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Abstract 

Anti-predation behaviour in many rodents has mainly been studied under laboratory 

conditions, and less in naturally conditions in the field. Here we studied the results of an 

experiment specifically designed for testing the effect of avian predators on root vole 

Microtus oeconomus sub-populations. We compare the frequency of risk-prone behaviour in 

six protected versus six unprotected sub-populations, and study possible costs connected to 

such risky behaviour. More specifically, we predicted that root vole are able to detect the 

current risk of predation by avian, and therefore we assume that the degree of risk prone 

behaviour in root voles will be higher in areas protected from avian predators compare with 

unprotected areas. Additionally, we also investigate the possibility that the preceding 

mortality rate of the sub-populations is the specific cue used for detecting the current 

predation level and risk of being killed by a predator. In accordance with our hypothesis, the 

results showed that adults root voles performed less out-of-patch excursions when inhabiting 

areas with high levels of predation. Juveniles, on the other hand, did not differ between high 

and low predation levels. The frequencies of adult out-of-patch excursions were also 

positively correlated with the preceding mortality rate of the sub-population, we therefore 

suggest that mortality rate may be the cue used by the individuals as a demographical 

indicator of the current risk of predation. 
 

Introduction 

Predators can affect prey populations in several ways. One is the obvious direct effect they 

exert by killing individuals and thus perform a numeric influence on prey population 

dynamics (Post et al. 2002; Sinclair and Pech 1996; Stenseth et al. 1997), but predators may 

also affect their prey indirectly by changing the prey’s activity pattern and demography 

(Korpimaki et al. 2002; Lima and Dill 1990). When confronted with high risk of predation, 

prey species may benefit from minimizing their normal spacing behaviour, and in that way be 

more difficult to detect (Borowski 1998). The clear benefit of such anti-predator behaviour is 

the reduced probability of being killed. However, reduced spacing behaviour may also be 

costly for the animal due to lowered chances of acquiring food (Hovland et al. 1999; Lima 

and Dill 1990; Werner et al. 1983) and may result in secondary consequences such as reduced 

rates of growth and reproduction (Bolbroe et al. 2000; Boonstra et al. 1998a).  

 

Predation is acknowledged as one of the strongest selective forces, which is clearly 

demonstrated by the look of anosmatic and cryptic animals as well as other morphological 
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traits such as protective armor and chemical defence (Sih 1987). Such adaptations reflect the 

outcome of the constant interaction between predators and prey over evolutionary time. 

However, viewed at a smaller time-scale, i.e. ecological time, prey populations may 

experience large variation in predation pressure which may vary greatly on a seasonal or 

yearly basis. Behavioural flexibility driven by predation risk, i.e. a trade-off between 

predation avoidance and energy acquisition, should therefore be expected to be found in 

species that experience large seasonal or yearly fluctuations in predation levels (Kotler et al. 

1994; Norrdahl and Korpimaki 1998; Ylonen 1994). 
  
The literature of non-lethal effects of predation on small mammals is based on both 

theoretical (Brown 1992; Gilliam and Fraser 1987) and empirical studies (Hughes et al. 1994; 

Kotler 1984; Kotler et al. 1992). The interest in this issue may be due to the fact that 

demographic processes result from individual behaviour and that individual anti-predator 

behaviour may have consequences registered at the population dynamics level (Lima 1998; 

Lima and Zollner 1996). In a study of cyclic populations of snowshoe hares Lepus 

americanus Hik (1995) concluded that non-lethal (or sub-lethal) effects caused by the 

presence of predators initiate a cascade of behavioural and physiological responses in the 

snowshoe hare populations that contribute in maintaining the low-phase of the cycle. If such 

time lag of recovery of the prey population is of a certain length it could, according to May 

(1974; 1981), actually play an important role in generating population cyclisity. High levels 

of predation risk has also been proposed to cause the prolonged low abundance phase of the 

population cycle of voles through restricted behavioural activities of the voles (see also 

Boonstra et al. 1998a; Boonstra et al. 1998b; Korpimaki et al. 1994; Ylonen 1994). Non-lethal 

effects of predation have also been suggested to play an important role in the demographic 

dynamics of the neotropical leaf eared mouse Phyllotis darwini (Lima et al. 2001). 
 
