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33 Herren talte til Moses og Aron og sa: 34 Når dere kommer inn i Kanaan, som jeg gir dere 

til eiendom, og jeg lar det komme sopp på et hus i deres land, 35 skal husets eier gå til 

presten og si: «Det ser ut til å være kommet sopp på huset.» 36 Da skal presten la huset 

rydde før han selv kommer for å se på flekkene, så ikke alt det som er i huset, blir urent. Så 

skal han komme og se på huset. 37 Finner han da at flekkene på veggene er grønnlige eller 

rødlige fordypninger som synes å ligge dypere enn veggen, 38 skal han gå ut av huset, låse 

døren og holde huset stengt i sju dager. 39 Den sjuende dagen skal presten komme tilbake. 

Finner han da at flekkene har bredt seg på veggene i huset, 40 skal han sette folk til å bryte 

ut de steinene som det er flekker på, og kaste dem på et urent sted utenfor byen. 41 De skal 

skrape huset rundt omkring innvendig, og leiren som er skrapt av, skal kastes på et urent 

sted utenfor byen. 42 Så skal en ta andre steiner og sette inn i stedet for de gamle og ta ny 

leire og pusse huset med. 43 Bryter flekkene ut igjen på huset etter at steinene er tatt ut og 

huset er skrapt og pusset, 44 skal presten komme og se på det. Finner han at flekkene har 

bredt seg, er det tærende sopp på huset. Det er urent. 45 Da skal huset rives ned, både 

steinene, treverket og all leiren, og føres til et urent sted utenfor byen.  
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Summary
This thesis focuses on the natural history of the dry rot fungus Serpula lacrymans and 

closely related taxa within Serpulaceae. In the first study the phylogenetic relationships 

within Serpulaceae have been investigated using multi-locus sequencing. In the resulting 

phylogeny, two mycorrhiza-forming genera, Austropaxillus and Gymnopaxillus, form a 

monophyletic group nested within the saprotrophic genus Serpula. This confirms a 

transition from brown-rot to ectomycorrhizal life style that happened once in a 

monophyletic Serpulaceae, probably between 60 and 40 million years ago in western North 

America or, alternatively, in Southern temperate regions after long distance dispersal from 

North America.  

The second study deals with cryptic speciation within the species complex Serpula

himantioides which is the sister species to S. lacrymans. Evidence is provided for five 

cryptic species by four independent gene phylogenies. One of the phylogenetic species 

shows little phylogeographical structure at a global scale, indicating recent long-distance 

dispersal. Some of the lineages show adaptation to certain substrates. North and South 

America appear as the centre of divergence within this morphospecies. 

In study III the origin and further worldwide spread of S. lacrymans have been 

analysed employing different molecular markers. Evidence is provided for that S.

lacrymans is divided into two main lineages that probably represent well-differentiated 

cryptic species; one nonaggressive residing naturally in North America and Asia (var. 

shastensis), and another aggressive lineage including specimens from all continents, both 

from natural environments and buildings (var. lacrymans). Mainland Asia is pinpointed as 

the origin of the aggressive form var. lacrymans, and a few aggressive genotypes have 

migrated worldwide from Asia to Europe, North and South America and Oceania followed 

by local population expansions. 

The fourth study provides a detailed survey of two major invasive populations of S.

lacrymans; one from Japan and one from Europe. Both populations have gone through 

population bottlenecks prior to local expansion. The European population is extremely 

genetically depleted leading to the presence of only a few VC-types in Europe, while the 

Japanese population appears to be influenced by higher gene flow from the Asian source 

population and, correspondingly, more VC-types occur in Japan. Clonal dispersal seems 

very infrequent in both populations.  
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In study V, global distribution and richness of mating types (MAT A) in S.

lacrymans was studied using a mating type linked genetic marker as a proxy. A high allelic 

richness and molecular variation was detected in the mating type linked marker as 

compared to other presumably neutral markers. Little geographic variation was observed in 

this marker as a contrast to other markers investigated earlier. We observed trans-specific 

polymorphisms as some alleles from the closely related species S. himantioides are more 

similar to those of S. lacrymans than other alleles from S. himantioides. 

Altogether, this thesis illuminates the evolutionary background and the population 

genetics of the devastating dry rot fungus. 
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Introduction
The fungal kingdom includes a vast number of species, being estimated to about 1.5 

millions (Kirk et al. 2008), yet new species are described virtually every year. Many 

different ecological strategies have evolved back and forth within the fungal kingdom, 

including biotrophic parasitism, symbiosis and saprotrophism (James et al. 2006). 

Saprotrophic fungi degrade different types of organic compounds and are found 

interspersed throughout the entire fungal kingdom. These fungi have an important 

ecological function in nutrient cycling in many ecosystems. There are two main types of 

fungal wood decay; brown rot and white rot. Wooden materials contain a high level of 

lignocellulose that mostly consists of lignin, hemicellulose and cellulose. White rot fungi 

decomposes lignin and hemicellulose, whereas brown-rot fungi decomposes hemicellulose 

and cellulose but leaves the lignin (Rayner & Boddy 1988). Nevertheless, brown-rot fungi 

are often considered more destructive, as they may be more efficient than white-rot fungi. 

Brown-rot is considered the major mechanism of fungal wood decay in coniferous boreal 

and temperate biomes where wood is the major form of sequestered carbon.  

 Fungi also exhibit a vast variation in life history characteristics. Some fungi are 

capable of making huge and very long lived genets (Smith et al. 1992) while others only 

make microscopic thalli and have a very fast population turnover. Fungi also have many 

different ways of dispersal. Some are capable of vegetative spread by e.g. rhizomorphs, but 

most fungi spread most effectively through air with either asexual or sexual microscopic 

spores. Within the basidiomycetes, which is the second largest group of fungi including 

approximately 30.000 described species (Kirk et al. 2008), most species produce 

macroscopic fruit bodies from where meiospores are spread, mainly by air.  

 The basidiomycete life cycle includes a presumably short-lived monokaryotic 

mycelial stage after spore germination, followed by a more long-lived dikaryon phase. To 

establish a dikaryon, successful mating is required. After mating, a fruit body can be 

formed from the dikaryon, karyogami and meiosis takes place leading to the production of 

haploid meiospores. In basidiomycetes, the vegetative incompatibility system regulates 

fusion and self/non-self recognition between secondary (dikaryotic) mycelia (Rayner et al. 

1984). The vegetative compatibility (VC) type of a dikaryon is governed by numerous 

independent vegetative incompatibility (vic) loci; vegetative incompatibility is associated 

with genetic dissimilarity in the vic loci (Malik & Vilgalys 1999). vic alleles are thought to 

be governed by inverse frequency-dependent selection (‘rare allele advantage’ as genets 
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including rare vic alleles to a greater extent is able to recognise self from nonself compared 

to genets harbouring common vic alleles (Cortesi et al. 2001).  

A complex and unique genetic system for governing the mating process has 

evolved in basidiomycete fungi. Their mating system can be homothallic (non-

outcrossing), bipolar or tetrapolar. Most basidiomycetes (50-65%) have a tetrapolar mating 

system where two separate gene complexes, MAT A and MAT B, govern the mating 

process and for mating to occur in tetrapolar species, different allelic versions must be 

present at both mating type loci. Successful mating requires the override of vegetative 

incompatibility by the mating compatibility system. Hence, the vegetative incompatibility 

system and the mating system operate in opposite ways; mating incompatibility is 

associated with genetic similarity in the mating compatibility (MAT) loci, whereas 

vegetative incompatibility is associated with genetic dissimilarity in the vegetative 

compatibility (vic) loci (Malik & Vilgalys 1999). 

Fungi are in some cases able to disperse long distances by spores, even between 

continents (Brown & Hovmøller 2002). However, in most analysed species there seems to 

be clear barriers to gene flow between continents, leading to a geographic subdivision of 

intraspecific genetic variation (Taylor et al. 2006). However, many fungi have recently 

been spread by man over long distances, as symbionts or parasites of plants and animals, or 

growing as saprothrophs in wood materials. Many of these species, transported to areas 

where their natural enemies are absent, have become invasive species that has gone 

through rapid population expansions (Brasier & Buck 2001; Fisher et al. 2001; Pringle et 

al. 2005). Hence, while many fungi are negatively affected by the explosive human 

population growth, leading to destruction and transformation of various habitats and 

ecosystem, other fungi are positively affected by human activity. For example, many 

pathogenic fungi have co-evolved and adapted to their domesticated crop plants hosts 

(Stukenbrock et al. 2007). Many saprotrophic fungi have also probably experienced a 

population growth since their natural habitat is replicated by humans in buildings. The 

main focus in this thesis is to study the natural history of the devastating dry rot fungus 

Serpula lacrymans and analyse how it became such a widespread wood-decayer in human 

made habitats.  
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Study organisms 
The boletes (Boletales) is a large group within the Agaricomycotina that includes mainly 

mycorrhizal-forming species but also saprotrophic and parasitic species (Hibbett & Binder 

2002; Binder et al. 2005). The saprotrophic species of Boletales decay wood by brown-rot; 

white-rot is not present (Binder & Hibbett 2006). Different Boletales have different forms 

of fruiting bodies, ranging from stipitate-pileate forms with tubular hymenophore, to 

gasteromycetes, polypore-like, or resupinate forms (Binder & Hibbett 2006). 

