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0BAbstract 

Pockmarks have now been recognised for nearly four decades, and are one of the most 

obvious and abundant structural features of the seafloor in some areas, yet there is still 

little knowledge of their influence on fauna or their exact ages and modes of formation.  

This thesis investigates mechanisms of pockmark formation in the recently discovered 

pockmarks in the Oslofjord and aspects of the benthic ecology of these ubiquitous 

topographic features in the North Sea and the Oslofjord.  Piston cores collected from a 

pockmark in the Oslofjord indicated that their formation was probably initiated between 

10.7 and 9.5 kyr BP.  Thus, pockmarks may have initially formed in an ice-marginal 

marine setting, where mechanisms such as submarine melt water outflux, ice rafting and 

rapid isostatic uplift may be of strong relevance.  The biostratigraphic and radiocarbon data 

collected indicate continuously low sedimentation rates inside the pockmark since its 

formation and that it has been actively seeping artesian ground water since this time.   

 

The influence of the pockmarks on the faunal communities in the Oslofjord was subtle.  

However, the abundances of key species inside pockmarks were significantly different to 

the surrounding seabed and as such I argue that the abundance of pockmarks in the 

Oslofjord has a considerable cumulative influence on overall faunal densities and 

populations. 

 

The megafaunal communities inside and outside of pockmarks in the North Sea were 

studied using remotely operated vehicles.  The abundance, species richness and diversity 

increased from outside (background seabed) towards the centre of the pockmarks, probably 

due to habitat enrichment and morphological protection provided by the pockmark 

environment.  The numbers of taxa present in the centre of pockmarks were approximately 

double those of the surrounding areas, and the centres had almost an order of magnitude 

more individuals than outside.  Carbonate rocks provided alternative habitat for fauna: a 

complex hard substrate for colonisation and shelter in an otherwise homogeneous soft 

sediment environment.  Despite fishing data showing the wider area to be intensively 

disturbed, large slow growing and vulnerable species, such as gorgonian corals, were 

found in the centre of the pockmarks indicating that they may offer important refuges from 

trawling activity. 
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This thesis suggests that pockmarks are important structural features influencing biological 

abundance and richness, and highlights the need for more research investigating their 

effects on faunal communities at a range of scales (regional and global) and in different 

environmental settings. 
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2BIntroduction 

 
Pockmarks are ubiquitous topographic features of the seafloor and lake bottoms.  They 

were first described as concave, crater-like depressions that occur in profusion on mud 

bottoms of the Scotian Shelf (King & MacLean 1970).  Since this time pockmarks have 

been the subject of numerous studies around the world (see Table 1 and reviews by 

Hovland & Judd 1988, Judd & Hovland 2007).  They are found globally in a variety of 

settings from the deep sea to continental slopes and shelves, as well as estuaries, fjords and 

lacustrine environments (Fig. 1).  Pockmarks occur in a variety of shapes, with circular and 

elliptical as the most common types.  The orientation of elliptical and elongated pockmarks 

is often correlated with the dominant bottom current direction (Hovland et al. 1984, Gontz 

et al. 2002).  They do not exhibit raised rims and range from cone shaped to flat-bottomed 

with internal slopes of 2P

o
P – 35P

o
P.  They have diameters from less than 1 m to in excess of 

1500 m, and can be over 150 m in depth.  Although pockmark sizes range over four orders 

of magnitude, the majority are between 10 - 250 m in diameter and 1 - 25 m in depth 

(Pilcher & Argent 2007).  Pockmarks can form in strings of aligned circular pockmarks or 

composites where several pockmarks merged together.  Pockmark complexes form where 

large (possibly composite) pockmarks are surrounded by numerous small unit pockmarks 

(~1 m in diameter, Hovland & Judd 1988) and intermediate sized satellite pockmarks (10 – 

20 m diameter, Paper III).  Relict sub-surface buried pockmarks up to 4 km in diameter 

have been discovered in Palaeogene age strata and interpreted to be composite pockmarks 

made up of several smaller (100-200) pockmarks (Cole et al. 2000). 

 

A number of theories for pockmark formation have been suggested.  The widely accepted 

explanation is that of expulsion of fluids or gases through the seabed, i.e. biogenic or 

thermogenic gas (Scanlon & Knebel 1989), pore water expulsed by compaction 

(Harrington 1985) or meteoric (artesian) groundwater (Khandriche & Werner 1995).  

However, as active fluid flux is rarely observed in pockmarks, the driving mechanism can 

be difficult to identify. 



 6 

Table 1.  Summary of the main published research on pockmarks categorised by location.  
 
Continent Ocean, Sea  

or Country 
Location Reference 

Africa South Atlantic Gulf of Guinea Sahling et al. (2008)  
   Gay et al. (2007) 
   Gay et al. (2006) 
   Olu-Le Roy et al. (2007) 
   Pilcher & Argent (2007) 
   Ondréas et al. (2005) 

Asia South China Sea South China Sea Platt (1977) 

 Arabian Sea Arabian Sea Karisiddaiah & Veerayya (2002) 

Australasia New Zealand  Lake Rototiti Pickrill (1993) 

Europe Baltic Sea Eckernfoerde Bay Khandriche & Werner (1995) 
  Baltic Sea Werner (1978) 

 Barents Sea Barents Sea Solheim & Elverhøi (1993) 

 Black Sea Turkish Shelf Çifçi et al. (2003) 

 Greenland Sea Fram Strait Vogt et al. (1994) 

 Mediterranean Killini peninsula Hasiotis et al. (2002) 
  Patras Gulf Hasiotis et al. (1996) 
  Patras & Corinth Gulfs Christodoulou et al. (2003) 
  Ibiza Channel Acosta et al. (2001) 
  Coast of Greece Dimitrov & Woodside (2003) 

 North Atlantic Gulf of Cadiz Baraza & Ercilla (1996) 
  Scotian Shelf King & MacLean (1970) 

 North Sea North Sea Hovland & Judd (1988) 
   Harrington (1985) 
   Long (1992) 
   Forsberg et al. (2007) 
   Dando et al. (1991) 
   Cole et al. (2000) 
  Skagerrak Rise et al. (1999) 

 Norwegian Sea Ullsfjorden Plassen & Vorren (2003) 
  Norwegian Sea Mazzini et al. (2006) 

North America North Atlantic Passamaquoddy Bay Wildish et al. (2008) 
  Belfast Bay Rogers et al. (2006) 
   Ussler et al. (2003) 
   Kelley et al. (1994) 

  Penobscot Bay Scanlon & Knebel (1989) 

  Bering Shelf Nelson et al. (1979) 

 North Pacific California – Big Sur Paull et al. (2002) 

South America South Atlantic Brazil Figueiredo et al. (1996) 
  Santos Basin Sumida et al. (2004) 
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Pockmarks form in soft, fine-grained, clay-rich sediments and occur at water depths 

ranging from 6 – 4800 m (Fader 1991) and can reach densities of greater than 1300 kmP

-2
P 

(Nelson et al. 1979).  Their distribution is sometimes observed as non random, with some 

patterns being linked to underlying geological structures, whereby faults act as conduits for 

the migration of fluids to the surface.  Examples of this are seen in the Oslofjord (Paper I) 

where both circular and elongated pockmarks align to the  faults and folds of the bedrock; 

the Norwegian trench (Bøe et al. 1998) where strings of pockmarks coincide with the sub-

crop strike pattern of the underlying Jurassic-Cretaceous strata; and the Killini Peninsula, 

Greece (Hasiotis et al. 2002) where the linear distribution of large pockmarks has possibly 

evolved along the trace of a small fault created by a Triassic salt diapir deep in the 

sedimentary column.  Pockmark strings have also been observed above faults and 

weakness zones in soft sediments (Hovland et al. 1996). 
 

The majority of pockmark research has been driven by the oil and gas industry, in terms of 

their usefulness as an exploration tool (Fader 1991) or as indicators of hydrocarbon sources 

for prospecting (Whiticar & Werner 1981).  Thus, previous research on pockmarks has 

been dominated by geological and geophysical aspects.  Yet, pockmarks also affect the 

ecology of the seabed.  Soft sediment environments have previously been considered as 

relatively homogeneous, but pockmarks are now being recognised as important features in 

structuring topography.  Highly structured habitats are important in the generation and 

maintenance of biodiversity.  For example, in soft sediment environments, much of this 

structure is created by inhabiting organisms in a number of ways.  These fauna burrow into 

and bioturbate sediments, provide hard substrates such as shells, form biogenic reefs, and 

modify surface topography (Thrush and Dayton 2002; Thrush et al. 2006).  Soft sediment 

environments are particularly vulnerable to habitat homogenization by anthropogenic 

disturbances such as the physical destruction caused by trawling and the removal of 

selective habitat forming species (Thrush et al. 2006).  Pockmarks not only increase habitat 

structure and complexity, they may also provide refuges from trawling activity and other 

anthropogenic disturbances (Paper III).  



