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Abstract
In this thesis I report on several aspects of the reproductive ecology of the short-

lived, monocarpic plant Digitalis purpurea L. (Plantaginaceae). Observational field 

studies are combined with controlled crosses and greenhouse experiments to address 

questions on pollinator attraction, pollinator behaviour, and possible consequences 

thereof on mating patterns. Fitness consequences of different matings are investi-

gated through the entire lifetime of progeny. In addition, I focus on the effects of 

display size and local plant density on pollination and florivory.  

 Bumblebee visitation rates at the plant level increased with display size and 

plant density, and although bout lengths also increased, the increase was too slow to 

balance the increased display size. The result was a decrease in per flower visitation 

rate with display size, indicating that pollinators do not mediate selection for larger 

display sizes in this population. A significant interaction between density and display 

size for the proportion of flowers visited per display suggests that density may modify 

the selective impact of pollinators. 

 The floral herbivore Eupithecia pulchellata Stephens (Lepidoptera: Geometr-

idae) also showed an affinity towards large inflorescences and dense patches, but 

overall attack rate was low. However, the proportion of flowers attacked increased 

with inflorescence size, resulting in size-dependent floral damage that could select for 

smaller display. However, since overall attack rates were low, it is possible that the 

plants are capable of compensating floral loss at the observed attack rates. 

 The pollination system of D. purpurea (acropetal flower maturation of prot-

androus flowers in vertical racemes combined with pollinators that start foraging 

bouts at the base of the inflorescences), was shown to be effective in preventing 

geitonogamy, only 2.1% of plant visits of bout length two or more involved visitation 

to a male flower before a female flower. This system was also efficient in terms of 

both pollen import and export, independent of display size. In view of the short bout 

lengths (ca 2 flowers) it was surprising that pollen export did not decline with display 

size. This was due to increased skipping of flowers by pollinators on larger displays, 

resulting in high visitation rate to male flowers.  
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Inbreeding depression was significant for several life history traits. The 21% reduc-

tion in cumulative fitness was relatively small in view of the high outcrossing rate 

(estimated as 0.96) and may indicate that this population has experienced more self-

ing during periods of lower pollinator activity. Increased masking of deleterious 

alleles by the tetraploidy of D. purpurea may also contribute. However, when 

progeny with different inbreeding levels were grown in the presence of competitors, 

inbreeding depression was increased, indicating that inbred progeny will suffer larger 

fitness loss in natural environments. In this population, an optimal outcrossing 

distance was detected as a consequence of the outbreeding depression found at 

several life history traits in progeny from 30 m-crossings. Reports on within-popu-

lation outbreeding depression are rare and my study suggests that outbreeding 

depression may be more common in autopolyploids than in diploids. The fact that 

the majority of plant species are believed to be polyploid, merits the inclusion of 

polyploids in future studies of mating system evolution.  

List of papers 
I. Grindeland, J. M., N. Sletvold & R. A. Ims 2005. Effects of floral display size 

and plant density on pollinator visitation rate in a natural population of 

Digitalis purpurea. Functional Ecology 19: 383-390. 

II. Grindeland, J. M. & N. Sletvold. Darwin’s pollination syndrome - a plant’s 

dilemma resolved? Submitted manuscript 

III. Sletvold, N. & J. M. Grindeland 2008. Floral herbivory increases with inflore-

scence size and local plant density in Digitalis purpurea. Acta Oecologica. In 

Press. 

IV.Grindeland, J. M. 2008. Inbreeding depression and outbreeding depression in 

Digitalis purpurea: optimal outcrossing distance in a tetraploid. Journal of 
Evolutionary Biology. Published online 13 March 2008. [doi: 10.1111/j.1420-

9101.2008.01519.x] 

V. Grindeland, J. M. & N. Sletvold. Joint effects of inbreeding level and competi-

tion in F2 in tetraploid Digitalis purpurea. Manuscript  

(I, II, IV are reprinted with kind permissions of the respective publishers.) 
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Introduction 
Reproduction, this all-important event in the life of any organism, includes some 

evolutionarily determined decisions that are integral parts of the organism’s life 

history, i.e. repeated reproduction or not and timing of the first reproduction, but 

also decisions that are more dynamic, i.e. with whom to mate. For plants, that are 

sessile and in most cases hermaphroditic, the latter decision involves how to increase 

the number of possible mates, whether selfing is an option, and if so, when to self. In 

order to maximize its reproductive output, a hermaphrodite must divide its resources 

between the sometimes conflicting interests of its two sexual functions. Moreover, 

many plant species have the possibility of selfing, but this requires cooperation be-

tween functions that the individual most of the time benefits from separating. Since 

the majority of plants experience inbreeding depression upon selfing, most species 

have traits believed to promote outcrossing. In this thesis I investigate different 

aspects of the pollination ecology and mating pattern of a self-compatible plant.  

Display size and pollinator attraction 

The floral display is an important element of the animal-pollinated plant’s pollina-

tion system and should be under selection to maximize the efficiency of pollen 

transfer between plants. Floral display is usually the combination of flower number 

and size, although other plant features may contribute to the overall attraction. Polli-

nators normally respond to larger displays by increasing their visitation rate 

(reviewed in Ohashi & Yahara 1999).  