Serpula was traditionally placed in Coniophoraceae Ulbr.(Donk 1948), a family 

that includes most saprotrophic taxa that mainly degrade conifers, resulting in a brown-rot 

often termed Coniophoraceae-rot (Binder & Hibbett 2006). The family Serpulaceae 

Jarosch & Bresinsky (Boletales) was erected to include the genera Serpula, Austropaxillus 

Bresinsky & Jarosch and Gymnopaxillus E. Horak, based on chemical and molecular 

phylogenetical analyses (Jarosch 2001). Austropaxillus include species with stipitate-

pileate formed fruiting bodies and a lamellate hymenophore, while Gymnopaxillus are 

secotioid, including hypogeous species (Claridge et al. 2001). Austropaxillus and 

Gymnopaxillus form ectomycorrhiza (ECM) with roots of trees from Nothofagus Blume 

and Eucalyptus L'Hér. and are restricted to the southern hemisphere (Oceania/South 

America). 

The genus Serpula (Pers.) Gray was erected by Gray in 1821 (Gray 1821) to 

include species from Persoon’s section Serpula of Merulius. Serpula species produces 

annual, brownish, and resupinate basidiocarps. They have a merulioid hymenophore and 

produce large amounts of smooth cyanophile spores (Falck 1912; Hallenberg & Eriksson 

1985). Two of the most well-known species in Serpula, Serpula himantioides (Fr.) P. 

Karst. and S. lacrymans, have been described numerous times (Karsten 1885). Cooke 

(1957) treated these taxa as two varieties of S. lacrymans: the domestic S. lacrymans var. 

lacrymans and the wild form S. lacrymans var. himantioides. Based on mating studies and 

morphological characteristics, Harmsen et al. (1958) demonstrated that the varieties 

represented two biological species (see Fig. 1), recognised today as S. lacrymans and S.

himantioides. 

The morphospecies S. himantioides has a worldwide natural distribution and can be 

distinguished from S. lacrymans by the thinner and more tightly connected fruit bodies 

(Hallenberg & Eriksson 1985) and finer rhizomorphs. The species includes multiple 
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cryptic species (see below), most of them with a primary affinity to South and North 

America (Kauserud et al. 2006a) 

The dry rot fungus, S. lacrymans (Wulfen) J. Schröt., has been an important study 

object for a long time, mainly because of its devastating wood rotting capabilities. It is one 

of the most well known and feared fungal species in North Europe, attacking houses and 

other wooden structural elements. Yearly the fungus causes damage of millions of dollars 

in northern Europe (Bech-Andersen 1995; Palfreyman et al. 1995). The dry rot fungus’ bad 

reputation and impressive ability to damage manmade constructions have made people 

aware of its existence since old times. Even the Bible has a passage in Leviticus chapter 14 

that could possibly refer to the dry rot fungus. The species was originally described as 

Boletus lacrymans in 1781 by Wulfen, at that time already well known to cause severe 

brown-rot both in houses and in sailing vessels (Ramsbottom 1937).  

Serpula lacrymans includes two varieties, var. shastensis Harmsen and var. 

lacrymans (Wulfen) J. Schröt. (Harmsen 1960). Var. shastensis seems to have a natural 

distribution in the Cascades mountain range in North America (Cooke 1955; Harmsen 

1960), while var. lacrymans has a natural distribution in North East Asia (Bagchee 1954; 

White et al. 2001).  

 

Figure 1. Habitat model of S. lacrymans on a worldwide scale, as modelled with the 
program openModeller implemented on the GBIF web portal (http://data.gbif.org). Dark 
red colours indicate suitable habitat areas, whereas dark blue indicates unsuitable habitat 
areas. The model is based upon nineteen climatic variables and geo-referenced records of 
S. lacrymans accessioned in GBIF. Noteworthy, although only GBIF records from Europe 
and New Zealand together with a single record from US were used for making the habitat 
model, the habitat model gives surprisingly good match with other localities where we 
know S. lacrymans exists such as Chile, North East Asia and the Himalayas. 
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Var. lacrymans is addition cosmopolitan in distribution; recorded from houses in temperate 

regions of Asia, Australia, New Zealand, Europe, and North and South America 

(Hallenberg & Eriksson 1985; White et al. 2001).  

Serpula lacrymans produces pancake-like fruit bodies, 2–20 mm thick. Falck 

(1913) estimated that a 100 cm2 basidiocarp can produce 50 million spores in 10 minutes. 

The dry-rot fungus is also capable of vegetative local dispersal by producing mycelial 

strands with the potential to grow several meters across inorganic materials in search of 

additional organic materials. It has also been observed that monokaryotic isolates produce 

arthrospores (Harmsen 1960; Schmidt & Moreth-Kebernik 1991).  

The dry rot fungus causes brown-rot decay by incomplete ligninolysis. The 

optimum temperature for growth is about 19-21 °C (Jennings & Bravery 1991) and it will 

die at temperatures above 32 °C (Bech-Andersen 1995). This has been exploited in the 

fight against attacks in buildings. If constructions are not harmfully damaged by the dry rot 

fungus, the building can be heated to 50 °C for several hours, and the fungus is killed 

(Miric & Willeitner 1984). The life cycle of the heterothallic S. lacrymans includes a 

presumably short-lived monokaryotic primary mycelial phase succeeded by a predominant 

secondary mycelial dikaryotic phase, in which the fruit bodies are produced. In the 

tetrapolar S. lacrymans, two MAT loci govern the mating process (Schmidt & Moreth-

Kebernik 1991).  
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Research aims 
The aims of this thesis were:  

� Analyse the evolution of Serpulaceae and Serpula by employing a multi-locus 

phylogeny 

� Study the transition from saprotrophic to ectomycorrhizal life style within Serpulaceae 

and make some preliminary suggestions about the historical biogeography of Serpula.  

� Use multi-locus sequencing to investigate the occurrence of cryptic species within S.

himantioides and S. lacrymans, and to study the distribution and ecology (substrate 

affinity) of the cryptic lineages 

� Analyse the geographic origin and further worldwide spread of the dry rot fungus S.

lacrymans.  

� Study the population genetics of two successful invasive populations of the dry rot 

fungus and investigate the level of variation and genetic structuring within and between 

the populations. 

� Investigate the richness and distribution of mating types in S. lacrymans by using a 

mating type linked marker as a proxy, and infer whether this region is governed by 

frequency-dependent selection.  
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Methods 
In this work a wide array of techniques and analyses have been employed; traditional 

culturing techniques, various DNA analyses and numerous statistical and phylogenetic 

inferences. I will in the following give a very brief introduction to these approaches. 

  

Culturing of fungi 

In vitro culturing of strains of S. lacrymans was performed in order to conduct different 

mating and vegetative incompatibility experiments. All strains were grown on Petri dishes 

with malt extract agar and incubated at 20 °C in the dark. In study IV, dikaryotic strains 

representing two well defined populations were confronted in all combinations to 

determine their VC type through mycelial interaction zones. When two strains belong to 

different VC types a zone will be formed between the two strains confronted against each 

other. When the two strains belong to the same VC type no such confrontation zones will 

be made.  

 

Molecular markers 

A diverse array of standard molecular techniques for analyses of genetic variation have 

been implemented in this work, including Amplified Fragment Length Polymorphism 

(AFLP) (Vos et al. 1995) in study III, microsatellite analysis in study III and IV and multi-

locus Sanger sequencing in studies I-V. Cloning of PCR amplified fragments were used in 

study III and V to separate between co-occurring alleles. 

 AFLP is a PCR-based method that produces anonymous dominant marker data 

resulting from restriction enzyme digestion of the whole genome. AFLP seems very 

suitable for population genetic analyses of fungi due to the relatively small genomes of 

fungi compared to e.g. plant genomes. Prior knowledge of the genome is not required as 

universal restriction enzymes are utilised in the process. Because it is difficult to discover 

contaminations using AFLPs and because of the risk of DNA degradation in herbarium 

specimens, only DNA extracted from living axenic isolates were used in the AFLP 

analyses.  

 Microsatellites are fast evolving neutral markers with a co-dominant nature, and are 

a natural choice in many population genetic studies. The development of microsatellite 

markers is relatively time consuming and expensive compared to e.g. AFLP analysis. 

However, DNA extracted from herbaria specimen and fruit bodies, as well as from 
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cultures, can be used as the amplification process is designed to be taxon-specific for each 

marker. However, there are some methodological drawbacks, including null-alleles that 

can cause problems for interpretation of results (causing false homozygotes). Furthermore, 

the correspondence between microsatellite based population genetic data and SNPs have 

been questioned (Väli et al. 2008). A set of fifteen polymorphic markers was developed 

during our work with the dry rot fungus (Högberg et al. 2006).  

In all studies included in this thesis traditional Sanger sequencing have been 

employed. Sequences from the internal transcribed spacer (ITS) nrDNA region, small 

subunit (18S) and large subunit (28S) of nrDNA, parts of the beta tubulin (tub), 

glyceraldehyde-3-phosphate dehydrogenase (gpd), translation elongation factor 1� (tef), 

heat stress protein (hsp) regions and parts of the second largest subunit of the RNA 

polymerase II (RPB2) have been used in the different studies. In study III and V, cloning 

was combined with Sanger sequencing to separate between divergent alleles co-occurring 

in heterozygous dikaryons. Several challenges are associated with the cloning procedure; 

including introduction of PCR mediated mutations as well as PCR mediated chimeric 

sequences. In general, several ‘replicate sequences’ were cloned and analysed so we could 

check for these artefacts. 

In study V we used a marker linked to the MAT A locus as a proxy to study the 

allelic richness and geographic distribution of mating alleles, and whether this locus is 

governed by frequency-dependent selection. We first used previously published primers to 

amplify a part of the non-mating type MAT-linked mip gene (James et al. 2004), and 

designed several new primers in order to amplify and sequence the various allelic versions 

in this marker. 

