Variation in species composition and ecological factors in and adjacent to 64 ponds in the agricultural landscape of SE Norway

Anette Edvardsen

Cand. scient. thesis 2004

Botanical museum Natural History Museums and Botanical Garden University of Oslo

1 Acknowledgments

Denne hovedfagsoppgaven har blitt utført ved Universitetets naturhistoriske museer og botaniske hage, Universitetet i Oslo. Den er utformet på bakgrunn av et større kulturlandskapsprosjekt, 3Q (Tilstandsovervåking og resultatkontroll i jordbrukets kulturlandskap), som utføres av NIJOS (Norsk institutt for jord- og skogkartlegging) og som ledd i NFR (Norges Forskningsråd)-prosjektet '*Agricultural landscape change – effects on the species diversity of vascular plants*' (3Q-KM).

Først og fremst vil jeg takke veilederen min, professor Rune Halvorsen Økland, for god oppmuntring og veiledning i hele perioden. Jeg er takknemlig for at han alltid har tid til faglige spørsmål og nyttige diskusjoner, for at han er ryddig og oversiktlig, vennlig og har faglig tyngde. Dessuten vil jeg takke Reidar Elven for hjelp til bestemmelse av karplanter én dag i felt og i herbariematerialet i etterkant. Takk til alle i 3Q-gruppa på NIJOS for ideer og hjelp underveis, til Ståle Håland for kjemisk analyse av vannprøvene, til Kjell Arne for overnatting i felt, til Jan Ingar Båtvik for å være en tidlig inspirasjonskilde, til Svein Åstrøm for å la meg få "leke" og lære i gårdsdammene dine før jeg dro ut i felt, til Tor Erik Brandrud, NINA og Geir Hardeng, FM Østfold, for kildemateriale, til Wenche på biblioteket på Botanisk museum, til alle studenter og andre ansatte på Botanisk Museum, dessuten til mange trivelige grunneiere og andre som har hjulpet meg med informasjon om gårdsdammer generelt og spesielt!

Takk til mamma og pappa for lån av bil hele sommeren! Pappa har vært oppfinnsom og laget en del av feltutstyret mitt, mamma har vært feltassistent noen dager og flittig vasket møkkete felt-tøy. Takk til Ingvild for at du var med i felt, for at du hver dag tålmodig lot meg bygge en "borg" av ullpapp som måtte tørke og dermed dekket hele kjøkkenet, og for at jeg til stadighet hadde igler i vasken på kjøkkenet som fulgte med inn når jeg skulle presse planter! Takk til andre venner og familie for stadig oppmuntring og for å vise genuin interesse for det jeg driver med!

> Anette Edvardsen Oslo, juni 2004

2 Abstract

All vascular plants were inventoried in 64 SE Norwegian landscape ponds and their adjacent margins; two separate species lists were made for each sampling unit. Individual study sites varied considerably in species richness, 1–20 and 13–81 for ponds and pond margins, respectively. A total of 56 explanatory variables were recorded for each pond and adjacent margin.

Data on species composition and species richness were analysed separately for ponds and pond margins. Vegetation gradients were found by parallel use of the two ordination methods DCA (Detrended Canonical Analysis) and GNMDS (Global Non-metric Multidimensional Scaling). Interpretation of ordination axes was made by using correlation analyses, GLM (generalised linear modelling) and by geostatistical analyses of spatial structure. Patterns of species richness were analysed by correlation analyses and GLM. The first DCA and GNMDS ordination axes both for ponds and pond margins were strongly correlated and the main gradient was related to geographical variables (such as UTM northing, altitude, distance to forest), pond age and water chemical variables. Water depth and soil depth also explained some of the variation in species composition in ponds and pond margins, respectively. The second DCA and GNMDS axes were different for the two data sets. The second gradient for pond margins was also related to geography and water chemistry in addition to some of the anthropological variables, whereas the second gradient for ponds was harder to find.

Correlations and GLM analyses of species richness revealed that mainly water chemistry, in addition to periodical pond drainage and liming were significant predictors of pond species richness, whereas area, if the pond had recently been expanded, some water chemical and geographical variables were significant for the species richness of ponds margins.

Different structuring processes which may contribute to explaining variation in species composition and richness are discussed. The analysis of spatial structure of species composition and explanatory variables showed that the ecological data were weakly spatially structured over large range of scales and particular patterns were hard to find. Together with the generally weak explanatory power of the selected variables, this indicates high importance of apparent randomness in this ecosystem, and, notably, that the ponds and their adjacent margins represent islands in the agricultural landscape that accumulate species more or less individualistically.

3 Contents

1	Acknowledgments	2
2	Abstract	3
3	Contents	4
4	Introduction	6
5	Materials and methods	. 10
	The investigation area	. 10
	The sampling design	. 11
	Recording of species data	. 11
	Recording of explanatory variables	12
	Editing and manipulation of explanatory variables	. 12
	Relationships among explanatory variables	. 16
	Correlation analysis	. 16
	PCA ordination	. 16
	Ordination of vegetation	. 16
	Comparison of ordination methods	. 18
	Relationships between ordination axes and explanatory variables	. 18
	Correlation	. 18
	Multiple regression	. 18
	Variation partitioning	. 18
	Spatial structure	. 19
	Relationships between species richness and explanatory variables	20
	Correlation	20
	Multiple regression	20
6	Results	21
	Explanatory variables: summary statistics	21
	Relationships between explanatory variables	21
	Correlation	21
	PCA	25
	Ordination of vegetation	26
	DCA	26
	GNMDS	29
	Ponds and adjacent pond margins located within the same 1 km ² sample square	30
	Comparison of ordinations	. 31
	Interpretation of ordinations	34
	Correlations between ordination axes and explanatory variables	34
	Multiple regression	34
	Variation partitioning	37
	Spatial structure	. 39
	Relationships between species richness and environmental variables	. 39
	Species richness	. 39
	Correlation	41
	Multiple regression	42
7	Discussion	44
	Evaluation of ordination methods	44
	Interpretation of variation in vegetation	45
	The main gradient for ponds and pond margins	. 45
	The second gradient for ponds	. 51
	The second gradient for pond margins	. 52
	Spatial structure	. 53

	Relationships between species richness and environmental variables	
	Ponds	
	Pond margins	
	Structuring processes in species composition	
8	References	
9	Appendices	
	Appendix 1	
	Appendix 2	79
	Appendix 3	85
	Appendix 4	97
	Appendix 5	101
	Appendix 6	
	Appendix 7	
	Appendix 8	
	Appendix 9	
	Appendix 10	
	Appendix 11	
	Appendix 12	

4 Introduction

Agricultural landscapes are, traditionally, landscapes of change. Formed by continuous human influence over generations, agricultural landscapes are living cultural ecosystems in which structural changes are brought about by changes in human use (Skånes & Bunce 1997). These changes have wide-ranging consequences, especially for biological diversity. The nature and extent of these biological effects of structural changes are largely unknown. The way we choose to utilize the landscape is often affected by conjunctures, technology and political aims (Anonymous 1987). After World War II the Norwegian authorities have encouraged farmers to change from farming based on domestic animals to production of grain in those parts of the country where the natural conditions make this possible. This is especially relevant for the south-eastern part of Norway where it has been encouraged by economical measures. Furthermore modern equipment and technology has made grain production a profession with small demands for manpower per unit area (Anonymous 1980; Aasbrenn 1985). This has brought about, among other things, removal of traditional farm ponds used for animal husbandry (Fig. 1). Such farm ponds have to some extent been replaced with ponds used for watering the fields (Fig. 2). Pond abandonment has also been assisted by the 50 % reduction of farms in Norway, 1960–2001 (Fremstad & Moen 2001).

Figure 1. Traditional farm pond at Olstad, Akershus.

Figure 2. Typical pond used for watering at Skjelve, Hedmark.

Another factor that has contributed to the abandonment of traditional agricultural ponds is the development of water conduit systems. In former times, farm ponds could be the only source of water and it commonly had multiple functions at a farm, e.g. as reported from Torskenes farm, Sarpsborg, SE Norway, where six types of ponds were present, named after their use (Grøndahl 1980): "barn pond" ("fjøsbrønn"), "potato-cellar pond" ("kjellerbrønn"), "washing-

house pond" ("bryggerhusbrønn"), "drinking-well/-pond" ("renvannsbrønn"), "stable pond" ("stallbrønn") and "forge pond" ("smiebrønn"). Legislation ("Brønnloven av 31. mai 1957"; Anonymous 1985a) enforced demands for improved securing and thereby indirectly promoted drainage and filling in of the ponds. This law therefore indirectly contributed to reduction of the biodiversity in the more traditional agricultural landscape. The same development has been promoted, indirectly, by the fact that the law for protection of cultural heritage sites ("Kulturminneloven"; Anonymous 1985b) does not include farm ponds.

About 5 % of the land area of Norway is covered by freshwater and there are ca. 440 000 lakes > 600 m² (Anonymous 1999a). In addition to this, lots of small ponds and streams give Norway an unusual density of both flowing and stagnant water even in a worldwide perspective (Anonymous 2000). The term farm pond will be used for a diverse group of more or less small ponds located in the agricultural landscape. These ponds vary a lot in appearance and shape depending on geographical, physical and chemical characteristics as well as historical events and use. Standing water is commonly classified on basis of climate, circulation, morphometry, formation, plant and animal communities and water chemistry. Farm ponds will typically be classified as eutrophic ponds (Anonymous 1999a) or *Potamogeton* ponds (Mjelde *et al.* 2000). Anonymous (1999a) does, however, make a distinction between farm ponds and *Potamogeton* ponds.

Natural eutrophic ponds are rare in Norway. *Potamogeton* ponds are considered an endangered type of vegetation and have declined over the last decades (Anonymous 1999a, Fremstad & Moen 2001), as exemplified by a survey in Spydeberg, Østfold, SE Norway, showing that 50-60% of the ponds present in 1964 were in the mid 1990s closed up (Spikkeland 1998), and that 30-50% of these ponds were lost during 1984–1994 (Wergeland Krog 1996). Furthermore one third of surveyed ponds in Ringerike, Buskerud, SE Norway, had disappeared within the decade 1978–88 (Dolmen *et al.* 1991). Surveys from Østerdalen, Gauldalen and the Trondheim area revealed lots of ponds at the risk of being filled in (Dolmen 1990; Dolmen & Strand 1991). Another survey did, however, conclude that there had been a slight increase in the number of ponds in Nes, Ringsaker, Hedmark, SE Norway, within the period 1960–2000 (A. Often pers. comm.).

One of the criteria used for categorising endangered vegetation types is the occurrence of species on the Red List (Anonymous 1999b). Because of the strong reduction of farm ponds, many of the species typically associated with ponds are red listed. According to the most recent Norwegian Red List 51 vascular freshwater plants (helophytes not included) are red listed, and freshwater is considered an important element adding to an area's conservation

value regardless if presence of endangered or rare species is proved or not (Anonymous 1999a).

Through several national and international agreements, e.g. the Convention on Biological Diversity (1992) and Parliamentary White Paper no. 8 (1999–2000), Norway has agreed to conserve biodiversity. Conservation of farm ponds and the vascular plants living therein must be seen in an ecological context, in interaction with other biotic and abiotic factors. There are also other concerns for keeping farm ponds in the agricultural landscape. They may function as natural regulators of the water level, prevent communities from inundation as well as from drying up, and add to landscape beauty (Hodgson & Thayer 1980). Farm ponds is thus considered as an important element in the landscape, both from the point of view of biodiversity and cultural heritage conservation (Anonymous 1994a). One of the national intensions stated by the Norwegian government is to maintain the cultural history, the cultural environment and settings (Bye *et al.* 2003).

Vascular plants constitute an important part of agricultural landscape biodiversity (Hanski & Tianinen 1998) and many of the species found in agricultural areas are considered being culturally dependent (Stabbetorp & Often 2003). In cultivated landscapes small patches of remnant vegetation, e.g. farm ponds, hold a key position by serving as the only hospitable habitat islands for a wide range of species. A pond is characterised by the physical and chemical conditions like morphology, pH, turbidity and nutrient concentrations, as well as organisms like plants, fish and ducks. These factors provide both a biotic and an abiotic environment which will differ spatially and temporally along and within ponds. Only organisms possessing specific traits and adaptations will be able to establish and reproduce successfully under these conditions (Brønmark & Hansson 1998).

Patterns and determinants of freshwater biodiversity are poorly known compared to those of many terrestrial groups. Most research on species richness in the agricultural landscape has either focused on invertebrates like salamanders in ponds or plant species in meadows, e.g. Norderhaug (1987); Ekstam & Forshed (1992); Hamre & Austad (1999); few published data describe smaller natural or man-made ponds. Even though research into the ecology and conservation of British ponds has increased markedly over the last decades (cf. Biggs & Aistrop 1995; Hull 1997), ponds are considered as poorly studied compared to other freshwater habitats in the UK, despite they are common landscape features (Wood *et al.* 2003). It has been argued that their relatively small size and the high frequency of occurrence have led to the widely held belief that ponds were ecologically unimportant (cf. Wood *et al.* 2003). Japanese studies show that pond vegetation has disappeared or changed dramatically

e.g. because of recent urbanization (Shimoda 1997). The same situation has also been reported in Europe, e.g. Møller and Rørdam (1985) in Denmark in addition to Barr *et al.* (1994) and Boothby & Hull (1997) in the UK.

Studies in which the plant species composition of Norwegian farm ponds is systematically surveyed are lacking, despite the recognition of the biological importance of the pond ecosystem. Furthermore, aquatic plants are expected to respond strongly to the environmental conditions within a pond because they are in close contact both with the sediments and the surrounding water. The chemical environment of many ponds has changed during the last century, due to intensified exploitation of the land by farming, urban expansion, and water pollution (cf. Boothby & Hull 1997; Heegaard *et al.* 2001). Improved knowledge of plants' responses to the environmental conditions can therefore be useful for identification of environmental conditions indicative of biodiversity change.

The objective of this thesis is to contribute to filling the knowledge gap with respect to plant species composition and ecological conditions of pond ecosystems in the Norwegian agricultural landscape. The main focus is on patterns of variation in species composition and species richness of vascular plants, as analysed by correlation analysis and multivariate methods. As a final point structuring processes in species composition will be addressed, notably, what processes are most likely to contribute to species composition seen in this study of ponds and adjacent pond margins.

5 Materials and methods

The investigation area

The 64 study sites were located in 25 municipalities in five different counties (Østfold, Vestfold, Akershus, Hedmark and Oppland) in the south-eastern part of Norway (Fig. 3). The investigation area belongs to two agricultural regions (in the national classifications by the Norwegian Institute of Land Inventory, NIJOS (Puschmann 1998)) and the study area is therefore considered sufficiently homogenous, e.g. with respect to agricultural processes, climatic factors and topography to allow common analysis of data. This part of Norway is characterised by an agricultural landscape that is mostly flat and open, or within a matrix of more or less extensive woodlands.

Figure 3. Map showing 44 sample squares containing 64 ponds in the south-eastern region of Norway. Descriptions of study sites (farm/site, municipality, county) are given in Appendix 1.

The sampling design

The study area was chosen to be similar to that in the Norwegian Research Council (NFR) project (*3Q-'Agricultural landscape change – effects on the species diversity of vascular plants'*) carried out by the University of Oslo and the Norwegian Institute of Land Inventory (NIJOS), see R. Økland *et al.* (submitted). The 3Q monitoring programme is a national sample-based survey consisting of 1475 sample squares of 1 km² (see Dramstad *et al.* 2002 for more details), distributed across the country in proportion to the area cover of agricultural land (3Q land type class A; Mathiesen *et al.* 2002). Each sample square with its land types is mapped based upon interpretation of true-colour aerial photographs.

The 64 ponds included in the present study were systematically selected from 44 randomly selected 1 km² 3Q-vegetation plots situated in the boreo-nemoral and the southern boreal vegetation zones (Moen 1998) in five SE Norwegian counties Østfold, Vestfold, Akershus, Hedmark and Oppland. All freshwater ponds interpreted as farm ponds according to the 3Q definition (artificially created pond with an area of 4-5000 m² (Engan 2004)), were included. Field work was carried out in the summer of 2003, from ultimo June till ultimo August. Each site was visited at least two times for recording of full species lists, while environmental explanatory variables were recorded on one occasion.

Recording of species data

Separate species lists were obtained for the pond (P) and its surroundings, the pond margin (M), of each site. Only vascular plants were recorded. Each species on each sampling unit was assigned a quantitative abundance value: 0 - absent, 1 - infrequent, 2 - frequent and 3 - dominant. Plant species rooted in water were included on the pond species list. If present natural borders (rock wall, lawn etc.) were used to delimit the pond margin, otherwise it was given the maximum width of 3 meters. Plants which according to the owners of the properties were known to be introduced were not registered.

The nomenclature of vascular plants follows Lid & Lid (1994). Three genera (*Arctium, Hosta* and *Taraxacum*) were considered *species pluralis* (*spp.*) because further identification was generally not possible.

A total of 104 and 301 species, respectively, were recorded in ponds and pond margins. Plants were searched for by walking the pond perimeter, by wading, and from boat. A rake and a grapnel were used whenever necessary. The species data was organized in two primary species data matrices P1 for the pond and M1 for the margin (Appendices 2 and 3, respectively).

Recording of explanatory variables

A total of 56 explanatory variables were recorded in a standardised way for every sampling unit (Appendix 4). All variables were recorded in the field except numbers 6–10 and 19–36 which were based upon information from the land owners. The explanatory variables were divided into seven groups (Tab. 1): (1) area; (2) hydrology; (3) geography; (4) historical features; (5) anthropological impacts; (6) topography; and (7) water chemical and physical variables. Only six of them were considered relevant for each data set and will thus be included in the analyses of each pond and pond margin.

Variables 44–56 were recorded from water samples, analysed at VANNFORSK, Ås. The samples were taken ultimo August in a standardised way for all ponds. Clean plastic bottles were flushed with pond water and then lowered into the pond about 1.7 meters from its edge (using a stick) to a depth of about 0.5 meters. The samples were filtered by a net (mesh width about 1 mm) to avoid particulate matter. The samples were stored at 4° C for 1–10 days before analysed.

Editing and manipulation of explanatory variables

Explanatory variables were edited using Microsoft Excel Version 5.1 (Anonymous 2002a) and S-PLUS Version 6.0 (Anonymous 2001). For all recorded continuous explanatory variables skewness and kurtosis standardised by division with their standard deviations, $(6/n)^{0.5}$ and $(24/n)^{0.5}$, respectively (Sokal & Rohlf 1995), were calculated. Reduced skewness in the frequency distributions of the explanatory variables, and at the same time improved homoscedasticity, were achieved by transforming the continuous variables to zero skewness (R. Økland *et al.* 2001). Approximate homogeneity of variances was achieved by finding (by iteration) the value of c that gave the explanatory variables (y) zero skewness (|standardised skewness| <10⁻⁵) using the following formulae:

(1) $y = e^{cx}$	applied to left-skewed variables
(2) $y = \ln (c + x)$	applied to right-skewed variables

Table 1. Environmental variables with their abbreviations and transformations. Cont. = continuous, categ. = categorical, * = ordered variable coded as follows: 0 - never, 1 -

$_{>5} y$	rs ago, 2 – 2–5 yrs ago a	and <u>3 – u</u> sa	ge within 2003.				
No	Explanatory	Relevant	Method for quantification	Range	Туре	Transf.	c value
	variable	for pond					
	(Abbr.)	(P) or					
		margin					
		(M)					
Area	(A)	_			_		
01	Pond area	Р	In m ² , rounded to integer numbers, based upon an accurate map made up in the field, calculated by	19-3010	Cont.	$\ln(c+x)$	-6.008
	(PArea)		using a digital planimeter.	F (00)	a .	1 (22 0
02	Pond margin area	М	In m ⁻ , rounded to integer numbers, based upon an accurate map made up in the field, calculated by	5-600	Cont.	$\ln(c+x)$	22.8
02	(MArea)	м	using a digital planimeter.	0.2 (00	Cont		0.6500
03	Average width	IVI	In m, rounded to one decimal, round by assuming that the poind and its margins were circular, solving the exection $A_{\rm m} = r^2$ and $A_{\rm m} = r^2$.	0.2-600	Cont.	ercx	0.6599
Uvdr	(Avgwid)		the equations $A_p - I_p$ and $A_{m+p} - I_{m+p}$ for $I_{m+p} - I_{m+p} - I_p$				
Tryur	Water depth	P	In cm. measured at 7-15 points along the long axis of the pond, by inserting into the water a line with a		Cont		
04-	(MaxDen)	1	sinker at the end Number of points depended on the length of the pond. Maximum depth (MaxDen)	27-352.0	Cont.	$\ln(c+x)$	84 39
05	(MedDen)		and median depth (MedDen) derived from the measurements	16-252.5		$\ln (c+x)$	104.1
05	(mean ep)		and moduli depti (modbop) derived nom die modsdiements.	10 252.5		III (C · X)	101.1
06	Range of fluctuation	Р	Estimated range of water level fluctuation in a normal season. The 2-logarithmic scale was used: 0: 0-	0-4	Categ.	None	
	(Fluct)		25cm, 1: 25-50cm,		Ordered		
			2: 50-100cm, 3: 100-200cm and 4: >200cm.		0-4		
07	Periodically drained	Р	Known complete drainage either because of human use or for natural reasons.	0-3	Categ.	None	
	(Drain)				Ordered		
					0-3 *		
08	Spring well	Р	Presence (1) or absence (0) of a natural spring well in or near the pond.		Binary	None	
	(Well)						
09-	Outlet (Outl) and	Р	Presence (1) or absence (0) of at least one inlet or outlet, natural or artificial.		Binary	None	
10	Inlet (Inl)						
Geog	raphy (G)	D. 14		20 440	C	1 ())	41.00
11	Altitude	Р, М	Meters above sea level taken from maps with 5 m contour intervals.	20-440	Cont.	$\ln(c+x)$	41.89
10	(Alt) UTM northing (UTMn)	р м	UTM (Universal Transversa Mercetar) northing and UTM costing coordinates for non-d-contrast form	(5(0))(9	Cont	In (alm)	6555260
12-	UTWI northing (UTWIN)	P, M	UTW (Universal Transverse Mercator) norming and UTW easing coordinates for pond centres, found by using the geographical internet detabase of Statene Kartwork (Anonymous 2002b)	6761265	Cont.	$\ln(c+x)$	-0333200
13	UTM easting (UTMe)		by using the geographical internet database of Statens Kartverk (Anonymous 20020).	581012		$\ln (c+\mathbf{x})$	-406250
15	O TWI easting (O TWIE)			638481		$\lim_{x \to \infty} (\mathbf{c} + \mathbf{x})$	-400230
	Distance from pond	РМ	Distance from a pond's margin to the nearest	050401	Cont		
	margin to:	1,			com.		
14	water (DistWat),		stagnant water (pond or lake).	10-2850		$\ln(c+x)$	59.5
15	road (DistRoad),		road with a road verge,	2-373		$\ln(c+x)$	4.795
16	farmland (DistAgr),		farmland area (meadow or field),	2-153		$\ln(c+x)$	-1.71982
17	built-up area (DistBui),		built-up area (garden or courtyard) or	1-347		$\ln(c+x)$	-0.999758
18	forest (DistForest)		forest.	1-405		ln (c+x)	1.047
			All distances are given in 1m accuracy except from DistWat which is given in 5m accuracy.				
Histo	ry (Y)						
19	Pond age	Р, М	Time since construction of the pond, recorded in years since 2003, if "old and unknown", set to 100	5-100	Cont.	None	
	(Age)		years.				

Anthropological impacts (1) 20 Fire pond (Fire) P, M Pond laid out or used in case of fire (1) or not (0). Binary None 21 Pond used for watering P, M Pond used for watering fields, gardens etc. 0-3 Categ. None (Water) 0-3 Ordered 0-3*	
20 Fire pond (Fire) P, M Pond laid out or used in case of fire (1) or not (0). Binary None 21 Pond used for watering P, M Pond used for watering fields, gardens etc. 0-3 Categ. None (Water) Ordered 0-3* 0-3* 0-3*	
21 Pond used for watering P, M Pond used for watering fields, gardens etc. 0-3 Categ. None (Water) Ordered 0-3*	
(Water) Ordered 0-3*	
0-3*	
22 Drinking_water P.M. Pond used for drinking by animals or humans 0.3 Categy None	
22 Drinking watch 1, w 1 the used for drinking by animals of numaris.	
source Ordered	
(Drink) 0-3*	
23 Use: laundering P, M Pond used for laundering of clothes. 0-1 Categ. None	
(Laund) Ordered	
0-3*	
24 Presence of fence P.M. Pond or pond margin fenced 0-3 Categround	
(Fanna) Ordered	
25 Liming P, M Pond limed. 0-3 Categ. None	
(Lime) Ordered	
0-3*	
26 Depositions for garbage P, M Waste deposited in or by the pond (e.g. here: cartridge, bicycles, motorcycles, felling waste, stoves and 0-3 Categ. None	
(Garb) domestic waste) Ordered	
()-3*	
27 Panovation D M Panovation (garbage removed from the nond) 0.2 Cotege None	
(Proved) 1, M Kenovation (galoage removed from the policy). 0-5 Categ. None	
(Renov) Ordered	
0-3*	
28 Herbicides P, M Herbicides used to kill weed, mostly within the pond's margin. 0-3 Categ. None	
(Herbic) Ordered	
0-3*	
29 Constructed stony margin P. M. Natural pond margin replaced by a constructed stone wall 0-2 Categ. None	
(Stony/Marg) Ordered	
() () () () () () () () () () () () () (
20 Cutting D.M. Hashe out along the need magnin 0.2 Cotes Name	
50 Cutting P, M Heros cut along the pond margin. 0-5 Categ. None	
(Cut) Ordered	
0-3*	
31 Tree felling P, M Trees cut in the pond's close surroundings. 0-3 Categ. None	
(Fell) Ordered	
0-3*	
32 Grazing P.M. Presence of cattle grazing around the pond 0-3 Categ None	
(Graza)	
33 Presence of fish P, M Presence of fish in the pond. 0-3 Categ. None	
(Fish) Ordred	
0-3*	
34 Presence of ducks P, M Presence of ducks in the pond. 0-3 Categ. None	
(Duck) Ordered	
0-3*	
35 Enlarging P.M. Pond manually made larger 0-2 Categr None	
(Fulraça) Ordana	
36 Diminishing P, M Pond manually made smaller. 0-2 Categ. None	
(Diminish) Ordered	
0-3*	

Торо	graphy (T)	м	Slone (360° scale) measured along a 1.72-meter line from the water/land transition perpendicularly to		Cont		
37-	(MaxSln)	141	the margin of the nond Maximum slone (MaxSh) and	12-54	com.	$\ln (c+x)$	246.2
38	(MinSln)		minimum slope (MinSla) derivat from measurements	2_35		$\ln(c+x)$ $\ln(c+x)$	3 801
30	Mechanical composition of	м	minimum stope (which p derived non-industrient matrix) where 0 clay and silt (<0.06mm) 1 sand	0-2	Categ	None	5.601
57	soil (Soil)	101	Dominating interfactor solution within the point margin where 0 , easy and sit (\sim 0.00mm), 1, said (0.06-2mm) and 2, store (\sim 2mm)	0-2	Ordered	None	
	5011 (5011)		(0.00-21111) and 2. store (~21111).				
	Soil donth	м	To the perform measured at 8 or 12 equally append positions along the marking huge 100 cm peet		0-2 Cont		
40	(Man Sail)	111	To the hear est chi, measured at 8 of 12 equally spaced positions along the margin, by a 100-chi pear	25 100	Cont.	a 🛆 a 🗤	0.019062
40-	(MinSoil)		core i. sites where fock was visible were avoided. For sites where the son depth was more than foocin, the use 100 m use work of the site	23-100		le (x y)	0.018005
41-	(MinSon)		(A (10 c)) and minimum sell deal. (A (10 c) c)	1-88		$\ln(c+x)$	//.4
42	(MedSoll)		(MedSoil) and minimum soil depth (MinSoil).	5.5-100		$\ln(c+x)$	164.78
wate	r chemical and						
physi	ical variables (W)				~		6 60 - 4
43	Median Secchi-	Р	Median Secchi-depth (to the nearest half cm), of three equally spaced measurements along the pond's	1-360	Cont.	$\ln(c+x)$	6.6071
	depth		longest line. A specially made Secchi disc, about 20cm in diameter, lowered from the boat, was used				
	(Secchi)		for all measurements. When, interfering with measurements, plants were removed before the				
			measurements were done. Where Secchi-depth exceeded the maximum depth of the pond, a value of				
			Secchi-depth was estimated (to the nearest 50 cm) based upon experience from other ponds (maximum				
			value 360 cm).				
44	Conductivity	Р, М	In microSiemens/cm, estimate of the total amount of dissolved ions in an electrical field in the water,	18-911	Cont.	ln (c+x)	4.035
	(Cnd)		using NS-ISO 7888 (Anonymous 1993). Because electric conductivity depends on temperature, all				
			measurements were standardised to conductivity at 25° C.				
45	pH	Р, М	pH, a measure of the hydrogen ion activity in the water, analysed at 25° C, using NS4720 (Anonymous	5.75-8.09	Cont.	ln (c+x)	0.96
	(pH)		1979).				
46	Alkalinity	Р, М	The amount of hydrogen ions in $\mu eqv/L$ needed to neutralise (pH = 7.0) the basic ions in the water.	32-5757	Cont.	ln (c+x)	262
	(Alk)		Determined by end-point titration at pH 4.5, using NS-EN ISO 9963-1 (Anonymous 1996)				
47	Calcium	P, M	In mg/L, analysed by atom absorption-spectroscopy (AAS), using NS 4776 (Anonymous 1994b, Skoog	0.200-	Cont.	$\ln(c+x)$	1.0458
	(Ca)		<i>et al.</i> 1992).	160.7			
48	Colour	P, M	In OD (Optical Density) 410 units, measured spectroscopically at a wavelength of 410 nm (Hongve &	0.001-	Cont.	$\ln(c+x)$	0.18
	(Clr)		Åkeson 1996), using NS-EN ISO 7887 (Anonymous 1994c).	0.358			
49	Turbidity	P, M	In Formazin Turbidimetric Units (FTU), estimates the concentration of inorganic matter, using NS-ISO	0.980-	Cont.	$\ln(c+x)$	-0.86087
	(Trb)		7027 (Anonymous 1994d). Formazin was used as a standard.	1070			
50	PO ₄ -P	P, M	In µg/L, using NS-EN 1189 (Anonymous 1997). The method uses the reaction between PO ₄ -P and	0-	Cont.	ln (c+x)	0.29221
	(PO ₄ -P)		antimony and molybdate in an acidic solution, and the further reaction by ascorbine acid produces a	1300			
			strong blue colour. Intensity was measured spectroscopically at 880 nm.				
51	Total-phosphorus	P, M	In µg/L, determined as for PO ₄ -P (see above) but with treatment with peroxodisulphate-oxidation in an	3.049-	Cont.	ln (c+x)	1.725
	(Tot-P)	·	autoclave (1 atm. 121° C for 30 minutes).	1677			
52	Particulate-phosphorus	P. M	In ug/L, calculated out as the differences between Total-P and the orthophosphate	2.684-	Cont.	$\ln(c+x)$	4.993
	(Part-P)	-,	- +0 -)	717.9		(*)	
53	NH4-N	РМ	In ug/L, measured by method slightly modified from NS4746 (Anonymous 1975a) using salicylic acid	0-	Cont	$\ln(c+x)$	7 556
	(NH_4-N)	- ,	instead of phenol Detection limit: 20 $\mu g/L$	4287	eo	(•)	
54	NO ₂ -N	РМ	In $\mu g/L$ measured spectroscopically at 525nm after a synthesis of an azo-colouring-matter where nitrite	0-	Cont	$\ln(c+x)$	0 495586
51	(NO_2-N)	- ,	is included in the reaction Using NS 4725 (Anonymous 1975b)	1656	cont.		0.190000
55	Total-nitrogen	РМ	In model using NS 4743 (Anonymous 1975c) determined as for NON (see above) after	0.102-	Cont	$\ln(c+\mathbf{x})$	-0.0286
55	(Tot-N)	1,111	n mg/2, using 105 4745 (Anonymous 17756), determined as for 105-10 (see above) after perovodisulnhate-oxidation in an autoclave (1 atm 121° C for 30 minutes). Sulfurie acid was added to	4 300	com.	m(c · x)	-0.0200
	(10(-1))		solve the precipitate optimizer optimizer of the solution was neutralised using NaOH	ч.500			
56	Particulate-nitrogen	РМ	In mg/L calculated as the difference between the total N and the sum of nitrate N and the ammonium	0.002-	Cont	$\ln (c+\mathbf{x})$	0 1078
50	(Dort N)	1,111	In mig/L, calculated as the uniference between the total iv and the sum of initiate-iv and the animomulii-	2 211	Cont.	$m(\mathbf{c} \cdot \mathbf{x})$	0.10/0
	(1 a1(-1N)		18.	2.311			

After transformation all continuous variables (y) except Pond age (for which no value of c exist that made standard skewness equal to zero, because of the large number of observations with the maximum value of 100 years), were ranged to a new variable (z) on a 0-1 scale by the formula:

$$z = \frac{y - y_{\min}}{y_{\max} - y_{\min}}$$

Summary statistics for transformed variables are given in Appendix 5.

Relationships among explanatory variables

Two different methods were used to analyse relationships between explanatory variables:

Correlation analysis

Statgraphics Version 5.0 (Anonymous 1990) was used for this univariate statistical analysis. Kendall's non-parametric correlation coefficient, τ (Kendall 1938), was calculated between all pairs of explanatory variables for both sets of variables (Sokal & Rohlf 1995). Kendall's τ was chosen because many of the variables were rank-ordered (or intrinsically ordinal), and because it is unaffected by transformation.

PCA ordination

PCA (Principal Component Analysis) ordination (Pearson 1901; ter Braak & Prentice 1988) was applied to the two sets of explanatory variables, one for ponds and one for pond margins, using CANOCO Version 4.5 (ter Braak & Šmilauer 2002). The variables were centred and standardised by division by standard deviation prior to analysis. Correlation biplot scaling was used for optimising the fit of angles between variable vectors to inter-variable correlations.

Ordination of vegetation

Sampling units were ordered along axes of variation in vegetation composition (coenoclines) by using two different ordination methods which should be considered complementary: DCA (Detrended Correspondence Analysis; Hill 1979, Hill & Gauch 1980) and GNMDS (Global Non-metric Multidimensional Scaling; Kruskal 1964ab). One metric and one non-metric

scaling technique were applied in parallel to enhance the probability of reaching a reliable gradient structure (R. Økland 1990a, 1996). DCA and GNMDS ordination methods serve a hypothesis-generating purpose; extraction of gradient structure in vegetation data sets with unknown structure (R. Økland 1990a). Initial analyses showed that two ponds were nearly devoid of species and that five other sample units acted as outliers in the ordinations. These seven sampling units (Nos 19, 24, 30, 45, 49, 54 and 58) were therefore removed before further ordination analysis of 57 sampling units. All outliers contained less than 5 species and their species compositions were thus not considered representative for the ecological conditions of the site (R. Økland 1990a).

DCA was applied to the full vegetation data set (pond + margin) as well as to pond and margin separately. Analyses were done by using CANOCO, Version 4.5 (ter Braak & Šmilauer 2002), using standard options: detrending by segments and non-linear rescaling.

GNMDS by the WinKYST programme, Special Version 1.0 (Šmilauer 2003) was performed separately for the pond and pond margin data sets. All dimensionalities from 2 to 6 were tested to find the most appropriate GNMDS ordination for each data set. The correlation coefficients, Kendall's τ , and the associated significance levels showed that sets of corresponding axes were almost perfectly correlated. The dimensionality of 6 was therefore chosen. The following options were used, as recommended by T. Økland (1996): distance measure = Bray-Curtis distance, initial configuration = 100, maximum iterations = 100 000 and convergence ratio for Stress = 0.99999.

The GNMDS axes were linearly rescaled in S.D. (standard deviation) units to enhance comparability with the corresponding DCA axes, as recommended by R. Økland (1990a). This was done by DCCA (Detrended Canonical Correspondence Analysis) in CANOCO Version 4.5. GNMDS scores were used, one axis at a time, as the only constraining variable. The linear rescaling was done by using the following formula:

$$x_{\text{new}} = \frac{(x_{\text{old}} - x_{\min})}{(x_{\max} - x_{\min})} \cdot \text{Grl}$$

where x_{new} is the linearly rescaled sample plot position, x_{old} , x_{min} and x_{max} refer to sampling unit scores along one of the original GNMDS axes, and Grl refers to the gradient length in DCCA given in S.D. units. Ordination axes were inverted, when necessary, to maximise positive correlations between corresponding axes.

Positions along ordination axes for ponds and pond margins located within the same sampling unit (1 km^2) were also compared to investigate the differences in species

composition. Complete species turnover is considered to appear within 2 - 2.5 S. D. units (R. Økland 1986).

Comparison of ordination methods

Pair-wise correlations (Kendall's τ) between sampling unit scores (for each of pond and pond margin data in addition to the combined data set of ponds and pond margins) along 4 DCAand 6 GNMDS-ordination axes were calculated by S-PLUS. In addition a PCA ordination with standard options implying centring, standardising and Euclidean distance biplot scaling was applied to the DCA and GNMDS axes. This was done separately for the ordinations of ponds and pond margins in order to sort the many axes into groups of correlated compositional gradients.

Relationships between ordination axes and explanatory variables Correlation

DCA and GNMDS axes were interpreted ecologically by calculating Kendall's τ between explanatory variables and the ordination axes for 57 of the sampling units (ponds/pond margins). Correlation analyses were done using S-PLUS.

Multiple regression

Each ordination axis was also interpreted by determining the set of explanatory variables that best explained the relationship between sample scores along the DCA and GNMDS ordination axes (the dependent variable) as a response to one or more of the explanatory variables (the independent variables). Generalised multiple linear regression was carried out by GLM (McCullagh & Nelder 1989; Venables & Ripley 2002) with normal errors in S-PLUS. The categorical variables were specified as factors whereas continuous variables were used in the transformed and ranged forms. Significance of each variable upon inclusion in the model was judged by the F-test (significance level $\alpha = 0.05$).

Variation partitioning

Partial canonical correspondence analysis (CCA; ter Braak 1986) was used to partition the variation in species composition on groups of environmental variables (Borcard *et al.* 1992; R. Økland 1999, 2003). Variation, given in IU (Inertia Units), is additive and can be

distributed on groups of variables. Total inertia (TI) is not considered as a reliable measure of total variation because of lack-of-fit of data to the response model (R. Økland 1999). The amount of compositional variation extracted on ecologically interpretable ordination axes is thus underestimated by the eigenvalue-to-total-inertia ratio, and the focus will therefore instead be on FTVE (fraction of the total variation explained).

Initially a forward selection of variables within each of six groups (in each data set) of environmental variables was performed using the Monte Carlo test (9999 permutations) in CANOCO Version 4.5. Only variables that made significant independent contributions to explaining the variation in species abundance ($\alpha = 0.05$ level) were included in further analyses. The variation partitioning was done separately for the pond and margin data sets.

The procedure for using partial CCA to distribute variation on groups of variables and for further simplification of results followed R. Økland (2003) and Qian *et al.* (2003). The total variation explained (TVE) was distributed on 2^s-1 unique, non-overlapping partial intersections among the s groups of variables. Results were simplified by distributing low and insignificant amounts of variation on intersections of successively lower order. The threshold limit was selected in two different ways (as recommended by R. Økland 2003): using the average VE = TVE/(2ⁿ-1) where n represents the number of sets of explanatory variables, in addition to the single-variable $\alpha = 0.05$ criterion. The single-variable criterion is a stricter threshold limit than average VE and it refers to the approximate VE corresponding to a specified significance level in randomisation tests performed for each environmental variable relative to a null hypothesis of randomness (see R. Økland 2003 for details).

Spatial structure

Geostatistical methods were used to explore the spatial structure of explanatory variables and ordination axes. Spatial structure consists of two components: spatial dependence and spatial autocorrelation (Legendre & Legendre 1998), which are, however, often hard to separate in ecological data sets. Thus for ecological description, the total spatial structure of a variable is mostly of interest. The Euclidean distance between the ponds (based upon UTM co-ordinates) was used as a measure of geographical distance. Only continuous explanatory variables in addition to DCA ordination axes were used in the analyses.

The semivariance expresses the variation in a variable as a function of spatial scale (Phillips 1985; Palmer 1990) and was calculated by GS+ Version 5.1 (Anonymous 2001). Seven lag classes, grouping distances on a 2-logarithmic scale (<3 km, 3-6 km, ..., >192 km), were used to ensure that all lag classes were represented by at least 30 pond pairs. The semi-

variance for each distance class was divided by the sample variance to obtain standardised values (Rossi *et al.* 1992).

Relationships between species richness and explanatory variables

Correlation

Kendall's correlation coefficient, τ , was calculated between the explanatory variables and the number of species recorded in each of the 64 sample plots in the two data sets. Correlation analyses were done using S-PLUS.

Multiple regression

Species number per pond/ pond margin was modelled separately as responses to the explanatory variables, using GLM, with log-link and Poisson errors. Poisson errors were used as the dependent variable represented a number of counts (McCullagh & Nelder 1989). The variance and the mean of the response variable did not increase in perfect parallel and therefore an F-test was used to test variables for inclusion in the models. As for the GLM analyses of ordination axes, the categorical variables were specified as factors whereas the transformed and ranged continuous variables were used.

6 Results

Explanatory variables: summary statistics

The ponds included in the analysis varied in area from 19 m^2 to 3010 m^2 and in median depth from 16 cm to 252.5 cm. Because of, among others, large study area, a wide variety of geographical, topographical (incl. geological) and water chemical conditions were represented in the data. The farm ponds were located between 20 and 440 meters above sea level. Concentrations of total phosphorous and total nitrogen varied from 3 to 1677 µg/L and from 0.1 to 4.3 mg/L, respectively, pH ranged between 5.8 and 8.1. The minimum Secchi-depth was 1 cm and the minimum age of the ponds was 5 years. Complete accounts of summary statistics and transformation formulae are given in Table 1 and further details are given in Appendices 4 and 5.

Relationships between explanatory variables

Correlation

From the Kendall's τ and corresponding significance levels for variables recorded for ponds in Table 2, some groupings of more or less strongly intercorrelated variables may be identified. Conductivity, Alkalinity, Calcium, pH, Particulate-N and Total-N made up one group with strongly correlated variables while Pond area, Maximum water depth, Median water depth, Pond age, Pond used for watering and Drinking-water source made up another. Colour, Turbidity, PO₄-P, Particulate-P, Total-P, Altitude, UTM northing and Pond age made up the largest group. In addition to the ones mentioned there were lots of smaller groups with three, four and even five variables.

The explanatory variables recorded for the pond margins in Table 2, to some extent, affiliated with the groups of correlated pond variables, mostly geographical and water chemical variables. Maximum, Minimum and Median soil depth together with UTM northing, Altitude and PO₄-P, consisting of both negatively and positively correlated variables, were one of the two largest groups unique to the pond margin data set. The other major group consisted of Maximum slope, Conductivity, Alkalinity, Calcium, Particulate-N and Total-N.

Notably Pond age was strongly correlated with many variables and had connections to most unique groups containing more than four components. The variables Periodically

	PArea	MArea	AvgWid	MaxDep	MedDep	Fluct	Drain	Well	Outl	Inl	UTMn	UTMe	Alt	DistWat	DistRoa	DistAgr	DistBui	DistFore
PArea		<.0001	<.0008	.0002	.0006	.9783	.4111	.2517	.2535	.1674	.2659	.4008	.4295	.6633	.5458	.2181	.5937	.7706
MArea	.6312		<.0001	.0697	.2863	.6634	.9182	.9941	.2859	.0513	.0863	.0680	.5380	.7806	.1238	.3361	.0299	.6284
AvgWid	.2948	.6626		.9121	.6588	.4869	.5142	.8309	.4914	.1172	.0125	.0224	.2169	.4777	.0675	.5885	.0016	.5588
MaxDep	.3178	.1558	0097		<.0001	.0957	.1816	.0473	.8811	.7097	.9861	.3246	.5810	.3295	.8571	.2992	.5000	.5250
MedDep	.2934	.0915	0386	.7818		.2209	.0519	.0337	.5680	.5291	.6183	.2004	.9861	.6633	.9491	.3420	.8685	.9581
Fluct	0027	.0428	.0697	.1638	.1203		.6092	.2824	.4740	.1495	.2766	.8811	.1485	.3201	.7643	.9342	.0637	.7375
Drain	8380	0105	.0678	1362	1981	.0598		.2513	.4232	.9285	.2340	.7191	.3585	.4352	.4711	.1999	.9279	.2380
Well	.1189	.0008	0226	.2060	.2060	1281	1419		.2754	.0183	.1695	.9648	.4842	.0004	.2632	.9171	.6581	.5794
Outl	.1185	.1108	.0729	.0155	.0155	0854	.0990	1374		<.0001	.1057	.0855	.0710	.0081	.5176	.7992	.9943	.4238
Inl	.1432	.2023	.1659	0386	0386	1718	0111	2973	.6258		.3166	.1366	.5735	.0022	.1096	.2419	.6167	.2257
UTMn	.0954	.1471	.2184	.0015	.0015	.1069	1212	.1425	.1678	.1039		.8393	<.0001	.0212	.8571	.9066	.0004	.0501
UTMe	0720	1565	1996	0845	0845	.0147	0366	.0046	1783	1544	0174		.0575	.0981	.0756	.6857	.0240	.2435
Alt	.0689	.0537	.1098	.0481	.0481	.1443	0951	.0738	.1905	.0594	.6449	.1655		.1189	.8889	.4342	.0361	.0216
DistWat	0378	0242	.0628	0847	0847	.0989	0805	.3701	2781	3209	.1999	.1434	.1375		.9629	.1843	.9461	.6237
DistRoad	.0527	.1343	.1627	.0157	0056	0300	.0747	1181	.0683	.1689	.0157	1549	0124	0041		.6981	.1230	.1229
DistAgr	.1100	.0859	.0493	.0928	.0849	0084	.1361	0112	.0275	.1265	.0105	.0361	.0710	1200	.0352		.0834	.0174
DistBui	.0492	.2004	.2968	.0623	.0153	.1962	0099	0495	.0008	0559	.3268	2080	.1966	.0063	.1447	1663		.0365
DistForest	.0256	0426	0524	0559	0046	0338	1233	0590	.0851	.1289	1721	.1024	2052	0436	1379	2177	1978	
Age	2155	2357	2403	2902	2344	1282	0189	0587	2477	1821	3153	.2146	2982	0585	1635	0792	3362	.1841
Fire	.0562	1116	1332	.1259	.1402	0072	.0047	.1260	0760	1816	.1276	1409	.0864	.1257	1228	.0339	0538	0635
Water	.2820	.3039	.2684	.3078	.2633	.2871	.1056	.0969	.2828	.1827	.2631	2495	.2352	.1250	.1119	.1165	.2285	1008
Drink	3166	2716	1660	2205	2056	.0906	.0509	.0610	4169	5149	.0141	.1609	0151	.2499	0597	1044	0353	.0653
Laund	2139	2029	1039	.0646	.0897	.2121	1510	0917	2680	1756	0669	.1839	.0110	.0908	.0609	0264	1211	.0937
Fence	0185	0666	.0161	.1573	.1751	.0987	0699	.3380	0438	2337	.1420	.0761	.1783	.2873	0035	1128	0906	.0941
Lime	0964	2198	2510	0952	1208	1037	.1376	.0532	.1349	0145	.0475	.0835	.1113	0716	.0183	.2424	1975	1325
Garb	0012	.1377	.1869	0819	0392	1005	1500	0928	0556	.0352	.1316	.0296	.0907	.0950	.0181	.1325	.0243	1016
Renov	0950	1247	1261	0882	0696	.1778	.0109	0739	0332	.1323	1370	.1060	1186	.0782	1951	.0711	2743	.2741
Herbic	0653	0602	0275	0961	0846	.0121	.0270	0668	.1236	0163	.1856	1113	.1409	0584	0848	0324	.0583	.0145
StonyMarg	2182	2793	2016	1109	1086	0492	.0836	0119	0110	.0000	.0210	1140	0655	.0326	.1219	.0514	0958	0194
Cut	2232	2082	2013	2353	2410	1378	.0596	0714	.0366	.0844	1841	.0748	2294	2199	0692	0470	3779	.2198
Fell	.1377	.2511	.2327	.0528	.0586	.0880	0583	.0375	.0000	.1932	.1835	1191	.1851	0564	.2150	.0834	.2935	3142
Graze	1225	0963	0589	2847	2847	.0652	.2165	0278	0922	2289	.1110	.1208	.0888	.1308	.1324	0381	.0786	0899
Fish	.2767	.1245	0178	.1885	.1910	1093	.0215	.0772	.2023	.2087	1786	1991	2096	1706	.0697	.0387	2466	.2235
Duck	.0835	.0075	.0297	0507	0067	1273	1715	.3008	0878	1454	.2221	.0969	.1626	.1421	0806	.1163	0891	.0823
Enlarge	.0518	.0606	.0602	.2699	.2417	.1736	.1804	.2938	.0025	0025	.0650	0667	.0277	.1870	.0654	.1111	0240	0426
Diminish	1086	0942	0612	1452	0953	0849	.0836	0119	0110	.0986	0177	.2114	0147	.0314	1660	.2568	1715	.0663
MaxSlp	.0433	.1008	.9740	.0983	.0534	.2893	.0531	0951	.1931	.2733	1375	1475	1191	1665	0262	.0366	0241	.0862
MinSlp	1189	1546	1102	0443	0447	.1046	.0937	.0327	.1883	.1939	1006	.0554	1119	.0391	0850	1285	1452	.1955
Soil	0163	0343	0284	0278	0278	0538	.0201	0200	.0800	.0889	.0604	1183	.0841	0017	.0458	.1472	0158	1651
MaxSoil	.2584	.2207	.1122	.0299	.0581	0301	.0159	.0016	.0197	.2627	2119	1193	2687	0540	.0337	.1718	1443	.0423
MinSoil	.0937	.1208	.0922	0381	.0175	0640	.0132	1484	.1650	.1912	2910	1182	3620	0681	0337	0486	1124	.1793
MedSoil	.1186	.1127	.0494	-0733	0200	0617	0184	0757	.0000	.1592	3279	0314	3754	0278	0574	0489	1333	.1840
Secchi	.2991	.2773	.2058	.2879	.2353	.0430	0096	0720	.1545	.2632	.1233	1492	.1252	2166	.0621	.1915	.1398	0273
Cnd	.1099	.1567	.1439	1095	1000	.1130	.1579	1975	.1743	.2507	.0104	1560	0866	1451	.0476	0985	.1115	.1953
pH	.2197	.2018	.1472	0040	0194	.0991	.1390	0970	.2439	.2210	.0682	1593	0127	1343	.0812	0178	.0714	.2009
Alk	.1147	.1496	.1498	0885	0830	.0574	.0863	1531	.2100	.2168	.0432	1469	0744	1168	.0061	0686	.0673	.2330
Ca	.0914	.1431	.1615	0989	0895	.1309	.1308	1616	.2094	.2478	.6060	1703	0294	1294	.0349	0733	.0978	.1793
Clr	0836	0836	1277	0632	.0070	1244	0943	.0038	1737	1202	2705	.0741	2849	0136	0735	0121	1246	0077
Trb	2300	2181	1486	2476	1375	0763	1337	1558	1766	2194	2159	.0821	2434	.1004	0411	0677	1751	.0698
PO ₄ -P	0132	0199	0890	2073	1538	1759	0116	1218	.0455	.1100	3063	0626	4066	1718	.0093	0606	0869	.2840
Part-P	2093	2661	2516	2000	1189	1136	.0794	0747	1700	2690	4477	.0288	4762	.0025	.0243	1928	2309	.2415
Tot-P	1533	1684	1997	2249	1574	1793	.0789	1402	1318	1023	4587	.0409	5037	0602	.0229	1584	2075	.2838
NH ₄ -N	0349	.0200	.0408	1533	1867	0973	.1445	2304	.1232	.1325	0908	.1172	0463	1699	.0732	0841	.0011	.0921
NO ₃ -N	.1206	.1933	.2094	0777	1045	.1228	.0239	.0209	.2098	.3008	.4271	0343	.3922	.0010	.0540	.0452	.1924	1857
Part-N	.1291	.1888	.1726	0492	0387	.1969	0444	1196	.0923	.1193	.0615	1424	0010	.0075	.1462	0314	.1373	.0901
Tot-N	.00924	.1650	.1534	1486	1312	.0661	.1020	2431	.2221	.2688	0417	1127	0683	1475	.1969	1057	.0854	.1568

Table 2. Kendall's correlation coefficients (lower triangle) and corresponding P values between explanatory variables for both pond and pond margin data set. P<0.05 in bold.