 Once at the plant, the number of flowers visited before moving on to the next 

plant will be governed by the reward level of the flowers probed, rather than the 

display size. It is thus possible for the plant to separate the evolution of attraction 

from reward, in order to maximize pollen import and export. Such a separation is 

supported by the fact that nearly all studies investigating the effects of display size on 

pollinator attraction have found that larger displays increase pollinator visitation 

rates at the plant level, whereas results at the flower level are mixed. It is also 

commonly observed that although bout length (i.e. number of flowers visited per 

plant visit) increases with display size, the increase does not compensate for the 
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increased flower number (Mitchell et al. 2004 and references therein). The empirical 

results on the resulting per flower visitation rates vary from decrease to increase, with 

several reports on a constant relationship (e.g. Andersson 1988, Klinkhamer et al. 

1989, Robertson & Macnair 1995, Ohashi & Yahara 2002). However, even if large 

displays are at a disadvantage as far as per flower visitation rate go, large displays may 

be advantageous if the quality of pollinations increase with display size. 

Perils of display size: floral herbivory 

Although large displays are advantageous in attracting pollinators, they can also be 

disadvantageous due to increased attraction of antagonistic visitors. Animals 

expected to respond to display size include those species that seek out flowers as sites 

for oviposition, i.e. floral herbivores and predispersal seed predators. In terms of 

populations dynamics, the impact of floral herbivory and predispersal seed predation 

will be higher than that of herbivory on vegetative tissue, because the latter only 

destroys plant tissue that the plant normally is capable of regenerating (Kolb et al. 

2007). Loss of seeds will also normally be more severe than the loss of flowers, 

anthers or ovules, but the demographic impact of loss of floral tissue can be large 

(Rose et al. 2005, McCall & Irwin 2006). The compensation of lost flowers is not 

always possible, and florivory may therefore represent a selective force opposing the 

potential pollinator-mediated selection for larger displays. Although several studies 

have reported that large plants have higher attack probability (Ehrlén 1996), the 

relationship between within-plant attack rate and display size has received less atten-

tion (Klinkhamer et al. 1997).  

Plant density, animal behaviour and plant fitness

Optimal foraging theory predicts animals to modify their behaviour according to the 

density of the resource sought after (Pyke 1984). Whether animals seek plants as 

immediate food sources or as resources for their offspring, they are expected to 

evolve strategies that reduce searching time. Accordingly, high density patches 

should be visited more often than low-density patches, and isolated plants should 

receive longer visits (i.e. more flowers probed). When to leave the individual plant 

 4 



may be determined by the frequency of non-rewarding flowers, e.g. low nectar 

content in the case of pollination or evidence of prior oviposition in the case of floral 

herbivory, but these decisions may be influenced by the distance to the next plant 

with potential resources (flowers). Plant density could therefore modify animal be-

haviour in ways that change the selection on display size in dense vs. sparse patches.  

Display size and fitness through male and female function  

If quality of pollinator visits are as important as quantity, animal-pollinated plants 

will benefit from receiving many short visits instead of few longer ones (Iwasa et al. 

1995). Female function will suffer if bout lengths are long because pollinator pollen 

load becomes depleted, and male function will suffer because of pollinator saturation. 

Long bouts will also increase the amount of pollen lost before the pollinator leaves 

the plant, thereby reducing potential siring success (Rademaker et al. 1997). In 

hermaphroditic plants there is the added disadvantage of within-plant pollen 

transfer, resulting in stigma clogging if the plant is self-incompatible, and self-

fertilisation if self-compatible (de Jong et al. 1993). Moreover, loss of outcrossing 

opportunities will result from pollen discounting in both cases, and in the case of 

self-compatible plants, from ovule discounting as well (Barrett 2002). 

 This is the backdrop for the “plant’s dilemma” described by Klinkhamer & de 

Jong (1993): Almost all plant features that lead to increased attractiveness to pollina-

tors also lead to longer flower visitation sequences. The result is that larger displays 

receive more visits, but also increased potential for geitonogamy. A solution to this 

dilemma would be to receive as many pollinator visits as possible, each of them to a 

single flower (Klinkhamer & de Jong 1993). However, it is difficult to imagine how 

this could be achieved without disposing of reward altogether, thereby adopting a 

new set of problems experienced by non-rewarding species (e.g. frequency 

dependency, Jersakova et al. 2006). Other solutions to the dilemma could involve 

temporal separation of sexual functions or genetical incompatibility between pollen 

and stigma. One special example that utilises both spatial and temporal separation of 

sexual functions is the combinations of plant traits described by Darwin (1862) and 

coined “Darwin’s [pollination] syndrome” (McKone et al. 1995): Vertical inflore-
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scences with acropetalous flower maturation, protandrous flowers and pollinators 

that start at the bottom of the inflorescence. Through sequential flower dichogamy 

these plants achieve inflorescence herkogamy, resulting in spatial separation of sexual 

functions that will ensure pollen import and export in the same bout if pollinators 

arrive at a lower, female flower, and continue upwards until visiting at least one male 

flower (Best & Bierzychudek 1982). Although this pollination syndrome seems to 

function as predicted under experimental conditions (Best & Bierzychudek 1982), it 

is not known how effective it is under natural conditions, nor is it known how the 

effectiveness may correlate with display size.  

