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ABSTRACT
Six transmembrane protein of prostate 2 (STAMP2) is a six transmembrane domain protein in 
the STAMP/STEAP family. It is primarily found in the prostate, visceral adipose tissue, and 
bone marrow, and is overexpressed in prostate cancer cells. STAMP2 has an oxidoreductase 
activity and is capable of reducing both iron and copper, and is shown to co-localize with the 
metal transporters DMT1 and CTR1 in endosomes, where it is thought to reduce iron and 
copper for translocation across the membrane. STAMP2 is also proposed to be involved in the 
integration of inflammatory and metabolic responses in mice. A similar role is suggested for 
STAMP2 in humans, although the exact functions of the protein remain to be determined.

The Saatcioglu group had previously expressed a GFP-tagged STAMP2 variant with significant 
co-localization with Golgi markers. A pilot study conducted by the Pryǳ and Saatcioglu groups 
to monitor Golgi functions had indicated that reduction of STAMP2 expression in LNCaP cells 
had an effect on the incorporation of sulfate into proteoglycans (PGs). Since copper ions 
previously have been suggested to play a role in PG metabolism, it was of interest to study this 
possible link further. With the extensive knowledge of PG synthesis and sulfation in the 
epithelial cell line MDCK, as well as available methodology for transport and subcellular 
fractionation studies, it would be of interest to study the impact of STAMP2 in transfected 
MDCK cells, as well as to further study the link between STAMP2 and synthesis and sulfation 
of PGs in LNCaP cells. 

Three STAMP2 variants fused to GFP were transfected into MDCK Ⅱ cells. One of these was 
the original construct from the Saatcioglu group with the GFP at the very N-terminus (N-
terminal signal sequence for ER import not required). The two other variants had the GFP 
moved into the N-terminal region of protein, one of these with a mutated ferric-reductase 
domain. Confocal microscopy and subcellular fractionation studies indicated a difference in the 
localization of the three variants. Exposure of the N-terminal cytoplasmic tail of STAMP2 
caused localization to the plasma membrane and endosome-like strucutres, while blocking the 
tail with GFP, resulted in significant localization to the Golgi apparatus. Radioactive labeling of 
control cells and the transfected cell lines with [3H]-glucosamine and [35S]-sulfate gave a 
significant decrease in the incorporation of glucosamine and sulfate into GAG chains in the cells 
where STAMP2 had the GFP domain at the very N-terminus and showed Golgi localization.

The stable knockdown of STAMP1 and STAMP2 in LNCaP cells had no effect on the 
synthesis and sulfation of glycoproteins.
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ABBREVIATIONS

Amp Ampicillin
AP Adaptor protein
Api Apical
AR Androgen receptor
ATP Adenosine triphosphate
Baso Basolateral
BAT Brown adipose tissue
bp Base pairs
cABC Chondroitinase ABC
Cnx Calnexin
COP Coat protein complex
CPM Counts per minute
Crt Calreticulin
CS Chondroitin sulfate
Ctrl Control
Da Dalton
dH2O Destilled water
DMEM Dulbecco’s modified Eagle’s 

medium
DMSO Dimethyl sulfoxide
Dmt1 Divalent metal transporter 1
DNA Deoxyribonucleic acid
dNTP Deoxyribonucleotide 

triphosphate
DS Dermatan sulfate
E. coli Esherichia coli
ECM Extracellular matrix
EDTA Ethylenediaminetetraacetate
ER Endoplasmic reticulum
ERAD ER associated degradation
ERGIC ER - Golgi intermediate 

compartment
Et al. And others (Latin: et alibi)
EXT Exostosin
FBS Fetal bovine serum
FRD Ferric-reductase domain
Fig. Figure
g Gram
GAG Glycosaminoglycan
GalNAc N-acetyl-galactosamine
GFP Green fluorescent protein

GH Growth hormone
Glc Glucose
GlcA D-glucuronic acid
GlcNAc N-acetyl-glucosamine
Gln L-glutamine
GPI Glycosylphosphatidylinositol

HA Hyaluronic acid
HBSS Hank's balanced salt solution
HS Heparan sulfate
IdoA L-iduronic acid
IL-1 Interleukin-1
IP Immunoprecipitation
Kan Kanamycin
kDa Kilo Dalton
kb Kilo base pairs
KS Keratan sulfate
LB Lysogeny broth
LDL Low-density lipoprotein
M Molar
mA Milliampere
Man Mannose
mCi Millicurie
MDCK Madin-Darby canine kidney
MHC Major histocompatibility 

complex
ml Milliliter
mM Millimolar
N Nitrogen
nm Nanometer
O Oxygen
OD Optical density
ON Over night
ORD Oxidoreductase domain
P/S Penicillin/streptomycin
PBS Phosphate buffered saline
PCR Polymerase chain reaction
PGs Proteoglycans
pmol Picomole
PNGase F Peptide: N-Glycosidase F
PNS Postnuclear supernatant
PVDF Polyvinylidene fluoride
RNA Ribonucleic acid
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SDS Sodium dodecyl sulfate
SDS-PAGE Sodium dodecyl sulfate - 
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electrophoresis

shRNA Small hairpin RNA
siRNA Small interfering RNA
SOB Super optimal broth
SRP Signal recognition particle
STAMP Six transmembrane protein 

of Prostate
STEAP Six transmembrane epithelial 

antigen of the prostate
TAE-buffer Tris, acetate, EDTA - buffer
TB Transformation buffer
TBS Tris buffered saline
Tf Transferrin
Tfr1 Transferrin receptor 1
TGN Trans-Golgi network
TIARP Tumor necrosis factor alpha-

induced adipose related 
protein

TSAP6 Tumor suppressor-activated 
pathway protein 6

TTBS Tween tris buffered saline
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UTP Uridine triphosphate
UV Ultraviolet
V Volt
VTC Vesiculotubular cluster
VTS Vesiculotubular structures
WAT White adipose tissue
WB Western blot
x g Times gravity
µl Microliter
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1. INTRODUCTION

1.1 Epithelial cells
Our bodies consist of many different types of cells. Epithelial cells are the ones covering the 
external and internal surfaces of the body,  such as the skin, intestine, and kidney tubules. Their 
structure varies depending on their location and function, but common for them all is that they 
form a tight cell layer that acts as a selective barrier between the body and the environment, 
often represented by the lumen of our body cavities. The cells are tightly connected via tight 
junctions (Gumbiner 1987), a structure that prevents intercellular diffusion of molecules from 
one side of the cell layer to the other.

The plasma membrane of epithelial cells can be distinguished into three domains. The surface 
that faces the inner cavities of the body, is called the apical surface. Facing the neighboring 
epithelial cells is the lateral surface, while the area of the cell facing the body tissues is called the 
basal surface. Because the basal and lateral surfaces are continuous, these domains are often 
collectively referred to as the basolateral membrane. The apical and basolateral domains differ in 
their lipid composition. While the apical domain is enriched in glycosphingolipids, the 
basolateral domain has a high concentration of phosphatidylcholine. The tight junctions prevent 
the mixing of lipids and membrane proteins between the two domains, thereby maintaining the 
difference in composition (Dragsten et al. 1981; van Meer and Simons 1986). Epithelial cells are 
anchored to the extracellular matrix (ECM), via among others, a class of glycoproteins called 
integrins (Schoenenberger et al. 1994).

Figure 1.1 - Schematic figure of 
an epithelial cell
Tight junctions separate the apical 
domain from the basolateral 
domain and prevents diffusion of 
molecules and ions between the 
two sides of the monolayer.
ER = Endoplasmic reticulum, 
ERGIC = ER Golgi intermediate 
compartment, TGN = Trans 
Golgi network

Apical side

Basolateral side

Tight 
junctions

Nucleus

ER

ERGIC

Golgi

TGN
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1.1.1 MDCK cells
Madin-Darby canine kidney (MDCK) cells are one of the best characterized and most frequently 
used cell lines for studying epithelial cells and polarized transport. It was originally isolated from 
the kidney of an adult female cocker spaniel in 195⒏ It is a heterogenous cell line, from which 
different sublines have been derived. There are two different strains of the cell line, MDCK I 
and MDCK Ⅱ, with several differences in physiological properties (Barker and Simmons 1981). 
MDCK Ⅱ has a lower electrical resistance across the cell layer than MDCK I, indicating a more 
leaky epithelium, corresponding to proximal tubules. MDCK I resembles more the cells of the 
collecting duct segments of a kidney (Richardson et al. 1981). The two cell lines also vary in the 
protein composition of their apical and basolateral cell surface domains. In addition, MDCK I 
cells have less microvilli apically and a more folded membrane basolaterally than MDCK Ⅱ cells.

When MDCK cells are grown on permeable filters a polarized monolayer is formed, with 
morphology and functions similar to those of epithelial cells in vivo (Cereĳido et al. 1978). 
These features make MDCK cells a suitable model system for studying polarized transport in 
epithelia.

1.2 The secretory pathway
Transmembrane proteins of the endomembrane system and the plasma membrane, and also 
secretory proteins are synthesized by ribosomes on the cytoplasmic side of the endoplasmic 
reticulum (ER) and translocated into the lumen of the ER. From there the proteins pass several 
sorting stations on their way to their final destination. It was previously thought that the trans-
Golgi network (TGN) was the major site for protein sorting, but this view have changed in 
recent years.