 8 

Early ecological investigations reported unexpected increases in biological productivity 

inside pockmarks in the North Sea (Hovland & Judd 1988).  Despite this, and the fact that 

pockmarks are one of the most widespread small-scale topographic features of the seabed, 

only a few biological studies have been conducted.  ROV observations of the large 

complex ‘REGAB’ pockmark on the Gabon continental margin confirmed reports of 

increased biological productivity, observing novel and important fauna, and 

chemosynthetic communities (Ondréas et al. 2005, Olu-Le Roy et al. 2007).  The structure 

of these chemosynthetic communities was characterised by high spatial variability with 

different assemblages dominated by three key symbiotic taxa (Mytilidae, Vesicomyidae 

and Sibloglinidae).  Other pockmarks in this region have also been reported to contain a 

high abundance of typical chemosynthetic seep fauna, including vesicomyid clams and 

vestimentiferan worms (Sahling et al. 2008).  Prior to this thesis only two other studies 

have examined the biology and ecology of infaunal communities in pockmarks (Dando et 

al. 1991, Wildish et al. 2008), but neither of these studies supported the theory of enhanced 

communities.  Wildish et al. (2008) found reduced faunal abundance in one group of 

pockmarks and concluded that these pockmarks were at a pre-equilibrium stage of 

successional development.  Although infaunal pockmark communities in the North Sea 

were characterised by two chemosynthetic species not previously recorded from the area, 

the nematode Astomonema sp. and the bivalve Thyasira sarsi, the centre of the pockmark 

studied showed an overall reduced faunal abundance (Dando et al. 1991).  Thus, the 

influence of pockmarks on the fauna inhabiting them is not yet clearly understood.  

Therefore pockmark research should be pursued in greater depth to determine how these 

ubiquitous features structure benthic communities.   
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Figure 1.  Location of pockmark fields worldwide (data from the literature, see appendix 1) 
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3BObjectives of investigation 
 

This study investigated the biology and geology of temperate pockmarks, in the Oslofjord, 

Norway and around the Troll Platform in the North Sea. 

In order to achieve this, the following objectives were addressed: 

 

1. To examine any effects of pockmarks on infaunal communities 

2. To examine any effects of pockmarks on epifaunal communities 

3. To determine the formation mechanism of recently discovered pockmarks in the 

Oslofjord. 
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4BMethods 

 

Study sites 

The papers I, II, IV and V were carried out in the Oslofjord, Norway (59°50�N, 10°34�E) 

and Paper III was conducted in the Troll area of the North Sea off the west coast of 

Norway (61� N, 4� E). 

 

10BCoring 

Papers I and V aimed to determine origin of pockmarks in the Oslofjord by investigating 

their geology.  Seafloor sediment cores are a fundamental data source for information on 

seabed properties, depositional history and environmental change (Rothwell & Rack 2006).  

Initial short core samples were collected using a Bowers and Connelly multicorer.  This 

device allowed four core tubes to be collected simultaneously.  The sampler is lowered into 

the sediment using a damping system on a supportive frame, which reduces the production 

of a bow wave enabling minimum disturbance during sampling.  The cores sampled were 

10 cm in diameter and 30 - 40 cm long.  These cores were analysed with a range of 

techniques in order to detect any direct or indirect evidence for active or recent seepage of 

freshwater or gas. 

 

Piston core samples were collected using a deepwater sampler (DWS) developed by the 

Norwegian Geotechnical Institute (NGI).  This system overcomes the difficulties of 

investigating the very soft sediments of the seabed.  These sediments are easily disturbed, 

making it hard to recover samples without disturbance or loss of the sample.  Within this 

system a piston seals off the upper side of the sampler from surrounding pressure, thus 

minimising the forces exerted on the sample and preserving its condition.  The 8 m long 

core samples collected with the piston corer were analysed using a multi-sensor core 

logger.  This instrument produces high quality incremental measurements of gamma-ray 

attenuation bulk density, P-wave velocity, and magnetic susceptibility and is capable of 

resolving subtle changes in sediment properties that are of geological significance 

(Rothwell & Rack 2006).  Cores are passed by a computer-controlled conveyor belt 

through a sensor platform allowing automatic incremental measurements to be taken.  
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These data can then be related to the sediment character.  Magnetic susceptibility is used as 

a relative proxy indicator of changes in composition that can be linked to palaeoclimate-

controlled depositional processes.  The high precision and sensitivity of susceptibility 

loggers makes this measurement extremely useful for core to core correlation.  Gamma ray 

attenuation data provides a precise and densely sampled record of bulk density: an 

indicator of lithology and porosity changes.  P-wave velocity varies with lithology, 

porosity and bulk density of the material.  In marine sediments, velocity values are 

controlled by the degree of consolidation and lithication, fracturing, occurrence and 

abundance of free gas and gas hydrates.  Detailed pictures of the core’s composition can 

also be obtained by X-ray tomography with a CT scanner.  Core samples were tested using 

standard techniques for dating, porewater and gas analysis to determine the age and 

possible mechanisms of pockmark formation (Paper I & V). 

 

11BGrab 

Infaunal samples were collected using a 0.1 mP

2
P van Veen grab.  Positioning of the grab in 

the centre of the pockmark was based on positions taken from the bathymetric maps 

processed in ArcGIS and depth readings from the echosounder and grab winch system.  

Grab samples were emptied into the top of a set of washing tables and washed through a 

round holed sieve with 1 mm mesh size.  The retained fauna were placed in containers and 

fixed in 4 % formalin stained with rose bengal.  Macrofaunal samples were washed, sorted 

and preserved in 70 % ethanol in the laboratory.  All macrofauna were identified to the 

lowest possible taxonomic level (typically species) and enumerated. 

 

12BROV 

Traditional grab sampling significantly underestimates the abundance of large bodied 

organisms (Kendall and Widdicombe 1999) and is unsuitable on hard, coarse substrates.  

Remotely operated vehicles (ROV) are the ideal tool for surveying such megafaunal 

epibenthic communities, easily covering large areas and allowing repeated monitoring with 

preservation of the fauna.  They permit non-destructive sampling of the seabed using video 

and stills photography.  For this thesis megafauna were defined as animals large enough to 

be identified on video transects (> 5 cm).  The remote quantification of community 
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parameters such as diversity and abundance can be determined with accuracy over 

relatively wide areas.  These surveys also provide a visual record of seabed topography, 

rugosity, sediment characteristics and any indication of seeping gas or fluids.  Biological 

and geological samples can be taken using a manipulator arm with scoop attachment, 

corers and collection boxes attached to the ROV.  When working inside pockmarks the 

ROV is usually set to be neutrally, to slightly positively, buoyant to avoid downward 

thrusting that would disturb the sediments and reduce visibility. 

 

Videos taken using ROV are often digitised and analysed using specialist reviewing 

software (Paper III used VisualReview software (VisualSoft)).  Lasers can be used to 

define an area for counting abundances of mega- and larger macro-biota.  Additional, 

cameras with side views of the central cameras view can also be used to aid identification 

of fauna by providing alternative perspectives.  Playback software allows the recordings to 

be replayed at half speed and so that all the visible fauna can be identified to the lowest 

possible taxonomic level and counted.  Colonial organisms should be recorded as single 

‘individuals’ and only benthic fish species included.  Additionally descriptions of sediment 

type (categorised into mud, fine sand and gravel) and seabed morphology can be recorded 

for each transect. 

 

13BStatistical Methods 

Databases of species occurrence and supporting environmental data were constructed in 

MS Excel.  The species lists were standardised to the currently agreed scientific taxonomic 

names using the European Register of Marine Species (ERMS) as an authoritative 

taxonomic list of species occurring in the European marine environment.  These 

community ecology data were then assessed using PRIMER v.6 (Plymouth Routines In 

Multivariate Ecological Research, Clarke & Warwick 2001).  PRIMER is an ideal 

statistical package for analysing multivariate ecological and environmental data.  It is 

commonly used by benthic ecologists providing standardised methods of analysis that are 

comparable amongst studies.  This software was used to summarise the species data by the 

following diversity indices: species richness (S), and number of individuals (N), Shannon-

Wiener diversity (H’ (log base e)) and Pielou’s evenness (J’).  Multivariate statistics were 

applied to both the faunal and abiotic data to determine underlying patterns of community 

structure and their relationship to the surrounding environment.  Species abundance values 
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were square root transformed, to down-weigh the influence of highly abundant species, 

before a similarity matrix based on the Bray-Curtis similarity measure was calculated.  The 

relatedness of samples was assessed using non-metric multidimensional scaling ordination 

(nMDS).  Two-way analysis of similarities (ANOSIM) was carried out to determine 

whether site, or inside and outside of the pockmarks were significant predictors of faunal 

composition.  Taxa that contributed the most to the observed differences between samples 

from inside and outside of pockmarks, taking into account site, were determined by means 

of two-way similarity percentage analyses (SIMPER).  The relationships between the 

abundance of macrofauna and the environmental variables were investigated using the 

BIOENV procedure (PRIMER) with the Spearman rank correlation coefficient (�P

s
P), 

between the ranked biotic and environmental similarity matrices, providing the basis for 

this procedure. 

 

A general linear mixed effects model (GLMM) was used to test for differences in benthic 

community structure inside and outside of pockmarks in the Oslofjord.  This model 

incorporated random variation at different scales to allow for the nested structure of the 

sampling design (Paper I).  Area and in/out were included as fixed effects with sites, 

locations within sites, and grabs within locations as random effects.  Further tests were 

performed on the effects of site by fitting the model with site effects as fixed.  Numbers of 

individuals (N) were not normally distributed and so these data were log transformed to 

comply with assumptions of GLMM analysis. 