 The long-held view that dichogamy has evolved as a mechanism reducing 

inbreeding has been challenged since many taxa exhibit both dichogamy and self-

incompatibility (Lloyd & Webb 1986). Lloyd and Webb’s alternative hypothesis of 

reduced interference between sexual functions has later been supported in the case of 

protandry because this trait is often found in self-incompatible taxa, but selfing-

avoidance is still regarded as the most important reason for protogyny (Routley et al. 

2004). Darwin’s pollination syndrome should also warrant low sexual interference 

within individuals.  

 Attractiveness of plant display has also been considered in view of allocation 

to sexual functions (de Jong & Klinkhamer 2005). The application of Bateman’s 

principle (1948), i.e. that female fitness is resource limited and male fitness is mate 

limited, to plants, gave the prediction that attractiveness of floral display should 

benefit male fitness more than female fitness (Bell 1985). This prediction has received 

some empirical support (Stanton et al. 1986, Mitchell 1993, Aizen & Basilio 1998, 

Carlson 2007), but has also initiated much debate on the generality of these relation-

ships (e.g. Burd & Callahan 2000, Ashman & Morgan 2004). In plants with Darwin’s 

pollination syndrome, nectar production is higher in female phase flowers (Best & 

Bierzychudek 1982, Galen & Plowright 1985) and higher flower visitation rate may 

accordingly be expected to female phase flowers. If so, this suggests stronger polli-

nator limitation of male function. This system also provides opportunities for in-

vestigating correlates of male reproductive success (i.e. opportunities for pollen 
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export), an aspect of mating systems greatly underrepresented in studies of pollina-

tion ecology (Barrett 2003).  

Genetical costs of mating 

Inbreeding depression, i.e. the reduction in fitness of offspring from matings between 

related individuals, has been regarded as the most important factor driving the 

evolution of mating systems since Darwin’s seminal work (Darwin 1876). The fact 

that most angiosperms are hermaphroditic and thus capable of the most extreme 

form of inbreeding (i.e. selfing) has given rise to an enormous amount of theoretical 

and empirical work on the existence and severity of inbreeding depression (Lande & 

Schemske 1985, Schemske & Lande 1985, Charlesworth & Charlesworth 1987, 

Husband & Schemske 1996, Armbruster & Reed 2005). Lande and Schemske (1985) 

showed that inbreeding depression is expected to evolve jointly with selfing rate and 

that the stable situation would be predominately selfing populations with low degree 

of inbreeding depression (δ < 0.5) and predominately outcrossing populations with 

high degree of inbreeding depression (δ > 0.5). However, their conclusions depend 

on the underlying mechanisms of inbreeding depression. 

Two alternative genetical mechanisms have been proposed to account for 

inbreeding depression: the partial dominance hypothesis and the overdominance 

hypothesis (Schierup & Christiansen 1996). The former explains inbreeding depres-

sion as the expression of deleterious alleles, at least partially recessive, in homozygous 

form, and the latter states that heterozygosity per se is advantageous. Investigations 

on the evolution of selfing rates and inbreeding depression under the overdominance 

hypothesis predicts that in some situations intermediate selfing rates may be stable 

(Charlesworth & Charlesworth 1990). The two hypotheses also differ in their predic-

tions on the level of inbreeding depression if inbreeding increases: With over-

dominance, inbreeding depression will increase with increased selfing, whereas with 

partial dominance, inbreeding depression may decrease at some point (Charlesworth 

& Charlesworth 1990, Barrett & Charlesworth 1991). In the latter case the genetic 

load will be reduced as more deleterious alleles are exposed to and removed by selec-

tion (Charlesworth & Charlesworth 1987) and such purging has been reported 
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(Barrett & Charlesworth 1991, Crnokrak & Barrett 2002, but see Byers & Waller 

1999). At present, the partial dominance hypothesis has received most support 

(Charlesworth & Charlesworth 1999, Crnokrak & Barrett 2002, Carr 2003). 

Inbreeding depression may also be influenced by the ploidy level of the 

species. Polyploid species have multiple copies of their nuclear genome and the 

consequences for the expression and evolution of inbreeding depression in natural 

populations is not agreed upon. For autopolyploid species both reduction and 

increase in expressed inbreeding depression compared to diploid species has been 

predicted (Bennett 1976, Ronfort 1999), but empirical investigations in natural 

populations are few (Galloway & Etterson 2007, and references therein). 