Here we present the results of an experiment specifically designed for testing the effect of 

avian predation (e.g. common buzzard Buteo buteo and long-eared owl Asio otus) on root vole 

Microtus oeconomus sub-populations. We compare the frequency of risk-prone behaviour in 

six protected versus six unprotected sub-populations, and study possible costs connected to 

such risky behaviour. Specifically, we predict that root voles are able to detect the current 

predation risk. Consequently the degree of risk prone behaviour in root voles will be higher in 

areas protected against avian predators than in the unprotected areas. In addition, we also 

investigate the possibility that the mortality rate of sub-populations is the specific cue used for 

detecting the current predation level or risk of being killed by a predator.
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Materials and methods 

Experimental area and animal 

The present study was performed at Evenstad Research Station, Østerdalen; eastern Norway, 

between the middle of May and late October 2001. The study area consisted of 3 ha (i.e. 

30 000 m2) total area, which was partitioned in six “vole-proof” plots, each of size 0.5 ha (see 

Fig. 1). Each plot or enclosure was restricted with galvanized steel sheet fences extending 0.6 

m above and 0.4 m below ground. In each plot there were four habitat patches in a paired 

design that consisted of meadow vegetation (grass and clover) of the same type as natural root 

vole habitat in the areas surrounding the experimental plots. The patches has been burned 

yearly, tilled and fertilised to maintain a high quality vegetation for fulfilling the habitat 

requirement for the root vole (Ims et al. 1993; Tast 1966), and to smooth out any potential 

heterogeneity within and between the habitat patches. However, in the year of the present 

study we incorporated habitat quality as an experimental treatment factor and therefore treated 

only one patch in each pair with the usual preparation procedure. As later analysis showed 

that there was no effect of habitat quality on demography of root voles (G. Gundersen, 

unpublished data), we treated each pair of patches as a unit and omitted habitat quality from 

the analysis. Since there was very little immigration between the plots and paired patch this 

was not further analysed. The matrix surrounding the habitat patches, was frequently 

herbicided (Roundup) and mowed during the whole plant-growing season to keep this area 

free for any vegetation, and thus not habitable for voles. Between each of the six plots there 

was a 10 cm opening in the fence to let animals disperse from one plot to the other (Fig. 1). 

The total study area was surrounded by a wire mesh fence to prevent mammalian predators 

from entering the area.  

 

The experimental treatment consisted of excluding avian predators. An anti-avian predator net 

were extended vertically (walls) and horizontally (roof) above two of the four patches in each 

enclosure (Fig.1). The net had a 10 x 10 cm mesh width and were raised by nine 3 - 4 meter 

long wooden pillars. 
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Figure 1. a) Design of the experimental area. The six plots contained four habitat patches each in a 
paired design. One pair of habitat patches in each plot was covered by a predator net (shaded area). The 
areas surrounding the habitat patches (unshaded areas) illustrate the non-habitat matrix. b) An enlarged 
view of the details of a plot. Location of trap stations indicated by small squares. Filled squares: only 
Ugglan traps present, open squares: trap stations with both Ugglan and pitfall traps present. Open 
circles: Dyed bait stations. Since the habitat quality treatment was given to the two outermost patches, 
the next outermost patches were used as release patches. See text for further description of the study 
design.  