- m	1 1		~		
10	h	α		00	nt
- 1 4			_ <u>/</u> .		
			-	~~~	

	Age	Fire	Water	Drink	Laund	Fence	Lime	Garb	Renov	Herbic	StonyMa	Cut	Fell	Graze	Fish	Duck	Enlarge	Diminish	MaxSlp
PArea	.0255	.5879	.0049	.0018	.0393	.8533	.3486	.9908	.3399	.5240	.0343	.0230	.1749	.2289	.0053	.4015	.6130	.2923	.6178
MArea	.0146	.2823	.0024	.0076	.0463	.5065	.0326	.1819	.2107	.5570	.0068	.0340	.0134	.3447	.2094	.9403	.5541	.3610	.2459
AvgWid	.0146	.2082	.0087	.1094	.3265	.8746	.0167	.0757	.2147	.7926	.0552	.0444	.0246	.5710	.8603	.7696	.5648	.5608	.2715
MaxDep	.0026	.2252	.0021	.0302	.5340	.1168	.3551	.4271	.3761	.3487	.2825	.0166	.6034	.0052	.0576	.6105	.0085	.1592	2579
MedDep	.0151	.1769	.0086	.0433	.3877	.0808	.2401	.7041	.4849	.4096	.2923	.0141	.5637	.0052	.0542	.9462	.0184	.3554	.5385
Fluct	.2470	.9518	.0126	.4379	.0752	.3909	.3801	.3961	.1200	.9184	.6781	.2213	.4504	.5770	.3373	.2653	.1401	.4734	.0036
Drain	.8696	.9697	.3763	.6746	.2220	.5584	.2615	.2223	.9269	.8252	.4961	.6101	.6298	.0743	.8555	.1481	.1395	.4961	.6070
Well	.6158	.3174	.4255	.6212	.4669	.0055	.6698	.4583	.5404	.5914	.9243	.5489	.7611	.8223	.5213	.0127	.0182	.9243	.3656
Outl	.0342	.5464	.0200	.0007	.0334	.7186	.2797	.6571	.7833	.3206	.9299	.7586	1.000	.4557	.0927	.4671	.9840	.9299	.0662
Inl	.1195	.1495	.1329	<.0001	.1634	.0547	.9074	.7785	.2735	.8959	1.000	.4785	.1169	.0641	.0829	.2287	.9841	.4308	.0093
UTMn	.0011	.2187	.0086	.8893	.5190	.1563	.6438	.2015	.1688	.0700	.8382	.0605	.0705	.2756	.0716	.0256	.5258	.8635	.1132
UTMe	.0259	.1742	.0127	.1133	.0761	.4472	.4166	.7736	.2869	.2770	.2684	.4459	.2405	.2352	.0445	.3302	.5147	.0401	.0891
Alt	.0024	.4129	.0209	.8838	.9173	.0801	.2870	.3870	.2415	.1762	.5322	.0215	.0729	.3909	.0376	.1081	.7900	.8887	.1772
DistWat	.5489	.2313	.2178	.0152	.3871	.0046	.4913	.3626	.4380	.5734	.7550	.0269	.5829	.2042	.0892	.1585	.0714	.7632	.0582
DistRoad	.0956	.2447	.2723	.5635	.5640	.9726	.8608	.8627	.0541	.4158	.2449	.4882	.0373	.2011	.4897	.4263	.5306	.1135	.7668
DistAgr	.4304	.7542	.2645	.3245	.8068	.2799	.0237	.2173	.4931	.7617	.6325	.6455	.4306	.7193	.7077	.2621	.2981	.0168	.6853
DistBui	.0012	.6301	.0342	.7473	.2788	.4012	.0746	.8267	.0105	.5974	.3882	.0004	.0073	.4735	.0209	.4058	.8279	.1225	.7965
DistForest	0626	5506	3264	5310	3787	3596	2088	3367	.0073	8900	8542	.0289	.0025	3892	.0280	4201	6853	5307	3324
Age		3924	<.0001	.0002	2696	7241	5492	3208	.0457	4018	8874	.0011	0571	.0143	4927	7195	0960	0584	9112
Fire	1000		.0893	.4386	.3402	.4234	.9117	.8782	.0219	.2088	.0951	.5630	.5499	.3639	.7728	.2144	.5943	.7385	.5935
Water	- 5230	2066		.0400	1293	1703	1702	4485	9644	3577	0987	.0093	1295	7229	1606	3236	0239	0987	2179
Drink	4304	0956	- 2446		.0117	.0061	6281	8749	5384	1585	2027	2827	0549	<.0001	.0406	3052	8603	1113	.0473
Laund	1291	1202	- 1844	3110		2961	4577	4520	0705	4578	6549	4020	3033	5432	2307	4761	8651	6549	7732
Fence	0399	0974	1610	3266	1271		7571	2902	8513	1370	3553	8384	1435	0939	7186	0285	1297	2492	1579
Lime	- 0694	0138	- 1652	0592	- 0927	0373		4580	6771	2708	0376	8795	3519	3759	2031	0048	9853	4883	1649
Garb	1154	- 0192	- 0916	0193	0942	1278	- 0920		2229	4581	6706	1216	1887	7012	1161	8124	2218	6706	4334
Renov	2242	2770	0052	0728	2186	- 0219	- 0499	1463		2401	1836	8607	0530	9311	8344	6948	1814	0519	1815
Herbic	0969	1564	1104	1719	- 0924	1786	1358	- 0917	- 1402	.2101	4189	0876	3520	3667	8888	7596	9853	4189	1689
StonyMarg	0165	2089	- 1994	1562	0559	1117	2578	0529	1596	- 0999		2007	2625	2209	4855	0542	.0039	5918	8549
Cut	3618	- 0689	- 2987	1253	9980	- 0234	0179	- 1831	0200	2009	1514	.2007	1292	8867	1019	6200	7479	7943	6169
Fell	- 2177	- 0737	1803	- 2317	- 1268	- 1740	- 1136	1609	- 2287	- 1133	- 1371	- 1767	.12/2	9893	2277	3522	7227	2625	0919
Graze	2810	1122	- 0423	5674	0751	1999	1084	- 0471	0103	1102	1503	0166	0016	.7075	4263	3595	9146	1605	4050
Fish	0766	0347	1629	- 2413	- 1442	0419	- 1517	- 1878	- 0241	0166	- 0834	1860	- 1419	- 0939	. 1205	5856	9007	7182	0094
Duck	- 0403	1500	- 1151	1213	- 0861	2554	3374	0285	0455	- 0365	2310	0566	- 1099	1086	0629	.2020	2937	3904	0598
Enlarge	- 1922	0663	2711	0214	- 0211	1820	- 0023	- 1510	1595	- 0023	3564	0378	0432	0131	- 0148	1252	.2757	9495	2795
Diminish	2199	- 0418	- 1994	1952	0559	- 1392	0859	0529	2333	- 0999	0667	0308	- 1371	1723	- 0431	1030	- 0078	.9495	5256
MaxSln	0109	- 0561	1250	- 2042	0303	- 1433	- 1446	0818	1347	- 1428	- 0191	- 0497	1733	- 0859	2608	- 1897	1122	0663	.0200
MinSln	0563	- 0157	0346	- 1185	- 0061	- 0056	0552	- 1044	2225	- 1559	0351	0270	- 0479	- 0858	- 0007	- 1006	2156	- 0068	2210
Soil	- 1313	0337	0457	- 0952	- 0491	- 0857	1309	- 0234	0973	- 1473	5498	- 0641	0144	- 0216	- 0752	0331	1285	1802	0323
MaxSoil	- 0036	- 0718	0750	- 2629	- 1217	- 1869	1074	0229	0605	- 1304	- 1437	- 0566	1497	- 1657	1825	- 0983	- 0970	0997	2722
MinSoil	0142	- 0657	0364	- 2588	- 1000	- 1218	- 0855	- 1320	0687	- 1124	- 2290	0317	0049	- 1924	1743	- 1286	- 1648	0000	1682
MedSoil	0707	- 0976	- 0075	- 2047	- 1402	- 1150	- 0168	0107	0670	- 0963	- 1867	0700	0911	- 1476	1009	- 1690	- 1066	0456	1678
Secchi	- 3325	- 0359	1783	- 4055	- 0865	- 2186	0120	- 0990	- 0650	- 0386	- 0100	- 1118	1021	- 3850	0752	- 0449	1147	0768	2751
Cnd	- 1014	- 0803	1369	- 2076	- 1387	- 0982	- 1182	1472	1219	0269	- 1019	- 0704	0361	0049	1329	- 1305	- 0536	- 0886	2495
nH	- 1931	0438	1907	- 1681	- 1282	- 0089	0386	0155	1712	- 0128	0799	- 0933	- 0010	0618	1319	- 0105	0634	- 0977	1682
A112	- 0684	- 0285	1157	- 1548	- 0788	- 0501	- 0912	1553	1576	0/99	- 1207	- 1024	- 0527	0255	1695	- 0954	- 08/13	- 0653	2271
Ca	- 1141	- 0330	1714	- 1879	- 1242	- 0453	- 0706	1/0/	1466	0499	- 1163	- 1024	0205	0033	1064	- 1036	0343	- 0731	2196
Clr	2117	- 1188	- 2326	1807	2180	- 0673	- 0888	0618	- 0083	- 1077	- 0333	1081	0557	1901	0103	- 0090	0246	0621	0504
Trb	2440	0384	- 2952	2308	2561	0075	- 1145	1355	0003	- 0975	0777	1486	- 1252	1680	- 0568	0090	- 1364	1520	- 0858
POP	2610	- 1084	- 2411	- 0021	0672	- 1582	1145	1908	1037	- 0931	- 1032	1327	- 0180	1061	10/2	- 0832	1504	0079	2028
Part_P	3122	- 1000	- 3430	20021	1542	1362	0500	- 0085	0220	0705	1032	2717	- 2628	.1001	1632	0652	2/1/	- 0211	- 0025
Tot-P	3548	- 1731	- 3717	.2008	0880	- 1090	0030	0703	0560	- 0849	- 0379	2470	2028	1421	2000	- 0577	- 1061	0211	0023
NH -N	2201	- 1649	- 1032	0277	0540	- 0620	- 1703	180/	- 0282	- 0090	- 0770	.2470	- 0235	1181	.2077	- 1767	- 1861	0007	1270
NO-N	- 1533	- 0987	1935	- 0602	- 1904	0020	1703	1758	0265	0090	0779	- 0682	0233	1604	- 0956	1/0/	1001	0124	0798
Dort N	1555	0767	.1050	0002	1904	.1171	.0713	2479	0000	.0200	.1109	0005	1512	0227	0950	.1075	.1070	0764	1022
r dit-in Tot-N	1509	1246	- 0684	1243	04/8	- 0789	0195	.2476	0105	0013	0100	14/0	1502	.0357	1611	- 1207	0555	0704	.1923
10t-IN	.0315	2108	0084	19/3	06/2	0769	1040	.2330	0413	.0520	8550	01/0	.1303	.0304	.1011	1297	1620	1204	.2039

– – – – – – – – – – – – – – – – – – –					
10	h	α		001	٦ŧ.
- 1 U	U 1	· •	~	VU1	11.

	MinSlp	Soil	MaxSoil	MinSoil	MedSoil	Secchi	Cnd	pН	Alk	Ca	Clr	Trb	PO ₄ -P	Part-P	Tot-P	NH ₄ -N	NO ₃ -N	Part-N	Tot-N
PArea	.1740	.8719	.0040	.2782	.1678	.0005	.2003	.0106	.1808	.2864	.3303	.0074	.8799	.0147	.0752	.6849	.1654	.1320	.2812
MArea	.0774	.7349	.0139	.1623	.1902	.0013	.0680	.0189	.0811	.0952	.3303	.0111	.8206	.0019	.0508	.8166	.0262	.0277	.0544
AvgWid	.2169	.7835	.2199	.2953	.5729	.0191	.1001	.0931	.0865	.0647	.1447	.0897	.3189	.0040	.0230	.6419	.0181	.0482	.0793
MaxDep	.6132	.7840	.7394	.6594	.3942	.0008	.2024	.9630	.3024	.2489	.4617	.0040	.0180	.0164	.0091	.0751	.3714	.5662	.0832
MedDep	.6092	.7840	.5173	.8392	.8167	.0063	.2441	.8212	.3332	.2970	.9353	.1097	.0791	.1661	.0679	.3020	.2296	.6513	.1261
Fluct	.2970	.6438	.7698	.5180	.5315	.6633	.2504	.3141	.5587	.1826	.2059	.4382	.0796	.2476	.0693	.3239	.2178	.0449	.5008
Drain	.3676	.8679	.8815	.8977	.8573	.9249	.1212	.1733	.3966	.1990	.3551	.1901	.9111	.4358	.4408	.1576	.8169	.6623	.3164
Well	.7571	.8705	.9880	.1559	.4669	.4896	.0570	.3507	.1397	.1193	.9707	.1339	.2504	.4715	.1786	.0269	.8425	.2487	.0191
Outl	.0754	.5155	.8564	.1146	1.000	.1382	.0932	.0190	.0428	.0435	.0945	.0892	.6676	.1014	.2060	.2368	.0461	.3732	.0323
Inl	.0671	.4700	.0156	.0675	.1261	.0116	.0157	.0336	.0365	.0169	.2472	.0347	.2992	.0095	.3264	.2032	.0042	.2500	.0096
UTMn	.2500	.5508	.0181	.0008	.0001	.1522	.9031	.4272	.6142	.4796	.0016	.0119	.0005	<.0001	<.0001	.2914	<.0001	.4725	.6265
UTMe	.5266	.2425	.1833	.1712	.7150	.0831	.0689	.0637	.0864	.0469	.3879	.3390	.4746	.7368	.6346	.1732	.6931	.0964	.1884
Alt	.2084	.4145	.0032	<.0001	<.0001	.1528	.3205	.8845	.3931	.7362	.0011	.0053	<.0001	<.0001	<.0001	.5969	<.0001	.9907	.4329
DistWat	.6583	.9871	.5519	.4364	.7495	.0129	.0946	.1226	.1782	.1358	.8755	.2481	.0525	.9768	.4896	.0511	.9907	.9306	.0890
DistRoad	3396	6569	7121	7013	5115	4784	5851	3527	9444	6886	3997	6380	9165	7804	7938	4028	5414	0933	.0239
DistAgr	.1582	.1633	.0659	.5892	.5853	.0327	.2702	.8419	.4423	.4116	.8927	.4492	.5062	.0309	.0774	.3479	.6176	.7249	.2361
DistBui	.1229	.8849	.1348	.2268	.1495	.1313	.2270	.4397	.4656	.2888	.1773	.0581	.3562	.0124	.0252	.9902	.0397	.1362	.3545
DistForest	.0292	1120	6454	.0429	.0368	7572	.0263	.0226	.0080	.0413	9303	4277	.0016	.0060	.0013	2964	.0371	3048	0744
Age	5673	2503	9716	8837	4648	.0006	2933	0457	4778	2368	.0284	.0115	.0078	.0012	.0003	.0179	1169	1174	7436
Fire	.1382	.7839	.5089	.5299	.3484	.7307	.4389	.6734	.7831	.7503	.2526	.7115	.0613	.3354	.0968	.1134	.3479	.2286	.0366
Water	7350	7001	4747	7185	9402	0764	1720	0576	2478	0871	0204	0033	0185	0006	0002	0546	3104	4134	4947
Drink	2533	4292	.0135	.0115	.0446	.0001	.0412	0989	1275	0645	0757	.0234	9841	.0483	3852	7858	5593	2202	0522
Laund	.9540	.6897	.2625	.3389	.1777	.4068	.1816	.2178	.4472	.2310	.0351	.0137	.5253	.1374	.3940	.6042	.0702	.6450	.4005
Fence	.9562	.4703	.0748	.2279	.2527	.0299	.3275	.9290	.6172	.6513	.5021	.9236	.1223	.6415	.2791	.5376	.2410	.5332	.4310
Lime	5989	2826	3181	4092	8709	9005	2503	7077	3749	4919	3885	2660	5900	5403	4761	0989	3811	8513	3114
Garb	3213	8481	8320	8992	9175	3393	1536	8811	1317	1471	5495	1895	0700	3395	4826	0672	0925	.0162	.0234
Renov	0285	4093	5614	4934	5023	5155	2210	0863	1133	1408	9339	3650	3080	8249	5753	7767	3792	8682	6782
Herbic	1362	2251	2241	2768	3486	7077	7930	9005	6261	6261	2939	3423	3737	4919	4095	9303	8024	9900	7548
StonyMarg	7385	< 0001	1830	0275	0710	9229	3228	4390	2415	2592	7472	4519	3268	9400	7148	4518	2631	9230	4080
Cut	7874	5815	5815	7486	4770	2567	4731	3430	2964	2706	3176	1306	1857	.0057	.0122	5175	4925	1322	8627
Fell	6435	9044	1588	9616	3708	3168	7218	9923	6034	8399	5834	2181	8621	.0096	1383	8173	.0010	1359	1384
Graze	4091	8578	1199	0608	1482	.0002	9613	5447	8023	9742	0621	0994	3075	4287	1647	2480	1007	7406	7651
Fish	9948	5217	0786	0812	3102	4504	1803	1845	0872	2833	9171	5671	0552	0999	0351	6073	3417	2951	1040
Duck	3217	7790	3453	2000	0904	6530	1899	9165	3377	2978	9284	3767	4129	9582	5640	0770	2868	9046	1925
Enlarge	0392	2900	3658	1106	2995	2649	6010	5370	4105	4506	8103	1839	.0094	2916	0558	0704	3030	7446	0746
Diminish	9485	1401	3552	1 000	6595	4582	3900	3443	5261	4782	5473	1409	9399	8382	9486	4079	9058	4584	2126
MaxSlp	.0126	7530	.0027	0546	0540	2751	.0041	0533	.0089	.0114	5617	3239	0222	9768	2341	1451	3647	0267	.0024
MinSlp	10120	8463	0623	.0038	.0043	2771	0545	1400	0516	0955	3290	5691	1129	3065	0754	2267	5412	5153	4160
Soil	- 0200		6438	1443	2946	1295	0936	8656	0561	0735	8592	7902	0943	0735	.0368	6987	5887	0921	.0301
MaxSoil	1705	0490	.0150	< 0001	< 0001	2874	0565	0479	1036	0757	7304	3510	.0221	5525	3601	9716	5361	2931	1062
MinSoil	2552	- 1491	3932	10001	< 0001	9630	.0131	1570	.0042	.0161	3565	1804	.0004	.0487	.0048	6635	.0103	3387	0241
MedSoil	2508	- 1065	5857	6802	10001	8573	.0142	1457	.0162	.0186	1573	4723	.0001	1490	.0035	8301	0532	3133	0884
Secchi	- 0955	1543	0958	0040	- 0155	.0075	7454	0358	8076	5124	< 0001	< 0001	.0194	< 0001	< 0001	0750	1403	3330	7942
Cnd	1683	- 1699	1711	2145	2109	0280		< 0001	< 0001	< 0001	2889	7412	.0009	6182	0604	0455	0625	< 0001	< 0001
рН	1294	- 0172	1778	1226	1254	1812	5969	10001	< 0001	< 0001	.0201	.0162	.0329	1573	8347	8301	0498	.0001	.0001
Alk	1701	- 1934	1459	2474	2067	0210	8187	6361		< 0001	4548	6723	.0001	7988	0679	1695	2458	<.0001	< 0001
Ca	1458	- 1812	1592	2079	2023	0564	8631	6229	8136	10001	0863	4443	.0031	7765	2683	1677	0562	< .0001	< 0001
Clr	0855	- 0180	0309	0798	1218	- 3874	- 0911	- 2000	- 0641	- 1472	.0005	< 0001	< 0001	< 0001	< 0001	0144	1534	3722	8257
Trb	0499	0270	- 0838	1159	0619	- 4061	- 0284	- 2070	- 0363	- 0657	4126		0200	< 0001	< 0001	0293	0045	8348	8711
PO ₄ -P	1416	- 1732	2095	3121	3329	- 2056	2918	1872	3393	2585	3796	2039	.0200	<.0001	< 0001	.0030	0739	2010	< 0001
Part-P	0895	- 1814	- 0533	1704	1242	- 3981	0428	- 1216	0219	- 0243	3648	4665	4124		< 0001	0644	< 0001	8574	2086
Tot-P	1563	- 2126	0824	2447	2524	- 3748	1618	0180	1572	0953	4134	3896	6639	7607		.0015	.0005	3567	.0017
NHN	1061	- 0394	0032	0377	0185	- 1539	1722	- 1850	1182	1187	2108	1879	2607	1592	2753	.0013	4609	6263	< 0001
NO ₂ -N	- 0542	0555	- 0562	- 2248	- 1685	1287	1620	1709	1008	1659	- 1242	- 2476	- 1586	- 3916	- 3051	0643		.0132	.0034
Part-N	- 0569	- 1705	0942	0826	0867	0833	4236	3469	4054	4427	- 0765	- 0179	2034	- 0154	0793	- 0419	2152	.0102	< 0001
Tot-N	0711	- 2196	1448	1948	1465	- 0225	5391	3371	4840	4786	0189	0139	3572	1078	2700	3801	2546	0 5469	
	.0711	.2170	.1440	.1740	.1405	.0223	.5571	.5571	10-10	.+/00	.0107	.0157	.5512	.1070	.2700	.5001	.2040	0.5407	

drained and Herbicides were not correlated with other variables in either of the pond or pond margin data sets.

PCA

The first four PCA ordination axes for the pond data set had eigenvalues of 0.163, 0.132, 0.075 and 0.069, respectively. Axes 1 and 2 thus explained only 29.5% of the total variation in recorded explanatory variables. The subsequent axes were not considered because of low interpretability. The PCA diagram axes 1 and 2 showed that the explanatory variables did not segregate into distinctive groups (Fig. 4). Instead they made up a more or less uniform cloud of scattered vectors with different lengths. About half of the 48 vectors, particularly the variables for anthropological influence, were relatively short which indicated weak relationships with the axes. Almost all of the water-chemistry variables were associated with long arrows indicating strong relationships with the axes.

Figure 4. PCA ordination of 48 explanatory variables in the pond data set showing axes 1 and 2. Names of explanatory variables abbreviated in accordance with Tab. 1.

The first PCA axis for the pond margin data set (Fig. 5) accounted for 15.5% of the total variation and the second axis for 14.6%. The third and fourth axes with low eigenvalues of 0.075 and 0.064 were not interpreted further. As for the pond data set, the 47 vectors were well scattered in the two-dimensional diagram and no distinct groups of variables could be

seen. The vectors representing the chemical variables were long whereas many vectors for human influence-variables were short.

Figure 5. PCA ordination of 47 variables in the pond margin data set showing axes 1 and 2. Names of explanatory variables abbreviated in accordance with Tab. 1.

Ordination of vegetation

DCA ordination of the combined data sets (both ponds and pond margins) showed that ponds and pond margins made up two distinct groups (Fig. 6). This motivated separate ordination analyses of the two. The DCA ordination diagram of the combined data sets showed a more scattered distribution of the ponds compared to the pond margins. Note the relatively large eigenvalue of 0.618 for axis 1 (Tab. 3).

DCA

DCA axes (based upon 57 ponds) 1 to 4 had eigenvalues of 0.473, 0.392, 0.298 and 0.251, respectively (Tab. 3). Gradient lengths of axes 1 and 2 were 4.70 and 3.82 S.D. units, respectively. Plot scores were relatively evenly distributed along the two first ordination axes, although with somewhat lower density towards the fringe (Fig. 7).

Data set	Ordination method											
		Axis No.	Gradient length (S.D. units)	Eigenvalue	Relative core length (%)							
Pond + pond	DCA	1	4.68	0.618	83							
margin		2	4.23	0.313	52							
		3	3.84	0.259	76							
		4	4.68	0.194	54							
Pond	DCA	1	4.70	0.473	58							
		2	3.82	0.392	54							
		3	3.03	0.298	65							
		4	3.09	0.251	70							
Pond margin	DCA	1	2.63	0.319	72							
		2	2.41	0.196	62							
		3	2.28	0.164	39							
		4	2.20	0.139	57							
Pond	GNMDS	1	3.69		46							
		2	4.99		27							
Pond margin	GNMDS	1	2.56		67							
		2	2.68		53							

Figure 6. DCA ordination plot of full data set, 128 sample plots (indicated by their numbers), showing axes 1 and 2 in S.D. units. Ponds (1-64) in red to the right and pond margins (1-64) in blue to the left.

Figure 7. DCA ordination plot of 57 ponds, axes 1 and 2 in S.D. units.

The DCA axes 1–4 for 57 pond margin plots had eigenvalues of 0.319, 0.196, 0.164 and 0.139, respectively. Axes 1 and 2 had gradient lengths of 2.63 and 2.41, respectively (Tab. 3). The plot scores had a somewhat uniform trumpet-like distribution (Fig. 8).

Figure 8. DCA ordination plot of 57 pond margins, axes 1 and 2 in S.D. units.

GNMDS

The gradient lengths of the rescaled first and second GNMDS axes based on 57 ponds were 3.69 and 4.99 S.D. units, respectively (Tab. 3). The scores were more or less uniformly distributed along the two first axes (Fig. 9).

Figure 9. GNMDS ordination plot of 57 ponds, rescaled axes 1 and 2 in S.D. units.

Figure 10. GNMDS ordination plot of 57 pond margins, rescaled axes 1 and 2 in S.D. units.

The first and second GNMDS axes for the pond margins had gradient lengths of 2.56 and 2.68 S.D. units, respectively (Tab. 3). The plots made up a trumpet-shaped cloud, although less strongly than for the DCA ordination (Fig. 10).

Ponds and adjacent pond margins located within the same 1 km² sample square

Locations within the same 1 km² sampling unit were compared with respect to species composition using DCA ordination. Of the 44 1 km² sampling units, one unit contained 8 ponds (and pond margins), one contained 3 ponds and six contained 2 ponds, outliers omitted.

Figure 11. DCA ordination of 57 ponds, axes 1 and 2 in S.D. units. Ponds located within the same sampling unit are connected by a straight line.

Ponds Nos 46–48, 50–53 and 55 were located within the same square kilometre. Although they are confined to the same region of the ordination diagram, they are separated by more than 1 S.D. unit along DCA axis 2. (The same ponds made up a continuum along DCA axis 1). Ponds Nos 52 and 55 showed the largest difference in species composition being separated by 1.5 S.D. units, whereas the sample plots containing one pond pair mainly showed differences of 0.5 - 1 S.D. units along either axes (Fig. 11).

Figure 12 shows the relationship between pond margins. Pairs of pond margins showed a more similar species composition compared to the corresponding pond pairs (note

the strong difference in gradient lengths, and hence, in scale used for the axes). The largest difference occurs between pond margins Nos 46 and 52 along DCA1 and Nos 46 and 53 along DCA 2. This may be due to large differences in number of species found in each site.

Figure 12. DCA ordination of 57 pond margins, axes 1 and 2 in S.D. units. Pond margins located within the same sampling unit are connected by a straight line.

Comparison of ordinations

Core lengths were calculated for both ponds and pond margins and for both ordination methods (Tab. 3). Core lengths were larger for pond margins than ponds, regardless of ordination method, but DCA in general had larger core lengths compared to GNMDS. Pairwise correlation coefficients and corresponding P-values between axes obtained by the two different ordination methods, DCA and GNMDS, for 57 sample plots, are given in Tabs 4 and 5 for ponds and pond margins, respectively. Correlations between DCA 1 and GNMDS 1 were strong in both data sets. This is also shown by the PCA ordinations of the ponds and the pond margins in Figures 13 and 14, respectively. For the pond data set DCA 2 was somehow strongly correlated with GNMDS 6 while DCA 3 was strongly correlated with GNMDS 2 (Tab. 4). For the pond margin data set the first three DCA axes were strongly correlated with the corresponding GNMDS axes, respectively (Tab. 5). Other correlations were less strong.

The PCA ordination plot of pond margins showed strong associations between the two first DCA axes and the corresponding GNMDS axes (Fig. 14).

The first ordination axes of DCA and GNMDS obtained for both ponds and pond margins, both DCA and GNMDS (Tabs 6 and 7, respectively), showed perfectly correlations. Pond and pond margin GNMDS 2 were also strongly correlated (Tab. 7), whereas pond and pond margin DCA 2 were not at all correlated. Other correlations were less strong.

Figure 13. PCA ordination plot, axis 1 and 2, showing 4 DCA axes and 6 GNMDS axes for the pond data set.

Figure 14. PCA ordination plot, axes 1 and 2, showing 4 DCA axes and 6 GNMDS axes for pond margin data set.

Pond	DCA	1	DCA	2	DC	A3	DC	DCA4			
	τ	Р	τ	Р	τ	Р	τ	Р			
GNMDS1	.6929	<.0001	.0300	.7411	.1553	.0878	0795	.3820			
GNMDS2	.0739	.4166	0401	.6595	.4711	<.0001	.2850	.0017			
GNMDS3	0100	.9123	.0438	.6299	.2393	.0085	1597	.0792			
GNMDS4	.1992	.0286	0100	.9123	.0250	.7830	.1785	.0498			
GNMDS5	.0939	.3018	2656	.0035	0375	.6796	.0181	.8418			
GNMDS6	.0350	.6999	.4223	<.0001	1340	.1407	.3477	<.0001			

Table 4. Kendall's correlation coefficients and corresponding P values between ordination axes for pond data set, significant (P<0.01) correlation between axes in bold.

Table 5. Kendall's correlation coefficients and corresponding P values between ordination axes for pond margin data set, significant (P<0.01) correlation between axes in bold.

Pond margin	DCA1		DCA	2	DCA	3	DCA4			
	τ	Р	τ	Р	τ	Р	τ	Р		
GNMDS1	.7506	<.0001	1002	.2707	1328	.1445	.1077	.2364		
GNMDS2	0375	.6796	.7330	<.0001	.0989	.2768	.2619	.0040		
GNMDS3	1328	.1445	.0338	.7101	.3922	<.0001	.3596	<.0001		
GNMDS4	.0388	.6695	.0250	.7830	.0877	.3352	.1152	.2053		
GNMDS5	0025	.9780	.0639	.4826	.1641	.0713	0939	.3018		
GNMDS6	.2255	.0132	.0213	.8149	0363	.6897	.1666	.0671		

Table 6. Kendall's correlation coefficients with P values between DCA axes in both data sets, significant (P<0.01) correlation between axes in bold.

		Pond													
		DC	CA1	DC	A2	DC	CA3	DCA4							
		τ	Р	τ	Р	τ	Р	τ	Р						
Pond margin	DCA1	.4849	<.0001	.1077	.2364	.0701	.4407	0269	.7672						
	DCA2	0	1	0288	.7515	.1967	.0307	.1510	.3857						
	DCA3	2280	.0122	0037	.9671	.0789	.3857	0394	.6645						
	DCA4	.0601	.5087	0488	.5913	.2368	.0093	.0958	.2922						

Table 7. Kendall's correlation coefficients with P values between GNMDS axes in both data sets, significant (P<0.01) correlation between axes in bold.

		Pond												
		GNMDS1		GNMDS2		GNM	DS3	GNM	DS4	GNM	DS5	GNMDS6		
		τ	Р	τ	Р	τ	Р	τ	Р	τ	Р	τ	Р	
u	GNMDS1	.4974	<.0001	0513	.5724	.0350	.6999	.0814	.3708	.1140	.2103	0300	.7411	
	GNMDS2	.0451	.6202	.4160	<.0001	0238	.7936	0977	.2829	0902	.3216	0188	.8364	
largi	GNMDS3	0751	.4088	1127	.2153	.1040	.2532	2406	.0082	0100	.9123	1917	.0352	
nd n	GNMDS4	.0037	.9671	1090	.2310	1052	.2475	2418	.0079	0413	.6496	.2080	.0223	
Poi	GNMDS5	0150	.8688	.1378	.1299	.2193	.0160	.0175	.8472	3157	.0005	.0588	.5176	
	GNMDS6	.1378	.1299	0902	.3216	0187	.8364	.1177	.1956	1704	.0612	0112	.9014	

Interpretation of ordinations

Correlations between ordination axes and explanatory variables

Comparison of DCA 1 and GNMDS 1 for ponds shows that these ordination axes had rather similar patterns of correlations with explanatory variables (Tab. 8). They were significantly negatively correlated with Maximum and Median water depth and positively correlated with Distance to forest and Pond age. Furthermore, most of the water chemistry variables were strongly positively correlated with DCA 1 and GNMDS 1. GNMDS 1 was correlated also with some more variables, e.g. UTM northing, Altitude and Secchi-depth. DCA 2 had only one significant correlation whereas its correlated component, GNMDS axis 6, had three significant correlations, with the same two water depth variables that were correlated with the first axes, and with NO₃-N. The subsequent axes were also correlated with gradients, except from Area which was correlated with all third and fourth axes in addition to UTM easting correlated with the third axes of both ordination methods.

DCA 1 and GNMDS 1 for pond margins were to a large extent correlated with the same variables as for pond DCA 1 and GNMDS 1 (Tab. 9). The water chemical variables, Pond age and Distance to forest were positively correlated and UTM northing and Altitude were negatively correlated. Renovation and some topographical variables were also correlated with the axes. DCA 2 and GNMDS 2 were both significantly correlated with several variables, many of the same that were correlated with the first axes but in addition some that were related to anthropological influence like Cutting and Pond used for watering, Average width, UTM easting and Distance to built-up area. The subsequent axes had various correlations related to all groups of variables, e.g. many water chemical and geographical variables for DCA axes 3 and 4 and GNMDS axis 3. The presence of Fish and Garbage were correlated to GNMDS 4, whereas Area, Maximum slope, Soil depth variables and Pond enlarging were correlated with GNMDS 5.

Although many of the correlations were significant, the Kendall's correlation coefficients were generally low, indicating that the explanatory variables were relatively weak predictors of variation in species composition.

Multiple regression

GLM with ordination axes for 57 ponds as response variables and explanatory variables as predictors indicated that all groups of variables explained some variation in species composition along the ordination axes (Tab. 10). Water chemical variables like PO₄-P and Alkalinity, and

Table 8. Kendall's correlation coefficients and corresponding P values between ordination axes and explanatory variables related to pond data set. P<0.05 in bold

1 P 2 P 3 P 4 P 1 P 2 P 3 P 4 P 5 P PArea 0282 .7567 .0382 .6745 .2312 .0111 .1917 .0351 0683 .4530 .1497 .0999 .1848 .0423 .2525 .0055 1034 .2560 Max Data .2518 .0056 .0238 .7101 .1560 .0865 .2404 .0027 .2082 .0405 .0551 .0055 .1034 .2560	6 P .0182 .8418
PArea0282 .7567 .0382 .6745 .2312 .0111 .1917 .03510683 .4530 .1497 .0999 .1848 .0423 .2525 .00551034 .2560	.0182 .8418
Mar 7519 0050 0000 7020 7001 1500 0065 2404 0001 0007 2002 2400 0050 0501 2055 0220	
WaxDep2010 .00500238 .7011300 .08032494 .00010927 .3082 .2400 .00820050 .95612055 .023	1880 .0389
MedDep2218 .01480037 .96700175 .84712424 .00772155 .01791103 .2256 .2531 .0054 .0113 .90141566 .0855	2356 .0096
Fluct -0319 6864 0131 8679 -0883 2643 0187 8123 -1147 1474 0833 2923 0395 6179 -0721 3626 -1071 1755	0783 3223
Drain -0125 8274 0137 8105 0651 2569 0620 2805 -0576 3159 0902 1165 0677 2391 0138 8105 -0940 1020	- 0050 9305
Well -0751 2953 -0112 8753 0025 9722 -0394 5827 -1090 1291 -0050 9444 0138 8478 0652 3644 1140 112	- 0652 3644
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 0263 7327
$\begin{bmatrix} 1 \\ -0.751 \end{bmatrix} 3364 0000 \begin{bmatrix} 7977 \\ 1228 \end{bmatrix} 164 \begin{bmatrix} 1860 \\ 1860 \\ 0173 \\ -0201 \end{bmatrix} 7977 \begin{bmatrix} 1016 \\ -0.797 \\ 1040 \\ 0777 \end{bmatrix} 115 \begin{bmatrix} 1539 \\ -0.777 \\ 3205 \\ -1454 \\ 063 \end{bmatrix} 640 $	0464 5533
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1508 0702
UTIME -1557 1552 -0720 -4260 -0447 .0742 .2001 .0052 -1675 .0570 .2075 .0053 -1247 .1707 -0053 .4960 .0457 .0157	.1598 .0792
01100 .0070 .4014 .0151 .0051 .0011 .1003 .2004 .0012 .7555 .2000 .0045	.0343 .3492
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.0902 .3203
Distwat0420 .0570 .0570 .22570500 .15490219 .00750677 .53450568 .72510727 .5070 .0050 .7550 .1562 .157	.0927 .3070
DISIKOAU -1.0258 .7951 .1190 .1897 .0802 .5709 .0507 .5701 -1.0125 .8902 .1055 .2402 .0268 .7508 -1.0451 .0192 -1.029 .072	0238 ./931
DISLABI -1154 .2005 .0181 .8595 -0.075 .5152 .0902 .5147 -1775 .0462 -0055 .4807 -1500 .1298 .0959 .2534 -0954 .2956	0/40 .4001
DISTRUIL - 0.802 . 0.550 . 0.538 . 0.952 . 0.914 . 2.894 . 1246 . 1487 - 0.990 . 2.216 . 2080 . 0.100 . 0.977 . 2.577 - 1.171 . 0.4068 - 1479 . 0.806	.09// .25//
Distrore $.7/44$ $.0024$ $.0989$ $.2/33$ -1040 $.2497$ -1284 $.1552$ $.2870$ $.0015$ -1092 $.0012$ 0388 $.0673$ $.1178$ $.1924$ $.0714$ $.4292$	0401 .6572
Age .1/85 .0190 -0808 .2884 -0870 .2256 -0555 .4388 .1811 .0174 -1096 .1498 -0152 .8628 .0081 .9148 .2513 .001	.0432 .5701
Fire -0426 4918 -0313 0132 -0238 0008 -0551 3736 -0238 0008 0088 8874 0059 3024 -0489 4303 -0163 7924	0351 .5/13
Water0/26 .3198 .0/76 .2875 .1255 .0865 .0119 .87050890 .2232 .1328 .0690 .1078 .1401 .0376 .60681805 .013	.0038 .9590
Drink 0/58 .3390 -0156 .8434 -2161 .00641134 .1526 .0883 .38911510 .09860558 .48191184 .1553 .1949 .014	.0796 .3156
Laund0137 .7/49 .0188 .69650739 .12500877 .0687 .0088 .85560564 .24200702 .14541128 .0193 .0100 .8352	0025 .9585
Fence .0213 .7806 .0852 .2651 -1641 .03180563 .4608 .0063 .93470326 .6701 .0539 .48100376 .6230 .0689 .3674	.0940 .2190
Lime03324080005688830369357001447196042029560244542709590169040731030132743001447196042029560244542709590169040731030132743001447196042029560244542709590169040731030132743001447196042029560244542709590169040731030132743001447196042029560244542709590169040731030132743001447196042029560244542709590169040731030132743001447196042029560244542709590169040731030132743001447196042029560244542709590169040731030132743001447196042029560244542709590169040731030132743001447196042029560244542709590169040731030132743001447196042029560244542709590169040731030132743074307430744074	0721 .0726
Garb .1159 .0163 .0244 .6125 .0043 .9276 .0319 .5077 .1071 .0263 .0044 .92760282 .5589 .0044 .9276 .0069 .8864	.0445 .3564
Renov .0213 .7842 .0012 .98710827 .28770031 .9679 .0451 .56200940 .22701228 .1144 .0100 .89750201 .7960	.0714 .3585
Herbic .0050 .91030614 .16750025 .95510451 .31060050 .9103 .0576 .19510451 .31060602 .1764 .0602 .1764	0401 .3674
StonyMa0401 .36710200 .65201127 .0112 .0037 .93260388 .38220852 .0553 .0276 .5352 .0238 .5923 .0238 .5923	.0100 .8216
Cut .0325 .69290739 .37011478 .07311340 .1041 .0664 .42081429 .0833 .0288 .72680263 .7497 .1704 .038	.0451 .5845
Fell .0081 .8817 .1171 .0324 .1146 .0362 .0463 .39710031 .9544 .0883 .1066 .0132 .81010232 .67200608 .2670	.0482 .3782
Graze .0895 .14970231 .70940382 .5389 .0557 .3700 .0583 .3489 .0783 .20800056 .9278 .0006 .9920 .0896 .1497	.0695 .2635
Fish .0607 .44930319 .6908 .1221 .12830338 .6736 .0533 .5073 .0746 .3533 .1297 .1064 .1723 .0320 1109 .1674	0921 .2516
Duck .0144 .83320770 .26001472 .0314 .0607 .3744 .0006 .99270558 .41500959 .16120357 .6017 .1122 .1012	0069 .9198
Enlarge1215 .0507 .0714 .25080889 .15260789 .20431654 .00781040 .0945 .1078 .0832 .0276 .65761128 .0698	.0263 .6722
Diminish .0225 .66200062 .90340776 .1322 .0526 .30770263 .61010589 .25371103 .0326 .1165 .0239 .0664 .198	.0113 .8270
Secchi1109 .2227 .0469 .6054 .0507 .5769 .1842 .04281999 .0280 .0407 .6543 .0558 .5398 .1773 .05121548 .0889	.0044 .9615
Cnd .3395 .0002 .1015 .2647 .2694 .0031 .0795 .3819 .3459 .0001 .3208 .00040150 .8688 .0902 .32151654 .069	.1115 .2204
pH .2167 .0172 .1365 .1334 .2268 .0127 .0858 .3455 .2180 .0166 .2393 .0085 .0576 .5264 .1341 .14062130 .0192	.0702 .4406
Alk .3740 <.0001 .1008 .2677 .2888 .0015 .0112 .9014 .3904 <.0001 .3127 .00060320 .7255 .0846 .35271560 .0865	.0508 .5771
Ca .3439 .0002 .1159 .2028 .2700 .0030 .0701 .4407 .3402 .0002 .3503 .00010432 .6348 .0570 .53101510 .097	.1046 .2503
Clr .1058 .2446 .0632 .4868 .0382 .67451566 .0852 .1873 .0395 1347 .13880182 .84170482 .5960 .0395664	0420 .6446
Trb .1428 .1165 .0701 .44060877 .33511184 .1931 .2243 .01371704 .06110451 .62010426 .6396 .1103 .2256	.1454 .1102
PO ₄ -P .4210 <.0001 .0100 .9120 .2481 .00620507 .5757 .4887 <.0001 .0915 .3131 .0025 .9780 .0388 .6684 .0376 .6784	0376 .6784
Part-P .2249 .0134 .0106 .90680156 .86332280 .0122 .2813 .00201297 .1541 .1034 .25600307 .7359 .0883 .331	0658 .4697
Tot-P .3439 .0002 .0094 .9177 .0845 .35241578 .0826 .4242 <.00010620 .4953 .0320 .72540207 .8202 .0721 .4283	0495 .5863
NH ₄ -N .1516 .09550125 .8904 .0651 .4738 .0933 .3047 .1930 .0339 .0201 .82550551 .5444 .0188 .83630063 .945	.0952 .2951
NO3-N0369 .6841 .0620 .49480307 .7354 .2894 .00141209 .1832 .1936 .03310570 .5303 .0207 .82000132 .884	.2099 .0209
Part-N .3634 .0001 .1466 .1072 .1441 .1134 .1008 .2677 .2845 .0018 .2469 .0067 .0301 .7411 .0664 .46561466 .1072	.0551 .5447
Tot-N .3258 .0003 .0375 .6796 .2180 .0166 .1297 .1541 .3246 .0004 .2807 .00200201 .8256 .0852 .34911090 .2310	.0213 .8149

Table 9. Kendall's correlation coefficients and corresponding P values between ordination axes and explanatory variables related to pond margin data set. P<0.05 in bold

1 P 2 P 3 P 4 P 1 P 2 P 3 P 4 P 5 P 6 P 6 P 6 P 6 P 6 P 6 P 6 P 6 P 6 P 6 P 6 P 6 P 6 P 6 P 6 P 6 P 6 P 7		DCA axes								GNMDS axes											
MArea -0357 6948 1786 0555 -0357 6948 0.658 4698 -1184 1932 1417 0.708 4366 0495 5865 2881 0401 -0482 3990 MaxSip 1125 165 1385 1277 0833 3393 -0520 5613 -0221 7823 3001 -1535 6013 3002 4390 3002 4390 3001 -3178 0221 723 0244 7390 0363 5613 -0251 7823 -0244 -360 0363 5613 -0217 7379 0254 -0363 5600 -0326 5011 -1548 0807 2383 0420 0372 Massiati 1836 0380 0027 2311 0424 -0354 -0464 0410 1143 0435 0416 1143 0410 1217 1622 3610 -1360 0412 1858 0412 1150 0732 1383 0412 185		1	Р	2	Р	3	Р	4	Р	1	Р	2	Р	3	Р	4	Р	5	Р	6	Р
ArgWatsh -0.28 7.91 2.877 0.016 -0.802 3.799 1.65 1.992 -0.714 4.313 2.044 0.835 1.355 0.135 0.013 3.204 0.009 3.550 Mmstly 1.153 2.081 0.285 7.077 0.852 0.470 0.252 0.026 0.206 0.201 0.783 3.80 0.221 0.784 0.251 0.783 0.251 0.783 0.226 0.013 0.226 0.013 0.226 0.013 0.026 0.013 0.014 0.028 0.016 0.025 0.014 0.012 1.018 0.012 1.518 0.001 0.518 0.014 0.012 1.518 0.012 1.518 0.012 1.518 0.012 1.518 0.014 0.518 0.012 1.518 0.014 0.014 0.012 0.518 0.012 1.518 0.014 0.519 0.518 0.012 1.518 0.013 0.518 0.012 1.518 0.013 0.518	MArea	0357	.6948	.1736	.0565	0357	.6948	.0658	.4698	1184	.1932	.1447	.1118	0708	.4366	.0495	.5865	.2851	.0017	0482	.5960
Marksp 11259 11659 1138 1277 0833 393 -0520 5672 0783 3889 1472 033 -0671 5380 -1535 0913 3022 0009 1496 5861 Soil -1378 0.271 0.125 3407 0.921 1115 0.737 -0.732 0.738 0.737 -0.738 0.264 0.363 500 -1040 0.955 518 -0.724 0.863 0.737 -0.738 0.664 4.622 1.888 0.907 2.738 0.9047 1.620 0.731 0.731 0.731 0.738 0.970 0.125 8.904 0.921 3.114 0.664 1.977 0.142 2.888 0.9047 1.988 0.9037 1.948 0.916 1.932 1.990 1.932 1.937 1.948 0.956 1.977 0.948 0.945 1.997 1.938 0.946 1.937 1.948 0.956 1.937 1.948 0.956 1.936 0.941	AvgWid	- 0238	7931	.2857	.0016	- 0802	3769	1165	1992	- 0714	4313	.2644	.0036	- 0702	4394	1516	0948	1404	1220	- 0840	3550
Minsbi 1153 2038 0.288 7007 0.872 1376 0.261 5618 -0.251 7823 -0.726 80.06 0.702 4392 17.04 0.603 Marskeil 1836 0.838 1.009 2549 0.249 0.736 0.601 3.006 3.200 -0.328 0.704 0.603 5.007 0.728 0.848 0.008 9.707 0.724 0.902 3.211 0.833 1.708 0.045 1.800 0.042 0.227 7.718 0.068 9.707 0.058 9.707 0.058 9.777 0.005 0.445 1.500 0.844 1.578 0.046 0.455 0.408 0.370 0.724 9.723 0.686 0.475 1.550 0.844 1.598 0.042 0.426 0.588 0.042 0.426 0.588 0.048 1.578 0.384 0.006 2.578 1.723 0.686 0.472 1.428 0.401 1.44 0.403 5.400 0.599 1.428<	MaxSlp	1259	1659	1385	1277	0833	3593	- 0520	5672	0783	3889	1472	1053	- 0871	3380	- 1535	.0913	.3026	.0009	.0495	5861
Sulf .1378 .0271 0.125 .8407 .0294 .136 .5000 .131 .0333 .0200 .1115 .0737 .0444 .0588 .521 .1548 .0807 .2588 .0010 .0388 .073 .0454 .0588 .521 .1548 .0807 .2588 .0014 .0132 .8580 .0472 .1620 .0732 MinSoil .2902 .0010 .0125 .4455 .0001 .0161 .2415 .0226 .0724 .1580 .0814 .1500 .0844 .1580 .0814 .1600 .0834 .0007 .0141 .0025 .4455 .0048 .0365 .077 .0389 .0007 .111 .1490 .0324 .123 .0384 .0467 .1583 .0814 .124 .0474 .0339 .0514 .121 .0407 .1583 .0384 .0465 .2878 .0316 .0446 .0477 .1474 .0435 .0506 .0455 .0113 .0113	MinSlp	1153	2038	0288	7507	0852	3476	- 1015	2632	0890	3267	0526	5618	- 0251	7823	- 0226	8036	0702	4392	1704	0603
MaxSai 10536 0333 1009 2:49 0:249 0:249 0:249 0:033 9:77 1510 0:833 1773 0:454 -0:558 5:291 -1:548 0:064 0:652 1:55 2:15 0:052 1:15 0:052 1:15 0:052 1:15 0:052 1:15 0:052 1:15 0:052 1:15 0:052 1:15 0:052 1:15 0:053 0:16 0:031 0:061 0:031 0:031 0:031 0:032 0:052 0:052 0:054 0:034 0:090 0:043 1:050 0:033 UTM -0.044 9:016 -1.057 0:035 0:017 -0.050 0:046 0:040 0:050 0:017 -0.184 0:050 0:076 0:078 0:081 0:001 -0.017 0:013 0:01 0:017 -0.017 0:013 0:010 0:017 -0.017 0:010 0:015 0:017 -0.018 0:01 0:011 0:011 0:011 0:011	Soil	- 1378	0271	0125	8407	0927	1369	0363	5600	- 1040	0953	- 0063	9200	1115	0737	- 0789	2054	- 0363	5600	- 0326	6013
Minisoi 2982 Doilo 0033 970 0101 0320 734 0501 7311 2820 0001 0131 5700 0764 4652 1805 4472 1630 0533 1600 0821 1670 0922 114 0132 5701 0140 2503 0746 4127 1585 0816 1300 0531 1670 0922 1733 0823 1670 0543 2588 0009 1044 2503 0746 4127 1585 0816 1304 0331 0143 1500 0384 0905 2572 4723 0353 0143 1034 0374 1739 0484 0005 9414 0353 1178 1994 0752 4481 0478 3339 0514 0334 0503 0574 1739 0484 0400 2114 0403 0514 0336 0111 0451 0414 0101 0214 0414 0101 0414 0101 <t< td=""><td>MaxSoil</td><td>1836</td><td>0383</td><td>1009</td><td>2549</td><td>0294</td><td>7396</td><td>0595</td><td>5017</td><td>1510</td><td>0883</td><td>1773</td><td>0454</td><td>- 0558</td><td>5291</td><td>- 1548</td><td>0807</td><td>2538</td><td>0042</td><td>0420</td><td>6357</td></t<>	MaxSoil	1836	0383	1009	2549	0294	7396	0595	5017	1510	0883	1773	0454	- 0558	5291	- 1548	0807	2538	0042	0420	6357
MedSau 3.79 < 0.001 0.320 7254 0.055 6139 0.167 6153 0.282 3.477 0.001 3.010 0.1032 8.850 3.200 0.013 1.560 0.084 0.501 0.132 8.850 0.012 1.560 0.084 0.501 0.132 8.850 0.022 1.733 0.583 0.010 1.544 0.087 1.580 0.093 1.733 0.583 0.010 5.448 0.001 1.544 0.085 0.074 0.775 3.850 0.027 0.723 0.633 9.59 -4.033 0.985 0.030 0.975 1.850 0.035 0.075 0.340 0.655 0.717 0.350 0.144 0.056 0.173 0.390 0.995 0.990 9.990 9.995 0.990 9.990 9.995 0.990 9.990 9.995 0.990 9.990 9.990 9.990 9.990 9.990 9.990 9.990 9.990 9.990 9.990 9.990 9.990 <th< td=""><td>MinSoil</td><td>2082</td><td>0010</td><td>0038</td><td>9670</td><td>0125</td><td>8904</td><td>0902</td><td>3211</td><td>2820</td><td>0010</td><td>1065</td><td>2415</td><td>0276</td><td>7618</td><td>- 0664</td><td>4652</td><td>1805</td><td>0472</td><td>1629</td><td>0732</td></th<>	MinSoil	2082	0010	0038	9670	0125	8904	0902	3211	2820	0010	1065	2415	0276	7618	- 0664	4652	1805	0472	1629	0732
CTTM -2751 0025 4455 <0001 -0457 -1046 2533 0746 0127 -1585 0816 -1360 332 UTN -0.044 9616 -1798 0.022 0.017 6645 -2638 0.003 -1588 0.045 1598 0.025 -1729 0.58 -0476 5999 DistMod -0127 4233 0.032 -058 0.043 4550 6290 0.045 2.878 -0.031 7.444 .077 3330 0.014 5714 0.035 2.387 -0.031 7.444 .0477 .333 0.014 .0171 0.244 .0050 .9560 DistMod -1647 0.230 0.956 2.050 0.005 .1311 .2318 0.017 .4441 .148 .011 .2016 .018 .2211 .014 .016 .122 .017 .488 .011 .2114 .0101 .013 .1214 .0114 .0102 .122 .0114	MedSoil	3701	< 00010	- 0320	7254	- 0558	5399	0169	8525	3477	00015	0821	3670	- 0921	3114	0132	8850	2600	0043	1560	0864
Olimi -2.131 aboxa -1.432 -0.010 <td>UTMp</td> <td>2751</td> <td>~.0001</td> <td>0520</td> <td>< 0001</td> <td>0457</td> <td>6152</td> <td>0282</td> <td>7567</td> <td>3090</td> <td>0001</td> <td>3014</td> <td>0000</td> <td>1046</td> <td>2502</td> <td>0746</td> <td>4127</td> <td>1585</td> <td>0816</td> <td>1260</td> <td>1252</td>	UTMp	2751	~.0001	0520	< 0001	0457	6152	0282	7567	3090	0001	3014	0000	1046	2502	0746	4127	1585	0816	1260	1252
Oran -1.253 0.001 -1.250 0.003 -1.200 0.003 -1.200 0.003 0.017 -1.200 0.003 0.017 -1.200 0.003 0.017 -1.200 0.003 0.017 -1.200 0.003 0.017 -0.010 -0.010 -0.010 -0.010 0.017 -0.010 -0.011 -0.014 -0.010 -0.011 -0.014 -0.010 -0.011 -0.014 -0.010 -0.011 -0.014 -0.010 -0.011 -0.014 -0.010 -0.011 -0.014 -0.010 -0.011 -0.014 -0.010 -0.011 -0.014 -0.013 -0.014 -0.013 -0.014 -0.013 -0.014 -0.018 -0.014 -0.018 <th< td=""><td>UTMe</td><td>2731</td><td>0616</td><td>1708</td><td>0.0001</td><td>0437</td><td>6056</td><td>3452</td><td>0001</td><td>0407</td><td>6545</td><td>2638</td><td>.0007</td><td>2599</td><td>.2305</td><td>1508</td><td>0702</td><td>1722</td><td>0582</td><td>0104</td><td>8210</td></th<>	UTMe	2731	0616	1708	0.0001	0437	6056	3452	0001	0407	6545	2638	.0007	2599	.2305	1508	0702	1722	0582	0104	8210
nin -2333 .0002 .122 .0017 .222 .4023 .0001 .1304 .0103 .1304 .0103 .0113 .0103 .0103 .0113 .0103 .0113 .0103 .0113 .0113 .0113 .0113 .0113 .0113 .0113 .0113 .0113 .0133 .0113 .0113 .0133 .0113 .0113 .0133 .0133 .0113 .01		2259	.9010	1/20	.0402	0470	2622	1000	2200	0407	0043	1504	.0038	2300	0294	.1396	20792	1723	.0565	0194	5000
Dist Mail -1.04 0.920 11.24 0.920 -1.04 0.920 -1.04 0.921 -1.014 0.920 -1.014 0.921 -1.014 0.921 -0.012 -1.014 0.920 0.921 -0.012 -1.014 0.920 0.921 -1.014 0.920 0.921 0.912 0.921	All DictWot	5556	.0002	1454	1007	0827	.3023	1090	.2290	4023	.0001	1170	1040	1000	4091	2005	.2079	1/29	2950	0470	.3999
Distrodu -0.12 -4.23 0.042 -0.239 0.322 0.043 0.043 0.203 0.001 0.201 8.214 0.101 0.202 0.002 0.203 0.203 0.001 0.211 8.212 0.002 0.014 0.144 1.013 0.114 0.144 0.148 0.014 0.148 0.014 0.148 0.014 0.144 0.144 0.144 0.144 0.144 0.144 0.144 0.144 0.144 0.143 0.014 0.143 0.014 0.143 0.014 0.143 0.014 0.143 0.014 <th0.143< th=""> 0.144 0.142</th0.143<>	Distwat	1304	.0980	.1434	2622	.0175	.0409	.0003	.9430	1/34	6200	.11/0	.1949	0732	74061	.2005	.02/4	0789	.3630	0075	.9341
DistRig -1.247 .1087 .0103 .228 .0103 .228 .0103 .228 .0103 .228 .0103 .228 .0103 .228 .0103 .2218 .0103 .228 .0103 .2218 .0101 .0121 .0103 .0216 .0188 .2217 .0103 .0216 .0188 .2217 .0103 .0216 .0188 .2217 .0103 .0213 .0105 .0121 .0107 .0081 .9148 .0070 .3823 .0016 .0113 .01	DistRoad	0727	.4233	.0627	.3022	0339	.5526	.0420	.0300	0439	.0290	.0903	.20/0	0301	./404	06//	.3339	.0314	.3/14	0050	.9500
Disture -1033 -2220 -1037 -1034 -2108 -1103 -1037 -1049 -1038 -8217 -1149 -1108 -2108 -1103 -1039 -8217 -1103 -1013 <	DistAgr	1247	.104/	.0420	.0399	.0990	.2009	.0107	.9055	1525	.0898	.0182	.8393	.0119	.8945	0043	.4/21	.0420	.0399	0044	.9010
Districts Jord -2444 Jords -1044 Jords -1040 Jords -2112 Jords -0169 Jords -1283 Jords Jords <thjords< th=""> Jords Jords <</thjords<>	DistBui	1035	.2228	.2082	.0019	.0304	.313/	.2393	.0050	1133	.1818	.2500	.0057	.0004	.4418	.1103	.2010	.0188	.8277	1140	.1800
Age .0.1485 .0.011 -0.2030 .0.903 .0.204 .4.943 -0.090 .2.212 .0.003 .0.113 .5.212 .0.003 .0.204 .7.294 .0.204 .7.294 .0.204 .7.294 .0.204 .7.284 .0.005 .0.213 .5.85 .0.114 .5.956 .0.114 .5.956 .0.114 .5.956 .0.114 .5.956 .0.114 .5.956 .0.114 .5.956 .0.114 .5.956 .0.114 .5.956 .0.114 .5.956 .0.144 .5.855 .0.114 .5.956 .0.114 .5.556 .0.126 .0.144 .5.558 .0.103 .1.015 .0.352 .0.175 .7.18 .0.902 .0.611 .0.138 .8.569 .0.138 .8.569 .0.138 .5.69 .0.038 .5.115 .0.771 .0.584 .0.212 .0.903 .0.105 .0.352 .0.175 .0.184 .0.903 .0.105 .0.352 .0.175 .0.718 .0.900 .0.052 .0.013 .0.134 .0.321 .0.010 .9.99 .0.654 .0.122 .0.204 .5.41 .0.554 .0.458 <	DistFores	.3997	<.0001	2155	.01/1	2444	.0068	1604	.0759	.3484	.0001	2118	.0191	0627	.4881	0789	.3823	0965	.2850	.13/8	.12/1