 

Phylogenetic and population genetic analyses 

To estimate divergence time for Serpulaceae within Boletales in study I we used Bayesian 

Evolutionary Analysis Sampling Trees (BEAST) 1.4.7 (Drummond & Rambaut 2007) on a 

concatenated data set consisting of five independent regions. The time estimation was 

based on secondary calibration points as there is no fossil record of Serpulaceae or close 

relatives in the Boletales; A fossil-based crown group age estimate of 55-35 million years

for Nothofagus (Cook & Crisp 2005), a molecular clock based estimate of 60-35 million 

years for Suillaceae and 109-96 million years for Boletales was used (Bruns et al. 1998).  

In the phylogenetic analyses performed in studies I, II, III and V we have 

employed MrModeltest 2.3 (Nylander 2004) and MrBayes (Huelsenbeck & Ronquist 2001; 
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Ronquist & Huelsenbeck 2003) using the Bioportal computer cluster at the University of 

Oslo. Parsimony analyses using TNT (Goloboff et al. 2008) and Jackknifing (Farris et al. 

1996) have been performed in all our studies. In study III, haplotype networks were 

constructed from the haplophase sequence data sets using Arlequin (Excoffier et al. 2005). 

In the studies IV and V, tests for deviation from neutral evolution were performed using 

the program DnaSP (Rozas & Rozas 1999). 

The AFLP data (study III) were analysed using Neighbor Joining (NJ) and 

phylogenetic tree length permutation test (PTLPT) using PAUP* version 4.02b (Swofford 

1999).  

In the studies III and IV, various population genetic analyses were conducted to 

analyse the population structure and genetic composition. A Bayesian clustering approach 

implemented in the program STRUCTURE version 2.2.3 (Pritchard et al. 2000), employing 

the computer cluster at the Bioportal at the University of Oslo, was used to infer population 

structure in the microsatellite datasets (Paper III and V). Structure is an unconstrained 

analysis without predefined groups. Standard population genetic statistics, including tests 

for Hardy Weinberg equilibrium and linkage equilibrium, was used as implemented in the 

program Arlequin. The ratio of the microsatellite allele numbers to the allele size range (M 

value) (Garza & Williamson 2001) was used to detect population bottlenecks as computed 

in the program M_P_VAL (study III and V). 
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Results and discussion 
Phylogeny and historic biogeography of Serpulaceae

Our phylogenetic analyses in study I based on five loci show that the mycorrhiza forming 

Austropaxillus (and Gymnopaxillus) cluster within Serpulaceae and together with the 

included Serpula species form a monophyletic group corresponding to Serpulaceae, as 

earlier proposed by Jarosch (2001). Hence, Serpula is today a paraphyletic group. Within 

Serpulaceae there has been one transition from saprotrophy to ectomycorrhizal nutritional 

mode. Dating analyses using secondary calibration points indicated that this transition in 

life style happened 60 to 40 million years ago. Transition from a saprotrophy to an 

ectomycorrhizal life-form is a common ecological transition in the fungal kingdom (James 

et al. 2006; Tedersoo et al. 2010). Temperature decline and a drier climate in the mid to 

late Eocene may have promoted transition from saprotrophy to mycorrhiza in the common 

ancestor of Austropaxillus and Gymnopaxillus. The hypogeous fruit bodies of 

Gymnopaxillus also seem adapted to dry climates. 

Our results indicate that the mycorrhizal Austropaxillus/Gymnopaxillus lineage 

diverged from the saprotrophic S. lacrymans/S. himantioides group about 60 (77-47) My 

ago and that the radiation of extant Austropaxillus/Gymnopaxillus species commenced 

about 37 (43-35) My ago. This largely corresponds with the radiation of the mycorrhizal 

suilloid group (Bruns et al. 1998). A 50 My old fossilised ECM, probably with a Pinus-

host (LePage et al. 1997), demonstrates that ECM associations had evolved at least 50 My 

ago. It has been suggested that the radiation of ECM fungi happened as the obligate ECM 

hosts (Pinaceae and Fagales) became dominant in temperate forests as a consequence of 

drying and cooling from the Late Eocene (Bruns et al. 1998; Matheny et al. 2009).  

In study I the results indicate a Late Cretaceous origin of extant Serpulaceae. The 

main host of Serpulaceae, members of the genus Pinus, probably evolved during the 

Cretaceous, between 155 and 87 My ago (Won & Renner 2006), and the fossil record 

confirms the presence of Pinaceae members in the high-latitude and high-altitude regions 

of North America during the early Tertiary (LePage 2003).  

The initial divergence of extant Austropaxillus taxa into one largely southern South 

American clade and one Australian clade may depict Gondwanan vicariance as migration 

was probably possible between South America and Australia up until 28-32 My ago 

(McLoughlin 2001). The large distributional gap between North and southern South 
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American sister-taxa of Serpula favours long-distance dispersal to an explanation 

involving a historically continuous distribution and subsequent vicariance.  

The divergence of the two varieties of S. lacrymans occurred about 12 (23-4) My 

ago. The presence of western North American and eastern Eurasian phylogenetic sister-

taxa are indicative of a trans-Beringian distribution of their most recent common ancestor 

with subsequent vicariance, not the least given the timing of the divergence. About 14-3.5 

My ago there was continuous boreal forests across Beringia and it seems probable that S.

lacrymans also then had a continuous distribution from Northwest North America and into 

Eurasia and that var. lacrymans became differentiated from var. shastensis due to 

Beringian vicariance. 

 

Cryptic speciation 

Numerous studies conducted during the last 10-15 years have demonstrated that the 

occurrence of cryptic species is a common phenomenon in the fungal kingdom. 

Traditionally, almost all fungal species were defined based on morphological characters, 

but a conflict is very often seen between phylogenetic and morphological species 

identification (Taylor et al. 2000). The idea behind phylogenetic species recognition is to 

analyse the concordance of multiple gene genealogies from independent loci. A 

phylogenetic species can be recognised as a group of organisms all of whose genes 

coalesce more recently with each other than with those of any organism outside the group. 

Conflict among independent gene topologies can be caused by the exchange of genes 

among individuals within a species, and the transition from conflict to concordance 

determines the limits of species (Taylor et al. 2000). With the use of a phylogenetical 

species recognition concept, asexual (Coccidioides (Burt et al. 2001)) and unculturable 

fungi (Pneumocystis carinii (Cushion et al. 1991)) can be studied as well.  

In the morphospecies S. himantioides our results (study II) indicate the presence of 

five phylogenetic/cryptic species with different geographic distribution patterns and 

substrate requirements. One phylogenetic species (PS1) is seemingly bound to South 

America, while the others (PS2-5) seem to have a primary affinity to North America. In S.

lacrymans all our analyses point towards the presence of two species, today referred to as 

var. lacrymans and var. shastensis (study I, III and V). In study I, var. lacrymans and var. 

shastensis were hybridised in vitro, and a fruit body was induced. However, no viable 

monokaryotic mycelium was obtained from the fruit body, indicating that pre- or post-

zygotic barriers exist between the two varieties. Furthermore, the hybrid dikaryon between 
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var. lacrymans and var. shastensis was grown under semi-natural conditions (figure 2). 

Noteworthy, the hybrid grew slower and was less viable than the parental isolates of var. 

lacrymans and var. shastensis, suggesting that the hybrid is less fit than the parents in a 

semi-natural environment (unpublished). 

 

 

Figure 2. Growth experiment in semi-natural 
environments containing wood materials 
inoculated with S. lacrymans var. lacrymans 
(top, strain SL1), S. lacrymans var. shastensis 
(middle, strain SHA8-1) and a hybrid between 
the two varieties var. lacrymans and var. 
shastensis (bottom). 
 
Var. lacrymans and var. shastensis show 
vigorous growth, while the hybrid displayed 
sparse growth and lower viability. 

 

One underlying cause for the high prevalence of cryptic species in the fungal 

kingdom is probably that the morphospecies is mainly based upon a few characters 

associated with only one part of the fungi’s life cycle, namely the fruit body. In 

comparison, in animals and plants, most of the organism’s phenotype is used for species 

description. Furthermore, in plants and animals sexual selection might be an important 

driver for morphological diversification, but this aspect is mainly absent when it comes to 

fungi.  
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Phylogeography

Phylogeography was defined by Avise as a field of study concerned with the principles and 

processes governing geographic distributions and genealogical lineages, especially those 

within and among closely related species (Avise 2000). Hitherto, the phylogeography of 

fungi has been poorly studies compared to other organisms (Beheregaray 2008). Many 

fungal species are widely distributed across several continents, but recent molecular based 

phylogeographic studies have indicated that most fungi also experience barriers to gene 

flow. A distinct genetic differentiation is often observed between fungal populations from 

different continents (Taylor et al. 2006). A complicating factor in fungal phylogeographic 

studies is the presence of cryptic species, which must be sorted out in order to perform 

meaningful phylogeographic analyses.  

 In study III, a phylogeographic analysis of S. lacrymans was conducted based on 

genetic analyses of a global sample of cultures and fruit bodies. We first observed that the 

dry rot fungus is divided into two main lineages; the nonaggressive residing naturally in 

North America and Asia (var. shastensis), and the aggressive lineage including specimens 

from all continents, both from natural environments and buildings (var. lacrymans). Our 

population genetic analyses pinpointed mainland Asia as the most likely area of origin of 

the aggressive form var. lacrymans. A few aggressive genotypes have apparently migrated 

worldwide from Asia to Europe followed by local population expansions (cf. study IV). 