1.2.1 The Endoplasmic Reticulum
Proteins destined for the secretory pathway usually have an N-terminal signal sequence. The 
signal sequence is recognized by a signal recognition particle (SRP) as the N-terminus of the 
protein exits the ribosome. The SRP binds tightly to the ribosome and causes pause in the 
translation of the protein. An SRP receptor in the ER membrane recognizes and binds to the 
SRP, causing it to be released from the ribosome. The ribosome then binds to other 
components in the ER membrane to translocate the protein across the membrane as it is 
synthesized (Walter and Johnson 1994). Inside the ER lumen, the signal sequence is often 
cleaved off, and translocated proteins may undergo N-linked glycosylation, by the addition of the 
oligosaccharide Glc3Man9GlcNAc2 (described in further detail below) and disulfide bond 
formation between cysteines, required for proper folding of some proteins. Chaperones enable a 
more effective folding of proteins, and also contribute to quality control by retaining incorrectly 
folded proteins within the ER and with time, targeting unfolded proteins for degradation via the 
ER-associated degradation (ERAD). ER chaperones include members of the Hsp40, Hsp70, 
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Hsp90, Hsp100, and calnexin/calreticulin (Cnx/Crt) families (Williams 2006). In mammalian 
cells, Cnx and Crt retain immature glycoproteins and assist their folding. They bind to the 
terminal glucose of Glc1Man9GlcNAc2, after the other two glucose units have been cleaved off. 
Upon disassociation from the chaperons, the last glucose is removed. If the protein is correctly 
folded, the oligosaccharide is further trimmed, and the protein is exported to the Golgi 
apparatus. However, if the protein is incorrectly folded, the glucose is re-added for another 
round of Cnx/Crt association. Misfolded glycoproteins that remain for prolonged periods in the 
Cnx/Crt cycle will have a mannose cleaved off to generate Man8GlcNAc2, which acts as a 
degradation signal, leading to retrotranslocation and proteasomal degradation in the cytosol 
(Ellgaard and Helenius 2003; Meusser et al. 2005; Williams 2006). Other proteins are anchored 
in the membrane by a hydrophobic C-terminal end. This C-terminal end can be cleaved off and 
replaced by a glycosylphosphatidylinositol (GPI) anchor if the protein contains a GPI signal 
sequence (Rudd and Dwek 1997).

Exit from the ER is dependent on coat protein complex (COP) Ⅱ coated vesicles. Soluble cargo 
proteins can be concentrated in COPⅡ vesicles by binding to COPⅡ components, or to sorting 
receptors for transport to the Golgi apparatus (Kuehn et al. 1998; Belden and Barlowe 2001).

1.2.2 The ERGIC
The ER - Golgi intermediate compartment (ERGIC, also known as intermediate compartment 
(IC), or vesiculotubular cluster (VTC)), is a membrane cluster identified by the lectin 
ERGIC-53, located between the ER and Golgi apparatus. ERGIC exhibits different properties 
from both ER and cis-Golgi (Schweizer et al. 1991). The dynamic nature and function of 
ERGIC have been debated, although the most popular current view is that it is a stationary 
sorting compartment for both anterograde transport to the Golgi apparatus in COPⅡ coated 
vesicles, and retrograde transport back to the ER in COPI coated vesicles (Appenzeller-Herzog 
and Hauri 2006).   

The specific composition of proteins in different compartments is maintained by active 
transport. An example is the KDEL sequence found in the C-terminal end of many soluble ER 
resident proteins and some membrane proteins. ER proteins with the KDEL sequence associate 
with KDEL receptors in the Golgi apparatus, before transport back to the ER in COPI coated 
vesicles (Pelham 1996). The binding of the KDEL sequence to the KDEL receptor is pH 
dependent, allowing the receptor to bind to proteins with this sequence in the slightly acidic 
Golgi (pH ⒍2) and release them in the neutral ER (pH ⒎4) (Wilson et al. 1993; Wu et al. 
2001; Appenzeller-Herzog et al. 2004). The KDEL receptors are recycled back to the Golgi by 
COPⅡ coated vesicles. Several variants of the KDEL sequence have been shown to retrieve ER 
resident proteins (Raykhel et al. 2007). 
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1.2.3 The Golgi apparatus
The Golgi apparatus is an organelle in eukaryotic cells first described by Camillo Golgi. The 
Golgi is composed of flat, membrane enclosed cisternae, forming stacks. Although the 
organization of Golgi stacks differs between cell types, it is generally located in the perinuclear 
area in mammalian cells (Farquhar and Palade 1981). The Golgi apparatus has two main roles. 
One is modification of newly synthesized proteins and lipids by addition of carbohydrate groups, 
phosphates, sulfates or other alteration, as they pass through the organelle. Proteins may also be 
proteolytically cleaved. The Golgi apparatus also serves as a major sorting site in the secretory 
pathway, selectively targeting proteins and lipids to several different membrane systems (Munro 
1998).

Each Golgi stack can be divided into three, the cis-, medial- and trans-Golgi compartments, with 
different enzyme and membrane compositions (Munro 1998). There were two proposed models 
for anterograde transport through the Golgi apparatus: The vesicle transport model, where 
cargo proteins are transported from one Golgi compartment to the next by COPI vesicles and/or 
VTC-like structures, and the cisternal maturation model, where entire cisternae carry the 
secretory cargo forward, and retrograde COPI vesicles recycle resident Golgi proteins to 
“younger” cisternae. It  has also been suggested that the two different principles could work in 
combination (Glick 2000; Pelham and Rothman 2000). More recent studies include observations 
of cisternal connections (Pelham 2006) and the Lippincott-Schwartz model, where the Golgi 
acts as a transport apparatus, involving membrane partitioning rather than a progressing set of 
cisternae (Patterson et al. 2008).

1.3 Polarized sorting
The apical and basolateral domains of an epithelial cell have different lipid and protein 
composition. The differences are maintained by polarized transport of lipids and proteins.

1.3.1 Basolateral sorting signals
Basolateral sorting signals are usually located to the cytoplasmic domain of basolateral proteins, 
and do often consist of tyrosine or dileucine motifs, often with nearby acidic amino acids 
(Rodriguez-Boulan et al. 2005). Tyrosine-based basolateral sorting signals contain a tyrosine in 
a NPXY or YXXφ motif (where φ is a hydrophobic amino acid) and are often overlapping with 
signals for localization to coated pits in clathrin-mediated endocytosis (Muth and Caplan 2003). 
Endocytic, recycling, and basolateral sorting signals all interact with a family of adaptor proteins 
(AP). AP1, AP3, and AP4 mediate sorting in the TGN and endosomes, while AP2 functions in 
sorting into endocytic clathrin coated vesicles at the plasma membrane. AP1, AP3 and AP4 are 
all involved in sorting of basolateral membrane proteins (Simmen et al. 2002). AP1B has been 
shown to promote the basolateral sorting of the low-density lipoprotein (LDL) and transferrin 
receptors in recycling endosomes (Gan et al. 2002). AP1A localizes to the TGN, and is involved 
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in the sorting of mannose-6-phosphate receptors from the TGN to endosomes (Rodriguez-
Boulan et al. 2005).  

1.3.2 Apical sorting signals
The first apical sorting signal was the GPI anchor. Addition of a GPI-anchor to proteins not 
previously sorted to the apical membrane, resulted in apical localization of these proteins (Lisanti 
et al. 1989; Gut et al. 1998; Rodriguez-Boulan et al. 2005; Paladino et al. 2006). The transport 
of GPI-anchored proteins to the apical surface seemed to be dependent on lipid rafts (Simons 
and Ikonen 1997; Muth and Caplan 2003). Subsequent analysis has shown that not all proteins 
are sorted apically upon addition of a GPI-anchor (Muth and Caplan 2003). Another signal 
shown to mediate apical sorting of some proteins, is N-glycans (Martínez-Maza et al. 2001), 
although studies have shown that for some apical proteins, N-glycosylation does not contribute 
to the apical sorting (Marzolo et al. 1997). In addition, both O-glycans and proteinaceous motifs 
in the cytoplasmic or transmembrane region of proteins have been shown to be able to mediate 
apical sorting of proteins(Marzolo et al. 2003; Takeda et al. 2003; Rodriguez-Boulan et al. 
2005).

Both apical and basolateral trafficking signals promote the sorting of cargo proteins into 
different vesicles in the TGN, at the plasma membrane or in recycling endosomes. Membrane 
proteins lacking a signal for forward transport, accumulate in the Golgi apparatus and are 
delivered quite inefficiently to the plasma membrane, indicating that efficient exit from the Golgi 
complex requires a sorting signal (Gut et al. 1998).

The delivery of vesicles to the correct target membranes is regulated by SNAREs. The cargo 
vesicles contain v-SNAREs that can only interact with t-SNAREs at the proper target 
membrane. In addition to the SNAREs, Rabs are also important regulators of vesicle traffic and 
docking (Novick and Zerial 1997; Muth and Caplan 2003).

1.4 Proteoglycans and Glycoproteins

1.4.1 Proteoglycans
Proteoglycans (PGs) belong to a diverse family of macromolecules, composed of one or several 
glycosaminoglycan (GAG) chains covalently attached to a protein core. The protein core can 
have more than hundred GAG chains attached. Newly synthesized PGs are transported to the 
plasma membrane, where they may be secreted, attach cells to matrix components via their GAG 
chains and transmembrane domains, or become endocytosed. Their functions range from 
mechanical support in the ECM to effects in different cellular processes such as cell adhesion, 
motility, and proliferation (Kjellén and Lindahl 1991; Kolset et al. 2004). The large extracellular 
PG versican, for example, has been shown to play a role in cell adhesion, cell proliferation, cell 
migration and ECM assembly (Zimmermann and Ruoslahti 1989; Wight 2002). 
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GAG chains are normally composed of unbranched, sulfated, repeating disaccharide units of a 
hexosamine (either N-acetyl-Glucosamine (GlcNAc) or N-acetyl-Galactosamine (GalNAc)) and 
hexuronic acid (either D-glucuronic acid (GlcA) or L-iduronic acid (IdoA)). On the basis of 
their sugar composition, there are four main types of GAG chains: Chondroitin sulfate (CS), 
dermatan sulfate (DS), heparan sulfate (HS) and heparin. In addition, there is keratan sulfate 
(KS), which has a galactose instead of a hexuronic acid, and hyaluronic acid (HA), which is not 
attached to a protein core, but exists in an unsulfated, free form in the ECM. Some PGs can 
carry different types of GAG chains, and are then called hybrids (Rapraeger et al. 1985). Others 
are called part-time PGs, since they can be synthesized both with and without GAG chains. 
Examples are MHC class Ⅱ invariant chain and thrombomodulin (Fransson 1987).