FITE -0.538 .551 0.276 .0549 .0123 .598 -0.103 .8080 -0.113 .8550 .0144 .5040 .0014 .5218 .0231 .6053 .0138 .8240 Drink .0244 .7580 -1.585 .0445 .0482 .5429 .0533 .5018 .0019 .0115 .0123 .7706 .0336 .6189 .1090 .156 .2226 .0020 Laund .0376 .4333 .0448 .0144 .3520 .0015 .0152 .0123 .7064 .0124 .0435 .7749 .0100 .8355 Garb .0345 .2385 .0507 .0237 .0443 .3564 .0458 .1115 .117 .0777 .1034 .0232 .0563 .0134 .0232 .0014 .0232 .021 .0214 .5427 .0786 .6474 .0135 .0483 .0483 .0113 .1799 .0514 .0134 .0212 .0214 .5427 .0796 .6474 .0488 .0614 .0152 .2265 .0277 .0564 <td>Age</td> <td>.1485</td> <td>.0511</td> <td>2650</td> <td>.0005</td> <td>0520</td> <td>.4945</td> <td>0909</td> <td>.2327</td> <td>.1949</td> <td>.0105</td> <td>2212</td> <td>.0037</td> <td>0081</td> <td>.9148</td> <td>0269</td> <td>./234</td> <td>0934</td> <td>.2201</td> <td>1422</td> <td>.0017</td>	Age	.1485	.0511	2650	.0005	0520	.4945	0909	.2327	.1949	.0105	2212	.0037	0081	.9148	0269	./234	0934	.2201	1422	.0017
Water -0.089 4.201 2.256 .0001 .0120 .0120 .0120 .0213 .7/106 .0215 .1/108 .1019 .1518 .0213 .7/106 .0315 .0114 .1518 .0213 .0104 .8558 .2112 .0013 .0114 .8559 .0233 .0115 .0353 .0116 .0352 .0175 .7188 .0003 .0133 .0133 .0333 .0449 .5663 .0025 .0134 .0523 .0101 .0324 .7580 .0333 .0414 .0533 .0439 .5663 .0022 .9739 .0403 .2132 .0014 .0533 .0414 .0294 .4844 .0013 .0999 .0013 .0104 .0211 .0104 .0211 .0104 .0211 .0104 .0211 .0104 .0211 .0105 .0104 .0105 .0104 .0104 .0104 .0104 .0104 .0104 .0104 .0104 .0104 .0104 .0104 .0104 .0104	Fire	0338	.3851	.0276	.6564	.0125	.8398	0150	.8083	0388	.5308	0113	.8550	.0414	.5046	.0614	.3218	.0251	.0859	.0138	.8240
Drink -0.244 .1580 -1.158 .00450 .0124 .1024 .1025 .1026 .1026 .1026 .1026 .1026 .1026 .1026 .1026 .1026 .1026 .1026 .1026 .1026 .1026 .1026 .1026 .1021	Water	0589	.4201	.2556	.0005	.0125	.8638	.1103	.1312	1241	.0895	.2393	.0011	0213	.//06	.0363	.6189	.1090	.1356	.2256	.0020
Laund -0.0376 4353 -0489 3.105 0.0113 8150 -0.089 2.217 0013 9.93 -1015 0.052 0.713 1.718 0.902 0.012 -0.118 1.749 0.010 8552 Lime -0.038 6.14 0.014 4.220 -0.376 6.230 -0.714 3.503 -0.439 5.663 0.025 9.739 -0.840 2.222 2.130 0.053 -0.138 8.569 -0.238 7.555 Lime -0.721 0.726 0.157 6.963 0.420 2.956 -0.771 0.548 -0.583 1.466 0.222 4.824 0.056 8.883 -0.658 1.012 -0.244 5.427 -0.796 0.474 Renov 1.554 0.458 -0.827 2.877 0.752 3.338 -0.865 4.750 0.833 0.841 0.294 5.516 -0.132 7.850 1.034 0.321 -0.219 6.494 -0.558 2.477 Renov 1.554 0.458 -0.827 2.877 0.752 3.338 -0.865 4.750 0.883 0.841 0.294 5.516 -0.132 7.850 1.034 0.321 -0.219 6.494 -0.558 2.477 Renov 1.554 0.458 -0.827 2.877 0.752 3.338 -0.865 4.264 1.554 0.458 -1.115 1.517 0.777 3.179 0.990 2.032 0.011 9.999 0.106 8.170 Herbic -0.238 5.925 0.627 1.590 -0.414 3.526 0.088 8.437 -0.13 7.799 0.514 2.481 0.001 9.999 -0.088 8.437 -0.025 9.551 -0.100 8.217 StomyMa -0.351 4.300 -0.238 5.923 0.0564 2.047 -0.414 3.523 0.063 8.879 -0.627 1.587 0.566 4.2047 -0.628 5.168 -0.050 9.102 -0.677 1.280 Cut 1.128 1.716 -2.030 0.139 -1.040 2.074 -1.717 0.374 1.554 0.956 -1.805 0.287 -0.576 4.427 -0.627 4.475 -0.201 8.080 -0.476 5.38 Fell -0.445 4.165 1.114 0.383 0.269 6.227 0.157 7.748 -0.495 3.660 1.034 0.590 -0.620 2.572 -0.044 9.362 0.708 1.960 -0.223 6.720 Graze -0.871 1.1615 0.495 3.866 -1.761 0.284 0.533 5.073 0.959 3.237 -0.320 6.908 -2.044 7.10 -2.247 0.028 0.670 4.039 0.883 2.714 Fish 1.410 0.793 -0.695 3.866 -1.761 0.284 0.533 5.073 0.959 3.2327 -0.320 6.908 -0.424 7.610 -2.487 0.020 0.670 4.039 0.883 2.714 Duck -0.006 9.978 0.017 8.763 -0.069 9.198 -0.080 2.375 -0.508 4.522 -0.345 6.145 -0.144 8.322 0.758 2.678 0.833 1.966 -1.848 0.069 Enlarge -0.890 1.526 0.031 6.145 1.078 0.832 0.764 2.191 -1.103 0.762 0.238 7.019 0.063 9.198 0.904 1.308 1.867 0.027 0.639 3.042 Diminish 0.326 5.278 -0.226 6.620 0.727 1.590 -5.644 2.745 0.038 0.107 -2.807 0.001 -0.251 6.272 -0.388 5.120 -0.376 4.639 -0.338 5.120 Diminish 0.326 5.278 0.0026 0.0071 -1.171 0.054 2.755 0.008 3.	Drink	0244	./580	1585	.0456	.0482	.5429	0533	.5018	.0094	.9056	1736	.0286	0144	.8558	.2212	.0053	1096	.166/	1598	.0439
Fence -0388 6114 .0614 .4220 -0.0714 .3503 -0.439 .5663 .0022 .9739 -0.840 .2722 .2130 .0013 .8569 0128 .8569 0238 .7555 Garb .0545 .2855 .0570 .2372 .0443 .3564 .0345 .4760 .0833 .0841 .0282 .4824 .0056 .8833 .0011 .0219 .6494 0558 .2477 Renov .1554 .0458 .0566 .0027 .338 .0865 .2664 .1554 .0458 .1115 .1517 .0777 .3179 .0990 .032 .0001 .9999 .1005 .1015 .1015 .0013 .2027 .0138 .8437 .0117 .3789 .0614 .2481 .0006 .4475 .4665 .1184 .0564 .2047 .428 .0360 .0462 .2772 .0044 .8483 .0160 .0223 .6720 .0013 .5073 .0599	Laund	03/6	.4353	0489	.3105	.0113	.8150	0589	.2217	.0013	.9793	1015	.0352	.01/5	./158	.0902	.0612	0138	.//49	.0100	.8352
Lime -0721 0.726 0.0157 6.963 0.0420 2.956 0.071 0.0583 0.1466 0.022 4.824 0.056 8.883 -0658 1.012 -0244 0.424 0.424 0.4474 0.056 0.4824 0.056 8.883 -0658 1.012 -0244 0.424 0.424 0.4474 0.056 0.488 0.024 0.458 0.1034 0.021 -0219 6.494 -0.4056 0.1034 0.021 -0219 6.494 0.4056 0.1034 0.021 -0219 6.494 0.4056 0.1034 0.021 -0219 6.494 0.4056 0.1034 0.021 -0219 6.494 0.4056 0.1034 0.021 -0219 6.494 0.4056 0.1034 0.021 -0219 6.494 0.4058 0.1034 0.021 -0219 6.494 0.4056 0.1034 0.021 -0219 6.494 0.4056 0.1034 0.021 -0219 6.494 0.4056 0.1034 0.021 -0218 0.021 -0218 0.999 0.0621 0.021 0.021 -0218 0.999 0.1065 0.102 0.001 0.9999 -0.088 0.4437 -0.025 0.9510 -0.007 1.280 0.9102 -0.077 1.280 0.9102 -0.056 0.9102 -0.077 1.280 0.9102 -0.084 0.9102 -0.028 0.9102 -0.028 0.9102 -0.021 0.007 1.280 0.9102 -0.076 0.4847 -0.025 0.9514 0.001 0.9999 -0.088 0.447 -0.021 0.007 1.280 0.9102 -0.077 1.280 0.9102 -0.021 0.007 1.280 0.9102 -0.021 0.007 1.280 0.9102 -0.021 0.007 1.280 0.9102 -0.021 0.077 1.280 0.9102 -0.021 0.076 0.9102 -0.021 0.076 0.9102 -0.021 0.076 0.9102 -0.021 0.076 0.9102 -0.021 0.076 0.9102 -0.021 0.076 0.9102 -0.021 0.076 0.021 0.076 0.021 0.076 0.022 0.0708 0.940 0.303 0.020 0.070 0.091 0.022 0.720 0.070 0.018 0.006 0.922 0.0107 0.033 0.959 0.2327 0.320 0.008 0.044 0.005 0.912 0.020 0.0670 0.4039 0.883 0.714 0.006 0.922 0.007 0.031 0.424 0.005 0.927 0.0107 0.403 0.882 0.764 0.219 -0.110 0.702 0.023 0.012 0.058 0.927 0.0107 0.403 0.883 0.714 0.069 0.919 0.001 0.025 0.021 0.027 0.038 0.867 0.027 0.038 0.822 0.728 0.444 0.906 0.001 0.025 0.031 0.614 0.173 0.054 0.247 0.002 0.087 0.388 0.016 0.174 0.042 0.156 0.822 0.051 0.848 0.975 0.017 0.287 0.017 0.287 0.017 0.808 0.322 0.2231 0.012 0.038 0.867 0.027 0.338 0.510 0.038 0.867 0.027 0.338 0.510 0.038 0.867 0.027 0.338 0.510 0.01 0.257 0.776 0.454 0.903 0.352 0.238 0.018 0.174 0.055 0.954 0.244 0.9054 0.905 0.989 0.018 0.940 0.308 0.946 0.303 0.959 0.232 0.989 0.018 0.940 0.308 0.940 0.308 0.940 0.308 0.940 0.308 0.940 0.303 0.939 0.018 0.940 0.303 0.922 0.0376 0.463 0.03	Fence	0388	.6114	.0614	.4220	0376	.6230	0714	.3503	0439	.5663	.0025	.9739	0840	.2722	.2130	.0053	0138	.8569	0238	.7555
Garb .0545 .2585 .0570 .2372 .0445 .3564 .0043 .0811 .0294 .5416 .0112 .7850 .1034 .0021 .6494 .0588 .2477 Renov .1554 .0458 .0487 .0752 .3338 .0865 .2664 .1554 .0458 .1117 .0777 .3179 .0999 .0088 .8437 .0010 .9999 .0088 .8437 .0010 .9102 .0677 .1280 Cut .1128 .1716 -2030 .0139 .1040 .074 .1717 .0374 .1554 .0566 .1087 .0576 .4847 .0627 .4475 .2021 .8080 .0476 .5638 Fell .0445 .4165 .1134 .0383 .0269 .6227 .0177 .1774 .0495 .3660 .1034 .0590 .0627 .4847 .0028 .978 .0144 .8168 .1184 .0569 .0144 .0148 .0148 .1184 .0569 .2477 .0020 .0670 .4475 .2487 .0026	Lime	0721	.0726	.0157	.6963	.0420	.2956	0771	.0548	0583	.1466	.0282	.4824	.0056	.8883	0658	.1012	0244	.5427	0796	.0474
Renov 1554 .0458 .0458 .0458 .0458 .0458 .0115 .1717 .0177 .1319 .0990 .2032 .0001 .9999 .1008 .8437 .0025 .9551 .0105 .1709 StonyMa 0351 .4300 0238 .5923 .0564 .2047 0414 .3523 .0063 .8879 0627 .1587 .0564 .2047 0288 .5168 0050 .9102 0677 .1280 Cut .1128 .1716 2030 .0139 -1040 .2074 0177 .7748 .0455 .1805 .0287 0620 .2572 .0044 .9362 .0708 .8080 .0276 .6720 Graze 0871 .1615 .0495 .4262 .0433 .6070 .2811 .0971 .1185 .0257 .6790 .1159 .0624 .0056 .9278 .0144 .8168 .1184 .0569 Fish .1410 .0793 .0455 .2683 .0564 .2175 .0508 .4522 .0144 <t< td=""><td>Garb</td><td>.0545</td><td>.2585</td><td>.0570</td><td>.2372</td><td>.0445</td><td>.3564</td><td>.0345</td><td>.4750</td><td>.0833</td><td>.0841</td><td>.0294</td><td>.5416</td><td>0132</td><td>.7850</td><td>.1034</td><td>.0321</td><td>0219</td><td>.6494</td><td>0558</td><td>.2477</td></t<>	Garb	.0545	.2585	.0570	.2372	.0445	.3564	.0345	.4750	.0833	.0841	.0294	.5416	0132	.7850	.1034	.0321	0219	.6494	0558	.2477
Herbic -0.238 5.925 0.627 1.150 -0.0141 3.526 0.088 8.437 -0.012 9.999 -0.088 8.437 -0.025 9.951 -0.100 8.217 StonyMa -0.0351 4.300 -0.238 5.923 0.564 2.047 -0.414 .3523 0.063 .8879 -0.627 1.1587 .0564 2.047 -0.028 .5168 -0.005 .9102 -0.677 .1280 Cut .1128 .1174 .0333 .0269 .6227 .0157 .7748 0495 .3660 .1034 .0590 0620 .2572 .0044 .9268 .0144 .8168 .0476 .5338 Graze -0871 .1615 .0495 .4262 .0432 .4870 0670 .2111 .0134 .0590 .0224 .0020 .0276 .0144 .8183 .0144 .8163 .0144 .8163 .0144 .8163 .0144 .8164 .0144 .0284 .0020 .0270 .0383 .1267 .0143 .0514 .0144 .8322 .0758	Renov	.1554	.0458	0827	.2877	.0752	.3338	0865	.2664	.1554	.0458	1115	.1517	.0777	.3179	.0990	.2032	.0001	.9999	.1065	.1709
StonyMa 0351 4.4300 0238 5.923 .0.054 .2.047 0.148 .5.533 .0.063 .8.879 0.670 .1.887 .0.0564 .2.047 0.208 .5.168 0.027 .4.475 0.201 .8.008 0.676 .5.638 Cut .1.124 .1.134 .0.338 .0.269 .6.227 .0.157 .7.74 0.454 .3.660 .1.034 .0.590 .0.620 .2.572 .0.044 .9362 .0.078 .9064 .9020 .0.670 .2.817 Graze 0.871 .1.615 .0.495 .4.262 .0.424 .0.633 .5073 .0.959 .2.327 .0.324 .6.114 .8.332 .0.758 .2.647 .0.020 .0.670 .4.843 .0.483 .0.678 .8.66 .1.848 .0.069 .0.014 .8.332 .0.758 .2.648 .0.833 .1.667 .0.029 .0.644 .2.714 .0.375 .2.674 .0.827 .0.383 .1.646 .0.020 .0.670 .8.484 .0.020 .0.817 .1.848 .0.0063 .0.919 .0.940 <	Herbic	0238	.5925	.0627	.1590	0414	.3526	.0088	.8437	0113	.7999	.0514	.2481	.0001	.9999	0088	.8437	0025	.9551	0100	.8217
Cut .1128 .1716 2030 .0139 1040 .2074 1717 .0374 .1554 .0596 .1805 .0227 .0576 .4487 0627 .4475 .0201 .8080 .0476 .5638 Fell 0445 .4165 .1134 .0383 .0269 .6227 .0157 .7748 .0495 .3660 .1034 .0590 .0620 .2572 .0044 .9362 .0708 .1960 .0232 .6720 Graze .0871 .1615 .0495 .4262 .0432 .4870 .0607 .2111 .0971 .1185 .0227 .0320 .6908 .0244 .7610 .2487 .0020 .0670 .4039 .0883 .2714 Duck .0006 .9927 .0107 .8763 .0059 .2327 .0508 .6445 .0144 .8332 .0758 .2678 .0838 .1866 .1184 .0569 Enlarge .0890 .1526 .0612 .0771 .1590 .0564 .2745 .0238 .6101 .0251 .627	StonyMa	0351	.4300	0238	.5923	.0564	.2047	0414	.3523	.0063	.8879	0627	.1587	.0564	.2047	0288	.5168	0050	.9102	0677	.1280
Fell 0445 .4165 .1134 .0383 .0269 .6227 .7748 0495 .3660 .1034 .0590 0620 .2572 0044 .9362 .0708 .1960 0232 .6720 Graze 0871 1.615 .0495 .4262 .0432 .4870 0670 .2811 0971 .1185 .0257 .6796 1159 .0624 .0026 .9278 .0104 .8168 1184 .0569 Duck .0006 .9927 .0107 .8763 .0069 .918 .0284 .0233 .0762 .0238 .6145 .0144 .8332 .0768 .0883 .1867 .0027 .0639 .3042 Diminish .0326 .5278 .0226 .6620 .0727 .1590 .0564 .2745 .0238 .6445 .0017 .2807 .0010 .2807 .0017 .2807 .0020 .0827 .3635 .1717 .0592 .1516 .0957 pH .2193 .0160 .1742 .0556 .1629 .0758	Cut	.1128	.1716	2030	.0139	1040	.2074	1717	.0374	.1554	.0596	1805	.0287	0576	.4847	0627	.4475	0201	.8080	0476	.5638
Graze 0871 .1615 .0495 .4262 .0432 .4870 0670 .2811 0971 .1185 .0257 .6796 1159 .0624 0056 .9278 .0144 .8168 1184 .0569 Fish 1101 0793 0695 .3866 1761 0284 0503 0370 .0959 2327 0320 .6908 0244 7610 2487 0020 0670 .4039 .0883 .2714 Duck 0006 9927 0107 8763 0064 152 0133 6145 1078 0832 0764 .2191 1103 0762 0238 0101 0251 .6272 0338 .5120 0376 .4663 0338 .5120 Cnd 3496 0001 2607 0042 1566 0852 0511 818 2970 0011 2857 0017 2807 0020 0823 1717 0522 1516 0957 JH 1721 0510 <t< td=""><td>Fell</td><td>0445</td><td>.4165</td><td>.1134</td><td>.0383</td><td>.0269</td><td>.6227</td><td>.0157</td><td>.7748</td><td>0495</td><td>.3660</td><td>.1034</td><td>.0590</td><td>0620</td><td>.2572</td><td>0044</td><td>.9362</td><td>.0708</td><td>.1960</td><td>0232</td><td>.6720</td></t<>	Fell	0445	.4165	.1134	.0383	.0269	.6227	.0157	.7748	0495	.3660	.1034	.0590	0620	.2572	0044	.9362	.0708	.1960	0232	.6720
Fish .1410 .0793 0695 .3866 1761 .0284 .0533 .5073 .0959 .2327 0320 .6908 0244 .7610 2487 .0020 .0670 .4039 .0883 .2714 Duck 0006 .9927 .0107 .8763 0069 .9198 .0808 .2375 0508 .4582 0345 .6145 0144 .8332 .0758 .2678 .0883 .1966 1848 .0069 Enlarge 0890 .1526 .0313 .6145 .1078 .0832 .0764 .2191 11103 .0762 .0228 .6101 0251 .6272 .0338 .5120 0376 .4663 .0352 .116 .0957 pH .2193 .0160 .1742 .0556 1629 .0734 .0489 .5912 .1429 .1165 .1729 .0574 2419 .0079 .0800 .3282 .2231 .0142 .1441 .1133 Alk .3427 .0002 .2480 .0071 .1711 .0602	Graze	0871	.1615	.0495	.4262	.0432	.4870	0670	.2811	0971	.1185	.0257	.6796	1159	.0624	0056	.9278	.0144	.8168	1184	.0569
Duck 0006 .9927 .0107 .8763 0609 .9198 0808 .2375 0508 .4582 0345 .6145 0144 .8332 .0758 .2678 0803 .1966 1848 .0069 Enlarge 0890 .1526 .0313 .6145 .1078 .0832 0764 .2191 1103 .0762 0238 .7019 .0063 .9198 .0940 .1308 1867 .0027 .0639 .3042 Diminish .0326 .5278 0226 .6620 .0727 .1590 0564 .2745 .0238 .6445 0263 .6101 0251 .6272 0387 .5120 0376 .4663 .0957 Qrd .4396 .0001 .2607 .0042 1566 .0852 .0501 .518 .2970 .0017 .2807 .0020 .0809 .3282 .2231 .0142 .1414 .1133 Alk .3427 .0002 .2450 .00011 .1711 .0602 .0758 .4049 .2863 .0017	Fish	.1410	.0793	0695	.3866	1761	.0284	.0533	.5073	.0959	.2327	0320	.6908	0244	.7610	2487	.0020	.0670	.4039	.0883	.2714
Enlarge 0890 .1526 .0313 .6145 .1078 .0832 0764 .2191 1103 .0762 0238 .7019 .0063 .9198 .0940 .1308 .1867 .0027 .0639 .3042 Diminish .0326 .5278 0226 .6620 .0727 .1590 0564 .2745 .0238 .6445 0263 .6101 0251 .6272 0338 .5120 0376 .4663 0338 .5120 Cnd .3496 .0001 .2607 .0042 1566 .0852 .0501 .5818 .2970 .0011 .2857 .0017 2807 .0020 0827 .3635 .1717 .0592 .1516 .0957 pH .2193 .0160 .1742 .0556 1629 .0758 .4049 .2863 .0017 .2462 .0068 .0746 .4127 .1614 .1133 Alk .3427 .0002 .2838 .0018 .3152 .0005 .2876 .0016 .0545 .5492 .1535 .0917	Duck	0006	.9927	.0107	.8763	0069	.9198	0808	.2375	0508	.4582	0345	.6145	0144	.8332	.0758	.2678	0883	.1966	1848	.0069
Diminish .0326 .5278 0226 .6620 .0727 .1590 0564 .2745 .0238 .6445 0263 .6101 0251 .6272 0338 .5120 0376 .4663 0338 .5120 Cnd .3496 .0001 .2607 .0042 1566 .0852 .0501 .5818 .2970 .0011 .2857 .0017 2807 .0020 0827 .3635 .1717 .0592 .1516 .0957 pH .2193 .0160 .1742 .0556 1629 .0738 .4049 .283 .0017 .2467 .0024 24219 .0079 0827 .3635 .1717 .0592 .1585 .0816 Ca .3352 .0002 .2438 .0018 .3152 .0005 2462 .0068 .0746 .4127 .1505 .1585 .0816 Clr .0257 .7777 1372 .1316 .2249 .0134 .0482 .5960 .0808 .3745 1761 .0530 .1560 .0865 .1059 <t< td=""><td>Enlarge</td><td>0890</td><td>.1526</td><td>.0313</td><td>.6145</td><td>.1078</td><td>.0832</td><td>0764</td><td>.2191</td><td>1103</td><td>.0762</td><td>0238</td><td>.7019</td><td>.0063</td><td>.9198</td><td>.0940</td><td>.1308</td><td>.1867</td><td>.0027</td><td>.0639</td><td>.3042</td></t<>	Enlarge	0890	.1526	.0313	.6145	.1078	.0832	0764	.2191	1103	.0762	0238	.7019	.0063	.9198	.0940	.1308	.1867	.0027	.0639	.3042
Cnd .3496 .0001 .2607 .0042 1566 .0852 .0501 .5818 .2970 .0011 .2857 .0017 2807 .0020 0827 .3635 .1717 .0592 .1516 .0957 pH .2193 .0160 .1742 .0556 1629 .0734 .0489 .5912 .1429 .1165 .1729 .0574 2419 .0079 0800 .3282 .2231 .0142 .1441 .1133 Alk .3427 .0002 .2450 .0071 1711 .0602 .0758 .4049 .2863 .0017 .2763 .0024 2422 .0068 .0746 .4127 .1610 .0769 .1585 .0816 Ca .3352 .0002 .2838 .0018 .3152 .0005 2876 .0016 0545 .5492 .1535 .0917 .1259 .1665 Clr .0257 .7777 1372 .1316 .2249 .0134 .0482 .5960 .0808 .3745 .1761 .0530 .1560 .0865 <td>Diminish</td> <td>.0326</td> <td>.5278</td> <td>0226</td> <td>.6620</td> <td>.0727</td> <td>.1590</td> <td>0564</td> <td>.2745</td> <td>.0238</td> <td>.6445</td> <td>0263</td> <td>.6101</td> <td>0251</td> <td>.6272</td> <td>0338</td> <td>.5120</td> <td>0376</td> <td>.4663</td> <td>0338</td> <td>.5120</td>	Diminish	.0326	.5278	0226	.6620	.0727	.1590	0564	.2745	.0238	.6445	0263	.6101	0251	.6272	0338	.5120	0376	.4663	0338	.5120
pH .2193 .0160 .1742 .0556 1629 .0734 .0489 .5912 .1429 .1165 .1729 .0574 2419 .0079 0890 .3282 .2231 .0142 .1441 .1133 Alk .3427 .0002 .2450 .0071 1711 .0602 .0758 .4049 .2863 .0017 .2763 .0024 2462 .0068 0746 .4127 .1610 .0769 .1585 .0816 Ca .3352 .0002 .2838 .0018 1761 .0531 .0608 .5043 .2838 .0018 .3152 .0005 2876 .0016 0545 .5492 .1535 .0917 .1259 .1665 Clr .0257 .7777 1372 .1316 .2249 .0134 .0482 .5960 .0808 .3745 1761 .0530 .1560 .0865 .1059 .2446 .0934 .3050 0232 .7989 Trb .1316 .1482 .2018 .0266 .0564 .5355 .0426 .6396 </td <td>Cnd</td> <td>.3496</td> <td>.0001</td> <td>.2607</td> <td>.0042</td> <td>1566</td> <td>.0852</td> <td>.0501</td> <td>.5818</td> <td>.2970</td> <td>.0011</td> <td>.2857</td> <td>.0017</td> <td>2807</td> <td>.0020</td> <td>0827</td> <td>.3635</td> <td>.1717</td> <td>.0592</td> <td>.1516</td> <td>.0957</td>	Cnd	.3496	.0001	.2607	.0042	1566	.0852	.0501	.5818	.2970	.0011	.2857	.0017	2807	.0020	0827	.3635	.1717	.0592	.1516	.0957
Alk .3427 .0002 .2450 .0071 1711 .0602 .0758 .4049 .2863 .0017 .2763 .0024 2462 .0068 0746 .4127 .1610 .0769 .1585 .0816 Ca .3352 .0002 .2838 .0018 1761 .0531 .0608 .5043 .2838 .0018 .3152 .0005 2876 .0016 0545 .5492 .1535 .0917 .1259 .1665 Clr .0257 .7777 1372 .1316 .2249 .0134 .0482 .5960 .0808 .3745 1761 .0530 .1560 .0865 .1059 .2446 .0934 .3050 0232 .7989 Trb .1316 .1482 2018 .0266 .0564 .5355 0426 .6396 .1817 .0459 .2306 .0113 .0013 .9890 .0188 .8364 0664 .4655 0138 .8796 P04-P .3810 <.0001	pН	.2193	.0160	.1742	.0556	1629	.0734	.0489	.5912	.1429	.1165	.1729	.0574	2419	.0079	0890	.3282	.2231	.0142	.1441	.1133
Ca .3352 .0002 .2838 .0018 $\cdot .1761$.0531 .0608 .5043 .2838 .0018 .3152 .0005 $\cdot .2876$.0016 $\cdot .0545$.5492 .1535 .0917 .1259 .1665 Clr .0257 .7777 $\cdot .1372$.1316 .2249 .0134 .0482 .5960 .0808 .3745 $\cdot .1761$.0530 .1560 .0865 .1059 .2446 .0934 .3050 $\cdot .0232$.7989 Trb .1316 .1482 2018 .0266 .0564 .5355 $\cdot .0426$.6396 .1817 .0459 $\cdot .2306$.0113 .0013 .9890 .188 .8364 $\cdot .0664$.4655 $\cdot .0138$.8796 PO ₄ -P .3810 <.0001	Alk	.3427	.0002	.2450	.0071	1711	.0602	.0758	.4049	.2863	.0017	.2763	.0024	2462	.0068	0746	.4127	.1610	.0769	.1585	.0816
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ca	.3352	.0002	.2838	.0018	1761	.0531	.0608	.5043	.2838	.0018	.3152	.0005	2876	.0016	0545	.5492	.1535	.0917	.1259	.1665
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Clr	.0257	.7777	1372	.1316	.2249	.0134	.0482	.5960	.0808	.3745	1761	.0530	.1560	.0865	.1059	.2446	.0934	.3050	0232	.7989
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Trb	.1316	.1482	2018	.0266	.0564	.5355	0426	.6396	.1817	.0459	2306	.0113	.0013	.9890	.0188	.8364	0664	.4655	0138	.8796
Part-P .2976 .0011 3578 .0001 0608 .5042 0370 .6846 .3365 .0002 2563 .0049 .0244 .7883 0946 .2985 0282 .7567 .0746 .4126 Tot-P .3427 .0002 2675 .0033 0482 .5958 0107 .9068 .4066 <.0001	PO ₄ -P	.3810	<.0001	1115	.2187	0589	.5160	.1190	.1892	.4198	<.0001	0100	.9120	.0001	.9999	1353	.1356	.0301	.7401	.0150	.8683
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Part-P	.2976	.0011	3578	.0001	0608	.5042	0370	.6846	.3365	.0002	2563	.0049	.0244	.7883	0946	.2985	0282	.7567	.0746	.4126
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Tot-P	.3427	.0002	2675	.0033	0482	.5958	0107	.9068	.4066	<.0001	1523	.0942	0157	.8633	1247	.1705	.0144	.8741	.0019	.9835
NO ₃ -N1523 .0938 .3690 <.0001 .0069 .93950695 .44402036 .0250 .2600 .00421573 .0834 .0144 .8740 .0282 .75631497 .0993	NH4-N	.0602	.5084	0025	.9780	0301	.7409	0877	.3349	.1353	.1368	0125	.8904	1115	.2202	.0050	.9561	1028	.2586	0777	.3930
	NO ₃ -N	1523	.0938	.3690	<.0001	.0069	.9395	0695	.4440	2036	.0250	.2600	.0042	1573	.0834	.0144	.8740	.0282	.7563	1497	.0993
Part-N .2393 .0085 .2005 .02761604 .0780 .0777 .3933 .1554 .0878 .1892 .03761892 .03761053 .2475 .2218 .01480238 .7936	Part-N	.2393	.0085	.2005	.0276	1604	.0780	.0777	.3933	.1554	.0878	.1892	.0376	1892	.0376	1053	.2475	.2218	.0148	0238	.7936
Tot-N .2744 .0026 .2494 .00611742 .0556 .0251 .7830 .2632 .0038 .2406 .00822155 .01791579 .0828 .0815 .37080113 .9014	Tot-N	.2744	.0026	.2494	.0061	1742	.0556	.0251	.7830	.2632	.0038	.2406	.0082	2155	.0179	1579	.0828	.0815	.3708	0113	.9014
Median water depth, were included in the model for the first ordination axes. DCA axis 2 showed no significant relationship to any of the variables whereas variation along GNMDS 2 was explained by UTM northing and easting as well as Calcium. GNMDS 3, DCA 3 and DCA 4 were also related to some of the geographical variables and PO₄-P as for the previous axes in addition to Enlarging, Liming, Stony margin and Pond used for drinking.

Generalised linear modelling of the ordination axes for pond margins also indicated relationships to many groups of explanatory variables (Tab. 10). Water chemical variables like PO₄-P, Conductivity, Colour and Calcium in addition to geographical variables like Distance to forest, UTM northing and easting, and Average pond margin width were included in various combinations in the modelling of all four DCA axes as well as GNMDS axes Nos 1, 2 and 3.

Variation partitioning

By forward selection of constraining variables prior to variation partitioning by CCA, all six groups of variables for ponds contained at least one significant variable, whereas none of the variables from the area group were significant for pond margins. The variation partitioning results (App. 6 for ponds and App. 7 for pond margins) were based on the following criteria for the two data sets; (1) The AVE-threshold limit for the pond and pond margin data set were 32.49 IU (inertia units) and 53 IU, respectively (Appendices 8 and 9, respectively). (2) The α = 0.05 criterion specified a threshold VE of 183.69 IU for the pond data set and 102.22 IU for the pond margin data set (Appendices 10 and 11, respectively). The total variation explained was 23.9% of the total inertia for the ponds (TVE = 2047 IU; TI = 8579) and 34.8% for the pond margins (TVE = 1643; TI = 4727), respectively.

Seven unique components of variation in the pond data set were larger than AVE and thereby retained, six of which were the first-order components and the seventh was the second order intersection of geographical and anthropogenic impact variables. By using the $\alpha = 0.05$ criterion only the six first-order components from the pond data set were retained (Tab. 11). No more than six unique components from the pond margin data set were larger than AVE. By distribution six components were retained, all five first-order components in addition to the second-order intersection of geographical and water chemical variables. As for the pond data set only the first-order components were retained by using the more strict $\alpha = 0.05$ criterion (Tab. 11).

Axis	Pond	F	Р	Pond margin	F	Р
DCA1	PO-P	31.35904	<.0001	DistForest	63.41802	<.0001
	+ Alk	8.95050	.0042	$+ PO_4-P$	28.43666	<.0001
				+ Cnd	13.98325	.0005
				+ DistForest: Cnd	10.53377	.0021
				+ PO-P: Cnd	5.01162	.0296
Date					51 00505	0001
DCA2	None			UTMn	51.88782	<.0001
				+ Cnd	14.57182	.0004
				+ UTMe	7.42330	.0087
DCA3	UTMe	27.37298	<.0001	Clr	11.68726	.0012
	+ StonyMarg	9.11799	.0004	+ DistForest	5.24967	.0258
	$+ PO_4-P$	7.70776	.0076			
DCLA		15 20222	0000		14 47000	0004
DCA4	UIMn	15./8/3/	.0002	UTMe	14.4/283	.0004
	+ Enlarge	8.29814	.0008			
	+ Drink	4.54053	.0068			
GNMDS1	PO-P	59.68259	<.0001	PO ₄ -P	51.41958	<.0001
	+ Alk	12.83029	.0007	+ DistForest	20.49779	<.0001
	+ MedDep	5.11469	.0278	+ Cnd	12.48226	.0009
	1			+ Cnd: DistForest	11.61536	.0013
GNMDS2	Ca	22 93974	< 0001	Ca	19 55354	< 0001
GIAMD52	+ UTMe	7 58700	0080	+ DistForest	15 30030	0003
	+ UTMp	7.38700	.0030	+ AvgWid	4 01070	.0003
		7.80405	.0072	Avgwiu	4.91979	.0309
GNMDS3	UTMe	24.46130	<.0001	Ca	11.78041	.0012
	+ Lime	11.71481	<.0001	+ UTMe	10.76866	.0018
	+ Enlarge	5.22844	.0087			
	+ UTMn	5.31839	.0253			
GNMDS4	Laund	7 589080	0080	Fish	7 655668	0013
GIUNDSA	+ Diminish	5 138382	0091	+ Fence	6 309640	0036
	Diminish	5.150502	.0071	+ Fish: Fence	3.605185	.0345
GNMDS5	Age	12.49058	.0008	MArea	20.75501	<.0001
				+ Alt	13.38697	.0006
				+ Enlarge	8.12509	.0009
				+ MaxSlp	5.27619	.0257
GNMD86	MedDen	7.313945	.0092	Lime	6.769188	.0025
0.000000	+ Enlarge	3 705343	0311	+ Drink	4 411008	0079
	· Linui 50	5.705545	.0011	+Lime: Drink	5 752215	0202
				Dink, Dink	5.152215	.0202

Table 10. GLM of DCA and GNMDS ordination axes for both data sets showing significant (P < 0.05) models of explanatory variables.

Table 11. Results showing simplification of variation partitioning using the $\alpha = 0.05$ criterion for both data sets.

Ponds		Pond margins	
Unique component	FTVE	Unique component	FTVE
Area	.0884	Year	.0626
Hydrological variables	.0884	Geographical variables	.2654
Year	.1006	Water chemical variables	.2015
Geographical variables	.1793	Topographical variables	.2033
Anthropological impacts	.2482	Anthropological impacts	.2696
Water chemical variables	.3004		

Spatial structure

The semi-variance increased as a function of lag distance for most continuous variables, at least in some distance intervals (Tab. 12). Nevertheless it was difficult to find distinct patterns of spatial structure of the explanatory variables.

Most variables were spatially structured in the first lag class; up to range 3000 m. This was an indication of self-similarity of variables for ponds and pond margins located in close proximity, e.g. which lie within the same 1 km² plot. A few variables, e.g. Altitude, Distance to built-up area and pH, showed spatial structure at all scales without range. Some variables were spatially structured up to the range 5-10(-20) km, as exemplified by Pond area, Distance to water, Soil depth variables, Secchi depth and some of the water chemical variables. This range indicates local differences between study sites at the scale of parishes or municipalities.

DCA 1 axes for both data sets had irregular patterns of variation in semivariance, but were strongly spatially structured at least in the two first lag classes. DCA 2 of the pond data set also showed strong spatial structuring up to about 10 km, whereas patterns of spatial structure were not apparent for subsequent axes. This is also shown for the pond margins where DCA axes 2–4 were possibly spatially structured within the first lag classes.

Relationships between species richness and environmental variables

Species richness

A total of 104 different species were found in the 64 ponds and 301 species were found in the adjacent pond margins. The maximum number of species found in one pond was 20, the minimum number was 1 and the median number was 9. For the pond margins the corresponding figures were 81, 13 and 44.5, respectively (Figs 15 and 16). Number of species in ponds and number of species in pond margins were correlated at the P < 0.05 level ($\tau = 0.1974$, P = 0.0205). This result indicated a relatively weak correlation. Two very different coenoclines could be seen in the data set and this may be a reason why species richness was not strongly correlated between ponds and pond margins.

Variable	Lag class (No., upper bound (m) and no. of observation pairs.)						Comments on spatial dependence	
	1	r	2	4	5	6	7	in lag classes
	1	∠ 6000	5 12000	4 24000	J 48000	0	102000	
	5000 62	30	86	24000	48000 641	273	654	
PArea	0.489	0.656	1 047	0.865	1 016	0.809	1 177	Possible range 3
MArea	0.455	1 102	0.768	0.800	0.935	0.726	1 339	Strong to possible range 2
AvgWid	0.859	1 107	0.760	0.000	0.880	0.935	0.726	Possible range 2
MaxDep	0.567	1.192	1.498	1.081	0.919	0.771	1.108	Irregular, possible range 2
MedDep	0.750	0.773	1.488	1.157	0.967	0.769	1.034	Irregular
Altitude	0.006	0.112	0 1 1 8	0.230	0.809	0.835	1 816	All scales
DistWat	0.264	0.689	0.940	0.820	1.035	1.151	1.070	Range 3. maybe 6
DistRoad	1.109	0.886	1.063	0.903	0.887	0.943	1.158	None
DistAgr	0.303	1.118	0.926	1.172	0.923	1.236	0.977	Strong to range 2, irregular at
21011-181	0.000	1.1.10	0.720	,=	0.720	1.200	0.977	broader scales
DistBui	0.578	0.820	0.841	0.916	0.994	1.073	1.077	Range 2, weaker to poss, range 7
DistForest	0.458	1.231	0.968	0.908	1.018	0.922	1.100	Strong to possible range 2
Age	0.260	0.923	0.732	0.806	0.664	0.922	1.552	Strong to range 2, possible weaker
0								to range 5 or 7
MaxSlp	0.816	0.708	0.968	0.896	1.109	0.801	1.055	Irregular
MinSlp	1.330	1.247	0.806	0.915	0.959	0.796	1.144	Irregular, possible between 6 and 7
MaxSoil	0.125	0.730	0.929	0.824	1.172	1.342	0.865	Strong to range 2, possible range 6
MedSoil	0.210	0.540	0.825	0.889	0.974	1.353	1.040	Possible range 6
MinSoil	0.308	0.286	0.723	0.808	1.006	1.568	0.963	Possible range 6
Secchi	0.341	0.792	0.900	0.887	0.706	0.982	1.427	Possible range 2 or 3 and between
								5 and 7
Cnd	0.181	0.922	0.825	0.861	0.973	0.777	1.282	Irregular, possible range 2 or 3
pН	0.341	0.649	0.685	0.732	0.881	1.187	1.270	Possible range 7
Alk	0.535	0.593	0.683	0.865	0.956	0.808	1.284	Range 5 or 7
Ca	0.173	0.770	0.759	0.822	0.874	0.734	1.430	Strong to range 2, weaker to range
								5, maybe 7
Clr	0.496	0.581	0.858	0.816	0.813	1.151	1.282	Possible range 2 or 3
Trb	0.268	0.974	0.974	0.819	0.756	0.824	1.461	Irregular, possible range 2
PO ₄ -P	0.239	0.816	0.636	0.760	1.059	0.834	1.239	Irregular, possible range 2
Part-P	0.378	0.655	0.531	0.596	0.635	0.845	1.726	Range 2, possibly weaker to range
								6, maybe 7
Tot-P	0.253	0.695	0.460	0.556	0.805	0.891	1.576	Possible range 2, possibly weaker
								to range 6, maybe 7
NH ₃ -N	2.029	0.593	0.735	0.938	1.233	0.800	0.833	No $<$ 2, spatial dep. between 2 and
								5
NO ₃ -N	0.394	0.452	0.478	0.547	0.493	1.581	1.593	Weak to range 4
Part-N	1.123	0.612	0.558	0.737	0.924	0.911	1.281	Irregular, possible between 3 and 5
Tot-N	0.346	0.665	0.593	0.877	1.113	0.948	1.093	Possible range 5
DCA1 (P)	0.427	3.071	1.311	1.341	1.172	0.648	0.758	Irregular, very strong to possible
								range 2
DCA2 (P)	0.177	0.734	0.860	0.697	0.830	1.167	1.330	Strong to range 2, maybe spatial
								dep. in subsequent lag classes
DCA3 (P)	0.695	0.898	0.708	0.763	0.848	1.662	1.043	Possible in the two first classes
DCA4 (P)	0.587	0.729	0.526	0.667	0.676	1.350	1.417	Possible in the two first classes
DCA1 (M)	0.218	1.379	0.819	1.022	1.072	0.806	1.079	Irregular, strong to possible range
		o =	o /=-					2
DCA2 (M)	0.314	0.755	0.473	0.541	0.763	0.789	1.656	Range 2, possible spatial dep. in
		o ====		o -			1.005	subsequent lag classes
DCA3 (M)	0.641	0.777	1.165	0.771	0.944	1.177	1.098	Range 2, maybe 3
DCA4 (M)	0.493	0.744	0.518	0.848	1.022	1.421	0.990	Range 2, possible between 3 and 6

Table 12. Standardised semivariance for the total set of continuant explanatory variables.

Figure 15. Number of species found in 64 ponds.

Figure 16. Number of species found in 64 pond margins.

Correlation

Correlations between species richness (species number) and explanatory variables are shown in Appendix 12. Only some water chemical variables, Periodically drained and Liming were significantly related to pond species number (Tab. 13). Area, Average width, UTM easting, Enlarging and some water chemical variables were correlated with the number of species in pond margins (Tab. 13).

Ponds]	Pond margins		
Exp. var.	τ	Р	Exp. var.	τ	Р	
Tot-N	2485	.0036	MArea	.3933	<.0001	
NH ₃ -N	2123	.0127	Part-P	2629	.0021	
Alk	2004	.0188	Tot-P	2440	.0043	
Drain	1295	.0249	AvgWid	.2197	.0100	
Cnd	1786	.0362	Enlarge	.1383	.0167	
Lime	0823	.0374	Trb	2008	.0189	
рН	1677	.0492	UTMe	2004	.0192	
			NO ₃ -N	.1889	.0269	
			PO ₄ -P	1726	.0430	

Table 13. Kendall's correlation coefficient with P-values between number of species surveyed in each sampling unit (both ponds and pond margins) and significant (P<0.05) explanatory variables.

Multiple regression

The generalised linear modelling indicated four significant explanatory variables for the species abundance in the 64 ponds; all of them belonged to the water chemical variables (Tab. 14). No main effects or significant interactions could be combined among them. The best simplified model therefore only included one variable: Total-N (Tab. 15).

For the 64 pond margins ten individual significant variables were found; four of them in the water chemistry group, two from each of geography, anthropological impacts and the area group (Tab. 14). The best model found was MArea + Average width + Distance to forest + Enlarging (Tab. 15).

Table 14. Significant variables (P<0.05) in the generalised linear modelling of species abundance in ponds and pond margins.

Ponds				Pond margins	
Exp. var.	F	Р	Exp. var.	F	Р
Tot-N	8.111440	.0059	MArea	32.483700	<.0001
NH ₃ -N	7.372288	.0085	Part-P	9.595660	.0029
Alk	5.398005	.0234	Tot-P	7.986896	.0063
Cnd	3.998036	.0499	AvgWid	7.837792	.0068
			Enlarge	4.942926	.0102
			Trb	6.041321	.0167
			DistForest	5.579646	.0213
			UTMe	5.526427	.0219
			PO ₄ -P	4.488497	.0381
			Water	2.772936	.0491

Ponds			Pond margins		
Exp. var.	F	Р	Exp. var.	F	Р
Tot-N	8.11144	.0059	MArea	43.45390	<.0001
			+ AvgWid	10.77911	.0017
			+ DistForest	6.92824	.0108
			+ Enlarge	3.56513	.0346

Table 15. ANOVA-table showing simplified general linear models of numbers of species surveyed in each sample plot as a response to significant (P < 0.05) explanatory variables.

7 Discussion

Evaluation of ordination methods

Pairwise correlations between axes obtained by the two different ordination methods show that most of the corresponding DCA- and GNMDS-axes were strongly significantly related, but not all of them. None of these methods are considered optimal (R. Økland 1990a) and in this present study they were applied in parallel to ensure that true patterns of variation in vegetation were found. The conclusion that a consistent gradient structure has been identified does at least apply to the interpreted main gradient as well as the second gradient for pond margins, due to concordance of pairs of axes by the ordination methods used in parallel.

The plots' positions are considered to be more uncertain in (G)NMDS than in DCA because the relationship between floristic dissimilarity and ecological distance (which is the basis for NMDS ordination) is poor for small distances (R. Økland 1990a). In the present study DCA ordination axes have longer core lengths than GNMDS axes. This implies a stronger influence of outliers on the GNMDS ordination, indicating an inferior representation of gradient structure here. DCA has therefore been given more weight although the results obtained by both ordination methods have been reported throughout this study. Studies using DCA for ordination of field data often conclude that this method is well suited for extraction of ecologically interpretable axes (see R. Økland 1990a). Minchin (1987) and other authors (Peet *et al.* 1988) do, on the other hand, recommend NMDS. In the present study of SE Norwegian ponds GNMDS showed more correlations with external variables than did DCA, as also showed by e.g. Pitkänen (1997, 2000). Furthermore, in the present study no tendency for either DCA or GNMDS to show higher significance levels of correlations were found, which may indicate that environmental interpretability is not necessarily stronger for either ordination method.

The overall structure of DCA- and GNMDS-plots is more or less the same although a trumpet-shape (tongue-shape distortion by Minchin (1987)) could be seen in the pond margin data set when using DCA. This shape is due to the flattening of variation along the second axis. Sample plots have been well separated near the end of the major gradient whereas distinct aggregation of objects can be seen near the opposite end of this gradient. This tongue effect is one of the shortcomings of DCA (R. Økland 1990b). The distortion normally appears because in the detrending procedure the mean plot scores of all segments along the first axis are set equal to the general mean score along the second axis.

Interpretation of variation in vegetation

All ecosystems are dynamic and the rate of fluctuation or change varies through time, in accordance with natural and human-induced changes in the environmental conditions. Small ponds tend to constitute a less permanent environment than larger ones; they may show greater fluctuations in physical and chemical conditions and, in effect, represent several types of habitats over short time intervals (Friday 1987). It is expected that aquatic vascular plants will respond to the particular environmental conditions of a pond, both because they are rooted in the bottom sediments and because they are impacted by the water surrounding them.

The water chemical variables derived from pond water samples were also used for interpretations of variation in pond margin vegetation. This was based on the assumption that the soil chemistry in the pond margins would not differ much from that of the adjacent pond water. Moreover, nutrients in pond water are mainly determined by bedrock type, vegetation type, size and human activities in the catchment area (Brønmark & Hansson 1998).

The main gradient for ponds and pond margins

The ordination of the combined data set showing two distinct groups of plots, indicates that the species composition of ponds and pond margins are very distinctive, i.e. the existence of different major coenoclines for the ponds and the pond margins (see Fig. 6). Nevertheless, the strong pair-wise correlations between all first ordination axes (DCA and GNMDS) for both ponds and pond margins (see Tabs 6 and 7) shows that the main compositional gradients for ponds and pond margins are parallel in the sense that they are related to the same, consistently main, complex-gradient.

The main coenoclines for both pond and pond margin are related to a complexgradient including UTM northing, altitude, distance to forest, pond age and water chemical variables. This is apparent from correlations between the first axis for both ordination methods and explanatory variables, regardless of data set. Most of these variables also make up one of the largest groups of strongly intercorrelated variables, although they did not segregate into separate groups in the PCA. Water depth variables were also correlated with the first ordination axes for the ponds whereas soil depth variables were correlated for the pond margins. These two variable groups were not included in both explanatory variable sets because they were only supposed to affect the species composition in either pond or pond margin.

GLM analyses revealed that water depth, alkalinity and PO₄-P contributed to explain DCA 1 and GNMDS 1, supporting the correlation results of both DCA and GNMDS axes for the ponds. Distance to forest, conductivity and PO₄-P were included when modelling pond margins. The similarity of selected variables with results of correlation analyses unequivocally supports that there is one strong complex gradient underlying the observed coenoclines.

Water chemical variables

A number of studies have stressed the importance of local environmental conditions like water chemistry in determining the species composition in (small) lakes (Arts *et al.* 1990; Rørslett 1991; Palmer *et al.* 1992, 1994; Srivastava *et al.* 1995; Toivonen & Huttunen 1995; Preston 1995; Vestergaard & Sand-Jensen 2000ab; Heegaard *et al.* 2001). In addition to the correlation analyses between explanatory variables and ordination axes, the variation partitioning results support this result showing that water chemical variables made the largest contributions to explained variation in the set of 64 ponds. This group of variables was also found to be important for the pond margins although the variation explained here was less.

Many of the water chemical variables were strongly intercorrelated. Water pH is important for plants because it determines the available form of nitrogen and phosphorus (Roelofs *et al.* 1984). It is shown that pH can promote phosphorus release into the water (Brønmark & Hansson 1998). Ponds are also expected to show regional differences in pH due to differences in geology and hydrology of the catchment area (Brønmark & Hansson 1998). This is shown e.g. by pond Nos 1, 40 and 42, with pH >7.8. These ponds lie in an area with lime-rich bedrock.

Vestergaard & Sand-Jensen (2000a) showed that alkalinity was a main determinant of the plant species distribution among Danish lakes, as also supported by the results presented in this study. Alkalinity is furthermore largely determined by the bicarbonate content which is an important source of inorganic carbon for the photosynthesis and growth of many submerged plants (Madsen & Sand-Jensen 1991) and is therefore likely to contribute to explain some of the variation in species composition. Srivastava *et al.* (1995) concluded that alkalinity and total amounts of nitrogen and phosphorus were strongly correlated with differences in vegetation in Nova Scotian ponds. Nutrient enrichment by nitrogen and phosphorus is also found to have induced changes in Dutch macrophyte vegetation (Arts *et al.* 1990). Nitrogen has been claimed generally not to be the main limiting nutrient for organisms in freshwaters because its concentration in water is less strongly correlated to trophic state

than that of phosphorus (Brønmark & Hansson 1998), while Venterink *et al.* (2001) in a review found that nitrogen was the most frequent limiting nutrient in herbaceous wetlands. My results showed that both nitrogen and phosphorus were strongly correlated with the first ordination axes, although the variables including phosphorus did somewhat reveal higher correlation coefficients. The PO₄-P selected by GLM of axes 1 of both ordination methods and both data sets is the only inorganic fraction of phosphorus of importance for plants (Brønmark & Hansson 1998).

Water chemical variables can be related to eutrophication, and changes in vegetation caused by eutrophication are well documented (Arts *et al.* 1990; Arts 2002). Eutrophication in rural areas is often caused by fertilisers and animal stocking (cf. Friday 1987; Heegaard *et al.* 2001). For some reason, the presence of cattle (in addition to ducks and fish) and distance to agricultural area were overall not significantly correlated with water chemical variables in my study, indicating that the nutrient content of the studied ponds is not necessarily in general determined by fertiliser input by (domestic) animals.

Grazing and trampling by cattle could furthermore be expected to influence species composition, e.g. by creating open space for regeneration (Grubb 1977), but this variable did not seem to contribute to explain any variation in vegetation in my data. A possible reason for this lack of relationship might be relatively few ponds were influenced by cattle grazing in my material, a now typical situation in Norway (Bye *et al.* 2003).

Geographical variables