 

The compositional differences between inside and outside of the elongated trenches (Paper 

IV) were visualized using constrained ordination, Canonical Analysis of Principal 

Coordinates (CAP) (Anderson 2004).  This method uses a traditional canonical 

discriminant analysis based on distances to uncover patterns that may be masked in an 

unconstrained MDS ordination.  The ordination axes were drawn so as to maximise the 

differences between inside and outside of the pockmarks.  The analysis is a two-step 

procedure that involves calculation of principal coordinates from Bray-Curtis 

dissimilarities, followed by Canonical Discriminant Analysis (CDA) on these principal 

coordinates.  The first canonical variable (CV1) is an axis drawn through the data points 

that best separates the groups, by finding the linear combination of original variables that 

maximizes the variation between the groups.  This axis is then plotted against the first 

principal coordinate axis (PCO1), providing a constrained ordination plot.  The allocation 
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success is a measure of group distinctness, and gives the probability that a new observation 

will be placed into its correct group when placed into the ordination plot.  A squared 

canonical correlation value (� P

2
P) between 0 and 1 is given for the canonical axis, and this is 

the correlation between the group structure and the species data.  The closer the value is to 

1, the greater is the strength of the group effect.  The statistical significance of � P

2
P is 

calculated by a permutation test (Anderson & Robinson 2003, Anderson & Willis 2003). 
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5BDiscussion

14BFormation of pockmarks 

Eye-witness accounts of the formation of pockmarks have never been reported, but 

theories about how they are formed have been widely discussed.  One of the first reports 

(King & Maclean 1970) suggested they were created by fluid expulsion from the sediment, 

a theory that is still favoured today.  However, various other more unusual suggestions 

have been made such as, pits made by feeding whales, by bombs or iceberg grounding.  On 

reviewing the literature and Papers I-V, I conclude that pockmark formation based on fluid 

flow from the sediments seems the most plausible.  Two modes of formation through fluid 

flow have been proposed, either an eruption of gas from over-pressured shallow gas 

pockets or continuous fluid discharge, which hinders sediment deposition and causes 

winnowing of fine sediments from around the seep.  The nature of the seeping fluid has 

been suggested to vary in different settings around the world.  Many researchers have 

sought to determine the origin and types of fluid seepage in pockmarks through their 

investigations.

Geophysical methods such as seismic profiling have been used to search for evidence of 

gas within the seafloor below pockmarks.  Seismic manifestations of migrating gas can be 

indicated by various acoustic anomalies.  In small concentrations gas bubbles scatter 

acoustic energy and enhance seismic reflections.  Increasing concentrations of gas leads to 

acoustic absorption or scattering.  This results in acoustic turbidity or blanking on seismic 

profiles when the acoustic energy is so scattered by gas bubbles that other reflectors are 

masked (Schubel 1974).  Such acoustic turbidity has been observed in many pockmarked 

areas (Hovland & Judd 1988, Scanlon & Knebel 1989, Hasiotis et al. 1996, Karisiddaiah & 

Veerayya 2002).  For example, in the Gulf of Patras acoustic turbidity has been observed 

underneath pockmarks suggesting there is a continuous supply of gas towards the 

pockmarks from below and that the sediments within the migration path are gas-charged.  

Some pockmarks have chimney-like structures beneath them indicative of fluid venting 

(Paull et al. 2008).  Seismic profiles taken within the Oslofjord (Paper I) showed no clear 

acoustic blanking or signs of gas within the sediments.  Active and present day seepage 

was observed over a pockmark field in the North Sea, interpreted from seismic profiles 
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showing seepage plumes in the water column and shallow gas enhanced reflectors in the 

sediments.  However, these features were also observed in areas with no pockmarks so 

cannot necessarily be linked to their formation (Schroot et al. 2005). 

For gas generated deep within the seafloor to be expressed at shallow depths, upward 

migration pathways must exist.  Vertical faults and tilted permeable sedimentary layers are 

two common examples of such migration paths (Karisiddaiah & Veerayya 2002).  The 

distribution of pockmarks has commonly been linked to the underlying geological 

structure.  Faults can provide active conduits for gas and fluid to migrate to the seabed 

surface and create a fracture permeability allowing gas and fluid to flow to the surface.  

For example, pockmarks in the Black Sea are elongated and tend to follow a linear trend in 

a direction sub-parallel to the underlying Archangelsky Ridge axis in E–SE/W–NW 

direction (Çifçi et al. 2003).  In the Norwegian Trench, Bøe et al. (1998) reported that the 

orientation of linear rows of pockmarks coincides with the subcrop strike pattern of 

underlying Jurassic–Cretaceous strata.  In the same region, Hovland et al. (1996) observed 

pockmark strings above faults and weakness zones in soft sediments, providing vertical 

pathways for migrating fluid.  Hasiotis et al. (2002) also reported the linear distribution of 

large pockmarks in the Killini Peninsula, Greece, where a pockmark string had evolved 

along the trace of a weak surface (fault or joint), facilitating gas migration.  The elongated 

and elliptical pockmarks of the Oslofjord are also non-randomly distributed and work 

reported in this thesis correlated their positions to topography of the underlying bedrock - 

consistent with formation by release of underlying fluids (Paper I). 

The elongated pockmarks in the Oslofjord (Paper I and IV) were parallel with either the 

NE–SW strike of bedrock folds and thrust faults, or the N–S direction of extensional faults, 

indicating migration of gas or fluids along weakness zones.  The elliptical pockmarks 

(Paper I) also follow an ENE–WSW direction paralleling that of the bedrock folds and 

thrust faults.  But other studies have suggested that pockmarks may be elongated through 

scouring and current action (Josenhans et al. 1978, Bøe et al. 1998).  Elongated depressions 

in the Norwegian Trench with widths of up to 400 m and lengths of up to 2 km are 

interpreted as current-modified pockmarks (Bøe et al. 1998).  Several studies have reported 

that elliptical pockmarks are frequently elongated in the direction of prevailing currents 

(King & MacLean 1970, Nelson et al. 1979, Fader 1991), but currents in the Inner 

Oslofjord do not follow an ENE–WSW direction. 
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Pockmarks tend to occur in fine-grained sediments and some studies have linked sediment 

texture to variations in pockmark size; the finer the sediment, the larger the size of the 

pockmark.  Pockmarks tend to be smaller in compacted, fine sediments and are poorly 

developed in coarse sediments.  Their number decreases with decreasing grain size, 

presumably as a result of diminishing permeability (Uchupi et al. 1996). 

Venting of gases or fluids removes the fine-grained sediments by suspending them so that 

they may be transported away.  This explains why pockmarks do not have ejecta rims like 

those seen associated with impact craters.  This also potentially explains why many seismic 

profiles of pockmarks show dark reflectors in, or slightly below, their centres.  Such 

pockmarks have been termed ‘eyed’ pockmarks (Hovland et al. 2002).  These ‘eyes’ are 

likely to represent coarse material remaining after the winnowing of fine sediment during 

pockmark formation (Paper I).  Eyed pockmarks may also be due to the presence of 

authigenic carbonates that commonly occur at fluid seepage sites and are evidence of past 

or present methane seepage.  Such carbonate rock is created by the activity of a consortium 

of Archaea and sulphate reducing bacteria mediating the oxidation of methane (Boetius et 

al. 2000).  Several pockmarks in the North Sea (Paper III, Hovland et al. 1987) and 

Norwegian Sea (Mazzini et al. 2006) have been found to contain carbonate rocks.  The 

discovery of carbonates within all four pockmarks studied in the Troll region of the North 

Sea (Paper III) suggests a history of active methane seepage and that seep carbonates are a 

common feature of pockmark complexes in this region.  Carbonate rocks tend to have a 

complex structure with numerous cavities and protrusions (Fig. 2).
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Figure 2. (A) Heavily encrusted carbonate rocks in the centre of a North Sea pockmark. (B) Carbonate rock 
showing the surface complexity.  (Courtesy of the Troll Shallow Gas Project, StatoilHydro) 
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The nature of the seeping gases or fluids can be identified by geochemical analysis of 

seafloor sediments.  For example, pore water concentration gradients of chloride, methane 

and sulphate are sensitive indicators of fluid advection within shallow seafloor sediments 

(Ussler et al. 2003).  The most common gas found seeping from the seafloor is methane.  

This methane may either be biogenic, derived from bacterial activity in shallow sediments, 

or thermogenic, produced at high pressure and temperatures.  Thermagenically derived 

methane is consequently formed at depths greater than 1000 m, within sedimentary rocks.  

Biogenic gas is the most commonly reported vehicle for sediment resuspension in 

pockmark fields (Nelson et al. 1979, Scanlon & Knebel 1989, Kelley et al. 1994). 

 

The pockmarks in the Oslofjord are unlikely to have been formed by thermogenic gas, as 

there is no obvious gas source within the crystalline bedrock areas of the Oslofjord (Paper 

I).  The Lower Palaeozoic succession does contain hydrocarbon traces (Pedersen et al. 

2007) but appreciable amounts of gas have never been documented in the study region.  

Hovland and Judd (1988) documented how pockmarks diminish in size and frequency 

towards coastal areas where bedrock is crystalline.  Yet in the Swedish Baltic Sea, 

pockmarks are interpreted to be sourced by thermogenic gas occurring in an area of 

crystalline bedrock (Söderberg & Floden 1992).  Paper V confirmed that methane 

concentrations measured from cores sampled in the Oslofjord were too low to suggest free 

gas in the sediments.  The profiles from paper V show that methane was produced near the 

seafloor, and gradually depleted at depth by microbial degradation.  It seems likely that the 

methane is biogenic, produced by an input of anthropogenic organic material.  Sulphate 

concentrations are often used as a proxy for methane in porewater (Borowski et al. 1997).  

Lower sulphate in the pockmark cores could indicate the presence of methane seepage, as 

sulphate reduction to sulphide is induced by methane oxidation.  Interestingly, Paper V 

showed that sulphate curves differed significantly between inside and outside of the 

pockmark.  Outside of the pockmark there was a steady reduction in sulphate concentration 

with depth, yet inside the pockmark concentrations were almost constant with depth.  

Steeper sulphate gradients may indicate higher methane flux as a sulphate-methane 

transition is forced upwards, yet the source of any methane is unclear.  However, similar 

trends of steeper sulphate gradients outside compared to inside pockmarks have also been 

observed in the Storegga Slide area, offshore from Norway (Paull et al. 2008).  This was 

suggested to be due to reduced permeability under the pockmark.  
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Pockmark formation by trapped porewater escaping from soft cohensive (silt or clay) 

sediments was proposed by Harrington (1985).  Such a mechanism can create a winnowing 

effect so that grain size increases locally with a corresponding increase in permeability.  