 

The root voles used in this experiment were laboratory raised animals originating from 

Valdres in southern Norway. They were kept in the laboratory at the Animal Division of the 

University of Oslo, where they were allowed to reproduce under controlled conditions. On 

May 16th, twelve mothers (first generation from the wild captured animals) with their newly 

weaned offspring (second generation) were released into the two outermost enclosures (plot 1 

& 6), in the next outermost habitat patches, i.e. the release patches indicated in Figure 1. A 

total of 12 mothers, 27 daughters and 30 sons were released in the study area. The animals 

were distributed as evenly as possible among the four release patches without breaking up the 

matrilineal groups (mother with her litter). All animals were individually toe-clipped before 

they were released into the experimental field area. All the enclosures had been emptied for 

animals overwintering in the area. After a period of nine days for establishment, we made the 

10 cm gaps between plots to permit colonisation of the whole experimental landscape.  
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Table 1. Date schedule of release and trapping sessions for year 2000 and 2001. 
 

Trap session 
  

Date 
 

0 
 

Release of laboratory animals 
 

16 May 

1 Trapping session 14 Jun 

2 Trapping session 30 Jun 

3 Trapping session * 12 Jul 

4 Trapping session * 30 Jul 

5 Trapping session * 17 Aug 

6 Trapping session * 4 Sep 

7 Trapping session * 21 Sep 

8 Trapping session * 10 Oct 

9 Trapping session * 28 Oct 

* Trapping sessions when dyed bait was used (see section below). 
 

Live-trapping 

Regular live trapping started on June 14th (see Table 1 for a detailed schedule of date of 

release and trapping sessions). Live trapping sessions were conducted with approximately 15 

days intervals (Table 1). Each trapping session lasted for 3 days and included six trap-checks 

(traps activated from 24:00 h to 12:00 h and checked at 06:00 h and 12:00 h). In total, eight 

trapping sessions were completed during the field season (5 months). We used Ugglan 

multiple capture live traps (Gundersen 2002) in each plot combined with pitfall traps. The 

traps were activated and baited with whole grained oats and a piece of fresh carrot. Twelve 

trap stations were located in a grid system with 5 m spacing within each habitat fragment (Fig. 

1b). For all captures we registered trap positions, toe codes, sex, weight, and reproductive 

status. For females, sexual status was recorded as visible pregnancy, perforated vaginal 

opening and lactation. For males, sexual status was recorded as scrotal or abdominal testes. 

Young unmarked animals were toe-clipped (removal of different toe for individual marking) 

at the time of first capture. 
 

Dyed bait 

In addition to live trapping we used a method with dyed bait (Hovland and Andreassen 1995) 

to register risky movements outside the patches. Bait, consisting of 70 % water and 30 % 

oatmeal, were dyed and placed in petri dishes along the fences in the matrix area (Fig. 1). 

Fluorescent pigment (Radiant colour, Richmond, California) was used as marker in the bait. 

The pigment is visible in faeces examined in UV-light from a period of 2 - 3 hs after the bait 

 



  MATERIALS AND METHODS 6 
 

has been eaten, and is still evident 36 – 48 hs after the removal of bait. See Hovland and 

Andreassen (1995) for a more thorough description of the method. 
 
The bait was put out in the field at 24:00 h, 48 hs before the first activation of traps each 

session. We then sampled faeces from Ugglan traps in individual plastic bags during regular 

trapping sessions. Sampling of faeces was performed only from captures of solitary 

individuals since it is impossible to identify from witch individual the faeces belong to in 

multiple captures. Before reactivating, the traps were cleaned to avoid colour contamination 

in future captures (Hovland et al. 1999). The faeces were later examined for contents of 

fluorescent pigments under an UV-lamp. In total, there were performed seven trapping 

sessions including dyed bait. All petri dishes were removed after the end of a trap session. 
 

Analyses 

Demographic background 
Population development was analyzed as the time specific minimum number of voles known 

to be alive (MNA) in each paired patch. Previous study’s (Aars and Ims 1999, 2000) from the 

same experimental area show that the there are nearly 100 % capture-recapture rate. 

Population development is presented as the average minimum number of individuals known 

to be alive in each paired patch with bars showing standard deviation.  
 