1.4.2 Synthesis of the linker region
The synthesis of a GAG chain (with the exception of KS and HA) begins with four sugars 
attaching sequentially to a serine, in a serine-glycine motif in a protein core. The tetrasaccharide 
is composed of a xylose, followed by two galactoses  and a glucoronic acid (Figure ⒈2). The 
process is catalyzed by several enzymes. Xylosyltransferase I or Ⅱ initiates the synthesis by 
transferring xylose from uridine diphosphate-xylose (UDP-xylose) to the serine residue 
(Götting et al. 2000). Then galactosyltransferases I and Ⅱ are responsible for attachment of the 
first and second galactose units, respectively (Almeida et al. 1999; Bai et al. 2001), before the 
glucuronic acid is attached by a glucuronyltransferase (Kitagawa et al. 1998). The linker region 
of both CS and HS GAG chains are synthesized by the same set of enzymes (Bai et al. 1999). 
The addition of xylose to a serine occurs in a pre-Golgi compartment (Kearns et al. 1993), while 
the growth of the linker region occurs in the cis or medial Golgi (Silbert and Sugumaran 1995). 
The linker region can be modified by both phosphorylation and sulfation. The C-2 of the 
xylose is a major phosphorylation site on both CS chains (Oegema et al. 1984) and HS chains 
(Fransson et al. 1985). Sulfation on the other hand, has only been observed on CS/DS chains, 
on the second galactose (Sugahara et al. 1988).
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Figure 1.2 - Composition of linker region
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1.4.3 Synthesis of GAG chains
After completion of the linker tetrasaccharide, the addition of the fifth sugar determines whether 
the GAG chain becomes CS/DS or HS/heparin (Pryǳ and Dalen 2000). The polymerization of 
HS and CS are catalyzed by different enzymes located in different parts of the Golgi apparatus. 
In CS/DS biosynthesis, the fifth sugar is GalNAc, and CS synthases will subsequently add GlcA 
and GalNAc in an alternating sequence (Pryǳ and Dalen 2000; Kitagawa et al. 2001). In HS 
biosynthesis, the fifth sugar is GlcNAc, which is followed by the addition of GlcA and GlcNAc 
by the glycosyltransferases EXT1 and EXT2 (Lind et al. 1998). The enzymes required for the 
biosynthesis of HS chains are localized in the proximal part of the Golgi complex, whereas the 
enzymes involved in the elongation and sulfation of CS chains are located in the trans-Golgi 
network (TGN) (Spiro et al. 1991; Uhlin-Hansen and Yanagishita 1993; Calabro and Hascall 
1994). The growing GAG chains may undergo modification at several different positions: The 
GlcNAc units in HS and heparin can be deacetylated and N-sulfated, GlcA can be epimerised to 
IdoA in HS, heparin and DS, and the disaccharides of HS, heparin, CS, and DS can be O-
sulfated in various positions (Pryǳ and Dalen 2000). The sulfation is catalyzed by 
sulfotransferases that use 3'-Phosphoadenosine 5'-Phosphosulfate (PAPS) as donor (Kusche-
Gullberg and Kjellén 2003). The degree of epimerisation of GlcA to IdoA, and the sulfation 
pattern of the disaccharides distinguish heparin from HS, and DS from CS (Pryǳ and Dalen 
2000).
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At the cell surface, PGs are involved in recruitment of several classes of signaling molecules, like 
growth factors and cytokines, that bind to the negatively charged GAG chains. Thus the 
sulfation pattern of GAG chains and their abundance at the cell surface is important for the 
tuning of signaling processes. PGs are often actively endocytosed after reaching the cell 
membrane (Yanagishita and Hascall 1992). One example is the GPI-anchored HS containing PG 
glypican-⒈ Glypican-1 is recycled via endosomes, where he HS chains are degraded in a copper 
ion dependent process, and further to the Golgi apparatus where GAG chains are resynthesized 
(Mani et al. 2000; Ding et al. 2002). All the intracellular compartments in this recycling route 
have not been identified, but the resynthesis of HS chains implies recycling to an early Golgi 
compartment. The endocytosis of PGs may be important for many aspects of cellular signaling 
processes. PG-mediated internalization of for instance fibroblast growth factors and polyamines 
is important for proliferation and growth control (Kolset et al. 2004). Possibly both for 
appropriate down-regulation of the signal, but GAG chains have also been observed in the 
nucleus and PGs might be involved in nuclear import of regulatory proteins that entered the cell 
via endocytosis.

1.4.4 Glycoproteins
There are two main types of glycans attached to glycoproteins, N-linked and O-linked glycans. 
In N-linked glycosylation oligosaccharide chains are attached to aspargines in N-X-S/T motifs, 
where X may be any amino acid, except proline. N-glycosylation is a co-translational 
modification that starts in the endoplasmic reticulum (ER), where the N-glycans are synthesized 
on a dolichol diphosphate in the cytoplasmic leaflet of the ER membrane and flipped at an 
intermediate stage. A core structure composed of Glc3Man9GlcNAc2, is built sequentially by 
glycosyltransferases. The transfer of the precursor to the Asn side chain takes place during 
translocation of the polypeptide into the ER, before protein folding is complete. When the 
protein is fully folded, the three terminal glucose residues are removed. The glycoprotein is then 
transported to the Golgi apparatus, where removal of mannose residues may take place, before 
addition of different monosaccharides, including GlcNAc, GalNAc, galactose, fucose, and sialic 
acid. As seen in figure ⒈3 there are three main classes of N-glycans, depending on the 
composition of sugars: High mannose, complex, and hybrid (Rudd and Dwek 1997; Varki et al. 
1999).
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High mannose Hybrid Complex

N-acetyl glucosamine

Mannose

Fucose

Figure 1.3 - Comparative overview of major classes of N-
glycans in vertebrates
Vertebrate N-glycan diversification in the Golgi as shown 
generates three N-glycan subtypes: high-mannose, hybrid, and 
complex. Most secreted and cell surface N-glycans are of the 
complex type. Arrows indicate locations of branch formation in 
diversification, not all of which occur on a single N-glycan. 
Figure adapted from Varki et al. (1999).

O-linked glycosylation is normally initiated in the Golgi apparatus, usually by an N-acetyl 
galactosaminyltransferase that transfers a GalNAc to the oxygen of a serine or threonine side 
chain. Additional monosaccharides are subsequently added by various transferases (Steen et al. 
1998).

1.5 The STAMP/STEAP proteins
The six transmembrane protein of prostate (STAMP) family is a protein family in vertebrates 
that consist of four members: Six transmembrane epithelial antigen of the prostate 1 
(STEAP1), STAMP1 (also known as STEAP2), STAMP2 (also known as STEAP4 and tumor 
necrosis factor alpha-induced adipose related protein (TIARP) (mouse homologue)) and 
STAMP3 (also known as STEAP3, tumor suppressor-activated pathway protein 6 (TSAP6) or 
pHyde (rat homologue)). All members of the family have the six transmembrane domains, a 
short cytoplasmic C-terminal domain, and, except for STAMP1, they all have a long 
cytoplasmic N-terminal region containing a domain predicted to have NADP+/NADPH 
oxidoreductase activity (figure ⒈4) (Korkmaz et al. 2005; Ohgami et al. 2005). STAMP1, 
STAMP2, and STAMP3 are all metalloreductases capable of reducing both iron and copper, by 
a ferric-reductase domain in the C-terminal region. In addition, these proteins also stimulate the 
uptake of iron and copper into cells (Ohgami et al. 2006). STEAP1, STAMP1, STAMP2, and 
STAMP3 have all been shown to co-localize with transferrin (Tf ), transferrin receptor (Tfr1), 
and divalent metal transporter 1 (DMT1)(Ohgami et al. 2005). STAMP2 and STAMP3 are 
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postulated to reduce iron dissociated from Tfr1 for translocation into the cytosol by DMT1 
(Knutson 2007).

STEAP1, STAMP1, and STAMP2 are all overexpressed in prostate cancer cells (Hubert et al. 
1999; Korkmaz et al. 2002; Korkmaz et al. 2005). In addition, STEAP1 is also up-regulated in 
several other cancer cell lines (Hubert et al. 1999). STAMP3 has been shown to form 
homodimers via a dimerization domain in the N-terminal oxidoreductase domain. The 
conservation of the dimerization domain within the STAMP family, with the exception of 
STEAP1, suggests that other members of the STAMP family can form dimers (Sendamarai et 
al. 2008). STEAP1, STAMP1, and STAMP2 have all been implicated as positive regulators of 
proliferation and survival of cancer cells (Porkka et al. 2002; Korkmaz et al. 2005; Challita-Eid 
et al. 2007), while STAMP3 has been shown to inhibit growth of cancer cells, in part through 
the induction of apoptosis (Steiner et al. 2000; Zhang et al. 2001).

Figure 1.4 - Transmembrane structure of the STAMP/STEAP family
Schematic diagram of transmembrane structure of Steap1–Steap⒋ Blue ovals in tandem represent the flavin-
NAD(P)H binding oxidoreductase domain. Heme groups are indicated in red. Adapted from Ohgami et al. 
(2005).
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1.5.1 STAMP1
STAMP1 (STEAP2) was identified while searching for genes that are differentially expressed 
during early stages of prostate cancer (Korkmaz et al. 2002). The expression has been shown to 
be highly prostate specific, with an expression level ten times higher in normal prostate tissue, 
compared to other tissues studied, and more than two times higher in cancerous prostate 
compared to normal glands (Korkmaz et al. 2002; Porkka et al. 2002). STAMP1 has been 
shown to localize to the Golgi (primarily the TGN), plasma membrane, and vesiculotubular 
structures (VTS), suggesting a possible role in secretory and endocytic pathways (Korkmaz et al. 
2002). STAMP1 is highly expressed in the androgen responsive prostate cancer cell line LNCaP, 
but not in the androgen receptor (AR) negative prostate cancer cell line. Because the expression 
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of STAMP1 is not regulated by androgen, it would suggest that STAMP1 is dependent on AR 
and not androgen (Korkmaz et al. 2002).