Due to limited gene flow distances, plant populations may be structured with 

related plants growing in the vicinity of each other. Matings over short distances may 

therefore result in biparental inbreeding depression and offspring quality will im-

prove with distance between mates. However, at some distance the fitness of off-

spring will decline because mates will be genetically dissimilar due to genetic drift or 

natural selection. The outbreeding depression that results when genetically dissimilar 

individuals mate has been observed in many species, but the distance were it is 

detected varies greatly between species (Price & Waser 1979, Sobrevila 1988, Waser & 

Price 1989, Fischer & Matthies 1997, Fenster & Galloway 2000, Montalvo & Ellstrand 

2001). Outbreeding depression after matings between plants separated by large 

distances is interesting in terms of elucidating the mechanisms of hybrid breakdown, 

but in order to affect the evolution of populations, effects must be present at 

distances comparable to those of gene flow. Outbreeding depression at relevant scales 

has been detected in several species (review in Waser 1993), and it has been suggested 

that the population subdivision this represents could be the early stages of sympatric 

speciation (Waser et al. 2000). The mechanisms invoked to explain outbreeding 

depression are the so-called ecological mechanism (i.e. selection yields adaptation to 

different microhabitats and progeny are maladapted to both habitats) and the genetic 

mechanism (i.e. coadapted gene complexes arisen through drift and separated by low 

gene flow, will be broken up in progeny) (Schierup & Christiansen 1996). In 
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populations simultaneously experiencing inbreeding depression and outbreeding 

depression there exists an optimal outcrossing distance (Price & Waser 1979). 

Inbreeding depression has been shown to vary through life history stages and 

investigations should cover as large a part of the life history as possible (Husband & 

Schemske 1996). In the case of outbreeding depression comparatively little is known 

of how the expression of outbreeding depression vary through the life history of 

progeny (Waser et al. 2000). The expression of inbreeding depression has also been 

shown to vary with environmental conditions. Studies comparing progeny grown in 

greenhouse or common garden with those grown in field conditions have found 

more severe effects in the latter conditions (Dudash 1990, Armbruster & Reed 2005). 

In polyploids, knowledge on how inbreeding and outbreeding depression is 

expressed through the life cycle is very limited, especially in the case of outbreeding 

depression (Etterson et al. 2007, Galloway & Etterson 2007).  

Aims of the thesis 

With data from observations in a natural population and from greenhouse-grown 

progeny of controlled crossings, I investigate several aspects of the reproductive 

ecology of short-lived, monocarpic Digitalis purpurea L. 

Does display size and plant density influence the plant and flower visitation 

rate of pollinators and the probability of floral herbivory? Paper I & III. 
Is the pollination system of D. purpurea efficient in promoting outcrossing 

and how does it relate to display size and plant density? Paper II. 
Is there an optimal outcrossing distance in this population and how does the 

expression of inbreeding depression and outbreeding depression vary 

throughout the life cycle of progeny? Paper IV 

How does expression of inbreeding depression vary with inbreeding level and 

level of competition? Paper V.  
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Species and population

Digitalis purpurea 

Digitalis purpurea L. (Plantaginaceae, sensu APG II 2003), the common foxglove 

(Fig. 1c), is in Norway native to coastal areas from the south-western parts north-

wards to Nord-Trøndelag county (Lid & Lid 2005). It is found on naturally and man-

made disturbed areas, e.g. pasture, roadsides, clear-cuttings, screes and tree 

uprootings. The species has a persistent seed bank (van Baalen 1982) that can survive 

more than 80 years in the soil (K. Fægri, pers. comm.). Recruitment is restricted to 

bare soil because germination is inhibited by low light conditions (van Baalen & 

Prins 1983). Germination usually takes place in spring, and a rosette is produced the 

first season that may flower the following summer after vernalization during winter, 

but flowering can be delayed several years (Sletvold & Grindeland 2007). D. purpurea 

has traditionally been termed a biennial plant, but because it may delay flowering 

beyond the second summer it is more accurately described as a short-lived perennial 

(Sletvold 2005, Sletvold & Grindeland 2007). In Norway the species is considered 

strictly monocarpic in natural habitats, but survival through secondary rosettes and 

repeated flowering is common elsewhere (van Baalen & Prins 1983). Many popula-

tions are transient, i.e. populations are established after some disturbance, and dis-

appear in a few years. However, the species may have long-lived populations in areas 

where small, frequent disturbances occur, i.e. pastures (Sletvold & Rydgren 2007). 

Plants produce one or a few racemose inflorescences on average around 1 m 

height (mean±sd = 101±28 cm, N= 133, Paper I) with an average of 50 flowers each 

(mean±sd = 51±11, N= 133, Paper I). The pink to purple flowers are 5 to 6 cm long 

with nectar guides in the shape of dark spots surrounded by lighter areas on the 

lower lip of the bell-shaped flower. The inside of the lower lip of the flower have 

hairs, several mms long, which prevent small insects from entering the flower and 

removing nectar (pers. obs.). The flowers are self-compatible (Darwin 1876), nectar 

producing and visited mainly by bumblebees (Best & Bierzychudek 1982, Paper I). 

There is little spatial separation of the sexes within flowers, but distinct temporal 

separation (protandry). Acropetal flowering combined with protandry results in 
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inflorescences in which the sexes are spatially separated: below the topmost buds 

follow newly opened, prefertile flowers, then male flowers, neuters (flowers that are 

neither male nor female), female flowers, and developing capsules. When pollen 

removal is low, flowers simultaneously expressing male and female functions may 

replace some or all neuters (pers. obs.). Nectar production per flower increases with 

flower age, resulting in decreasing reward upwards in the inflorescence (Percival & 

Morgan 1965). Higher rewards in lowermost flowers induce bumblebees to visit the 

lowest, female flowers first, thereby promoting crosspollination (Best & 

Bierzychudek 1982). In the absence of pollinators D. purpurea is able to produce 

seeds by delayed selfing, although fruit set and seed set is variable and generally low 

(Darwin 1876, N. Sletvold, pers. comm.). Each flower may produce more than 1000 

seeds each weighing ca. 90 μg (Salisbury 1942). Seeds are ballistically dispersed, i.e. 

via a passive ballistic mechanism (van der Pijl 1972) and most seeds are likely to fall 

within a few meters of the maternal plant (van Baalen 1982). 