Survival was analysed as the proportion of animals in each paired patch that was known to be 

alive from one trapping session to the next. Survival response variables (Table 2) were 

analysed by logistic regression according to the two predictors; experimental treatment 

(predation net) and season (Table 3). 
  

Risky behaviour 
Two types of potentially risky behaviours were recorded; 1) Out-of-patch excursion rates 

were defined as the proportion of individuals in each paired patch that had eaten dyed bait. 2) 

Interpatch movement rates were defined as the proportion of individuals that had moved 

between the paired patches within one trapping session. Both responses were analysed 

according to the experimental treatment and the co-variables season, sex and age, and all 

possible two way interactions (Table 2).  
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Table 2. Description of the response variables. All variables were analysed at the level of the paired patch. 

Response variables Description 

MNA The time specific minimum number of animals known to be alive. 

Survival Proportion of survived animals from trapping session t to t + 1. 

Out-of-patch excursion Proportion of animals captured with faeces containing dyed bait. *

Interpatch movement Proportion of animals that were captured in both of the paired patches+. 

Mortality Mortality from trapping session t to t + 1, 1 - survival. 

Individual body growth Individual growth of body mass between trapping sessions t to t + 1. 
* Only individuals that were captured solitary were included in the analysis (see text).  
+ Only individuals that were trapped more than once during the trapping session were included in the analysis. 
 
 

Consequences of risky behaviour 
In order to reveal possible fitness consequences of the different movement behaviours (out-of-

patch excursion and interpatch movement), we analysed mortality rates and body growth 

according to the individuals movement history (i.e. performed risky behaviour or not during 

the last trapping session, Table 3). The analyses were performed separately for the two 

behavioural responses; out-of-patch excursion and interpatch movement.  

 

Table 3. Description of the predictor variables.  

Predictor variables Description 

Experimental treatment Anti-avian predator net constituted the experimental treatment. Treatment = 

covered patches, control = uncovered patches.  

Age The individuals’ age. For females the adult stage was defined to start when she 

had been pregnant with her first litter. Males were defined as adults when they 

had been recorded with scrotal testes. 

Sex Female / male 

Season Defined through the nine trapping sessions. 

MNA The time specific minimum number of animals known to be alive. 

Mortality rate Proportion of dead individuals in each paired patch between trap session t - 1 

and t. 

Interpatch movement history Whether or not the individual performed interpatch movement during the last 

trapping session. 

Out-of-patch excursion history 

 

Whether or not the individual performed out-of-patch excursion during the last 

trapping session (used in the analysis of the demographical consequences of 

risky behaviour). 

Growth Average individual body growth in grams during trapping session t.  
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Cues used for recognition of predation level 
In search for potential demographic cues that animals could use to detect predation level, we 

analysed the association between mortality rate (i.e. the proportion of animals that died 

between trap session t -1 and t specific to each paired patch, Table 3) on the two movement 

responses; out-of-patch excursion and interpatch movement performed at time t. 

 

Statistical analyses  
All responses specific to trap session were analysed by repeated-measurement with the paired 

patch as a subject-level random factor. Binomial responses (i.e. survival, out-of-patch 

excursion rate and interpatch movement rate) were analysed by logistic regression, and the 

poisson distributed response (MNA) by log-linear model, all implemented by the macro 

GLIMMIX in SAS version 8.00 (Littell et al. 1996). The fixed factors; treatment (predator net 

/ no predator net), season (i.e. trapping session), sex (female / male) and age (adult / juvenile) 

and all possible two- and three-way interactions were included in the full models (Table 4) 

and thereafter successively removed by a backward selection procedure to leave only 

significant (p < 0.05) parameters in the final model. We used also AIC (Akaike Information 

Criterion) were the best model have the smallest value. Number of animals (MNA) was also 

included as a co-variable in the analyses of risky behaviour (Table 4).  
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Table 4. Overview of the variables included in the full models. 