1.5.2 STAMP2
Unlike STAMP1, STAMP2 has a more general tissue distribution, with high levels in white and 
brown adipose tissue (WAT and BAT) bone marrow, placenta, heart, lung, liver, and prostate, 
with a substantially lower expression also seen in liver, skeletal muscle, pancreas, testis, and 
small intestine. The subcellular localization of STAMP2 is similar to STAMP1, with a primary 
localization in the TGN, plasma membrane, and VTS (Korkmaz et al. 2005; Ohgami et al. 
2006; Wellen et al. 2007). STAMP2 is overexpressed in prostate cancer and regulated by 
androgen in the AR positive cell line LNCaP. STAMP2 expression could not be detected in 
AR-negative prostate cancer cell lines, DU145 and PC⒊ STAMP2 transfected DU145 and PC3 
cell lines showed an increase in proliferation and colony formation, indicating a possible role in 
cell proliferation for STAMP2 (Korkmaz et al. 2005).

TIARP (a mouse homologue of STAMP2) is induced upon adipocyte differentiation and in 
response to growth hormone (GH), and the inflammatory cytokines: tumor necrosis factor alpha 
(TNF-α), interleukin-1 (IL-1), and interleukin-6 (IL-6)(Moldes et al. 2001; Fasshauer et al. 
2003; Fasshauer et al. 2004; Kralisch et al. 2009). TIARP has been shown to localize at the 
plasma membrane, co-localizing with caveolin-⒈ In addition, it contains two possible caveolin-1 
binding motifs, indicating a possible interaction with caveolar structures that play a crucial role 
in insulin signaling, diabetes, glucose and lipid homoeostasis (Moldes et al. 2001; Chambaut-
Guérin and Pairault 2005). The role of STAMP2 has been speculated to be involvement in 
modulation of inflammatory responses and protection of metabolic functions in adipocytes. 
Treatment of adipocytes with high serum concentrations and fatty acids markedly induced 
STAMP2 expression to a level comparable to that observed upon TNF-α treatment. STAMP2 
was also induced in the visceral white adipose tissue in lean mice during feeding, an effect not 
seen in genetically obese, leptin-deficient mice, and in mice with a high-fat diet-induced obesity. 
Knockdown of STAMP2 in adipocytes impairs insulin action and disrupts glucose transport, 
while STAMP2-/- mice have significantly elevated levels of inflammatory factors in the visceral 
WAT and develops metabolic diseases on a regular diet (Wellen et al. 2007). The role of 
STAMP2 in obesity and metabolic disease in humans is a more complicated issue. Two separate 
papers with contradicting conclusions were published in 200⒏ One study found that STAMP2 
was significantly downregulated in the adipose tissue of obese patients (Zhang et al. 2008), while 
the other found that the STAMP2 levels were increased in the adipose tissue of obese patients 
(Arner et al. 2008). Both studies implicated a role for STAMP2 in obesity and metabolic 
diseases, but further studies are required to clarify the role of STAMP⒉
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Aims of the study
STAMP2 is a transmembrane protein with a reported iron and copper reductase activity, that is 
overexpressed in prostate cancer cells and visceral adipose tissue. A STAMP2 fusion protein with 
GFP N-terminally has been shown to localize to the Golgi apparatus, at the plasma membrane 
and in VTS in COS-1 cells. The subcellular localization had previously triggered a pilot study in 
LNCaP cells which indicated that STAMP2 expression could have an impact on post-
translational modifications taking place in the Golgi apparatus, notably the incorporation of 
sulfate into proteoglycans. These preliminary study triggered the interest in expressing variants 
of STAMP2 fused to green fluorescent protein (GFP) in MDCK cells, where the knowledge of 
proteoglycan polymerization and sulfation is more extensive, and the methodology for isolation 
of Golgi fractions has been well established. Sorting signals have previously been found in the 
cytoplasmic tail of transmembrane proteins. With GFP fused to the N-terminal end of 
STAMP2, a sorting signal might be blocked, preventing correct localization of the protein. 
Therefore, the first goal of this study was to investigate the subcellular localization of three 
STAMP2 variants in transfected MDCK Ⅱ cells: GFP-S2 (STAMP2 with GFP N-terminally), 
S2-GFP (STAMP2 with GFP 20 amino acids downstream from the N-terminal end), and S2’-
GFP (STAMP2 with GFP 20 amino acids downstream from the N-terminal end and a three 
amino acid deletion in the ferric-reductase domain in the C-terminal region of STAMP2). 
Unpublished experiments have (as mentioned above) demonstrated that reduction of STAMP2 
expression by siRNA in LNCaP, caused a reduction in the amount of incorporated sulfate in the 
cells. Our group has established several useful methods for studies of synthesis and sulfation of 
glycoproteins and proteoglycans in epithelial MDCK cells. Thus, it was a major goal to study 
the effect of STAMP2 variants on the synthesis and sulfation of glycoproteins and proteoglycans 
in transfected MDCK cells, while a related goal was to further study the effect of knocking 
down STAMP2, and also STAMP1, on the synthesis and sulfation of glycans in LNCaP.
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2. METHODS
The method section covers all techniques used during the experimental work. 
Information on instruments, buffers, solutions, reagents, and other materials used can be 
found in the appendices.

2.1 Working with microorganisms
When working with microorganisms it is important to use sterile solutions, equipment 
and proper sterile technique to avoid contamination. All solutions and equipment used 
were either purchased sterile, or subjected to sterile filtration or autoclaved for 20 
minutes at 121 °C before use.

The bacterial strain E. coli DH5α was used throughout the bacterial work. E. coli is one 
of the best studied prokaryotic model organisms and a widely used bacteria in 
biotechnology and microbiology.

2.1.1 LB agar plates
LB agar plates are used for selective growth of bacteria. The LB medium contains all the 
nutrients bacteria needs to grow and amplify. By adding antibiotics to the LB medium it 
is possible to select for bacteria with inserted foreign DNA. The inserted DNA plasmid 
contains a gene encoding resistance for a specific antibiotic, and bacteria without the 
plasmid will not be able to grow in the presence of antibiotic.

Procedure:
• Make LB medium with ⒈5 % bactoagar and autoclave it.
• Cool the solution to approximately 50 °C before adding antibiotics.
• Pour the warm medium into plastic dishes. Fill them halfway up and try to avoid 

formation of air bubbles.
• Let the agar set.
• Store the dishes inverted in sealed bags at 4 °C.

2.1.2 Making E. coli freeze culture
For long-term storage of bacterial cultures, the bacteria are frozen at -80 °C in the 
presence of 15% glycerol to prevent formation of ice crystals.

Procedure:
• Mix the following in a cryovial:

• 850 µl bacterial culture
• 150 µl glycerol

• Store at -80 °C.
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2.1.3 Growing E. coli from freeze culture
Remove a cryovial with freeze culture and place on ice. Use a sterile pipette tip to scrape 
a small amount of the freeze culture and transfer it to a 50 ml centrifuge tube containing 
5 ml LB-medium. The bacteria are cultured at 37 °C for 16 hours with vigorous 
shaking. 

2.1.4 Transformation of E. coli cells
In order for bacteria to take up extracellular DNA from the environment, it has to be 
competent. Bacteria that are not naturally competent, can have competence induced by 
treatment with CaCl2 and DMSO. For transformation, cells and DNA are mixed and 
incubated on ice. A short heat shock will make the plasma membrane permeable to the 
DNA. To identify positive transfectants, the bacteria are plated on LB plates with a 
selection agent like ampicillin.

2.1.4.1 Induction of competence in E. coli cells
This method produces competent E. coli cells with high transformation potential.

Procedure:
• Make a preculture by transferring 10-12 fresh bacterial colonies to 100 ml SOB 

medium in a 500 ml erlenmeyer flask. Incubate at 37 °C for 3-4 hours.
• Measure OD at 600 nm and calculate the amount of preculture needed for an OD 

of 0.05 in 250 ml of SOB medium.
• Incubate for 16-18 hours at 18 °C (OD600 should be about 0.3 - 0.6)
• Incubate the bacterial culture on ice for 10 minutes, before transferring to sterile 

50 ml tubes.
• Centrifuge at 2500 x g for 10 minutes at 4 °C.
• Remove supernatants and resuspend bacterial pellets in 80 ml cold transformation 

buffer (TB).
• Incubate on ice for 10 minutes before centrifugation at 2500 x g for 10 minutes at 

4 °C.
• Remove supernatants and resuspend bacterial pellets in 20 ml cold TB.
• Add 700 µl DMSO to each pellet, mix carefully and leave on ice for 5 minutes.
• Add another 700 µl DMSO, mix carefully and leave on ice for 10 minutes.
• Aliquot 200 µl of the resuspended bacterial culture into microfuge tubes and flash 

freeze in liquid nitrogen. Store at -80 °C.

2.1.4.2 Transformation of competent E. coli cells
Procedure:

• Competent cells are thawed on ice.
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• Add the plasmid solution to the cells and mix carefully. Leave on ice for 30 
minutes.

• Heat shock bacteria at 42 °C for 45 seconds.
• Return to ice for 2-3 minutes.
• The cells are transferred to LB agar plates, with the antibiotic corresponding to 

the resistance gene of the plasmid, and spread using a sterile glass rod.
• Incubate at 37 °C over night (ON).

2.1.5 Growing bacterial cultures from LB agar plates
Use a sterile pipette tip to pick a colony from the LB agar plate and drop the tip into a 
50 ml centrifuge tube containing LB medium with antibiotic. Incubate with vigorous 
shaking for 16 hours at 37 °C.

2.2 Working with DNA

2.2.1 Quick Check
Quick Check is a method for quickly determining whether plasmid uptake has occurred. 
The cells are first ruptured by phenol/chloroform. Proteins and chromosomal DNA are 
denatured by phenol and precipitated in the organic phase, while plasmids remain in the 
aqueous phase. Chloroform is added to the phenol to more easily to distinguish the 
phases.

Procedure:
• Mix the following in a microfuge tube:

• 100 µl of bacteria.
• 50 µl of phenol/chloroform (1:1).
• 10 µl of 6X loading dye.

• Vortex mixture for 10 seconds.
• Centrifuge at ⒑000 x g for 3 minutes at room temperature.
• Apply 30 µl of the aqueous phase onto an agarose gel (Section ⒉⒉3)

2.2.2 Isolation of plasmids by Miniprep
Miniprep is based on the alkaline lysis method invented by Birnboim and Doly (1979). 
Using a NaOH/SDS buffer the bacteria are lysed in alkaline conditions. The membrane 
dissolves and proteins and chromosomal DNA are denatured. Addition of a 
neutralization buffer with high salt concentration causes the proteins and chromosomal 
DNA to precipitate. The supernatant is transferred to a column with a silica membrane, 
which binds the plasmid DNA. Wash steps will remove salts and remaining cellular 
components, before elution of the plasmid with a Tris buffer.
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Plasmid isolation was carried out using miniprep kits from both QIAgen and Machery 
Nagel according to protocol, except during elution, where the elution volume was 
reduced to obtain a higher plasmid concentration.