Under such circumstances, water draining laterally into a sink, especially along the more 

porous layers, would concentrate the area of water expulsion forming a pit.  Continued 

expulsion of water may lead to slight compaction in a circular zone around the pit, forming 

the observed pockmark morphology.  This method of formation is the hardest to document 

because of the lack of corroborative chemical signature, but it remains a possible 

explanation for the formation of the Oslofjord pockmarks (Paper I). 

 

Pockmarks in the western Baltic Sea are thought to be formed by freshwater discharge.  

This is indicated by a strong decrease in chloride concentration with increasing depth 

within the pockmark sediments (Whiticar & Werner 1981, Khandriche & Werner 1995).  

Freshwater fluid flow was confirmed by radionuclide enrichment in the water column.  

Groundwater discharge can be estimated based on the distribution of P

222
PRadon and 

P

226
PRadium in the water column.  The decay of P

226
PRadium to P

222
PRadon occurs at higher 

levels in sediments than in seawater, thus groundwater samples will be enriched in 

P

222
PRadon compared to seawater (Schluter et al. 2004).  High latitude areas of pockmarks 

with groundwater seepage have been suggested to be formed by ice rafting (Paull et al. 

1999).  Freshwater seeping into shallow seafloor sediments is said to periodically freeze 

binding sediments, which then float off the seafloor.  The porewater profiles of the 

Oslofjord pockmarks showed reduced salinity in the upper 2.6 m of the core (Paper V).  

This may indicate that freshwater seepage is responsible for the formation of these 

pockmarks.  Although other studies have found reduced chloride concentrations at depth 

(Whiticar & Werner 1981, Khandriche & Werner 1995), this was not seen in the Oslofjord 

cores.  This maybe due to the core not hitting the conduit inside the pockmark so that the 

freshwater at the top of the cores could represent lateral transport of freshwater away from 

the conduit near the surface.  Interestingly low salinities were not observed in the initial 

study of Oslofjord pockmarks (Paper I).  This may be due to the seepage being sporadic 

and the samples only representing the topmost 30 cm of sediment. 

 

Biostratigraphic and radiocarbon data from Paper V indicate an initial age of the Oslofjord 

pockmarks as close to the base of Holocene, suggesting they formed after the glacial 

retreat.  The pockmarks may have initially formed in an ice-marginal marine setting, where 
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the out-of-equilibrium conditions at that time, such as high meltwater fluxes, high 

sedimentation rates and pressure drop, offer several possible mechanisms for their 

initiation.  The continuous but low sedimentation rates inside the pockmarks since this time 

indicates that they have been active through the Holocene by mechanisms such as outflux 

of artesian ground water or the action of water currents. 

 

 

15BEcology 

The geochemical nature of the seabed, and associated structures such as pockmarks, can 

have a profound influence on the identity, quantity and profusion of life at local and 

perhaps regional scales.  Many sediment parameters are linked and follow from the 

hydrodynamic regime.  Examples of this are the sediment properties grain size and sorting 

that affect porosity and permeability, which in turn influence oxygen content, salinity and 

sediment chemistry (e.g. redox potential). For example coarse intertidal sediments are 

inhospitable environments due to limited retention of water or organic matter, therefore 

only species which can tolerate these conditions will survive.  In contrast areas of fine clay 

sediments, where grains pack tightly together, may preclude the presence of meiofauna, 

which would normally inhabit the pore spaces between the grains.  It is therefore important 

to understand the geology of an area as physical, chemical and biological sedimentary 

variables are all interlinked. 

 

16BInfaunal macrobenthic communities in pockmarks 

Soft sediments cover most of the ocean seabed and the benthic species that reside within 

this habitat form one of the richest species pools in oceans (Snelgrove 1999).  Pockmarks 

are one of the most widespread small-scale topographic features within these sediments.  

Despite this almost nothing is known of their influence on the ecology of the marine 

environment.  As macrobenthic fauna play important roles in ecosystem processes such as 

nutrient cycling, pollutant metabolism, dispersion and burial, and in secondary production 

(Snelgrove 1999) it is important to improve our understanding of the effects of these 

features. 
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Biodiversity in the marine environment is often positively correlated with the complexity 

and heterogeneity of habitats (Tokeshi 1999, Thrush & Dayton 2002).  In soft sediment 

environments much of this structure is created by the inhabiting organisms; providing hard 

substrates such as shells, burrowing and bioturbating sediments, forming biogenic reefs, 

and modifying surface topography (Thrush & Dayton 2002, Thrush et al. 2006).  However, 

these habitats are increasingly being homogenized by wholesale physical destruction or the 

selective removal of habitat forming species (Thrush et al. 2006).  

 

Previously soft sediments have been considered to have little topographic structure but 

now, features such as pockmarks should be considered as important in structuring these 

environments.  Faunal communities are influenced by the physical and chemical properties 

of the seafloor sediments they inhabit.  Changes to these properties can exert a strong 

influence on the infaunal communities (Levin et al. 2000).  One such change is the 

formation and presence of pockmarks.  It seems intuitively reasonable that fauna in 

depressions such as pockmarks will be protected to some degree from physical disturbance 

(e.g., trawling), but seepage or altered current patterns may also influence the fauna in 

various ways, e.g. by increasing food availability for chemotrophic organisms or by 

physical disturbance. 

 

This thesis represents only the third study to quantitatively examine the ecology of infauna 

in pockmarks.  Paper II and IV report on the ecology of benthic communities within newly 

discovered pockmarks in the Oslofjord.  Paper II investigates the distribution of infaunal 

communities in circular pockmarks.  This paper shows that pockmarks significantly alter 

the abundances of key infaunal species and, as such, the abundance of pockmarks in the 

Oslofjord (4 pockmarks kmP

-2
P) will have a considerable cumulative influence on densities 

and populations.  The fauna of pockmarks were typical of a disturbed fjord environment 

with a dominance of small opportunistic taxa, such as pioneer bivalves and polychaetes.  I 

found that the position of sites in the fjord drove the most obvious faunal differences which 

potentially masked the full effect of pockmarks on infaunal communities.  Paper IV 

investigating the ecology of elongated pockmarks in the Oslofjord also showed subtle 

differences in species composition inside the elongated pockmarks when compared to 

background samples.  The differences were due to different abundances of small 

opportunistic polychaetes however, no species were obviously characteristic of pockmark 

communities.  There were both similarities and differences between findings in this thesis 
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and the other two reports of pockmark ecology.  Dando et al. (1991) reported that the fauna 

of a North Sea pockmark was characterised by two species not previously reported from 

the area, the bivalve Thyasira sarsi and the nematode Astomonema sp., both of which 

contain endosymbiotic bacteria.  The flat centre of their pockmarks had impoverished 

macrofauna and nematodes that they ascribed to the consolidated clay in the surface layers.  

Wildish et al. (2008) is the only previous study to investigate variability in biodiversity and 

ecology across pockmarks.  They concluded that of 14 pockmarks studied in detail, five 

(upper habitat A) were at a pre-equilibrium succession, whilst nine (lower habitat A) were 

at or near equilibrium. 

 

17BComparison between elongated and circular pockmarks 

There are no previous studies on the ecology of elongated pockmarks and no comparisons 

of the influences of pockmark morphology on the fauna within them.  Elongated 

pockmarks had lower redox potentials and higher organic contents than the circular 

pockmarks within the inner Oslofjord (Paper II & IV).  Interestingly, unlike the circular 

pockmarks (Paper II), no differences were observed in the sediment grain size between 

inside and outside of the elongated pockmarks.  The most likely explanation is that the 

location of these pockmarks in the fjord, and their proximity to land, increased the 

influence of terrigenous runoff.  Such terrestrial sediment runoff and the effects of 

eutrophication can lead to dead zones that cause the removal of habitat structuring 

organisms (Karlson et al. 2002).  Large numbers of pockmark studies, including Paper II 

and Paper III, report coarser sediments in the centre of the pockmarks, due to the removal 

of fine grains during the pockmark formation and any subsequent seepage.   

 

Both elongated and circular pockmarks showed subtle differences in faunal composition 

when comparing the inside of pockmarks to non pockmarked areas.  The data sets from 

Paper II and IV cannot be compared statistically due to differences in the sampling, the 

former having sampled fauna to 1 mm and the later 0.5 mm.  Interestingly, the elongated 

pockmarks had a variable effect on the abundance and richness of fauna when comparing 

species composition inside and outside of pockmarks.  In two elongated pockmarks species 

richness and abundance were both lower inside, however, this pattern was reversed in two 

other sites.  Due to the lack of effect of location on species richness and abundance, 
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observed differences were suggested to be related to differing successional stages or 

hydrodynamic regimes of the pockmarks. 

 

18BMegafaunal communities in pockmarks 

Megabenthic organisms have been defined as species large enough to be determined on 

photographs (Grassle et al. 1975).  Monitoring epibenthic megafauna has been shown to be 

effective in evaluating some impacts of disturbance on the seafloor (Bluhm 2001).  

Epibenthic communities are important because they are good indicators of fishing effects, 

sometimes sensitive to pollution, a food source for commercial fisheries (Jennings et al. 

1999), and they have a key function in benthic habitats (Piepenburg & Schmid 1997).  In 

the study of pockmark ecology, megafaunal communities have received the most attention, 

due to the majority of investigations employing ROVs for surveying.  These provide video 

and photographs that naturally focus on the observation and identification of these 

conspicuous fauna. Additionally reports of novel and specialised fauna have attracted 

interest as seep ecosystems remain at the forefront of scientific discovery. 

