws, dedicated to male-

male interactions, are commonly observed in salmonids (e.g. Tchernavin, 1938; Quinn and 

Foote, 1994). Deviation in mouth morphology is, however, also observed co-occurring with 

dietary variation in fishes (e.g. Norton, 1995; Wainwright and Richard, 1995; Wainwright, 

1996; Frederich et al., 2008). This might suggest a functional response to variation in diet 

between males and females in the lake. There is however no evidence supporting or 

rejecting the latter. 

Females have a larger abdomen than males. This is expected as female salmonids 

invest more heavily in gonad production than males (Hendry and Stearns, 2004; Quinn, 
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2005). This will lead to an overall divergence in morphology between sexes. However, 

these differences do not seem to be driven by sexual selection, but are rather driven by 

natural selection on egg size and fecundity. 

The apparently wider, and more horizontally positioned, anal fin seen in males 

seems to have no obvious explanation in sexual selection. Nor has this been described, to 

my knowledge, as a sexual dimorphic trait in other salmonid species. It is therefore difficult 

to suggest a functional cause of a wider anal fin in males to other systems. It might prove 

useful as an extra stabilizing effect during the spawning act (Standen and Lauder, 2005). It 

could also be that inter-sexual variation in this trait is due to selection for a larger internal 

cavity in females, making room for more or larger eggs. Further investigation is needed to 

test the causalities of the inter-sexual variation in this trait. 

The most prevailing morphological difference between the sexes is the enlarged 

males dorsal hump in male grayling. This type of sexual dimorphic trait is also seen in 

other salmonid species, as in Oncorhynchus nerka (Quinn and Foote, 1994), Oncorhynchus 

tshawytscha (Kinnison et al., 2003) and Oncorhynchus gorbuscha (Berg, 1979). This 

exaggerated trait is generally believed to be the result of both/either male-male competition 

(reason 1) and/or mate choice (reason 2) by females (Quinn, 2005). Although not as 

expressed as in some of its salmonid relatives, the male hump seen in grayling could have 

evolved for the same reasons.  

Reason 1: Aggressive male-male encounters are common during the spawning period.  

When evenly matched in size, and when biting does not solve territorial conflicts, male 

competitors use their body to push each other away (Fabricius and Gustafson, 1955). This 

showdown could be done by a lateral display of size and fins, where the competitors try to 

force the opponent away sideways. It could also be done by one male swimming in front of 

the other and then using its lateral side to push the competitor downstream. A deep body, 

with a large hump, could in both cases prove to be of advantage.  

Reason 2: Given the disparity between sexes in reproductive input, salmonid females are 

usually more selective of their mates than males (Hendry and Stearns, 2004; Quinn, 2005). 

A larger hump could give both better support (i.e. larger support muscles and tissue) for the 

important dorsal fin (Fabricius and Gustafson, 1955), and an overall impression of a 

powerful male. These traits might be favoured by choosy females.  

 28



The large dorsal fin in males could act both to attract females and to intimidate 

male competitors (Fabricius and Gustafson, 1955). It has also been observed to be folded 

over females during the spawning act (Fabricius and Gustafson, 1955; Kratt and Smith, 

1980). The dorsal fin could therefore be subjected to both intra-sexual selection and inter-

sexual selection. 

Summarised, the morphological traits mentioned above, besides abdomen area and 

maybe also anal fin size, seem to represent adaptive secondary sexual characters due to 

sexual selection either by male-male interactions or by female choice. As sexual selected 

traits also are likely to be targets of natural selection (Svensson and Gosden, 2007), among-

deme variation in these traits is most likely due to differences in the pressure of either of 

the two selection forces, or both combined.  

Among-deme variation 

There is a trend in the data that specimens from the LC-tributaries possess less expressed 

secondary sexual characters, except for dorsal fin size, compared to the specimens in the 

SW-tributaries. This observation may support the first prediction concerning H1; 

morphological variation due to increased strength of sexual selection in the SW-tributaries. 

It may, however, also indicate stronger natural selection against secondary sexual 

characters in the LC-tributaries, compared to the SW-tributaries, as the dorsal hump may 

increase the drag experienced. The latter support the prediction of H2. Both natural and 

sexual selection may thus favour the same expression of some of the secondary sexual 

characters in the respective tributaries. It may therefore be difficult to separate the two as to 

which gives the largest contribution to the morphological variation. Anyhow, I would 

expect, now in both hypothesized scenarios, to find reduced differences between the sexes 

in the LC-tributaries compared to the SW-tributaries. In the case of disparities in sexual 

and/or natural selection between tributaries, I would also intuitively expect the variation in 

secondary sexual traits to be larger in males (e.g. Berg, 1979; Hendry and Stearns, 2004; 

Quinn, 2005) 