2.2.3 Gel electrophoresis
Agarose is a linear polysaccaride derived from seaweed. Agarose gels can be used to 
separate DNA fragments according to size and shape. When an electric current is applied 
across an agarose gel, DNA fragments will travel towards the positive electrode due to 
their net negative charge. Shorter fragments will travel faster than longer ones, and 
circular fragments will travel faster than linear ones.

Procedure:
• Make a 0.8% agarose gel:

• Add 0.6 g agarose in 75 ml 1X TAE buffer.
• Heat solution (>50 °C) until agarose is dissolved.
• Add 3 µl ethidium bromide when the solution has cooled down to about 50 

°C.
• Pour into gel cast and let it set for 30 minutes.

• Add 6X loading dye to samples.
• Run gel at 100 V for 30-45 minutes.
• DNA bands can be visualized using UV light.

2.2.4 Purification of DNA fragments from agarose gel
When purifying DNA fragments from an agarose gel, the piece of agarose containing the 
DNA fragment is first dissolved in a buffer by heating. The solution is then transferred 
to the membrane column, where DNA will bind to the silica membrane. Impurities such 
as agarose, salts, ethidium bromide and others are washed away, before eluting the DNA 
with a Tris buffer or water.

Purification of DNA fragments from agarose gel was carried out using both QIAquick® 
Gel Extraction Kit (QIAGEN) and NucleoSpin® Extract Ⅱ (Machery Nagel) according 
to the manufacturer’s protocol.

2.2.5 Quantification of DNA
DNA was quantified using a NanoDrop™ ND-1000 spectrophotometer according to the 
manufacturer’s protocol. DNA and RNA absorb ultraviolet light, with a peak at 260 nm. 
The equipment can also determine the purity of the sample by measuring the ratio 
between the absorption at 260 nm and 280 nm. Proteins, especially the aromatic amino 
acids, absorb ultraviolet light with a peak at 280 nm.
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2.3 Molecular subcloning

2.3.1 Polymerase Chain Reaction
Polymerase Chain Reaction (PCR) is a method for amplification of specific DNA 
sequences in vitro, by using primers that are complementary to the flanking segments of 
the target sequence. Through multiple repetitions of the PCR cycle, the DNA fragment 
will be amplified exponentially.

The PCR consists of three steps, usually repeated 20-40 times:
1. Denaturation at 94 °C, where the hydrogen bonds between the two DNA 

strands are broken and separated.
2. Annealing of the primers to their complementary DNA strand. The temperature  

of this step depends on the primer.
3. Elongation at 68 or 72 °C, depending on the DNA polymerase. A DNA-

polymerase elongates primers in the 5’ - 3’ direction, making a complementary 
DNA sequence.

Because the DNA polymerase is heat-stable it is not necessary to add new enzyme after 
each cycle. The Advantage® 2 Polymerase Mix (Clontech) used, consists of a mixture of 
TITANIUM™ Taq DNA polymerase and a proofreading polymerase with 3’-5’ 
exonuclease activity. 

Procedure:
• Add the following to a 0.2 ml PCR tube:

• ⒉0 µl DNA-template.
• ⒈0 µl Fwd. primer (20 pmol/µl).
• ⒈0 µl Rev. primer (20 pmol/µl).
• ⒈0 µl of dNTP mix (10 mM).
• 40.0 µl dH2O.

• When you are ready to start the reaction, add the following:
• ⒌0 µl PCR buffer.
• ⒈0 µl Advantage 2 Polymerase Mix.

dNTP mix: 10 µl aliquots of each nucleotide (100 mM) are mixed together with 60 µl 
of dH2O resulting in 100 µl of mixture with a final concentration of 10 mM for each 
nucleotide.

PCR program:
1. 94 °C for 2 minutes
2. 94 °C for 30 seconds
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3. 56 - 65 °C gradient for 30 seconds
4. 68 °C for 2 minutes
5. Goto 2 for 29 cycles
6. 68 °C for 10 minutes
7. 4 °C forever

The PCR products are applied onto a 0.8 % agarose gel and then cut out and isolated 
using a gel extraction kit.

2.3.2 Restriction analysis of DNA
Restriction endonucleases are enzymes capable of cutting double or single stranded DNA 
at specific DNA sequences called restriction sites. Restriction sites are usually short (4-8 
bp) and often palindromic.

Procedure:
• Mix the following in a microfuge tube:

• 5-10 µl plasmid DNA.
• 0-5 µl MilliQ water.
• ⒈2 µl reaction buffer (10X).
• 0.5-1 µl restriction enzyme.

• Incubate for 1 hour at 37 °C.

When doing a double digest, make sure to check the manufacturer’s website for the 
optimal buffer.

2.3.3 Ligation
DNA fragments can be joined by DNA ligases that create phosphodiester bonds between 
the 3’ hydroxyl end of one nucleotide and the 5’ phosphate end of another nucleotide. 
When inserting a PCR fragment into a vector, the ratio between vector and fragment can 
determine the success rate and may require optimization for achieving the best possible 
result.

Procedure for ligation using an pEGM®-T Easy (Promega) vector:
• Mix the following in a microfuge tube:

• 10 µl of purified PCR product (Volume depends on size of fragment and 
concentration).

• 10 µl of 2X ligation buffer.
• 1 µl of pEGM-T Easy vector.
• 1 µl of T4 DNA ligase.
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• Incubate for 1 hour at room temperature or ON at 4 °C. Then transform the 
ligation mixture into E. coli cells and plate on agar plates with ampicillin and 
incubate at 37 °C for 16 hours.

2.4 Sequencing
All the DNA sequencing were performed by the ABI-lab at the University of Oslo.
Sample preparation for sequencing of plasmids:

• Mix 8 µl of template (20-100 ng/µl), with 2 µl of a 5 µM primer.

2.5 Mammalian cell work
MDCK Ⅱ cells are polarized epithelial cells that form a single cell layer with tight 
junctions. MDCK Ⅱ cells were grown in 75 cm2 cell culture flasks with 20 ml 
Dulbecco’s modified Eagle’s medium (DMEM) containing 5 % FBS, 1 % L-glutamine 
and 1 % penicillin and streptomycin (P/S) (Referred to as growth medium from now on, 
any variations will be noted).

LNCaP cells are androgen-sensitive human prostate adenocarcinoma cells. 

All cell work was performed in a sterile cell culture hood using sterile solutions 
preheated to 37 °C.

2.5.1 Thawing cells
Remove a cryo vial with cells from liquid nitrogen or -80 °C freezer and thaw in a water 
bath at 37 °C, before transferring cells to cell flasks with 20 ml growth medium.

2.5.2 Trypsination of confluent cells
Tight junctions are protein complexes that seal together epithelial cells in a mono layer 
and are dependent on Ca2+ ions. Addition of EDTA, which binds Ca2+, induces opening 
of the tight junctions. This allows trypsin to reach the basolateral side of confluent 
layers of epithelial cells and break the bonds to the growth substratum.

Procedure:
• Pour off growth medium.
• Wash each flask with 7-8 ml PBS with EDTA for a few minutes. Repeat one time.
• Add 5 ml of trypsin to each flask. Pour off as the cells become round.
• Add 2 ml of trypsin to each flask and leave in incubator at 37 °C and 5 % CO2 

until all cells have detached.
• Add 10 ml growth medium to inhibit the trypsin.
• Transfer 2 ml of resuspended cells to each new flask with 20 ml medium.
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2.5.3 Freezing cells
DMSO is added to the growth medium to prevent crystal formation in the cells, as the 
water freezes.

Procedure:
• Make freeze medium by adding 10 % sterile filtered DMSO to growth medium 

with 10 % FBS.
• Trypsinate cells according to ⒉⒌⒉
• Centrifuge cells at 1500 x g at 4-5 °C for 5 minutes.
• Remove supernatant and resuspend cells in 1 ml freeze medium.
• Transfer to a cryovial and place in -80 °C freezer for 2 hours before transfer to 

liquid nitrogen.

2.5.4 Growing of MDCK cells on filter
In order to study the polarization of MDCK cells, the cells are grown on filters, where 
they will obtain the same polarization as in vivo. Epithelial cells form a single cell layer 
with tight junctions, which connect the cells firmly together and prevent passage of 
molecules and ions between the apical and basolateral sides of the cell monolayer (figure 
⒉1). By collecting the apical and basolateral medium separately, it is possible to study 
apical and basolateral secretion of molecules.

Apical medium

Basolateral medium

Filter

Apical side

Basolateral side

Tight junctions

Figure 2.1 - Polarized MDCK II cells on filter
The cells are grown on a filter where they form a tight monolayer with separate apical and 
basolateral sides.

Permeable 
membrane
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Procedure:
• Trypsinate cells (section ⒉⒌2).
• Transfer the cell suspension to a 15 ml tube and centrifuge at 1500 x g for 5 

minutes.
• Remove supernatant and resuspend cells in 10 ml growth medium.
• Mount the filters on polypropylene holders and place in a 150 mm Petri dish with 

90 ml medium.
• Add ⒈6 ml of resuspended cells to each filter.

Transfer MDCK cells to an incubator at 37 °C and 5 % CO2 for 3-4 days to achieve 
confluent monolayers. For subsequent individual treatment of each filter in experiments,  
transfer the filters to 6 well plate and add 1 ml growth medium apically and 2 ml 
basolaterally. If the samples are destined for Western blot, it is beneficial to use medium 
without serum.

2.5.5 Growing MDCK cells on 500 cm2 plates
Large 500 cm2 plates are used for subcellular fractionation and other applications where 
large amounts of cells are required. 

Procedure:
• Add 90 ml growth medium to the plate.
• Trypsinate one cell flask (75 cm2) and transfer the resuspended cells (12 ml) to the 

plate.
• Place the cells in an incubator at 37 °C and 5 % CO2 for 4-5 days.