 

The active seepage of methane, hydrogen sulphide or other hydrocarbons are described as 

cold seeps.  Only two regions have pockmarks containing obvious cold seep communities, 

the Congo Fan off the west coast of Africa (Gay et al. 2006, Sahling et al. 2008) and the 

North Gulf of Mexico (Macdonald et al. 1990).  The most unusual of these are the findings 

in the Gulf of Mexico, where a brine filled pockmark was discovered ringed by a bed of 

Bathymodiolus sp..  The anoxic brine contained high concentrations of methane, which 

nourish the methanotrophic symbionts in the mussels (Macdonald et al. 1990).  In the 

Congo Fan area the ‘Kouilou pockmarks’, and the ‘REGAB’ pockmark were also 

discovered to contain a high abundance of chemosynthetic seep fauna.  The REGAB is a 

large 800 m wide complex pockmark in 3160 m water depth, formed from about 20 

smaller depressions with depths up to 15 m.  Inside the pockmark, the faunal assemblages 

were dominated by bivalves of the families Mytilidae (Bathymodiolus sp.) or 

Vesicomyidae (Calyptogena sp., ‘Vesicomya’ aff. chuni), or by Siboglinidae polychaetes 

(Escarpia southwardae) (Ondréas et al. 2005, Olu-Le Roy et al. 2007).  The Kouilou 

pockmarks are three large pockmarks, up to 1000 m in diameter and 15 m in depth, in 

water depths of around 3100 m.  All three of these pockmarks have comparable faunal 
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compositions of vestimentiferan tubeworms and vesicomyid clams similar to the fauna of 

the REGAB pockmark (Sahling et al. 2008). 

 

The occurrence of seep communities within pockmarks is not only related to the type or 

activity of the pockmarks but also by the depth of water in which they occur.  From 

examining cold seeps at four depth zones from 160 m to 1600 m in the Sea of Okhotsk, 

Sahling et al. (2003) concluded that the number of chemosynthetic fauna decreased 

dramatically with decreasing water depth and that seep-endemic fauna were confined to 

seep sites at depths below 370 m.  They suggested this was due to higher predation 

pressure at shallower depths, but it may also be an effect of other depth related factors such 

as bottom-water currents, sedimentary regimes, oxygen concentrations or the supply of 

suitable substrates. 

 

Paper III represents one of only two quantitative studies of megafaunal communities within 

shallow water (less than 400 m) pockmarks.  This paper examined megafaunal 

communities of four large pockmarks in the North Sea using video analysis to calculate 

densities of fauna inside and outside of pockmarks.  It revealed that megafauna increased 

in abundance, species richness and diversity from outside (background seabed) towards the 

centre of the pockmarks.  The numbers of taxa present in the centre of pockmarks were 

approximately double that of similar surrounding areas, and the centres had almost an 

order of magnitude more individuals than outside.  The main reasons for this increased 

faunal abundance and species richness were suggested to be habitat enrichment and refuge 

from disturbance.  The other study of the megabenthos in pockmarks was carried out using 

a towed underwater camera across pockmarks in Passamaquoddy Bay, east coast Canada 

(Wildish et al. 2008).  They calculated the density of three species of megabenthos; 

Asterias rubens, Cucumaria frondosa and an unidentified bryozoan or hydrozoan, inside 

and outside of pockmarks.  A. rubens occurred in higher densities outside pockmarks and 

although C. frondosa occurred both inside and outside of the pockmarks, aggregated 

populations were only observed inside.  They proposed that this was linked to special 

hydrodynamic conditions, which cause turbulent re-suspension of material. 

 

Carbonate rocks in the centre of pockmarks have been observed in fossil and active 

pockmarks, and seep sites (Levin 2005, Mazzini et al. 2006, Sahling et al. 2008).  This 

carbonate represents a hard substrate in an otherwise soft sediment environment providing 
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habitat to encrusting organisms and shelter for others.  Pockmarks studied in the North Sea 

(Paper III) showed increases in megafaunal abundance associated with carbonate rocks in 

their centres.  This is similar to findings at other cold seep sites, where carbonates are 

common.  A study in the Sea of Okhotsk found the abundances of the megafaunal groups 

(classes) Gastropoda, Asteroidea and Echinoidea were positively correlated with the 

presence of hard substrates (e.g. carbonates) at seep sites (Sahling et al. 2008).  The 

distribution of characteristic seep fauna, siboglionids and mytilid bivalves, is limited by the 

nature of the geological substratum, both needing hard substratum for larval settlement.  In 

contrast, vesicomyids require soft sediments as they are usually observed partially buried 

in the sediment (Ondréas et al. 2005).  Whilst epifauna attached to carbonates have been 

investigated, there have been no community descriptions of carbonate-associated or 

carbonate-burrowing seep taxa, either epifauna or endolithofauna (Levin 2005). 

 

19BPockmarks as refuges 

The complex morphology of carbonates not only provides a large surface area for the 

settlement of fauna, it also offers protection against predation and some environmental 

disturbances.  Natural habitat complexity, such as that associated with carbonate rocks, can 

provide spatial refuges within which juvenile fish species can avoid predation (Tupper & 

Boutilier 1995, Scharf et al. 2006).  This may be vitally important with increasing 

homogenisation of habitats by physical disturbance (Thrush et al. 2006).  Some fauna are 

known to associate with depressions in the seafloor, where they either seek refuge from 

predators or lie in wait optimizing ambush predation tactics (Auster et al. 1995).  Deep 

pockmarks in the North Sea have been shown to act as refuges for several fish species; cod 

(Gadus morhua), torsk (Brosme brosme) and ling (Molva molva) (Hovland & Judd 1988).  

Fish have been observed seeking refuge in burrows on the east slopes of large pockmarks 

(Fig. 3A) and in unit pockmarks (Fig. 3B) in the North Sea (Paper III). 

 

The recessed morphology of pockmarks offers protection from disturbances such as 

trawling (Paper III).  The observations, in Paper III, of large abundances of fragile sponges, 

cnidarians and corals are unusual in the North Sea.  Benthic communities in the North Sea 

are known to be affected by fishing disturbance causing decreases in biomass, abundance 

and production (Thrush & Dayton 2002).  The pockmarks studied had trawl scars running 

across the top of them yet they had a high abundance of epifauna in their centres, including 
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large 2 m high colonies of the Gorgonian coral, Paragorgia arborea.  Although trawls may 

pass over pockmarks it appears that the diameter and depth of the pockmarks, compared to 

the size of nets, means that the recessed centres of the pockmarks remain undisturbed.  It 

has been estimated that, on average, any seabed area of the North Sea is trawled over at 

least twice per year by increasingly heavy gear (Sydow 1990).  Any protection offered by 

pockmarks is of key importance because, with bottom fishing gear causing mortality and 

injury to surface dwelling and shallow burying fauna on the seafloor (Tuck et al. 1998), 

(over)fishing is considered the biggest current anthropogenic impact (Dayton et al. 1995, 

Jackson et al. 2001). 
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Fig. 3. (A )Torsk (Brosme brosme) in a hole on the east slope of a large pockmark in the North Sea.  
(B). Territorial torsk in unit pockmark, showing the coarse grain sediments and a ball sponge and 
anemone (Bolocera tuediae).  (Courtesy of the Troll Shallow Gas Project, StatoilHydro) 
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Seeping pockmarks 

Deep-sea pockmarks have been shown to contain characteristic species associated with 

seepage.  However, there are few reports of chemosynthetic organisms associated with 

pockmarks in shallower waters.  Enhanced benthic fauna in pockmarks in the Holene and 

Gullfaks areas of the North Sea are suspected to be related to methane-, and carbon 

dioxide-, rich porewater seeping out of the seabed (Hovland & Thomsen 1989).  The 

presence of such seepage was indicated by mats of sulphur oxidising bacteria.  It is 

assumed that the benthic fauna are enhanced through a bacteria-based food web sustained 

by methane seepage (Hovland & Judd 1988).  Paper III shows that pockmarks in the North 

Sea at around 300 m water depth have an increased abundance and diversity of fauna.  

However, the increased fauna observed is probably unrelated to any active seepage as these 

pockmarks are thought to be inactive or episodic in nature.  They showed no active signs 

of seepage, such as bubbles and fluid flow, and no bacterial mats or specialised 

chemosynthetic fauna were observed during investigations.  

 

The seepage of hydrocarbons has also been linked to other fauna around pockmarks.  The 

‘hydraulic theory’ was suggested to explain the paradoxical distribution of cold water coral 

reefs around the Norwegian coast.  This theory states that coral growth is promoted by 

fluid flow, either through the seepage of groundwater under reefs in fjords, or hydrocarbon 

related fluids under the continental shelf reefs (Judd & Hovland 2007).  An example of this 

is the occurrence of Lophelia coral reefs on the edge of pockmarks in the Kristin Field, 

which is suggested to be correlated with gas and porewater seepage stimulating growth 

through the provision of bacteria and micro-organisms (Hovland 2005).  However, some 

studies have argued against the linkage between fluid seepage and corals reefs (Freiwald et 

al. 1999).  Although some reefs are reported close to seeps and pockmarks, many, if not 

most, are not (Roberts & Hirshfield 2004).  Isotope analysis of coral tissues from Galicia 

Bank on the North West Atlantic margin excludes the possibility that the coral community 

there is methane-supported, since the �P

13
PC values expected from a methane seep were far 

outside the values found in coral tissue (Duineveld et al. 2004). 
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Currents 

The morphology of pockmarks could also play an important role in structuring benthic 

communities by altering current patterns.  The physical energy above the seabed plays an 

important role in the settlement of larvae and the supply of food to the surface sediments as 

well as in the spatial distribution of different sediment types.  Eroded seabeds and coarse 

sediments are associated with high-energy currents, compared to areas of low energy 

where accumulation of fine sands, muds and oozes is likely to prevail.  Where bottom 

currents occur intermittently, episodic resuspension may take place.  Advective processes 

also transport organic particles along the bottom, which may have an important impact on 

species composition and the feeding behaviour of benthic fauna (Rosenberg 1995).  