There has been a separate dispersal event to Japan, where the fungus holds a strong 

population in buildings but has not been found in nature. Further human mediated dispersal 

from Europe to North and South America and Oceania seems likely to have happened 

during the last centuries. The very low genetic variation in the founder populations indicate 

that they have established through recent founder events, for example by infected wood 

materials transported over land or sea (Ramsbottom 1937). 

We obtained a fairly good sample from one of the cryptic lineages within the S.

himantioides species complex (PS5 in study II), making us able to make some hypothesis 

about its phylogeographic structure. This cryptic species is more or less distributed 

globally, but most genetic variation is found in North America and North East Asia, which 

could indicate its natural range. Otherwise, the lack of a clear phylogeographic structure on 

a global scale within PS5 indicates that there have been several recent long distance 

dispersal events, for example to Africa and Oceania. PS5 might have spread together with 

introduced coniferous trees that are grown in plantations in these areas.  
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Population genetics in invasive populations of S. lacrymans

In study IV, the genetic structures and variation in two presumably invasive populations of 

S. lacrymans var. lacrymans from Europe and Japan, respectively, were investigated using 

co-dominant microsatellite markers and sequence data. The two populations were found to 

be highly differentiated, indicating that little or no gene flow has happened recently 

between the two populations. A very weak but significant isolation by distance effects 

were observed both in Europe and Japan indicating that some barriers to gene flow exist 

within the two areas. Lack of genetic sub-structuring has commonly been observed at 

comparable regional scales in basidiomycete fungi spread by airborne spores (Högberg et

al. 1999; Kauserud et al. 2004), but these observations may partly be due to low resolution 

of the utilised genetic markers in these studies. 

Higher genetic variation was observed within the Japanese population than within 

the European population, corresponding with an observed higher richness of vegetative 

compatibility (VC) types in Japan (38 VC types observed in 68 isolates), supporting the 

view that there has been a higher level of gene flow from the Asian source populations to 

Japan than to Europe. The European population is genetically more homogenous with only 

six detected VC types resulting from 67 individuals studied (Kauserud et al. 2006b). 

However, our analyses indicate that both the European and the Japanese populations have 

gone through population bottlenecks prior to population expansion (paper IV). 

Our analyses indicated that little clonal dispersal occur in both the European and 

the Japanese populations since almost none identical multi-locus genotypes were observed. 

Furthermore, only low levels of linkage disequilibrium between microsatellite loci were 

observed. These results may indicate that the indoor populations of S. lacrymans spread 

mainly by basidiospores and to a less extent as clones on infected wood materials.  

Rather few population genetic studies of basidiomycetes have been conducted, but 

in outcrossing (heterothallic) taxa like S. lacrymans panmictic conditions have mainly been 

observed in natural populations (Kauserud & Schumacher 2003b, a). Rather surprisingly, 

we observed an excess of heterozygotes in both the European and the Japanese 

populations, this pattern being especially pronounced in Europe. We speculate in study IV 

that this peculiar pattern could be due to linkage between (some of the) microsatellite 

markers and parts of the genome that are influenced by frequency-dependent selection, 

such as the MAT and vic genes. This highly speculative hypothesis could potentially be 

investigated further using whole genome sequence data. 
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Distribution of mating types in Serpula lacrymans

In study V, the allelic richness and geographic distribution of mating alleles of the MAT A 

locus was indirectly studied using a tightly linked genetic marker as a proxy. Since the 

sequence divergence is presumably very high within the MAT regions it may therefore be 

difficult to study the molecular variation in the MAT alleles themselves. This strategy for 

indirectly studying MAT alleles was put forward by James et al. (2007).They demonstrated 

that a conserved gene order (shared synteny) exists between the mating type genes and 

neighbouring genes in most Agaricomycetes (James 2007). One such locus is the gene 

encoding mitochondrial intermediate peptidase (mip), located close to the MAT A locus in 

Agaricomycetes investigated (Stankis et al. 1992; Casselton et al. 1995).  

In homobasidiomycetes, multiple alleles exist in the mating type loci as 

demonstrated by classical mating studies (Whitehouse 1949; Raper 1966). It is thought that 

inverse negative frequency-dependent selection (‘rare allele advantage’) promotes 

maintenance of a high richness of MAT alleles in populations of these fungi (Raper 1966; 

Murphy & Miller 1997). Such a selection regime may also lead to the occurrence of ‘trans-

specific polymorphisms’ because of extended coalescence times between alleles (Devier et 

al. 2009).  

In study V we detected, as expected, a high allelic richness and molecular 

variation in the mating type linked marker in populations of S. lacrymans as compared to 

other presumably neutral markers. Comparable amount of genetic variation appeared in the 

mating type linked marker in S. lacrymans populations from nature and buildings, which 

contrast the pattern observed with neutral genetic markers where natural populations are 

far more genetically variable. Furthermore, less geographic structuring of the allelic 

variation in the mating type linked marker appeared than observed with neutral markers. 

The investigated marker also displayed trans-species polymorphism wherein some alleles 

from the closely related species S. himantioides are more similar to those of S. lacrymans 

than other alleles from S. himantioides. All these results are in line with the idea that strong 

negative frequency-dependent selection maintains high levels of genetic variation in MAT-

linked genomic regions, even in the recently bottlenecked populations of S. lacrymans. Our 

study also suggests that DNA regions physically linked to the hypervariable mating type 

may serve as suitable markers to separate closely related fungal isolates. 

In the founder populations of S. lacrymans (i.e. Europe and Japan), alleles co-

occurring in heterokaryotic individuals were more divergent than expected by chance, 

which agrees with the expectation for populations where few mating alleles exist. If a high 
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number of mating alleles occur in a population, we argue that such a pattern would be 

difficult to observe. This observation support earlier studies that have indicated that a 

limited amount of mating alleles exist in Europe (Kauserud et al. 2006b). 
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Conclusions and future perspectives 
This thesis includes results that shed new light upon the evolutionary history of the 

devastating dry rot fungus S. lacrymans. We show that S. lacrymans belongs to a 

monophyletic group (Serpulaceae) that also include species forming ectomycorrhiza and 

that a single transition to ectomycorrhizal growth has happened in Serpulaceae about 60-40 

My ago. As in many other basidiomycetes, cryptic species is present both in S. lacrymans 

and its sister S. himantioides. We provide solid evidence for that S. lacrymans includes one 

non-aggressive lineage (var. shastensis) as well as the aggressive form var. lacrymans and 

that these two forms probably differentiated related to a Beringian vicariance event about 

12 (23-4) My ago. From its natural range in East Asia, we describe how var. lacrymans has 

spread worldwide becoming an invasive demolisher of wood-constructions. By population 

genetic analyses we characterize the population structure of the invasive populations in 

Europe and Japan and shows that a higher genetic variation occurs in Japan, which is rather 

natural since it is more closely related to the source population in mainland Asia. We also 

demonstrate that sexual dispersal by basidiospores characterizes the invasive populations. 

The allelic richness and distribution of mating types in S. lacrymans have been investigated 

and all the data indicate that the investigated mating type gene (MAT A) is strongly 

influenced by frequency-dependent selection.  

These days a small revolution in biology is going on related to the introduction of 

new high throughput sequencing technologies. This makes it possible to conduct genomic 

analyses that were beyond our reach just a few years ago. A high number of fungal 

genomes have been sequenced using the new, as well as ‘old’, technologies, and recently 

two haploid genomes of S. lacrymans have been sequenced. Several other genomes of S.

lacrymans will be sequences in near future, paving the way for a variety of genomic 

studies of S. lacrymans. One further research topic will certainly be to reveal which 

genomic changes that have accompanied the transition from a free-living form of S.

lacrymans to the form residing in buildings. S. lacrymans may also serve as a good model 

to understand the genomic basis for the formation of rhizomorphs. To investigate the 

genomic basis of S. lacrymans high decomposition ability as a brown rotter will certainly 

also be a hot research topic.  
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Abstract

Serpula himantioides is a widespread saprotrophic morphospecies mainly colonising 

coniferous wood in nature, but it appears frequently in buildings as well. From an earlier 

study, it is known that at least three divergent lineages occur within the S. himantioides

species complex. In this study, a broader sample of S. himantioides isolates has been analysed 

by multi-locus sequencing, including new isolates from Asia, North and South America. 

Altogether five phylogenetical species (PS1-5) were detected, all recognised across 

independent gene phylogenies. A new southern South American phylogenetic species (PS1) 

was found, representing an early diverging lineage within the S. himantioides species 

complex. The two closely related PS2 and PS3 lineages included isolates from North America 

only, and PS4 was also dominated by North American isolates. Most of the investigated 

isolates (76%) clustered into PS5, a lineage that has been found on most continents, including 

North America. Overall, little phylogeographical structure was found in PS5, indicating 

frequent and recent long-distance dispersal events within this widespread lineage. Our 

analyses indicate that South and North America is the centre of divergence for the S.

himantioides species complex. Some of the lineages seem adapted to various substrates, but 

PS5 is able to decay a wide array of angiosperms and gymnosperms, which may have 

facilitated the spread of this lineage throughout the world. 
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Introduction 

Serpula himantioides (Fr.) P. Karst. is a saprotrophic morphospecies with a wide geographical 

distribution, observed on all continents except Antarctica. It is mainly found on dead wood of 

various coniferous tree species, but do also commonly occur in buildings. It produces thin, 

resupinate and brownish annual basidiocarps and has a heterothallic tetrapolar mating system, 

based on Northern Hemisphere specimens (Harmsen 1960; Hwang 1955). In a previous study, 

three genetically well-differentiated lineages were detected within S. himantioides across 

independent gene phylogenies (Kauserud et al. 2006). These three lineages also showed 

compatible mating within lineages, and incompatible mating between lineages. Thus, as many 

other basidiomycetes (Geml et al. 2006; Kauserud et al. 2007a; Nilsson et al. 2003), S.

himantioides seems to represent a species complex including multiple cryptic lineages. 