Altitude and UTM northing are strongly positively correlated and may influence species composition due to an indirect effect on temperature and longer growth season in lowland areas (Pedersen 1990; Dahl 1998). UTM northing and altitude were also strongly negatively correlated with many of the water chemical variables, indicating that pond trophy declined along the south-north and altitudinal gradients in the present study. These geographical variables should also be seen in context with geology, a factor that is not directly related to geographical gradients. Furthermore, lowland areas in SE Norway generally consist of silts and clays of marine origin, which are remains from the marine border past the last glacial period (Weichsel). The upper level of the post-Weichselian sea is at about 200 m in SE Norway (Undås 1952). Jeffries (1998) found that geographical variables like UTM northing and altitude were some of the most important variables linking pond types and environmental variables in ordination; also supported by my results. Furthermore Jeffries suggested that the geographical variables could act as surrogates for many of the chemical factors, as also

proposed by Heegaard *et al.* (2001) who could not distinguish the effects of chemical and climatic (altitude) factors. This inter-relationship between variables is also seen in this present study. In variation partitioning water chemical variables did explain a larger part of variation compared to geographical variables for the pond data set, whereas the pond margins showed the opposite result, indicating that both groups of variables are important.

The variation partitioning showed a slight indication of covariance (shared variation) among groups of water chemistry and geographical variables for the pond margins (only present when using the less strict AVE criterion). When using the AVE threshold for distribution of variation among ponds, geographical variables were retained together with anthropological impact variables. They did anyhow explain a rather small amount of variation. Furthermore, this interaction did not appear when using the stricter $\alpha = 0.05$ criterion and should therefore not be given too much weight. This may indicate that geographic variables have a unique influence on species composition of ponds and pond margins, via climatic variables or other, unmeasured environmental factors.

Distance to forest was negatively correlated with altitude. This may simply be due to the fact that lowland areas support more arable land which normally will be used for agricultural purposes. Forests along a pond's edge may influence on the species composition because available light might be significantly reduced (Rea *et al.* 1998). Shading may reduce water temperatures so much that the habitat becomes suboptimal for several aquatic species (Anonymous 1994a; Heino 2002). Furthermore, the total amount of nitrogen has been shown to reach much higher levels in ponds exposed to sunlight than in shaded ponds (Vasey 1994). However, the total amount of nitrogen and distance to forest were not correlated in the study presented here and these variables are therefore more likely to vary independently along the main gradient. On the other hand, if a pond is (partly) surrounded by forest, new habitats will be added and species composition may change.

Historical features

Pond age was positively correlated with the first ordination axes although it did not contribute much to the variation explained according to variation partitioning results. Gee *et al.* (1997) found the aquatic vegetation biomass to increase with pond age. Natural succession should also be considered when the age of the ponds is discussed. The natural fate of all bodies of standing fresh water is to be filled and gradually to change into a terrestrial habitat (Gee *et al.* 1997). This natural succession can be reversed by pond restoration but all pond successional stages have their own distinctive species composition and thereby a distinctive conservation

value (Biggs *et al.* 1994). Renovation of ponds causes an immediate change in vegetation both in the ponds and the adjacent pond margins and may therefore contribute to explain variation along the gradient, as seen by the correlations with DCA 1 and GNMDS 1 for pond margins, although not strong. The species composition in the ponds did anyhow not show any relationship with time since last renovation. This is in accordance with field observations; relatively small ponds were generally rather densely covered with plants (and algae) regardless of time since last pond renovation, indicating rapid successions.

Newly created ponds (low pond age) are usually large and used for watering purposes, as seen by the correlations in this study. Furthermore, watering implies fluctuating water levels. The possibility that pond age is an underlying factor that represents fluctuating water levels, should therefore be considered. However, only a negative relationship between pond age and pond used for watering was found, and neither of them were correlated with fluctuation, thus leading to a rejection of the hypothesis that the factor underlying relationships with pond age is water level fluctuations. Furthermore pond age was correlated with many of the water chemistry variables, but the variation partitioning showed no shared variation among these variable groups.

Hydrological variables

Studies in British ponds by Jeffries (1998), US ponds by Rea et al. (1998) and Norwegian lakes by Rørslett (1984) showed high importance of water depth on the distribution of aquatic macrophytes, supporting the results found in this study. As the area of deeper water increases, the range of suitable habitats may increase. A variety of pond bottom microtopographies might contribute to a varied species composition. However, Vestergaard & Sand-Jensen (2000a) found that mean and maximum water depth only explained a relatively small part of the variation in species composition. This is also the case for the variation partitioning in this present study where hydrological variables only contributed slightly to the variation explained. Own field observations accord with the proposal that maximum and median water depth as important factors contributing to explain variation in species composition should be rejected. Very few submerged species were found to grow in deeper waters, species were mostly observed along the margin (shallow water depth). This observation is most likely due to constrained light intensity (see below) and/or light quality, because except for shallow regions, the amount of light reaching the sediment is generally low (Brønmark & Hansson 1998). However, some ponds possessed high water transparency, and yet no vegetation could be observed on the bottom. This may be caused by unsuitable bottom sediments (Sculthorpe

1967), too short establishing time (indirectly caused by factors like low pond age, fluctuating water levels or pond renovation) or due to random change (see below).

Some plants rely on deeper water to grow, e.g. because of zonation and growth form. The importance of water depth should however be seen in relation to the influence of fluctuating water and Secchi-depth; the effect of differences in water transparency depends on lake morphometry like water depth. The vertical niche of certain species can be displaced towards deeper water due to water level changes (Rørslett 1984).

Water physical variables

A pond's macrovegetation may be restricted by light penetration as expressed by Secchi depth. Secchi depth was correlated with GNMDS1 for the ponds in addition to many of the water chemistry variables. The strong relationship between these physico-chemical variables can be explained by the fact that Secchi depth is assumed to be reduced in parallel with eutrophication (J. Økland 1975), as also shown by Vestergaard & Sand-Jensen (2000b). A strong correlation between Secchi depth and the concentration of phosphorus can be seen in the present study. High concentrations of phosphorus in pond water can result in increased densities of phytoplankton and epiphytes, which will further reduce available light (Roelofs *et al.* 1984).

A strong correlation between Secchi depth and turbidity was found in this study. Water table fluctuations can, in principle, alter turbidity and Secchi depth which furthermore changes the light quality and certain pond species may be favoured. However, correlation between fluctuating water level and Secchi depth and turbidity was not found in this present study.

Topographical variables

Soil depth was positively correlated with the first axis for pond margins. It was furthermore negatively correlated with UTM northing and altitude in addition to showing a positive relationship with many of the water chemical variables. Variation partitioning did anyhow not show any covariance between these groups. Species composition may shift due to variation in soil depth because plant species hold individual requirements. In my study of pond margins minimum and median soil depth should, however, be considered deep enough for plant species in general to be able to establish there, thus an explanation of why these explanatory variables were related to species composition is less obvious.

Anthropological impacts

Influence by human use and management may alter the species composition in many ways. Garbage was positively correlated with GNMDS 1 for the ponds. Garbage can act as pollutants or it can cover the bottom and thereby limit plant growth and alter the species composition. Moreover the pond's relatively low water volume can make the ponds highly susceptible to pollution (Williams *et al.* 1998).

A lake's plant species distribution may, in principle, be determined by competitive interactions involving fish (Spence 1967). The presence of fish stirring the hydrosoil may increase turbidity and thereby decrease light (Mitchell 1974). The presence of fish did anyhow not seem to contribute to the main gradient in my study. About half of the ponds still harbour or have harboured fish, according to information from the properties' owners. This observation could anyhow not be confirmed during field work. It is therefore likely that fish may have gone extinct in many ponds during the past year(s), and that my Fish variable does not adequately represent current presence of fish. Furthermore, fish population density, species, feeding habit, etc. should be taken into consideration, when relationships with plant species composition are discussed. This has, however, not been recorded in the present study.

From the results of this study we can conclude that geographical and water chemical variables are the most important predictors of variation in species composition along the main gradient in ponds and pond margins. This is supported by variation partitioning results, correlation analyses as well as generalised linear modelling.

The second gradient for ponds

Correlation analyses between DCA axis 2 and environmental variables showed only one significant correlation, whereas its correlated GNMDS axis 6 was significantly correlated with few variables. None of the explanatory variables were selected in the GLM of DCA 2. This indicates a very weak relationship between these ordination axes and species composition, and suggests that no strong second gradient existed in pond vegetation in the present study.

The second gradient for pond margins

Anthropological variables

Anthropological impact variables were the group with the highest variation explained in the variation partitioning of pond margins. Cutting, tree felling and pond used for watering were correlated with the second ordination axes. Cutting represents a kind of disturbance that may create a distinctive vegetation, e.g. by creating gaps which may be recolonised. This may also be the case for Ponds used for watering, a variable which was included in the GLM for the second gradient for pond margins. Water level changes and the effect of drying out may contribute to explanation of variation in species composition, as proposed by Jeffries (1998). Watering causes fluctuating water levels and thereby indirectly brings about stress and/or disturbance because the environment changes due to fluctuation. Fluctuating water levels may also create new habitats, as proposed by Spence (1967), and this will be further discussed in relation to species richness (see below). Fluctuation and Periodically drained were not included as variables in the pond margin data set because they were primarily considered to affect species composition in ponds. It is, however, obvious that watering and drying out imply fluctuating water levels, and fluctuation will thus be discussed in relation to species composition in ponds. It is, however, obvious that watering and drying out imply fluctuating water levels, and fluctuation will thus be discussed in relation to species composition in ponds. It is, however, obvious that watering and drying out imply fluctuating water levels, and fluctuation will thus be discussed in relation to species composition in ponds as well.

Water chemical variables

Calcium, part-P and NO₃-N were strongly correlated with the second ordination axes. Plant compositional change is likely to occur when nutrients are added, by decreasing number of species (Kleijn & Snoeijing 1997). On the other hand Venterink *et al.* (2001) observed that wet meadows were found to be growth-(co-)limited by nutrients like nitrogen and phosphorus. Changes in species composition is likely to take place because plant species will be affected by increased productivity and hence by increased availability of limiting nutrients in different intensities.

In addition to many of the water chemical variables, distance to built-up area was positively correlated with the second ordination axes for pond margins. Phosphorus did anyhow show a negatively correlation. An association between nutrients and distance to builtup area is also shown by studies of Finnish aquatic macrophytes where eutrophic ponds tended to be surrounded by settlements (Toivonen & Huttunen 1995).

Geographical variables

Variation partitioning show that geographical variables explained nearly as much of the variation in species composition as did anthropological impacts. Distance to forest, UTM northing and UTM easting were included in the GLM of the second ordination axes and found significant in correlation analyses. These variables were related to the main gradient as well, indicating complex relationships of both of the main coenoclines in pond margins to broad-scale regional factors.

Area

The average width of the ponds was positively correlated with both ordination axes. This variable is directly related to area, but area was somehow not selected in variation partitioning neither did it show any correlations with DCA 2 or GNMDS 2. However, in this study, area influences the number of species and will therefore be further discussed in relation to the species richness (see below).

Spatial structure

Most environmental variables were spatially structured on the local scale of communities or parishes (< 6 km). These variables may, however, be related to finer scales but this could not be detected in the present study, because pond pairs separated by 1-3 km were avoided due to the sampling strategy; 62 observation pairs between ponds were located within a distance of 3 km and furthermore only 30 observation pairs within a distance of 3 and 6 km.

Nevertheless, my results suggest that ponds are highly individualistic habitats where species composition and species richness even differ between ponds of relatively similar environments within a small geographical area, as seen when comparing sites located in the same 1 km² plot. The ponds seemed to differ more in species composition than did the pond margins. Thus, ponds Nos 47–55 located only a few meters apart, have more or less similar use and management histories and rather similar water chemistry, but nevertheless they have rather dissimilar species composition and species richness. This is also to some extent shown for the other pond pairs located within 1 km². This outcome suggests that plant distribution is decided not only by environmental variables like water quality, surrounding area, historical use, etc., but also by other factors such as species dispersal, plant life history traits related to colonisation and extinction and, perhaps also, interactions between individuals. On the other hand waterbodies such as ponds often have small catchment areas and can, as result, have

individual physico-chemical characteristics that vary highly between ponds depending on e.g. local geology and land use (Williams *et al.* 2003). Chemical conditions in neighbouring ponds may thus differ considerably, and contribute to increase the distance between suitable habitats for the species and add to dispersal limitations. Thus, ponds Nos 17 and 18, located only a few hundred meters apart, showed a rather different species composition (see Fig. 11). These ponds also differed considerably in water chemistry (e.g. pH = 6.1 and 6.8, alkalinity = 635 and 3385 µeqv/L and total-N = 1.4 and 3.4 mg/L, respectively; App. 4).

The theory of island biogeography predicts that the number of species decreases with the degree of isolation (MacArthur & Wilson 1967). However, distance to the nearest stagnant water contributed neither to species composition nor to species richness in the present study, in accordance with Gee *et al.* (1997). An explanation for this might be that neighbouring ponds does not necessarily have the same origin or have undergone the same historical changes of use and management. Furthermore, Brose (2001) found that the longevity of seed banks of wetland species was high compared to other plant communities and might therefore counteract the effects of isolation. Linton & Goulder (2003) suggest that ponds contain both a baseline number of taxa representing long-distance migrations/introductions and a number of species which have come from neighbouring water bodies.

A more thorough analysis of species distribution due to their life history traits might clarify the extent to which factors other than the environmental variables already measured may contribute to explain variation in species composition in ponds in the agricultural landscape.

Relationships between species richness and environmental variables

The environmental factors influencing variation in species composition (coenocline) along a gradient will also to some extent influence species richness because the species composition indirectly contributes to the species richness.

The number of species observed in each pond or pond margin varied a lot. This may be due to several reasons. One explanation applicable for the ponds could be the inventorying strategy; species may have been overlooked while using the grapnel and the rake. Importance of these factors do, however, rest on the assumption that species were growing in deeper water, from the water's edge in large ponds, which could not be reached with the grapnel or rake, a proposal which has earlier been rejected. I therefore consider the recorded species richness figures to be reasonably accurate.

Ponds

Correlation analyses and multiple regression mainly showed the same results for ponds. Some water chemical variables in addition to Periodically drained and Liming of the ponds, were correlated with number of species, whereas the GLM only included variables related to water chemistry. The simplified GLM included only Total-N, a variable which had the largest τ with species richness of all included variables and explained the largest part of species richness although this amount was nevertheless rather small.

Water chemical variables

Results presented here support the hypothesis that pond trophy and conductivity are significant, although only some of the water chemistry variables and not phosphorus did explain variation in species richness. Vestergaard & Sand-Jensen (2000b) also showed that species richness declined with increasing concentrations of total nitrogen, thus supporting my results. On the other hand Jones *et al.* (2003) reported that species richness was correlated with neither total phosphorus nor with nitrogen. NH₃-N is selected in both correlation analyses as well as the multiple regression in this study of ponds. Nitrate is stated to be the dominant inorganic form of nitrogen limiting. Somehow such an outcome was not very clear in this study of SE Norwegian ponds in the agricultural landscape. In general, the amount of NH₃-N was clearly higher than NO₃-N in this study, with only a few exceptions. Nevertheless nitrate has to be reduced to ammonium before it can be assimilated in the cell, making NH₃-N the most favourable nitrogen source (Brønmark & Hansson 1998).

pH is proposed to be one of the principal determinants of macrophyte richness in lakes (Iversen 1929; Rørslett 1991). Jeffries (1998) suggested that species richness increased with increasing pH, as opposed to the results found in this study and by Gee *et al.* (1997). Water pH is anyhow correlated with alkalinity in addition to other factors related to trophic status. Vestergaard & Sand-Jensen (2000b) and Jones *et al.* (2003) found that species richness increased with alkalinity, as opposed to the present study here which suggests a decline in species richness. Shimoda (1997) showed that species distribution was related to pond environment, especially to catchment area characteristics and water quality; species rich ponds were restricted to nutrient-poor waters with low conductivity.

A reason why a positive relationship between species richness and pond trophy has been recorded in some studies whereas a negative relationship is recorded in others, may be that the relationship, over a broad gradient of pond trophy, is hump-shaped; first increasing at low productivities while decreasing for high productivities (e.g. Grime 1973, 1979; Huston 1979; Tilman 1982). Mittelbach *et al.* (2001), in a review found that such hump-shaped relationships were particularly common in aquatic systems but that they occurred for terrestrial plants as well. This may be due the fact that ponds are relatively closed systems less subject to source-sink dynamics than other ecosystems.

The relationship between plant species richness and pond trophy found in this study may be explained as a part of a hump-shaped relationship over a broader pond trophy gradient. A species may respond positively to a given factor at relatively low levels of the factor. This may be due to e.g. nutrient constraints when the concentration of nutrients is limited. At high nutrient levels the concentrations may become supraoptimal and thereby make fewer locally available species succeed (Taylor *et al.* 1990). A toxic effect may arise and the species number starts to decline. This is likely to be the case in the present study.

Rørslett (1991), Toivonen & Huttunen (1995), Vestergaard & Sand-Jensen (2000b) observed that species richness was highest in meso-eutrophic and eutrophic lakes but declined in hypertrophic lakes. This can be seen as an expression of environmental stress (Grime 1979) that reduces the number of species. On the other hand Oksanen's no-interaction model (1996) has shown that a humped diversity curve can be produced because of scaling artefacts without assuming environmental or biological stress factors. Furthermore, Waide *et al.* (1999) state that the hump-shaped model should not be overstated. Nevertheless, my results for SE Norwegian farm ponds are best explained by assuming a hump-shaped model for species richness.

Periodical draining causing water level changes will typically alter the inwash of allochthonous nutrients, e.g. caused by agricultural fertilising, tree felling, liming and pollution. Raised water levels may furthermore reduce N-availability (Berendse *et al.* 1994) but may also increase P-availability (Olila *et al.* 1997). Periodically drained was anyhow not correlated with any of the water chemistry or other explanatory variables in either data sets here.

Hydrological variables

Moderate intensities of stress and/or disturbance are supposed to lead to increased species richness, as proposed by Grime (1979). Riis & Hawes (2002) stated that species richness was

highest in ponds with intra-annual (1 m monthly water level range) rather than inter-annual fluctuations of the water level. Rørslett (1991) also found that peak species richness occurred at moderate (1-3 m) changes in water levels, by which new habitats will be created. Water level changes can also minimise overgrowth because vegetation is reduced (Anonymous 1994a). A fluctuating water depth gradient can kill emergent wetland vegetation by flooding, at least over time, as shown by Seabloom *et al.* (2001). Jeffries (1998) stated that drying out was one of the most important variables contributing to increased species richness in British ponds. Fluctuation did, however, not contribute to explain variation in species richness in this study of 64 agricultural ponds but periodically drained did. Periodical drainage will have larger impacts on species richness because the pond species' local environment will be uninhabitable for shorter or longer periods of time. On the other hand, water level fluctuation may contribute positively by increasing number of species. By disturbance new habitats may become recolonised and new species can be introduced.

Anthropological impacts

Liming has been one of the most extensively used measures to counteract loss of biodiversity in Scandinavian ecosystems (Anonymous 1995). This has been done for acidic lakes etc., but the ponds in this present study cannot be considered overall acidic. Liming mobilises nitrogen and phosphorus in the sediment layers (Roelofs *et al.* 1994) and leads to an increase in calcium concentration (Brandrud 2002). Liming was anyhow not correlated with any of the nutrient variables given here. This may be due to the fact that the ponds originally held sufficient amounts of nutrients, or more probably due to the fact that only five ponds were reported to have been limed and a clear relationship was therefore unlikely to occur because of sparse material of limed ponds.

Since very few of the studies referred to in this study have been carried out on ponds located in the agricultural landscape, and since comparable SE Norwegian material for comparison is lacking, I will also briefly discuss my results with reference to the findings of other studies in which plant species richness in lakes and ponds have been related to other variables than the ones found important in my study:

Area

Møller & Rørdam (1985), Rørslett (1991) and Jones *et al.* (2003) found that pond area contributed most to explain variation in pond species richness. Area acts by enhancing the

probability of new habitats being added (Williams 1964), but this is probably more relevant for larger oligotrophic lakes (Rørslett 1991) than for the smaller 64 ponds I have studied. Neither area nor geographical distribution of ponds was correlated with number of plant species in the present study, as also found by Friday (1987) and Linton & Goulder (2003). Gee *et al.* (1997) and Oertli *et al.* (2002) found only a slight relationship between plant species richness and area. They stated that two small ponds would together support more species than a single large pond because of the weak area effect and the fact that ponds in close proximity do not necessary hold the similar species composition. My results accord with this.

The biogeographic principle that larger areas support more species seems to have limited applicability for ponds, supporting the proposal of Haig *et al.* (2000) who pointed out that this positive relationship is not necessarily universal in nature. This implies that much space is not inhabited, thus interspecific interactions seem to play a less important role for the species richness of ponds. On the other hand biological (physical and morphological) constraints may limit the distribution of pond species, e.g. on deeper water (uninhabited space). Stress reduces the importance of competition for space (Grime).

Hydrological variables

Other hydrological variables, e.g. water depth and inlets and outlets, have been found in other studies to contribute to explain variation in species richness although no such relationship was found in this study. Vestergaard & Sand-Jensen (2000b) showed a significant, negative relationship between species richness and the mean water depth, as opposed to a study by Browne (1981) who found a positive relationship. As the area of deeper water increases, the variety of suitable habitats and varied pond microtopographies may enhance species richness, as proposed by Williams *et al.* (1998) and Jones *et al.* (2003).

As for the factors Area and Water depth not contributing to enhanced species richness in my study, increasing area most often implies larger area of deeper water. I have formerly argued (see above) that most species surveyed in this study of ponds in the SE Norwegian agricultural landscape, were found along the water's edge at shallow water depths. This may explain the lack of relationship.

The presence of inlets and outlets may contribute to species diversity in ponds (Gee *et al.* 1997; Jones *et al.* 2003), but such relationship was not found in the present study. Inlets and outlets may be unique environments where several species can find a suitable habitat. The ponds are also more likely to receive supply of colonist diaspores from upstream or

downstream. On the other hand inlets and outlets may alter the gain and loss of allochthonous nutrient material. The presence of inlets (and outlets) was correlated with e.g. nitrogen, orthophosphate and turbidity and may therefore have influenced the water chemistry in some way although no direct relationship with species richness was observed in this study.

Geographical variables

Heino (2002) and Jones *et al.* (2003) reported a decline in species richness with altitude, a result which not could be found in this study. Altitude may contribute to species richness by influencing on the temperature-gradient and thereby the length of growth season (Pedersen 1990; Dahl 1998). Rørslett (1991) proposed that lakes in Norwegian lowland areas included more species because of calcareous bedrock and silts and clays of marine origin. The majority of the ponds in my study were located at altitudes < 200 m a.s.l., thus the potential influence of altitude on species number may therefore have been reduced by selection of study area (restriction to the boreo-nemoral and boreal vegetation zones).

Distance to nearest stagnant water was not included in GLM results or in any correlation analyses related to species richness. Similar results were found by Møller & Rørdam (1985) who were unable to show a correlation between species number and pond isolation. In the context of island biogeography by MacArthur & Wilson (1967), the increase in distance may be expected to lead to a decrease in immigration rate and hence lower equilibrium species number of pond, and thereby perhaps also pond margin, biotas. Aquatic habitats are well suited to such studies because of their relatively sharply delimited boundaries.

Historical features

Newly created ponds (low pond age) show a general increase in the number of macrophytes (Møller & Rørdam 1985) with time, while this number levels out within a few years (Barnes 1983). The number of plant species with weak dispersal capacity may, however, continue to rise over decades (Godwin 1923), although recently restored ponds or ponds with low age have been shown by Møller & Rørdam (1985) to display high species numbers. On the other hand, Grayson (1992) found no relationship between pond age and number of species, as observed in my study. Such lack of relationship was also shown by Gee *et al.* (1997) who found that there was no relationship between pond age and the number of species in ponds that were more than one year old. Grayson (1992) suggests that older ponds may have undergone "catastrophes", natural or artificial, which furthermore may have halted or reversed

the increase of species richness with time, thus weakening the correlation between species number and age. Such incidents are also likely to have happened in the ponds included in my study.

Anthropological impacts

Grazing by ducks or fish showed no influence on the species richness of pond species, a result also found by Anonymous (1994a) and Gee *et al.* (1997), however, separate assessments of fish and waterfowl stocks, individuals and taxa, might have produced different results. This is notably the case for the extent (temporal and spatial) of duck grazing which was also not measured. While observing the few ponds where ducks were fenced in, they clearly suggested very low number of pond species.

Pond margins

The pond margin can be seen as a marginal strip established between a pond and the surrounding matrix; e.g. crop, field, forest etc. (Marshall & Moonen 2002). Such margins are often associated with high species richness because they may harbour species from adjacent habitats. General biogeographic theory (e.g. Shmida & Wilson 1985) predicts high species richness in such transitional zones because of mass effects, i.e. establishment of species in sites where they cannot be self-maintaining. Nevertheless, ecotones (van der Maarel 1990) do not need to be more species rich than adjacent areas (Walker *et al.* 2003).

Correlation analyses and multiple regression for pond margins also showed mainly the same significant results; some water chemistry variables, area, UTM easting and enlargement of the ponds were correlated with the number of species in pond margins, in addition to Distance to forest and Pond used for watering which were also included in the GLM. Area explained a particularly large amount of the species richness and was also one of the variables included in the simplified GLM.

Area

Some studies (Hine 1995; Gee *et al.* 1997; Vestergaard & Sand-Jensen 2000b) conclude that the most significant relationship between species number and area occurs when the area of the vegetated margin is used rather than the surface area of the entire pond, and this might therefore be related to the relationship between pond margin area and number of species.

The species-area relationship (Arrhenius 1921; Preston 1960, 1962; MacArthur & Wilson 1967) is one of the most robust generalisations in ecology (Connor & McCoy 1979;

Rosenzweig 1995; Holt *et al.* 1999). My results accord with this generalisation. Species abundance and spatial distribution of environmental and biotic factors are considered by Crawley (1997) to be the two most important factors in interpreting species diversity (see He & Legendre 2002). A larger area will typically correspond to a wide range of habitats and contain a broader spectre of species characteristic for these habitats. Habitat heterogeneity has been shown to be the most important variable contributing to variation in the number of wetland species (Brose 2001). If the area of the landscape with patches of new habitat types is increased, each new habitat is assumed to contribute less to the total species number than the former, because of species overlap between habitats. On the other hand, in an agricultural landscape less species overlap among habitats should be expected because they may constitute fundamentally different habitats (Tjørve 2002).

Increased population sizes will also enhance the probability for survival of infrequent species and the chance of catching a propagule increases with increasing area (Shmida & Wilson 1985). My conclusion is that larger ponds have larger pond margins with higher habitat diversity and therefore also a higher species richness.

Water chemical variables

The variable Pond used for watering was included in the GLM although the F-value was low. Pond used for watering also reflects changes in water level which may reflect the number of new habitats created that furthermore may contribute to increasing species numbers and to alteration of the chemistry of pond water (as discussed above). In wetlands there is a consistent peak of species richness at low productivity, perhaps because of the absence of water shortage which makes nutrient availability be the primary control of species diversity here (Cornwell & Grubb 2003). Regressions between productivity and species richness by Venterink *et al.* (2003) for wetlands showed a wide unimodal curve for N-limited sites and a narrower unimodal curve for P-limited sites. The contribution of phosphorus and nitrogen to reduced species richness is likely to be mediated by increased dominance by competitive-ruderal species (Grime1979; Marrs 1993). The presence of nitrophilous plants in my material indicates that eutrophication is occurring, as demonstrated by the dominance of e.g. *Urtica dioica* and *Cirsium arvense* in several pond margins. Particularly *Urtica dioica* tended to dominate in pond margins with low species richness.

Geographical variables

Distance to nearest forest may alter species richness and this variable was included in the general linear modelling of number of species in pond margins as a response to significant explanatory variables. As for the contribution to explanation of some of the variation in species composition, it is possible that reduced species abundance may be due to shading by dense forest canopies, or, on the other hand, may increase species richness by adding new habitats.

Anthropological variables

Factors often contributing to disturbance is cutting and felling, which create distinctive vegetation patterns most often associated with increased species richness (Anonymous 1994a) because new space is laid open to for recolonising, a relationship that, however, not could be seen in this study. On the other hand disturbance may decrease the number of species because species are removed by the act of cutting and/or felling.

Structuring processes in species composition

Ponds represent a dynamic environment. In addition to the current environmental conditions the plant species distribution will reflect historical, often pond-specific (idiosyncratic) events. Many of the Kendall's τ correlation coefficients calculated in the correlation analyses and the F-values given in the GLM, showed relatively weak relationships. Even though a total of 56 environmental variables supposed to be of high importance was measured, one can never rule out that the lack of strong relationships between species richness and composition and explanatory variables is due to unmeasured factors. The results are relevant to a discussion of the relative importance of different structuring processes in vegetation (R. Økland 1990a):

(1) *Interspecific interactions*. Patterns of species distribution may be due to competitive interactions, even though not necessarily as a major determinant of pond biotic diversity (Wilson & Keddy 1985; Keddy & Constable 1986; Friday 1987; Shipley & Keddy 1994). A species' fundamental niche is determined by physiological processes. Because species coexist in communities, it is the realised niche that is of interest for applied ecology. Positive interactions may contribute to increased species diversity, whereas the opposite effect is brought about by interspecific competition (Tilman 1994). Aquatic plant communities can often be dominated by only a few species (Mitchell 1974), e.g. *Phragmites australis* in pond margins and *Lemna minor* in ponds as seen in this study. Such species may quickly establish

dominance over a suitable area preventing potential competitors from becoming established because of competition for space and resources like light, respectively. This study of pond species did, however, show that nutrients often are in excess. Neither did pond area contribute to enhanced richness, and it is therefore likely to conclude that interspecific competitive interactions are generally not important explaining variation in plant species composition or richness in ponds in agricultural landscapes.

(2) Destabilising factors. Huston (1979) predicted high species richness when mortality due to extrinsic factors is low, given relatively low intrinsic mortality as well. Many of the anthropological variables may have an impact on species distributions along gradients, although this study did not overall show any clear relationship between human use and management and species richness and composition. This may, however, be due to the land owner's subjective apprehension of historical use and management of the ponds (time span, etc.). Disturbance will vary under different external conditions and should always be seen in context with its three dimensions (van der Maarel 1993): (1) spatial extent, (2) temporal extent and (3) degree of intensity. Different vegetation patterns may result from the fact that the landscape is under different human influence and at different stages of recovering following disturbance in form of removal of biomass, e.g. by cutting, tree felling, grazing and pond renovation. On the other hand, anthropological disturbance may increase overall floristic diversity by increasing the number of colonisable patches, or it may achieve nothing more than a displacement of the landscape from its permanent state (Solon 1995). However, observations from the present study show that only a low proportion of these habitable sites are open for colonisation at any given time because of rapid recolonisation, and the observed gradient structure of vegetation should therefore being considered generally valid.

(3) *Stress*. Grime (1979) pointed out that species richness is lower in areas of high ecological stress. Stress promotes coexistence of species by reducing plant growth, and hence, competitive effects. Stress is often connected with end-points of environmental gradients (R. Økland 1990a; Økland & Eilertsen 1993). Constraints or overproduction may alter a species' response along a gradient involving nutrient supply, pH, light, water depth, soil depth, etc. These variables have been shown to contribute to explain some of the variation in vegetation in this study and they can be related to the main gradient of species composition as well as number of species in both ponds and pond margins.

(4) *Randomness*. The contribution of different processes to observed species richness is extremely difficult to quantify (van Groenendael *et al.* 2000). Random processes may be highly important affecting the species composition in ponds. Although interspecific

interactions, disturbance and stress may have contributed to explain the variation in vegetation in this study, the importance of chance is probably strongly underestimated, as also suggested in general forms by R. Økland (1990a).

A pond should be expected to have the potential of harbouring a larger species pool than observed in many of the ponds in this study. However area did not seem to contribute to neither species composition nor richness in the ponds. This can be due to establishment of plants (Nicol & Ganf 2000) (to some extent, also likely to have happened here because of inappropriate ecological conditions), unsuitable ecological conditions for seed production, maturation and germination, low reproductive success arising from hybridisation (Barett *et al.* 1993) or success of dispersal. Nevertheless, isolation did not seem to play an important role in the dispersal of aquatic macrophytes here, and aquatic plant species are considered having generally good dispersal abilities as their diaspores can be carried long distances by birds (Barett *et al.* 1993; Odland 1997; Brose 2001) in addition to high local dispersal of asexual clones (van Groenendael *et al.*1996; Santamaria 2002).