Wildish et al. (2008) proposed that aggregations of holothurians in the bottom of 

pockmarks were linked to hydrodynamic conditions that cause turbulent resuspension of 

material.  Increased bottom flow may lead to more suspension feeders, or alternatively 

reduced water flow may increase larval settlement or lead to higher abundance of deposit 

feeders.  Currents also help resuspend nutrients.  Deposit feeders are found on all types of 

soft sediment but they reach their highest abundances where water movements are 

minimal, whereas suspension feeders require a higher rate of water movement (Wildish & 

Kristmanson 1997). 

 

The current patterns within pockmarks are not fully understood, but observations of the 

fauna can give indications of the likely conditions.  The pockmarks in the North Sea 

contained high abundances of suspension feeders (Paper III) which may indicate a rich 

source of food for these fauna either from increased water movement, or the resuspension 

of food particles from sediments by active seepage or turbulent current processes. 

 

20BComparisons of epifauna and infauna 

Epifaunal communities in the North Sea were enhanced within pockmarks (Paper III), 

whereas (from what little evidence is available) infaunal communities appeared to be 

negatively affected with reduced abundance and diversity (Paper IV, Dando et al. 1991).  

The same results of reduced infaunal populations have also been observed at methane 

seeps (Grassle 1985, Dando et al. 1991, Thiermann et al. 1997).  It is well documented that 

pockmarks have coarser material in their centre (than surrounding sediments), thought to 

be caused during formation as fine sediments are removed by currents during eruption or 
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winnowing during gradual seepage.  This coarser sediment within the centre of the 

pockmarks is correlated with the abundance and diversity of the benthic assemblages 

(Paper II & III).  For example, coarser sediment composition had an effect on the species 

composition of the Oslofjord pockmarks (Paper II).  Studies by Dando et al (1991) showed 

that the biomass of infauna on the pockmark slopes was similar to the surrounding 

seafloor.  But the bottom of the pockmarks had a smaller number of species and lower 

biomass that they attributed to the disturbed sediments.  Previous studies on the infauna 

and epifauna of the North Sea have shown that the strongest correlation with infaunal 

community composition was sediment granulometry, with the next-most strongly 

correlated factor being depth (Basford et al. 1990).  For the epibenthos, depth was the 

major factor and the sediment composition was less significant.  This may explain why 

increases in biodiversity and abundance were observed within pockmarks of epifauna 

(megabenthos) but not necessarily within the infaunal macrobenthic communities. 

 

 

6BConcluding remarks 

The Oslofjord Pockmarks were probably initiated between 10.7 and 9.5 cal kyr BP and 

have experienced continuously low sedimentation rates since this time.  Thus, these 

structures may have initially formed in an ice-marginal marine setting, where mechanisms 

such as submarine melt water outflux, ice rafting and rapid isostatic uplift may be of 

relevance.  Reduced salinity in the upper sediments of the pockmark indicates they are 

actively seeping artesian ground water.  Investigations in the North Sea and Oslofjord have 

shown that the influence of pockmarks is different between epifaunal and infaunal 

communities.  The increase in some measures of epifaunal community presence within 

pockmarks was probably due to two main reasons.  The presence of carbonate rocks 

providing a hard substrate for settling and development; and the protection offered by the 

morphology of the pockmark and carbonate rock.  Infaunal communities showed both 

increases and decreases in species abundance and richness.  This is presumed to be related 

to their location within the fjord, proximity to land and also possibly the successional 

stages of the pockmark.  The abundances of key species inside pockmarks were 

significantly different to the surrounding seabed and as such the abundance of pockmarks 

in the Oslofjord has a considerable cumulative influence on overall faunal densities and 
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populations.  This thesis highlights the need for more pockmark research, investigating 

their effects on the faunal communities globally, in different environmental settings. 

 

 

7BFuture perspectives 

Pockmarks have now been recognised for nearly four decades, yet there is still little 

detailed knowledge or understanding of the pockmark environments.  More extensive 

surveying and long-term monitoring may help to gain stronger insights into pockmark 

processes and dynamics.  Long term studies on pockmarks need to be undertaken to 

determine if they are dynamic, perturbed environments or if they are oases for epifauna.  

Monitoring of the hydrodynamics inside pockmarks may give explanations for the high 

epifaunal diversity.  The effects of carbonate rocks as a substrate for larval settlement and 

refuge could be investigated in more detail by comparisons with glacial drop stones.  This 

thesis has focused on the macrofaunal component of benthic biodiversity, but micro- and 

meiofauna must also be considered.  This work also represents only the third investigation 

of infauna within pockmarks, so there is still limited knowledge of the biogeography of 

these communities on a global scale.  



 34 

8BReferences 

 

Acosta J, Munoz A, Herranz P, Palomo C, Ballesteros M, Vaquero M, Uchupi E (2001) 

Pockmarks in the Ibiza Channel and western end of the Balearic Promontory 

(western Mediterranean) revealed by multibeam mapping. Geo-Mar Lett 21:123-

130 

Anderson MJ (2004) CAP: a FORTRAN computer program for canonical analysis of 

principle coordinates. Department of Statistics, University of Auckland, New 

Zealand 

Anderson MJ, Robinson J (2003) Generalized discriminant analysis based on distances. 

Aust NZ J Stat 45:301-318 

Anderson MJ, Willis TJ (2003) Canonical analysis of principal coordinates: A useful 

method of constrained ordination for ecology. Ecology 84:511-525 

Auster PJ, Malatesta RJ, Larosa SC (1995) Patterns of microhabitat utilization by mobile 

megafauna on the Southern New-England (USA) continental-shelf and slope. Mar 

Ecol Prog Ser 127:77-85 

Baraza J, Ercilla G (1996) Gas-charged sediments and large pockmark-like features on the 

Gulf of Cadiz slope (SW Spain). Mar Pet Geol 13:253-261 

Basford D, Eleftheriou A, Raffaelli D (1990) The infauna and epifauna of the Northern 

North Sea. Neth. J. Sea Res. 25:165-173 

Bluhm H (2001) Re-establishment of an abyssal megabenthic community after 

experimental physical disturbance of the seafloor. Deep Sea Res 48:3841-3868 

Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, 

Jorgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium 

apparently mediating anaerobic oxidation of methane. Nature 407:623-626 

Borowski WS, Paull CK, Ussler W (1997) Carbon cycling within the upper methanogenic 

zone of continental rise sediments; An example from the methane-rich sediments 

overlying the Blake Ridge gas hydrate deposits. Mar Chem 57:299-311 

Bøe R, Rise L, Ottesen D (1998) Elongate depressions on the southern slope of the 

Norwegian Trench (Skagerrak): morphology and evolution. Mar Geol 146:191-203 

Christodoulou D, Papatheodorou G, Ferentinos G, Masson M (2003) Active seepage in 

two contrasting pockmark fields in the Patras and Corinth gulfs, Greece. Geo-Mar 

Lett 23:194-199 



 35

Çifçi G, Dondurur D, Ergun M (2003) Deep and shallow structures of large pockmarks in 

the Turkish shelf, Eastern Black Sea. Geo-Mar Lett 23:311-322 

Clarke K, Warwick RM (2001) Change in marine communities: an approach to statistical 

analyses and interpretation. PRIMER-E, Plymouth 

Cole D, Stewart SA, Cartwright JA (2000) Giant irregular pockmark craters in the 

Palaeogene of the Outer Moray Firth Basin, UK North Sea. Mar Pet Geol 17:563-

577 

Dando PR, Austen MC, Burke RA, Kendall MA, Kennicutt MC, Judd AG, Moore DC, 

Ohara SCM, Schmaljohann R, Southward AJ (1991) Ecology of a North-Sea 

pockmark with an active methane seep. Mar Ecol Prog Ser 70:49-63 

Dayton PK, Thrush SF, Agardy MT, Hofman RJ (1995) Environmental-effects of marine 

fishing. Aqua Conser Mar Freshw Ecosyst 5:205-232 

Dimitrov L, Woodside J (2003) Deep sea pockmark environments in the eastern 

Mediterranean. Mar Geol 195:263-276 

Duineveld GCA, Lavaleye MSS, Berghuis EM (2004) Particle flux and food supply to a 

seamount cold-water coral community (Galicia Bank, NW Spain). Mar Ecol-Prog 

Ser 277:13-23 

Fader GBJ (1991) Gas-related sedimentary features from the eastern Canadian continental-

shelf. Cont Shelf Res 11:1123-1153 

Figueiredo AG, Nittrouer CA, deAlencarCosta E (1996) Gas charged sediments in the 

Amazon submarine delta. Geo-Mar Lett 16:31-35 

Forsberg CF, Planke S, Tjelta TI, Svanø G, Strout JM, Svensen H (2007) Formation of 

pockmarks in the Norwegian Channel. Proceedings of the 6th International 

Offshore Site Investigation and Geotechnics Conference: Confronting New 

Challenges and Sharing Knowledge 

Freiwald A, Wilson JB, Henrich R (1999) Grounding Pleistocene icebergs shape recent 

deep-water coral reefs. Sediment Geol 125:1-8 

Gay A, Lopez M, Berndt C, Seranne M (2007) Geological controls on focused fluid flow 

associated with seafloor seeps in the lower Congo Basin. Mar Geol 244:68-92 

Gay A, Lopez M, Ondreas H, Charlou JL, Sermondadaz G, Cochonat P (2006) Seafloor 

facies related to upward methane flux within a giant pockmark of the lower Congo 

Basin. Mar Geol 226:81-95 

Gontz AM, Belknap DF, Kelley JT (2002) Seafloor features and characteristics of the 