While there seems to be somewhat less sexual dimorphism in secondary characters 

in specimens from Valåe compared to specimens from the two SW-tributaries, the greatest 

sexual dimorphism is found in Hyrjon. The latter finding does not support the second 
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prediction of H1; more pronounced sexual dimorphism in the SW-tributaries. Neither does 

the observation support H2, as I here should expect males and females from both the LC-

tributaries to have a more similar morphology (i.e. reduced dorsal hump in males). As a 

cautionary note, one should bear in mind that Hyrjon have a small sample size and might 

thus be biased. There was also observed an among-deme variation in dorsal fin size, which 

is likely the most important sexual secondary character in grayling (Fabricius and 

Gustafson, 1955; Kratt and Smith, 1980). Females from Søre Skotte and Valåe, and 

Steinbekken and Hyrjon have, respectively, similarly sized fins. Males do not express the 

same variation pattern. In fact, the general male from all tributaries, other than Hyrjon, 

seems to have a similarly sized dorsal fin. In the case of divergent strength of sexual 

selection, I would expect larger fins in the SW-tributaries (H1:P1). I would also expect the 

inter-deme variation in fin size to be larger among males compared to females (H1:P2). 

The variation seen in dorsal fin size seems thus not to support the hypothesis of 

morphological variation due to tributary differences in sexual selection gradients (H1).  

It could be that there is a stabilizing selection (Brodie et al., 1995; Futuyma, 2005) 

for dorsal fin size in males. This would produce an optimal dorsal fin size relative to fish 

size within the lake and may be observed as an evolutionary stasis on the given trait 

(reviewed in Merilä et al., 2001). This assumption is supported by the observations of the 

small among-deme variation in fin size, and the strong correlation between male size and 

dorsal fin size. Although it seems unlikely that the trait is subjected to completely stasis, it 

may experience a slowly moving optimum, perhaps within genetic constrains obtained 

from the “ghost of the selection past” (Van de Peer et al., 2001; Estes and Arnold, 2007). 

This would lead to slow rates of evolution on this trait. Females may not be exposed to as 

strong a stabilizing selection on dorsal fin size as males. Hence, I observed a larger 

difference in female fin size among demes. The dorsal fin size may thus have a much lower 

divergent rate, compared to the other observed secondary sexual characters, not 

experiencing the same stabilizing selection. Females might show the same magnitude of 

variation as males in morphological traits because a natural selection agent, such as 

temperature, might impose a uniform effect on both sexes. Differential temperatures have 

been shown to affect differences in individual growth and development of grayling fry, 

with a potential genetic source of variation (Haugen, 2000; Krogstad, 2008). Thus, 
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deviation in the secondary sexual characters may not necessarily reflect adaptations to the 

different spawning environments, but rather occur as a side-effect of variations in early 

development and growth under disparate temperature and flow regimes (Sagnes et al., 

1997; Sagnes et al., 2000). It may also be that there are large variations in other sexual cues 

connected to the dorsal fin, like colour. This is not measured in this study as true colours, 

and colour variations, are difficult to assess in the field. Colour is, however known to be of 

importance in sexual selection in different fishes (e.g. Endler, 1983; Seehausen and van 

Alphen, 1998; Boughman, 2001). 

Another, and perhaps more likely, explanation of the among-demes variation in 

secondary sexual characters is due to founder effects in each tributary as they were 

colonized. The expression of secondary sexual characters in each deme might then have 

been reinforced by natal homing and thus reduced gene flow between tributaries. This 

might open for the possibility of phenotypic variation among demes as a result of genetic 

drift (Lande, 1976). The low morphological variation seen in secondary sexual characters 

may thus prove to have none, or very limited, fitness consequences in the different 

tributaries. This could account for all the trends seen in the data sample; the almost similar 

among-deme variation in both females and males; lack of a clear trend in phenotype x 

environment interactions; and the peculiar variation in the anal fin size and position. 

 

Effect of natural selection 

Grayling from Valåe possesses a more down-bent head and mouth compared to the other 

demes. They also seem to have a somewhat longer proximal end of dorsal fin and do 

diverge in tail morphology when compared to the three other demes. (Caveat lector: The 

landmark coordinates at the fish tail were difficult to make homologous on every photo, 

and may thus exhibit larger variation than actual). The morphological variation seen in the 

second function, bears thus a resemblance to the morphological differences observed in 

other systems with fish populations experiencing habitat structures (i.e. benthic/pelagic) 

and resource polymorphism (reviewed in Smith and Skulason, 1996; Cussac et al., 1998; 

Dynes et al., 1999; Langerhans et al., 2003; Olsson and Eklöv, 2005; Olsson et al., 2006; 

Frederich et al., 2008; Svanbäck et al., 2008). This suggests that the differences seen could 
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be a result of resource competition, or variable resources, within the system. Both the 

mature grayling and the fry spend a short time in the natal tributary, and feed mainly in the 

lake. Consequently, it is difficult to link these findings to the diverging environmental 

conditions between tributaries. A more likely scenario could be an effect due to varying 

conditions in the different basins. Hence, this observation may suggest that the grayling 

spends more time in the basin connected to its natal tributary, compared to time spent in the 

other basins, weakening the hypothesis of uniform selective agents in the lake (H3). 