Intraspecific genetic variability may also contribute to randomness (R. Økland 1990a). This factor should be related to success of pollination and dispersal. Metapopulation theory predicts that both local and regional persistence of species depend critically on the existence of many populations within a region. Higher immigration rates of species will also reduce the extinction rate by supporting present populations with new genetic material. Because of relatively good dispersal abilities, new individuals and/or plant species are likely to be established or introduced in ponds. This assumption should anyhow be given further notice since the presence of ponds located in the agricultural landscape is rather low. Because of constant loss of such ponds during the past decades, ponds in close proximity to farms are becoming a relatively rare landscape element. If farm ponds are assumed to harbour a certain pond flora the importance of establishment and dispersal of plant species should be given further consideration. However, population dynamics of the pond species may reflect critical short-term incidents of the past, making it difficult to interpret ecological relationships based on the present-day situation (Rørslett & Johansen 1995).

It was hard to get a general impression of a "typical" farm pond due to the large variation not only in species composition and richness, but also in morphology, hydrology, use and management, etc. The distinctiveness of each such pond is maybe due to randomness in establishment in gaps, supporting suggestions of Økland *et al.* (2003) in a study of swamp forests as habitat islands in boreal forests. The results in my study show a combination of many important components determining species composition and number of species,

supporting Tilman's (1999) proposal that there exists a diversity of explanations for diversity, even within one ecosystem type such as farm ponds.

The effect of randomness can be demonstrated by the variation in species composition in apparently similar patches as seen in ponds within a small geographical area in this study, e.g. ponds Nos 47-55. The differences are particularly large when comparing species richness. This implies that neither anthropological impact variables (including age), dispersal, nutrient supply, hydrology, geography nor geology can always explain plant species composition and number of species in and adjacent to ponds located in the SE Norwegian landscape.

On this basis I believe that randomness is a major determinant of variation in species composition and species richness and that the results presented in this study therefore reflect properties of pond and pond margin communities that can be generalised.

8 References

Aasbrenn, K. 1985. NORGE. Ressurser og arbeid. Cappelen, Oslo

Anonymous. 1975a. NSF (Norges Standardiseringsforbund). Vannundersøkelse. Bestemmelse av ammonium-nitrogen. NS 4746, 1 ed. 7 pp. Norges Standardiseringsforbund, Oslo

Anonymous. 1975b. NSF (Norges Standardiseringsforbund). Vannundersøkelse. Bestemmelse av summen av nitritt- og nitrat-nitrogen. NS 4745, 1 ed. 7 pp. Norges Standardiseringsforbund, Oslo

Anonymous. 1975c. NSF (Norges Standardiseringsforbund). Vannundersøkelse. Bestemmelse av nitrogeninnhold etter oksydasjon med peroksodisulfat. NS 4743, 1 ed. 8 pp. Norges Standardiseringsforbund, Oslo

Anonymous. 1979. NSF (Norges Standardiseringsforbund). Vannundersøkelse. Måling av pH. NS 4720, 1 ed. 7 pp. Norges Standardiseringsforbund, Oslo

Anonymous. 1980. Landbruket i Østfold 1830-1980. Østfold Landbruksselskap. Vardings trykkeri, Sarpsborg

Anonymous. 1985a. Norges lover. Lov om sikring av brønner (Brønnloven) av 31 mai 1957 nr 1 (inngått i Plan- og bygningsloven § 83 fra 1.7.1997)

Anonymous. 1985b. Norges lover. Lov om kulturminner (Kulturminneloven) av 9 juni 1978 nr 50, § 15

Anonymous. 1987. Nordisk ministerråd: Natur- og kulturlandskapet i arealplanleggingen. I: Miljørapport 1987:3, regioninndeling av landskap

Anonymous. 1990. STATGRAPHICS, Version 5. Rockville, Maryland. Manugistics, Inc.

Anonymous. 1993. NSF (Norges Standardiseringsforbund). Vannundersøkelse. Måling av konduktivitet. NS-ISO 7888, 1 ed. 12 pp. Norges Standardiseringsforbund, Oslo

Anonymous. 1994a. Jordbruksverket. Småvatten og våtmarker i odlingslandskapet

Anonymous. 1994b. NSF (Norges Standardiseringsforbund). Vannundersøkelse. Atomabsorpsjonsspektrometri i flamme. Spesielle retningslinjer for kalsium og magnesium. NS 4776, 2 ed. 4 pp. Norges Standardiseringsforbund, Oslo

Anonymous. 1994c. NSF (Norges Standardiseringsforbund). Vannundersøkelse. Bestemmelse av farge (ISO 7887: 1994). NS-EN ISO 7887, 1 ed. 7 pp. Norges Standardiseringsforbund, Oslo

Anonymous. 1994d. NSF (Norges Standardiseringsforbund). Vannundersøkelse. Bestemmelse av turbiditet (=EN 27027: 1994). NS-ISO 7027, 1 ed. 8 pp. Norges Standardiseringsforbund, Oslo

Anonymous. 1995. Direktoratet for naturforvaltning (DN). Handlingsplan for kalkingsvirksomheten i Norge mot år 2000. Forkortet utgave. DN Rapp. 1995-2

Anonymous. 1996. NSF (Norges Standardiseringsforbund). Vannkvalitet. Bestemmelse av alkalitet. Del 1: Bestemmelse av total og sammensatt alkalitet (ISO 9963-1: 1994). NS-ISO 9963-1, 1 ed. 5 pp. Norges Standardiseringsforbund, Oslo

Anonymous. 1997. NSF (Norges Standardiseringsforbund). Vannundersøkelse. Bestemmelse av fosfor. Spektrometrisk metode med ammoniummolybdat. NS-EN 1189, 1 ed. 18 pp. Norges Standardiseringsforbund, Oslo

Anonymous. 1999a. Direktoratet for naturforvaltning (DN). Kartlegging av naturtyper. Verdisetting av biologisk mangfold. DN håndbok 13-1999

Anonymous. 1999b. Direktoratet for naturforvaltning (DN). Nasjonal rødliste for truete arter i Norge 1998. DN Rapp. 1993-3

Anonymous. 2000. Direktoratet for naturforvaltning (DN). Kartlegging av ferskvannslokaliteter. DN håndbok 15-2000

Anonymous. 2001. S-plus Version 6.0. 1988-2001. Insightful Corp.

Anonymous. 2001. GS+ Version 5.1. 1989-2001. Gamma Design Software

Anonymous. 2002a. Microsoft Office Excel 2002. 1985-2002 Microsoft Corporation

Anonymous. 2002b. Statens Kartverk. Http://ngis2.statkart.no/norgesglasset/default.html

Arrhenius, O. 1921. Species and area. J. Ecol. 9: 95-99

Arts, G. H. P. 2002. Deterioration of atlantic soft water macrophytes communities by acidification, eutrophication and alkalinisation. Aquat. Bot. 73: 373-393

Arts, G. H. P., van der Velde, G., Roelofs, J. G. M. & van Swaay, C. A. M. 1990. Successional changes in the soft-water macrophyte vegetation of (sub)atlantic, sandy, lowland regions during this century. Freshwater Biol. 24: 287-294

Barnes, L. E. 1983. The colonization of ball-clay ponds by macroinvertebrates and macrophytes. Freshwater Biol. 13: 561-578

Barr, C. J., Howard, D. C. & Benefield, C. B. 1994. Inland Water Bodies. Countryside 1990 Series Volume 6, Department of the Environment, London

Barett, S. C. H., Echert, C. G. & Husband, B. C. 1993. Evolutionary processes in aquatic plant populations. Aquat. Bot. 44:105-145

Berendse, F., Oomes, M. J. M., Altena, H. J. & De Wisser, W. 1994. A comparative study of nitrogen flows in two similar meadows affected by different groundwater levels. J. Appl. Ecol. 31: 40-48

Biggs, J., Corfield, A., Walker, D., Whitfield, M. & Williams, P. 1994. New approaches to the management of ponds. British Wildlife 5: 273-287

Biggs, J. & Aistrop, C. 1995. Protecting Britain's Ponds. Pond Conservation Group, Oxford

Boothby, J. & Hull, A.P. 1997. A census of ponds in Chesire, North West England. Aquatic Conserv.: Mar. Freshwater Ecosyst. 7: 75-79

Borcard, D., Legendre, P. & Drapeau, P. 1992. Partialling out the spatial component of ecological variation. Ecology 73: 1045: 1055

Brandrud, T. E. 2002. Effects of liming on aquatic macrophytes, with emphasis on Scandinavia. Aquat. Bot. 73: 397-404

Brose, U. 2001. Relative importance of isolation, area and habitat heterogeneity for vascular plant species richness of temporary wetlands in east-German farmland. Ecography 24: 722-730

Brønmark, C. & Hansson, L.-A. 1998. The biology of Lakes and Ponds. Oxford University Press, Oxford

Browne, R. A. 1981. Lakes as islands: biogeographic distribution, turnover rates, and species composition in the lakes of central New York. Journal of Biogeography 8: 75-83

Bye, A. S., Gundersen, G. I. & Undelstvedt, J.K. 2003. Resultatkontroll jordbruk 2003. Jordbruk og miljø. Statistisk Sentralbyrå Rapp. 2003-16

Connor, E. F. & McCoy, E. D. 1979. The statistics and biology of the species-area relationship. Am. Nat. 113: 789-796

Cornwell, W. K. & Grubb, P. J. 2003. Regional and local patterns in plant species richness with respect to resource availability. Oikos 100: 417-428

Crawley, M. J. 1997. The structure of plant communities. Pages 475-531 *in* M. J. Crawley (ed.). Plant ecology. Second edition. Blackwell, Oxford, London

Dahl, E. 1998. The phytogeography of northern Europe: British Isles, Fennoscandia and adjacent areas. Cambridge University Press, Cambridge

Dolmen, D. 1990. Ferskvannsbiologiske og hydrografiske undersøkelser av Verneplan IVvassdrag i Trøndelag 1989. (LFI-81)

Dolmen, D. & Strand, L. Å. 1991. Evjer og dammer langs Glomma (Hedmark) og Gaula (Sør-Trøndelag). En zoologisk undersøkelse over status og verneverdi, med hovedvekt på Tjønnområdet, Tynset. (LFI-84)

Dolmen, D., Strand, L. Å. & Fossen, A. 1991. Dammer på Romerike. En registrering og inventering av dammer i kulturlandskapet med hovedvekt på amfibier. Fylkesmannen i Oslo & Akershus, miljøvernavd. Rapp. 1991-2

Dramstad, W. E., Fjellstad, W. J., Strand, G.-H., Mathiesen, H. F., Engan, G. & Stokland, J. N. 2002. Development and implementation of the Norwegian monitoring program for agricultural landscapes. Journal of Environmental Management 64: 49-63

Ekstam, U. & Forshed, N. 1992. Om hävden upphör: Kärlväxter som indikatorarter i ängsoch hagmärker. Fälths tryckeri, Värnamo

Engan, G. 2004. 3Q instruks for flybildetolkning. Norsk institutt for jord- og skogkartlegging Rapp. 2004-8

Fremstad, E. & Moen, A. 2001. Truete vegetasjonstyper i Norge. NTNU Vitenskapsmuseet Rapp. Bot. Ser. 2001-4: 1-231

Friday, L. E. 1987. The diversity of macroinvertebrate and macrophyte communities in ponds. Freshwater Biology 18: 87-104

Gee, J. H. R., Smith, B. D., Lee, K. M. & Griffiths, S. W. 1997. The ecological basis of freshwater pond management for biodiversity. Aquatic Conserv. Mar. Freshwater Ecosyst. 7: 91-104

Godwin, H. 1923. Dispersal of pond floras. J. Ecol. 21: 160-164

Grayson, R. F. 1992. The distribution and conservation of the ponds of north-west England. Lancashire Wildlife Journal 2: 23-51

Grime, J. P. 1973. Competitive exclusion in herbaceous vegetation. Nature 242: 344-347

Grime, J. P. 1979. Plant Strategies and Vegetation Processes. John Wiley, Chichester

Grøndahl, U. 1980. Gårdshistorie. Utgitt av Tune kommune. Vardings trykkeri, Sarpsborg

Grubb, P.J. 1977. The maintenance of species-richness in plant communities: the importance of the regeneration niche. Biol. Rev. Camb. Phil. Soc. 52: 107-145

Haig, A. R., Matthes, U. & Larson, D. W. 2000. Effects of natural habitat fragmentation on the species richness, diversity, and composition of cliff vegetation. Can. J. Bot. 78: 786-797

Hamre, L. N. & Austad, I. 1999. Field margin vegetation on farms in Sogn, western Norway. Aspects of Applied Biology 54: 337-344

Hanski, I. & Tianinen, J. 1998. Populations and communities in changing agro-ecosystems in Finland. Ecol. Bull. 39: 159-168

He, F. & Legendre, P. 2002. Species diversity patterns derived from species-area models. Ecology 85 (5): 1185-1198

Heegaard, E., Birks, H. H., Gibson, C. E., Smith, S. J. & Wolfe-Murphy, S. 2001. Speciesenvironmental relationships of aquatic macrophytes in Northern Ireland. Aquat. Bot. 70: 175-223

Heino, J. 2002. Concordance of species richness patterns among multiple freshwater taxa: a regional perspective. Biodiversity and Conservation 11: 137-147

Hill, M. O. 1979. DECORANA- A fortran program for detrended correspondence analysis and reciprocal averaging. Cornell University, Ithaca, NY.

Hill, M. O. & Gauch, H. G. Jr. 1980. Detrended correspondence analysis: an improved ordination technique. Vegetatio 42: 47-58

Hine, A. 1995. Woodland Pond Management. The Richmond Publishing Co. Ltd., Slough

Hodgson, R. W. & Thayer, R. L. 1980. Implied human influence reduces landscape beauty. Landscape and Planning 7 (2): 171-179

Holt, R. D., Lawton, J. H., Polis, G. A. & Martinez, N. D. 1999. Trophic rank and the speciesarea relationship. Ecology 80 (5): 1495-1504

Hongve, D. & Åkeson, G. 1996. Spectrophotometric determination of watercolour in Hazen units. Wat. Res. 30 (11): 2771-2775

Hull, A. P. 1997. The Pond Life Project: a model for conservation and sustainability in Boothby, J. (Ed.), British Pond Landscapes. The Pond Life Project, Liverpool John Moores University, Liverpool. 101-110

Huston, M. 1979. A general hypothesis of species diversity, Am. Nat. 113: 81-101

Iversen, J. 1929. Studien uber die pH-Verhältnisse dänischer Gewässer und ihren Einfluss auf die Hydrophyten-Vegetation. Bot. Tidsskr. 40: 227-326

Jeffries, M. 1998. Pond macrophytes assemblages, biodisparity and spatial distribution of ponds in the Northumberland coastal plain, UK. Aquatic Conserv.: Mar. Freshwater Ecosyst. 8: 657-667

Jones, J. I. Li, W. & Maberly, S. C. 2003. Area, altitude and aquatic plant diversity. Ecography 26: 411-420

Keddy, P. A. & Constable, P. 1986.Germination of ten shoreline plants in relation to seed size, soil and particle size and water level: an experimental study. J. Ecol. 74: 133-141

Kendall, M. G. 1938. A new measure of rank correlation. Biometrika 30: 81-93

Kleijn & Snoeijing. 1997. Field boundary vegetation and the effects of agrochemical drift: botanical change caused by low levels of herbicide and fertilizer. J. Appl. Ecol. 34: 1413-1425

Kruskal, J. B. 1964a. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29: 1-27

Kruskal, J. B. 1964b. Nonmetric multidimensional scaling: a numerical method. Psychometrika 29: 115-129

Legendre, P. & Legendre, L. 1998. Numerical ecology, 2. ed. Elsevier, Amsterdam

Lid, J. & Lid, D. T. 1994. Norsk flora. 6 utgåve ved R. Elven. Det norske samlaget, Oslo

Linton, S. & Goulder, R. 2003. Species richness of aquatic macrophytes in ponds related to number of species in neighbouring water bodies. Arch. Hydrobiol. 157 (4): 555-565

Lükewille, A., Jeffries, D., Johannessen, M., Raddum, G., Stoddard, J. & Traaen, T. 1997. The Nine Year Report: Acidification of Surface Water in Europe and North America. Longterm Developments (1980s and 1990s). International cooperative programme on assessment and monitoring of acidification of rivers and lakes. Norsk institutt for vannforskning

MacArthur, R. H. & Wilson, E. O. 1967. The theory of Island Biogeography. Princeton University Press, Princeton

Madsen, T. V. & Sand-Jensen, K. 1991. Photosynthetic carbon assimilation in aquatic macrophytes. Aquat. Bot. 41: 5-40

Mathiesen, H. F., Dramstad, W. E. & Fjellstad, W. J. 2000. Tilstandsovervåking og resultatkontroll i jordbrukets kulturlandskap. Rapport fra prosjektperioden 1999-2000: Hedmark og Oppland. Norsk institutt for jord- og skogkartlegging Rapp. 10-2000: 1-66

Marshall, E. J. P. & Moonen, A. C. 2002. Field margins in northern Europe: their functions and interactions with agriculture. Agriculture, Ecosystems & Environment 89: 5-21

Marrs, R. H. 1993. Soil fertility and nature conservation in Europe: theoretical considerations and practical management solutions. Adv. Ecol. Res. 24: 241-300

McCullagh, P. & Nelder, J. A. 1989. Generalized Linear Models. Chapman & Hall, London

Minchin, P. 1987. An evaluation of the relative robustness of techniques for ecological ordination. Vegetatio 69: 89-107

Mitchell, D. S. (ed.). 1974. Aquatic vegetation and its use and control. Unesco, Paris

Mittelbach, G. G., Steiner, C. F., Scheiner, S. M., Gross, K. L., Reynolds, H. L., Wade, R. B., Willig, M. R., Dodson, S. I. & Gough, L. 2001. What is the observed relationship between species richness and productivity? Ecology 82 (9): 2381-2396

Mjelde, M., Rørslett, B. & Wang, P. 2000. Norsk vannflora. Forprosjekt: Eksempler på faktaark. Norsk institutt for vannforskning Rapp. 4180

Moen, A. 1998. Nasjonalatlas for Norge: Vegetasjon. Statens kartverk, Hønefoss

Møller, T. R. & Rørdam, C. P. 1985. Species number of vascular plants in relation to area, isolation and age of ponds in Denmark. Oikos 45: 8-16

Nicol, J. M. & Ganf, G. G. 2000. Water regimes, seedling recruitment and establishment in three wetland plant species. Mar. Freshwater Res. 51: 305-309

Norderhaug, A. 1987. De urterike slåtteengene. Fortidsvern 3: 12-13

Odland, A. 1997. Development of vegetation in created wetlands in western Norway. Aquat. Bot. 59: 45-62

Oertli, B., Joye, D. A., Castella, E., Juge, R., Cambin, D. & Lachavanne, J.-B. 2002. Does size matter? The relationship between pond area and biodiversity. Biological Conservation 104: 59-70

Økland, J. 1975. Ferskvannsøkologi. Universitetsforlaget, Oslo

Økland, R. H. 1986. Rescaling of ecological gradients. I. Calculation of ecological distance between vegetation stands by means of their floristic composition. Nordic J. Bot. 10: 191-220

Økland, R. H. 1990a. Vegetation ecology: theory, methods and applications with reference to Fennoscandia. Sommerfeltia Suppl. 1: 1-233

Økland, R. H. 1990b. A phytoecological study of the mire Northern Kisselbermosen, SE Norway. II. Identification of gradients by detrended (canonical) correspondence analysis. Nord. J. Bot. 10: 79-108

Økland, R. H. 1996. Are ordination and constrained ordination alternative or complementary strategies in general ecological studies? J. Veg. Sci. 7: 289-292

Økland, R. H. 1999. On the variation explained by ordination and constrained ordination axes. J. Veg. Sci. 10: 131-136

Økland, R. H. 2003. Partitioning the variation in a plot-by-species data matrix that is related to *n* sets of explanatory variables. J. Veg. Sci. 14: 693-700

Økland, R. & Eilertsen, O. 1993. Vegetation-environment relationships of boreal coniferous forests in the Solhomfjell area, Gjerstad, S. Norway. Sommerfeltia 16: 1-254

Økland, R. H., Økland, T. & Rydgren, K. 2001. Vegetation-environment relationships of boreal spruce swamp forests in Østmarka Nature Reserve, SE Norway. Sommerfeltia 29: 1-190

Økland, R. H., Rydgren, K. & Økland, T. 2003. Plant species composition of boreal spruce swamp forests: closed doors and windows of opportunity. Ecology 84 (7): 1909-1919

Økland, T. 1996. Vegetation-environment relationships of boreal spruce forests in ten monitoring reference areas in Norway. Sommerfeltia 22: 1-349

Oksanen, J. 1996. Is the hump relationship between species richness and biomass an artefact due to plot size? J. Ecol. 84: 293-295

Olila, O. G., Reddy, K. R. & Stites, D. L. 1997. Influence of draining on soil phosphorus form and distribution in a constructed wetland. Ecol. Eng. 9: 157-169

Palmer, M. W. 1990. Spatial scale and patterns of species-environment relationships in hardwood forests of the North Carolina piedmont. Coenoses 5: 79-88
Palmer, M. A., Bell, S. L. & Butterfield, I. 1992. A botanical classification of standing waters in Britain: applications for conservation and monitoring. Aquat. Conserv. Marine Freshwater Ecosyst. 2: 125-143

Palmer, M. A., Holmes, N. T. H. & Bell, S. L. 1994. Macrophytes. In: Maitland, P. S., Boon, P. J. & McLusky, D. S. (Eds.). The Fresh Waters of Scotland: A National Resource of International Significance. Wiley, Chichester, pp. 147-169

Pearson, K. 1901. On lines and planes of closest fit to systems of points in space. Phil. Mag. 6. Ser. 2: 559-572

Pedersen, B. 1990. Distributional patterns of vascular plants in Fennoscandia: a numerical approach. Nord. J. Bot 10: 163-189

Peet, R. K., Knox, R. G., Case, J. S. & Allen, R. B. 1988. Putting Things in Order. The Advantage of Detrended Correspondence Analysis. Am. Nat. 131: 924-934

Philips, J. D. 1985. Measuring complexity of environmental gradients. Vegetatio 64: 95-102

Pitkänen, S. 1997. Correlation between stand structure and ground vegetation: an analytical approach. Plant Ecology 131: 109-126

Pitkänen, S. 2000. Classification of vegetational diversity in managed boreal forest in eastern Finland. Plant Ecology 146: 11-28

Preston, C. D. 1995. Pondweeds of Great Britain and Ireland. Botanical society of the British isles, London

Preston, F. W. 1960. Time and space and the variation of species. Ecology 41: 611-627

Preston, F. W. 1962. The canonical distribution of commonness and rarity. Ecology 43: 185-215, 410-432

Puschmann, O. 1998. Norske jordbrukslandskap - en inndeling i 10 jordbruksregioner. - Norsk Inst. Jord- Skogkartlegging Rapp. 1998-12: 1-33.

Qian, H., Klinka, K., Økland, R. H., Krestov, P. & Kayahara, G. J. 2003. Understorey vegetation in boreal *Picea mariana* and *Populus tremuloides* stands in British Columbia. J. Veg. Sci. 14: 173-184

Rea, T. E., Karapatakis, D. J., Guy, K. K., Pinder, J. E. & Mackey, H. E. 1998. The relative effects of water depth, fetch and other physical factors on the development of macrophytes in a small southeastern US pond. Aquat. Bot. 61: 289-299

Riis, T. & Hawes, I. 2002. Relationships between water level fluctuations and vegetation diversity in shallow water of New Zealand lakes. Aquat. Bot. 74: 133-148

Roelofs, J. G. M., Schuurkes, J. A. A. R. & Smits, A. J. M. 1984. Impact of acidification and eutrophication on macrophytes communities in soft-waters. Experimental studies. Aquat. Bot. 18: 389-411

Roelofs, J. G. M., Brandrud, T. E. & Smolders, A. J. P. 1994. Massive expansion of *Juncus bulbosus* L. after liming of acidified SW Norwegian lakes. Aquat. Bot. 40: 61-71

Rørslett, B. 1984. Environmental factors and aquatic macrophyte response in regulated lakes - a sustainable approch. Aquat. Bot. 19: 199-220

Rørslett, B. 1991. Principal determinants of aquatic macrophytes richness in northern European lakes. Aquat. Bot. 39: 173-193

Rørslett, B. & Johansen, S. W. 1995. Dynamic response of the submerged macrophyte, *Isoetës lacustris*, to alternating light levels under field conditions. Aquat. Bot. 51: 223-242

Rosenzweig, M. L. 1995. Species diversity in space and time. Cambridge Univ. Press, Cambridge

Rossi, R. E., Mulla, D. J., Journel, A. G. & Franz, E. H. 1992. Geostatistical tools for modeling and interpretation of ecological spatial dependence. Ecol. Monogr. 62: 277-314

Santamaria, L. 2002. Why are most aquatic plants widely distributed? Dispersal, clonal growth and small-scale heterogeneity in a stressful environment. Acta Oecologia 23: 137-154

Sculthorpe, C. D. 1967. The Biology of Aquatic Vascular Plants. Edward Arnold (Publishers) Ltd., London

Seabloom, E. W., Moloney, K. A. & van der Valk, A. G. 2001. Constraints on the establishment of plants along a fluctuating water-depth gradient. Ecology 82 (8): 2216-2232

Shimoda, M. 1997. Differences among Aquatic Plant Communities in Irrigation Ponds with Differing Environments. Jpn. J. Limnol. 58: 157-172

Shipley, B. & Keddy, P. A. 1994. Evaluating the evidence for competitive hierarchies in plant communities. Oikos 69: 340-345

Shmida, A. & Wilson, M. V. 1985. Biological determinants of species diversity. J. Biogeogr. 12: 1-20

Skoog, D. A., West, D. M. & Holler, F. J. 1992. Fundamentals of analytical chemistry, 6 ed. Saunders Publishing, Fort Worth, TX

Skånes, H. M. & Bunce, R. G. H. 1997. Directions of landscape change (1741-1993) in Virestad, Sweden – characterised by multivariate analysis. Landscape and Urban Planning 38: 61-75

Šmilauer, P. 2003. WinKyst 1.0 user's guide. - České Budějovice. Microcomputer power.

Sokal, R. R. & Rohlf, F. J. 1995. Biometry ed. 3. Freeman, New York

Solon, J. 1995. Anthropogenic disturbance and vegetation diversity in agricultural landscapes. Landscape and Urban Planning 31: 171-180

Spence, D. H. N. 1967. Factors controlling the distribution of freshwater macrophytes with particular reference to the lochs of Scotland. J. Ecol. 55: 147-170

Spikkeland, I. 1998. Dyreliv i dammer i Askim. Natur i Østfold 17 (1-2): 13-22

Srivastava, D. S., Staicer, C. & Freedman, B. 1995. Aquatic vegetation of Nova Scotian lakes differing in acidity and trophic status. Aquat. Bot. 51: 181-196

Stabbetorp, O. E. & Often, A. 2003. Kulturbetinget botanisk mangfold i grensetraktene i Sørøst -Norge. Norsk institutt for naturforskning-oppdragsmelding 808: 1-148

Taylor, D. R., Aarssen, L. W. & Loehle, C. 1990. On the relationship between r/K selection and environmental carry capacity: a new habitat templet for plant life history strategies. Oikos 58: 239-250

ter Braak, C. J. F. 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167-1179

ter Braak, C. J. F. & Prentice, I. C. 1988. A theory of gradient analysis. Adv. Ecol. Res. 18: 271-317

ter Braak, C. J. F. & Šmilauer, P. 2002. CANOCO reference manual CanoDraw for Windows user's guide:software for canonical community ordination (version 4.5). - Ithaca, N.Y. Microcomputer Power.

Tilman, D. 1982. Resource competition and community structure. Princeton Univ. Press, Princeton

Tilman, D. 1994. Competition and biodiversity in spatially structured habitats. Ecology 75: 2-16

Tilman, D. 1999. Diversity by default. Science 283: 495-496

Tjørve, E. 2002. Habitat size and number in multi-habitat landscapes: a model approach based on species-area curves. Ecography 25. 17-24

Toivonen, H. & Huttunen, P. 1995. Aquatic macrophytes and ecological gradients in 57 small lakes in southern Finland. Aquat. Bot. 51: 197-221

Undås, I. 1952.Om morener, israndstadier, marine grenser og jordskorpas stigning ved den senglasiale Oslofjord. Univ. Bergen Årb. Naturvit. Rekke 1950 (1): 1-71

van der Maarel, E. 1990. Ecotones and ecoclines are different. J. Veg. Sci. 1: 135-138

van der Maarel, E. 1993. Some remarks on disturbance and its relation to diversity and stability. J. Veg. Sci. 7: 733-736

van Groenendael, J. M., Klimeš, L., Klimešova, J. & Hendriks, R. J. J. 1996. Comparative ecology of clonal plants. Philos. T. Roy. Soc B351: 1331-1339

van Groenendael, J. M., Ehrlén, J. & Svensson, B. M. 2000. Dispersal and persistence: population processes and community dynamics. Folia Geobotanica 35: 107-114

Vasey, D. E. 1994. Plant growth on experimental island beds and nitrogen uptake from surrounding water. Agriculture, Ecosystems & Environment 10 (1): 15-22

Venables, W. N. & Ripley, B. D. 2002. Modern applied statistics with S-PLUS. Springer, New York

Venterink, H. O., van der Vliet, R. E. & Wassen, M. J. 2001. Nutrient limitation along a productivity gradient in wet meadows. Plant and soil 234: 171-179

Venterink, H. O., Wassen, M. J., Verkroost, A. W. M. & de Rutter, P. C. 2003. Species richness-productivity patterns differ between N-, P- and K-limited wetlands. Ecology 84 (8): 2191-2199

Vestergaard, O. & Sand.Jensen, K. 2000a. Alkalinity and trophic state regulate aquatic plant distribution in Danish lakes. Aquat. Bot. 67: 85-107

Vestergaard, O. & Sand.Jensen, K. 2000b. Aquatic macrophytes richness in Danish lakes in relation to alkalinity, transparency, and lake area. Can. J. Fish. Aquat. Sci. 57: 2022-2031

Waide, R. B., Willig, M. R., Steiner, C. F., Mittelbach, G., Gough, L., Dodson, S. I., Juday, G. P. & Parmneter, R. 1999. The relationship between productivity and species richness. Annu. Rev. Ecol. Syst. 30: 257-300

Walker, S., Wilson, J. B., Steel, J. B., Rapson, G. L., Smith, B., King, W. & Cottam, Y. H. 2003. Properties of ecotones: Evidence from five ecotones objevtively determined from a coastal vegetation gradient. J. Veg. Sci. 14: 579-590

Wergeland Krog, O. 1996. Biologisk mangfold i Spydeberg kommune. Handlingsplan 1995-2007. Fylkesmannen i Østfold, miljøvernavd. Rapp. 1996-7

Williams, C. B. 1964. Patterns in the balance of nature. Academic Press, London

Williams, P., Biggs, J., Barr, C. J., Cummins, C. P., Gillespie, M. K., Rich, T. C. G., Baker, A., Baker, J., Beesley, J., Corfield, A., Dobson, D., Culling, A. S., Fox, G., Howard, D. C., Luursema, K., Rich, M., Samson, D., Scott, W. A., White, R. & Whitfield, M. 1998. Lowland Pond Survey 1996. Department of Environment, Transport and the Regions, London

Williams, P., Whitfield, M., Biggs, J., Bray, S., Fox, G., Nicolet, P. & Sear D. 2003. Comparative biodiversity of rivers, streams, ditches and ponds in an agricultural landscape in Southern England. Biological Conservation 115: 329-341

Wilson, S. D. & Keddy, P. A. 1985. Plant zonation on a shoreline gradient: physiological response curves of component species. J. Ecol. 73: 851-860

Wood, P. J., Greenwood, M. T. & Agnew, M. D. 2003. Pond biodiversity and habitat loss in the UK. Area 35 (2): 206-216

9 Appendices

Appendix 1. List showing 44 3Q- sample plots (given in Fig. 3) containing 64 study sites (farm/site, municipality and county).

No.	Farm/site	No. of 3Q-plot	Municipality	County
		in map (Fig. 3)		
1	Helmen	1	Gran	Oppland
2	Rossum vestre	2	Gran	Oppland
3	Innleggen	3	Hurdal	Oppland
4	Innleggen	3	Hurdal	Oppland
5	Øvre Holt	4	Nord-Odal	Hedmark
6	Nokken	5	Nes	Akershus
7	Olstad nedre	6	Ullensaker	Akershus
8	Moer	7	Ås	Akershus
9	Sutterhol	7	Ås	Akershus
10	Mørksand	8	Ski	Akershus
11	Blikksland	9	Hobøl	Østfold
12	Sørby	10	Nesodden	Akershus
13	Torud søndre	11	Spydeberg	Østfold
14	Hyllibråten	12	Spydeberg	Østfold
15	Revhaug søndre	13	Spydeberg	Østfold
16	Solbergdalen	14	Skiptvedt	Østfold
17	Berg østre	15	Skiptvedt	Østfold
18	Berg nordre	15	Skiptvedt	Østfold
19	Mørk søndre	16	Spydeberg	Østfold
20	Ødemark	17	Våler	Østfold
21	Bierketvedt	18	Våler	Østfold
22	Glenge	19	Rakkestad	Østfold
23	Dingtorp	20	Eidsberg	Østfold
24	Svenke Rånås	21	Eidsberg	Østfold
2.5	Svenke Rånås	21	Eidsberg	Østfold
26	Sørby	22	Eidsberg	Østfold
27	Krossby nordre	23	Eidsberg	Østfold
28	Nordre Mysen	24	Eidsberg	Østfold
29	Furulund	24	Eidsberg	Østfold
30	Øiestad søndre	25	Trøgstad	Østfold
31	Ringstad	26	Trøgstad	Østfold
32	Skiennum mellom	27	Trøgstad	Østfold
33	Aske	28	Ringsaker	Hedmark
34	Dalby lille	29	Ringsaker	Hedmark
35	Biørke	30	Ringsaker	Hedmark
36	Bjørke	30	Ringsaker	Hedmark
37	Dalbystykket	31	Ringsaker	Hedmark
38	Opphus nordre	32	Hamar	Hedmark
39	Østre Hoel	32	Hamar	Hedmark
40	Skielve lille	33	Stange	Hedmark
41	Skjelve lille	33	Stange	Hedmark
42	Dal vestre	34	Stange	Hedmark
43	Arnestad	35	Vestby	Akershus
43	Våk vestre	36	Våler	Østfold
45 15	Meum	37	Råde	Østfold
46	Flingård	38	Fredrikstad	Østfold
47	Flingård museum	38	Fredrikstad	Østfold
48	Flingård museum	38	Fredrikstad	Østfold
<u>40</u>	Flingård museum	38	Fredrikstad	Østfold
τ2 50	Elingård museum	38	Fredrikstad	Østfold
51	Elingård museum	38	Fredrikstad	Østfold
51	Elingård museum	28	Fradrikstad	Østfold
52 52	Elingerd museum	30 20	Fredrikstad	Østfold
33 54	Elingand museum	30 20	Fiedlikstad	Wstiola Østfald
34	Eningard museum	38	rrearikstad	Ostiola

55	Elingård museum	38	Fredrikstad	Østfold
56	Sande vestre	39	Borre	Vestfold
57	Oddestad østre	40	Hobøl	Østfold
58	Oddestad vestre	40	Hobøl	Østfold
59	Ugjestrud søndre	41	Vestby	Akershus
60	Pålsrød vestre	42	Rygge	Østfold
61	Roksrud nordre	43	Frogn	Akershus
62	Klommestein nordre	44	Ås	Akershus
63	Ekeberg	44	Ås	Akershus
64	Skoftestad	44	Ås	Akershus

Appendix 2. Abundance values (0-1-2-3) for the pond data set. Species are listed in first column and ponds (1-64) are given in subsequent columns.

	1011.3																											
: : : :			4 (1 0 1	6	~ '	0			4	₽ ·	‡ '	÷	16	4	18	6	8	1 22	8	2	3	56	27	28	53	E O	8
	> <	2 0	> <	• •		5 0		» د		•				5 .			•	0	0	•		0			0
Equiserum pratense	0	0	0	-	0	0	0	0	0		•	0	•	0	•	0	0	0	0	•	0	0	0	o	0	0	0	0
Equisanum sylvaticum	0	- 1	0	0	0	•	0	0		0	0	0	•	•	•	0	0	0	0	•	•	0	0	0	0	0	0	0
Salix petrandra	0	•	•	0	0	0	0	0	0	-	0	•	0	0	0	0	o	0	0	•	•	•	0	0	0	•	0	0
Salix cinerea	0 0	0	•	0	0	0	N	o	0	0	0	•	•	0	0	0	0	0	0	•	0	0	0	0	0	0	0	0
Salix aurita	0	0	0	0	o	a	0	o	•	0	0	•	0	0	0	0	0	N	0 0	0	0	0	0	0	0	0	0	0
Salix caprea	•	0	•	0	0	0	N	0	0	0	0	0	0	0	0	0	0	•	0 0	•	0	•	0	0	0	0	0	0
Alnus glutinosa	0	0	0	0	0	0	0	0	•	0	•	0	0	0	0	0	0	0	0	•	•	•	0	0	0	0	0	0
Untica dioica	0 0	•	•	•	0	0	0	0	•	0	0	0	0	0	0	o	0		0 2	0	0	0	0	0	0	0	0	0
Persicaria hydropiper	0	0	0	0	0	0	0	0	0	0	•	0	Q	¢	0	0	0	0	0 0	•	•	0	0	0	0	o	0	0
Rumex aquaticus	0 0	0	•	0	0	0	0	0	0	6 0	•	0	¢	Q	0	0	0	0	0 0	•	0	0	¢	0	¢	0	0	0
Rumex longitolius	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	•	0	0	0	-	Ģ	0	0	0
Rumex acetosa	0	0	0	0	0	0	0	0	0	0	0	•	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0
Stellaria media	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•	0	0	0	0	0	0	0	C
Stellaria alsine	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	-	0	0	0	C
Stellaria graminea	0	0	0	Q	0	0	0	0	0	0	0	0	•	0	0	0	0	0	0 0	0	0	0	0	T	0	0	0	0
Cerastium tontanum	0 0	•	0	0	Q	Q	0	o	0	0	0	0	0	0	0	0	0	0	0	0	¢	¢	0		0	0	0	0
Nymphaea albe	0 0	0	0	0	0	Q	0	Q	0	0	0	0	0	0	0	0	o	Ģ	0	0	¢	0	0	¢	e	0	0	0
Nuphar lutea	0 0	0	0	0	0	¢	0	თ	0	0	0	•	0	0	0	0	67	0	0	0	0	0	0	0	0	0	0	P
Caltha palustris	0 0	N	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ranuncutus acris	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ranunculus repens	۲ ۲	0	0	0	0	0	0	D		0	0	2	0	~	0	0	-	0	2	0	0	0	0	N	- 0		0	0
Ranuncutus sceleratus	1 0	0	0	0	0	0	0	0	0	0	¢	0	0	0	0	0	0	0	0	0	0	C	c	c	c			
Ranuncutus aquatitis	0	¢	¢	C	0	0	0	0	0	0	C	0	Q	0	0	Q	0	0	0	0	0	0	ç	e	c	ç		• •
Ranunculus rentans	0	¢	C	Ċ	0	0	0	0	0	0		• •	Ģ	0	0	C							¢	, c	, ,			
Recurctive flammula	0	c	c	c	c	c	-				• •	• •	Ģ	¢	c						• •	• •		, c				
Filinanctula utmania		• •) C	• c	• c	• c	0				• •	o c) C	• c) c					• •		4 0	, ,		0			o c
Potentilla nalustrie				0	c	¢	i c				• =		c		c							0 0	• •	, c	, c	, -	, c	
		• c	• c	4 C) ¢	¢) C		, . , .	1 C	• c	• c) C) c	, c	, c			• •) C	o c	• •	o c	, c	- c		,
Trifolium renears		• •	• •	c	ç		ç					c	, c	, c	, c					• •	0.0	0 0		0 0				, c
Tellolinan huheidum						•		, ç	,		• c	• c	• c	• c) c					• c	0 0		• •	, c				
Viola palustris) 0	0	• -	0	0	. 0	00				• •) C	0	0	00		00			0 0	00	¢		• c				• •
l uthorn selicaria			-	c	c	c	-	• •	0			G									i c					, .		• •
Folichium natustro		• c	• c	• =				. c			, c	• c	• c	• c			, c			0 0	¢	0	• •	, c	, c			• •
Ebilobium watsonii	1 0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	2		0			Q	0				, c		• =
Hippuris vulgaris	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Þ	0	0	0	0	0	0	0	0	0	0	0
Cicuta virosa	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ģ	0	0	0	0	0	0	0	0	0		0
Lysimachia vulgaris	0	0	0	0	0	0	0	0	0	0	0	•	٥	0	0	0	Ģ	•	0	¢	0	0	0	0	0	0	0	0
Lysimachia nummularia	0	0	0	0	0	0	0	0	0	0	0	•	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Lysimachia thyrsiflora	0	0	0	ო	0	0	0	0	0	0	0	N	0	0	0	0	0	0	0	¢	0	0	0	0	0	0	0	0
Galium uliginosum	0 0	0	0	¢	0	0	0	0	0	0 (0	•	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Galium palustre	0	D	0	-	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Myosotis laxa	0	0	0	0	0	0	0	0	0	0	0	0	a	0	0	o	0	0	0	0	0	0	0	0	0	0	0	0
Callitriche cophocarpa	0	0	0	N	N	¢	ø	N	0	2	0	0	o	٥	0	Q	0		0	0	0	0	~	01	0	0	0	0
Califiriche palustris	0	0	0	0	0	o	o	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Califriche hamulata	0 0	0	•	0	0	0	0	N	0	•	0	N	o	N	0	0	0	0	•	•	0	0	2	N	0	•	0	0
Mentha arvensis	0	0	0	0	0	0	0	0	0	2	0	0	o	0	o	0	0	0	•	0	0	N	0	0	•	•	。 。	•
Solanum duicamara	N 0	0	0	0	•	0	0	0	0	2	0	•	0	0	o i	0	0	0	•	0	0	0	0	0	0	•	0	0
Veronica beccabunga	0 2	0	0	0	•	0	• •	0	~ ·	• •	•	0	0	0 1	0	0 1	0 1		•••	0	0	0	0	0	0	0	0	0
Veronica scuteliata	C N	5	-	e	5	2	Þ	0	0	2	2	e	5	N	Ð	5	0		2	2	ъ	N	0	D	0	0	0	•

Q	n	
o	υ	

																			0	0																				
4	•					0	0					~	~ ~		-	~			8	0			_	_								120		0.7250		21740	11420			
ڻ د		_				_	_					Ĭ			Ŭ				Ű		- 0			00	, 0	•	0 0	2 (4	0	0 0	0	0	0 0	0	0 0	00	•	0	0 0	>
8	U				, 0	0	0	0		, 0	. 0	•	0 0		•	0 0	0 0	00	•	0 0	0 0	0	0	0 0	0	•	0 (N C	0	0 0	0	•	0 0	0	• •	0 0	0	~	0 0	2
62	•	0 0			0	•	0	0	DC	00	0	0	0 0	00	0	0 0	0 0	00	0	0 0	0 0	0	0	0 0	0	0	~	o N	0	0 0	0	0	0 0	0	0 0	0 0	2	0	0 0	2
61	0	0 0	0 0	0 0	0	0	0 0	0	0 0	0 0	0	0	0 0	0	0	0 0	0 0	0 0	0	0 0	0 0		0	0 0	0	0	~	0 0	•	0 0	0	• •	0 0	•	• •	0 0	•	• •	0 0	2
09	0	• •	0 0	0 0	0	•	0 0	0 0	0 0	0 0	0	•	• •	0	•	0 0		0	0	0 0	0 0	0	0	0 0	0	•	0 0		•	0 0	. 0	2	0 0	0	0 0	0 0	0	0 0	0 0	>
59	0	0,	- 0	0 0	0	0	0 0	0 0	0 0	0	0	0	0 0	0	0	0 0	0 0	0	•	0 0	0	• •	•	• •	0	•	• •	• •	•	• •	0	0 0	0 0	0	• •	0 0	•	• •	••	
28	0	• •	0 0	0 0	0	0	0 0	0 0	0 0	0 0	0	0	0 0	0	0	• •		0	•	0 0	0	• •	0	0 0	0	0	0 0	0 0	0	0 0	0	0 0	0 0	0	0 0	0 0	0	0 0	0 0	>
19	0	- 0	0 0	0	0	•	• •	• •		0	•	• •	• •	• •	•	0 0		0 0	0	0 0	0 0	~	•	- 0	0	•	0 0	0 0	•	0 0	0	0,	- თ	0	~ ~	0 0	•	• •		>
56	•	0 0		0	0	0	• •	0 0	0 0	, 0	0	0	0 0	0	0	0 0	b c	0	0	0 0	0 0	0	0	0 0	0	0	~ ~	0 0	0	0 0	• •	• •		•	• •	0	•	• •		,
22	3	0 0		0	0	0	0 0	• •		• •	•	• •	• •	0	0	0 0	,	0	•	0 0	0	0	0	0 0	0	0	0 0	0 0	0	• •	• •	2 10		0	0 0	0	0	0 0		2
54	0	0 0		0	0	0	0 0	0	0 0	0	0	0 0	0 0	0	0	0 0		0	0	0 0	0	•	0	0 0	0	0	• •	0	•	• •	• •	• •		0	• •		0	~ ~		د
3	•	0 0		0	0	•	0 0	0 0		0	0	0 0		0	•	0 0		0	0	0 0	• •	0	0		0	0			0		•	0 0	0 0	0	0 0	0	0	~		s
52	0	• •	• •	• •	0	0	• •	• •	0 0	, o	0	0 0		• •	•	• •	0 0	0	-	0 0		0	0 0		•	•		00	•	0 0	•	• •	00	0	0 0	0	0	0 0		5
51	•			0	0	0	• •			, 0	0	0 0		0	0	• •			•		0	0			0	0		0	0		0	N C	00	0		0	0			5
8	0	0 0		0	0	0	0 0			0	0	0 0		0	0	0 0		0	0		0	0	0 0		0			00	0		•				- 0		0			
6	0				0	0	• •			00	0	0 0			0		0		0	0 0		0	0 0		0	0 0		00	0		0		00	0			0			
	0		0	0	0	0					•			0	•				•	0 0		~			0							~ ~								
5	N			0	0	•	0 0				•	0 0		0	0				0	0 0		•			•				~		•						-			
9				N					- 0										~								_													9
4					0						~	~ ~																			Ŭ						0.0			
4					_	_					_								Ű			0	00	50	0	0 0	5 0		0		•	0 0	0	0		0	0 0	0 0	0	
4			, .		•	0	50		, 0	•	0	0 0	00	0	0	mc	0	0	0	0 0	0	0	0 0	0 0	0	0 0	0 0	00	0	0 0	0	0 0	0	0	NC	2	0 0	0 0	0	
4	0	5 6) (\	0	0	0	5 0		, 0	0	0	0 0	0	•	•	0 0	0	• •	•	0 0	0	~	e 0	0	0	0 0	0 0	00	•	0 0	•	0 0	2 01	0	0 0	0	0 0	0 0	0 0	
42	0	0 0	0	0	•	0	0 0		0	0	0	0 0	00	0	0	0 0	0	0	0	0 0	0	0	0 0	0 0	0	0 0		0	0	0 0	0	0 0	0		0 0		0 0	0 0	0	,
41	0		0	0	•	- 1			0	0	0	0 0	0	0	0	0 0	0	•	0	0 0	0	0	0 0	0 0	0	0 0	0 0	0	0	• •	•	0 0	0	0	N 0	• •	0 0	0 0	0	2
4	0	0 0	0	0	•	0	0 0	0 0	0	0	0	0 0	0 0	•	0	0 0	0	0	- 1	0 0	0	0	0 0	0 0	0	0 0		0	~	0 0	0	0 0	0	0	0 0	2	0	0 0	0	,
39	0		0	0	0	• •	0 0	o c	• •	0	0 0	0 0	0 0	•	0 0	• •	0	0	0	o c	•	•	0 0	0 0	•	0 0		• •	~	• •	•	0 0	0	0	0 0	0	0 0	0 0	0	i.
38	0		0	0	0	0	0 0		0	0	0 0	0 0	0	0	0 0	0 0	0	0	- 1		0	0	0 0	0 0	0	• •		• •	• •	0 0	•	0 0	0	0 0	0 0	0	• •	• •	0	
37	0 0		0	•	•	• •			0	0	0 0	0 0	0	•	• •	• •	0	•	•		0	0	m c	0 0	0	0 0		0	0 0	0 0	0	0 0	0	0 0	NO	2	0 (0 0	0	e *
36	0 0	0 0	0	0	0	0 0	, ,	0 0	0	0	0 0	• •	• •	•	• •	• •	0	•	0	- 0	•	0	0 0	0 0	0	• •		• •	• •		•	• •	0	0 0		• •	• •		0	2
35	0 0		0	0	0	0 0			, 0	0	• •	0 0	0	0	0 0		0	0	0	0 0	0	0	0 0	0	0	0 0	0 0	0	en 1	0 0	0	0 0	0	0 0		-	• •		0	,
34	• •		0	•	0	• •		, c	0	0	0 0	0 0	0	•	0 0		0	0	0	0 0	0	0	0 0		0	0 0		0	0 0	. 0	0		0	0.	- 0	0		- 0	。。	

Appendix 2 cont.

Equisierum Inviatile Equisierum Inviatile Equisierum synaticum Salix pertrandra Salix pertrandra Salix aurita Salix caprea Aurus gulancea Aurus gulancea Aurus gulancea Aurus gulancea Aurus aurita Aurus acellosa Rammera Rammera Solutina gulantis Farunculas acentes Rammerulas farantes Rammerulas reprates Ra

																						8	1																								
32	0	0	2	0	0	2	0 0	1 0	0	0	0	0	0	2	0	•	2	0	•	0	0	0	2	0	0	0	0	0	0	0	0	2	0 0	0	0	0	0	0	•	•	•	0	2	•	•	• •	5
E	0	0	~	0	0	ŝ	• •	0	0	0	•	•	0	•	•	•	e	•	•	•	•	•	•	•	•	•	•	•	•	•	0	•		0	0	0	•	0	•	•	•	•	0	0	•	• •	0 0
8	0	0	0	0	0	0	0 0	0	0	0	0	0	0	•	0	•	-	-	•	•	•	•	•	•	•	•	•	•	•	0	•	•			0	0	0	•	•	•	•	•	•	•	•	• •	0 0
50	0	0	~	0	•	•	• •	0	0	•	•	0	•	0	0	-	2	•	0	•	0	0	0	•	0	0	0	0	0	0	0	0	0 0	0 0	0	0	0	0	0	0	0	2	0	0	0	0 0	NC
58	•	0	•	•	•	2	0 0	0		0	•	0	0	0	0	0	-	•	0	0	0	3	•	•	0	0	0	0	0	0	0	0		0	0	0	0	0	•	0	0	•	3	•	0	• •	
27	0	0	3	0	0	m	0 0	0	0	0	0	0	0	0	0	0	2	0	0	•	0	0	0	0	0	0	0	0	0	0	0	2		0	0	•	0	0	~	0	0	9	•	0	0	0 0	o c
36	0	0	0	0	•	0		0 00	0	0	0	0	0	0	0	0	~	0	0	0	0	•	•	•	•	•	0	•	•	•	•	•			0	•	•	0	•	•	•	•	•	•	•		
52	0	0	2	0	0	2	0 0	• •	. 0	•	•	0	•	•	•	N	•	-	•	•	0	0	0	0	•	0	0	2	0	0	•	2			0	•	•	0	•	•	2	0	2	•	0	0 0	5 0
54	0	0	0	0	0	0				0	0	•	•	•	•	•	•	•	•	•	•	•	•	•	0	•	•	•	•	•	•	• •			0	•	0	0	•	•	2	•	•	•	2		o c
33	•	0	2	0	•	0	- 0	2	1 01	0	0	0	•	0	•	•	3	-	•	•	•	•	•	•	•	•	0	0	0	-	0	~		. 0	2	~	0	0	•	0	0	0	•	•	0	0 0	NC
53	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	•	0	e (0	0	0	0	0	0	•	0	0	0	0	0	0 0	
5	•	•	0	0	0	3		2	2	0	0	0	0	0	•	0	3	0	0	0	0	0	0	0	•	•	•	•	0	0	•	~			0	•	•	•	•	•	2	•	•	•	• •		5 0
8	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	•	0	0	•	•	0	•	2	~	N	2	•	•	•	•	~		0	0	•	•	•	0	0	0	0	0	0	0	0 0	
19	•	0	0	•	•	0		0	0	•	•	•	•	•	•	0	-	0	0	•	0	0	0	0	•	0	•	•	•	•	0	0 0			0	0	•	0	•	•	0	0	0	•	0		
18	0	0	~	0	0	0			•	0	•	•	•	•	•	•	e	•	•	•	0	•	•	0	•	•	0	0	0	0	•	~		0	N	0	0	•	•	•	0	•	•	•	0		
11	0	0	2	0	0	~	0 0	0	6	0	3	0	0	•	2	0	3	0	0	•	0	2	•	0	0	•	0	0	•	•	0	~		0	0	•	•	•	0	•	•	0	0	0	• •		
16	0	0	N	0	•	2		0	0	0	0	0	0	•	0	•	•	•	•	•	•	•	•	0	•	•	•	•	•	0	•	• •		0	0	0	~	•	•	0	0	0	0	0	0 1		
15	•	0	•	N	• •	2		. 6	•	0	0	•	•	•	0	•	3	0	•	•	0	•	0	0	0	•	•	•	0	0	•	~ ~			•	•	•	0	0	0	0	0	0	0	0 1		
14	0	0	0	0	0	2	NO		0	0	-	-	0	0	0	0	0	0	0	0	0	0	0	0	N	0	0	0	0	0	0	2		0	0	0	0	0	0	0	0	0	0	0	•		
13	0	0	0	0	0	0	NO	0	0	0	•	0	0	0	N	0	0	2	0	0	0	0	•	0	0	0	0	0	•	0	0	~		0	0	0	-	-	•	•	•	•	•	•	• •		N O
12	0	0	0	0	0	2	- 0	2	0	0	•	0	-	-	-	•	2	•	0	•	0	0	•	•	•	•	•	•	•	•	•	~		0	0	0	•	0	•	•	0	0	•	0	• •	• •	D e
F	0	0	0	0	0	N		2	0	0	0	0	0	•	0	•	-	0	0	0	0	2	0	0	0	0	N	0	0	0	0	m (. .	. 0	0	0	2	N	0	0	0	0	3	0	0	~ ~	<i>n</i> c
2	0	•	•	•	0	0	0 0	0	0	•	3	0	•	•	•	N	•	•	•	•	0	•	•	2	-	•	2	0	0	0	0	~		0 0	0	0	0	0	•	•	3	2	0	•	0	0 0	NC
6	0	3	0	2	0	N		2	0	0	0	0	2	0	0	0	e	3	0	0	•	0	•	0	0	•	0	0	•	0	•	~		0	•	•	-	-	0	•	•	2	•	•	•	• •	
80	•	•	N	•	0	N I	NO	2	0	0	•	0	0	0	0	•	2	~	0	0	•	•	0	•	~	0	0	0	0	•	0	~		0	0	0	0	0	0	0	2	0	0	0	0	0 0	NO
2	•	•	•	•	• •	N I		~	0	0	0	•	0	•	0	•	-	0	0	•	•	•	•	•	•	•	•	•	-	•	•	0 .		0	0	-	•	•	•	0	•	•	•	0	•	• •	, ,
9	0	0	0	0	0	0	- 0	6	0	0	2	0	0	0	0	0	2	0	0	0	0	3	•	0	0	0	0	0	0	0	0	2	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	b c
5	3	0	0	0	• •	0	D 0	0	0	•	•	•	•	•	0	N	0	•	•	0	N	0	•	•	•	•	-	•	•	•	•	2		0	0	0	•	•	•	•	•	•	•	•	0	0 0	
4	0	0	0	0	0	0	0 0	0	0	0	0	0	0	•	0	2	•	0	0	•	•	•	N	•	•	N	2	•	•	•	•	• •		0	•	•	•	•	0	•	0	0	•	•	• •	• •	, ,
•	•	0	•	•	• •	0	0 0	0	0	0	•	•	0	•	•	N	•	•	0	•	0	0	•	•	•	2	~	0	0	0	0	~		0	0	0	0	0	0	0	0	0	0	0	0	0 0	b c
N	•	•	•	•	•	0	. 0	0	•	0	•	•	3	•	0	•	2	0	0	0	0	0	•	0	0	0	•	•	0	0	•	0 0		0	•	•	•	0	0	0	0	0	0	0	0	0 0	
-	2	0	0	0	0	0	NO	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	~ ~		0	0	•	0	•	•	-	•	•	•	2	• •	• •	, ,

Appendix 2 cont. Unculate minor Unculate vigants Bions spantas Bions spantas Bions soma Bions soma Bions soma Aisma plantago-squara Rissilago lantas Aisma plantago-squara Aisma plantago-squara Aisma plantago-squara Aisma plantago-squara Colamopation harchidis Typa angesticitia Typa angesticitia Typa angesticitia Sprogravium enters Sprogravium enters Uncurs and plantas Sprogravium patients Agrostis schoniens Pheataris anundinas Schoa synatics Schoars praterias Schoars praterias Schoars praterias Schoars praterias Schoars patientis Schoar