Section               Response Predictors 

Demographical background   

                            MNA * Treatment 
Season 

                            Survival * Treatment  
Season 

Risky behaviour    

                            Out-of-patch excursion * Treatment 
Season 
Sex 
Age  
MNA 

                            Interpatch movement * Treatment 
Season 
Sex 
Age  
MNA 

Consequences of risky behaviour  

                            Mortality + Treatment 
Out-of-patch excursion history 

                            Mortality + Treatment 
Interpatch movement history 

                            Individual body growth Sex 
Age 
Season 
Out-of-patch excursion history 
Individual body weight 

                            Individual body growth Sex 
Age 
Season 
Interpatch movement history 
Individual body weight 

Cues used for recognition of predation level   

                            Out-of-patch excursion * Preceding mortality rate 
Season 
Sex 
Age  

                            Interpatch movement * Preceding mortality rate 
Season 
Sex 
Age 

* All analyses of season-specific data were analysed by repeated measurements with the paired habitat patch as a 
subject level random factor. 
+ Simpler full models were chosen here as the data structure did not allow convergence of complex models. 
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Results 

Demographic background 

Overall survival was higher in the protected patches compared to the unprotected patches (F1, 

94 = 4.20, p = 0.043; Fig. 2). However, due to high levels of immigration into the uncovered 

areas (Gundersen and Ims, in prep.) there was in general a higher number of voles in the 

unprotected than in the protected patches throughout the main part of the field season (on 

average 2.97, SE =  1.6 (F1, 10 = 3.45, p = 0.093) more individuals in uncovered compared to 

covered, Fig. 3).  
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Figure 2. Survival probabilities of individuals 
inhabiting paired patches covered by a net and those 
that were not covered by a net (with 95% CI). 
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Figure 3. Minimum number of individuals known to 
be alive (MNA) in average for each paired patch 
throughout the season with SD. Continuous line: 
patches covered with a net, dotted line: Patches not 
covered with a net. 

 

Risky behaviour 

Out-of-patch excursions 

Adults inhabiting patches protected by predator net performed more out-of-patch excursions 

than adults inhabiting unprotected patches, whereas juvenile out-of-patch excursion rates were 

fairly unaffected by the treatment (interaction effect between age and experimental treatment: 

F1, 44 = 4.95, p = 0.031; Fig. 4). For all categories of animals the probability to perform out-of-

patch excursions decreased significantly throughout the season (logistic slope = -0.15, SE = 

0.05, F1, 214 = 7.82, p = 0.006). 
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Figure 4. The probability to performing out-of-patch 
excursions among individuals inhabiting paired 
patches covered by a net (continuous line) and those 
uncovered by a net (dotted line). Black colour: adults, 
grey colour: juveniles. 
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Figure 5. The probability to perform interpatch 
movements. Black colour: males, grey colour: 
females. 

 

Interpatch movements 

The probability to perform interpatch movements was not associated to treatment (F1, 43 < 

1.89, p > 0.1765). There was, however, a tendency for an interaction between sex and age (F1, 

44 = 3.44, p = 0.070), with adult males showing the highest frequency of interpatch movement 

(Fig. 5). Interpatch movements decreased throughout the season (logistic slope = -0.38, SE = 

0.08; F1, 44 = 21.42, p = 0.001). 

 

Consequences of risky behaviour 

Mortality consequences of movement history 

There was a tendency for animals that performed out-of-patch excursions in covered patches 

to have lower mortality than animals that performed out-of-patch excursions in uncovered 

patches (F1, 994 = 2.90, p = 0.089; Table 5). Similar results as for out-of-patch excursions was 

detected for interpatch movements in that there was a tendency for animals that performed 

interpatch movements in covered patches to have a lower mortality than those in uncovered 

patches (F1, 994 = 2.50, p = 0.114; Table 6). 