Study population 

Field work was carried out in an established population in a pasture located at 

Øydvinstod in Ulvik (Hordaland County, 60  34' N, 6  58' E) in south-western 

Norway (Fig. 1a, b). The site was located on the steep south-facing slopes towards the 

Hardangerfjord, (5 – 60 m a.s.l.). The pasture was grazed by sheep in spring and late 

summer. The population of D. purpurea had been roughly constant in size for several 

years prior to this (N. Øydvin, pers. comm.). The total area of ca 6000 m2 consisted 

mainly of grassland scattered with patches of D. purpurea of varying size and density. 

Individual patches of D. purpurea may be transient and disappear as the gap closes, 

but new patches of D. purpurea will appear as new gaps in the vegetation are formed 

(Sletvold & Rydgren 2007).  

Pollinators and other visitors 

The study population was probably exclusively pollinated by bumblebees, Bombus 
spp. (Paper I). In total four species of Bombus (taxonomy follows Løken 1992) were 
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observed, but one species, B. hortorum, was the main pollinator in both years with 

more than 50% of visits.  

 

 

Figure 1. a) Map of Southern Norway with Ulvik indicated with black dot. b) 

Detailed map of Ulvik-area with study area indicated with red ellipse. c) Digitalis 
purpurea and its principal visitor, Bombus hortorum. 
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The year-to-year variation in species abundance was probably influenced by the 

composition of surrounding plants that bloomed during the observation period. 

Especially, flowers of various Rubus species were much visited by the smaller B. 
hypnorum and B. lucorum. The majority of Bombus individuals observed on D. 
purpurea collected nectar, but some pollen-collection was observed. When collecting 

pollen, the bumblebee turns upside-down inside the corolla and actively removes 

pollen from the anthers (pers. obs.). The only other visitor seen entering a flower of 

D. purpurea was a single Apis mellifera L. individual, but as it did not carry visible 

pollen, it is uncertain whether A. mellifera contributes to pollination. However, A. 
mellifera individuals frequently visited D. purpurea inflorescences collecting nectar 

from flowers where the corolla recently had fallen off. 

Several plants had flower buds containing larvae of the moth Eupithecia 
pulchellata Stephens (Lepidoptera: Geometridae) (Paper III). Oviposition takes place 

on immature buds and one larva develops inside the bud. The larva feeds on 

developing anthers and ovaries, but does not stop the bud from growing, although 

infected flowers will not open because the larva seals the flower lips with silk. 

Methods

Pollinator observation (I and II) 

Data on pollinator visitation patterns were collected through field observations of a 

population of D. purpurea in 1998 and 1999. Natural patches, 12 and 14 in 1998 vs. 

1999, respectively, were haphazardly selected to meet predefined criteria of plant 

density (3 and 2 levels in 1998 and 1999, respectively). Natural variation in daily 

inflorescence size was used. Pollinator species and sequence of flowers visited were 

recorded during three 10 min periods in 1998 and five 15 min periods in 1999, 

resulting in 6 h vs. 17.5 h total observation time. In 1999 the actual sexual phase of 

each flower was recorded during one of the observation days.  
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Floral herbivory (III) 

In 1997, 88 plants at a roadside were inspected and the number of flower buds con-

taining an E. pulchellata larva was recorded during three days late in the flowering 

season. Data on the presence/absence of attacked buds in the 133 plants used for the 

pollinator observation study in 1999 (Paper I) were also included in this study. 

Crossing distance (IV) 

In 1997, thirty randomly selected plants were pollinated with pollen from four dif-

ferent distances: 0 m (self), 1 m, 6 m and 30 m. At maturity fruits were collected, 

brought to the laboratory and seed set was determined. Germination and growth 

experiments were conducted under greenhouse conditions and the following life 

history traits were recorded: germination percent, germination speed, juvenile sur-

vival, juvenile size, flowering time, and flower number.  

Inbreeding levels (V) 

A second generation of seeds with four expected levels of inbreeding (f= 0.028, 0.069, 

0.14, 0.31) was produced through controlled crossings of some of the plants from the 

crossing distance experiment. Six maternal families were randomly selected and 

seeds from each inbreeding level were sown in the greenhouse. Germination speed 

was recorded and a growth experiment with two competition levels (no competitor 

vs. four conspecifics per pot) was set up. Eight weeks after sowing the plants were 

harvested, dried, and dry mass was measured.  