2.5.6 Harvesting cells 
When cells are analyzed by Western blotting, harvesting is carried out using a cellscraper 
instead of trypsin.

2.5.6.1 Harvesting cells from flasks
Procedure:

• Remove the growth medium.
• Wash cells with 10 ml PBS with EDTA.
• Add 5 ml PBS and use a cell scraper to detach the cells.
• Transfer the cells to a 15 ml tube and centrifuge at 1500 x g for 5 minutes.
• Remove the supernatant.
• Add 6 ml lysis buffer and incubate on ice for 30 minutes.
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2.5.6.2 Harvesting cells from filters
Procedure:

• Transfer the 6 well plate with filters to ice.
• Harvest apical and basolateral media to microfuge tubes. Centrifuge the apical 

medium for 5 minutes at 1500 x g and transfer the supernatant to a new tube in 
order to remove possible loose and dead cells in the medium.

• Add 2 ml cold PBS to both sides of each filter and leave with shaking for 15 
minutes before removing the PBS. Repeat one time.

• Add 2 ml lysis buffer to the apical side and leave on shaker for 30 minutes, 
followed by transfer of cell lysates to microfuge tubes.

2.5.7 Transfection using FuGENE 6
Transfection is a method for introducing exogenous DNA into cells. There are two 
main methods of transfection: stable and transient transfection. In stable transfection 
the plasmid is integrated into the genome of the transfected cells and the expression of 
the DNA-product from the plasmid is therefore also expressed in the daughter cells. In 
transient transfection, the plasmid is not integrated into the genome and will be diluted 
upon mitosis or degraded. 

FuGENE® 6 (Roche) is a lipid based transfection reagent that forms a complex with 
DNA, which is taken up by the cell. It is suitable for both stable and transient 
transfection.

Procedure:
• Grow cells in cell dishes. The cells are ready for transfection when 50-70 % 

confluent.
• Dilute FuGENE 6 with serum-free medium: 

• Add 6 µl of FuGENE 6 directly into 93 µl of serum-free medium.
• Mix and leave for 5 minutes at room temperature.

• Add 2 µg of DNA to the FuGENE solution. (3:1 ratio)
• Mix and leave for 45 minutes at room temperature.

• Add FuGENE:DNA complex to the cells in a drop-wise manner.
• Swirl and leave in incubator (37 °C and 5 % CO2) for 24 or 72 hours for 

transient and stable transfection respectively.

Make a control dish by leaving out the DNA.
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2.5.8 Dilution of transfected cells 
For stable transfection, the cells are diluted in medium with G418, 72 hours after 
addition of FuGENE. G418 is an aminoglycoside antibiotic and allow selection of cells 
transfected with plasmids containing the gene for kanamycin resistance. The dilutions 
increase the chance of an optimal density of positive clones, because the efficiency of the 
transfection is unknown at this point.

Trypsinate cells according to ⒉⒌⒉2 before resuspending in 9 ml of growth medium 
with G4⒙ Add the following amount of resuspended cells to cell culture dishes:

Dish 1: 1:200 dilution

70 µl of trypsinated cells are added to medium with G418 to a total volume of 14 ml.

Dish 2: 1:100 dilution

140 µl of trypsinated cells are added to medium with G418 to a total volume of 14 ml.

Dish 3: 1:30 dilution

467 µl of trypsinated cells are added to medium with G418 to a total volume of 14 ml.

Dish 4: Remaining cells

⒐3 ml of trypsinated cells are added to medium with G418 to a total volume of 14 ml.

Leave the culture dishes with the diluted cells in the incubator (37 °C and 5 % CO2) 
until all the cells on the control dish are dead. The colonies containing transfected cells 
can be picked by removing the growth medium and placing a small metal ring over the 
colony. To more easily locate the colonies for placement of the metal rings, the location 
of the colonies can be indicated with a marker outside, on the bottom of the dish. Add 
200 µl of trypsin into the metal ring and transfer the subsequently loosened cells to a 
glass bottomed microwell dish with 2 ml growth medium with G418, for examination of 
recombinant GFP-tagged protein expression in the confocal microscope. Cell lines with 
a high level of expression are trypsinated and transferred to a flask containing 10 ml 
growth medium with G4⒙ Leave in incubator until the cells are confluent.
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2.5.9 Detection of protein expression by confocal microscopy
Confocal microscopy is an imaging technique used for studying expression, localization, 
distribution and mobilization of fluorescent proteins and lipids. The advantage of 
confocal microscopy is the ability to control the depth of the focal plane by eliminating 
the out of focus light.

All the expressed recombinant proteins were tagged with GFP fused in the N-terminal 
part of the protein. GFP was originally isolated from Aequorea victoria and is a very 
commonly used reporter gene. The GFP protein exhibits green fluorescence when 
exposed to violet and blue light (395 and 475 nm). GFP fluorescence does not require 
any cofactors or substrates making it an ideal reporter for transfection. 

2.5.10 Golgi apparatus staining
The Golgi marker BODIPY® TR (Invitrogen) is a fluorescent ceramide analogue. At 4 
°C, the ceramide analogues are inserted into the plasma membrane. As the temperature 
is elevated, the lipid transport becomes more active, transporting the ceramide via small 
vesicles to the ER. From there, the ceramide transfer protein (CERT) transports the 
ceramide to the Golgi apparatus.

Procedure:
• Grow cells on glass bottomed microwell dishes.
• Wash cells with cold PBS
• Add cold ⒈5 ml HBSS
• Add 5 µM BODIPY TR ceramide and transfer the cells onto ice and leave for 30 

minutes.
• Remove HBSS and wash several times using ice-cold growth medium.
• Add ⒈5 ml growth medium to the cells and transfer them to the incubator (37 °C 

and 5 % CO2) for 30 minutes.

2.5.11 Hoechst Staining
The blue fluorescent Hoechst dyes are cell permeable, DNA binding stains that allows 
the visualization of the nucleus, that are extensively used in fluorescence microscopy. 

Procedure:
• Add 3 µl of Hoechst dye to the cells and leave for 20-30 minutes in incubator.
• Wash several times with growth medium.
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2.6 Concentration and purification of proteins

2.6.1 Concentration of proteins using a vacuum centrifuge
If the concentration of proteins in a sample is too low or the sample volume is larger 
than the desired volume, it is possible to reduce the volume in a vacuum centrifuge. By 
reducing the pressure to >1 mbar, the solvent will evaporate at room temperature.

2.6.2 Chloroform/methanol precipitation of proteins
Chloroform/methanol precipitation was used to remove sucrose and concentrate proteins 
from subcellular fractions. 

Procedure:
• Add 600 µl methanol to a 150 µl sample. Mix thoroughly.
• Add 150 µl chloroform. Vortex for 10 seconds.
• Add 450 µl water. Vortex. Sample should appear cloudy white.
• Centrifuge at 13 000 x g for 5 minutes.
• A white disk of protein should form between the organic layer at the bottom and 

the aqueous layer at the top. Discard the aqueous layer.
• Add 650 µl of methanol and invert the tube three times.
• Centrifuge at 13 000 x g for 5 minutes.
• Remove all liquid and allow pellet to air dry before resuspending the proteins in 

the desired volume.

2.6.3 Sephadex™ G-50 Fine gelfiltration
Sephadex G-50 Fine (GE Healthcare) separates proteins with a molecular weight 
between 1000 and 30 000 Da. Macromolecules with a mass larger than 30 000 Da will 
be eluted in V0, while smaller molecules  will remain in the column. Radioactive 
molecules not incorporated into macromolecules will be removed by G-50 Fine 
gelfiltration.

Procedure:
• G50 Fine needs to be swelled in 10 ml dH2O/g for at least 3 hours, before use.
• Cut 10 ml pipettes at the 7 ml mark and insert a small piece of glass wool into the 

tip of the pipette.
• Add 4 ml of swelled G-50 Fine into the pipette.
• Add 1 ml of the sample to the column with G50 Fine, and allow it to enter the gel 

completely.
• Elute macromolecules using ⒈5 ml elution buffer or water.
• Eluate can be analyzed by scintillation counting, SDS-PAGE, immunoprecipitation 

(IP), or gel filtration.
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2.7 Protein analysis

2.7.1 Radioactive labeling of molecules
Labeling cells with radioactive isotopes allows studies of synthesis, sorting and 
modification of proteoglycans (PGs) and glycoproteins.

[35S]-sulfate labeling: GAG chains on proteoglycans are modified with sulfate. By 
replacing non-radioactive sulfate with radioactive sulfate in the medium, it is possible to 
determine the amount of sulfated proteoglycans synthesized during the labeling period.

[3H]-glucosamine labeling: Radioactive glucosamine is incorporated into GAG chains 
and N-glycans. The amount of sugars attached to PGs and glycoproteins secreted into 
the apical and basolateral media as well as the amount remaining in the cell fraction can 
be determined.

Procedure:
• Grow cells in wells or on filters.
• Remove the medium from the cells.
• Use RPMI-1640 medium with 2 % FBS, without sulfate for [35S]-sulfate labeling 

and without glucose for 3H-Glucosamine labeling.
• Add the radioactive isotope to the medium with a final concentration of 0.2 mCi/

ml medium.
• Add 1 ml of the radioactive medium to the wells, or when growing cells on filter, 

add 2 ml radioactive medium basolaterally and 1 ml RPMI-1640 without 
radioactive isotope apically.

• Place the cells in an incubator at 37 °C and 5% CO2 for 20-24 hours.
• Harvest the media and centrifuge at 5000 x g for 5 minutes. Transfer supernatant 

to new tubes.
• Wash the cell layer with ⒉0 ml PBS for 20 minutes on ice. Add PBS to both apical 

and basolateral sides when using cells on filter. Repeat one time.
• Remove PBS and add 1 ml lysis buffer to the cells. After 30 minutes on ice, 

transfer the lysis solution to tubes.