 

Body growth consequences movement history 

Growth of body mass was higher for individuals that had performed out-of-patch excursion 

than for those that did not perform out-of-patch excursions (F1, 616 = 4.05, p = 0.045). In 
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addition, growth of body mass was dependent on sex among juveniles (effect of the 

interaction age*sex: F1, 616 = 7.38, p = 0.007). Body growth were also associated to the 

age*season interaction (F1, 617 = 6.26, p = 0.013) where the negative seasonal association with 

body growth was stronger for juveniles than adults (Fig. 6 and Fig. 7). There was no 

association between body growth rate and performance of interpatch movements (F1, 616 = 

2.08, p = 0.149).  

 

Table 5. Predicted mortality rates for the four level combinations of treatment and out-of-patch excursion history 
with 95 % CI. 

Treatment  Out-of-patch excursion history 

  Performed out-of-patch excursion Not performed out-of-patch excursion 

Covered  0.09, 95 % CI = [0.04, 0.16] 0.15, 95 % CI = [0.10, 0.21] 

Uncovered  0.19, 95 % CI = [0.12, 0.28] 0.17, 95 % CI = [0.12, 0.24] 

 

Table 6. Predicted mean values from the four level combinations of treatment and interpatch movement history 
with 95 % CI. 

Treatment  Interpatch movements history 

  Performed interpatch movement Not performed interpatch movement 

Covered  0.07, 95 % CI = [0.02, 0.17] 0.14, 95 % CI = [0.10, 0.20] 

Uncovered  0.20, 95 % CI = [0.11, 0.35] 0.17, 95 % CI = [0.13, 0.23] 
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Figure 6. Body growth consequences of out-of-patch 
excursion history for adults. Dotted lines: Animals 
that performed out-of-patch excursions, continuous 
lines: animals that did not perform out-of-patch 
excursions. Black colour: males, grey colour: females. 
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Figure 7. Body growth consequences of out-of-patch 
excursion history for juveniles. Dotted lines: Animals 
that performed out-of-patch excursions, continues 
lines: animals that did not perform out-of-patch 
excursions. Black colour: males, grey colour: females. 
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Cues used for recognition of predation level 

Out-of-patch excursion 

The probability to perform out-of-patch excursions was associated to the interaction between 

mortality rate and age (F1, 212 = 6.41, p = 0.012). Out-of-patch excursions decreased with 

increasing mortality rates in adults, while this correlation tended to be positive for juveniles, 

(Fig. 8). 

 

Interpatch movement 

The probability of performing interpatch movements was significantly correlated to mortality 

rates (F1, 200 = 6.07, p = 0.015; logistic slope = 2.07, SE = 0.84). Interpatch movement did also 

depend on age (F1, 46 = 8.02, p = 0.007), where adults showed a higher movement probability 

than juveniles (Fig. 9). There was also significant effect of season (season: F1, 200 = 20.30, p = 

0.001), where the probability for interpatch movements for both adults and juveniles 

decreased throughout the season (logistic slope = -0.35 SE = 0.08). 
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Figure 8. The probability of performing out-of-patch 
excursion change with mortality rate and depends on 
age. Dotted line: adults, continuous line: juveniles 
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Figure 9. Probability for interpatch movement 
(transfer between patches) related to proportion dead. 
Dotted line: adults, continuous line: juveniles. 
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Discussion 

The experimental treatment in this study, the anti-avian predation net, caused significant 

differences in mortality, i.e. mortality was higher in control than treatment sub-populations. 

The experimental treatment factor could therefore be used as an indicator of high and low 

levels of predation risk, and hence be used to test the hypothesis that the degree of risky 

behaviour among root voles is dependent on the current level of predation. Our primary 

prediction; that root voles are able to detect the current risk of predation and consequently 

adjust their degree of risk prone behaviour according to the levels of predation, were partly 

supported bye the fact in that adult root voles performed less out-of-patch excursions when 

inhabiting unprotected areas. Out-of-patch excursions of juveniles, on the other hand, did not 

differ between high and low predation level. The age specific difference in this response is, 

however, not very surprising. Juvenile root voles (and small mammals in general) undergoes a 