																						8	2																								
64	0	0	0	0		N	e	N	2	0	0	¢	0	0	0	0	0 0	"	- 0	> c	• c	0	0	N	N	0	0	0	0	•	- 0	N C	, <u>.</u>	0	0	o	0	0	0	0	0	2	0 0	5 0	5 C	0 0	0
63	0	0	0	0	0	0	0	0	\$	N	0	0	0	0	0	0	0 0	"	> 0	,	• c	6	-	0	0	0	0	0	0	0 0	> <	- c	0	0	0	0	0	0	0	0	2	0	0 0	> 0	> c	00	0
62	0	•	ŝ	0	0	es	ო	2	0	0	0	3	0	0	0	0	0 0	N I	2 4	0) c	0	0	0	0	0	0	0	0	Q (•	N C	0	0	0	0	0	0	0	0	0	ณ	0 0) (> c	, 0	6
5	0	0	0	0	•	2	0	0	2	0	0	0	o	2	0	0	0 0	•	.	, c) c	e en	0	0	0	0	0	0	0	0 0	.		0	0	0	0	o	0	0	0	N	N	0 0	. .) c	N	0
60	0	0	٥	0	0	N	2	0	0	0	0	-	0	0	0	0	ο,		- 0) c	, c	0	0	0	0	0	0	0	•	0 0		N C	0	0	0	0	¢	Q	0	0	0	0	0 0	, ,) a	0	•
5	0	0	0	0	Q	2	2	0	0	0	0	0	0	٥	C	0		-	, ,	• c) c	0	0	0	N	0		0	0	0 0		V C	0	0	0	0	0	0	0	0	0	0	0 0	, ,	> o	0 01	0
58	0	0	0	0	ø	o	0	0	•	0	0	0	0	0	0	0	o ,		> <	> c	, c	0	0	0	0	0	0	0	0	0 0		0 0	0	0	0	0	0	0	0	0	0	¢.	0	> c	, o	, 0	0
5	0	0	2	0	0	-	ē	0	N	0	0	0	0	-	0	0	0 0	N (> <) c	• c	0	2	0	N	0	0	0	0	0 (,	N C	0	N	0	0	0	0	0	0	0	2	0	> c	2 0	1 0	0
29	0	0	0	0	0	Q	N	0	2	0	0	0	0	0	0	0	0,	•) (0	0	0	0	0	0	-	0	0	0 0	> 0) C	0	0	0	0	0	0	0	0	3	0	0 0	> <	> 0	0	0
22	0	0	0	0	0	0	3	0	-	0	0	N	0	-	0	0	ο,	- () (0	e	0	0	0	0	0	0	D	0 (0 0	0	0	0	0	0	•	0	-	0	0	n d	> c	> 0	. 0	0
2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,	N (5 0	, c	, o	0	0	0	0	0	0	0	0	0 0	5 0	V 0	0	0	0	0	o	0	0	0	•	0	0 0	> c	> a	0	¢
2	0	0	0	2	•	0	0	0	N	0	0	o	0	2	0	0	0 (9.0	.) c	0	0	0	2	0	0	0	0	0	0 0		v 0	0	0	0	0	0	¢	0	N	CN	0	• •	> c	> 0	, 0	0
52	0	0	2	N	0	N	0	0	0	0	0	0	0	N	•	•	0 0	•	,) c	0	0	0	-	0	0	0	0	0	0 0		, 0	0	0	0	0	Q	0	0	o	N	0	• •	, c	0 0	0	0
5	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0 (•	,	, c	0	0	0	-	0	0	0	0	0	0 0			0	0	0	0	0	0	0	0	N	0	0 0	, c	, 0	0	0
8	0	0	0	3	0	0	-	0	7	0	0	0	0	Q	0	0	ο.	- (> c) C	0	0	0	0	0	0	0	0	0	0 0	5 0	0 0	0	0	0	0	0	0	0	N	0	0	0 0	5 C	0 0	0	0
49	•	0	0	0	0	0	0	0	0	0	0	0	•	0	0	0	0,	- ‹	> c	, c	0	0	o	0	0	0	0	0	0	0 0		0 0	0	0	0	0	0	Q	0	0	•	0	• •	, c	, o	0	0
4 8	0	•	•	•	0	2	~	0	0	2	0	0	0	2	0	0	0 0	4 0	• •	, c	0	0	0	0	0	0	0	0	0	• •		40	0	0	0	•	0	0	-	0	2	0	0 0	> <	, o	. 0	0
47	0	o •	0	-	0	2	N	•	₽	0	0	0	0	CN	0	0		4 0	,	• c	0	0	0	0	0	0	0	0	0	0 0	, c	4 0	0	0	0	•	0	0	•	0	N 1	0	0 0	> c	, o	0	0
4 6	0	•	N	0	o	2	N	0	ŝ	0	0	0	~	¢,	0	0	0 0	,			0	0	0	-	0	0	÷	0	0	0 (4 0	-	0	•	•	-	0	0	0	0	。	0 0	> c	, 0	0	0
45	0	•	0	0	0	0	0	0	0	0	0	•	0	0	0	0	0 0	.	5 c	• c	0	0	0	•	0	0	0	0	0	0 0	,	0 0	0	0	0	•	-	-	0	0	•	•	0 9	> c	» 0	0	o
\$	0	•	2	•	0	2	0	0	N	o	0	0	0	0	0	•	0 (4 0	o c	• c	0	•	0	0	2	0	0	0	•	0 0	, c	40	0	0	0	0	0	0	0	0	•	N I	0,	- c	> 0	. 01	0
4	ო	•	0	•	0	0	ო	0	N	0	0	0	0	0	0	0	N O	, ,	5 0) C	0	0	0	0	0	0	0	0	0	0 0	> 0	0 0	0	0	0	•	0	0	0	0	N	N I	0 0) c	> 0	2	0
42	0	•	0	0	o	0	-	0	•	•	0	0	0	0	0	0	- 0	,		• c	• •	0	0	0	0	0	0	0	0	0 0	,	- 0	0	0	0	0	0	0	0	0	0	0	0 0	, c	» o	0	0
41	0	•	0	0	o	0	o	0	0	ŝ	0	0	٩	0	0	0	0,	, c	, c		• •	0	0	0	0	0	0	0	0	0 0		0 0	0	0	0	0	ø	0	0	0	0	0	• •	, c	> 0	, o	0
8	0	•	0	•	0	0	CV	0	0	2	0	•	0	0	•	0	0.	- (> <	• •	• •	0	0	0	0	0	0	0	0	0 0	> <	0 0	0	0	•	0	0	-	0	0	0	0	0 0	> <	> 0	, 0	0
36	0	•	0	•	•	0	0	0	÷	0	0	0	0	3	•	0	0,	,	> -	c	0	0	0	0	0	0	•	0	0	с (,	0 0	• •	0	•	0	0	0	0	0	0	0	0 0	> <	> 0	, o	0
38	0	•	-	3	0	0	0	0	0	•	0	0	0	e	0	0	0,	,	, c	• c	0	0	0	0	0	0	0	0	0	0 0	-	0 0	0	0	•	0	0	¢	0	0	0	0	• •	> c	, o	0	0
37	0	• •	0	0	0	0	e	~	0	•	0	0	0	0	0	2	(N C		, c	• c	0	0	0	0	0	0	0	0	0	0 0		0 0	0	0	•	0	0	0	٥	0	0	0	2	> <	> 0	0	0
36	0	•	•	0	0	0	0	0	-	•	0	0	0	0	-	•	с , с	- (,	• c	0	0	0	0	0	0	Ċ	0	0	р с	2 6	4 0	0	0	•	0	0	0	0	0	2	0	ο,		> 0	. 0	•
35	0	•	•	•	•	0	m	 .	0	0	o	0	0	0	0	•	~ ~	4 0	, c	0 0	0	0	0	0	0	0	•	0	•	0 0	> <	0 0	o	o	0	0	0	0	•	0	0	0	0 0	> c	> 0	0	0
3	0	0	0	0	•	0	-	2	0	0	0	Q	0	e	0	0	0 (u (, c	• •	o	0	0	0	0	0	0	•	0 0	> c	40	0	0	Q	¢	0	0	0	•	•	•	0 0	, ,	0 0	0	0
33	0	• •	0	ò	0	0	0	•	-	0	0	0	0	-	0	Ö	00	,	• c	• c	0	0	0	٥	o	0	0	0	0	0 0		40	0	0	0	0	0	0	0	o	0	0	• •	, c	, o	0	0

Appcndix 2 cont. Unroularia minor Unroularia minor Unroularia minor Unroularia minor Unroularia vagaria Bleons transmer Potannogen natimas Potannogen natimas Potannogen method Potannogen periolatus Typha augustrichia Sparganium enersum Spargania enersis for a paisaris for paisaris Carron ordens Reporturs a equilation Decortaris perionation Phasina sustrinas Eloyonet indumes Eloyo

Appendix 2 cont. Carex rostrata Carex pseudocyperus Carex acuta Carex acuta

Appendix 2 cont. Carex rostrata Carex pseudocyperus Carex acuta Carex acuta

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3.3) for the pondi margin data set. Spectes are listed in first column and ponds (1-64) are given in subsequent colu 0 5 7 8 9 10 11 13 14 15 14 5 15 2 25 2 25 2 25 2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccc} 1.1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$ \begin{array}{cccccc} 1.3.1 \ for the poind margin data set. Species are listed in first column and poinds (1-64) are given in subsequent columns. \\ $			
r 1	r 1	rt 1 1 1 1 1 2	r file 9 1 <td>r free pond margin data set. Species are listed in first columns. 2 2 3 1 1 3 5 7 3<</td> <td>r free pond margin data set. Species are listed in first column and ponds (1-64) are given in subsequent columns. 2</td> <td>r r</td> <td>r fre point 11 13 14 15 15 14 15 15 16 <</td>	r free pond margin data set. Species are listed in first columns. 2 2 3 1 1 3 5 7 3<	r free pond margin data set. Species are listed in first column and ponds (1-64) are given in subsequent columns. 2	r r	r fre point 11 13 14 15 15 14 15 15 16 <			
poind margin data set. Species are listed in first column and ponds (1-64) are given in subscalare list		Poind Trangin data set. Species are listed in first column and ponds (1-64) are given in subsequent colu 2 3 1 1 1 1 2 <th2< th=""> <th2< th=""> 2<!--</td--><td></td><td>Poind Imaging Indus et. Species are listed in first columns. Poind Imaging Indus et. Species are listed in first columns. Poind Imaging Indus et. Species are listed in first columns. Poind Imaging Indus et. Species are listed in first columns. Poind Imaging Indus et. Species are listed Imaging Imag</td><td>Poind Tranging data set. Species are listed in first columns: P = 9 0 11 2 3 4 5 7 2 <th2< th=""> 2 2<</th2<></td><td>00000 Target is the set in first column and ponds (1.64) are given in subsequent columns. 2 2 3 <th< td=""><td>pond marrie marrie</td></th<></td></th2<></th2<>		Poind Imaging Indus et. Species are listed in first columns. Poind Imaging Indus et. Species are listed in first columns. Poind Imaging Indus et. Species are listed in first columns. Poind Imaging Indus et. Species are listed in first columns. Poind Imaging Indus et. Species are listed Imaging Imag	Poind Tranging data set. Species are listed in first columns: P = 9 0 11 2 3 4 5 7 2 <th2< th=""> 2 2<</th2<>	00000 Target is the set in first column and ponds (1.64) are given in subsequent columns. 2 2 3 <th< td=""><td>pond marrie marrie</td></th<>	pond marrie			
Targin data set. Species are listed in first column and ponds (1-64) are given in subsequences are listed in first column and ponds (1-64) are given in subsequences are listed in first column and ponds (1-64) are given in subsequences are listed in first column and ponds (1-64) are given in subsequences are listed in first column and ponds (1-64) are given in subsequences are listed in first column and ponds (1-64) are given in subsequences are listed in first column and ponds (1-64) are given in subsequences are listed in first column and ponds (1-64) are given in subsequences are listed in first column and ponds (1-64) are given in subsequences are listed in first column and ponds (1-64) are given in subsequences are listed in subsequences. 2 2 3 4 5 16 7 8 2 <td>Targin data set. Species are listed in first column and ponds (1-64) are given in subsequent 2 3 1 1 2 <th2< th=""> <th2< th=""> 2</th2<></th2<></td> <td>Transition 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 1 <th1< td=""><td>Trancin data set. Species are listed in first column and ponds (1-64) are given in subsequent columns. 7 8 10 11 21 34 15 17 18 22 23 24 25 27 21 2 2</td><td>Transpin (aft set. Species are listed in first columns. 7 8 10 11 21 15 15 15 27 28 27</td><td>Transfin data set. Species are listed in first column and ponds (1-64) are given in subsequent columns. 2</td><td>7 8 9 10 1 2</td><td>Transfin data ser. Species are listed in first column and ponds (1-64) are given in subsequent columns. 2<</td></th1<></td>	Targin data set. Species are listed in first column and ponds (1-64) are given in subsequent 2 3 1 1 2 <th2< th=""> <th2< th=""> 2</th2<></th2<>	Transition 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 1 <th1< td=""><td>Trancin data set. Species are listed in first column and ponds (1-64) are given in subsequent columns. 7 8 10 11 21 34 15 17 18 22 23 24 25 27 21 2 2</td><td>Transpin (aft set. Species are listed in first columns. 7 8 10 11 21 15 15 15 27 28 27</td><td>Transfin data set. Species are listed in first column and ponds (1-64) are given in subsequent columns. 2</td><td>7 8 9 10 1 2</td><td>Transfin data ser. Species are listed in first column and ponds (1-64) are given in subsequent columns. 2<</td></th1<>	Trancin data set. Species are listed in first column and ponds (1-64) are given in subsequent columns. 7 8 10 11 21 34 15 17 18 22 23 24 25 27 21 2	Transpin (aft set. Species are listed in first columns. 7 8 10 11 21 15 15 15 27 28 27	Transfin data set. Species are listed in first column and ponds (1-64) are given in subsequent columns. 2	7 8 9 10 1 2	Transfin data ser. Species are listed in first column and ponds (1-64) are given in subsequent columns. 2<			
in data set. Species are listed in first column and ponds $(1-64)$ are given in subset $(1 \ 1 \ 1 \ 2 \ 1 \ 3 \ 3$	in data set. Species are listed in first column and ponds (1-64) are given in subsequent 22 23 24 51 17 18 20 22 23 24 25 25 2	in data set. Species are listed in first column and ponds (1-64) are given in subsequent colu $$ $ $	110 data set. Species are listed in first columns and ponds (1-64) are given in subsequent columns. 22 23 24 25	in data set. Species are listed in first column and ponds $(1-64)$ are given in subsequent columns. 310 11 12 13 14 15 17 13 16 17 22 23 24 25 23 24 25 24	in order $(1-4)$ are given in subsequent columns. $(1-1)$	in data set. Species are listed in first column and ponds (1-64) are given in subsequent columns. 2	in data set. Species are listed in first columna and ponds (1-64) are given in subsequent columns. 2 3 4 5 7 8 2			
It set: Species are listed in first column and ponds (1-64) are given in subsciences are listed in first column and ponds (1-64) are given in subsciences are listed in first column and ponds (1-64) are given in subsciences are listed in first column and ponds (1-64) are given in subsciences are listed in first column and ponds (1-64) are given in subsciences are listed in first column and ponds (1-64) are given in subsciences are listed in first column and ponds (1-64) are given in subsciences are listed in first column and ponds (1-64) are given in subsciences are listed in first column and ponds (1-64) are given in subsciences are listed in first column and ponds (1-64) are given in subsciences are listed in subsc	10 11 12 14 15 16 17 16 17 16 22 23 24 25 10 11 12 13 14 15 15 15 15 26 27 22 23 24 25 10 11 12 13 14 15 15 15 15 26 27 22 23 24 25 24 25 26	It set: Species are listed in first column and ponds (1-64) are given in subsequent colu 9 10 12 13 15 15 15 15 15 15 15 15 15 15 26 26 <td>10 11 12 13 14 15 <t< td=""><td>(1.54) 3re. Species are listed in first column and ponds (1.64) are given in subsequent columns. 2<</td><td>It set. Species are listed in first columns. 20 1 1 1 1 1 1 1 2<!--</td--><td>Is set. Species are listed in first column and ponds (1-64) are given in subsequent columns. 2<!--</td--><td>It set. Species are listed in first column and ponds (1-64) are given in subsequent columns. 33 31 31 31 31 31 31 31 31 32 32 32 32 32 32 33 32 32<!--</td--></td></td></td></t<></td>	10 11 12 13 14 15 <t< td=""><td>(1.54) 3re. Species are listed in first column and ponds (1.64) are given in subsequent columns. 2<</td><td>It set. Species are listed in first columns. 20 1 1 1 1 1 1 1 2<!--</td--><td>Is set. Species are listed in first column and ponds (1-64) are given in subsequent columns. 2<!--</td--><td>It set. Species are listed in first column and ponds (1-64) are given in subsequent columns. 33 31 31 31 31 31 31 31 31 32 32 32 32 32 32 33 32 32<!--</td--></td></td></td></t<>	(1.54) 3re. Species are listed in first column and ponds (1.64) are given in subsequent columns. 2<	It set. Species are listed in first columns. 20 1 1 1 1 1 1 1 2 </td <td>Is set. Species are listed in first column and ponds (1-64) are given in subsequent columns. 2<!--</td--><td>It set. Species are listed in first column and ponds (1-64) are given in subsequent columns. 33 31 31 31 31 31 31 31 31 32 32 32 32 32 32 33 32 32<!--</td--></td></td>	Is set. Species are listed in first column and ponds (1-64) are given in subsequent columns. 2 </td <td>It set. Species are listed in first column and ponds (1-64) are given in subsequent columns. 33 31 31 31 31 31 31 31 31 32 32 32 32 32 32 33 32 32<!--</td--></td>	It set. Species are listed in first column and ponds (1-64) are given in subsequent columns. 33 31 31 31 31 31 31 31 31 32 32 32 32 32 32 33 32 </td			
		Species are listed in first column and ponds (1-64) are given in subsequent colu 11 12 13 14 15 17 18 20 21 25 26 <td>Image: Contract state in the state state in the state contrants. Species are listed in first column and ponds $(1-64)$ are given in subsequent columns. Image: Column and ponds $(1-64)$ are given in subsequent columns. Image: Column and ponds $(1-64)$ are given in subsequent columns. Image: Column and ponds $(1-64)$ are given in subsequent columns. Image: Column and ponds $(1-64)$ are given in subsequent columns. Image: Column and ponds $(1-64)$ are given in subsequent columns. Image: Column and ponds $(1-64)$ are given in subsequent columns. Image: Column and ponds $(1-64)$ are given in subsequent columns. Image: Column and ponds $(1-64)$ are given in subsequent columns. Image: Column and ponds $(1-64)$ are given in subsequent columns. Image: Column and ponds $(1-64)$ are given in subsequent columns. Image: Column and ponds $(1-64)$ are given in subsequent columns. Image: Column and ponds $(1-64)$ are given in subsequent columns. Image: Column and ponds $(1-64)$ are given in subsequent columns. Image: Column and ponds $(1-64)$ are given in subsequent columns. Image: Column and ponds $(1-64)$ are given in subsequent columns. Image: Column and ponds $(1-64)$ are given in subsequent columns. Image: Column and ponds $(1-64)$ are given in subsequent columns. Image: Column and ponds $(1-64)$ are given in subsequent columns. Image: Column and ponds $(1-64)$ are given in subsequent columns. Image: Column and ponds $(1-64)$ are given in subsequent columns. Image: Column and ponds $(1-64)$ are given in subsequent columns. Image: Column and ponds $(1-64)$ are given in subseq $(1-64)$ are given in subsequent columns</td> <td>I 12 13 14 15 17 18 20 21 23 24 25 27 28 13 0</td> <td>$\label{eq:control relations} \eqref{eq:control relations} eq:con$</td> <td>• • • • • • • • • • • • • • • • • • •</td> <td>• Species are listed in first column and ponds (1-64) are given in subsequent columns. • 1 15 15 15 15 15 15 15 15 15 15 15 16 20 21 25</td>	Image: Contract state in the state state in the state contrants. Species are listed in first column and ponds $(1-64)$ are given in subsequent columns. Image: Column and ponds $(1-64)$ are given in subsequent columns. Image: Column and ponds $(1-64)$ are given in subsequent columns. Image: Column and ponds $(1-64)$ are given in subsequent columns. Image: Column and ponds $(1-64)$ are given in subsequent columns. Image: Column and ponds $(1-64)$ are given in subsequent columns. Image: Column and ponds $(1-64)$ are given in subsequent columns. Image: Column and ponds $(1-64)$ are given in subsequent columns. Image: Column and ponds $(1-64)$ are given in subsequent columns. Image: Column and ponds $(1-64)$ are given in subsequent columns. Image: Column and ponds $(1-64)$ are given in subsequent columns. Image: Column and ponds $(1-64)$ are given in subsequent columns. Image: Column and ponds $(1-64)$ are given in subsequent columns. Image: Column and ponds $(1-64)$ are given in subsequent columns. Image: Column and ponds $(1-64)$ are given in subsequent columns. Image: Column and ponds $(1-64)$ are given in subsequent columns. Image: Column and ponds $(1-64)$ are given in subsequent columns. Image: Column and ponds $(1-64)$ are given in subsequent columns. Image: Column and ponds $(1-64)$ are given in subsequent columns. Image: Column and ponds $(1-64)$ are given in subsequent columns. Image: Column and ponds $(1-64)$ are given in subsequent columns. Image: Column and ponds $(1-64)$ are given in subsequent columns. Image: Column and ponds $(1-64)$ are given in subseq $(1-64)$ are given in subsequent columns	I 12 13 14 15 17 18 20 21 23 24 25 27 28 13 0	$ \label{eq:control relations} \eqref{eq:control relations} eq:con$	• • • • • • • • • • • • • • • • • • •	• Species are listed in first column and ponds (1-64) are given in subsequent columns. • 1 15 15 15 15 15 15 15 15 15 15 15 16 20 21 25			
cices are listed in first column and ponds (1-64) are given in subsciences are listed in first column and ponds (1-64) are given in subsciences are listed in first column and ponds (1-64) are given in subsciences are listed in first column and ponds (1-64) are given in subsciences are listed in first column and ponds (1-64) are given in subsciences are listed in first column and ponds (1-64) are given in subsciences are listed in first column and ponds (1-64) are given in subsciences are listed in first column and ponds (1-64) are given in subsciences are listed in first column and ponds (1-64) are given in subsciences are listed in a subsciences are listed are lis	cices are listed in first column and ponds (1-64) are given in subsequent 12 13 14 15 17 18 20 22 23 24 25 0 0 <t< td=""><td>cics are listed in first column and ponds $(1-64)$ are given in subsequent colu 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 3 1 <th1< th=""> 1</th1<></td><td>cies are listed in first columnation (1-64) are given in subsequent columnst. r</td><td>cicies are listed in first columnand ponds (1-64) are given in subsequent columns. 23 34 15 17 18 20 21 23 24 25 27 28 27<</td><td>cies are listed in first column and ponds (1-64) are given in subsequent columns. 1 13 14 15 14 15 15 17 18 20 21 23 24 25 27 28 23 31 2 1 1 1 1 1 1 1 2</td><td>cicies are listed in first column and ponds (1-64) are given in subsequent columns. 22 24 26 27 28 27</td></t<> <td>cies are listed in first column and ponds (1-64) are given in subsequent columns.</td>	cics are listed in first column and ponds $(1-64)$ are given in subsequent colu 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 3 1 <th1< th=""> 1</th1<>	cies are listed in first columnation (1-64) are given in subsequent columnst. r	cicies are listed in first columnand ponds (1-64) are given in subsequent columns. 23 34 15 17 18 20 21 23 24 25 27 28 27<	cies are listed in first column and ponds (1-64) are given in subsequent columns. 1 13 14 15 14 15 15 17 18 20 21 23 24 25 27 28 23 31 2 1 1 1 1 1 1 1 2	cicies are listed in first column and ponds (1-64) are given in subsequent columns. 22 24 26 27 28 27	cies are listed in first column and ponds (1-64) are given in subsequent columns.			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
14 15 17 18 10 21 23 24 0 <t< td=""><td>ted in first column and ponds $(1-64)$ are given in subsequent</td><td>ted in first column and ponds $(1-64)$ are given in subsequent colu 14 15 17 18 20 21 25 23 24 25 26 27 25 26 27 25 26 27 25 26 27 25 26 27 26</td><td>ted in first column and ponds $(1-64)$ are given in subsequent columns. 14 15 17 18 10 20 21 22 23 24 25 25 27 12 0 <td< td=""><td>ted in first column and ponds $(1-64)$ are given in subsequent columns. 14 15 17 18 20 21 22 23 24 35 25 27 28 27</td></td<></td></t<> <td>ted in first columna and ponds (1-64) are given in subsequent columns. 14 15 17 18 20 21 22 23 24 25 27 28 37 28 27 28 27</td> <td>ted in first columns. ted in first columns. 13 17 13 22 23 24 25 27 28 29 30 31 0 0</td> <td>14 15 17 18 20 21 22 23 24 25 25 23 30 31 0</td>	ted in first column and ponds $(1-64)$ are given in subsequent	ted in first column and ponds $(1-64)$ are given in subsequent colu 14 15 17 18 20 21 25 23 24 25 26 27 25 26 27 25 26 27 25 26 27 25 26 27 26	ted in first column and ponds $(1-64)$ are given in subsequent columns. 14 15 17 18 10 20 21 22 23 24 25 25 27 12 0 0 <td< td=""><td>ted in first column and ponds $(1-64)$ are given in subsequent columns. 14 15 17 18 20 21 22 23 24 35 25 27 28 27</td></td<>	ted in first column and ponds $(1-64)$ are given in subsequent columns. 14 15 17 18 20 21 22 23 24 35 25 27 28 27	ted in first columna and ponds (1-64) are given in subsequent columns. 14 15 17 18 20 21 22 23 24 25 27 28 37 28 37 28 37 28 37 28 37 28 37 28 37 28 27	ted in first columns. ted in first columns. 13 17 13 22 23 24 25 27 28 29 30 31 0	14 15 17 18 20 21 22 23 24 25 25 23 30 31 0			
1 first column and ponds (1-64) are given in subset 1 first column and ponds (1-64) are given in subset 2 a 2 a 2 a 2 a 0	1 first column and ponds (1-64) are given in subsequent 1 first column and ponds (1-64) are given in subsequent 2 z 2 z	If isst column and ponds (1-64) are given in subsequent collo -64 -64 -26	If first column and ponds (1-64) are given in subsequent columns. 16 17 18 20 21 22 23 24 25 25 27 1 0	1 first column and ponds (1-64) are given in subsequent columns. 15 15 17 15 22 21 22 23 24 25 27 28 37 2 0	1 first column and ponds (1-64) are given in subsequent columns. 15 17 18 20 21 23 24 25 27 28 37 2 0 0 0 0 1 20 21 23 24 25 26 27 28 39 30 2 0 <th0< td=""><td>1 first columnand ponds (1-64) are given in subsequent columns. 28 27 28 27 28 29 20 21 25 26 26 20</td><td>If state colutinities If state colutities If state colutinities</td></th0<>	1 first columnand ponds (1-64) are given in subsequent columns. 28 27 28 27 28 29 20 21 25 26 26 20	If state colutinities If state colutities If state colutinities			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	15 17 18 20 23 24 25 55 0 0 0 0 0 0 0 2 25 24 25 5 0 0 0 0 0 0 0 2 <th 2"2"2"2"2"2"2"2"2"2"2"2"2"2"2"2"2"2<="" colspan="2" td=""><td>17 <math>18</math> <math>12</math> <math>23</math> <math>24</math> <math>25</math> <math>27</math> <math>17</math> <math>0</math> <math>0</math> <math>0</math> <math>2</math> <math>24</math> <math>25</math> <math>27</math> <math>27</math></td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>15 17 15 27 25 25 27 25 27 28 3 0 0 0 0 0 0 27 28 3 <th colspa="</td"><td>(column and ponds (1-64) are given in subsequent columns. 16 17 18 12 22 23 24 25 27 28 29 30 30 0<</td><td></td></th></td></th>	<td>17 <math>18</math> <math>12</math> <math>23</math> <math>24</math> <math>25</math> <math>27</math> <math>17</math> <math>0</math> <math>0</math> <math>0</math> <math>2</math> <math>24</math> <math>25</math> <math>27</math> <math>27</math></td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>15 17 15 27 25 25 27 25 27 28 3 0 0 0 0 0 0 27 28 3 <th colspa="</td"><td>(column and ponds (1-64) are given in subsequent columns. 16 17 18 12 22 23 24 25 27 28 29 30 30 0<</td><td></td></th></td>		17 18 12 23 24 25 27 17 0 0 0 2 24 25 27	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	15 17 15 27 25 25 27 25 27 28 3 0 0 0 0 0 0 27 28 3 <th colspa="</td"><td>(column and ponds (1-64) are given in subsequent columns. 16 17 18 12 22 23 24 25 27 28 29 30 30 0<</td><td></td></th>	<td>(column and ponds (1-64) are given in subsequent columns. 16 17 18 12 22 23 24 25 27 28 29 30 30 0<</td> <td></td>	(column and ponds (1-64) are given in subsequent columns. 16 17 18 12 22 23 24 25 27 28 29 30 30 0<	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	17 18 19 20 21 22 23 24 25 25 24 25 25 24 25 25 25 24 25 26 <th26< th=""> 26 26 26<</th26<>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	17 18 20 21 22 23 24 25 27 28 27 28 29 31 0	17 18 19 20 21 23 24 25 27 28 29 30 31 0 0 0 0 0 1 2 2 2 2 2 2 3	17 18 19 20 21 2 23 24 25 27 28 30 31 0			
10 20 21 22 23 24 10 20 21 22 23 24 0 0 0 0 0 0 0 0 0 <	Id ponds (1-64) are given in subsequent 18 19 20 21 22 23 24 0 0 0 2 23 24 25 0 0 0 2 23 24 25 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 <td>Id 20 21 22 23 24 25 26 10 0</td> <td>If 12 23 24 25 25 24 25 26 <th26< th=""> 26 26 26<!--</td--><td>Id ponds (1-64) are given in subsequent columns. If 19 20 21 22 23 24 25 27 28 37 0</td><td>If 10 21 23 24 25 27 28 27 28 28 21 10 10 0 1 2 23 24 25 27 28 21</td><td>10 20 21 25 24 25 27 28 29 30<</td><td>10 20 21 25 24 25 27 28 29 30 31 10 10 0</td></th26<></td>	Id 20 21 22 23 24 25 26 10 0	If 12 23 24 25 25 24 25 26 <th26< th=""> 26 26 26<!--</td--><td>Id ponds (1-64) are given in subsequent columns. If 19 20 21 22 23 24 25 27 28 37 0</td><td>If 10 21 23 24 25 27 28 27 28 28 21 10 10 0 1 2 23 24 25 27 28 21</td><td>10 20 21 25 24 25 27 28 29 30<</td><td>10 20 21 25 24 25 27 28 29 30 31 10 10 0</td></th26<>	Id ponds (1-64) are given in subsequent columns. If 19 20 21 22 23 24 25 27 28 37 0	If 10 21 23 24 25 27 28 27 28 28 21 10 10 0 1 2 23 24 25 27 28 21	10 20 21 25 24 25 27 28 29 30<	10 20 21 25 24 25 27 28 29 30 31 10 10 0			
Nuclear in subscription 10 20 21 22 23 11 20 21 22 23 12 20 21 22 23 13 20 21 22 23 14 20 21 22 23 15 20 21 22 23 20 21 20 21 23 24 21 20 21 20 21 23 21 20 21 20 21 21 20 21 20 21 22 23 24 27 23 21 20 21 20 21 22 23 24 21 21 23 24 27 29 21 23 24 27 29 21 24 25 26 27 27 25 26 27 27 29 26 27 28 21 20 25 26 27 27 27 26 27 27 27 27 27 28 27 <	Notes 1 2 <th2< th=""> 2 2 2</th2<>	16 20 21 22 23 24 25 25 1 0 0 0 0 0 2 25 25 25 5 1 0 <t< td=""><td>10 20 21 22 23 24 25 27 15 0</td><td>10 20 21 22 23 24 35 25 27 28 24 0 <t< td=""><td>19 20 21 22 23 24 25 23 24 25 27 28 27 28 27 28 24 25 25 24 25 25 24 25 25 24 25 25 25 25 25 24 25 26 27 26<</td><td>16 21 22 23 24 25 27 28 29 30<</td><td>16 20 21 22 23 24 25 24 25 25 26 30 31 0</td></t<></td></t<>	10 20 21 22 23 24 25 27 15 0	10 20 21 22 23 24 35 25 27 28 24 0 <t< td=""><td>19 20 21 22 23 24 25 23 24 25 27 28 27 28 27 28 24 25 25 24 25 25 24 25 25 24 25 25 25 25 25 24 25 26 27 26<</td><td>16 21 22 23 24 25 27 28 29 30<</td><td>16 20 21 22 23 24 25 24 25 25 26 30 31 0</td></t<>	19 20 21 22 23 24 25 23 24 25 27 28 27 28 27 28 24 25 25 24 25 25 24 25 25 24 25 25 25 25 25 24 25 26 27 26<	16 21 22 23 24 25 27 28 29 30<	16 20 21 22 23 24 25 24 25 25 26 30 31 0			
20 21 23 24 20 21 22 23 24 21 22 23 24 24 23 0 0 0 0 0 24 22 23 24 23 24 25 0 0 0 0 0 0 26 0 0 0 0 0 0 0 26 0 <td>20 21 22 23 24 25 20 21 22 23 24 25 3 0 0 0 0 0 0 3 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 2 1 0<</td> <td>20 21 22 23 24 25 26 1 0</td> <td>20 21 22 32 24 25 25 24 25 25 24 25 25 24 25 25 24 25 25 24 25 25 24 25 25 24 25 <</td> <td>20 21 22 24 25 24 25 27 28 27 3 0 <</td> <td>20 21 22 23 24 25 27 28 27 28 27 28 27 28 27 28 27 28 27 28 37 28 37 28 37 28 37 28 37 28 37 28 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38<</td> <td>20 21 22 32 24 25 27 28 29 30 30 3 0 1 22 32 24 25 27 28 29 30 3</td> <td>$\left(1-64 \right) \ \mbox{are given in subsequent columns. } \left(1-64 \right) \ \mbox{are given in subsequent columns. } \left(20 \ 21 \ 22 \ 23 \ 24 \ 25 \ 27 \ 28 \ 29 \ 30 \ 31 \ 32 \ 32 \ 32 \ 32 \ 32 \ 32 \ 32$</td>	20 21 22 23 24 25 20 21 22 23 24 25 3 0 0 0 0 0 0 3 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 2 1 0<	20 21 22 23 24 25 26 1 0	20 21 22 32 24 25 25 24 25 25 24 25 25 24 25 25 24 25 25 24 25 25 24 25 25 24 25 <	20 21 22 24 25 24 25 27 28 27 3 0 <	20 21 22 23 24 25 27 28 27 28 27 28 27 28 27 28 27 28 27 28 37 28 37 28 37 28 37 28 37 28 37 28 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38 37 38<	20 21 22 32 24 25 27 28 29 30 30 3 0 1 22 32 24 25 27 28 29 30 3	$ \left(1-64 \right) \ \mbox{are given in subsequent columns. } \left(1-64 \right) \ \mbox{are given in subsequent columns. } \left(20 \ 21 \ 22 \ 23 \ 24 \ 25 \ 27 \ 28 \ 29 \ 30 \ 31 \ 32 \ 32 \ 32 \ 32 \ 32 \ 32 \ 32$			
are given in subset 21 22 23 24 0 0 0 0 0 0 <	31 cg (ver in subsequent 21 cg (ver in subsequent 0 0 <	3 are given in subsequent colla 21 22 23 24 25 24 25 24 25 24 25 24 25 21 25 24 25 21 25 24 25 25 24 26 1 0	31 cc given in subsequent columns. 21 cc given in subsequent columns. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	31 ze given in subsequent columns. 21 ze za 24 ze ze ze za 25 zr 28 za 0 2 2 za 24 ze ze za 27 ze za 27 ze za 0 2 2 za 2 z za 2 za za 2 z	Arregivern in subsequent columns. 21 22 23 24 25 25 27 28 29 30 0 2 0 <td>31 ze given in subsequent columns. 21 ze given in subsequent columns. 23 zi given in subsequent columns. 29 a) 30 a) 0 1 1 2 23 zi given in subsequent columns. 29 a) 30 a) 0 2 2 2 2 2 25 a) 29 a) 30 a) 0 1 1 2 2 1 20 a) 20 a) 20 a) 20 a) 0 1 2 2 2 2 2 20 a) 2</td> <td>31 merg iven in subsequent colutms. 31 22 23 24 25 25 27 28 30 31 0 1 0<!--</td--></td>	31 ze given in subsequent columns. 21 ze given in subsequent columns. 23 zi given in subsequent columns. 29 a) 30 a) 0 1 1 2 23 zi given in subsequent columns. 29 a) 30 a) 0 2 2 2 2 2 25 a) 29 a) 30 a) 0 1 1 2 2 1 20 a) 20 a) 20 a) 20 a) 0 1 2 2 2 2 2 20 a) 2	31 merg iven in subsequent colutms. 31 22 23 24 25 25 27 28 30 31 0 1 0 </td			
Bit Constraint Constrat Constraint Constraint	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	given in subsequent collubracion subsequent	given in subsequent columns. 22 23 24 25 26 27 1 2 2 2 2 2 2 2 3	given in subsequent columns. 22 23 24 25 25 27 28 <	given in subsequent columns. 22 23 24 25 55 27 28 24 28 24 28 24 28 27 28 24 28 24 28 24 28 24 28 24 28 27 28 24 28 27 28 24 28 27 28 24 28 24 26 26 20 <	given in subsequent columns. 22 23 24 25 27 28 29 30 3 2 2 2 2 2 2 2 3 3 4 3	given in subsequent columns. 22 23 24 25 30 31 2 2 2 31 2 2 30 31 2 2 3 2 2 30 31 2 2 30 31 2 2 30 31 2 2 30 31 2 2 30 31 2 2 31 2 31 31 3 31 2 31			
й 23 24 24 24 24 24 24 24 24 24 24	Tin Subscription of the second sec	Tin subsequent colu 1. in subsequent colu 2.3 24 25 25 . 2.4 25 25 . 2.4 25 25 . 2.4 25 25 . 2.4 25 25 . 2.6 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Ti in subsequent columns. 23 24 25 25 27 : 2 2 2 25 25 27 : 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 1 0 0 2 2 1 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 1 0 0 2 0 0 0 0	Ti fin Subsequent columns. 23 24 25 25 27 28 7 0	Tin subsequent columns. 23 24 26 27 28 3 2 2 2 2 2 2 3 2 2 2 2 2 2 3 3 2 2 2 2 2 2 3 3 2 2 2 2 2 2 3	Tin subsequent columns. 23 24 25 27 28 29 30 3 31 25 27 28 29 30 31 31 32 31 32 31 32 31 32 31<	Tin subsequent columns. 23 24 25 27 28 29 30 31 2 2 2 2 2 2 3 30 31 2 2 2 2 2 2 30 31 2 2 2 2 2 30 31 2 2 2 2 2 30 31 2 2 2 2 2 30 31 2 2 2 2 2 30 31 2 2 2 2 2 30 31 2 1 0 0 0 0 0 1 2 1 1 0 0 0 0 0 0 0 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 </td			
8 8 9 0 0 0 0 0 0 0 0 0 0 0 0 0		24 25 25 25 26 27 25 25 27 25 25 25 28 26 25 25 29 20 20 20 20 20 20 20 <td>Mibsequent columns. 24 25 26 27 0 0 0 0 0</td> <td>ibsequent columns. 24 35 26 27 38 35 0 0 0 0 0 <!--</td--><td>itbs:equent: columns. 24 25 27 28 29 3 0 <</td><td>Alberguent columns. 24 25 26 27 28 29 30 3<!--</td--><td>A bit of the formation of the form</td></td></td>	Mibsequent columns. 24 25 26 27 0 0 0 0 0	ibsequent columns. 24 35 26 27 38 35 0 0 0 0 0 </td <td>itbs:equent: columns. 24 25 27 28 29 3 0 <</td> <td>Alberguent columns. 24 25 26 27 28 29 30 3<!--</td--><td>A bit of the formation of the form</td></td>	itbs:equent: columns. 24 25 27 28 29 3 0 <	Alberguent columns. 24 25 26 27 28 29 30 3 </td <td>A bit of the formation of the form</td>	A bit of the formation of the form			
	,	Auent Colu 25 25 26 2 27 2 28 2 29 2 20 2 21 2 22 2 23 2 24 2 25 2 26 2 27 2 28 2 29 2 20 2 21 2 22 2 23 2 24 2 25 2 26 2 27 2 28 2 29 2 20 2 20 2 21 2 22 2 23 2 24 2 25 2 26 2 27 2 <tr< td=""><td>quent columns. 25 25 25 25 27 0</td><td>quent columns. 25 25 27 28 27 20 2 29 29 29 20 2 29 27 28 21 20 21 28 27 20 2 29 29 29 21 29 29 29 29 22 23 29 27 28 23 29 29 29 29 29 29 29 29 29 20 20 20 29 29 21 29 20 29 29 20 29 29 29 29 21 29 29 29 29 22 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29</td><td>quent columns. 25 26 27 28 27 28 27 28 27 28 27 28 27 28 27 28 29 3 <!--</td--><td>quent columns. 3 3 3 3 4 2 2 2 2 2 3 3 3 2 2 2 2 2 2 3 3 3 2 1 0 0 0 0 0 0 3</td><td>quent columns. 25 27 28 30 31 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0</td></td></tr<>	quent columns. 25 25 25 25 27 0	quent columns. 25 25 27 28 27 20 2 29 29 29 20 2 29 27 28 21 20 21 28 27 20 2 29 29 29 21 29 29 29 29 22 23 29 27 28 23 29 29 29 29 29 29 29 29 29 20 20 20 29 29 21 29 20 29 29 20 29 29 29 29 21 29 29 29 29 22 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29	quent columns. 25 26 27 28 27 28 27 28 27 28 27 28 27 28 27 28 29 3 </td <td>quent columns. 3 3 3 3 4 2 2 2 2 2 3 3 3 2 2 2 2 2 2 3 3 3 2 1 0 0 0 0 0 0 3</td> <td>quent columns. 25 27 28 30 31 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0</td>	quent columns. 3 3 3 3 4 2 2 2 2 2 3 3 3 2 2 2 2 2 2 3 3 3 2 1 0 0 0 0 0 0 3	quent columns. 25 27 28 30 31 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0			

					-		lis		ŝ	teris																															
	30	0	0	N.	0 0	20	0	0	00	0	0	0 0	0 0	0	0	~ ~	- 0	CN	N	0.0	2 0) (V	0	0	2	0 (00	0	00	b c	2	0	0 0	0	0	0 0	00	CV	0 0	00	0
	g 0	0	0	0	0,	э-	• •	0	00	0	2	0 0	00	0	0	0 0	0	CN.	Ċ	~ ~	э с	0	0	0	с 1	0 0	00	0	ο,	- c	2	0	0 0	0	0	00	00	0	00	00	0
1	g o	0	~	N	0 0		• •	0	о ,	- 0	0	- 0	0 0	0	0	00 O	40	CN	0	N C	N 17	- 0	0	0	2	0 0	0 0	0	0 0	0 0	0	CN.	0 0	0	0	00	00	N	- 0	00	0
	e 0	0	÷	N	0 0	9 C	0	0	00	0	N	0 0	o -	0	0	04 C	0	2	0	~ ~	N C	> e	0	0	en 1	0 0	0 0	0	00	>	2 (1)	N	0 c	0	0	00	00	2	00	00	0
	Ъ О	0	0	CI	~	00	0	0	00	N C	0	0 0	00	0	0	(1)	0	•••	0	2	N C) C	0	0	2	0	0 0	0	0 0	o c	20	N	00	0	0	0 0	00	0	00	00	00
	BG O	0	2	N	0	0 0	10	0	00	00	0	00	0 0	00	0	00	10	~	2	N C	m c	-	0	0	c)	0 0	0 0	0	0	o c	00	2	00	0	0	00	00	-	00	00	0
	BE O	0	0	N	0	00	00	0	00	0	0	0	0 -	0	0	0	00	2	0	~		o c	0	0	2	0 0	0 0	0	0	0 0	0	N	00	0	0	00	00	-	00	00	0
	4 o	0	0	0	0	0 0	00	0	0 0	00		0,	00	00	0	(1)	0 0	2	0	ю ·	- 0) C	0	0	N	0	o c	0	0	0 0	- c	•	0 0	0	0	00	- 0	0	00	00	0 0
	4 o	0	0	0	0	0 0	00	0	00	00		0	0 0	0	0	~ ~	0 0	2	0	(1)	0 0	> c	0	0	ŝ	0	0 0	0	0	0 0	00	•	00	00	0	0,	- 0	2	00	00	0
	4 o	0	0	0	0	0 0	0	0	00	00	, o	0	00	**	0	00	0 0	~	0	2	0 0	> <	0	0	0	0	0 0	0	0	0 0	- c	N	0 +	- 0	0	0 0	N N	N	00	00	
	4 o	0	0	N	CV ·	0 0	00	2	+ 0	C	-		00	0	0	00	V C	~	2	2	(1)	- c	• 0	2	N	0	00	00	0	0 0	00	٥	00	0	0	00	00	N	00	00	00
	4 o	0	N	N	0	00	00	0	00	00	. –	0	00	00	0	010		0	0	0	0 0	> c	0	0	N	0	о -	• •	-	- <	00	N	0 -	7	0	0 0	2 (1	N	00	00	0 0
	₽ 29 C	0	0	0	0	00	00	0	0 0	C	. 0	0	00	o o	0	00) C	0	0	0	0 0	> c	0	0	2	0	0 0	0	2	00	0	٣	0 0	00	0	00	0 0	0	00	00	0
	å c	0	N	-	0	0 0	00	0	00	0 0	0	0	0 0	00	0	00	NC	0	0	0	0 0	> 0	0	• •	0	-	0 C	00	~	0 0	2 01	N	00	0	N	0 0	2 0	N	~ ~	00	90
	4	0	-	0	0	00	00	0	0	00	• 0	0	0 0	0	¢	0 0) c	0	0	0	۰ ،	- 0	0	-	CN	0	00	00	0	00	n c	N	~ ~	00	0	0 0	NO	N	2 10	00	0
	8 4 c	0	0	0	0	00	0	-	0	, c	0	0	00	00	0	0 0		0	0	0	0 (NC	0		2	0	0 0	0	0	0 0	2 01	N	00	00	0	00	- c	-	NC	00	00
	6 4 C	0	0	0	0	00	0 0	0	00		0	0	00	00	0	0 0	DC	0	0	0	0 0	NC	• =	0	2	0	0 0	0	0	0 0	2 01	0	00	00	0	00	0 10	-	NC	00	00
	<u>8</u> c	0	0	0	0	0 0	, ,	0	0		0 0	0	00	00	0	0	0 0	0		0	00	NC	> c	0	~	0	0 0	00	0	0 0		-	00	00	0	0	o -	2	N C	00	00
	5	0	0	0	0	0 0) c	0	0		0	0	0 0	50	0	0	0 0	, -	0	0	0 0	N C	• c	0 0	60	0	0 0	00	0	0 0	~ ~	0	00	00	» O	0	0 0	0	N C	000	00
	30	0	00	0	0	00	- -	·	0	0 0	00	0	00		0	0	0 0	0	0	0	0 0	N C	o c	0	3	0	0 0	00	0	0 (5	0	00	00) O	0	0 0	~	0 0	00	• •
	23	o c	c	0	0	••	- 0	> •-	0	0 0	0	0	0 0	- c	0	0	0 c	0 0	0	0	0 0	N C	o c	0	3	0	00	00	0	0	s a	-	00	- a	0	0	NO	2	- c	000	00
	30) c		0	0	ο,		00	0	0 0	00	0	00	- c	0	0	0 0	0	0	0	0	N C	o c	00	0	0	00	0 0	0	0) v	(1)	00	- c	» o	0	~ ~	,	00		
	55.4	- c	C	- 0	0	0 0	0 ¢	00	0	0 0	>0	0	0 0	> c	0	0	0 0	0	0	0	0	0 0	> c	0	2	0	0 0	00	0	0 1	o c	N	00		» o	0	N C	ึง	- c		. 0
	99	o c	0 0	4 0	0	0	NC	00	0	0 0	0	0	00	> c	0	-	0 0	o 07	0	0	0	0 0	- -	0		0	00	00	0	0	ə c	0	00	- c	0	0	0 0	0	00	000	00
	6	> c	0 0	9	-	0	0 ¢	00	0	0 0	00	0	0	ə c	0	0	0 0) C	0	0	0	0 0	- c	0	2	0	00	00	0	0	ə c	2	0	→ + C	- 0	0	2	101	N C	000	00
	80 0) c	0 0	o ev	0	0 (0 0		0	00	2 (V	0	0) c	0	0	0 0) C	0	0	0	0 0	> c	b c	0	÷	00	0 0	0	0	o c	2	0 0	5 0	0	0	0 C	0 (1)	~ ~	000	00
	62	• c	, c	0	N	0 0	0 0) C		0 0	2 01	0	0	ə c	0	0	0 0	° C	2	0	2	0 0	> c	2 0	0	0	00	0 0	0	0	0 0	0	00	ə c	>0	0	0 0	2	- c	000	00
	8 °	4 0	-	0	N	с о		> c	ŝ	0 0	აო	0	~	ə +	0	N	~ ~	4 0		~	2	0 0	N -	- 0	10	0	00	0 0	0	0	0 0	0	0 (, c	>0	0	0 0		N C	000	00
	61		2 0	1 (1	0	0	0 0		0	00	20	0	0	0 0	0	0	- 0	2 0	0	0	0	0 (- c	, c	2	0	00	> c	0	0	0 c	2	0 (> c	>0	0	0 0	1 (1	00	00	00
	62	> c) (0	2	0	~ <	5 0	ı -	0 0	> 0	0	0	о ,	- 0	-	- 0	NO	, 	0	0	0 1	0 0	, ,	o 0	0	00) c	0	0	0 0	1 (1	0		- 0	0	0 0	0 0	00	> ⊷ (00
	80) c		40	¢	0	~ <	- c	0	00	- o	0	0	0 0	0	2	0 0	> c	, 0	0	0	0	0 0		2 (1	0	0,		0	0	0 0	0	0	0 0	>0	0	0 0	. 0	0 0	00	00
	64	- 0	0.0	00	N	0	0 0		• •	0 0	<u>ہ</u> د	. 0	0	0 0	» a	0	0 0) c	, ca	0	0	0	0 0	5 c	2	0	0 0	. .	00	0	00	1 (1	0	o c		0	0 0	0	00	00	00

Appendix 3 cont.

Equisetum palustre Equisetum palustre Equisetum palustre Equisetum arvensio Equisetum syntaxicum Palentum arvensio Erevisetum syntaxicum Phepopteris contrusis Dryopteris contrusis Dryopteris contrustra Dryopteris contrustra Dryopteris expansa Gummocarplum dryopteri Auropensis syntestis Salix paratoria Salix paratoria Salix caprea Salix caprea Salix caprea Salix caprea Salix caprea Salix caprea Auropensis termula Benula pendura Auropensi arvensi Auropensi arvensi Benula arvensis Aurom actoresia Auropensi forsare Seletina areatoris Seletina arvensis Seletina arvensis Seletina fallonaru

Appendix 3 cont.	Aquitegia vuigaris Acontium septentrionale	Anemone nerrorosa Calitha palustris	Ranunculus acris	Hanunculus repens Ranunculus sceleratus	Ranuncutus reptans	Ranunculus flammula	Fumaria officinalis	Erysimum cheiranthoides	Cardamine amara	Rorippe palustris	Barbarea vuigans Cardamine nestanele	Causaline prateriois Cansella bursa-pastoris	Thiaspi arvense	Sedum telephium	Sedum spurium	Uniysuspienum anemionum Ditos solioti un	Ribes aproaunt Ribes rubrim	Ribes nignum	Anneus diaicus	Pubus saxatilis	Filipendula ulmaria	Rubus ideaus	Rubus spp.	Rubus villosa	Rosa subcollina	Agrimonia eupatoria	Gaum when m	Potentilla erecta	Potentilla anserina	Potentilla palustris	Fragaria vesca Alchamile monticula	Alchemilla glabra	Alchemilia subcrenata	Alchemilla gracilis	Alchemilla hilcaults	Acremite wichurae Sortwis auctionaria	Sorbus intermedia	Cotoneaster lucidus	Pronus avium	Prunus cerasus Amelanchier soirata	Prunus padus	Lupinus polyphyllus Vicio amono	גורום רומררם
	-00	- CI	2) (N	. 0	0	0	0	0	0 0		0	0	0 0				0	0		N	0	0	0	0.0	NC	2 01	2	0	N C		0	0	0 0	- c	- 0	0	0	0 0		00	4
	N 0 0	00	2	2	10	0	0	0	0	0		- c	• ••	0	0	- 0				0	0	N	0	0	0	0 0		> 0	0	0	0 0	. 0	0	0	0 0		0	0		00	00	00	N
	n 00	2 2	2			0	0	0	0	0 .	0 0		00	0	0	- 0) C		, 0	. 0	~	CN	0	0	0	0 0	- 0	2 01	0	0	00		0	0	0 0	2 0	. 0	0	0.	0 0	00	00	>
	400	00	2	~ ~	, c	0	0	0	0	0	0 0	- c	00	0	0			, c		0		-	0	0	0	0 0		5 00	0	0	00	0	0	0	0 0) c		0		0 0	00	0 -	
	600	- 0	5	~ <	0 0	00	0	0	0	0	0 0	NC	. 0	0	0	े २ व				0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0	0	0	0	0.0	2 0		0	2	0.0	0		0	0,	- ·	- 0	0	0		20	00	•
	9 00	0 0	2	2 0		, 0	0		0	0	0 0		, o	0	0							.,	0	0	•	0	 	20	0	2	N	. 0		0	_ ·				0	00	.0	0	•
	100	00	N	~ ~	> c		0	0	0	0	0 0			0	0	0						~	0	0	0	0		2 0	0	0	0		0	-				0	0		.0	00	4
			2	~ ~				0	ç	0	0			0	0							0	0	0	0	0	ہ د م		0	0		0		0	00) C	-	0	0	00	00	00	J
	# 00	-0	0	~ ~					0	0	_ ·	- C		- -	0							0	0	0	0	0	50			0	00	00	0	0	0 0		• a	0	•	00	00	00	J
	200		0			.0	0	0	0	0	00			0	•					• •	2	0	0	0	0	0	00	~ ~	0	0	- <	00		0	0 0	>	0	0	•	0 0	00	00	2
		<u> </u>	0	00			0	0	0	0	0 0		0	0	0	0	⇒ c	• c		• o	0.00	CV.	0	0	2	0	- 9		0	e	~ ~	00	0	0	0 0	> c	• a	0	0	0 0	00	00	J
			CN CN	•			0	0	0	0	o (N C	00	N	0	0 0	D C	0 0	00	• o	• •	CV	0	2	0	0	0 0	2 0	0	0	00	00	0	0	0 0	⇒ c	4 0	0	0	0 0	00	0,	.
	400	- 0	~	~ ~	> c		0	0	0	0	00	30	00	0	0	0 0	5 C		• C	• C	2	~	0	0	0	0	0 0	20	0	0	00	10	0	0	0 0	0 0	0	0	0	0 0	0 0	2	N
	₹00	00	-	~ ~	00	0	0	0	0	0	0,	- 0		0	0	0	э с		00	, c	, w	~	0	0	0	0	0 0	00	0	0	00	» a	0	0	0 (00	> 0	0	0	0 0	00	00	U
	e 00	00	0				, o	0	0	0	00			0	0	0	0 0		o c		0	0	0	0	0	0	0 0		0	0	00	0	0	0	0 0	2 0	0	0	0	0 0	00	00	2
	₽00 200	- 0	N	~ ~			0	0	0	0	0 0	0 0	9 0	0	0	0	0 0	00		,	2	0	0	0	0	0	0 0		0	0	00		• •	0	0 (> c	00	0	0	0 0	00	~ ~	J
	 	00	N	~ ~			0	0	0	0	0 0	- C	- 0	0	0	0	0 0	00	o c		0	0	0	0	0	0	0 0		0	0	00	0 0	0	0	0	0 0	00	0	0	0 0	00	00	V
	<u>6</u> 00	00	0	en c			o c	, 0	0	0	0 (00	00	0	0	0	00) C		• =	• o	0	0	0	0	0	0 (> c	0	0	00	> a	0	•	0 (00		0	0	0 0	00	00	N
	800	00	0	01 0) e	o c		0	0	0	0	0 0	o c	0	0	0) c		• -	- 0		2	0	0	0	0 0	2 6	10	0	0 0	• •	0	0	0	0 0	v c	0	0	00	00	00	N
	200	00	CN .	0 0) C			0	0	0	0 0	0 0		0	0	0	0 0		o c		0	0	0	0	0	0	0 0	> c	2	0	00	0 0	0	0	0 (0 0		0	o	00	0 0	00	v
	200	00	0	00	0.0	5 0	• c	0	0	0	0	0 0		0	0	0	0 0	0 0			> c	2	0	0	0	0	0 (5 0	0	0	0 0	0 0	• •	0	0	0 (N C	0	0	0 0	• •	0	2
	800	00	N	N C	0 0	> <	o c	0	0	0	0 (0 0	- c	0	0	0	0 0	> 0	b c	> c) C	0	0	0	0	0	•	0 0	0	0	0	o c	0 01	0	0	0 0	- c	0	0	0 0	00	0	N
	400	00	0	00	0 0	o c) C	, 0	0	0	0 (0 0	o c	0	0	0	0 0	>	, c	, c	0 0	2	0	0	0	0	0 (9 C	10	0	0		0	• •	•	0 0	NC	0	0	0 0	00	0 0	>
	52 0 0	00	0	0	0 0	0 0	4 0	0	0	0	0 (0 0	> c	0	0	0	0 0	>		, c		2	0	0	0	0	0 (, c	10	0	0	- -	0 0	0	0	0 0	> c	0	0	0 0	00	0	-
	56 0 0	- 0	0	2	0 0	0 0	o c	0	0	0	0	0 0	0 0	0	0	0	0 0	2 0	> c		o e	0	0	0	0	0	0	0 0	0	0	0		0	Ð	0	0 0	o c	0	0	0 0	00	0	-
	27 0 0	00	0	2	5 0	> 0	0 0	0	0	0	0	0 0	0 0	0	0	0	0 0) (> <) c) C	0	0	0	0	0	0	0 0	0	0	0	> c	0	0	0	0 0	> c	0	0	0 0	0 0	0	
	28	00	0	N		>		0	0	0	0	0 0		0	0	0	0 0		, c		o c	• •	0	0	0	0	0	0 0	0	0	0	o c	0	0	0	0 0	- c	- 0	0		- 0	0	v
	800	00	0	20	2 0			0	0	0	0	0 0		0	0	0	0 0	> 0	• •	o c	o c	2	0	0	0	0	0	0 0	0 0	2	0 1		00	0	0	0 0		0	0	0 0	0 0	0	N
	800	00	N	2	0 0			00	6	0	0	0 0	0 0	00	0	0	0 0	> 0	>	> c	•	0	0	0	0	0	0	• •	0	0	0	> c	0	0	0	0	> c	0	0	0 0	0 0	0) 573
	800	00	N	с с	0 0	0 0		0	0	0	0	0 0	>	00	0	0	0 0	2 0	• •	- -	- c	0	0	0	0	0	0	0 0	10	0	0	> <	0	0	0	0 0	o c	0 0	0	0 0	0 0	0	N
	N O O	00	2	2	0 0	> 0	>	0	0	0	0	0 0	0 0	0	0	0	0 0	>	> <	> <	0 0	10	0	0	0	0	0	0 0	00	0	0	NC	0	0	ð	0 0	> c	0 0	0	0 0	00	0	N

	800	00	00	N O	0	0 0	0	0	0 0	0	0	0 0	0 0	0	0 0) c		0	N	N	0 0	o c	0	0	0	0	0 1	0 0	0	0	0	0 0	00	00	0	0 0	0	0.	- 0	N
	800	00	00	0	0	0 0	0	0	0 0	N N	0	0 0	o c	0	0	0 0	00	0	3	m	0 0) C	0	0	0	0	0	o c	0	0	0	00	b c	0 0	0	0 0	0	0 0	00	N
	800	00	00	4 0	0	o -	0	0	0	-	0	0 (0	0	> c	0	0	0	N	0 0	- c	0	0	ŝ	0	0 0	o c	, (0	0	00	0 0	0	0	0 0	0	0 +	- 0	N
	19 O O	00	~ ~	• 0	0	o c	• •	0	0 0	0	0	0 () C	0	0	- c	0	0	ო	0	0 0	5 0	0	0	0	0	0 0	5 0	0	0	0	++ C	0 0	0	0	0 0	0	0 0	0 0	N
	800	- 0	00	0	1 1 944 - 1	- 0	0	0	0 0	0	0	0 0	o c	0	0,	- 0	0	0	0	2	0 0	o c	0	0	0	-	0 (NC	0	0	0	0 0) c	o N	0	0 0	0	0 0	00	0
	<u>6</u> 6000	00	~ ~	0 1	0	ə c	0	0	0 0	0	0	0 0	0 0	0	0 () c) a	0	N	0	0 0	b c	0	0	0	0	0 0	o c	0	0	0	0 0		2	0	0 0	0	0 0	00	N