2.7.2 Liquid scintillation counting
Liquid scintillation counting is a method for detecting β-radiation. β-particles emitted 
from the sample will excite solvent molecules. The energy of the excited solvent is 
emitted as UV light to fluors in the solution. The fluor molecule will then release its 
excitation energy as light. These flashes of lights are counted by the scintillation counter 
and reported as counts per minute (CPM).
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Procedure:
• Transfer 50 µl G50 Fine eluate of radioactive sample to a scintillation vial.
• Add 3 ml scintillation cocktail (Ultima Gold™ XR, Perkin Elmer) and mix well.
• Place vials in scintillation counter and select appropriate program.

2.7.3 SDS-PAGE
Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) is a method for 
separating proteins according to their molecular mass. SDS is an anionic detergent. By 
boiling the samples with SDS, the proteins are denatured due to disruption of non-
covalent bonds and SDS bound to the proteins. Approximately one SDS anion for every 
two amino acids. Since all the protein molecules are negatively charged, induced by the 
binding of SDS, leaving only the molecular mass as the determining factor of each 
protein’s mobility in the gel. Small proteins will move faster than large ones. The 
concentration of acrylamide will also have an effect on the mobility of the proteins. A 
protein will move more slowly in a gel with a high percentage of acrylamide than in a gel 
with a lower percentage. 

Procedure:
• 20 µl of the sample is mixed with ⒎5 µl 4X XT Sample Buffer (Bio-Rad) and  ⒈5 
µl 20X XT Reducing Agent (Bio-Rad).

• Boil the samples at 96 °C for 5 minutes.
• Centrifuge the samples at 3000 x g for 5 minutes.
• Apply the samples on the gel.
• Run at 180 V and 90 mA per gel for 1 hour and 15 minutes.
• After electrophoresis, transfer the gel to fixing solution for 40 minutes.
• Transfer gel to Amplify™ solution (GE Healthcare), which amplifies the 

radioactive signal, thereby reducing the time needed for exposure.
• Dry gel at 70 °C for 1 hour and 30 minutes.

Gels with [35S]-sulfate labeled samples are placed in a cassette together with a Molecular 
Dynamics LE Storage Phosphor screen over night, before the screen is scanned using a 
Typhoon™ 9400 Variable Mode Imager (GE Healthcare). Gels with 3H-Glucosamine 
labeled samples are placed in a cassette together with a film (Amersham™ Hyperfilm™ 
MP, GE Healthcare) and left at -80 °C for 1-3 weeks depending on the amount of 
radioactivity. The various protein bands can be quantified using ImageQuant™ TL (GE 
Healthcare).
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2.7.4 Western blotting
Western blotting, or immunoblotting, is a method for detecting specific proteins in a 
sample. The proteins are first separated by electrophoresis (e.g. SDS-PAGE), before 
transfer to a membrane (nitrocellulose or PVDF) by electroblotting, where the proteins 
are detected by using antibodies specific for the target proteins.

Because the membrane has the ability to bind all proteins the membrane has to be 
blocked before detection with antibodies, otherwise the antibodies will bind to the 
membrane in a non-specific manner. By leaving the membrane in a blocking solution 
with non-fat dry milk, the proteins in the blocking solution will bind to all parts of the 
membrane not already occupied by the proteins transferred from the gel. Thus, when 
adding the antibody the only place site to bind is the specific epitope binding site on the 
target protein.

The antibodies used in this thesis are:
• Primary antibody: GFP antibody (ab6556) (Abcam)
• Secondary antibody: Anti-rabbit IgG, alkaline phosphatase linked antibody (GE 

Healthcare)

Procedure:
• Prepare the following: 

• Two pieces of blotting paper in cathode buffer. 
• Two pieces of blotting paper in anode buffer.
• Activate Hybond™-P PVDF membrane (GE Healthcare) in methanol for 10 

seconds before transferring to anode buffer.
• After electrophoresis leave gel in cathode buffer for 5 minutes.
• Assemble blotting sandwich on Trans-Blot® Semi-Dry Electrophoretic Transfer 

Cell (Bio-Rad) in the following order from bottom and up:
• Blotting paper with anode buffer.
• PVDF membrane.
• The gel.
• Blotting paper with cathode buffer

• Blot at 25 V and 170 mA for 1 hour.
• Transfer the membrane to TTBS with 5 % dry milk for 1 hour with tilting.
• Incubate the membrane with primary antibody (1:10 000) in TTBS with 1 % dry 

milk overnight at 4 °C with tilting.
• Wash the membrane 3 x 15 minutes with TTBS.
• Incubate the membrane with secondary antibody (1:10 000) in TTBS with 1 % 

dry milk for 1-2 hours at room temperature with tilting.

METHODS

42



• Wash the membrane 3 x 15 minutes with TTBS, followed by 1 x 15 minutes with 
TBS.

• Develop membrane by adding ⒈5-2 ml ECF™ substrate (GE Healthcare) to the 
membrane for 5 minutes. In the presence of alkaline phosphatase, a phosphate 
group is cleaved from the substrate; creating a fluorescent product. Dry the 
membrane and scan using the Typhoon 9400 Variable Mode Imager.

2.7.5 Subcellular fractionation
Density gradient subcellular fractionation is a method for separating cellular organelles 
in a density gradient according to their density. When homogenizing the cells, the 
plasma membrane is destroyed, while most of the organelles remain intact. After 
removing the nucleus by centrifugation, the postnuclear supernatant (PNS) is applied 
onto a sucrose gradient. During centrifugation, the organelles will move to the area of 
the gradient that has the same density as the organelles themselves. This will result in a 
concentration of different organelles in different regions of the gradient.

The Golgi fraction can be used for in vitro GAG synthesis studies.

Golgi

Golgi

Plasma 
membrane

Endosomes 
and lysosomes

Figure 2.2 - Subcellular 
fractioning
(A) The setup of a sucrose 
gradient. (B) The Golgi fractions 
appear as two white bands in the 
upper part of the gradient.
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Procedure:
• Grow cells on large, 500 cm2, plates (⒉⒌5)
• Transfer plate onto ice for 10 minutes.
• Remove growth medium and wash with 15 ml homogenization buffer.
• Add 15 ml homogenization buffer and detach the cells with a cell scraper. Transfer 

cell solution to a 50 ml tube. Repeat one time.
• Centrifuge cells at 1500 x g for 5 minutes at 4 °C.
• Remove supernatant and resuspend the cells in homogenization buffer to a total 

volume of 5 ml.
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•  Homogenize the cells by forcefully sucking up the resuspended cells using a 
syringe with a 22 ½ G needle bent into an S-shape. Repeat ten times.

• Transfer cell homogenate to a 15 ml tube.
• Centrifuge tube at 2500 x g for 10 minutes at 4 °C.
• Transfer the supernatant to a new 15 ml tube. This is the postnuclear supernatant 

(PNS).
• Make a sucrose gradient in a Beckman Ultra-Clear™ (1 x 3 ½ inches) centrifuge 

tube. Pipette each layer carefully to avoid mixing:
1. 5 ml ⒈30 M sucrose solution.
2. 5 ml ⒈15 M sucrose solution.
3. Mix ⒏4 ml of PNS (Adjust volume with homogenization buffer if necessary) 

with ⒍6 ml 2 M sucrose solution, to a total of 15 ml.
4. 6 ml 0.9 M sucrose solution.
5. 6 ml homogenization buffer.

• Centrifuge the gradients at 28 000 x g for 4 hours and 30 minutes in a SW32 rotor. 
N.B! make sure opposite tubes are balanced within 0.01 g of each other.

• Harvest the gradient by careful and sequential pipetting of 2 ml fractions from the 
top. The Golgi fractions can be observed as two pale, white bands in the upper 
half of the gradient (figure ⒊2B).

2.7.6 In vitro GAG synthesis
Use the upper Golgi fraction from the subcellular fractionation. This is the fraction with 
the least contamination of non-Golgi components.

Procedure:
• For each sample, mix the following in a tube:

• 250 µl Golgi fraction.
• 250 µl cytosol.
• 50 µl ATP regenerating system:

• 1 mM ATP.
• 10 mM phosphocreatine.
• 0.5 mM UTP.
• 50 µg creatine phosphokinase.

• 5 mM Mg2+.

• Add 0.2 mCi [35S]-sulfate to each sample.
• Incubate for 2 hours at 37 °C in a water bath.
• Transfer samples to ice and dilute to 1 ml with water.
• Purify macromolecules on G-50 Fine columns using scintillation counting and 

SDS-PAGE analysis.
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2.7.7 Chondroitinase ABC treatment
Chondroitinase ABC (cABC) treatment is a method for degradation of chondroitin 
sulfate (CS) and dermatan sulfate (DS) GAG chains. cABC is an enzyme that cleaves 
both CS and DS chains into tetra- and disaccharides.

Procedure:
• Dry sample using the vacuum centrifuge (⒉⒍1).
• Resuspend sample with 20 µl cABC buffer.
• Add 10 mU cABC enzyme.
• Leave at 37 °C for 1 hour.
• Stop reaction by boiling sample at 96 °C for 2 min.

2.7.8 Heparinase treatment
Heparinase is an enzyme that selectively cleaves heparan sulfate and can therefore be 
used as a method for removal of heparan sulfate (HS) GAG chains. 

Procedure:
• Add the following to a 15 µl sample:

• 15 µl 2X buffer.
• 1 µl Heparinase.

• Leave at 28 °C ON.

2.7.9 PNGase F treatment
Peptide: N-Glycosidase F (PNGase F) is an enzyme that removes N-glycan chains from 
glycoproteins. It cleaves the bond between an asparagine in the protein and the first N-
acetyl glucosamine of the glycan chain. The method is used for detection of N-glycans 
on proteins.

Procedure:
• Mix 22 µl of the sample with ⒉4 µl denaturing buffer.
• Leave at 96 °C for 10 min.
• Add:

• 3 µl G7 buffer.
• 3 µl NP40.
• 1 µl PNGase F.