Black Ledges area, Penobscot Bay, Maine, USA. J Coast Res 36:333-339 



 36 

Grassle JF (1985) Hydrothermal vent animals: distribution and biology. Science 229:713-

717 

Grassle JF, Sanders HL, Hessler RR, Rowe GT, McLellan T (1975) Pattern and zonation - 

study of bathyal megafauna using research submersible Alvin. Deep Sea Res 

22:457-481 

Harrington PK (1985) Formation of pockmarks by pore-water escape. Geo-Mar Lett 5:193-

197 

Hasiotis T, Papatheodorou G, Ferentinos G (2002) A string of large and deep gas-induced 

depressions (pockmarks) offshore Killini peninsula, western Greece. Geo-Mar Lett 

22:142-149 

Hasiotis T, Papatheodorou G, Kastanos N (1996) A pockmark field in the Patras Gulf 

(Greece) and its activation during the 14/7/93 seismic event. Mar Geol 130:333-344 

Hovland M (2005) Pockmark-associated coral reefs at the Kristin field off mid-Norway In: 

Freiwald A, Roberts JM (eds) Cold-water Corals and Ecosystems. Springer-Verlag, 

Berlin Heidelberg, p 623-632 

Hovland M, Gardner JV, Judd AG (2002) The significance of pockmarks to understanding 

fluid flow processes and geohazards. Geofluids 2:127-136 

Hovland M, Judd AG (1988) Seabed pockmarks and seepages. Impact on geology, biology 

and the marine environment. Graham & Trotman Ltd. London 

Hovland M, Judd AG, King LH (1984) Characteristic features of pockmarks on the North-

Sea floor and Scotian Shelf. Sedimentology 31:471-480 

Hovland M, Talbot MR, Qvale H, Olaussen S, Aasberg L (1987) Methane-related 

carbonate cements in pockmarks of the North-Sea. J Sediment Petrol 57:881-892 

Hovland M, Thomsen E (1989) Hydrocarbon-based communities in the North-Sea. Sarsia 

74:29-42 

Hovland M, Vasshus S, Heggland R (1996) Pockmarks in the Norwegian Trench-some 

new observations Proceedings of Fourth International Conference: Gas in Marine 

Sediments, Varna, Bulgaria 

Jackson JBC, Kirby MX, Berger WH, Bjorndal KA, Botsford LW, Bourque BJ, Bradbury 

RH, Cooke R, Erlandson J, Estes JA, Hughes TP, Kidwell S, Lange CB, Lenihan 

HS, Pandolfi JM, Peterson CH, Steneck RS, Tegner MJ, Warner RR (2001) 

Historical overfishing and the recent collapse of coastal ecosystems. Science 

293:629-637 



 37

Jennings S, Lancaster J, Woolmer A, Cotter J (1999) Distribution, diversity and abundance 

of epibenthic fauna in the North Sea. J Mar Biol Assoc UK 79:385-399 

Josenhans HW, King LH, Fader GB (1978) Side-scan sonar mosaic of pockmarks on 

Scotian Shelf. Can J Earth Sci 15:831-840 

Judd A, Hovland M (2007) Seabed fluid flow. The impact on geology, biology and the 

marine environment. Cambridge University Press, Cambridge. 

Karisiddaiah SM, Veerayya M (2002) Occurrence of pockmarks and gas seepages along 

the central western continental margin of India. Curr Sci 82:52-57 

Karlson K, Rosenberg R, Bonsdorff E (2002) Temporal and spatial large-scale effects of 

eutrophication and oxygen deficiency on benthic fauna in Scandinavian and Baltic 

waters-a review. Oceanog Mar Biol 32:427-489 

Kelley JT, Dickson SM, Belknap DF, Barnhardt WA, Henderson M (1994) Giant sea-bed 

pockmarks - evidence for gas escape from Belfast Bay, Maine. Geology 22:59-62 

Kendall, MA; Widdicombe, S (1999) Small scale patterns in the structure of macrofaunal 

assemblages of shallow soft sediments. J. Exp. Mar. Biol. Ecol. 237:127-140 

Khandriche A, Werner F (1995) Freshwater induced pockmarks in Bay of Eckernfoerde, 

Western Baltic. In: Mojski JE (ed) Proceedings of the Third Marine Geological 

Conference ‘The Baltic’, Warzawa, p 155-164 

King LH, MacLean B (1970) Pockmarks on Scotian Shelf. Geol Soc Am Bull 81:3141-

3148 

Levin LA (2005) Ecology of cold seep sediments: Interactions of fauna with flow, 

chemistry and microbes. Oceanog Mar Biol 43:1-46 

Levin LA, James DW, Martin CM, Rathburn AE, Harris LH, Michener RH (2000) Do 

methane seeps support distinct macrofaunal assemblages? Observations on 

community structure and nutrition from the northern California slope and shelf. 

Mar Ecol Prog Ser 208:21-39 

Long D (1992) Devensian late-glacial gas escape in the central North-Sea. Cont Shelf Res 

12:1097-1110 

Macdonald IR, Reilly JF, Guinasso NL, Brooks JM, Carney RS, Bryant WA, Bright TJ 

(1990) Chemosynthetic mussels at a brine-filled pockmark in the northern Gulf Of 

Mexico. Science 248:1096-1099 

Mazzini A, Svensen H, Hovland M, Planke S (2006) Comparison and implications from 

strikingly different authigenic carbonates in a Nyegga complex pockmark, G11, 

Norwegian Sea. Mar Geol 231:89-102 



 38 

Nelson H, Thor DR, Sandstrom MW, Kvenvolden KA (1979) Modern biogenic gas-

generated craters (Sea-Floor Pockmarks) On The Bering Shelf, Alaska. Geol Soc 

Am Bull 90:1144-1152 

Olu-Le Roy K, Caprais JC, Fifis A, Fabri MC, Gal, ron J, Budzinsky H, Le M, nach K, 

Khripounoff A, Ondr, as H, Sibuet M (2007) Cold-seep assemblages on a giant 

pockmark off West Africa: spatial patterns and environmental control. Mar Ecol 

28:115-130 

Ondréas H, Olu K, Fouquet Y, Charlou JL, Gay A, Dennielou B, Donval JP, Fifis A, 

Nadalig T, Cochonat P, Cauquil E, Bourillet JF, Le Moigne M, Sibuet M (2005) 

ROV study of a giant pockmark on the Gabon continental margin. Geo-Mar Lett 

25:281-292 

Paull CK, Ussler W, Borowski WS (1999) Freshwater ice rafting: an additional mechanism 

for the formation of some high-latitude submarine pockmarks. Geo-Mar Lett 

19:164-168 

Paull CK, Ussler W, Holbrook WS, Hill TM, Keaten R, Mienert J, Haflidason H, Johnson 

JE, Winters WJ, Lorenson TD (2008) Origin of pockmarks and chimney structures 

on the flanks of the Storegga Slide, offshore Norway. Geo-Mar Lett 28:43-51 

Paull C, Ussler W, Maher N, Greene HG, Rehder G, Lorenson T, Lee H (2002) Pockmarks 

off Big Sur, California. Mar Geol 181:323-335 

Pedersen JH, Karlsen DA, Spjeldnaes N, Backer-Owe K, Lie JE, Brunstad H (2007) Lower 

Paleozoic petroleum from southern Scandinavia: Implications to a Pleozoic 

petroleum system offshore southern Norway. AAPG Bulletin 91:1189-1212 

Pickrill RA (1993) Shallow seismic stratigraphy and pockmarks of a hydrothermally 

influenced lake, Lake Rotoiti, New-Zealand. Sedimentology 40:813-828 

Piepenburg D, Schmid MK (1997) A photographic survey of the epibenthic megafauna of 

the Arctic Laptev Sea shelf: Distribution, abundance, and estimates of biomass and 

organic carbon demand. Mar Ecol Prog Ser 147:63-75 

Pilcher R, Argent J (2007) Mega-pockmarks and linear pockmark trains on the west 

African continental margin. Mar Geol 244:15-32 

Plassen L, Vorren TO (2003) Fluid flow features in fjord-fill deposits, Ullsfjorden, North 

Norway. Nor J Geol 83:37-42 

Platt J (1977) Significance of pockmarks for engineers. Offshore Engineer 45 



 39

Rise L, Saettem J, Fanavoll S, Thorsnes T, Ottesen D, Boe R (1999) Sea-bed pockmarks 

related to fluid migration from Mesozoic bedrock strata in the Skagerrak offshore 

Norway. Mar Pet Geol 16:619-631 

Roberts S, Hirshfield M (2004) Deep-sea corals: out of sight, but no longer out of mind. 

Front Ecol Environ 2:123-130 

Rogers JN, Kelley JT, Belknap DF, Gontz A, Barnhardt WA (2006) Shallow-water 

pockmark formation in temperate estuaries: A consideration of origins in the 

western gulf of Maine with special focus on Belfast Bay. Mar Geol 225:45-62 

Rosenberg R (1995) Benthic marine fauna structured by hydrodynamic processes and food 

availability. Neth J Sea Res 34:303-317 

Rothwell RG, Rack FR (2006) New techniques in sediment core analysis: an introduction. 