	8 <u>,</u> 00	00	~ ~	0 0	0	o c	1	0	0 0	0	2	D 0	0 0	0	0 0	o c	0	0	0	0	0 0	, c	0	0	0	0	0) c	0	0	0	0 0) c	0	0	. .	0	0 0	00	0
	C 00	00	~ ~	40	0	o c	0	0	0 0	2	0	> <	0 0	0	0 0	> c	0	0	2	0	0 0	0 0	0	0	0	0	- () c	0	0	0	00	0	0	0 0	, ,	0	0 0	2	N
	9 <u>6</u> 00	00	0 0	0	0	o c	o o	0	0 0	0	0	.	0 0	0	0 0	> c	, 0	0	N	N	0 0	- c	0	0	0	0	0 (> c	0	0	0	00		0	0 (0	0 0	00	~
	500 1900	00	- 0	c	0	o c	0	0	0 0	0	0	5 0	0 0	0	0 0	> c	0	0	2	0	0 0	, c	0	0	0	0	0 (00	0	0	0	00		0	0	5 c	0	0 0	00	N
	5 4 0 0	00	0 0	00	0) c	0	0 (0 0	0	0	> <	0 0	0	0 0	> c	0	0	3	0	0 0	o c	0	0	0	0	0 (>	0	0	0	• •		0	0	- c	0	0 0	00	0
	800	• •	0 "	00	0	> c	0	0 0	0 0	0	0	> <	00	0	0 0	5 c	0	0	N	2	0 0	- c	0	0	0	0	0 0	> C	0	0	0	00	, c	0	0 0		0	0 0	0	ŝ
	200	00	0 °	0	0 (-	0	0 0	0 0	0	0 0	- -	0	0	0 0		0	0	N	0	0 0	- -	•	0	0	0	0 0	0 0	0	0	0	0 0	, c	0	0 0	- c	0	0 0	0	N
	5 - 0	00	0 0	0	0 0	>	0	0 (0 0	0	0 (- -	00	0	0 0		0	0	N	0	0 0	- -	0	0	0	0	0 0	- o	0	0	0	00	, c	0	0 0		0	0 0	, o	2
	800	00	+ 0	• ••	0 0	5 c	0	0	0 0	0	0 0	5 0	0	0	0 0	> c	0	0	N	0	0 0	0 0	0	0	2	0	0 0	, c	0	0	0	0 0	> c	0	0 0		0	0 0	0	~
	6 00	0 0	0 0	0	0 0	> o	0	0 0	0 0	0	0 0	- -	. 0	0	0 0	o c	0	0	N	0	0 0	0 0	0	0	ŝ	•	0 0	0 0	0	0	0	0 0	• c	0	0 0	> 0	0		0	0
	\$ 00	00	2 0	10	00	0 0	0	0 0	0 0	0	0 0	- -	0 0	0	0 0	, c	0	0	2	0	0 0	0	0	0	0	0	0 0	. 0	-	0	0	0 0	0	0	0 0	5 0	0	0 0	0	N
	400	00	2	0	0 0	0 0	• •	0 0	00	0	0 0	0 0	00	0	0 0	> c	0	0	2	-	0 0	, o	0	0	ŝ	0	0 0		0	0	0	0 0		• -	0 0	0 0	0	o c	0	-
	8 0 0	00	20	2	0 0	0 0	0	00	00	0	0 0	>	00	0	0 0	, c	0	0	0	-	0 0	0 0	0	-	-	с I	0 0	0 0	-	0	•	• •		• - •	0 0	0 0	0	0 c	00	-
	\$ 0 0	00	0 0	0	2	0 0	0	00	2 01	0	0 0	, ,	00	0	0 0	- c	0	0	0	0	0 0	> a	0	0	N	0	- 4	0 0	0	0	•	0 0		0	0 0	0 0	0	0 0	0	0
	400	0 -	2 0	0	0 (0 0	-	0 0	0 0	0	00	o c	00	0	0 0) C	0	0	N	2	0 0	0	0	0	0	0	0 0	0 0	0	0	0	0 0) a	0	0 0	. 0	0	0 c	0	N
	6 00	0 0	0 0	0	0 0	0 0	0	00	- 0	0	00) (• •	0	0 0) C	0	0	ო	2	0 0	o ⊷	0	0	0	0) (v 0	0	0	0	0 0) C	- 01	0 0	> +	0	0 c	0	N
	400	00	0 0	10	0 0	- c	0	0 0	5 N	0	00	o c	C	0	0 0) C	• -	•	•	2	0 0	0 0	0	0	0	0	ə (0 0	0	0	0	0 0	0 0	, .	0 0	0 0	0	0 0	0	¢1
	400	00	0 0	0	0 0	0 0	0	00	- 0	0	0 0	o c	00	0	0 0	> c	0	0	2	2	0 0	00	0	0	-	0	0 0		0	0	2	0 0	0	•	0	0 0	0	0 0	0	2
	000	0 -	0 0	0	0 0	00	• •	00	- c	0	0 0	o c	00	0	0 0) C	0	¢	0	2	0 0	00	0	0	0	0	o 0	0 0	0	0	0	0+	. 0	0	0 0	2 0	0	0 0	0	-
	ရွာဝဝ	00	0 0	. 01	00	50	0	00	00	0	0	0 0	00	0			0	0	0	2	0 0	0	0	0	0	0	0 0	0 0	0	0	0	0 0	• c	• - •	0 0	2 0	0	0 0	00	N
	8 00	00	N 17	0	00	00	0	0 0	0 0	0	0 (- -	0	0	0 0	- c	0	0	ო	2	0 0	0 0	0	0	0	0	0 0	o o	0	N	0	0 0) C	0	0 0	5 9	0	0 0	0	N
	37 0	0 0	2	-	00	00	0	0 0	0 0	N	0 (- c	0	0	0 0	• c	0	0	CN	0	0 0) o	0	N	0	2	o (N O	0	0	0	0 0) (J	0 0	5 0	0	0 0	0	2
	900 O		~ ~	0	00	00	-	- 0	00	0	0 0	> c	0	0	0 0	0 0	0	0	2	(N)	0 0	.	0	0	-	0	> <	00	0	0	0	0 0		• - •	0 0	5 0	0	0 0	0	2
	8 0 ∞	- N	~ ~	0	0 0	00	0	00	- 0	0	0 0	- c	0	0	- c	0 0	0	0	N	~	0 0	0 0	0	0	0	0 1	. .	0 0	0	+-	0	0 0) (J	0 0	- c	0	0 0	40	0
	800	0 0	00	0	0 0	0 0	0	۰ ۰	- 0	0	00	,	0	0	0 0	00	0	0	3	2	0 0	0 0	0	0	0	0	ə (00	0	0	0	0 0	00	0	0 0	, c	0	0 0	0	ŝ
		o -	~ ~	0	00	00	0	0 0	2 01	0	0 0	- c	0	0	0 0	• a	0	0	2	2	0 0	2 (1)	N	0	2	0) (00	0	0	0	0 0) C	. 0	0 0	5 0	0	00	10	N
<u>ل</u>							ş							nun																										
con	ionale	55	2	ratus	SL	Pin	thoide			sis	storis			tternifo					~				ġ.						Ek.		ata	12	9	,	10	2		5	S	
idix 3	Iganis	ernoro	acris	scele	reptai	cinalis	heiran	amara	lgaris	oraten	rsa-pa	thint a	ium,	ium a	<u>۾</u>	: r	cus	Sills	Ilmani	2		lina	upator		um	ecta	Serina	canon	Nontioc	abra	ubcret	in a citis	ichura	paria	media	n cucian	SINS	spica	phytiu	
ppen	un se um se	one ni	nculus nculus	acuitus	Toulus	ria offic	O WILL	mine a	rea vu	d euim	ind bu	Talar	unds t	ospier.	spical	niann	us dio	Saxa!	idula u	ideau	spp.	subcol	nia et	rivale	urban	illa en	ne elli	ia ves	nilla m	nilla gi	nila su	nila gu	W Blit	aucu,	s inten	ausier	s cerat	nchier .	s poly	racca
A	Aquile Aconî	Anem Caltha	Ranur	Ranur	Ranur	Fumar	Erysin	Carda	Barba	Carda	Capse	Sading	Sedum	Chrys	Hibes	Ribes	Anunci	Rubus	Filiper.	Rubus	Auburo Buburo	Rosa -	Agrime	Geum	Geum	Potem	Poton	Fragal	Alchen	Alcher.	Alcher	Alchen	Alcher	Sorbus	Sorbuc	Prunus	Prunus	Amela	Lupinu	Vicia c

89
<u>Моссинсскосссссссссссссссскоеисссссссссссссссс</u>
°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
8 0000 <i>u</i> 00000000000000000000000000000000
8,000000000000000000000000000000000000

°,000000000000000000000000000000000000
8000001-0000000000000000000000000000000
% 000000000000000000000000000000000000
°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°
800000000000000000000000000000000000000
N 0000-00000000000000000000000000000000
00000000000000000000000000000000000000
••••••••••••••••••••••••••••••••••••••
70000000000000000000000000000000000000
*•••••••••••••••••••••••••••••••••••••
йо иссессососсессосисесс-соссессссоиссессоссощеесс
2000000000000000000000000000000000000
••••••••••••••••••••••••••••••••••••••
00000000000000000000000000000000000000
××××××××××××××××××××××××××××××××××××××
-0000000000000000000000000000000000000
0-m00000000000000000000000000000000000
*0-00-000000000000000000000000000000000
#0000000000000000000000000000000000000
•••••••••••••••••••••••••••••••••••••••
-00000000000000000000000000000000000000
a ensis ensis ensis ensis ensis ensis ensis ensis ensis ensis ensis ensis ensis ensis interna misene pablicum p

Appendix 3 cont.

Vicia sylvatica Vicia sylvatica Vicia septium Trifolium repensis Trifolium repensis Trifolium medium Trifolium medium Trifolium medium Trifolium medium Trifolium media Trifolium media Carativa vicia media Arthyläs vulteraria Arthyläs vulteraria Arthyläs vulteraria Carativa vulgatis Carativa vulgatis Carativa vulgatis Carativa vulgatis Carativa vulgatis Carativa vulgatis Felpilohum artisottii Hipparisti vulgatis Lythum avulgatis Lythum avulgatis Hippolohum artisottii Hippolohuma artisottii Hippolohum artisottii Hippolohum a

Appendix 3 cont.	 Providential and providential and provide providential provide and and and and and and and and and and	Lysimachia thyrsifiora Trientalis europaaa Menyanthes trifoliata
	жсисивсииссоссессессоссосососососососососососо	000
	¥0000-00000000000000000000000000000000	00 0
	жоосиисоиосососососососососииссиссиосососо	000
	°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	000
	× • • • • • • • • • • • • • • • • • • •	0 0 0
	80000000000000000000000000000000000000	000
	₩ ° + ° N ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	000
	6 <i>000000000000000000000000000000000000</i>	000
	£°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	000
	4 00000-0000000000000000000000000000000	000
		000
	£0000000000000000000000000000000000000	000
	#0000000000000000000000000000000000000	000
	\$0000000000000000000000000000000000000	000
	£000-000000000000000000000000000000000	~ ~ ~ ~
	\$0000000000000000000000000000000000000	000
	80000000000000000000000000000000000000	000
	8000000-000-00000000000000000-0000-000	000
	"°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	000
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	000
	80000000000000000000000000000000000000	000
	*	000
	80000000000000000000000000000000000000	000
	80000000000000000000000000000000000000	000
	°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	000
	# N N C C C C C C C C C C C C C C	000
		000
	00000000000000000000000000000000000000	000
	6-0000-0+000000000000000000000000000000	000
	800-0000000000000000000000000000000000	000
		000
	2000-000000000000000000000000000000000	000
	An and a second s	

Antisuture 0 1 2 <th2< th=""><th>Appendix 3 cont. Calium boreale</th><th>33</th><th>80</th><th>SS O</th><th>98 0</th><th>37</th><th>88 0</th><th>9 G</th><th>6 0</th><th>F 0</th><th>4 0</th><th>5 ci</th><th>40</th><th>5 C</th><th>47 49 0</th><th>4 -</th><th>8 C</th><th>۰۵- م</th><th>50</th><th>- 0</th><th>80</th><th>2 C</th><th>13 C</th><th>99</th><th>25</th><th>82 0</th><th>29</th><th>- <u>3</u> C</th><th>19</th><th>62</th><th>30</th><th></th><th>- Gu</th></th2<>	Appendix 3 cont. Calium boreale	33	80	SS O	98 0	37	88 0	9 G	6 0	F 0	4 0	5 ci	4 0	5 C	47 49 0	4 -	8 C	۰۵- م	50	- 0	80	2 C	13 C	99	25	82 0	29	- <u>3</u> C	19	62	30		- Gu
Manual manua manual manua manual manual manual manual manual manual manual ma	Galium uliginosum	00	0 0	0 0		00	0	0	0	0	0	0	0	0	0								201	0	1 01	00	0	00	00	00		5 63	
Functionality Total and second s	Galium pausue	5 0	0 0	NC		NC	NC	0 0	0 0	0 0	0,	m (N C	ი ი	c		~ ~	0.0	0	0	сц -	0	0	0	N 1	0	CN I	0	0	2		0	0
Controlational and a control of a cont	Fraxinus excelsior	0	0	0	0	0	0	10	0	> 0	20	00	0	, c								⇒ c	N +		NC	0 0	> c	2 0	2 0	، د			
Monome Image Image <t< td=""><th>Convolvolus arvensis</th><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td></td><td>-</td><td>0</td><td></td><td></td><td></td><td>. 0</td><td>10</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>00</td><td>- 0</td><td></td><td>- 0</td><td>- 0</td></t<>	Convolvolus arvensis	0	0	0	0	0	0	0	0	0	0	0	0	0		-	0				. 0	10	0	0	0	0	0	0	00	- 0		- 0	- 0
Machanes 1<	Myosous laxa	0	0	-	0	0	0	0	0	0	ŝ	0	0	0	N	-	- -	~	0	° •	°	0	0	0	0	0	0	0	0	N		0	0
Constructions 1 <	Myosofis scorpioldes	0	0,	0 0	0 (0 1	0	0	0	0	0	0	0	0		0	- -	~	0	0	0	0	0	0	0	0	0	0	0	0		0	0
Control Control <t< th=""><th>Myosolis arvensis</th><th>0 0</th><th>- (</th><th>0 0</th><th></th><th>0 (</th><th>0 0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>ରା</th><th>0</th><th>0</th><th>-</th><th>-</th><th></th><th>-</th><th>0 0</th><th>~</th><th>-</th><th>0</th><th>0</th><th>2</th><th>-</th><th>0</th><th>0</th><th>0</th><th>3</th><th></th><th>-</th><th>-</th></t<>	Myosolis arvensis	0 0	- (0 0		0 (0 0	0	0	0	0	0	ର ା	0	0	-	-		-	0 0	~	-	0	0	2	-	0	0	0	3		-	-
Merican synthetics 2 <th2< th=""> 2 2</th2<>	Colonnic reactors) (0 0	0 0	0 0	0 0	0	0 0	0	0	0	0	ç,	0	•	~	0	~	~	0	°	0	0	0	0	0	0	0	0	0		0	0
Current internation 2	Galachele totmbil		0 0) (0 0	0 0	0 0	ο,	0	0 0	0 0	0 1	, - (0,	0	<u> </u>		~ ~	0 ·	0 0	0	0	0	0	0	0	0	0	0	0		0	0
Support Support <t< th=""><th>Galancels hitina</th><th>N C</th><th>N C</th><th>N C</th><th>NG</th><th>5 0</th><th>N C</th><th>- 0</th><th>N</th><th></th><th>N</th><th>N</th><th></th><th> (</th><th></th><th></th><th>- ·</th><th></th><th></th><th>Q .</th><th></th><th>2</th><th>2</th><th>2</th><th>N</th><th>0</th><th>0</th><th>-</th><th>N</th><th>m</th><th></th><th>N</th><th>~</th></t<>	Galancels hitina	N C	N C	N C	NG	5 0	N C	- 0	N		N	N		(- ·			Q .		2	2	2	N	0	0	-	N	m		N	~
Structure Structure <t< th=""><th>Stachvs balustris</th><th>40</th><th>v c</th><th>4 C</th><th>5 c</th><th></th><th>- c</th><th>vc</th><th>v c</th><th>N C</th><th></th><th>. .</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>- 0</th><th></th><th>0 0</th><th>N 0</th><th>0 (</th><th>0</th><th>0 0</th><th>•</th><th>0 0</th><th>0</th><th>0</th><th></th><th>0</th><th>0</th></t<>	Stachvs balustris	40	v c	4 C	5 c		- c	vc	v c	N C		. .								- 0		0 0	N 0	0 (0	0 0	•	0 0	0	0		0	0
Chronic international	Stachys sylvatica	N CN	0	0	0	0	0	00	0	• 0	00		۷ C									0 0		> 0	0 0	D 0	> <	2 0	0 0	0 0		- 0	
	Glechoma hederacea	0	0	0	¢	0	0	0	0	0	0	0	, 0	0						2	20	0 0	20	o c) C) c	> c	> c	> c		10	
Mugati Anomania Mugati Anomania Mugati Anomania Mugati Anomania Mugati Anomania Construct Mugatives	Prunella vulgaris	0	0	0	0	0	0	0	0	0	0	0	0	. 0	N				.0	. 0		0	10	0	0	0	· •	0	00	c			
	Ajuga pyramidalis	0	0	0	0	0	0	0	0	0	0	0	0	0	0	~ ~	0	~ ~	0	•	•	0	0	0	0	0	0	0	0	0	. 0	1000	
Obstructure 0 <th< th=""><th>Mentha arvensis</th><th>~</th><th>0</th><th>•</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>•</th><th>0</th><th>0</th><th>-</th><th>~</th><th>0</th><th>- -</th><th>0</th><th>•</th><th>•</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>N</th><th>0</th><th>0</th><th>2</th><th>0</th><th></th><th></th></th<>	Mentha arvensis	~	0	•	0	0	0	0	0	0	0	•	0	0	-	~	0	- -	0	•	•	0	0	0	0	0	N	0	0	2	0		
	Unganum vuigare	0 0	0 0	0 0	0 0	0,	0,	0 1	0	0	~	0	0	0	0	~	0	- -	0	0	•	0	0	0	0	0	0	0	0	0	Q	1000	
	Scrathula buicknaid	5 0	N C	> <		2 4	N C	э,	ə (0 0	0 0		0 1		_	_	~ '	<u> </u>	-	N	~	0	2	0	0	0	0	0	0	0	CV.	-	
	l inaria witnaria	- c) (,	> <	5 0		-	- -	5,								-	0 0	-	0 •	0	0	0	0	0	0	0	0	0	100	-
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Veronice chamaedore	• •	4 0	5 0	b c	> c	5 0	5 0	۰ د		v 0		⇒ «								0	0	0	0	0	0	2	0	0	0	0	-	
Verticital benachabilitation Verticital benachabilitation Verticital benachabilitation Verticital benachabilitation Verticitation benachabilitation 0 <th>Veronica semultifolia</th> <th>> c</th> <th>> c</th> <th>> <</th> <th>) c</th> <th>> c</th> <th>- c</th> <th></th> <th>- c</th> <th></th> <th></th> <th></th> <th></th> <th>- <</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>m (</th> <th>N C</th> <th>0</th> <th>01</th> <th>2</th> <th>0</th> <th>÷ •</th> <th>0</th> <th>0</th> <th>0</th> <th>122110</th> <th></th>	Veronica semultifolia	> c	> c	> <) c	> c	- c		- c					- <								m (N C	0	01	2	0	÷ •	0	0	0	122110	
Metanyorun societation 0	Veronica beccabunga	2	0	0	, (1	, o	0	0	。 。	• c		> c										0 0	5 0		> c	0 0	0 0	0 0	0 0	0 0	0 0		φ¢
Vecnosition (Methodis) (Methodi	Veronica scutellata	0	0	0	0	0	0	0	0	0	0	2	. 0	~~~~						» o		00		• •	0 0	0 0	0	> -	o c	b c			
Melanyayuru Syatemes 0	Veronica officinalis	0	0	۳-	0	0	0	0	0	0	0	0	0	0			0		. 0	0	. 0	0	0	0	0	0	1 (1	0	0	0	0		.0
mutantom	Melampyrum pratense	0 (0 (0	0	N I	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	-	0	0	0	100	. 0
Eutohanoora 0 <th< th=""><th>Melampyrum sylvaticum</th><th>•</th><th>0</th><th>0</th><th>-</th><th>N</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>-</th><th>- -</th><th></th><th>٥ ٥</th><th>_</th><th>•</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>1221</th><th>0</th></th<>	Melampyrum sylvaticum	•	0	0	-	N	0	0	0	0	0	0	0	-	- -		٥ ٥	_	•	0	0	0	0	0	0	0	0	0	0	0	0	1221	0
$ \begin{array}{rcccccccccccccccccccccccccccccccccccc$	Euphrasia nemorosa Planteco meior	0 0	0 0	o ,	0 0	0 0	0 0	00	0 0	0 0	0 0		0 0				0(0	01	0	0	0	0	0	0	0	0	0	0	0	12201	-
Vigurum podus Vigurum	Sambucus racemosa	o c		- c	- c	4 C	y a	- c	- c	- •									- c	- 0	•	0 0	0 0	0,	~	0 (0 0	- 4	0	0 .	0		-
Value Value <th< th=""><th>Vibumum coutus</th><th>C</th><th>• c</th><th>, c</th><th>) c</th><th>) c</th><th>> c</th><th>> c</th><th>- c</th><th>4 0</th><th>- c</th><th>> c</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>> c</th><th>- 9</th><th>> <</th><th>> <</th><th>- (</th><th>) (</th><th></th><th>0 0</th><th>э,</th><th>0</th><th>- (</th><th></th><th>ASX - 1</th><th></th></th<>	Vibumum coutus	C	• c	, c) c) c	> c	> c	- c	4 0	- c	> c								> c	- 9	> <	> <	- () (0 0	э,	0	- (ASX - 1	
Ministration and antivision Ministration Ministration <t< th=""><th>Valeriana sambucitolia</th><th>0</th><th>0</th><th>0</th><th>• +-</th><th>0</th><th></th><th>0</th><th>0</th><th>0</th><th>. 0</th><th></th><th>. 0</th><th>0</th><th></th><th></th><th>0</th><th></th><th>• •</th><th>>0</th><th>o c</th><th>00</th><th>> c</th><th>o c</th><th></th><th>) c</th><th>> c</th><th>- c</th><th>) c</th><th></th><th>0 0</th><th></th><th>NC</th></t<>	Valeriana sambucitolia	0	0	0	• +-	0		0	0	0	. 0		. 0	0			0		• •	>0	o c	00	> c	o c) c	> c	- c) c		0 0		NC
Camponului partula 0	Knautia arvensis	0	0	o	0	0	0	0	0	0	0	0	0	0	0	5	•		0	0	0	0	0	0	0	0	0	0	0	0	o c		00
Caramanula rotuncificia 1 0 1 <th1< th=""> 1 1 1</th1<>	Campanula patula	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	-	•	0	0	0	0	0	0	0	0	0	0	0	0	N	0	1121	0
Caranyanuka Personalati Caranyanuka Pe	Campanula rotundifolia	0	0	0	0	0	0	0	0	0	N	0	0	0	~	1	0	5	0	-	-	N	0	0	0	0	0	0	0	0	0	00.20	0
Contraction constraints Constraints <th< th=""><th>Campanula persicitolia</th><th>- 1</th><th>0 1</th><th>0 0</th><th>•</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th></th><th>0</th><th></th><th></th><th>-</th><th>•</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th>0</th><th></th><th>0</th></th<>	Campanula persicitolia	- 1	0 1	0 0	•	0	0	0	0	0	0		0			-	•	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
Solutions 2	Campanula rapunculoides Solidano vinnariuno) (5 0	0 0	. -		0 0	0 0	0 0	0 0							- •	-	0	0	0	0	0	0	0	0	0	0	0	0	0		0
Contraction set of the set of th	Solidaco ninentee Solidaco ninentee	N C	> c	> c	- 0	- 0	. .	> <	⇒ <	5 0						-	0		• •	00	0 1	0 (0	0	0	0	0	0	0	0	0	12217	•
Filiagnesia Missional systema 0<	Omage giganea) (5 0	0 0	> <	> <	> <	> <		> <	> <				-		•	5,		-	••	0 1	0	0	0	0	0	0	0	0	0	-	-
Bidens signation Bidens signation Activities and activities activities and activities activities activities activities and activities activ	Citationada syrauca Filaninota utininosa) c) c		> c	o c) c	. .	.							5 0	> <	3 6	⇒ ¢	⇒ ¢	> 0	0 (0 (0 0	0 (0 0	0	0	0	0	0	1	о ·
Bidens central Mathematicanticant and a second and a sec	Bidens trinartita	0	0		> c	> c	> c) C	b c) c	> c		- 0			20	> c		50	2 0) (, ,	> c	> 0	> (0 0	- (0 0	0 0			-
Achillea plaimica 0 <th0< th=""> 0 <th0< th=""></th0<></th0<>	Bidens cemua	0	0	0	0	0	0	0	0	, 0		0	. 0			1 0	> 0	4 0	• c	ч г	N C	NO	N C) c		> <	NC) (> c	NC			
Achiller miletolum 2 0 1 2 <th2< th=""> 2 <th2< th=""></th2<></th2<>	Achillea ptarmica	0	0	0	0	0	0	0	0	0	0					10	0	10	0	. 0	0 0	J I	• =	0 0	0 0				0 0	0 0) (
Matrixandia Softwarta 2 0 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 1 1 2 1 1 2 1 1 2 1 <th1< th=""> 1 1 1</th1<>	Achillea millefolium	N	0	0	-	N	2	0	N	2		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					. 01		0 01	5 01	1 (1	- ~	o N	• •	1 0	- 0	1			N N			NA
Chamomilia suaveolens 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Matricaria perforata	N	0	0	0	0	2	N	2	0	N	2	~	2	0		5	CI.	0	-	0		0	0			0	0	0	1 0	· c	100	10
	Chamornilla suaveolens	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
	Leucanmemum vuigare	N (0 (- 1	N •	0	N ·	0	0	0	N 1	0	0	0	-	-	0		0	0	0	-	0	0	0	0	N	0	0	0	0		0

Appendix 3 cont.	-	~		4	u	ç	2	- "	5	F	4	13	14	15	16	17	18	19	2	21	ដ	33	24	25	56	27	28	58	30	ы	32	
Artemisia vulgaris Tussilago tartara	0 N	0 N	00	o -	00	0 0	00	N 0		00	00	00	00	00	00	00	- 0	00	ณ ณ	00	00	- 0	00	00	+ 0	00	0 17	00	00	00		00
Senecio viscosus	0	0	0	0	0	ç	0	0	0	0	0	•	0	•	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 '	0		0
Senecio vulgaris	0 0	0 0	0 0	0 0	0 0	00	0 0	00			00	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0		0 0
Arctium spp.	-	- 0	- <				ہ ۔ م		- •		ی د		,	,	0 0	0	0 0	0 0	,	0 0	o () (0 0	0 0	, c	,	0 0	, ,) c	0 0		
Circlum arrense Circlum vulgare	v c	V C	- c			> c	v c	4 0		 	, c	• •		4 0	10	00	00	-	4 C	• •) c	0 C	> c	00	40	0	0	10	0	10		0
Candrate original														c	C	c	c	Ċ		c	c	0	c	¢	c	c	C	c	C	C		C
Cirshum patustre	00	10	. 0	> N	0	, o	0	0			, 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
Circinan halanininas	-	c	~	0	~	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C	C	0	0	0	0	0	0	0	0	0		0
Centaurea lacea	. 0	0	0	0	10	0	0	0			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
Leontodon autumnalis	2	0	0	0	2	0	-	0	0	0	0	CI	¢1	0	0	0	~	C)	C1	0	0	٣	0	0	0	0	0	0	-	0		N
Tragopogon pratensis	0	0	0	0	0	0	0	0	, ,	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
Sonchus arvensis	0	0	0	0	0	0	0	-	5	-	0	•	0	0	0	0	0	-	~)	0	0	0	0	0	o 1	φ,	0	0 1	• •	0		0
Sonchus oleraceus	0	0	0	0	0	•	0	0 0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0 1	0 1	0	0	0 1	э (0	0 4		0
Sonchus asper	0	0	0	0	• •	0	-		- ·		5 (0 (0 0	0 0	0	0 0	0 0	0 0	0 0	0 (ο,	0,	0 0	0 0	ο,	0 0	0 0			0		-
Taraxacum spp.	~	0	0	o	•	N	N		0		N	•	N ·	N	0	N	N	N	N)			2 1	- -	÷ •	> (N) (N (N		N
Mycelis muralis	0	0 4	0 0	0	0 0	0	0	0				0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	ə c	5 0) () (0 0	> <) (> <		> 0
Lapsana communis	5 0	5 0		,						، د	» د	o (2 0	0	o c	o c	>	o c	> <	> <	,	,	,	,	vc	0 0	5 0	0 0		,		0 0
Crepis paludosa	5 0		N C	, ,		. .	> <	 			50	2 0	0 0	> c	5 C	- c		, c	b c	o c	, c	, c	,	, c	• e	, c	> c	, c	> c	> c		
Theractury ionosa	, ,			4 0		4 0		- 0				4 0	00	0 0	• c) c	• •	0 0	0 0	> c	• c) C) C) c) <	• c	• c) c	• c) C		
Histochun Hulyala	4 0		4 9	4 0								> c	0 0	, c	• c	• C	• •	• c	10	, c	• c	• c) C	0	0	0	, 0		• •	00		0
Separa isrohaa	0 0		, c	, c							, 0		o c	0	0	0				0		0	0	0	0	0	0	0	0	0		0
Jisma niantarmanuatina		, c		, c		, c) c		10		, 0	00		0	0	2	0	0	0	2	0		0	0	0	0	0	0	0	0		0
Tvoha latifolia	2	0	. 0	. 0	0	0	0	0	. С ГС	0	0	0	0	0	0	(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
Sparganium erectum	0	0	0	0	0	0	0	0	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	N		0
Sparganium glomeratum	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0		•
Acorus calmus	0	0	0	0	0	0	0	0	~	0	0	0	0	0	0	0	0	0	0	0	0	0	•	0	0	0	0	0	0	0		0
Calta patustris	0	0	0	0	N	0	0	0	- -	0	0	0	0	0	0	0	0	0	0	0	0	0	•	0	0	0	0	0	0	0		0
Paris quadrifolia	0	0	0	0	0	0	0	0	-	0		0	0	0 0	0 0	0 0	0 (0 (0 (0 (0 (0 (0 0	0 0	0 0	0 0	0 0	0 (0 0	0 0		0 0
Iris pseudacorus	0	0	0	•	0	0	0	0	- ·			0 0	0 0	0.0	0 0	00	0 0	0 0	> <	0 0) () (> <	. .	- -	> <	N C	.		> 0		
Hosta spp.	0	0	0	0	0	0	0	0	-	0		0 0	э,	5 0	0 0	o (o (5 (•	o (0	2 0			- 0	> <	> <	> <	> <	> <		> (
Convaliana majalis	0	0	0 0		0 0		0 0	0 0				0	5 0	2 0	0 0	> <	> <	0 0	-	> <	5 0	> <	. .	.	, ,	0 0	5 0			0 0		0 0
Malanthemum bilolium	ə (5 0	-	.	-	5 0) () (N C	0	0 0		0 0	0 0	0 0	2 0	,	0 0	.	N C	o c	,	,	b c	b c	> c	> c		b c
Uactylomiza fucnsii	N C		.	.	- -) C	2 ~	- c	0	00	00	o c) () (00	<i>, c</i>	• c	20	0 0	00	00	00	, c	2		0 0
	• •	0	. 0	10	. 0							0	0	0	N	N	0	0			0	0	0	2	0	0	0	0	0	0		0
Juncus conclomeratus	0	0	0	0	0	0	0	0	0	0	0	0	N	0	0	2	0	0	9	2	0	0	0	2	0	0	0	CN.	0	~		-
Juncus subinus	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0		0
Juncus articulatus	0	0	2	N	+-	0	0	0	0	a	0	0	N	0	0	0	0	0	CN	0	0	0	0	2	0	0	0	0	0	0		0
Juncus butonius	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	ო	0	0	0	0	0	0		0
Juncus atbinoarticulatus	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0		0
Luzula multiflora	2	0	2	2	N	0	0	0		0	0	0	0	Ò	0	0	0	0	0	0	0	0	0	τ	0	0	0	0	0	0		0
Luzula pilosa	0	o	~	0	0	N	0	N	0	• •	0	2	0	0	0	0	0	0	۳	0	0	0	-	0	0	0	0	0	0	0		0
Festuca rubra	N	0	N	N	N	0	0	0	۲ ۵	0	0	0	CN	-	0	-	0	C I	0	0	0	2	0	~	0	2	0	2	0	0		0
Festuca pratensis	~	0	0	•	2	0	N	2	2	0	ۍ -	•	N	-	CN)	0	2	0	0	CN -	0	m	0	0	0	0	2	0	0	CN I		ŝ
Lolium perenne	0	0	0	0	0	0	0	0	- ·		_	• •	0 0	0 0	0,	0 0	0 0	0 (0 0	0 (0 0	0 0	0 (0 0	- 0	0 0	0 0	0 0	0 0	0 0		0 0
Lolium multiflorum	0	0	0	0	•	。	0	0	-		_	0	0 0	0 0	- (5 0	-	- 0		0 0	- 0	0 0	o (5 0	- •	ə (> <	> <		o c		> 0
Poa annua	0 (0 0	0 0	0 0		0 0	0 0			 	<u>،</u> د		0 0	0 0	0 0	N +	- c	0 0	- 0	> 0	- (> 0	0 0) (, c	,	> c	5 0	5 0	, c) (
Poe Inviairs	N	N					N				J C	- 0	N C	vo	0 0	- c	u c	, c	- C	> c	vc	• •	> 0	4 0	4 C) c	4 0	> c	4 0) C		4 0
Poa palustris	N	5	5	5	5	5	5	5	~ ~	_	د -	۰ ۰	2	>		2	2	2	2	>	>	v	>	5	•	2	V	>	2	9		

Appendix 3 cont.		Arternisia vuigans Trissiliano fartara	Senecio viscosus	Senecio vulgaris	Arctium spp.	Cirsium arvense	Cirsium vuigare	Carduus crispus	Circlist Palustre	Centauran inces	Leontodon autumnalis	Tradoddon pratensis	Sonchus arvensis	Sonchus oleraceus	Sonchus asper	Taraxacum spp.	Mycelis muralis	Lapsana communis	Crepts parousa	Hieracium Indrata	Hieracium rioida	Senecio jacobaea	Alisma plantago-aguatica	Typha latitolia	Sparganium erectum	Sparganium glomeratum	Acons calmus	Calla palustris	Pans quadmona trie neorinanconio	Hosta soo.	Convaltaria majalis	Melanthemum bifolium	Vaciyiomiza rucnsu Iumcus filformis	Juncus effusus	Juncus congiomeratus	Juncus supinus	Juncus articulatus	Juncus bufonius	Juncus alpinoarticulatus	Luzula multifiora	Cutua pinoa Fastina nihra	Festuca ruora	Lotium perenne	Lolium multiflorum	Poa annua	Poa trivialis	eruconind bull
	8 8	N -	- 0	0	0	~	0	c	_ c	5 +	- 0	10	, «	-	0	~	0	20	50			0	2	0	0	0	0	0	00		0	0		00	0	0	0 8	0	0	00		50	0	0	0 0	0 0 0 0	>
	4 35	20	10	0 2	0 0	0	0	•••) c	0	0	0	2	0	0				0	0	0	0	0	0	0			0	0		0	0	0	•	0	0	00	2 0		0	0	•••	2 10	2
	36	0 0	10	0	0	0	0	••	- (0 0) C	0	0	0	~	0	•) () c	> c	0	0	-	0	0	0	0	00) C	0	0		00	0	0	C)	0	0	0 0	- C		0	0	0	2	د
	37	0 0	0	0	0	0	0	0 0	0 0	> <	> c	o c	0	0	0	0	0	0 1	> <	>) c	0	0	0	0	0	0	•	0	- C	0	2	00	00	0	0	-	0	0	0 0	, ,	40	0	0	0	0 0	د
	38	0 0	10	0	0	N	0	~ ~	0 0	20	o c	• c	0	0	0	2	0	0 1) (0 0) C	0	0	0	0	0	0	0) C	0	0	0.0	00	0	0	0	0	0	0 0	5 0	N C	0	0	0	(N (2
	33	- 0	10	0	0	^{CN}	0	CN C	0 0	0 0) C	o c	· (0	0	0	0	0	0	0 0	> c	, 0	0	0	0	0	0	0	0 0		0	0		00	0	0	0	0	0	0			0	0	0	2 10	2
	4	N O	10	-	0	N	0	N C	0 0	0 0	o c		2 01	0	0	N	0		, ,	- 0	0 0	0	0	0	2	0	•	0	0 0	o c	0	0	0 0	00	0	0	0	0	0	0 0	- c) c	0	0	0	2 10	2
	41	00	9 0	0	0	N	0	N 0	0 0	0 0	00	10	2	0	0	2	0		2 0	o c) c	0	0	0	0	0	N ·	0	0 0	o c	0	0	0 0	00	0	0	0	0	0	0 0	> •	- 0	0	0	-	N	2
	42	N -	2	0	•••	ŝ	0	0 0	0 0	- 0	0 0	i ÷	- (1	-	-	3	0	~	5 0	0 0	o c	0	0	0	0	0	0	0	0 0	o c	0	0	0 0	0	0	0	0	0	0	00	5 0	0 N	0	0	0	N 0	2
	\$	0 0	0	0	0	N	0	0,	- (0 0		> c	00	0	0	0	-	0	5 0	> <	b c	0	0	0	0	0	0	0	- 0	o c	0	0	00	00	0	0	0	0	0	0 0	, c	10	0	0	0	N 0	ų
	1	N C	0	0	0	N	0	0 0	0 0	o (2 0	ic	00	0	0	N	0	0	5 0	> <	0 0	0	~	0	0	0	0	0	0 0		0	0	0 0	2 0	0	0	0	0	0	0 0		2 0	0	0	0	0,	-
	45	N C	0	0	0	0	0	0	0	0 0) c) c	00	0	0	0	0	0	o (5 0	, ,	0		0	0	0	0	0	0 (0	0	0,	0	N	0	0	¢,	0	0 0	- c	0 0	0	0	0	0 0	2
	46	0 0	00	0	+	0	-	0	- (0 0	>	1 C	0	0	0	•	0	0	0 0	> 0	> c	00		0	0	0	0	0	0 <	- c	0	0	00	2 01	0	0	0	-	0	0 0		> 0	0	0	N	с о с	2
	47	0 0	0	0	0	0	-	0	• •	0 0	> c	o c	0 0	0	0	N	0	0	э,	- 0	, c	00		0	2	0	0	0	0 0	5 c	0	2	0 0	2 01	2	0	0	0	0	0 1	- •	- 0	1 -	0	0	N 0	N
	\$	0 0	0 0	0	0	0	0	0 1	0 0	ο,	- c	o c	0 0	0	0	0	0	0	5 (- -	,	0	0	0	0	0	0	0	0 0	5 0	0	0	0 0		0	0	0	0	0	0 0			0	0	0	0 0	2
	49	0 0	00	0	0	2	0	• •	0 (0 0	> c	o c	0	0	0	CN	0	0	2 4) C	0	0	0	0	0	0	0 0	5 0	0	0	0 0	00	0	0	0	0	0	0 0		> c	0	0	0	~ ~	ų
	20	c		0	0	2	-	0	0	0 0	, c	4 0	2 (1)	0	0	N	0	0		5 0	, ,	0	0	0	CV	0	0	0	0	- c	0	0	00	2 01	-	0	0	0	0	0 (- c	> c	0	0	0	N .	-
	5	0 0) C	0	-	2	0	0	0	0	> •	- c	00	0	0	N	0	0		> <	,	0		0	0	0	0	0	0 0		0	0	0 0	o +	0	0	0	0	0	0 0) C	0	0	0	0 0	5
	52	2) c	0	0	ო	0	0	0	0,	- 0) c	00	0	0	-	0	2	0 1	5 0	, c	0	0	0	0	0	0	0	0 0		0	0	0 0	2 0	0	0	0	0	0	0) C	0	0	0	0 0	2
	53	0	v C	, 0	0	N	0	0	0	0,	- c) c	00	0	0	0	0	-	.	. .		> 0	• •	0	0	0	0	0	0 0		00	0	0 0	<u>ہ</u> د	Ģ	0	0	0	0	0	> c	5 0		0	0	N 1	-
	54	0 (- c	. 0	0	0	0	0	0	0,	- 0	0 c	0 0	0	-	N	0	0	0 0	5 0	• •	- 0		0	0	0	0	0	0 0		0	0	0 0	00	0	0	0	0	0	0 0		N -	. 0	0	0	~ ~	5
	55	00) C		0	2	0	0	0	0	, ,	4 0	2 (1	0	0	N	0	0	0	0 0		, c		. (1	0	0	CN .	0	0 0		0	0	0 0	2 0	0	0	0	0	0	0	5 0) (J	0	0	0	5
	20	~ <	5 C	0	0	e	0	0	0	0	5 0	5 0	0 0	0	0	0	0	0	•	- c) C		0	0	0	0	0	0 0			0	0 0	5 0	. –	0	0	0	0	0 0	5 0		. 0	0	0	- 0	5
	57	0 0	- c	0	0	N	0	0	•	0 0		, ,	2 01	0	o	0	0	0	0	- -	, ,		• c	. 0	0	0	0	0	0		0	0	0 0	0 0	. –	0	0	0	0	0 0	5.0	N C	10	0	0	0	N
	28	0 0	5 c	0	0	N	0	0	0	0 (0 0	> c	00	0	0	N	•	-	0	0 0	5 0	> c	, c	0	0	0	0	0		- c		0	00		0	0	0	0	0	0		N C			m	~	5
	59	00	5 c	0	0	2	0	0	2	0 (vc		0	Q	o	0	D	0	- (5 0) C		0	0	0	0	0	0 0		0	0	00		N	0	0	0	0	~	N		> o		0	~	2
	80	0,	- c	0	0	0	0	0	0	0 (4 0	0 0	0	0	0	0	0	0		- 0	0 0) - -	• •	0	0	0	0	00			2	0 0	NA	10	0	0	0	0	0	N (0 0	, o		-	0 0	5
	61	0 0) c	0	0	CN	0	0	0	0 0		0 0	> +-	0	0	2	0	0	0	0 0	5 0			0	0	0	0	0			, a	0	0	> ~	. 0	0	0	0	0	0			- 0	0	0	2	0
	62	~ •	- c	> <	0	3	2	0	0		0 0		-	0	0	0	0	-	0	0 0	5 0	0 0	> c	0	0	0	0	0	0	, ,	> c	0	0 0	<u>ہ</u> د	1 (1)	0	•	0						. 0	0		0
	63	0 0	, , c		0	0	0	0	0	0 1	0 0		0 0	0	0	0	0	2	Q	0 0	5 0	- c	o c	00	0	0	0	0	0	ə c	, o	0	0.0			. 0	•	0	•	0	0,	o ,	- 0		0	~	0
	2	2	.	0	0	2	0	0	0	0	0 <		0 0	0	0	N	0	ò	0	0 0	5 0			, 0	0	0	0	0	0	0 0		0	0 0	2 0	1 01	0	0	0	0	0	0 0	0 0	N C	. 0	0	2	<u>19</u> 11

- N a N b + 0 0 0 0 N a a + 0 a a a - 1 a a a a a a a a a a a a a a a		8	8 8	5	12 13	4	12	21 9	2	19 20	2	2	E	2						10,000,00	212022
- 0 N O O O - O O			2	c ,		0	0	•	c		i •	1 0	1		ະ ເຊິ	9 23	1 28	R °	8	9	8
00000000000000000000000000000000000000									, c	, c		,	4	5 0			- 0	• •	0 0	> 0	> 0
000-000	0) (, c	,					• c			, c	o c	> c) (> <) (
000+00	,			0						, c		• c	, c	, c) c			• c	• •) c	1 C
0 - 0 0 0 0 0 0 0 0	0 2	0	0	0	-	2	0	0	2	10	0	• •	0	. 0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	00		0	00	, .	2
- 0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0
000	0	2	0	-	0	0	~	0	~	2	0	0	0	0	0	1	0	0	0	0	0
~ ~ ~	0	0	0	0	0	0	•	0	0	0	0	0	0	0	-	。 。	0	•	0	0	0
N N N N N N N N N N N N N N N N N N N	2	0	~	0	0	2		-	0	0	~	0	2	2	0	0	0	N	CI	2	0
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5	0	0	0	0	0	0	0	0	0	0	0	0	N	0	0	0	0	0	0	0
2 0 2 2	0 2	2	2	2	0	2	0	2	0	2	0	0	N	0	•	-	0	0	0	0	ŝ
0 0 0 2	2	0	0	2	0	2	0	0	Q	0	0	0	2	0	0	0	0	0	0	0	0
0 0 0	0 0	0	0	0	0	0	~	0	0	0	0	0	0	0	0	0	0	0	0	0	0
a 0 0 2 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0 2 0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•	0	0	0
0 0 2 0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0 0 0	0	2	2	0	0	2	~	0	e	0	0	0	m	0	0	2	(1) (1)	0	(V	2	0
0 0 0	0	0	0	0	0	•	0	0	0	0	0	0	N	0	0	0	ю 0	0	2	0	0
0 0 0	0	0	2 6	0	0	•	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0 0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0 0 0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0 2	0	0	0	0	0
0 0 2 2	1 2	0	0	0	0	2	0	0	0	0	0	0	0	0	2	0	0	0	0	0	N
1 0 0 0	0	0 0	0	•	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2 2 0 0	0	0	0	0	0	0	0	0	0	0	ю 0	0	0	~	2	0	0	0	0	0	0
2 0 0 0	0	0	2	0	0	0	0	0	0	0	~	0	0	0	0	0	0	0	0	0	0
0000	0	0	0	0	0	•	•	0	0	0	0	0	0	0	2	0	6	0	0	0	N
0 0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	0	0
2 0 0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	~	0	0	•	0	0	0	0
0 0 2 2	0	0 0	0	0	0	0	0	•	0	0	0	0	0	0	2	0	•	0	0	0	0
0 0 2 2	0	CN CN	0	0	0	N	0	2	0	0	2	0	0	0	5	0	•	0	0	0	0
0 0 2 2	2	0 2	0 N	2	1 2	~	0	0	2	0	3	0	0	2	-	0	6	•	0	e	0
0000	0	0	0	•	2	•	0	0	0	0 0	0	0	0	0	0	。 。	•	0	0	0	Q
2 0 3 0	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0
0 2 0 0	0	0	0	0	0	•	0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0
2 0 2 0	0	0	0	0	0	•	0	0	0	0	•	0	0	0	0	0	0	0	0	0	0
0 0 2 2	0	0 2	0	0	0	•	0	0	0	0	•	0	0	0	0	0	0	0	0	0	0
2 0 2 2	2	0	0	0	0	2	0	+	0	0	33	0	0	N	N	0	•	0	0	0	0
- 0 0 0 0	0	0 0	0	0	0	•	0	0	0	0	•	0	0	0	0	0	m t	0	0	0	0
0000	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0 2 0 0	0 0	0 0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1 0 0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Appendix 3 cont.																															
	33	Z.	35	36	37	8	39 4	4	4	2	44	45	46	47	4 8	49	20	51	52	23	54	55	56	57	58	59	60	61	82	8	5
Poa pratensis	0	0 '		•	0	0	0		-			•	2	0	0	2	0	2	۲		-	0	0	0	0	÷	0	0	2	0	0
Poa nemoralis	0 0		0 0	0 0	• •	- 0	0 0					• •	0 0	0 0	0 0	0 0	0 1	••	0	0	0	0	0	0	0	0	0	0	0	0	0
Daciyiis giomerata	ο,		N	N		5 0			N 4	N 4			э (N	N	ю (N	•	(m)	2	m	N	0	0	0	0	N	N	2	N	ŝ
Melica nutans	- (-	, c	0 0	.	N 4						0 0	0 0	0 0	0 0	0 0	0 4	•	0	0	0	0	0	• •	0	0	0	0	0	0	0
Giycena Iluitans	N 1	5	e i	0	0		0.	ن د	0.	0.		N -	0	0	2	0	0	0	0	N	N	0	0	0	0	N	-	0	N	0	0
Bromus inermis	0	0	0	0	0	0	0	0	0	~	0	•	0	0	0	0	0	0	0	N	0	0	0	0	0	0	0	0	0	0	0
Etymus repens	N	~	0	2	0	2	2	N	2	~	CN	0	0	N	0	2	0	2	m	0	-	2	2	~	3	CN	0	0	ŝ		0
Avena sativa	•	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Deschampsia cespitosa	2	2	N	ო	N	~	N	2	0	2	0	N	0	N	T	N	τ	0	0	0	m	0	0	2	٠.	2	-	0	0	0	N
Deschampsia flexuosa	0	0	0	0	0	0	0	0	0	~	0	•	0	0	0	۲	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0
Agrostis capillaris	0	~	0	-	N	0	0	N	N		•	CI CI	N	-	2	۲	0	0	0	2	N	-	0	2	2	N	N	N	N	0	N
Agrostis stolonifera	0	0	0	0	0	0	0	0	0	5	0	0	-	2	0	N	0	0	0	0	0	0	0	0	0	0	0	0	N	0	0
Agrostis gigantea	-	•	0	0	0	0	0	0	0	0	•	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Calamagrostis anundinacea	0	0	0	•	0	0	0	0	0	5	0	•	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Calamagrostis purpurea	0	0	0	0	ŝ	N	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Calamagrostis canescens	0	0	0	0	0	0	ŝ	~	2	0	0	•	0	0	0	0	0	0	0	0	0	N	3	0	0	0	-	0	с	0	-
Phieum pratense	N	0	N	0	0	0	2	N	N	0	2	0		N	0	2	N	2	N	ŝ	0	0	0	N	N	2	0	N	0	-	0
Alopecurus pratensis	~	0	0	0	0	-	2	N	~	0	0	0	0	N	CN	N	0	0	2	ŝ	0	N	0	0	0	0	0	0	0	N	0
Alopecurus geniculatus	0	0	0	0	0	0	-	0	-	5	0	2	CV	0	٣	0	0	0	0	0	0	0	0	0	0	0	0	0	N	0	0
Alopecurus aequalis	0	0	0	-	0	0	0	0		0	•	2	0	0	÷	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0
Phalaris anundinacea	0	0	0	•	0	0	0	0	0	0	0	•	0	0	-	0	C 1	0	0	CN.	0	N	0	0	0	0	0	0	0	0	0
Anthoxanthum odoratum	0	0	0	0	0	0	0	0	0	0	•	0	0	0	0	0	•	0	0	0	0	0	0	0	0	0	-	0	0	0	0
Phragmites australis	0	0	0	0	0	0	•	0	0	5	•	•	0	0	0	N	e	0	0	0	0	0	-	0	0	0	0	0	0	0	0
Scirpus sylvaticus	0	~	-	N	0	0	0	N	0	C	0	0	-	N	ŝ	0	-	2	ო	2	0	2	N	0	0	0	0	N	0	N	0
Eleocharis mamillata	2	0	0	0	0	0	N	0	0	0	-	0	0	N	0	•	~	0	0	0	0	0	0	0	0	0	Q	0	N	0	0
Eleocharis palustris	0	0	0	0	~	0	0	-	-	о С	•	0	0	¢	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0
Schoenoplectus lacustris	0	0	0	0	0	0	0	0	-	с С	•	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Carex panicea	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Carex echinata	0	0	0	0	0	0	0	•	- -	о С	•	0	0	N	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Carex ovalis	0	0	0	0		0	0	0	~	0 0	•	N		0	0	0		0	0	0	¢	0	0	N	N	N	•••	0	0	0	0
Carex canescens	0	0	0	N	N	0	N	N N	0	0	•	0	-	-	0	0	0	0	0	0	0	0	0	N	0	N	N	0	0	N	0
Carex vesicaria	-	0	0	0	0	0	0	0	<u> </u>	с с	•	•	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Carex rostrata	e	0	0	0	0	0	0	0	~	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	CN	0
Carex pseudocyperus	0	0	0	0	0	0	0	0	- -	с С	0	0	0	0	0	c	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Carex flava	-	0	0	•	0	0	0	0	~	о С	•	•	•	0	•	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Carex pallescens	÷	0	÷	0	0	0	0	0	- -	0	0	0	0	0	•	0	0	0	¢	0	0	0	0	0	0	CV	0	0	ŝ	0	0
Carex nigra	N	0	0	N	N	0	0	0	0	а с	0	0	0	-	•	0	0	0	0	0	0	0	2	2	0	0	ŝ	ŝ	0	0	0
Carex aquatilis	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•	0	0	0	0	0	0	0	0
Carex acuta	0	0	0	0	0	0	0	-	- -	0	N	0	0	D	¢	0	0	o	0	0	0	•	•	0	0	0	0	0	0	0	0
Carex elongata	0	0	0	0	0	0	0	0	5	0	•	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Carex diandra	0	0	0	0	0	0	0	- 0	-	0	•	•	0	0	0	0	o	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Р	Area I	MArea /	AvgWid	MaxDep	MedDep	Fluct	Drain	Well	Outl I	nl	UTMn	UIMe	Alt	DistWat	DistRoad
1	2602	570	3	229	200	0	0	3	3	0	6691499	583984	390	450	116
2	247	195	3	102	100.5	0	0	0	3	3	6700879	581205	170	350	26
3	280	147	2.3	82	65	0	0	0	3	3	6708049	610416	395	15	84
4	704	98	1	181	150	0	0	0	3	3	6708100	610438	395	15	74
5	328	175	2.5	74	51.5	0	0	3	3	3	6702849	638481	185	930	3
6	300	88	13	147	115.5	1	0	3	0	ñ	6660827	633264	140	2850	5
7	100	111	1.0	151	125	0	0	2	3	0	6663173	619121	160	500	52
	199	000	1.9	101	120	0	0	5	3	0	0003173	010121	100	500	52
8	462	200	2.4	237	198	1	0	3	0	0	6611595	604177	105	60	3
9	460	114	1.4	168	148	0	0	3	0	0	6611755	604011	100	300	89
10	61	45	1.4	219	156.5	0	0	0	3	3	6615017	610600	165	450	110
11	118	134	2.9	61	55.5	0	0	0	3	3	6614757	613671	115	350	16
12	142	114	2.3	110	98.5	0	0	0	3	3	6632284	594766	75	300	63
13	48	63	2	116	58.5	1	1	0	3	0	6614689	616244	170	100	37
14	145	119	2.3	196	156.5	1	0	3	0	0	6612094	616257	155	1300	47
15	170	43	0.8	220	138.5	0	0	3	0	0	6602730	619947	110	200	3
16	20	22	1 1	66	54.5	0	1	0	0	2	6501509	622022	60	200	26
47	20	22	0.7	00	75 5	1		0	0	0	6502664	620245	140	750	20
17	51	21	0.7	01	75.5	1	0	0	0	0	0593004	020245	140	750	5
18	54	70	2.2	141	121.5	2	0	0	0	0	6594313	619728	145	100	26
19	256	43	0.8	148	236.5	0	0	3	0	0	6600264	613344	115	1700	2
20	653	250	2.6	287	252.5	0	0	3	3	3	6596638	613447	125	650	130
21	128	122	2.5	148	128.5	0	0	0	0	0	6591167	619514	110	175	63
22	19	5	0.4	80	64.5	1	1	0	3	0	6585675	635123	110	750	32
23	94	115	2.7	142	122.5	2	0	0	0	0	6594792	629102	105	185	74
24	163	75	1.5	165	161	0	0	0	0	0	6597756	632113	160	70	21
25	474	149	18	295	125	2	0	0	3	0	6597756	632209	160	70	3
26	33	48	1 9	79	65	1	1	0	0	ñ	6594607	634831	110	440	26
20	102		0.0	100	100	0		2	2	0	6500000	624902	125	240	20
21	700	070	0.2	109	210 5	0	0	3	3	0	0599990	034003	130	340	5
28	700	2/9	2.8	225	218.5	0	0	3	0	0	6603789	031043	110	890	5
29	137	60	1.3	129	98.5	0	0	0	3	3	6603015	631145	125	890	74
30	300	157	2.3	27	21.5	0	1	0	0	0	6612540	628413	110	800	268
31	463	200	2.4	107	89.5	0	0	0	3	0	6618857	630909	160	520	42
32	147	143	2.8	183	108.5	0	0	0	0	0	6621095	628296	130	220	10
33	975	370	3	162	108	2	3	0	3	0	6740246	600599	290	300	21
34	232	176	2.8	98	66.5	3	0	0	3	3	6746060	595405	200	550	52
35	168	123	2.3	149	90	0	0	3	3	3	6755447	600188	325	30	358
36	1707	466	3	310	229	4	2	0	3	3	6755496	600188	330	30	373
37	171	135	25	109	103		0	0	3	3	6761365	606365	440	100	4
20	244	400	2.0	07	64 5	0	0	0	0	2	6741020	610042	150	500	106
30	241	423	3	07	04.5	0	0	0	0	0	6741029	619042	100	500	120
39	1190	394	3	44	35	0	0	0	0	0	6741055	019285	160	500	37
40	1370	383	2.72	232	150	4	0	0	3	3	6735532	619048	205	230	16
41	103	35	0.9	82	76.5	1	0	0	3	3	6735435	619296	215	230	10
42	2219	529	3	350	205	4	0	3	3	3	6735377	622459	180	2200	47
43	144	126	2.5	127	110	2	0	3	0	0	6602683	595222	45	600	10
44	304	155	2.3	134	104	0	0	0	0	0	6593486	602006	30	450	26
45	66	90	2.4	27	16	1	0	0	0	0	6578508	601873	30	1200	105
46	357	171	2.3	75	70	1	0	0	0	0	6569790	602946	20	170	121
47	481	144	17	160	107	0	1	0	3	3	6569634	602813	20	10	3
48	420	116	0.5	166	162	0	0	0	3	3	6569573	602815	20	10	70
10	263	105	3	02	70.5	0	1	0	3	3	6560507	602835	20	10	105
43 50	200	242	26	117	10.5	0		0	2	2	6560406	602033	20	10	105 E9
50	340	242	2.0	11/	00	0	0	0	3	3	0509490	002743	20	10	50
51	181	68	1.3	173	151	0	0	0	3	3	6569535	602752	20	10	74
52	286	142	2.2	145	136.5	0	0	0	3	3	6569573	602749	20	10	58
53	171	133	2.4	104	91	0	0	0	3	3	6569618	602732	20	10	3
54	484	161	2	165	125.5	0	0	0	3	3	6569629	602774	25	10	3
55	806	151	1.5	248	225.5	1	0	0	0	0	6569368	602793	20	120	100
56	101	126	2.8	124	93.5	0	2	0	3	3	6583937	581012	30	100	47
57	155	99	2	147	141.5	0	0	0	0	0	6602634	601799	50	400	5
58	29	34	15	42	41	n n	1	3	3	0	6602685	601371	50	400	32
59	60	34	1.0	263	207	3	م	0 0	n	ñ	6608253	505353	100	500	47
60	2202	500	20	200	201	0 0	1	2	۰ ۱	0	650100200	505010	.00 2E	1110	50
64	2203	140	2.9	302	244	0	1	3	0	0	0001903	595013	20	050	52
01	100	113	2.2	106	00.5	0	0	3	0	0	001/50/	595086	80	950	20
62	3010	600	2.9	208	193	4	0	0	3	3	6614741	594773	85	250	42
63	52	74	2.2	121	97.5	0	0	3	3	0	6614798	595055	100	250	32
64	118	82	1.9	208	196.5	1	0	0	3	0	6614165	595558	100	150	16

Appendix 4. Untransformed values for the 56 explanatory variables for both pond and pond margin data sets. PArea MArea AvgWid MaxDep MedDep Fluct Drain Well Outl Inl UTMn UTMe Alt DistWat DistRoad

ppei	ndix 4	cont.							_			_					
1	DistAgr 5	DistBui 74	Dist⊢orest 4	Age 14	Fire 0	Water 3	Drink 0	Laund 0	Fence 3	Lime 0	Garb 0	Renov 0	Herbic 0	StonyMarg 0	Cut 0	Fell 0	Graze 0
2	6	5	1	50	3	1	0	0	0	0	1	1	0	0	Ő	2	0
3	126	2	1	51	0	0	0	0	0	3	0	0	2	0	2	0	0
4	153	1	6 2	100	3	0	0	0	0	3	0	1	0	1	0	0	0
6	10	1	10	100	3	0	1	1	0	0	0	2	0	0	0	0	1
7	2	1	405	100	3	0	1	0	3	0	0	1	0	1	3	0	1
8	10	32	1	100	0	0	0	0	0	0	0	1	0	0	2	2	0
9 10	2	84	5	31	0	3 1	0	0	0	0	0	1	0	0	0	0	0
11	16	1	137	100	0	0	0	0	0	0	0	1	0	0	3	0	0
12	9	16	1	100	0	0	0	0	1	0	1	1	0	1	0	0	0
13	4 21	10	1	100	0	0	1	0	3	0	0	0	0	0	2	0	1
15	3	1	52	100	0	0	1	0	3	1	0	1	0	0	0	0	0
16	25	1	16	100	0	0	1	0	0	0	0	3	0	2	3	0	0
17	5	1	52	100	0	0	1	0	0	0	0	1	0	0	0	0	0
10	2	1	20	43	3	0	0	0	3	0	0	2	0	0	0	0	0
20	63	1	1	33	0	3	0	0	3	0	0	0	0	0	Ő	3	Ő
21	4	2	47	100	0	0	1	1	1	0	0	1	0	0	0	0	1
22	32	1	260	100	0	0	1	0	0	3	0	1	0	0	0	0	1
23	21	42	1	100	0	0	0	0	0	0	0	0	0	0	0	1	0
25	63	2	2	50	3	1	0	0	0	0	0	3	0	0	0	0	0
26	3	1	26	100	0	0	0	0	0	0	0	1	0	0	2	0	0
27	5 11	37	179 242	100	0	0	0	0	0	0	0	1	0	0	0	0	0
29	5	1	84	100	Ő	0	1	1	3	0	0	1	0	0	3	0	Ő
30	3	231	53	100	0	0	3	0	0	0	0	1	0	0	0	0	3
31	5	1	26	100	0	0	1	0	1	0	1	1	0	0	0	0	0
32 33	56	5 25	2	50 100	3	3	1	0	3	0	0	1	1	0	0	0	1
34	4	5	158	38	Ő	3	0	0	0	0	0	2	0	0	Ő	3	0
35	5	310	1	28	0	0	0	0	0	0	0	0	0	0	0	1	0
36	16	347	1	12	0	2	2	0	0	0	0	0	0	0	0	2	0
38	10	58	1	100	Ő	0	0	0	0	0	1	1	0	0	Ő	1	1
39	10	47	10	5	0	0	0	0	0	0	0	0	0	0	0	0	0
40	5	79	147	20	0	3	0	0	3	0	0	0	0	0	0	0	0
42	7	5	189	33	0	3	0	0	3	0	0	2	0	0	0	0	0
43	5	53	2	100	0	0	1	0	1	0	0	1	0	0	0	0	0
44	10	1	2	100	0	0	1	0	0	0	0	1	0	0	1	0	0
45 46	3	20	10	100	0	0	1	0	1	0	0	1	0	1	0	1	1
47	8	1	158	100	Ő	0	0	0 0	0	0	Ő	1	0	0	1	0	0
48	8	1	184	100	0	0	0	0	0	0	0	1	0	0	1	0	0
49	8	1	189	100	0	0	0	0	0	0	0	1	0	0	1	0	0
51	8	1	179	100	0	0	0	0	0	0	0	1	0	0	1	0	0
52	5	1	200	100	0	0	0	0	0	0	0	1	0	0	1	0	0
53	5	1	189	100	0	0	0	0	0	0	0	1	0	0	1	0	0
54 55	5 10	1	184	100	0	0	0	0	0	0	0	1	0	0	1	0	0
56	15	42	16	33	3	2	0	0	0	0	0	2	0	0	0	Ő	Ő
57	2	10	85	100	3	0	1	0	3	0	0	1	3	0	1	0	0
58	26	1	37	97	0	0	1	0	3	1	0	1	0	1	3	0	1
59 60	5 47	5	10	44	3	0	1	1	0	0	0	1	0	1	0	0	0
61	10	5	132	100	3	1	1	0	0	0	0	1	0	0	1	0	0
62	5	84	205	50	0	3	0	0	0	0	0	2	0	0	0	0	0
63 64	3	37	37	100 1E	0	0	1	0	0	0	0	0	1	0	1	0	0
	0	1-1/		10	0		0	0	0	0	0	0	0	0	0	0	U

A

	Fish	Duck	Enlarge	Diminish	Secchi	MaxSlp	MinSlp	Soil	MaxSoil	MinSoil	MedSoil	Cnd	pН	Alk
1	3	0	0	0	150	. 24	6	2	86	7	31	184	7.9	1458
2	0	0	0	0	75	37	7	0	100	88	100	751	7.5	5562
3	0	2	0	0	360	21	5	0	88	3	23.5	46	6.5	132
4	0	2	0	0	360	20	0 12	2	74 82	9	24 71	43	6.9 6.1	207
6	0	0	0	1	60	31	12	0	100	20	42.5	81	6.8	826
7	1	2	1	0	51	27	10	0	40	6	15.5	222	8.1	1938
8	1	3	1	0	84	34	8	0	59	19	29	48	6.5	285
9	3	1	0	0	60	12	10	0	60	37	39.5	51	6.5	374
10	1	1	1	0	250	26	15	0	47	21	35	81 42	6.7 6.1	464
12	0	0	0	0	230	23	6	2	70	23	9.5	175	6.7	732
13	0	0	0	0	52	33	10	0	50	3	19	18	6.0	32
14	0	0	1	0	68	27	18	0	53	4	29.5	20	6.1	50
15	0	1	0	0	59	24	13	0	100	3	60.5	97	6.8	755
10	1	0	2	2	200	28	17	2	12	6	50.5	148	7.0	524 625
18	0	0	0	0	43	41	6	0	50	3	14	481	6.8	3385
19	1	3	0	0	25	18	9	0	52	30	49.5	197	6.8	1161
20	0	0	1	0	40	33	10	0	100	37	69.5	26	5.9	50
21	0	0	0	0	66	15	7	0	45	20	31	37	6.4	305
22	0	0	0	1	43	36	24	0	100	65	89	177	6.9	1580
23	0	0	0	0	123	30	11	1	88	35	63	46	7.0 5.8	55
25	Ő	Ő	0	0	57	30	3	1	60	14	35	37	6.6	60
26	0	0	0	0	20	28	15	0	75	38	65.5	911	6.1	784
27	0	0	0	0	91	25	17	0	58	26	49	108	6.9	908
28	1	1	0	1	97	33	3	0	100	37	91.5	39	6.0	212
29	3	0	0	0	20	20	13	0	80 25	49	5 5 5 5	29 477	5.8 7.4	3883
31	Ő	2	0	0	48	22	15	0	52	40	45	153	6.7	1303
32	0	0	0	0	127	19	6	0	49	33	39	60	6.8	560
33	3	0	1	0	99	38	7	0	57	15	38.5	344	7.6	2930
34	0	0	0	0	360	42	35	2	100	41	61	243	7.7	1421
35	1	0	0	0	360	45 25	4	0	42 84	8	21	278	6.7 73	1314 001
37	0	3	0	1	28	30	7	1	69	12	17	112	6.6	906
38	0	0	0	0	25	32	19	0	100	26	69.5	830	7.4	5757
39	0	2	0	0	200	16	4	0	100	38	70	498	7.5	4892
40	0	0	0	0	119	39	22	0	74	40	53	760	7.9	3662
41	3	3	2	0	140	30 40	22	0	100	9 34	54.5	725	7.4	4650 3520
43	0	Ő	0	0	60	31	9	Ő	100	59	71	265	7.4	2279
44	0	0	0	0	90	17	7	0	88	24	56.5	101	6.8	717
45	1	1	0	0	18	35	10	1	65	33	47	44	6.3	205
46	0	0	0	0	42	29	2	0	100	32	100	143	6.5	1009
48	3	0	0	0	75.5	37	8	0	100	42	63	263	7.2	2038
49	3	Ő	Ő	Ő	47	38	18	Ő	100	48	69	297	7.4	2272
50	3	0	0	0	63	38	15	0	100	48	100	353	7.4	2703
51	3	0	0	0	83	38	14	0	100	59	73.5	367	7.5	2949
52	3	0	0	1	112	39	13	1	100	49	89.5	322	6.9	24/4
54	3	0	0	0	95	44	14	0	100	45	76.5	255	7.2	1594
55	3	Ő	Ő	Ő	97	26	4	Ő	100	58	100	145	7.0	1227
56	0	0	0	0	200	29	8	0	96	54	69.5	266	7.2	2212
57	0	0	0	0	44	12	7	0	67	47	61.5	69	6.4	562
58	0	3	1	0	17	24	21	1	69 71	38	62	173	7.6	1221 471
59 60	3	0	1	0	90 142 5	44 35	13	1	100	о 35	40 47 5	57	6.4	226
61	3	1	0	0	25	34	11	0	100	20	50	47	6.3	402
62	0	0	1	0	187.5	31	22	0	83	47	63.5	390	7.2	2095
63	0	0	0	0	41	24	12	0	52	30	36.5	143	6.3	1177
64	1	0	0	0	55	30	12	0	51	37	46.5	175	6.6	1283

Appendix 4 cont.

Appen	dix 4 d	cont.								
	Ca	Clr	Trb	PO ₄ -P	Part-P	Tot-P	NH ₄ -N	NO ₃ -N	Part-N	Tot-N
1	26	0.006	10	0	3	3	189	5	0.3	0.5
2	110	0.092	13	8	2	12	40	1287	1.1	2.4
4	5	0.024	1	0	3	3	84	18	0.4	0.0
5	2	0.145	5	10	8	18	161	7	0.0	0.2
6	7	0.150	18	10	57	67	206	3	0.1	0.3
7	24	0.047	6	5	44	49	115	150	1.3	1.5
8	4	0.289	9	18	77	95	24	10	0.2	0.3
9	5	0.160	28	10	45	55	224	3	0.0	0.2
10	/	0.153	50	5	44	49	150	3	0.2	0.3
12	17	0.092	17	33	34	67	437	1656	1.4	3.5
13	1	0.087	8	3	68	70	245	30	0.1	0.4
14	1	0.088	5	0	34	34	91	3	0.0	0.1
15	12	0.097	3	10	33	43	101	3	0.1	0.2
16	12	0.101	6	3	28	30	140	5	0.0	0.2
17	62	0.101	00 24	0/ 0/	87 125	220	240 1610	4	1.1	1.4
10	19	0.222	500	20	260	280	66	3	0.7	0.8
20	1	0.229	11	5	28	34	147	5	0.2	0.4
21	4	0.224	15	13	85	98	31	1	0.2	0.3
22	28	0.145	18	69	102	171	136	3	1.1	1.3