Statistical analyses 

Data were analysed with general linear models, generalized linear models and in 

some cases with non-parametrical models (Kruskal-Wallis) using various versions of 

SPSS (9.0-15.0, SPSS Inc, Chicago, USA) and SAS (8.0-9.1, SAS Institute, Cary, USA).  
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Results and discussion 

Pollinator visitation rate, floral display size and plant density 

There was an increase in plant visitation rate with floral display size in both years and 

across all densities investigated (Fig. 1, Paper I). In 1999, plants in dense patches 

received significantly more visits. These findings are in accordance with theory and 

most empirical reports (Pyke et al. 1977, Ohashi & Yahara 1999). The expected 

increase in bout lengths with increasing display size was supported by the data in 

1999, but not in 1998. Moreover, the increase found in 1999 was quite slow, from 1.7 

to 3.2 flowers per bout for display size of 3 vs. 12 (Fig. 2, Paper I), and it is interesting 

to note that in roughly half the plant visits, the pollinator left after probing one flower 

only (59% vs. 43% in 1998 and 1999, respectively. Paper I). In this population D. 
purpurea seems close to fulfilling Klinkhamer and de Jong’s (1993) solution to “the 

plant’s dilemma”. Although Best and Bierzychudek’s (1982) model predicted 

bumblebees to visit 46% of the flowers before leaving and this was confirmed from 

their observations on plants protected from visit prior to observation, they reported 

63% one-flower visits on unprotected plants. The data collected from my population 

(e.g. 3.1 visits per hour per flower in 1999, Paper I), indicate6 that nectar standing 

crop will be low most of the time and predictions on bumblebee behaviour must take 

this into account.  

A result that was consistent between years was that flower visitation rate 

decreased significantly with display size (Fig. 4, Paper I). Most earlier studies have 

found flower visitation rate to be independent of display size. The pollinator’s 

behaviour may be explained in terms of risk averse foraging and the fact that varia-

tion in floral reward level has been found to correlate positively with display size 

(Biernaskie & Cartar 2004, Biernaskie & Gegear 2007). It has also been suggested that 

inflorescences with flowers that require long handling time by the pollinator will 

receive shorter bouts (Ohashi 2002). Handling time on D. purpurea is quite long 

because the bumblebee must crawl into the pendant flower.  

If male or female reproductive success is limited by per flower visitation rate, 

large displays are disadvantageous. Using per flower visitation rate as a measure of 
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success may, however, be misleading, since selection acts on the whole reproduction 

of the plant (Andersson 1988). Moreover, the lowest flower visitation rates observed 

were 1.2 per flower per hour (12-flower display, 1998, Fig. 4a, Paper I) which 

combined with the duration of male vs. female phases (2.1 and 1.5 d, paper II) and 

the duration of visitation period (10h) yields 25 vs. 18 visits to male and female 

flowers, respectively. Combining plant visitation rate in 1999 with probability of 

pollen import or export, the resulting pollen import/export frequency to the plant 

was quite high (Fig. 2). Even the lower values observed in 1998, are probably suffi-

cient to achieve the necessary transport of pollen, and selection on display size should 

be mediated through quality rather than quantity of visitations.  

 

Patch density influenced plant visitation rate and bout length as expected: 

more plant visits in dense patches, but longer bouts in sparse patches (Figs 1 & 2, 

Paper I). More surprisingly, there was an interaction between density and display size 

for proportion of the display visited (Fig. 3b, Paper I), meaning that the proportion of 

flowers visited per display decreased faster in high density patches. This suggests that 
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Figure 2. Pollen import (a) and pollen export (b) to and from inflorescences of 
D. purpurea in 1999 based on predicted plant visitation rate (Paper I) and predicted 
probability of import and export (Paper II). Lines represent high and low density 
patches, solid vs. dotted lines, respectively. 
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selective pressures on display characters and mating patterns may be influenced by 

local plant density.  

Floral herbivory 

The probability of herbivore attack increased strongly with inflorescence size and the 

probability was much larger in dense patches (Paper III). Total level of herbivory was 

low, only 16% of attacked plants lost more than 10% of their flowers. The proportion 

of damaged flowers increased with inflorescence size, indicating that this herbivore 

might select for smaller displays, which in the case of this monocarpic species could 

mean lower threshold size for flowering (Sletvold & Grindeland 2007). However, 

overall attack levels were low and in most cases probably within the range of flower 

numbers that the plant is able to compensate for. At the end of flowering, the major-

ity of D. purpurea plants still have a number of small buds that have not opened 

(pers. obs.) and it is possible that these represent a surplus of flowers that can com-

pensate for flowers lost to herbivory or other damage.  

 Pollinator visitation patterns and florivore oviposition patterns indicate that 

both plant visitors respond to increased display size with increased visitation rate, but 

the outcome of these increases are different: The herbivore’s impact is binary (i.e. 

attacked flower or not attacked flower) while the pollinator’s impact is quantitative 

and harder to assess the consequences of. Given the low level of herbivore attack and 

the high pollinator visitation rate, both visitors probably represent weak selection on 

display size. However, this may change in years with more severe herbivore attack or 

less pollinator abundance. 