 In his MSc thesis in 1982, Gammelsrud conducted an extensive monitoring of 

different environmental factors of the different basins comprising Lesjaskogsvatnet. He 

found that graylings in the lake utilized both shallow (0-6 meters) and relatively deep 

waters (>10 meter) during the summertime. One explanation for utilizing the deep water 

was to avoid interspecific competition with brown trout. Valåe, which differs most from the 

other tributaries, drains into the south-east basin (Figure 1). This basin is also the deepest 

with a maximum depth of 34 meters compared to 14 and 19 meters in the other basins 

(Gammelsrud, 1982). In addition, Gammelsrud observed diverging prey (i.e. zooplankton 

etc.) composition among basins. Hence, these findings may help explain the observations 

of polymorphism within the lake, if the fish is constrained to different basins. 

Caveats and limitations of the study 

Experimental design 

The two SW-tributaries are located in a different basin compared to the two LC-tributaries. 

The observation that the different basins within Lesjaskogsvatnet may vary in 

environmental conditions (Gammelsrud, 1982), and that the grayling may spend more time 

in one basin, complicates the exploration of among-deme variation. It is subsequently 

difficult to single-out various environmental conditions in the tributaries as the only 

selection agents affecting the morphological variation. A more ideal situation would have 

been to study morphological differences between LC-tributaries and SW-tributaries within 

the same basin to have more control on possible basin effects.  

 The use of geometric morphometric proved to be an effective method to assess the 

morphological patterns in the sample. The morphological variation observed is limited, 

however, to the difference in, and the number of, landmark configurations. There are also 
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further limitations on how many good homologous landmarks one could place on the 

grayling. Without prior knowledge of the true morphological variation, it might hence be 

difficult to correctly place the landmarks so that all important variation is captured. The 

landmarks 6-8 (Figure 5) proved difficult to place on some grayling individuals, as 

shadows and variation in colours made these spots difficult to define in some photos. This 

false variability in these landmark configurations may be observed as morphological 

variations in the tail region, without any factual roots. Rest of the morphological variability 

seen in this study is however based on more or less certain homologues landmarks. It 

should therefore represent factual morphological variations between demes. 

Is statistical variation biologically relevant? 

One important problem which remains unanswered is the question of biological 

significance. The inter-tributary divergence in morphology is of such small magnitude that 

it could hardly be seen by the eye. Nevertheless the discriminant analysis did correctly 

classify almost 73% of the grayling into their respective tributary. This high degree of 

correct classification gives a good indication that a morphological divergence between both 

tributaries and gender is present, and to be trusted. Do however the differences in 

morphology between tributaries represent any fitness related advantages? The differences 

in secondary sexual characters between demes are of a very small magnitude and may turn 

out not be irrelevant for fitness. However, the morphological difference between the basins 

is more visual and may well represent a biological relevant divergence. To truly enlighten 

these question one should test for fitness variations in the various environments between 

demes. This could be done in controlled common-garden experiments where one could 

vary variation in flow regime and density at the spawning ground and thus test for variation 

in fitness between demes. One could also explore prey capture success between demes on 

various prey associated with different habitats.   

Local adaptation vs. plasticity  

The difference in morphological traits seen may represent heritable local adaptations, 

phenotypic plasticity or a combination of both. Their relative importance as causal factors 

to the trait differentiation is an important issue in determining the possible contemporary 

evolutionally aspect. It is however difficult to determine the genetic basis of a trait by a 
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direct morphological study in the wild. Hence, one should do further studies of the 

morphology in common-garden experiments. This was unfortunately not possible within 

the time limits of this study, as common-garden experiments ideally use individuals from 

lineages reared in common environments for two or more generations. By doing so, one 

should be able to rule out differences between groups, caused by phenotypic plasticity 

and/or maternal effects, hence reveal possible genetic variation.  

Summary and concluding comments 

In this study, I found differences between demes in morphological traits recognized as 

secondary sexual characters. There are however difficult to pinpoint a common cause of the 

variation among demes in these sexual dimorphic traits. It may occur due to adaptation to 

different environmental conditions, or it may represent founder effects and genetic drift. 

The large male dorsal fin proved to be almost similar in size between the demes. This could 

be a result of fixed male-choice preferences in females, or the trait may be genetically 

constrained from selection past. The females are more variable in dorsal fin size. 

The morphometric data also show differences in non-sexual traits resembling 

resource polymorphism in other systems. This difference between demes in the different 

basins is highly visual and may well prove to be biologically relevant. This variation might 

thus indicate that the lentic grayling spends more time in the basin where their natal 

spawning tributary is connected to. It also indicates that environmental conditions are likely 

to vary between the different basins within Lesjaskogsvatnet. Further studies are needed to 

account for local adaptations and phenotypic plasticity. Finally, the findings from this study 

should also be seen on as a part of the ongoing larger project: “The early stages of adaptive 

radiation: sympatric divergence in grayling”. With the now known morphological variation 

within the system, which presumably have occurred during only 20-25 generations, the 

cause of these variation may be more deeply explored. This might then help shed more 

light on the importance of processes behind contemporary microevolution and its 

importance in ecological speciation.   
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