23	15	0.108	17	43	94	137	224	1	0.3	0.5
24	1	0.156	15	5	19 18	24	462	4	0.0	0.5
26	40	0.143	80	3	269	271	1476	2	0.0	1.5
27	9	0.081	11	53	93	146	84	1	0.2	0.3
28	2	0.156	7.7	92	33	125	238	4	0.3	0.5
29	0	0.186	65	23	139	162	280	2	0.1	0.4
30	27	0.176	10	74	627	701	3290	20	0.3	3.6
31	18	0.119	100	18	89	107	402	2	0.4	0.8
33	41	0.072	3.3	5	10	15	388	10	11	1.5
34	26	0.052	1.9	18	4	21	31	417	0.9	1.4
35	34	0.027	2	15	18	34	206	1538	1.6	3.3
36	25	0.058	1.2	3	7	9	157	1334	1.4	2.8
37	11	0.219	91	10	20	30	234	9	0.0	0.3
38 39	116	0.184	15.5	906	3 69	909	1955	11	1.6	3.0 1.6
40	139	0.075	2.8	8	8	15	143	484	2.3	2.9
41	127	0.098	7.2	69	29	98	87	7	0.7	0.8
42	161	0.066	3.6	0	9	9	56	389	1.6	2.0
43	38	0.074	1.8	5	7	12	0	6	0.7	0.7
44	10	0.125	16	8	78	85	126	4	0.4	0.4
45	2	0.130	32 34	216	231	24 I 442	423	2	0.0	0.7
47	22	0.150	6	331	53	384	2794	3	0.6	3.4
48	27	0.114	14.3	354	265	619	0	0	1.1	1.1
49	24	0.174	14.7	1300	377	1677	4287	2	0.0	4.3
50	34	0.158	20	438	309	747	1392	2	1.4	2.7
51 52	30	0.104	11.6	54Z 377	278	820 485	4024	1	0.0	4.1
53	30	0.231	23	112	100	232	374	4	1.0	1.4
54	19	0.197	3.3	702	57	759	2570	9	0.0	2.6
55	13	0.115	8.7	76	94	171	0	0	1.3	1.3
56	40	0.024	3.8	25	17	43	108	1	0.2	0.4
57	6	0.087	24	5	114	119	115	1	0.1	0.3
58	'14 ⊿	0.358	144	422 g	/18 79	1140	94 115	4	0.5	0.6
60	2	0.122	4	5	80	85	14	0	0.1	0.2
61	6	0.093	11	25	130	155	0	0	0.2	0.2
62	32	0.081	14	15	24	40	182	5	0.7	0.8
63	12	0.238	16	25	118	143	1556	1	0.1	1.7
64	15	0.167	14	20	99	119	77	2	0.2	0.2

LL.	DAree	110	A	MayDan	MadDam	Fluet	Deele	M/all	0.4	- F	LITMa	LITMA	A 14	DietMet	DistDaad
	PArea	MArea	Avgvvia	MaxDep	меарер	FIUCL	Drain	vveii	Ouli	ini -	UTIVIN	UTIVIE	AIL	Distvat	DISIROAD
1	0.9732	0.9841	1.0000	0.7575	0.8537	0	0	3	3	0	0.8456	0.0593	0.9466	0.5334	0.7162
2	0.5365	0.6621	1.0000	0.3770	0.4895	0	0	0	3	3	0.8705	0.0039	0.5997	0.4749	0.3761
3	0 5601	0 5820	0.5609	0 2939	0 3144	0	0	0	3	3	0 8884	0 5470	0 9522	0.0186	0.6396
	0.0001	0.0020	0.0000	0.2000	0.0000	0		0	2	2	0.0001	0.0170	0.0022	0.0100	0.0000
4	0.7319	0.4725	0.1301	0.6358	0.6886	0	0	0	3	3	0.8885	0.5474	0.9522	0.0186	0.6099
5	0.5897	0.6311	0.6664	0.2578	0.2380	0	0	3	3	3	0.8755	1.0000	0.6330	0.7112	0.0342
6	0.5730	0.4447	0.1995	0.5354	0.5545	1	0	3	0	0	0.7505	0.9201	0.5253	1.0000	0.0910
7	0 4957	0 5054	0.3873	0 5479	0 5934	0	0	3	3	0	0 7587	0 6773	0 5761	0 5585	0 5284
	0.6527	0.6604	0.6110	0.7760	0.0001	1	0	2	0	0	0 5162	0 4270	0.4011	0 1451	0.0242
0	0.0557	0.0094	0.0119	0.7760	0.0470	1	0	3	0	0	0.5105	0.4376	0.4211	0.1451	0.0342
9	0.6529	0.5125	0.2259	0.5990	0.6813	0	0	3	0	0	0.5174	0.4349	0.4043	0.4401	0.6533
10	0.2651	0.2867	0.2259	0.7338	0.7118	0	0	0	3	3	0.5383	0.5501	0.5880	0.5334	0.7035
11	0.3957	0.5564	0.9242	0.1951	0.2613	0	0	0	3	3	0.5367	0.6026	0.4532	0.4749	0.2784
12	0 4314	0 5125	0 5609	0 4078	0 4805	Ó	0	0	3	3	0.6330	0 2665	0 3008	0 4 4 0 1	0 5725
40	0.4014	0.0120	0.0005	0.4070	0.4000	4	4	0	2	0	0.0000	0.2000	0.0000	0.7701	0.0720
13	0.2155	0.3625	0.4265	0.4300	0.2784	1	1	0	3	0	0.5363	0.6460	0.5997	0.2224	0.4521
14	0.4354	0.5241	0.5609	0.6760	0.7118	1	0	3	0	0	0.5196	0.6462	0.5639	0.7963	0.5055
15	0.4658	0.2771	0.0909	0.7362	0.6460	0	0	3	0	0	0.4525	0.7075	0.4374	0.3528	0.0342
16	0 0136	0 1535	0 1517	0 2198	0 2555	0	1	0	0	3	0 3519	0 7577	0 2429	0.0677	0 3761
17	0.2651	0 1462	0.0721	0.2905	0.2609	1		0	0	0	0 2724	0 7124	0.5252	0.6574	0.0010
11	0.2001	0.1402	0.0731	0.2095	0.3090	1	0	0	0	0	0.3734	0.7124	0.5255	0.0574	0.0910
18	0.2401	0.3877	0.5131	0.5161	0.5793	2	0	0	0	0	0.3797	0.7038	0.5385	0.2224	0.3761
19	0.5432	0.2771	0.0909	0.5385	0.9578	0	0	3	0	0	0.4326	0.5971	0.4532	0.8653	0.0000
20	0.7179	0.7345	0.7246	0.8819	1.0000	0	0	3	3	3	0.4012	0.5988	0.4833	0.6221	0.7435
21	0 4 1 1 4	0 5308	0 6664	0 5385	0 6074	0	0	0	0	0	0 3484	0 7003	0 4374	0 3257	0 5725
21	0.4114	0.0000	0.0004	0.0000	0.0074	1	1	0	2	0	0.0404	0.7000	0.4074	0.6574	0.0720
22	0.0000	0.0000	0.0204	0.2650	0.3117	1	1	0	3	0	0.2005	0.9400	0.4374	0.0574	0.4204
23	0.3514	0.5149	0.7868	0.5194	0.5834	2	0	0	0	0	0.3842	0.8550	0.4211	0.3368	0.6099
24	0.4578	0.4046	0.2541	0.5902	0.7275	0	0	0	0	0	0.4112	0.9022	0.5761	0.1667	0.3320
25	0.6584	0.5858	0.3507	0.8975	0.5934	2	0	0	3	0	0.4112	0.9037	0.5761	0.1667	0.0342
26	0 1343	0 3007	0 3873	0 2806	0 3144	1	1	0	0	0	0 3825	0 9443	0 4374	0 5281	0 3761
27	0 4708	0.0620	0.0000	0.4040	0 4962	0	0	3	3	0	0 4303	0.0438	0 5117	0.4683	0.0342
21	0.4730	0.0023	0.0000	0.4040	0.4302	0	0	0	5	0	0.4003	0.9400	0.0117	0.4000	0.0042
28	0.7308	0.7670	0.8532	0.7481	0.9079	0	0	3	0	0	0.4607	0.8949	0.4374	0.7001	0.0910
29	0.4245	0.3510	0.1995	0.4761	0.4805	0	0	0	3	- 3	0.4547	0.8871	0.4833	0.7001	0.6099
30	0.5730	0.6004	0.5609	0.0000	0.0411	0	1	0	0	0	0.5225	0.8441	0.4374	0.6735	0.9190
31	0.6541	0.6694	0.6119	0.3964	0.4387	0	0	0	3	0	0.5615	0.8834	0.5761	0.5679	0.4802
32	0 4380	0 5743	0 8532	0 6413	0 5248	0	0	0	0	0	0 5744	0 8423	0 4977	0 3727	0 1936
22	0.7001	0.0710	1 0000	0.0110	0.0210	2	2	0	2	ő	0.0507	0.0120	0.1077	0.0121	0.1000
33	0.7921	0.0010	1.0000	0.0014	0.5220	2	5	0	5	0	0.9597	0.3730	0.0103	0.4401	0.3320
34	0.5247	0.6327	0.8532	0.3611	0.3225	3	0	0	3	3	0.9712	0.2784	0.6642	0.5814	0.5284
35	0.4635	0.5330	0.5609	0.5417	0.4411	0	0	3	3	3	0.9891	0.3662	0.8672	0.0677	0.9899
36	0.8955	0.9221	1.0000	0.9259	0.9374	4	2	0	3	3	0.9892	0.3662	0.8737	0.0677	1.0000
37	0 4669	0 5584	0 6664	0 4040	0 5007	0	0	0	3	3	1 0000	0 4765	1 0000	0 2224	0.0642
	0.4000	0.0004	1 0000	0.4040	0.0007	0	0	0	0	2	0.0040	0.4700	0.5540	0.2224	0.0042
38	0.5319	0.8925	1.0000	0.3156	0.3117	0	0	0	0	3	0.9613	0.6925	0.5513	0.5585	0.7360
39	0.8290	0.8708	1.0000	0.1040	0.1350	0	0	0	0	0	0.9613	0.6965	0.5761	0.5585	0.4521
40	0.8550	0.8622	0.7997	0.7645	0.6886	4	0	0	3	3	0.9501	0.6926	0.6741	0.3821	0.2784
41	0.3693	0.2354	0.1098	0.2939	0.3749	1	0	0	3	3	0.9499	0.6967	0.6935	0.3821	0.1936
42	0.9439	0.9611	1.0000	0.9966	0.8686	4	0	3	3	3	0.9497	0.7486	0.6221	0.9323	0.5055
13	0 / 3/ 1	0.5306	0.6664	0 4602	0 5312	2	0	3	0	0	0 4521	0.2750	0 1653	0.6025	0 1036
	0.4341	0.5550	0.0004	0.4032	0.5512	2	0	5	0	0	0.4521	0.2750	0.1000	0.0023	0.1350
44	0.5755	0.5968	0.5609	0.4930	0.5051	0	0	0	0	0	0.3/1/	0.3990	0.0730	0.5334	0.3761
45	0.2811	0.4505	0.6119	0.0000	0.0000	1	0	0	0	0	0.1863	0.3966	0.0730	0.7758	0.6925
46	0.6056	0.6245	0.5609	0.2624	0.3412	1	0	0	0	0	0.0110	0.4159	0.0000	0.3199	0.7263
47	0 6612	0 5763	0.3163	0 5754	0.5183	0	1	0	3	3	0 0070	0 4135	0 0000	0 0000	0.0342
40	0.0012	0.0100	0.0100	0.0701	0.0100	0		0	2	2	0.0070	0.1100	0.0000	0.0000	0.0012
40	0.0359	0.5172	0.0410	0.5932	0.7310	0	0	0	3	3	0.0054	0.4135	0.0000	0.0000	0.5969
49	0.5483	0.6621	1.0000	0.3366	0.3438	0	1	0	3	3	0.0037	0.4139	0.0000	0.0000	0.6925
50	0.6847	0.7249	0.7246	0.4337	0.3306	0	0	0	3	3	0.0034	0.4122	0.0000	0.0000	0.5534
51	0.4777	0.3807	0.1995	0.6134	0.6922	0	0	0	3	3	0.0044	0.4124	0.0000	0.0000	0.6099
52	0 5641	0 5724	0 5131	0 5290	0.6384	Ó	0	0	3	3	0 0054	0 4123	0 0000	0 0000	0 5534
52	0.0011	0.6721	0.6110	0.0200	0.0001	0	0	0	2	2	0.0066	0.1120	0.0000	0.0000	0.0001
53	0.4669	0.5543	0.6119	0.3848	0.4458	0	0	0	3	3	0.0066	0.4120	0.0000	0.0000	0.0342
54	0.6623	0.6075	0.4265	0.5902	0.5954	0	0	0	3	3	0.0068	0.4128	0.0379	0.0000	0.0342
55	0.7569	0.5895	0.2541	0.8006	0.9277	1	0	0	0	0	0.0000	0.4131	0.0000	0.2541	0.6809
56	0.3655	0.5396	0.8532	0.4587	0.4575	0	2	0	3	3	0.2645	0.0000	0.0730	0.2224	0.5055
57	0 4482	0 4752	0 4 2 6 5	0 5354	0.6573	0	0	0	0	0	0 4517	0 3953	0 1926	0 5058	0.0910
= 0	0 10/0	0.2000	0.7200	0.0004	0.1720	0	4	2	0	0	0.4504	0.0000	0.1020	0.0000	0.4204
50	0.1049	0.2298	0.2041	0.0925	0.1738	0	1	3	3	0	0.4521	0.30/0	0.1920	0.5058	0.4204
59	0.2900	0.2298	0.1301	0.8330	0.8746	3	0	0	0	0	0.4935	0.2774	0.4043	0.5585	0.5055
60	0.9491	0.9437	0.9242	1.0000	0.9778	0	1	3	0	0	0.2371	0.2859	0.0379	0.7559	0.5284
61	0.4518	0.5101	0.5131	0.3926	0.4340	0	0	3	0	0	0.5535	0.2724	0.3302	0.7165	0.3761
62	1.0000	1.0000	0.9242	0.7067	0.8323	4	0	0	3	3	0.5366	0.2666	0.3498	0.4000	0.4802
63	0 2322	0.4013	0.5131	0.4481	0 4759	n	0	3	3	0	0 5369	0.2719	0.4043	0.4000	0 4204
64	0 3057	0 4269	0 3873	0 7067	0 8430	1	0 0	۰ ۱	2		0 5330	0 2812	0 4042	0 2055	0.2784
	0.0001	0.7200	0.0070	0.1001	0.0430		0	0			0.0000	0.2012	0.4040	0.2000	0.2104

Appendix 5. Transformed values for the 56 explanatory variables for both pond and pond margin data sets.

Apper	ndix 5 co	nt.															
	DistAgr	DistBui	DistForest	Age	Fire	Water	Drink	Laund	Fence	Lime	Garb	Renov	Herbic	StonyMarg	Cut	Fel	1
1	0.3910	0.8902	0.1706	0.0947	0	3	0	0	3	0	0	C) 0	()	0	0
2	0.4333	0.6853	0.0000	0.4737	3	1	0	0	0	0	1	1)	0	2
3	1 0000	0.0070	0.0000	0.4042	3	0	0	0	0	3	0	1	, <u> </u>		, i	0	0
5	0.0000	0.0000	0.0752	1 0000	0	0	0	0	0	0	0	1	0	()	3	0
6	0.5382	0.0000	0.3187	1.0000	3	Ő	1	1	0	Ő	0	2	2 0)	0	õ
7	0.0000	0.0000	1.0000	1.0000	3	0	1	0	3	0	0	1	0	-	1	3	0
8	0.5382	0.8298	0.0000	1.0000	0	0	0	0	0	0	0	1	0	()	2	2
9	0.5563	0.0000	0.0000	1.0000	3	3	1	0	3	0	0	1	0	()	1	0
10	0.0000	0.8993	0.2048	0.2737	0	1	0	0	0	0	0	1	0	()	0	0
11	0.6248	0.0000	0.7961	1.0000	0	0	0	0	0	0	0	1	0	()	3	0
12	0.5178	0.7786	0.0000	1.0000	0	0	0	0	1	0	1	1				0	0
13	0.3332	0.7425	0.0000	1.0000	0	0	1	0	3	0	0	1))	2	0
14	0.0720	0.0000	0.2337	1.0000	0	0	1	0	3	1	0	1			,)	0	0
16	0.7025	0.0000	0.4007	1.0000	0	0	1	0	0	0	0	3	, 0 3 0		2	3	õ
17	0.3910	0.0000	0.6153	1.0000	0	0	1	0	0	0	0	1	0)	0	0
18	0.7774	0.0000	0.4879	1.0000	0	0	1	1	1	0	3	2	2 0	()	1	0
19	0.0000	0.0000	0.6509	0.4000	3	0	0	0	3	0	0	1	0	()	0	0
20	0.8564	0.0000	0.0000	0.2947	0	3	0	0	3	0	0	C) 0	()	0	3
21	0.3332	0.5875	0.5965	1.0000	0	0	1	1	1	0	0	1	0	()	0	0
22	0.7443	0.0000	0.0000	1.0000	0	0	1	0	0	3	0	1	0	()	0	0
23	0.3910	0.6364	0.9778	1.0000	0	0	1	1	1	0	0	1		()	1	0
24	0.0720	0.8495	0.0000	0.4737	0	1	0	0	0	0	0	1	2 U))	0	0
25	0.0004	0.0000	0.0732	1 0000	0	0	0	0	0	0	0	1	, 0		,)	2	0
27	0.3910	0.8403	0.8463	1.0000	0	0	0	0	0	0	0	1	0	()	0	õ
28	0.5563	0.6853	0.9030	1.0000	0	0	1	0	3	0	1	1	0	()	0	0
29	0.3910	0.0000	0.7045	1.0000	0	0	1	1	3	0	0	1	0	()	3	0
30	0.2415	0.9712	0.6188	1.0000	0	0	3	0	0	0	0	1	0	()	0	0
31	0.3910	0.0000	0.4879	1.0000	0	0	1	0	1	0	1	1	0	()	0	0
32	0.3910	0.6853	0.7549	0.4737	0	0	1	0	0	0	0	C) 0	()	1	0
33	0.4333	0.8117	0.0752	1.0000	3	3	1	0	3	0	0	1	1	()	0	0
34	0.3332	0.6853	0.8228	0.3474	0	3	0	0	0	0	0	2	2 0)	0	3
30	0.3910	1 0000	0.0000	0.2421	0	2	0	0	0	0	0) U))	0	2
37	0.0240	0 7989	0.0000	1 0000	0	0	2	0	0	0	0	1	, 0 1 0		,)	0	0
38	0.5382	0.8728	0.0000	1.0000	0	Ő	0	Ő	0	0	1	1	0)	0	1
39	0.5382	0.8576	0.3187	0.0000	0	0	0	0	0	0	0	C) 0	()	0	0
40	0.3910	0.8949	0.8093	0.1579	0	3	0	0	3	0	0	C) 0	()	0	0
41	0.5382	0.0000	0.8901	1.0000	0	3	1	0	3	0	0	1	3	()	3	0
42	0.4667	0.6853	0.8565	0.2947	0	3	0	0	3	0	0	2	2 0	()	0	0
43	0.3910	0.8663	0.0752	1.0000	0	0	1	0	1	0	0	1	0	()	0	0
44	0.5382	0.0000	0.0752	1.0000	0	0	1	0	0	0	0	1		()	1	0
45	0.2415	0.0140	0.3187	1.0000	0	0	3	0	1	0	0			())	1	1
40	0.2413	0.0102	0.4495	1.0000	0	0	0	0	0	0	0	1	, 0		,)	1	0
48	0 4943	0.0000	0.8514	1.0000	0	0	0	0	0	0	0	1	0	(,)	1	õ
49	0.4943	0.0000	0.8565	1.0000	Ő	Ő	Ő	Ő	0	Ő	0	1	0)	1	õ
50	0.3910	0.0000	0.7891	1.0000	0	0	0	0	0	0	0	1	0	()	1	0
51	0.4943	0.0000	0.8463	1.0000	0	0	0	0	0	0	0	1	0	()	1	0
52	0.3910	0.0000	0.8671	1.0000	0	0	0	0	0	0	0	1	0	()	1	0
53	0.3910	0.0000	0.8565	1.0000	0	0	0	0	0	0	0	1	0	()	1	0
54	0.3910	0.0000	0.8514	1.0000	0	0	0	0	0	0	0	1	0	()	1	0
55	0.5382	0.0000	0.2048	1.0000	0	0	0	0	0	0	0	1		(ן א	1	0
50	0.0133	0.0495	0.4007	1 0000	ა ა	2	1	0	ں د	0	0	4	. U		,)	1	0
52	0.0000	0.7425	0.7007	0.0000	3 0	0	1	0	3 2	1	0	1	∣ 0		,	3	0
59	0.3910	0.6853	0.3187	0.7579	3	0	1	1	0	0	0	1	. 0 0		i i	1	0
60	0.8083	0.0000	0.0000	0.4105	0	3	0	0	0	0	0) 0	()	0	0
61	0.5382	0.6853	0.7891	1.0000	3	1	1	0	0	0	0	1	0	()	1	0
62	0.3910	0.8993	0.8718	0.4737	0	3	0	0	0	0	0	2	2 0	()	0	0
63	0.2415	0.8403	0.5524	1.0000	0	0	1	0	0	0	0	C) 1	()	1	0
64	0.3910	0.9391	0.0000	0.1053	0	1	0	0	0	0	0	C) 0	()	0	0

	Graze	Fish	Duck	Enlarge	Diminish	MaxSlp	MinSlp	Soil	MaxSoil	MinSoil	MedSoil	Secchi	Cnd	pН
1	0	3	C) 0	0	0.3014	0.2760	2	0.6989	0.0988	0.3161	0.7805	0.5754	0.9291
2	0	0	C) 0	C	0.6132	0.3271	0	1.0000	1.0000	1.0000	0.6123	0.9484	0.7667
3	0	0	2	2 0	0	0.2273	0.2193	0	0.7374	0.0337	0.2276	1.0000	0.2201	0.3587
4	0	1	2	2 0	0	0.3503	0.2760	2	0.4949	0.1302	0.2336	1.0000	0.2035	0.5202
5	0	0	0) 0	0	0.3014	0.5273	1	0.6259	0.4706	0.7372	0.5822	0.1244	0.1510
6	1	0	0) 0	1	0.4711	0.5273	0	1.0000	0.2907	0.4454	0.5599	0.3624	0.4817
7	1	1	2	2 1	C	0.3747	0.4561	0	0.1082	0.0828	0.1293	0.5224	0.6248	1.0000
8	0	1	3	3 1	C	0.5425	0.3737	0	0.2949	0.2769	0.2928	0.6393	0.2306	0.3676
9	1	3	1	0	C	0.0000	0.4561	0	0.3066	0.5062	0.4124	0.5599	0.2456	0.3452
10	0	0	C) 1	C	0.3503	0.6187	0	0.1697	0.3044	0.3619	0.6026	0.3624	0.4339
11	0	1	1	0	1	0.3259	0.0000	0	0.1424	0.3313	0.3045	0.9079	0.1977	0.1605
12	0	0	C) 0	0	0.3989	0.2760	2	0.4362	0.0988	0.0526	0.5960	0.5622	0.4513
13	1	0	C) 0	0	0.5188	0.4561	0	0.1985	0.0337	0.1728	0.5269	0.0000	0.1030
14	0	0	C) 1	C	0.3747	0.6967	0	0.2289	0.0503	0.2987	0.5892	0.0233	0.1652
15	0	0	1	0	0	0.3014	0.5596	0	1.0000	0.0337	0.6340	0.5560	0.4087	0.4687
16	0	0	() 2	2	0.3989	0.6719	2	0.4650	0.0828	0.5312	0.8520	0.5183	0.5584
17	0	1	() ()	0	0.4711	0.4929	0	0.2394	0.1146	0.2928	0.4732	0.3461	0.1888
18	0	0	() ()	0	0.7063	0.2760	0	0.1985	0.0337	0.1103	0.4839	0.8297	0.4817
19	0	1	3	s 0		0.1524	0.4165	0	0.2186	0.4216	0.5206	0.3675	0.5933	0.4730
20	0	0	() 1		0.5188	0.4561	0	1.0000	0.5062	0.7228	0.4678	0.0831	0.0836
21	1	0	(0.0766	0.3271	0	0.1513	0.2907	0.3161	0.5822	0.1669	0.2954
22	1	0				0.5897	0.8240	0	1.0000	0.7994	0.9039	0.4839	0.5052	0.5074
23	0	0				0.4950	0.4929	1	0.3000	0.5176	0.5504	0.0091	0.0075	0.5500
24	0	0) 0) 0		0.4471	0.4929	1	0.7374	0.4025	0.0090	0.7317	0.2201	0.0199
26	0	0) 0) 0		0.3080	0.0007	0	0.5000	0.2000	0.5015	0.3400	1 0000	0.3343
27	0	0) 0		0.3259	0.0107	0	0.0100	0.3708	0.0000	0.6585	0.4364	0.1734
28	0	1	1	, 0 I 0	1	0.5188	0.0713	0	1 0000	0.5062	0.9261	0.6739	0.4004	0.1367
29	0	3	Ċ	0		0 2025	0.5596	Ő	0 5914	0.6398	0.5935	0.3756	0 1087	0,0000
30	3	0	Ċ) 0	0	0.2521	0.0837	0	0.0000	0.0000	0.0000	0.0000	0.8274	0.7469
31	0	0	2	2 0	0	0.2521	0.6187	0	0.2186	0.5408	0.4726	0.5086	0.5270	0.4513
32	0	0	C) 0	0	0.1775	0.2760	0	0.1887	0.4585	0.4068	0.7395	0.2863	0.4989
33	1	3	Ċ) 1	C	0.6366	0.3271	0	0.2721	0.2201	0.4013	0.6788	0.7406	0.8139
34	0	0	C) 0	0	0.7293	1.0000	2	1.0000	0.5522	0.6391	1.0000	0.6486	0.8528
35	0	1	C) 0	0	0.7980	0.1559	0	0.1250	0.1146	0.1973	1.0000	0.6842	0.4557
36	0	1	C) 0	0	0.3259	0.3737	0	0.6617	0.0988	0.2693	1.0000	0.6442	0.6785
37	2	0	3	3 0	1	0.4471	0.3271	1	0.4221	0.1759	0.1480	0.3909	0.4458	0.4075
38	1	0	C) 0	0	0.4950	0.7202	0	1.0000	0.3708	0.7228	0.3675	0.9751	0.7509
39	0	0	2	2 0	C	0.1020	0.1559	0	1.0000	0.5178	0.7276	0.8520	0.8389	0.7628
40	0	0	C) 0	0	0.6599	0.7853	0	0.4949	0.5408	0.5573	0.7236	0.9516	0.9177
41	1	3	C) 0	0	0.4471	0.3271	0	0.3431	0.1302	0.5417	0.4385	0.9390	0.7469
42	0	3	3	3 2	0	0.6831	0.7853	0	1.0000	0.4706	0.5729	0.7635	0.9589	0.9740
43	0	0	C) 0	0	0.4711	0.4165	0	1.0000	0.7418	0.7372	0.5599	0.6715	0.7469
44	0	0	() ()	0	0.1273	0.3271	0	0.7374	0.3446	0.5935	0.6559	0.4191	0.4817
45	1	1	1		0	0.5662	0.4561	1	0.3685	0.4585	0.4941	0.3029	0.2091	0.2495
46	3	0				0.4231	0.0000	0	1.0000	0.4463	1.0000	0.4786	0.5094	0.3407
41	0	3				0.0300	0.0400	0	1.0000	0.7019	0.6240	0.6139	0.6605	0.6703
40	0	2) 0) 0		0.0132	0.3737	0	1.0000	0.5055	0.0590	0.0100	0.0095	0.0907
50	0	3) 0) 0		0.0000	0.0307	0	1.0000	0.0291	1 0000	0.5033	0.7017	0.7403
51	0	3) 0) 0		0.0000	0.0107	0	1.0000	0.0231	0 7611	0.6364	0.7578	0.7103
52	0	3) 0) 0	1	0.0000	0.5500	1	1.0000	0.7410	0.7011	0.0004	0.7370	0.7300
53	0	3	() 0		1 0000	0.8785		1 0000	0 7805	0.0000	0.5749	0 7061	0.5202
54	0	3	Ċ	0	0	0 7752	0 5900	0	1 0000	0 5967	0 7895	0.6689	0.6613	0.6622
55	Ő	3	Ċ	0	, C	0.3503	0.1559	Ő	1.0000	0.7319	1.0000	0.6739	0.5130	0.5584
56	0	0	() 0	0	0.4231	0.3737	0	0.9061	0.6918	0.7228	0.8520	0.6725	0.6662
57	0	0	() 0	C C	0.0000	0.3271	0	0.3948	0.6184	0.6441	0.4890	0.3216	0.3045
58	1	0	3	3 1	C	0.3014	0.7645	1	0.4221	0.5178	0.6491	0.2922	0.5592	0.7944
59	0	0	0) 1	0	0.7752	0.5596	1	0.4505	0.0667	0.4726	0.6714	0.2986	0.3898
60	0	3	C) 1	C	0.5662	0.3271	1	1.0000	0.4825	0.4994	0.7679	0.2734	0.2954
61	0	3	1	0	0	0.5425	0.4929	0	1.0000	0.2907	0.5259	0.3675	0.2254	0.2402
62	0	0	0) 1	C	0.4711	0.7853	0	0.6437	0.6184	0.6640	0.8359	0.7739	0.6334
63	0	0	() 0	0	0.3014	0.5273	0	0.2186	0.4216	0.3789	0.4732	0.5094	0.2449
64	0	1	C) 0	0	0.4471	0.5273	0	0.2084	0.5062	0.4887	0.5398	0.5622	0.3809

Appendix 5 cont.

Append	lix 5 cont.										
rr · ·	Alk	Ca	Clr	Trb	PO₄-P	Part-P	Tot-P	NH₄-N	NO3-N	Part-N	Tot-N
1	0.5851	0.6302	0.0000	0.4768	0.0000	0.0102	0.0000	0.5136	0.6174	0.3951	0.4353
2	0.9891	0.9376	0.3578	0.5062	0.3929	0.0481	0.1825	0.3071	0.9831	0.7648	0.8546
3	0.0970	0.2568	0.0870	0.0000	0.0000	0.0102	0.0000	0.3441	0.8983	0.4946	0.5855
4	0.1946	0.3313	0.0250	0.1149	0.0000	0.0102	0.0000	0.3932	0.7003	0.1632	0.1725
5	0.1305	0.2091	0.5254	0.3757	0.4260	0.1177	0.2445	0.4894	0.6424	0.0000	0.1624
6	0.4334	0.3833	0.5398	0.5459	0.4260	0.4592	0.4551	0.5271	0.5871	0.2035	0.3290
7	0.6666	0.6183	0.1876	0.4178	0.3468	0.4064	0.4024	0.4398	0.8395	0.8187	0.7443
8	0.2056	0.2791	0.8708	0.4600	0.4912	0.5203	0.5124	0.2277	0.6637	0.3789	0.3046
9	0.2556	0.3346	0.5679	0.5964	0.4260	0.4109	0.4218	0.5394	0.5961	0.0030	0.2493
10	0.2994	0.3933	0.5483	0.4047	0.3468	0.4064	0.4024	0.4792	0.5871	0.2906	0.3356
11	0.1665	0.2421	0.2361	0.6616	0.2706	0.4749	0.4474	0.4861	0.6285	0.3458	0.3825
12	0.4035	0.5493	0.3578	0.5379	0.5640	0.3575	0.4551	0.6425	1.0000	0.8423	0.9469
13	0.0000	0.0443	0.3404	0.4434	0.2706	0.4942	0.4625	0.5531	0.7320	0.1/1/	0.3665
14	0.0197	0.0808	0.3439	0.3950	0.0000	0.3549	0.3411	0.4048	0.5961	0.0159	0.0000
15	0.4111	0.4763	0.3750	0.3120	0.4260	0.3490	0.3804	0.4207	0.5871	0.2557	0.2592
10	0.3257	0.4779	0.3885	0.4218	0.2706	0.3204	0.3257	0.4684	0.6232	0.0232	0.1352
17	0.3695	0.3561	0.5707	0.6820	0.3929	0.5461	0.5124	0.5531	0.6039	0.7788	0.7130
10	0.8341	0.8075	0.0290	0.5789	0.0878	0.0231	0.0043	0.8469	0.0174	0.9119	0.9387
19	0.5225	0.5056	0.7250	0.9103	0.3000	0.7793	0.0959	0.3597	0.5901	0.0019	0.3740
20	0.0197	0.0910	0.7419	0.4002	0.3400	0.5250	0.5411	0.4757	0.0174	0.3528	0.3040
21	0.2175	0.2000	0.7303	0.5210	0.4519	0.5412	0.5177	0.2569	0.5497	0.3043	0.2070
22	0.0078	0.0450	0.0204	0.5459	0.0504	0.5797	0.0119	0.4040	0.5871	0.7794	0.0930
23	0.4921	0.5252	0.4110	0.5413	0.3468	0.3024	0.3730	0.5594	0.5504	0.4432	0.4024
24	0.0249	0.1019	0.5508	0.5240	0.3408	0.2555	0.2099	0.0309	0.0039	0.0001	0.4421
26	0.4204	0.7157	0.1708	0.0110	0.0000	0.2441	0.2440	0.4732	0.5768	0.0212	0.7381
27	0.4575	0.4330	0.3190	0.7140	0.6207	0.7604	0.5858	0.3032	0.5304	0.3564	0.7001
28	0 1582	0 1624	0.5568	0.4450	0.6846	0.3541	0.5593	0.5487	0.6110	0 4059	0.4681
29	0.0779	0.0000	0.6373	0.6909	0.5207	0.6445	0.6026	0.5736	0.5768	0.2319	0.3990
30	0.8764	0.6363	0.6112	0.4768	0.6589	0.9706	0.8515	0.9584	0.7054	0.4357	0.9577
31	0.5538	0.5647	0.4469	0.7387	0.4912	0.5509	0.5327	0.6295	0.5646	0.4622	0.5643
32	0.3406	0.3031	0.2859	0.4586	0.3468	0.3430	0.3552	0.3267	0.5497	0.2771	0.2158
33	0.7899	0.7207	0.2859	0.3317	0.3468	0.1495	0.2163	0.6241	0.6606	0.7710	0.7349
34	0.5779	0.6348	0.2081	0.2380	0.4912	0.0230	0.2687	0.2589	0.9077	0.7289	0.7182
35	0.5561	0.6828	0.1007	0.2481	0.4732	0.2439	0.3411	0.5271	0.9950	0.8782	0.9341
36	0.4802	0.6255	0.2321	0.1149	0.2706	0.0907	0.1404	0.4861	0.9855	0.8380	0.8979
37	0.4569	0.4646	0.7186	0.7283	0.4260	0.2624	0.3257	0.5464	0.6574	0.0133	0.2726
38	1.0000	0.9330	0.6321	0.5286	0.9570	0.0000	0.8956	0.8765	0.6667	0.8906	0.9547
39	0.9486	0.9087	0.4779	0.5192	0.5331	0.4987	0.5124	0.5370	0.6110	0.8465	0.7575
40	0.8583	0.9704	0.2971	0.3065	0.3929	0.1091	0.2163	0.4721	0.9177	1.0000	0.9056
41	0.9459	0.9526	0.3784	0.4366	0.6504	0.3265	0.5177	0.3991	0.6424	0.6613	0.5902
42	0.8461	1.0000	0.2632	0.3444	0.0000	0.1344	0.1404	0.3356	0.9031	0.8842	0.8133
43	0.7144	0.7085	0.2934	0.2268	0.3468	0.1001	0.1825	0.0000	0.6335	0.6446	0.5466
44	0.3984	0.4466	0.4656	0.5323	0.3929	0.5231	0.4953	0.0000	0.6039	0.4959	0.4026
45	0.1533	0.1548	0.4990	0.6115	0.4260	0.7534	0.6700	0.4527	0.5646	0.5959	0.5498
46	0.0239	0.4028	0.8149	0.6183	0.7866	0.7488	0.7731	0.6374	0.6335	0.7276	0.7140
47	0.6621	0.5996	0.5398	0.4136	0.8371	0.4463	0.7492	0.9326	0.5871	0.5818	0.9383
48	0.6814	0.6363	0.4311	0.5192	0.8451	0.7835	0.8303	0.0000	0.4569	0.7702	0.6554
49	0.7135	0.6167	0.6059	0.5224	1.0000	0.8594	1.0000	1.0000	0.5768	0.0257	1.0000
50	0.7655	0.6846	0.5624	0.5580	0.8704	0.8167	0.8623	0.8232	0.5768	0.8374	0.8891
51	0.7919	0.6972	0.3985	0.4945	0.8959	0.7938	0.8782	0.9901	0.5497	0.0599	0.9852
52	0.7309	0.0022	0.5979	0.5740	0.0520	0.5920	0.7007	0.7202	0.5497	0.0092	0.0312
55	0.7211	0.0022	0.7405	0.3904	0.7064	0.0134	0.0035	0.0104	0.6039	0.7432	0.7 140
55	0.0103	0.3720	0.0002	0.3317	0.9207	0.4591	0.8050	0.9195	0.0009	0.0207	0.0743
56	0.3573	0.7107	0.4343	0.3522	0.0029	0.0004	0.3804	0.0000	0.5003	0.3817	0.0004
57	0.3414	0.3674	0.3404	0.5780	0.3468	0.2009	0.5500	0 4308	0.5304	0 2615	0.3700
58	0.5360	0.5160	1 0000	0.7701	0.8662	1 00027	0.0003	0 4103	0.6110	0.5532	0.5046
59	0.3026	0 2915	0 7280	1 0000	0.3020	0 5231	0 4953	0 4398	0.5497	0.2623	0.0040
60	0.1678	0.2030	0.4563	0.3629	0.3468	0.5297	0.4953	0.1652	0.5033	0.2731	0.1476
61	0.2698	0.3441	0.3613	0.4849	0.5331	0.6309	0.5961	0.0000	0.0000	0.3006	0.1613
62	0.6895	0.6761	0.3190	0.5175	0,4732	0,2951	0,3683	0,5079	0.6232	0.6277	0,5929
63	0.5260	0.4842	0.7624	0.5323	0.5331	0.6100	0.5823	0.8407	0.5497	0.1952	0.7619
64	0.5496	0.5213	0.5871	0.5124	0.5068	0.5724	0.5509	0.3806	0.5768	0.2941	0.2655

Step/		pCCA	Constr. var.	Covariables	IZ	Union	Intersection
order		run				VE	VE
	1	1	А	HGYIW	$A (H\cup G\cup Y\cup I\cup W)$	169	169
	1	2	Н	AGYIW	$H (A \cup G \cup Y \cup I \cup W)$	176	176
	1	3	G	AHYIW	$G (A \cup H \cup Y \cup I \cup W)$	327	327
	1	4	Y	AHGIW	$Y (A \cup H \cup G \cup I \cup W)$	189	189
	1	5	Ι	AHGYW	$I (A \cup H \cup G \cup Y \cup W)$	476	476
	1	6	W	AHGYI	$W (A \cup H \cup G \cup Y \cup I)$	595	595
	\mathbf{r}	7	A 11	CVIII	$(\mathbf{A} - \mathbf{H}) (\mathbf{C} \cdot \mathbf{M} \cdot \mathbf{J} \cdot \mathbf{M})$	246	1
	2	0	AH	GYIW	$(A \cap H) (G \cup Y \cup I \cup W)$	540	1
	2	8	AG	HYIW	$(A \cap G) (H \cup Y \cup I \cup W)$	503	/
	2	9	AY	HGIW	$(A \cap Y) (H \cup G \cup I \cup W)$	360	2
	2	10	AI	HGYW	$(A \cap I)(H \cup G \cup Y \cup W)$	645 769	0
	2	11	AW	HGYI	$(A \cap W) (H \cup G \cup Y \cup I)$	/68	4
	2	12	HG	AYIW	$(H \cap G) (A \cup Y \cup I \cup W)$	504	1
	2	13	HY	AGIW	$(H \cap Y) (A \cup G \cup I \cup W)$	367	2
	2	14	HI	AGYW	$(H \cap I) (A \cup G \cup Y \cup W)$	646	-6
	2	15	HW	AGYI	$(H \cap W) (A \cup G \cup Y \cup I)$	/66	-5
	2	10	GY	AHIW	$(G \cap Y) (A \cup H \cup I \cup W)$	519	3
	2	1/ 10	GI	AHYW	$(G \cap I) (A \cup H \cup Y \cup W)$	839	36
	2	18	GW	AHYI	$(G \cap W) (A \cup H \cup Y \cup I)$	930	8
	2	19	YI	AHGW	$(Y \cap I) (A \cup H \cup G \cup W)$	6//	12
	2	20	YW	AHGI	$(Y \cap W) (A \cup H \cup G \cup I)$	781	-3
	2	21	IW	AHGY	$(I \cap W) (A \cup H \cup G \cup Y)$	1080	9
	3	22	AHG	YIW	$(A \cap H \cap G) (Y \cup I \cup W)$	682	1
	3	23	AHY	GIW	$(A \cap H \cap Y) (G \cup I \cup W)$	539	0
	3	24	AHI	GYW	$(A \cap H \cap I) (G \cup Y \cup W)$	816	0
	3	25	AHW	GYI	$(A \cap H \cap W) (G \cup Y \cup I)$	941	1
	3	26	AGY	HIW	$(A \cap G \cap Y) (H \cup I \cup W)$	698	1
	3	27	AGI	HYW	$(A \cap G \cap I) (H \cup Y \cup W)$	1017	2
	3	28	AGW	HYI	$(A \cap G \cap W) (H \cup Y \cup I)$	1112	2
	3	29	AYI	HGW	$(A \cap Y \cap I) (H \cup G \cup W)$	849	1
	3	30	AYW	HGI	$(A \cap Y \cap W) (H \cup G \cup I)$	955	-1
	3	31	AIW	HGY	$(A \cap I \cap W) (H \cup G \cup Y)$	1252	-1
	3	32	HGY	AIW	$(H \cap G \cap Y) (A \cup I \cup W)$	699	1
	3	33	HGI	AYW	$(H \cap G \cap I) (A \cup Y \cup W)$	1010	0
	3	34	HGW	AYI	$(H \cap G \cap W) (A \cup Y \cup I)$	1110	8
	3	35	HYI	AGW	$(H \cap Y \cap I) (A \cup G \cup W)$	849	0
	3	36	HYW	AGI	$(H \cap Y \cap W) (A \cup G \cup I)$	956	2
	3	37	HIW	AGY	$(H \cap I \cap W) (A \cup G \cup Y)$	1247	2
	3	38	GYI	AHW	$(\mathbf{G} \cap \mathbf{Y} \cap \mathbf{I}) (\mathbf{A} \cup \mathbf{H} \cup \mathbf{W})$	1044	1
	3	39	GYW	AHI	$(G \cap Y \cap W)$ (A \cup H \cup I)	1126	7
	3	40	GIW	AHY	$(G \cap I \cap W) (A \cup H \cup Y)$	1457	6
	3	41	YIW	AHG	$(Y \cap I \cap W) (A \cup H \cup G)$	1275	-3
	4	42	AHGY	IW	$(A \cap H \cap G \cap Y) (I \cup W)$	880	-12
	4	43	AHGI	YW	$(A \cap H \cap G \cap I) (Y \cup W)$	1189	-1
	4	44	AHGW	YI	$(A \cap H \cap G \cap W) (Y \cup I)$	1296	1
	4	45	AHYI	GW	$(A \cap H \cap Y \cap I) (G \cup W)$	1022	0
	4	46	AHYW	GI	$(A \cap H \cap Y \cap W) (G \cup I)$	1132	0
	4	47	AHIW	GY	$(A \cap H \cap I \cap W) (G \cup Y)$	1421	0
	4	48	AGYI	HW	$(A \cap G \cap Y \cap I) (H \cup W)$	1228	2
	4	49	AGYW	HI	$(A \cap G \cap Y \cap W) (H \cup I)$	1311	1
	4	50	AGIW	HY	$(A \cap G \cap I \cap W) (H \cup Y)$	1641	1
	4	51	AYIW	HG	$(A \cap Y \cap I \cap W) (H \cup G)$	1448	-1

Appendix 6. Variation partitioning on six sets of environmental explanatory variables for the pond data set.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	52	HGYI	AW	$(H \cap G \cap Y \cap I) (A \cup W)$	1217	-1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	53	HGYW	AI	$(H \cap G \cap Y \cap W) (A \cup I)$	1316	5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	54	HGIW	AY	$(H \cap G \cap I \cap W) (A \cup Y)$	1629	-4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	55	HYIW	AG	$(H \cap Y \cap I \cap W) (A \cup G)$	1449	3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	56	GYIW	AH	$(G \cap Y \cap I \cap W) (A \cup H)$	1664	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	57	AHGYI	W	$(A \cap H \cap G \cap Y \cap I) W$	1403	13
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	58	AHGYW	Ι	$(A \cap H \cap G \cap Y \cap W) I$	1511	18
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	59	AHGIW	Y	$(A \cap H \cap G \cap I \cap W) Y$	1816	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	60	AHYIW	G	$(A \cap H \cap Y \cap I \cap W) G$	1625	1
562HGYIWA $(H \cap G \cap Y \cap I \cap W) A$ 1849160AHGYIW $A \cap H \cap G \cap Y \cap I \cap W$ 2047-15	5	61	AGYIW	Н	$(A \cap G \cap Y \cap I \cap W) H$	1854	1
6 0 AHGYIW A∩H∩G∩Y∩I∩W 2047 -15	5	62	HGYIW	А	$(H \cap G \cap Y \cap I \cap W) A$	1849	1
$6 0 AHGYIW A \cap H \cap G \cap Y \cap I \cap W 2047 -15$		0				• • • • -	
	6	0	AHGYIW		$A \cap H \cap G \cap Y \cap I \cap W$	2047	-15

Step/	pCCA run	Constr. var.	Covariables		Union	Intersection
order					VE	VE
1	1	Т	GYIW	$T (G\cup Y\cup I\cup W)$	299	299
1	2	G	TYIW	$G (T \cup Y \cup I \cup W)$	384	384
1	3	Y	TGIW	$Y (T\cup G\cup I\cup W)$	86	86
1	4	Ι	TGYW	$I (T \cup G \cup Y \cup W)$	383	383
1	5	W	TGYI	$W (T \cup G \cup Y \cup I)$	257	257
2	6	TG	YIW	$(T \cap G) (Y \cup I \cup W)$	688	5
2	7	TY	GIW	$(T \cap Y) (G \cup I \cup W)$	385	0
2	8	TI	GYW	$(T \cap I) (G \cup Y \cup W)$	696	14
2	9	TW	GYI	$(T \cap W) (G \cup Y \cup I)$	585	29
2	10	GY	TIW	$(G \cap Y) (T \cup I \cup W)$	464	-6
2	11	GI	TYW	$(G \cap I) (T \cup Y \cup W)$	790	23
2	12	GW	TYI	$(G \cap W) (T \cup Y \cup I)$	689	48
2	13	YI	TGW	$(Y \cap I) (T \cup G \cup W)$	488	19
2	14	YW	TGI	$(Y \cap W) (T \cup G \cup I)$	339	-4
2	15	IW	TGY	$(I \cap W) (T \cup G \cup Y)$	667	27
3	16	TGY	IW	$(T \cap G \cap Y) (I \cup W)$	769	1
3	17	TGI	YW	$(T \cap G \cap I) (Y \cup W)$	1109	1
3	18	TGW	YI	$(T \cap G \cap W) (Y \cup I)$	1033	11
3	19	TYI	GW	$(T \cap Y \cap I) (G \cup W)$	805	4
3	20	TYW	GI	$(T \cap Y \cap W) (G \cup I)$	668	1
3	21	TIW	GY	$(T \cap I \cap W) (G \cup Y)$	1004	-5
3	22	GYI	TW	$(G \cap Y \cap I) (T \cup W)$	893	4
3	23	GYW	TI	$(G \cap Y \cap W) (T \cup I)$	767	2
3	24	GIW	TY	$(G \cap I \cap W) (T \cup Y)$	1137	15
3	25	YIW	TG	$(Y \cap I \cap W) (T \cup G)$	781	13
4	26	TGYI	W	$(T \cap G \cap Y \cap I) W$	1214	-3
4	27	TGYW	Ι	$(T \cap G \cap Y \cap W) I$	1112	-1
4	28	TGIW	Y	$(T \cap G \cap I \cap W) Y$	1502	11
4	29	TYIW	G	$(T \cap Y \cap I \cap W) G$	1123	0
4	30	GYIW	Т	$(G \cap Y \cap I \cap W) T$	1268	17
5	0	TGYIW		$T \cap G \cap Y \cap I \cap W$	1643	8

Appendix 7. Variation partitioning on five sets of environmental explanatory variables for the pond margin data

Ord er	Unique component	ue component Ori- VE added by distribution from components of gi- lower order						
of part ial com		nal VE	Order 5 C	Order 4 Or	order 3	Order 2	Order 1	
pon								
ent								
6	$A \cap H \cap G \cap Y \cap I \cap W$	-15				-15 0	distributed	0
5	$(A {\cap} H {\cap} G {\cap} Y {\cap} I) W$	13	-3			10 0	distributed	0
5	$(A \cap H \cap G \cap Y \cap W) I$	18	-3			15 0	distributed	0
5	$(A \cap H \cap G \cap I \cap W) Y$	0	-3			-3 (distributed	0
5	$(A \cap H \cap Y \cap I \cap W) G$	1	-3			-2 (distributed	0
5	$(A \cap G \cap Y \cap I \cap W) H$	1	-3			-2 (distributed	0
5	$(H \cap G \cap Y \cap I \cap W) A$	1	-3			-2 0	distributed	0
4	$(A {\cap} H {\cap} G {\cap} Y) (I {\cup} W)$	-12	+3+2			-7 (distributed	0
4	$(A \cap H \cap G \cap I) (Y \cup W)$	-1				0 0	distributed	0
4	$(A \cap H \cap G \cap W) (Y \cup I)$	1				3 0	distributed	0
4	$(A \cap H \cap Y \cap I) (G \cup W)$	0	+0+2			2 0	distributed	0
4	$(A \cap H \cap Y \cap W) (G \cup I)$	0	+0+3			3 (distributed	0
4	$(A \cap H \cap I \cap W) (G \cup Y)$	0	+0-1			-1 (distributed	0
4	$(A \cap G \cap Y \cap I) (H \cup W)$	2	+0+2			4 (distributed	0
4	$(A \cap G \cap Y \cap W) (H \cup I)$	1	+0+3			4 0	distributed	0
4	$(A \cap G \cap I \cap W) (H \cup Y)$	1	+0-1			00	distributed	0
4	$(\mathbf{A} \cap \mathbf{Y} \cap \mathbf{I} \cap \mathbf{W}) (\mathbf{H} \cup \mathbf{G})$	-1	+0+0			-1 (distributed	0
4	$(H \cap G \cap Y \cap I) (A \cup W)$	-1	+0+2			10	distributed	0
	$(\Pi \cap \mathbf{U} \cap \mathbf{I} \cap \mathbf{W}) (\mathbf{A} \cup \mathbf{V}) ($	5	+0+3			00	distributed	0
4	$(\Pi \cap \bigcup \cap \Pi \cap W) (A \cup I)$	-4	+0-1			-50	distributed	0
4	$(\mathbf{G} \cap \mathbf{Y} \cap \mathbf{I} \cap \mathbf{W}) (\mathbf{A} \cup \mathbf{H})$	1	+0+0	1		1 0	distributed	0
3	$(A \cap H \cap G) (Y \cup I \cup W)$	1		+1+0-2		0 0	distributed	0
3	$(A \cap H \cap Y) (G \cup I \cup W)$	0		+1+1-2		0 0	distributed	0
3	$(A \cap H \cap I) (G \cup Y \cup W)$	0		+0+1+0		1 0	distributed	0
3	$(A \cap H \cap W) (G \cup Y \cup I)$	1		+0+1+1		3 0	distributed	0
3	$(A \cap G \cap Y) (H \cup I \cup W)$	1		+1+1-2		1 0	distributed	0
3	$(A \cap G \cap I) (H \cup Y \cup W)$	2		+0+1+0		3 (distributed	0
3	$(A \cap G \cap W) (H \cup Y \cup I)$	2		+0+1+1		4 0	distributed	0
3	$(A {\cap} Y {\cap} I) (H {\cup} G {\cup} W)$	1		+0+1+1		3 0	distributed	0
3	$(A \cap Y \cap W) (H \cup G \cup I)$	-1		+0+1+1		1 0	distributed	0
3	$(A \cap I \cap W) (H \cup G \cup Y)$	-1		+0+0+0		-1 (distributed	0
3	$(H \cap G \cap Y) (A \cup I \cup W)$	1		+2+0-2		1 0	distributed	0
3	$(H \cap G \cap I) (A \cup Y \cup W)$	0		+0-1+0		-1 (distributed	0
3	$(H \cap G \cap W) (A \cup Y \cup I)$	8		+2-1+1		10 0	distributed	0
3	$(H \cap Y \cap I) (A \cup G \cup W)$	0		+1+0+1		2 0	distributed	0
3	$(H \cap Y \cap W) (A \cup G \cup I)$	2		+1+2+1		60	distributed	0
3	$(H \cap I \cap W) (A \cup G \cup Y)$	2		+1-1+0		20	aistributed	0
5	$(G \cap Y \cap I) (A \cup H \cup W)$	1		+0+0+1		20	aistributed	0
5	$(\mathbf{U} \cap \mathbf{Y} \cap \mathbf{W}) (\mathbf{A} \cup \mathbf{H} \cup \mathbf{I})$	1		+0+2+1		10 0	distributed	0
3 2	$(U \cap I \cap W) (A \cup H \cup Y)$	6		+0-1+0		50	distributed	0
3	(INNW) (AUHUG)	-3		+0+1+0		-2 (uistributed	0
2	$(A \cap H) (G \cup Y \cup I \cup W)$	1		+1+0+0+	+0	2 0	distributed	0

Appendix 8. Simplification of variation partitioning results for the pond data set. The threshold for distribution of variation is AVE = 32.49.
2	$(A \cap G) (H \cup Y \cup I \cup W)$	7	+1+1+0+0	9 distributed	0
2	$(A \cap Y) (H \cup G \cup I \cup W)$	2	+0+1+0+0	3 distributed	0
2	$(A \cap I)(H \cup G \cup Y \cup W)$	0	+0+1+1+0	2 distributed	0
2	$(A \cap W) (H \cup G \cup Y \cup I)$	4	+0+0+1+1	6 distributed	0
2	$(H \cap G) (A \cup Y \cup I \cup W)$	1	+3+0+0+0	4 distributed	0
2	$(H \cap Y) (A \cup G \cup I \cup W)$	2	+2+1+0+0	5 distributed	0
2	$(H \cap I) (A \cup G \cup Y \cup W)$	-6	+1+1+0+0	-4 distributed	0
2	$(H \cap W) (A \cup G \cup Y \cup I)$	-5	+1+2+3+1	2 distributed	0
2	$(G \cap Y) (A \cup H \cup I \cup W)$	3	+3+1+0+0	7 distributed	0
2	$(G \cap I) (A \cup H \cup Y \cup W)$	36	+2+1+0+1		40
2	$(G \cap W) (A \cup H \cup Y \cup I)$	8	+2+3+3+1	17 distributed	0
2	$(Y \cap I) (A \cup H \cup G \cup W)$	12	+1-1+1+1	14 distributed	0
2	$(Y \cap W) (A \cup H \cup G \cup I)$	-3	+3-1+2+0	1 distributed	0
2	$(I {\cap} W) (A {\cup} H {\cup} G {\cup} Y)$	9	+2-1+1+0	11 distributed	0
1	AI(HUGUYUIUW)	169	+1+5+2+1+3		181
1	$H(A \cup G \cup Y \cup I \cup W)$	176	+1+2+3-2+1		181
1	GI(AUHUYUIUW)	327	+5+2+4+9		347
1	$Y (A\cup H\cup G\cup I\cup W)$	189	+2+3+4+7+1		206
1	$I (A\cup H\cup G\cup Y\cup W)$	476	+1-2+7+6		488
1	W (A∪H∪G∪Y∪I)	595	+3+1+9+1+6		615

Ord	Unique component	Ori-	VE added by distribution from components of			VE after	
er		gi-	lower order	lower order			distribution
of		nal	Order 4	Order 3	Order 2	Order 1	
part		VE					
ıal							
com							
pon ent							
5	$T {\cap} G {\cap} Y {\cap} I {\cap} W$	8				8 distributed	0
4	$(T \cap G \cap Y \cap I) W$	-3	+2			-1 distributed	0
4	$(T \cap G \cap Y \cap W) I$	-1	+2			1 distributed	0
4	$(T \cap G \cap I \cap W) Y$	11	+2			13 distributed	0
4	$(T \cap Y \cap I \cap W) G$	0	+2			2 distributed	0
4	$(G \cap Y \cap I \cap W) T$	17	+2			19 distributed	0
3	$(T \cap G \cap Y) (I \cup W)$	1		+0+0		1 distributed	0
3	$(T \cap G \cap I) (Y \cup W)$	1		+3+0		4 distributed	0
3	$(T \cap G \cap W) (Y \cup I)$	11		+3+0		14 distributed	0
3	$(T \cap Y \cap I) (G \cup W)$	4		+1+0		5 distributed	0
3	$(T \cap Y \cap W) (G \cup I)$	1		+1+0		2 distributed	0
3	$(T \cap I \cap W) (G \cup Y)$	-5		+1+3		-1 distributed	0
3	$(G \cap Y \cap I) (T \cup W)$	4		+5+0		1 distributed	0
3	$(G \cap Y \cap W) (T \cup I)$	2		+5+0		7 distributed	0
3	$(G \cap I \cap W) (T \cup Y)$	15		+5+3		23 distributed	0
3	$(Y \cap I \cap W) (T \cup G)$	13		+5+1		19 distributed	0
2	$(T \cap G) (Y \cup I \cup W)$	5		5+1+0		11 distributed	0
2	$(T \cap Y) (G \cup I \cup W)$	0		1+2+0		3 distributed	0
2	$(T \cap I) (G \cup Y \cup W)$	14		0+2+1		17 distributed	0
2	$(T \cap W) (G \cup Y \cup I)$	29		0+1+5		35 distributed	0
2	$(G \cap Y) (T \cup I \cup W)$	-6		2+0+0		-4 distributed	0
2	$(G \cap I) (T \cup Y \cup W)$	23		8+0+1		32 distributed	0
2	$(G \cap W) (T \cup Y \cup I)$	48		8+2+5			63
2	$(Y \cap I) (T \cup G \cup W)$	19		6+0+2		27 distributed	0
2	$(Y \cap W) (T \cup G \cup I)$	-4		6+2+1		5 distributed	0
2	$(I {\cap} W) (T {\cup} G {\cup} Y)$	27		6+8+0		41 distributed	0
1	$T (G \cup Y \cup I \cup W)$	299		+18-	+9+2+6		334
1	$G (T\cup Y\cup I\cup W)$	384		+16-	+(-2)+6		404
1	$Y (T\cup G\cup I\cup W)$	86		+3+14	+(-2)+2		103
1	$I (T\cup G\cup Y\cup W)$	383		+21+14	4+16+9		443
1	$W (T\cup G\cup Y\cup I)$	257		+2	1+3+18		299

Appendix 9. Simplification of variation partitioning results for the pond margin data set. The threshold for distribution of variation is AVE = 53.

Ord er	Unique component	Ori- gi-	VE added by distribution from components of lower order					VE after distribution	
of		nal	Order 5	Order 4	Order	Order 2	Order 1		
part		VE			3				
ial									
com									
pon									
ent									
6	$A \cap H \cap G \cap Y \cap I \cap W$	-15				-15 0	distributed	0	
5	$(A \cap H \cap G \cap Y \cap I) W$	13	-3			10 0	distributed	0	
5	$(A \cap H \cap G \cap Y \cap W) I$	18	-3			15 0	distributed	0	
2	$(A \cap H \cap G \cap I \cap W) Y$	0	-3			-3 (distributed	0	
5	$(A \cap H \cap Y \cap I \cap W) G$	1	-3			-2 (distributed	0	
5	$(A \cap G \cap Y \cap I \cap W) H$	1	-3			-2 (distributed	0	
5	(H∩G∩Y∩I∩W) A	1	-3			-2 0	distributed	0	
4	$(A {\cap} H {\cap} G {\cap} Y) (I {\cup} W)$	-12	+2	3+2		-7 (distributed	0	
4	$(A \cap H \cap G \cap I) (Y \cup W)$	-1				0 0	distributed	0	
4	$(A \cap H \cap G \cap W) (Y \cup I)$	1				3 0	distributed	0	
4	$(A \cap H \cap Y \cap I) (G \cup W)$	0	+(0+2		2 0	distributed	0	
4	$(A \cap H \cap Y \cap W) (G \cup I)$	0	+(0+3		3 0	distributed	0	
4	$(A \cap H \cap I \cap W) (G \cup Y)$	0	+	0-1		-1 (distributed	0	
4	$(A \cap G \cap Y \cap I) (H \cup W)$	2	+(0+2		4 0	distributed	0	
4	$(A \cap G \cap Y \cap W) (H \cup I)$	1	+(0+3		4 0	distributed	0	
4	$(A \cap G \cap I \cap W) (H \cup Y)$	1	+	0-1		0 0	distributed	0	
4	$(A \cap Y \cap I \cap W) (H \cup G)$	-1	+(0+0		-1 (distributed	0	
4	$(H \cap G \cap Y \cap I) (A \cup W)$	-1	+(0+2		1 0	distributed	0	
4	$(H \cap G \cap Y \cap W) (A \cup I)$	5	+(0+3		8 (distributed	0	
4	$(H \cap G \cap I \cap W) (A \cup Y)$	-4	+	0-1		-5 (distributed	0	
4	$(H \cap Y \cap I \cap W) (A \cup G)$	3	+(0+0		3 0	distributed	0	
4	$(G {\cap} Y {\cap} I {\cap} W) (A {\cup} H)$	1	+(0+0		1 0	distributed	0	
3	$(A {\cap} H {\cap} G) (Y {\cup} I {\cup} W)$	1		+1+0-	2	0 0	distributed	0	
3	$(A \cap H \cap Y) (G \cup I \cup W)$	0		+1+1-	2	0 0	distributed	0	
3	$(A \cap H \cap I) (G \cup Y \cup W)$	0		+0+1+	0	1 0	distributed	0	
3	$(A \cap H \cap W) (G \cup Y \cup I)$	1		+0+1+	1	3 0	distributed	0	
3	$(A \cap G \cap Y) (H \cup I \cup W)$	1		+1+1-	2	1 0	distributed	0	
3	$(A \cap G \cap I) (H \cup Y \cup W)$	2		+0+1+	0	3 (distributed	0	
3	$(A \cap G \cap W) (H \cup Y \cup I)$	2		+0+1+	1	4 0	distributed	0	
3	$(A \cap Y \cap I) (H \cup G \cup W)$	1		+0+1+	1	3 (distributed	0	
3	$(A \cap Y \cap W) (H \cup G \cup I)$	-1		+0+1+	1	1 0	distributed	0	
3	$(A \cap I \cap W) (H \cup G \cup Y)$	-1		+0+0+	0	-1 (distributed	0	
3	$(H \cap G \cap Y) (A \cup I \cup W)$	1		+2+0-	2	1 0	distributed	0	
3	$(H \cap G \cap I) (A \cup Y \cup W)$	0		+0-1+	0	-1 (distributed	0	
3	$(H \cap G \cap W) (A \cup Y \cup I)$	8		+2-1+	1	10 0	distributed	0	
3	$(H {\cap} Y {\cap} I) (A {\cup} G {\cup} W)$	0		+1+0+	1	2 0	distributed	0	
3	$(H \cap Y \cap W) (A \cup G \cup I)$	2		+1+2+	1	6 0	distributed	0	
3	$(H \cap I \cap W) (A \cup G \cup Y)$	2		+1-1+	0	2 0	distributed	0	
3	$(G {\cap} Y {\cap} I) \!(A {\cup} H {\cup} W)$	1		+0+0+	1	2 0	distributed	0	
3	$(G {\cap} Y {\cap} W) \!(A {\cup} H {\cup} I)$	7		+0+2+	1	10 0	distributed	0	
3	$(G {\cap} I {\cap} W) \!(A {\cup} H {\cup} Y)$	6		+0-1+	0	5 (distributed	0	
3	$(Y \cap I \cap W) (A \cup H \cup G)$	-3		+0+1+	0	-2 0	distributed	0	
2	$(A \cap H) (G \cup Y \cup I \cup W)$	1		1+()+0+0	2 0	distributed	0	

Appendix 10. Simplification of variation partitioning results for the pond data set. The threshold for distribution of variation is VE = 184.

2	$(A \cap G) (H \cup Y \cup I \cup W)$	7	1+1+0+0	9 distributed	0
2	$(A \cap Y) (H \cup G \cup I \cup W)$	2	0+1+0+0	3 distributed	0
2	$(A \cap I)(H \cup G \cup Y \cup W)$	0	0+1+1+0	2 distributed	0
2	$(A \cap W) (H \cup G \cup Y \cup I)$	4	0+0+1+1	6 distributed	0
2	$(H \cap G) (A \cup Y \cup I \cup W)$	1	3+0+0+0	4 distributed	0
2	$(H \cap Y) (A \cup G \cup I \cup W)$	2	2+1+0+0	5 distributed	0
2	$(H \cap I) (A \cup G \cup Y \cup W)$	-6	1+1+0+0	-4 distributed	0
2	$(H \cap W) (A \cup G \cup Y \cup I)$	-5	1+2+3+1	2 distributed	0
2	$(G \cap Y) (A \cup H \cup I \cup W)$	3	3+1+0+0	7 distributed	0
2	$(G \cap I) (A \cup H \cup Y \cup W)$	36	2+1+0+1	40 distributed	0
2	$(G \cap W) (A \cup H \cup Y \cup I)$	8	2+3+3+1	17 distributed	0
2	$(Y \cap I) (A \cup H \cup G \cup W)$	12	1-1+1+1	14 distributed	0
2	$(Y \cap W) (A \cup H \cup G \cup I)$	-3	3-1+2+0	1 distributed	0
2	$(I {\cap} W) \!(A {\cup} H {\cup} G {\cup} Y)$	9	2-1+1+0	11 distributed	0
1	$A(H \cup G \cup V \cup I \cup W)$	169	1+5+2+1+3		181
1	$H(A \cup G \cup Y \cup I \cup W)$	176	1+3+2+1+3 1+2+3-2+1		181
1	$G(A \cup H \cup Y \cup I \cup W)$	327	5+2+4+9+20		367
1	$V (A \cup H \cup G \cup I \cup W)$	189	2+3+4+7+1		206
1	$I(A \cup H \cup G \cup V \cup W)$	476	$1_{-2+7+6+20}$		508
1	$W(A \cup H \cup G \cup Y \cup I)$	595	3+1+9+1+6		615
		575	5 1 9 1 0		015

Ord	Unique component	Ori-	VE added by distribution from components of				VE after	
er		gi-	lower order	lower order			distribution	
of		nal	Order 4	Order 3	Order 2	Order 1		
part		VE						
ial								
com								
pon								
ent	— — — — — — — — — —					0.11 . 1 1		
3	$1 \cap G \cap Y \cap I \cap W$	8				8 distributed	0	
4	$(T {\cap} G {\cap} Y {\cap} I) W$	-3	+2			-1 distributed	0	
4	$(T \cap G \cap Y \cap W) I$	-1	+2			1 distributed	0	
4	$(T \cap G \cap I \cap W) Y$	11	+2			13 distributed	0	
4	$(T \cap Y \cap I \cap W) G$	0	+2			2 distributed	0	
4	$(G {\cap} Y {\cap} I {\cap} W) T$	17	+2			19 distributed	0	
3	$(T \cap G \cap Y) (I \cup W)$	1		+0+0		1 distributed	0	
3	$(T \cap G \cap I) (Y \cup W)$	1		+3+0		4 distributed	0	
3	$(T \cap G \cap W) (Y \cup I)$	11		+3+0		14 distributed	0	
3	$(T \cap Y \cap I) (G \cup W)$	4		+1+0		5 distributed	0	
3	$(T \cap Y \cap W) (G \cup I)$	1		+1+0		2 distributed	0	
3	$(T \cap I \cap W) (G \cup Y)$	-5		+1+3		-1 distributed	0	
3	$(G \cap Y \cap I) (T \cup W)$	4		+5+0		1 distributed	0	
3	$(G \cap Y \cap W) (T \cup I)$	2		+5+0		7 distributed	0	
3	$(G \cap I \cap W) (T \cup Y)$	15		+5+3		23 distributed	0	
3	$(Y \cap I \cap W) (T \cup G)$	13		+5+1		19 distributed	0	
2	$(T \cap G) (Y \cup I \cup W)$	5		5+1+0		11 distributed	0	
2	$(T \cap Y) (G \cup I \cup W)$	0		1+2+0		3 distributed	0	
2	$(T \cap I) (G \cup Y \cup W)$	14		0+2+1		17 distributed	0	
2	$(T \cap W) (G \cup Y \cup I)$	29		0+1+5		35 distributed	0	
2	$(G \cap Y) (T \cup I \cup W)$	-6		2+0+0		-4 distributed	0	
2	$(G \cap I) (T \cup Y \cup W)$	23		8+0+1		32 distributed	0	
2	$(G \cap W) (T \cup Y \cup I)$	48		8+2+5		63 distributed	0	
2	$(Y \cap I) (T \cup G \cup W)$	19		6+0+2		27 distributed	0	
2	$(Y \cap W) (T \cup G \cup I)$	-4		6+2+1		5 distributed	0	
2	$(I \cap W) (T \cup G \cup Y)$	27		6+8+0		41 distributed	0	
1	$T (G\cup Y\cup I\cup W)$	299		18-	+9+2+6		334	
1	$G (T\cup Y\cup I\cup W)$	384		32+16-	+(-2)+6		436	
1	$Y (T\cup G\cup I\cup W)$	86		3+14-	+(-2)+2		103	
1	$I (T \cup G \cup Y \cup W)$	383		21+1-	4+16+9		443	
1	$W (T\cup G\cup Y\cup I)$	257		21+3	+32+18		331	

Appendix 11. Simplification of variation partitioning results for the pond margin data set. The threshold for distribution of variation is VE = 102.

	Pond			Pond margin	
Exp. var.	Kendall's τ	Р	Exp. var.	Kendall's τ	Р
PArea	.0114	.8936	MArea	.3933	<.0001
MaxDep	.1319	.1217	AvgWid	.2197	.0100
MedDep	.1517	.0750	MaxSlp	.1359	.1117
Fluct	.1116	.1247	MinSlp	0719	.3994
Drain	1294	.0249	Soil	0069	.9101
Well	.0183	.7850	MaxSoil	.1532	.0663
Outl	0808	.2662	MinSoil	0634	.4577
Inl	0565	.4389	MedSoil	0064	.9399
UTMn	.0114	.8936	UTMn	.1463	.0872
UTMe	1418	.0962	UTMe	2004	.0192
Alt	0882	.2992	Alt	.0848	.3203
DistWat	0148	.8612	DistWat	0466	.5852
DistRoad	0858	.3131	DistRoad	.0158	.8525
DistAgr	0396	.6376	DistAgr	.0987	.2429
DistBui	.1031	.2005	DistBui	.0431	.5935
DistForest	0912	.2814	DistForest	1562	.0661
Age	.0252	.7217	Age	1121	.1156
Fire	.0317	.5807	Fire	.0302	.5997
Water	.0421	.5221	Water	.1274	.0537
Drink	0119	.8732	Drink	1086	.1466
Laund	.0277	.5175	Laund	0362	.4003
Fence	0962	.1825	Fence	.0421	.5604
Lime	0823	.0374	Lime	0153	.6983
Garb	0272	.5254	Garb	0501	.2449
Renov	0148	.8351	Renov	1131	.1147
Herbic	0193	.6249	Herbic	.0401	.3113
StonyMarg	0436	.3427	StonyMarg	0431	.3497
Cut	.0833	.2801	Cut	0203	.7927
Fell	.0054	.9154	Fell	.0699	.1747
Graze	0967	.1140	Graze	0223	.7162
Fish	0788	.2994	Fish	.1210	.1124
Duck	0942	.1532	Duck	0024	.9701
Enlarge	.0014	.9794	Enlarge	.1383	.0167
Diminish	0233	.6123	Diminish	0694	.1323
Secchi	.0907	.2868	Cnd	0396	.6428
Cnd	1785	.0362	pН	.0451	.5977

Appendix 12. Kendall's correlation coefficient and adjacent significance level between number of species surveyed in each sampling unit (both ponds and pond margins) and explanatory variables, P < 0.05 given in bold.

pН	1676	.0492	Alk	0406	.634
Alk	2004	.0188	Ca	0312	.714
Ca	1602	.0602	Clr	0461	.589
Clr	0565	.5072	Trb	2008	.018
Trb	.0282	.7402	PO ₄ -P	1726	.043
PO ₄ -P	1289	.1292	Part-P	2629	.002
Part-P	0416	.6251	Tot-P	2440	.004
Tot-P	1235	.1473	NH ₃ -N	0838	.327
NH ₃ -N	2123	.0127	NO ₃ -N	.1889	.026
NO ₃ -N	0768	.3665	Part-N	.0798	.350
Part-N	0530	.5336	Tot-N	0342	.689
Tot-N	2485	.0036			