Plant’s dilemma

Pollinator visitation patterns in this population confirm the efficiency of Darwin’s 

pollination syndrome in reducing opportunities for geitonogamous pollen transfer 

independent of display size (Paper II). Downward movements were relatively com-

mon (23% of bouts to two or more flowers), but only 2.1% of these involved visita-

tion to a male flower prior to a female flower. In addition, 36% of all plant visits were 

to a single flower only. The presence of dual phased flowers may increase the rate of 

17 



pollinator mediated selfing, but the frequency of such flowers was very low on the 

investigated day in this population (2 of 364 open flowers, Paper II). In sum, these 

results support that Darwin’s pollination syndrome secures a high outcrossing rate in 

this population of D. purpurea.  
Plants probably received adequate pollinator service to both sexual functions 

(Fig. 5, Paper II). A high rate of pollen import is expected given the starting point of 

visiting bouts (70% of arrivals are to lower third of display, Table 2, Paper II). 

However, the result for pollen export is surprising; since most bumblebees start 

foraging at a lower flower and most bouts are quite short (Paper I), pollinators 

should rarely reach male flowers. The resulting model predicts more than half of the 

bouts to result in pollen export regardless of display size (Fig 5b, Paper II). The high 

pollen export rate can be accounted for by the skipping behaviour of the pollinators: 

skipping flowers is quite common and the rate increases with display size. When 

moving between flowers on vertical inflorescences, bumblebees may follow the 

simple rule of choosing the next flower vertically above the present one (Pyke 1978) 

in order to minimize the chance of revisitation. Large inflorescences of D. purpurea 
may therefore have several separate routes the pollinators can follow, leading to 

increased skipping of flowers. This system would be interesting to investigate in 

terms of the influence of inflorescence architecture on plant-pollinator interactions 

(Jordan & Harder 2006).  

Outcrossing distance 

In this population significant inbreeding depression and outbreeding depression was 

detected at five vs. three life history traits. Inbreeding depression was found for seed 

mass, germination speed, juvenile size, flowering start, and flower number (Paper 

IV). Outbreeding depression was found for germination speed, juvenile size, and 

flowering start. Inbreeding depression increased at later life stages, whereas out-

breeding depression was relatively constant. An estimate of cumulative fitness 

(germination per cent × juvenile survival × flower number) gave 21% inbreeding 

depression and 12% outbreeding depression, the latter marginally non-significant 
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(P= 0.10). This demonstrates that intermediate distances (i.e. more than a few metres 

and less than 30 m) represent the optimal crossing distances in this population. 

Outbreeding depression was found at several points in the early life history of 

progeny. Germination took on average 7% longer for 30-m progeny than for 6-m 

progeny, and this is probably a critical point in the life history of D. purpurea, since 

intraspecific competition is intense at this stage (seedling density of up to 0.5 million 

/ m2, van Baalen & Prins 1983, Sletvold 2005). The inferior performance of 30-m 

progeny was upheld at juvenile size and flowering start. (Early flowering in this 

greenhouse experiment is viewed as a measure of how well the plant tolerated the 

vernalization conditions; whether early flowering constitutes a fitness advantage in 

natural environments is uncertain.) The reduction in flower number (23 flowers) of 

30-m progeny was not statistically significant (Paper IV), but whether this represents 

a reduced difference between treatments at this stage or is due to the lower power of 

the statistical test (lower plant number because of space requirements) is not known. 

However, this experiment illustrates that outbreeding depression exists in this popu-

lation and that the effects can influence mating pattern in this species.  

Genetic substructuring of populations, resulting from selection or drift, is the 

proposed cause of outbreeding depression, but which of these processes that are 

responsible for the genomic incompatibilities in this population is not known. 

Planting progeny in parental sites could inform on the possible maladaptation at 

parental sites of progeny from long crosses, but in this species with its long-lived 

seedbank such an experiment may not be decisive, since one or both parental plants 

may be adapted to a microhabiat that existed several decades ago. Regardless of the 

origin of the genomic incompatibilities the increased number of gene copies in this 

autopolyploid species opens for more epistatic interactions (Etterson et al. 2007). 

Unfortunately, too few studies on outbreeding depression at within-population scale 

exist in general, and for polyploids in particular, to do more than raise the question 

of whether outbreeding depression is more common in polyploids. 

Turning to inbreeding depression, this topic is certainly more reported on 

than outbreeding depression in diploids, but reports from natural populations of 

autopolyploids are few (four according to Galloway & Etterson 2007) and my study 
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represents only the second species investigated through the whole lifecycle, 

Campanulastrum americana being the first (Galloway et al. 2003, Galloway & 

Etterson 2007). Significant inbreeding depression was found at all quantitative traits 

investigated, but no effect was found at any binary trait (i.e. where alternatives are 

survival/death, flowering/not flowering), indicating that the frequency of lethal 

mutations is low in this population. Although the autotetraploid genome represents 

more opportunities for recessives to hide from selection, autotetraploids are also 

expected to purge their genetic load (Ronfort 1999). The pattern of expressed 

inbreeding depression is similar to what is expected for predominately selfing di-

ploids (Lande & Schemske 1985) and contrasts with the outcrossing rate inferred in 

this population (0.96, Paper IV). However, the estimate for outcrossing rate used in 

this study is based on pollinator observations during two weeks at peak flowering. 

Outcrossing rate is known to vary through the season and between seasons (Culley et 

al. 1999, Hirao et al. 2006). Observations in other seasons in this population indicate 

pollen standing crop to be correlated with weather conditions, and during and im-

mediately after periods of rain there are ample opportunities for autogamous selfing 

or pollinator mediated within-flower selfing, resulting in lower outcrossing rates. It is 

therefore possible that this population of D. purpurea have purged most of its lethal 

mutations through periods of selfing, although the possibility of increased masking 

of lethals due to autopolyploidy cannot be ruled out.  