Especially when it comes to morphospecies that produces simple, resupinate fruiting 

structures, such as S. himantioides, it might be problematic to detect species boundaries by 

morphological means (Taylor et al. 2006). Likewise, multiple cryptic species has also been 

detected in several Coniophora species that also produce simple and resupinate fruiting 

bodies (Ainsworth and Rayner 1990; Kauserud et al. 2007a).

 Biogeographical studies show that fungi have complex histories of vicariance and 

dispersal in the same way as plants and animals (Matheny et al. 2009; Taylor et al. 2006). 

Although long distance dispersal events may be rare, it is the best explanation for the present 

day distribution of many fungal taxa (Hibbett 2001; Hosaka et al. 2008; James et al. 2001; 

Moncalvo and Buchanan 2008; Zervakis et al. 2004). For some fungi, the natural 

biogeographical patterns may be blurred by modern spread by man (Brasier and Buck 2001; 

Coetzee et al. 2001; Kauserud et al. 2007b; Slippers et al. 2001). 

In the dry rot fungus S. lacrymans that is closely related to S. himantioides, there 

seems to have happened a specialization towards growing in buildings (Kauserud et al. 

2007b). S. himantioides is also known as a common destroyer of wooden constructions, but 

whether any adaptations towards this growing habit have happened in any of the S.

himantioides lineages is not clear.

In this study, a broader sample of S. himantioides is included compared to Kauserud et 

al. (2006), including newly obtained isolates from Asia and both of the American continents. 

The aims of this study were to (1) analyse whether even more phylogenetic species can be 
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found within S. himantioides, (2) check whether a biogeographical structure of various S.

himantioides lineages can be observed, and (3) analyse whether any substrate specialization 

has happened during the diversification of the S. himantioides species complex. To illuminate 

these topics, the isolates where analysed by multi-locus sequencing of three independent 

DNA regions. 

Material and methods 

The material included in this study is listed in Table 1. Compared to Kauserud et al. (2006), 

40 new isolates of S. himantioides were included in this study. DNA was extracted from the 

new cultures following a 2% CTAB (cetyl trimethylammonium bromide) miniprep method 

described by Murray & Thompson (1980) with minor modifications: DNA was resuspended 

in 100 µL distilled sterile H2O at the final step of extraction. The four DNA markers ITS, 

LSU, hsp and tub, were PCR amplified and sequenced as outlined in Kauserud et al. (2006). 

All sequences have been accessioned in GenBank (for accession nos. see Table 1).  

Phylogenetic analyses were conducted using TNT (Goloboff et al. 2008). Heuristic 

searches were performed with 1000 random addition sequences and TBR branch swapping. 

Jackknife analyses were performed with 10,000 replicates, 36% removal probability, and 

absolute frequencies as output. Bayesian analyses were performed in MrBayes 3.1.2 

(Huelsenbeck and Ronquist 2001; Ronquist and Huelsenbeck 2003) with models inferred 

from MrModeltest 2.3 (Posada and Crandall 1998). Two independent runs with 5 chains (4 

heated) were run for 10,000,000 generations and summarised after discarding 25% burn-in. 

Initially, each DNA region was run separately, but as there was no significant incongruence 

between datasets, a concatenated dataset were used for all further analyses. For Bayesian 

analyses, the different regions were analysed with an independent model for each partition 

(ITS= GTR+I, LSU= GTR, tub= GTR+G, and hsp=SYM+G).

Genealogical sorting index (GSI) statistics (Cummings et al. 2008) were performed to 

test for phylogenetic correlation between isolates from different substrates, continents, and 

habitats. Substrates were categorized as Pinus, Picea, Nothofagus, unknown conifer, and 

unknown hardwood. Continents were categorised according to geography and habitat 

categorized as indoor or outdoor.

Results and discussion 

In Fig. 1, a multi-locus phylogeny of the 67 analysed isolates of S. himantioides is shown, 

demonstrating that the isolates group into five different lineages with high support. A high 
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congruence in topology was observed across the four investigated DNA regions when these 

were analysed separately (Supplementary Information, Fig. S1A-C). The five lineages were 

named PS1 to PS5 corresponding to phylogenetic species under the phylogenetic species 

recognition definition (Kroken and Taylor 2001, 2009; Taylor et al. 2000). This, together with 

earlier mating experiments that has shown that there are compatible matings within the 

lineages PS3, PS4, and PS5 but incompatible across lineages (Harmsen 1960; Kauserud et al. 

2006), indicate that PS1 to PS5 represent different biological species. As there is only one 

sample in PS2, and no experimental crosses could be performed, it may be premature to 

conclude with certainty that this is a distinct species. But as the genetic divergence between 

PS2 and PS3 is comparable to the divergence to the other phylogenetic species within S. 

himantioides, we will treat it as a separate entity here.  

 A recent dated molecular phylogeny of the family Serpulaceae has dated the oldest 

divergence of the cryptic lineages of Serpula himantioides to approx. 12 million years ago 

(Engh et al. in prep). A similar time estimate was made for the split between Serpula

lacrymans var. lacrymans and Serpula lacrymans var. shastensis that are still able to mate in

vitro (Harmsen 1960).

Lineage PS1 is sister to the other lineages and includes five South American isolates. 

PS2, PS3, and PS4 include mainly North American isolates. However, the sample size here is 

too small to conclude that the lineages are mainly restricted to this continent. PS5 is a widely 

distributed lineage that has been detected on all continents except for South America and 

Antarctica. The lack of a distinct phylogeographical structure within PS5 presumably 

indicates recent long-distance dispersal events. It is well-known that many basidiomycetes 

have been spread by man on infected timber or plants (Coetzee et al. 2001; Gonthier et al. 

2004; Linzer et al. 2008; Pringle et al. 2009) and this could also be the case with S.

himantioides.

Within PS5, a high level of genetic variation is found among the isolates from East 

Asia and North America. Overall, South and North America seem to have played an 

important role during the evolution of the S. himantioides species complex. The GSI analysis 

showed that there was a highly significant grouping of the South American samples (GSI 1.00 

p<0.00001), but samples from other continents showed no significant grouping. One might 

speculate that allopatric speciation in South and North America may have happened in the 

ancestral lineage splitting into PS1 and the ancestral lineage to PS2-PS5. Our analyses 

indicate furthermore that PS2, PS3, and PS4 have a primary affinity to North America, but 

with some northern European representatives. The almost cosmopolitan PS5 may have spread 
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out from North America to Eastern Asia and more recently obtained a world-wide distribution 

with the help of man. In Fig. 2, the geographical distribution of the North American and 

European isolates is shown. Although speculative, it may be that PS5 has a more temperate 

distribution on the North American continent while PS4 has a more boreal distribution. In the 

European samples PS4 was only found in Norway while the other European samples were all 

in PS5. 

There is no evidence for a specialisation towards growing on wooden constructions, as 

has apparently happened in S. lacrymans var. lacrymans (Bagchee 1954; Kauserud et al. 

2007b; White et al. 2001). In the phylogenetic tree (Fig. 1), isolates derived from nature and 

buildings appear both in PS1 and PS5 without any apparent structuring, indicating that a 

constant influx of spores happens from nature to buildings and possibly vice versa. This is 

supported by GSI analysis that showed that there were no grouping of outdoor (GSI 0.048 

p=0.41) or indoor (GSI 0.051 p=0.13) isolates.

There was however a slightly significant signal in the isolates from Pinus substrates 

(GSI 0.0836 p= 0.047). Isolates from Pinus substrates were only found in the S4 (one isolate) 

and S5 lineages. The two PS1 isolates that were found outdoors were obtained from 

Nothofagus, (GSI=0.239 p=0.011). The substrate from the three indoor isolates in the same 

clade is unknown, but it is not unlikely that these are also Nothofagus, as this is a common 

source of building material in the region (Martínez Pastur et al. 2000). In isolates from PS2, 

PS3, and PS4, most isolates were from Picea, and none of these were from buildings. In the 

PS5 lineage a lot of different substrates were found, from Eucalyptus and Alnus to Abies and 

Pinus. This indicates that the putative allopatric speciation event leading to the split between 

PS1 and the PS2-5 lineages was accompanied with a host preference partition as well as a 

geographic split. In addition, there seems to have been a switch from a predominantly Abies

host preference seen in the PS2 and PS4 lineages, to a higher degree of non specific host 

preference in the PS5 lineage. Although PS5 may initially also have been a host specialist, 

PS5 has today a wider host range than the other lineages in addition to its much wider 

geographic distribution. The ability to colonise a wide spectrum of substrates may have 

facilitated the spread of this lineage throughout the world. 

This study underlines the importance of having a broad geographic sample when 

analysing intraspecies variation and divergence. Undiscovered cryptic species may have a 

restricted distribution in unsampled areas. We have discovered two new cryptic lineages in 

this study compared to Kauserud et al. (2006), enabling a better understanding of the 

biogeography and substrate preferences of the Serpula himantioides species complex.  
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Figure 1. Phylogenetic tree from a Bayesian analysis of a combined dataset of ITS, LSU, tef,

and hsp sequences. Numbers below branches indicate posterior probability values. Numbers 

above brances indicate parsimony jack-knife support values (only values above 50% is 

shown). The corresponding parsimony trees were of length 350 with CI=0.763 and RC=0.674. 