Geological Society, London, Special Publications 267:1-29 

Sahling H, Bohrmann G, Spiess V, Bialas J, Breitzke M, Ivanov M, Kasten S, Krastel S, 

Schneider R (2008) Pockmarks in the northern Congo Fan area, SW Africa: 

Complex seafloor features shaped by fluid flow. Mar Geol 249:206-225 

Sahling H, Galkin SV, Salyuk A, Greinert J, Foerstel H, Piepenburg D, Suess E (2003) 

Depth-related structure and ecological significance of cold-seep communities - a 

case study from the Sea of Okhotsk. Deep Sea Res 50:1391-1409 

Scanlon KM, Knebel HJ (1989) Pockmarks in the floor of Penobscot Bay, Maine. Geo-

Mar Lett 9:53-58 

Scharf FS, Manderson JP, Fabrizio MC (2006) The effects of seafloor habitat complexity 

on survival of juvenile fishes: Species-specific interactions with structural refuge. J 

Exp Mar Biol Ecol 335:167-176 

Schluter M, Sauter EJ, Andersen CE, Dahlgaard H, Dando PR (2004) Spatial distribution 

and budget for submarine groundwater discharge in Eckernforde Bay (Western 

Baltic Sea). Limnol Oceanogr 49:157-167 

Schroot BM, Klaver GT, Schuttenhelm RTE (2005) Surface and subsurface expressions of 

gas seepage to the seabed - examples from the Southern North Sea. Mar Pet Geol 

22:499-515 

Schubel JR (1974) Gas bubbles and the acoustically impenetrable, or turbid, character of 

some estuarine sediments. In: Kaplan IR (ed) Marine Science, Vol 3. Plenum Press, 

New York, p 275-298 



 40 

Snelgrove PVR (1999) Getting to the bottom of marine biodiversity: Sedimentary habitats: 

ocean bottoms are the most widespread habitat on Earth and support high 

biodiversity and key ecosystem services. Bioscience 49:129-138 

Söderberg P, Floden T (1992) Gas seepages, gas eruptions and degassing structures in the 

sea-floor along the Stromma tectonic lineament in the crystalline Stockholm 

archipelago, east Sweden. Cont Shelf Res 12:1157-1171 

Solheim A, Elverhøi A (1993) Gas-related sea floor craters in the Barents Sea. Geo-Mar 

Lett 13:235-243 

Sumida PYG, Yoshinaga MY, Madureira L, Hovland M (2004) Seabed pockmarks 

associated with deepwater corals off SE Brazilian continental slope, Santos Basin. 

Mar Geol 207:159-167 

Sydow JS (1990) Cruise report experiments on the interaction fishing gear (beamtrawl)-

benthos with R.V. Mitra. BEON Report 8:1-57 

Thiermann F, Akoumianaki I, Hughes JA, Giere O (1997) Benthic fauna of a shallow-

water gaseohydrothermal vent area in the Aegean Sea (Milos, Greece). Mar Biol 

128:149-159 

Thrush SF, Dayton PK (2002) Disturbance to marine benthic habitats by trawling and 

dredging: Implications for marine biodiversity. Annu Rev Ecol Syst 33:449-73 

Thrush SF, Gray JS, Hewitt JE, Ugland KI (2006) Predicting the effects of habitat 

homogenization on marine biodiversity. Ecol Appl 16:1636-1642 

Tokeshi M (1999) Species coexistence: ecological and evolutionary perspectives. 

Blackwell, Oxford, UK 

Tuck ID, Hall SJ, Robertson MR, Armstrong E, Basford DJ (1998) Effects of physical 

trawling disturbance in a previously unfished sheltered Scottish sea loch. Mar Ecol-

Prog Ser 162:227-242 

Tupper M, Boutilier RG (1995) Effects of habitat on settlement, growth, and 

postsettlement survival of Atlantic cod (Gadus morhua). Can J Fish Aquat Sci 

52:1834-1841 

Uchupi E, Swift SA, Ross DA (1996) Gas venting and late Quaternary sedimentation in the 

Persian (Arabian) Gulf. Mar Geol 129:237-269 

Ussler W, Paull CK, Boucher J, Friederich GE, Thomas DJ (2003) Submarine pockmarks: 

a case study from Belfast Bay, Maine. Mar Geol 202:175-192 



 41

Vogt PR, Crane K, Sundvor E, Max MD, Pfirman SL (1994) Methane-

generated(Questionable) pockmarks on young, thickly sedimented oceanic-crust in 

the Arctic - Vestnesa-Ridge, Fram Strait. Geology 22:255-258 

Werner F (1978) Depressions in mud sediments (Eckernförde Bay, Baltic Sea) related to 

sub-bottom and currents. Meyniana 30:99-104 

Whiticar M, Werner F (1981) Pockmarks: Submarine vents of natural gas or freshwater 

seeps? Geo-Mar Lett 1:193-199 

Wildish DJ, Akagi HM, McKeown DL, Pohle GW (2008) Pockmarks influence benthic 

communities in Passamaquoddy Bay, Bay of Fundy, Canada. Mar Ecol Prog Ser 

357:51-66 

Wildish D, Kristmanson D (1997) Benthic suspension feeders and flow. Cambridge 

University Press, Cambridge 

 



 42 

9BAppendix 1 

 

Data used to compile figure 1. 

 

Acosta J, Munoz A, Herranz P, Palomo C, Ballesteros M, Vaquero M, Uchupi E (2001) 

Pockmarks in the Ibiza Channel and western end of the Balearic Promontory 

(western Mediterranean) revealed by multibeam mapping. Geo-Mar Lett 21:123-

130 

Christodoulou D, Papatheodorou G, Ferentinos G, Masson M (2003) Active seepage in 

two contrasting pockmark fields in the Patras and Corinth gulfs, Greece. Geo-Mar 

Lett 23:194-199 

Dimitrov L, Woodside J (2003) Deep sea pockmark environments in the eastern 

Mediterranean. Mar Geol 195:263-276 

Garcia-Garcia A, Orange DL, Maher NM, Heffernan AS, Fortier GS, Malone A (2004) 

Geophysical evidence for gas geohazards off Iskenderun Bay, SE Turkey. Mar Pet 

Geol 21:1255-1264 

Gay A, Lopez M, Ondreas H, Charlou JL, Sermondadaz G, Cochonat P (2006) Seafloor 

facies related to upward methane flux within a giant pockmark of the lower Congo 

Basin. Mar Geol 226:81-95 

Hasiotis T, Papatheodorou G, Ferentinos G (2002) A string of large and deep gas-induced 

depressions (pockmarks) offshore Killini peninsula, western Greece. Geo-Mar Lett 

22:142-149 

Hasiotis T, Papatheodorou G, Kastanos N (1996) A pockmark field in the Patras Gulf 

(Greece) and its activation during the 14/7/93 seismic event. Mar Geol 130:333-344 

Jeong KS, Cho JH, Kim SR, Hyun S, Tsunogai U (2004) Geophysical and geochemical 

observations on actively seeping hydrocarbon gases on the south-eastern Yellow 

Sea continental shelf. Geo-Mar Lett 24:53-62 

Judd A, Hovland M (2007) Seabed fluid flow. The impact on geology, biology and the 

marine environment. Cambridge University Press, Cambridge.  Web Material: 

http://www.cambridge.org/catalogue/catalogue.asp?isbn=0521819504 

Karisiddaiah SM, Veerayya M (2002) Occurrence of pockmarks and gas seepages along 

the central western continental margin of India. Curr Sci 82:52-57 



 43

Michaud F, Chabert A, Collot JY, Sallares V, Flueh ER, Charvis P, Graindorge D, 

Gustcher MA, Bialas J (2005) Fields of multi-kilometer scale sub-circular 

depressions in the Carnegie Ridge sedimentary blanket: Effect of underwater 

carbonate dissolution? Mar Geol 216:205-219 

Nelson H, Thor DR, Sandstrom MW, Kvenvolden KA (1979) Modern biogenic gas-

generated craters (sea-floor pockmarks) on the Bering Shelf, Alaska. Geol Soc Am 

Bull 90:1144-1152 

Ondréas H, Olu K, Fouquet Y, Charlou JL, Gay A, Dennielou B, Donval JP, Fifis A, 

Nadalig T, Cochonat P, Cauquil E, Bourillet JF, Le Moigne M, Sibuet M (2005) 

ROV study of a giant pockmark on the Gabon continental margin. Geo-Mar Lett 

25:281-292 

Paull CK, Ussler W, Borowski WS, Spiess FN (1995) Methane-rich plumes on the 

Carolina continental rise - associations with gas hydrates. Geology 23:89-92 

Pickrill RA (1993) Shallow seismic stratigraphy and pockmarks of a hydrothermally 

influenced lake, Lake Rotoiti, New-Zealand. Sedimentology 40:813-828 

Pilcher R, Argent J (2007) Mega-pockmarks and linear pockmark trains on the West 

African continental margin. Mar Geol 244:15-32 

Plassen L, Vorren TO (2003) Fluid flow features in fjord-fill deposits, Ullsfjorden, North 

Norway. Nor J Geol 83:37-42 

Prior DB, Doyle EH, Kaluza MJ (1989) Evidence for sediment eruption on deep sea floor, 

Gulf of Mexico. Science 243:517-519 

Sahling H, Bohrmann G, Spiess V, Bialas J, Breitzke M, Ivanov M, Kasten S, Krastel S, 

Schneider R (2008) Pockmarks in the northern Congo Fan area, SW Africa: 

Complex seafloor features shaped by fluid flow. Mar Geol 249:206-225 

Webb KE, Hammer Ø, Lepland A, Gray JS (2009) Pockmarks in the Inner Oslofjord, 

Norway. Geo-Mar Lett 29:111-124 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Euroscale Coated v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ([Based on 'Press Quality_ikke fargekonvertering'] Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars true
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks false
      /BleedOffset [
        8.503940
        8.503940
        8.503940
        8.503940
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