stage of dispersal where they leave the area where they are born and thereafter follows a 

period of search for a new place to settle down (Gundersen and Andreassen 1998; Johnson 

and Gaines 1990; Stenseth and Lidicker 1992). For juveniles the ultimate reason behind out-

of-patch stay may therefore be far different from the excursions established animals take in 

open areas as part of their daily behaviour, e.g. in search for food. The other risky behaviour 

response; interpatch movement, did not vary according to predation level. One possible 

explanation for this may be that the root voles do not consider the interpatch distance of 5 m 

as a risky distance to traverse. Adult males showed a higher frequency of interpatch 

movement than adult females and juveniles, not surprisingly as male root vole territories often 

may exceed 375 m2 (the size of one patch) and that males often include several females within 

their territories (Eikeset et al., in prep.; Gliwicz 1997; Ims 1988; Lambin et al. 1992; Tast 

1966).   

 

In the present study there was a tendency for higher mortality among for those individuals 

belonging to uncovered patches and in addition had performed risky out-of-patch excursions. 

The same trend was apparent regarding the other measurement of risky behaviour; the 

interpatch movement. Such behaviour has previously been found to increase the risk of 

mortality in this experimental system (Andreassen and Ims 2001). Body growth was also 

generally higher for individuals that had performed out-of-patch excursions than those that 

did not perform this risky behaviour. In the present study we were thus able to test the 

assumption that our selected measurements of risky behaviour (i.e. out-of-patch excursions 
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and interpatch movement) were risky in terms of higher probability of predation, and that 

there are benefits associated to this behaviour, namely increased energy acquisition. Hence, 

showing a trade off between costs and benefits connected to different behavioural choices is 

the basis of the theory of anti-predator decision-making (Lima 1998).  

 

Anti-predation behaviour in many rodents has mainly been studied under laboratory 

conditions, but some are also performed under more natural conditions in the field. Many 

laboratory studies have been able to show anti-predator responses in rodents when exposed to 

different cues of predation like scent from mammal predators (e.g. Jedrzejewski et al. 1993; 

Koivisto and Pusenius 2003; Ylonen and Ronkainen 1994) or sounds from avian predators 

(Eilam et al. 1999; Hendrie et al. 1998). However, replications of these results in field 

experiments have rarely been successful (Jonsson et al. 2000; Powell and Banks 2004; 

Sundell et al. 2004). Common for these studies is that the study animal most often is treated 

with indirect cues of high predation levels (e.g. presence of stout scent in some areas and not 

in others). Presence of the actual predator (encaged) has also constituted the treatment in one 

study without any success (Sundell et al. 2004). In these studies it is not obvious whether or 

not the prey actually consider the predator as a real threat, because no attacks occur. In the 

present study, however, we demonstrate that risky behaviour of adult root voles is performed 

more frequently in protected- high mortality sub-populations than unprotected- low mortality 

sub-populations. Another large scale field study that has successfully demonstrated 

differences in the level of performed risky behaviour (i.e. mobility) is the study of Norrdahl 

and Korpimäki (1998). They manipulated predator densities in large, unfenced areas and 

found that experimentally reduced predation risk increases the mobility of radio-collared 

voles. Survival rates of the vole populations were not estimated for these vole populations. 

However, there are reasons to believe that intense predator exclusion (both mammalian and 

avian predators) also will affect the mortality rates in the treatment vs. control areas. From 

this we suggest that voles, in order to attain information about their current risk of being 

predated, they use the most direct cues of predation risk, namely the current mortality level of 

conspecifics in their immediate surroundings. Our suggestion is thus related to the theory of 

public information, where individuals are gathering information through observation of 

conspecifics to attain honest and direct measures of e.g. fitness of the individuals in the area 

and thereafter use this information to select habitat for settlement (Danchin et al. 2001). 

Further studies should try to elucidate how animals detect demographical changes in their 

environment and how this information is used in behavioural decision making. 
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