Figure 2. Approximate geographic distribution of the analysed isolates and cryptic species of 

Serpula himantioides in North America and Europe. Google Maps™ mapping service. 

Supplementary figure 1: Parsimony strict consensus trees from A: ITS and LSU sequences, B: 

tub sequences, and C: hsp sequences. 
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Supplementary figure 1A Strict consensus of ribosomal sequences
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Supplementary figure 1B Strict consensus of tub sequences
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Supplementary figure 1C Strict consensus of hsp sequences
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Research articleHigh variability in a mating type linked region in 
the dry rot fungus Serpula lacrymans caused by 
frequency-dependent selection?
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Abstract

Background: The mating type loci that govern the mating process in fungi are thought to be influenced by negative 

frequency-dependent selection due to rare allele advantage. In this study we used a mating type linked DNA marker as 

a proxy to indirectly study the allelic richness and geographic distribution of mating types of one mating type locus 

(MAT A) in worldwide populations of the dry rot fungus Serpula lacrymans. This fungus, which causes serious 

destruction to wooden constructions in temperate regions worldwide, has recently expanded its geographic range 

with a concomitant genetic bottleneck.

Results: High allelic richness and molecular variation was detected in the mating type linked marker as compared to 

other presumably neutral markers. Comparable amounts of genetic variation appeared in the mating type linked 

marker in populations from nature and buildings, which contrast the pattern observed with neutral genetic markers 

where natural populations were far more variable. Some geographic structuring of the allelic variation in the mating 

type linked marker appeared, but far less than that observed with neutral markers. In founder populations of S. 

lacrymans, alleles co-occurring in heterokaryotic individuals were more divergent than expected by chance, which 

agrees with the expectation for populations where few mating alleles exists. The analyzed DNA marker displays trans-

species polymorphism wherein some alleles from the closely related species S. himantoides are more similar to those of 

S. lacrymans than other alleles from S. himantoides.

Conclusions: Our results support the idea that strong negative frequency-dependent selection maintains high levels 

of genetic variation in MAT-linked genomic regions, even in recently bottlenecked populations of S. lacrymans.

Background
A high allelic richness is maintained in some genetic loci
due to negative frequency-dependent selection caused by
rare allele advantage, which counteracts the effect of
genetic drift (reviewed by Richman 2000). The MHC
(Major Histocompatibility Complex) system of animals
and the SI (self incompatibility) system in plants are well-
known examples [1]. The mating type (MAT) loci of
fungi, which governs the mating process, are also thought
to be influenced by negative frequency-dependent selec-
tion because haploid mycelia possessing rare MAT alleles
have higher chances for mating compared to those pos-
sessing frequent alleles [2,3].

Different types of mating systems occur in the fungal
kingdom. Most basidiomycetes have a tetrapolar mating
system where two separate gene complexes, MAT A and
MAT B, govern the mating process. MAT A encodes
homeodomain transcription factors, MAT-B encodes
pheromones and pheromone receptors, and together
they control mate recognition, clamp connection forma-
tion and pairing of nuclei in the formation of dikaryotic
mycelium [4]. For mating to occur in tetrapolar species,
different allelic versions must be present at both mating
type loci. In homobasidiomycetes (i.e. basidiomycetes
with a non-divided basidium), multiple alleles exist in the
mating type loci and negative frequency-dependent
selection can promote maintenance of a high richness of
MAT alleles in populations of these fungi [5,6]. This rare
allele advantage may also lead to 'trans-specific polymor-
phisms' because of extended coalescence times between
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alleles [7]. By classical mating studies it has been shown
that a large number of MAT alleles are present in some
taxa. In Schizophyllum commune, it has been estimated
that around 160 A mating types exist in nature [5], while
in Coprinopsis cinerea, the number of A mating type
alleles was estimated to be 100 [8]. Although this high
allelic diversity suggests that MAT would be an excellent
target for the development of population genetic mark-
ers, MAT alleles have so far not been used in population
genetics studies of Agaricomycetes (Basidiomycota). This
is likely due to the fact that MAT alleles themselves are
highly divergent in sequence, making it difficult to design
universal primers.

It has been demonstrated that a conserved gene order
(shared synteny) exists between the mating type genes
and neighbouring genes in most Agaricomycetes [9]. One
such locus is the gene encoding mitochondrial intermedi-
ate peptidase (mip), located close to the MAT A locus
(less than 1 kb for S. commune, Coprinopsis cinerea and
C. scobicola) in Agaricomycetes investigated [10,11].
Because of physical linkage, we may expect that this gene
is indirectly affected by negative frequency-dependent
selection acting on MAT, and therefore that high allelic
richness will be maintained also in the mip region due to
linkage disequilibrium. Accordingly, instead of targeting
the mating types directly, which poses technical difficul-
ties due to massive molecular divergence, targeting
neighbouring 'non-mating type MAT-linked genes', such
as mip, may yield proxies for analysing the allelic richness
of mating types [9] and a source for highly variable mark-
ers.

In this study we analyse a genetic marker covering a
portion of the mip gene, a neighbouring spacer region
and the 3'-prime end of the mating type gene, homeodo-
main 1 (HD1), as a proxy to analyse the richness of mat-
ing types (MAT A) within the dry rot fungus Serpula
lacrymans (Boletales, Basidiomycota). Serpula lacrymans
is the most damaging destroyer of wood constructions in
temperate regions. By using various presumably neutral
genetic markers, we have previously shown that the dry
rot fungus is divided into two main lineages that probably
represent different species; one non-aggressive residing
naturally in North America and Asia (var. shastensis), and
another aggressive lineage appearing on all continents
(var. lacrymans) [12]. Genetic analyses pinpoint main-
land Asia as the origin of the aggressive form var. lacry-
mans, from where it has migrated worldwide to Europe,
North- and South America and Oceania followed by local
population expansions [12]. This recently spread lineage
of var. lacrymans, probably spread by man in historic
time, is known as 'the Cosmopolitan group' [12]. Little
genetic variation occurs in the bottlenecked founder pop-
ulations of var. lacrymans worldwide, while more genetic
variation is found in the source population in mainland

Asia, as well as in var. shastensis [12,13]. In accordance
with this inferred massive recent expansion from a much
smaller founder population, only a few (6) vegetative
compatibility types (VC-types) have been detected in the
European genetically depleted population of var. lacry-
mans [14]. Vegetative compatibility is a self-nonself rec-
ognition system used to separate own mycelium from
other mycelia. Normally, one VC-type corresponds to
one genet, but in genetically depleted populations, like in
S. lacrymans, different genets can belong to the same VC-
type. Higher genetic variation and a correspondingly
higher number of VC-types have been detected in the
Japanese indoor population, which probably was founded
during an independent founder event from the Asian
source population [13]. The morphospecies Serpula him-
antioides, which is used as outgroup in our analyses, is
the sister taxon to S. lacrymans and includes several sub-
groups that probably represent independent ('cryptic')
species [12].

The aims of the present study are to use a non-mating
type MAT-linked marker as a proxy to indirectly study
the allelic richness of mating type A in a worldwide sam-
ple of the genetically deprived S. lacrymans, and to inves-
tigate whether the level of molecular variation at the
MAT-linked loci is consistent with negative frequency-
dependent selection. Furthermore, we analyse the allelic
richness in a geographic context and investigate whether
more variation occurs in natural, outdoor populations of
var. shastensis and var. lacrymans compared to the
founder populations of var. lacrymans that strictly
appears in buildings. Finally, we evaluate whether the
mating type linked marker can be used to separate closely
related isolates of var. lacrymans.

Methods
Material
A total of 83 cultures and dried specimens of S. lacry-
mans and S. himantioides were included in this study (see
additional file 1: Information about the analyzed mate-
rial). DNA was extracted following a 2% CTAB (cetyl
trimethylammonium bromide) miniprep method
described by [15] with minor modifications: DNA was
resuspended in 100 μL distilled sterile H2O at the final
step of extraction.

PCR
We first tested the primers MIP1F and MIP1R [16] on
different Serpula strains. This primer set has successfully
been used to amplify a part of the non-mating type MAT-
linked mip gene in various other fungi [16]. Positive
amplicons were obtained from a few isolates only (proba-
bly due to primer mismatch). Based on an alignment
including partial mip sequences from three Boletales spe-
cies [16], as well as three Serpula sequences obtained
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using the MIP1 primer set, we designed the new primers
mip60F (GGMAAYCAYCACGAAGAYCC) and mip190F
(TTCAGCCATCTATTYGGGTACGG). In order to max-
imize sequence length we employed an uneven PCR
approach as described in [17], combining the primers
mip60F and mip190F and twelve different RAPD primers
[17]. Positive amplicons from different primer combina-
tions were sequenced, and finally the new primers
mip55R (GCGGACAAACAAGCAAAGTT) and mip82R
(CTGAAGATGCTGGAGGAAGC) were designed based
on the resulting alignments and further combined with
mip60F and mip190F to amplify the partial mip region
from all included isolates and specimens (Table 1). PCR
amplification with primers mip60F or mip190F in combi-

nation with primers mip55R or mip82R was performed
with the proofreading enzyme Dynazyme EXT DNA
Polymerase (Finnzymes) with reactions containing 16.5
μl of 100× diluted template DNA, 1.5 μl each of forward
and reverse primers (5 μM stocks), 2.5 μl of dNTPs (2 μM
stock), 2.5 μl of Dynazyme EXT 10× reaction buffer, 0.5 μl
Dynazyme EXT DNA Polymerase (25 μl total reaction
volume). PCR reactions with Dynazyme EXT were per-
formed with the following protocol: 2 min at 94°C; fol-
lowed by 35 cycles of 30 s at 94°C, 45 s at 54°C, and 1 min
at 72°C; followed by a 7 min extension at 72°C and an
indefinite hold at 4°C. Based on the two genome
sequences of Serpula lacrymans S7.3 and S7.9 (U.S. Gov-
ernment Department of Energy - Joint Genome Insitute)

Table 1: Information about molecular variation in the four sequenced loci of Serpula lacrymans.