A final point to consider for an autotetraploid species is the prevalence of 

tetrasomy in the genome. Populations that have experienced a chromosome doubling 

event are expected to go through a process of diploidisation that through time will 

render them effectively “diploid” (Wolfe 2001, Leitch & Bennett 2004). Polyploids 

may therefore be viewed as being in transition towards a diploid-like state and where 

a population can be found along this trajectory will depend on the time passed since 

polyploidisation. Tetrasomic inheritance was found for some isozymes in this popu-

lation, but to what extent this is representative for the whole genome is unknown. D. 
purpurea is probably an ancient polyploid since most other species in the genus share 

the chromosome count with D. purpurea (Missouri Botanical Garden - W3 Tropicos 

2007) and it is possible that some of the loci have disomic inheritance. Nevertheless, 
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since this study represents one of the first investigations on the effects of inbreeding 

depression and its possible ecological consequences, more studies are needed before 

more general conclusions on the effects of inbreeding depression in autopolyploids 

can be drawn.  

Levels of inbreeding and ecological responses 

It is generally not known to what extent the observed inbreeding depression in 

benign greenhouse environments is representative for the field situation, but several 

studies have found increased inbreeding depression in more stressful environments 

(reviewed in Armbruster & Reed 2005). Different types of stress have been investi-

gated, but results indicate that biotic stress (e.g. competition) increases inbreeding 

depression more than abiotic stress (e.g. water stress) (Cheptou et al. 2000a, Cheptou 

et al. 2000b). The expression of inbreeding depression for juvenile size in D. purpurea 

was more severe when inbred progeny were grown with competitors (Fig. 2, Paper V) 

and this corroborates the notion that inbreeding depression is stronger in stressful 

environments. Comparing the results with those found for the highly outcrossing 

(multilocus outcrossing rate of 0.94) autotetraploid C. americana is particularly 

interesting. This species showed a pattern of expressed inbreeding depression quite 

similar to my findings when grown in the greenhouse, resulting in a cumulative 

inbreeding depression of 0.23, albeit with significant inbreeding depression also for 

some binary traits (Galloway et al. 2003). When grown at native sites cumulative 

inbreeding depression rose to 0.94, again with some inbreeding depression at binary 

traits (Galloway & Etterson 2007). The detection of strong inbreeding depression 

already at the juvenile stage in D. purpurea when grown with competition (δ= 0.37, 

Fig. 2, Paper V), suggests that it would translate into severe lifetime inbreeding 

depression in field conditions.  

How the expression of outbreeding depression in greenhouse conditions 

relates to field conditions is not known (Edmands 2007), but if patterns resemble 

those found for inbreeding depression, the fitness loss following 30-m outcrossing 

could be large; greenhouse estimates of outbreeding depression was stronger than 

inbreeding depression for the key life history stage germination speed. 
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Conclusions
I have demonstrated that plant visitation rate increases with floral display size in 

Digitalis purpurea across all plant densities and in both years investigated. Bumble-

bee bout length also increased with display size, but the rate of increase was slow, 

resulting in a decrease in proportion of flowers visited with display size. The resulting 

per flower visitation rate decreased with display size, a somewhat unexpected result, 

and possibly the consequence of increased variation in reward level on larger 

displays. Plants in high density patches received longer bouts than plants with equally 

sized displays in sparse patches, in keeping with optimal foraging theory. However, 

the proportion of flowers visited decreased faster in dense patches, indicating that 

density may influence mating patterns and selective pressures on display size. 

 The probability of floral herbivore attack to plants also increased with display 

size and plant density. The proportion of flowers attacked increased with display size, 

indicating florivore mediated selection for smaller display, but flower attack rate was 

probably within what most plants are able to compensate for by increasing total 

flowering. However, in years with higher herbivore densities significant selection for 

smaller display may result, which in the monocarpic D. purpurea could translate into 

lower threshold size for flowering. 

 Darwin’s pollination syndrome was found to be effective in avoiding geitono-

gamy and in securing sufficient pollinator service to both sexual functions at all 

display sizes during the investigated period. The surprisingly high rate of pollen 

export across all display sizes is explained by the progressive skipping of flowers by 

bumblebees as displays get larger, thereby servicing male phase flowers even if bout 

lengths are short and foraging starts at the bottom of inflorescences.  

 Outbreeding depression was detected at several life history traits. If exacer-

bated in the natural environment, this could affect the fitness of progeny from longer 

crossings quite negatively, especially at the important seedling establishment stage. 

Inbreeding depression was significant at most quantitative life history traits and was 

stronger at later life stages. Although the pollinator visitation pattern indicated high 

outcrossing, the lack of expressed lethal recessives suggests a history of selfing, 

probably in periods of low pollinator activity. The performance of inbred progeny 
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under competition indicated that inbreeding depression found in the greenhouse is a 

lower limit to that experienced in the field. The existence of joint inbreeding depres-

sion and outbreeding depression implies the existence of an optimal outcrossing 

distance within this population. 
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