Locus Group Ecol1 # S k π Theta W Tajima's D Fu and Li's D* Fu and Li's F*

MAT linked marker S. lacrymans N+B 116 182 19.4 0.048 34.17 -1.74 -3.45* -3.22*

var. lacrymans N+B 95 183 23.1 0.049 35.70 -1.48 -3.42* -3.10*

var. shastensis N 21 170 34.5 0.051 47.25 -1.37 -1.77 -1.93

var. lacr. Asia N 16 158 45.09 0.062 47.62 0.43 0.64 0.67

var. lacr. Japan B 27 132 25.76 0.049 34.25 -1.22 -1.28 -1.49

var. lacr. Cosmo. B 51 213 38.91 0.057 47.34 -0.9 -2.61* -2.34

ITS S. lacrymans N+B 150 11 2.2 0.004 1.97 0.32 0.32 0.67

var. lacrymans N+B 126 3 0.6 0.001 0.56 0.18 -0.64 -0.44

var. shastensis N 24 2 0.3 0.0006 0.54 -0.89 0.84 0.42

var. lacr. Asia N 20 1 0.51 0.0009 0.28 1.43 0.65 0.98

var. lacr. Japan B 32 1 0.42 0.0007 0.25 1.04 0.59 0.82

var. lacr. Cosmo. B 74 2 0.05 0.0001 0.41 -1.42 - 2.71* -2.71*

gpd S. lacrymans N+B 122 107 5.4 0.007 19.90 -2.36** 2.36* 0.38

var. lacrymans N+B 98 7 1.5 0.002 1.36 0.21 -0.55 -0.55

var. shastensis N 24 106 18.1 0.022 28.39 -1.45 1.84* 0.94

var. lacr. Asia N 8 5 1.61 0.0020 1.93 -0.76 -0.49 -0.61

var. lacr. Japan B 32 6 1.38 0.0017 1.49 -0.21 -1.15 -1.01

var. lacr. Cosmo. B 58 0 - - - - - -

tub S. lacrymans N+B 146 30 7.07 0.018 5.40 0.90 1.25 1.34

var. lacrymans N+B 122 1 0.14 0.0004 0.19 -0.29 0.48 0.29

var. shastensis N 24 6 1.30 0.003 1.61 -0.57 -0.24 -0.39

var. lacr. Asia N 18 1 0.21 0.0005 0.29 -0.53 0.67 0.40

var. lacr. Japan B 32 1 0.35 0.0008 0.25 0.64 0.59 0.69

var. lacr. Cosmo. B 72 0 - - - - - -

The information about ecology, molecular variation and deviations from neutral evolution in the four analyzed sequence loci are given for 

different sub-groups of Serpula lacrymans.
1N = nature, B = building, # indicates number of investigated sequences, S = number of segregating sites, k = average number of nucleotide 

differences, π = nucleotide diversity.
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a new primer (Mip_ins3R; ACTCCGCTGAAGTCCAC-
CTGC) was designed in an insert occurring in some
allelic versions of the mating type linked marker.
Mip_ins3R was combined with mip190F to reveal the
presence of this insert (see below) using the same PCR
conditions as above. We sequenced nine amplicons
directly to assess the homology of the insert.

Cloning and sequencing
We used a cloning procedure to separate different mip
alleles co-amplified from the heterokaryotic isolates and
specimens. Fragments were cloned with the TOPO TA
Cloning kit (Invitrogen) using blue/white screening
according to the manufacturer's manual. Positive colonies
were subjected to direct PCR with the M13R/T7 primers
with the same PCR conditions as described above. The
resulting amplicons were sequenced using an ABI 3730
DNA analyser (Applied Biosystems, Foster City). We
aligned the cloned sequences from each isolate/specimen
manually in separate alignments using BioEdit 7 [18]
(from three to twenty, see additional file 1: Information
about the analyzed material), and two divergent alleles
(when present) were separated. It is well known that arti-
ficial mutations and chimeric sequences can be obtained
when using a clone-based approach. When more than
two copies of each allele were present in the alignment,
we considered polymorphisms occurring only within one
single sequence (being 'autapomorphic') as mutations
generated in vitro during PCR and discarded these. When
only two copies of each allele were present we assumed
heterozygosity at the sites in which the two copies dif-
fered. When only one allelic copy was present this version
was accepted as is. Sequences from the internal tran-
scribed spacer (ITS) nrDNA region and parts of the beta
tubulin (tub) and glyceraldehyde-3-phosphate dehydro-
genase (gpd) genes have previously been obtained from
the isolates/specimens as specified in [12]. These
sequences were used as comparisons with the mip-
sequences analysed here. All sequences have been depos-
ited in GenBank under the accession numbers given in
additional file 1: Information about the analyzed material.

Phylogenetic and statistical analyses
We established sequence alignments for the mating type
linked marker mip, as well as ITS, gpd and tub and ran
phylogenetic analyses on the two first datasets. 'Best-fit'
evolutionary models were estimated for all analyses using
the Akaike information criterion (AIC) as implemented
in MrModeltest 2.3 [19]. The SYM+I+G model was spec-
ified as prior for the MAT linked data set while the
HKY+I model for the ITS data set. Posterior probabilities
were determined by MrBayes [20,21] twice by running
one cold and four heated chains for 10 × 106 generations
in parallel mode, saving trees every 1000th generation. A

50% majority rule consensus tree was used to calculate
posterior probabilities including the proportion of trees
gathered after the convergence of likelihood scores was
reached. We run parsimony analyses using TNT [22],
where Jackknife support values [23] were obtained using
1000 replicates. Jackknife support values above 50 were
superimposed on the consensus tree from MrBayes.

Due to the dikaryotic stage of the isolates/specimens,
heterozygous sites (with two nucleotides in same posi-
tion) appeared in many of the gpd, ITS and tub
sequences. In order to use the information in the
heterozygous sequence sites and calculate more accurate
estimates of molecular variation for these regions, haplo-
type datasets were constructed for the different DNA
regions. For example, in a DNA sequence ('genotype')
containing an 'Y' (=C/T) the two resulting sequence hap-
lotypes will include either a 'C' or a 'T'. In sequences with
more than one heterozygous site, the heterozygous phase
was inferred using a procedure yielding the minimum
number of alleles. In short, sequences homozygous at all
sites or heterozygous at only one site (known putative
haplotypes) are used as templates for inferring phase of
sequences with multiple heterozygous sites. Hence,
sequences with two or more heterozygous sites are,
whenever possible, assigned to known putative haplo-
types found in the sample of sequences. Alternatively,
haplotypes requiring a minimum number of mutational
steps are inferred. The procedure may underestimate the
number of haplotypes if recombinant genotypes occur.
Notably, descriptive statistics of level of polymorphism
(such as π and k), as well as tests of neutrality (Tajima's D
and Fu & Li's F and D tests) will not be affected since
these statistics are based on polymorphic sites per se and
not haplotypes. In ITS no more than one heterozygous
site appeared per sequence. Nucleotide diversity π (aver-
age number of nucleotide differences per site), k (average
number of nucleotide differences per sequence per site)
and estimates of the population mutation parameter
theta θ were calculated for each of the four sequenced
loci using the program DnaSP version 4.50.2 [24]. To test
for deviation from neutral evolution, we performed Fu
and Li's D, Fu and Li's F and Tajima's D tests using DnaSP.
The HKA test [25] was performed with the program
HKA for all four loci (published by Jody Hey; http://
lifesci.rutgers.edu/~heylab/ProgramsandData/Programs/
HKA/HKA_Documentation.htm) with 1000 simulations.

To test whether the two alleles co-amplified from a sin-
gle individual were more divergent than expected by
chance, we calculated pairwise similarities of all alleles
using Bioedit. This matrix was then used to calculate the
mean similarity of alleles occurring within individuals,
which was compared to the mean similarity of alleles
across individuals, by a two-sample unequal variance t
test using the software R [26]. This test was done inde-
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pendently for different groups of isolates; all isolates of S.
lacrymans var. lacrymans, the cosmopolitan (Europe +
North America + Oceania) group of var. lacrymans,
European isolates of var. lacrymans, Japanese isolates of
var. lacrymans, and all isolates of S. lacrymans var. shas-
tensis.

Results and discussion
The MAT-linked marker
The sequences we obtained from the MAT-linked marker
ranged from 718 to 810 bp. In the sequence alignment
(860 bp), the first 285 positions constituted the 3' end of
the mip gene, positions 286-832 a spacer region, and 833-
860 the 3' end of the HD1 gene of MAT A. A total of 126
sequences of the MAT-linked marker were obtained from
the 83 analysed dikaryotic isolates/specimens. In a
dikaryotic basidiomycete it is expected that two different
MAT A alleles occur in each isolate/specimen, but we
obtained two alleles from only 53% of the analysed
dikaryons. This could be due to (i) failure to detect both
alleles due to limited number of cloned fragments (6-20)
from each isolate, (ii) primer mismatch (or other reasons
for PCR amplification failure), or (iii) that different MAT
alleles share the same mating type linked marker (e.g. due
to recombination and/or that the linked marker is more
conserved than the adjacent MAT alleles). Notably, a
comparison of the recently analysed genome sequences
of Serpula lacrymans var. lacrymans (i.e. the two
sequenced homokaryons S7.3 and S7.9, obtained from
the same spore family), revealed that a large insertion
(~18 kbp) occurred between mip and the mating type
locus in one of the genomes (S7.9). Thus, a plausible
explanation for why only one allele was amplified in a
large proportion of the isolates is that this insertion
occurs in many of the analysed isolates. Indeed, PCR
amplification with one primer located within and one
outside the insert gave positive amplicons from isolates
where only one allele originally was obtained. Surpris-
ingly, from two of the isolates we obtained three and four
different alleles (see below).

Molecular and allelic variation
We found higher molecular variation in the mating type
linked marker compared to the other sequenced loci
(Table 1). Fig. 1 shows higher allelic variation in the mat-
ing type linked marker than in the ITS region. In the phy-
logenetic tree obtained from the mating type linked
marker, the samples of var. lacrymans from Europe,
North-America and Oceania (i.e. the 'Cosmopolitan
group' [12], and the Japanese population appeared to a
large extent intermixed on several branches. This is in
contrast to the ITS tree (Fig. 1), as well as trees based on
other analysed markers [12] where the Japanese and Cos-
mopolitan samples appear in two quite distinct groups.

Furthermore, a comparable amount of genetic variation
appeared in the mating type linked marker in populations
of S. lacrymans from nature and buildings. This is in stark
contrast to the pattern observed using neutral genetic
markers, where natural populations were far more geneti-
cally variable than those from buildings (Table 1). The
high level of genetic variation at the mating type linked
marker compared to the presumably neutrally evolving
markers may be explained by negative frequency-depen-
dent selection at the MAT A locus maintaining genetic
variation also in the vicinity of the locus under selection.
In accordance with this hypothesis the results from the
HKA test showed that there was significant deviation
from neutral evolution when we compared the mating
type linked marker with the presumably neutral markers
ITS, tub or gpd. This test was based on intra- and inter-
specific divergence within and between S. lacrymans var.
shastensis and var. lacrymans. Balancing selection, such
as negative frequency-dependent selection, will often
tend to keep alleles at intermediate frequencies. Accord-
ingly, rare alleles will tend to be underrepresented com-
pared to neutral expectation. Thus neutrality tests, such
as Tajima's D will often yield positive test statistics at such
loci. In contrast, the test statistics of Tajima's D, Fu and
Li's D (Table 1) were negative at the mating type linked
marker in the populations investigated here. In a previous
study we found strong signals for a recent population
expansion in these fungi [12], a demographic process that
usually would affect the test-statistics of these neutrality
tests in the opposite direction compared to balancing
selection. Hence, we suggest that demographic effects
may override the expected signal from balancing selec-
tion in this case.

Negative frequency-dependent selection counteracts
the sorting effect of genetic drift, and may maintain a
high level of molecular and allelic variation also in neigh-
bouring linked regions. Previous studies has shown that
tight genetic linkage to loci subjected to strong negative
frequency-dependent selection will maintain high levels
of polymorphism also at otherwise neutrally evolving loci
[27,28]. Thus, we find it likely that the high level of
genetic variation at our mating type linked marker is due
to associated effects of negative frequency-dependent
selection at MAT A, and not because it itself is subject to
negative frequency-dependent selection itself.

Species phylogeny
Although we find high levels of molecular variation at the
mating type linked marker, the alleles largely group in
accordance with known species delimitations [12]. All
alleles obtained from the S. himantioides morphospecies
cluster together (Fig. 1a) and all alleles from var. lacry-
mans, except a few trans-species polymorphisms (see
below) occur in one group. However, alleles from the var.
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Figure 1 Phylogenies of the MAT A linked marker and ITS. 50% majority rule consensus trees obtained from Bayesian analyses of (a) the MAT A 

linked marker data sets, and (b) the ITS region. In both datasets DNA sequences were obtained from 83 isolates representing S. lacrymans and S. him-

antioides. Bayesian posterior probabilities above 0.50 are given above branches and Jackknife support values (1000 replicates) above 50 are given be-

low branches. The tree symbols indicate isolates derived from a natural habitat (forest), otherwise the isolates were obtained from buildings. The star 

symbols indicate isolates with more than two alleles of the mating type linked marker while the arrows pinpoints trans-specific polymorphisms.
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shastensis group separate into two different sister groups.
Four trans-specific polymorphisms are observed, indi-
cated by arrows in Fig. 1a. One sequence derived from a
var. shastensis isolate (SHA8-1) clusters within the var.
lacrymans group. On the opposite, one sequence
obtained from a European var. lacrymans isolate (SL189)
clusters within var. shastensis and another sequence
obtained from the same isolate (SL189) clusters within S.
himantioides. Lastly, one North American isolate of var.
lacrymans (SL403) groups within S. himantioides. Nota-
bly, from SL189 and SL403, four and three different
alleles were obtained (indicated by stars in Fig. 1a). The
very same isolates are heterozygous at ITS and include
two divergent haplotypes (Fig. 1b), of which one has a
divergent placement according to geographic origin. One
SL189 ITS allele clusters with Asian isolates and SL403
has a unique ITS haplotype. These peculiar observations
can be explained in various ways. Ancient gene duplica-
tions events might be maintained in the genome of some
or all isolates. If so, it should be expected that the trans-
specific alleles cluster as more early diverging lineages in
the respective groups. Alternatively, SL189 and SL403
could represent multiple heterokaryotic hybrids, includ-
ing more than two karyotypes, which may account for the
high number of alleles and divergent ITS haplotypes. It
has been documented that the mycelia of other basidio-
mycetes can include more than two different nuclei [29].
However, it seems rather unlikely that the German isolate
SL189 has acquired a copy from var. shastensis that
mainly lives in California. More research is definitively
needed to investigate possible scenarios for these puz-
zling observations.

Geography
We would expect relatively little correspondence between
geographic and genetic distances in a DNA region linked
to a locus under strong selection [30]. However, some
geographic structure can be observed in Fig. 1a. The
European sequences clustered mainly into three main
groups that might correspond to three MAT A alleles (see
discussion below). Notably, within these three groups the
sequences were either identical or very similar, only
including some autapomorphic mutations. The distribu-
tion of European alleles corresponds well with other
results indicating that the European population has
recently expanded [13]. Several strictly Japanese sub-
groups appeared as well. Notably, the Japanese alleles
were in general more divergent than the European ones.
This also corresponds well with the observation that
higher genetic variation occurs in Japan in microsatel-
lites, AFLPs and four sequenced loci [12,13]. Interest-
ingly, alleles from the Asian mainland population, where
var. lacrymans also has a natural distribution in forests,
were distributed throughout the var. lacrymans part of

the tree. In [12] it was observed that the natural Asian
population included most of the genetic variation
observed in the indoor founder populations, and this
seems also to be the case for the MAT A-linked alleles.

Dikaryons
In cases where two alleles of the mating type linked
marker were amplified from the same dikaryon, these
invariably turned out to be divergent, which is to be
expected due to the linkage to MAT A. We found the two
alleles of dikaryons to be significantly more divergent
than expected by chance in the European population (p-
value = 0.003), in the Cosmopolitan group (p-value =
0.010) and in all samples of var. lacrymans taken together
(p-value = 0.017). However, we found no significant ele-
vation of divergence in the Japanese population when
analysed alone (p-value = 0.905), nor in var. shastensis (p-
value = 0.678). These differences between the popula-
tions may be due to different number of mating type
alleles present in the various groups. When a high num-
ber of mating types occur in a genetically variable popula-
tion, which is likely to be the case for the Japanese
population and var. shastensis, most primary mycelia will
be able to form a dikaryon, resembling panmictic condi-
tions. However, in the European population and the Cos-
mopolitan group as a whole, a limited number of mating
types is likely to occur (see [31]), which means that only a
portion of the primary mycelia will be able to mate. Selec-
tion is likely to favour individuals with different mating
types in a genetically bottlenecked population, whereas
random association of mating types is more likely in a
genetically variable population. Alternatively, because
linkage to mating type loci under strong balancing selec-
tion can create a scenario in which degeneration of the
linked genes occurs [28], the preponderance of dissimilar
mip alleles within dikaryons of var. lacrymans could be
due to the phenomenon of associative overdominance
due to recessive deleterious alleles at MAT linked loci
[32,33]). This could be reinforced if the number of MAT
alleles in the populations is small and the alleles are main-
tained in the populations for longer periods [33]. How-
ever, S. lacrymans has a free-living haploid stagen and
genetic load due to exposure of recessive mutations
would thus be reduced. Tentatively, therefore, we suggest
that the former hypothesis of different strengths of selec-
tion for divergent alleles in populations with different lev-
els of genetic variation seems more plausible than that of
associative overdominance.

Conclusions
In this study we use a mating type linked marker as a
proxy to infer variation of mating types in MAT A in S.
lacrymans. We present evidence consistent with the
MAT A region being influenced by frequency-dependent



Engh et al. BMC Genetics 2010, 11:64

http://www.biomedcentral.com/1471-2156/11/64

Page 8 of 9

selection, favouring rare alleles. Although analysis of a
locus linked to a gene of interest may provide important
information about the target gene, as argued here, one
problem is that mutations at the analysed marker may
muddle correct assignment of alleles at the gene of inter-
est. For instance, we observed three main groups of
sequences in the European population that may corre-
spond to three MAT A alleles, but with some sequence
variation within the groups, possibly caused by novel
mutations at the analysed marker. To reveal the actual
connection between the sequenced alleles and the mating
types segregation analyses of spore families with mating
types known from crossing experiments should be con-
ducted.
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