• Leave at 37 °C for 1 hour.
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3. RESULTS
The work carried out in this thesis can be divided into two parts: Work with MDCK cells and 
work with LNCaP cells. The experiments with MDCK cells constitute the majority of the work 
performed and can again be divided into two parts, analysis of STAMP2 and analysis of 
STAMP2 transfected cells.
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Figure 3.1 - Overview of work performed
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3.1 Work with MDCK cells
A construct with GFP N-terminally attached to STAMP2, called GFP-STAMP2 (GFP-S2) had 
previously been made by another group (Korkmaz et al. 2005). This group also constructed a 
deletion mutant of STAMP2, S2’, with a nine nucleotide deletion in the ferric-reductase domain 
(ORD) in the C-terminal region. Both served as a basis for the production of two new 
constructs, STAMP2-GFP (S2-GFP) and STAMP2’-GFP (S2’-GFP), both having the GFP tag 
moved 20 amino acids downstream from the start (ATG) of STAMP⒉ S2’-GFP also have a 9 
nucleotide deletion in the ORD (figure ⒊2). Moving GFP away from the N-terminal could 
expose a possible sorting signal, that would otherwise be blocked, while the deletion of amino 
acids in the ORD could knock out or change the function of this domain. GFP-S2, S2-GFP and 
S2’-GFP were all stably transfected into MDCK cells, for investigation of subcellular localization 
of the STAMP2 variants, as well as synthesis and sorting of glycoproteins and proteoglycans. 

GFP-S2

N-linked glycosylation site

6 Transmembrane domains

GFP

S2-GFP

S2’-GFP

Deletion in ORD (AA 310-312)

STAMP2

STAMP2

STAMP2

GFP moved 20 AA in from 
N-terminal end of STAMP2

FRD

FRD

FRD

Figure 3.2 - Overview of the STAMP2 constructs.
Green Fluorescent Protein (GFP) is indicated in green, flavin-NAD(P)H binding oxidoreductase domain 
domain in dark blue and the ferric-reductase domain (FRD) in light blue. The six transmembrane regions 
are indicated by grey lines above each construct. The predicted N-linked glycosylation site is indicated by a 
white line.
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GFP ORD

ORD

ORD

3.1.1 Subcloning of S2-GFP and S2’-GFP
An overview of the subcloning and molecular cloning process performed is shown in figure ⒊⒊ 
A more detailed overview of the PCR steps is shown in figure ⒊⒋
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Figure 3.3 - Strategy for subcloning of STAMP2 constructs
A megaprimer was amplified by PCR using P201 and P202 (see appendix 1 for primer sequence) 
with GFP-S2-pEGFP-C1 as template. The megaprimer was then used to amplify GFP-S2 together 
with P203 (see appendix 1 for primer sequence). The new construct, S2-GFP was ligated into 
pEGEM-T Easy and sequenced. Plasmids with correct insert were digested with XhoI and NheI, 
and the fragment was ligated into pEGFP-C1 and sequenced. Plasmids containing the clone with 
correct sequence were used in stable transfection of MDCK Ⅱ cells. Same procedure was used for 
S2’-GFP, except the use of the deletion mutant, S2’, in a pcDNA vector as template in the second 
PCR reaction.
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60 bp from 
STAMP2

Figure 3.4 - Subcloning of S2-GFP
(A)The purpose of the subcloning is to insert GFP 20 amino acids downstream from the N-terminal 
start codon of STAMP⒉ (B) GFP is amplified using two primers containing parts of STAMP2 sequence. 
The forward, P201, contains a XhoI restriction site at its N-terminal end. (C) The PCR product is used 
as a megaprimer in (D) together with a reverse primer, P203, containing a NheI restriction site.

GFP

GFP

GFP

GFP

GFP STAMP2

STAMP2

STAMP2

P201 P202

XhoI

P203

XhoI

XhoI NheI

A

B

C

D

E

Megaprimer

PCR

PCR

GFP

P201 P202

XhoI

NheI

20 bp from 
STAMP2

Megaprimer

A megaprimer containing GFP was amplified by PCR using primers P201 and P202 (For primer 
sequences, see appendix 1) containing the restriction sites XheI and NheI respectively. The PCR 
was performed as described in section ⒉⒊⒈ Due to the differences in melting temperatures for 
the two primers, four samples were tested at four different temperatures for the annealing step: 
5⒎5 °C, 5⒐9 °C, 6⒊7 °C and 65 °C. A fraction of each of the PCR products was applied on a 
0.8 % agarose gel (Figure ⒊5). The PCR product was amplified at all temperatures, and the 
size corresponds to the theoretical size (864 bp). The PCR product was isolated using QIAquick 
Gel Extraction kit from QIAGEN (Section ⒉⒉4).
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Figure 3.5 - PCR amplification of GFP.
GFP was amplified by PCR using primers 
P201 and P202, to create a megaprimer, at 
four different annealing temperatures. A 
fraction of each sample was applied on a 0.8 
% agarose gel.

The isolated fragment was used as a megaprimer for the second PCR, together with P203, a 
primer containing the C-terminal portion of STAMP2 with a XhoI restriction site (Figure 
⒊4d). Two concentrations, 5 pmol and 1 pmol, of the megaprimer were used to amplify both 
the GFP-S2 and S2’ DNA products. The PCR fragments were applied on a 0.8% agarose gel 
(figure ⒊6) and the PCR products corresponding to the correct size (as indicated by asterisks) in 
lane 2-7 were purified using QIAquick Gel Extraction kit from QIAGEN.

Figure 3.6 - The S2-GFP and S2’-
GFP PCR products
GFP-S2 and S2’ were amplified by 
PCR using two different 
concentrations of megaprimer (5 or 1 
pmol). The samples were applied on a 
0.8 % agarose gel, and the isolated 
PCR products are indicated by 
asterisks (*).
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5 1 5 1

S2-GFP S2’-GFP
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The purified S2-GFP and S2’-GFP PCR fragments were ligated into the cloning vector pGEM-
T Easy (S2-GFP-pGEM and S2’-GFP-pGEM), before transformation into competent E. coli 
cells (section ⒉⒈4). The transformed bacteria were plated on agar plates with ampicillin. 
Bacteria colonies were selected from the agar plates and grown ON in 5 ml LB medium with 
ampicillin. QuickCheck was performed to verify the presence of plasmids with inserted PCR 
product in the transformed bacteria (figure ⒊7). The plasmids indicated by asterisks (fig. ⒊7A, 
lane 2 and 3, fig. ⒊7B, lane 2, 3, 5, and 7) were isolated, and an analysis using EcoRI (section 
⒉⒊2) was performed (figure ⒊8).
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Figure 3.7 - QuickCheck of 
S2-GFP-pGEM and S2’-
GFP-pGEM.
Bacteria culture was treated 
with phenol and 
chloroform. The aqueous 
phase, containing DNA, was 
loaded on a 0.8 % agarose 
gel. Samples with plasmid of 
correct size indicated by 
asterisks (*).
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The restriction analysis resulted in three fragments: One fragment larger than 2000 bp (■), 
(corresponding to the size of the S2-GFP fragment (2077 bp) or S2’-GFP fragment (2068 bp)), 
one at 3000 (◆)(corresponding to the size of the pGEM-T Easy vector (2997 bp)) and one 
around 5000 bp (●)(corresponding to a linear S2-GFP-pGEM or S2’-GFP-pGEM). A fourth 
theoretical fragment, 59 bp long, was not observed in the gel.

Figure 3.8 - Restriction analysis of S2-GFP-pGEM and S2’-GFP-pGEM.
S2-GFP-pGEM and S2’-GFP-pGEM were treated with the restriction enzyme EcoRI and loaded on a 0.8 
% agarose gel.

S2-GFP-pGEMS2’-GFP-pGEM

EcoRI +

3000 bp ⎯

5000 bp ⎯

+ + + + +­ ­ ­ ­ ­ ­
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■
◆
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All the four S2’-GFP-pGEM and the two S2-GFP plasmids had DNA insert with a correct size, 
and were sent to the ABI lab at Department of Molecular Biosciences/Department of Biology 
for sequencing (section ⒉4). 
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3.1.2 Transfer of STAMP2-GFP and STAMP2’-GFP to the expression vector 
pEGFP-C1
To transfer S2-GFP and S2’-GFP from the cloning vector to the expression vector, both S2-
GFP-pGEM and S2’-GFP-pGEM, and the expression vector, pEGFP-C1 (see appendix 1), were 
digested with NheI and XhoI restriction enzymes, prior to analysis on agarose gels (Figure ⒊9).

A S2‘-GFP-
pGEM pEGFP-C1

S2-GFP-
pGEM

B

3000 bp ⎯

6000 bp ⎯
3000 bp ⎯

6000 bp ⎯

* *

*

NheI + XhoI + + +

Figure 3.9 - S2-GFP-pGEM, S2’-GFP-pGEM and pEGFP-C1 digested with NheI and XhoI.
(A) S2-GFP-pGEM cut with NheI and Xhol and loaded on a 0.8 % agarose gel. (B) S2’-GFP-
pGEM (left) and pEGFP-C1 (right) cut with NheI and XhoI and applied on a 0.8 % agarose 
gel. Isolated and purified DNA fragments are indicated by asterisks (*).

The DNA fragments corresponding to S2-GFP, S2’-GFP and expression vector pGEFP-C1 
without GFP (as indicated by asterisks on figure ⒊9) were isolated and purified. S2-GFP and 
S2’-GFP were ligated into the pEGFP-C1 vector. The plasmids, S2-GFP-pEGFP and S2’-GFP-
pEGFP, were then transformed into E. coli cells and the bacteria were plated on agar dishes with 
kanamycin. Bacteria colonies were selected and Quick Check was performed to identify 
transformants with plasmids of correct size. As seen in figure ⒊10, the bacteria contained 
plasmids of two different sizes.
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Figure 3.10 - QuickCheck of S2-
GFP-pEGFP and S2’-GFP-pEGFP.
Bacteria cultures were treated with 
phenol and chloroform and the 
aqueous phase containing plasmids 
was applied on a 0.8 % agarose gel. 
Plasmids selected for restriction 
analysis indicated by asterisks (*)
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* *
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Two different plasmids were further purified. S2-GFP-pEGFP (figure ⒊10A, lane 3 and 4), and 
the S2’-GFP-pEGFP (figure ⒊10B, lane 5 and 6), were isolated and digested with NheI and 
XhoI, followed by agarose gel analysis. Plasmids with correct size will give two DNA molecules 
after the restriction analysis, ⒉1 kb (the PCR product) and 4 kb (pEGFP without GFP). As 
seen in figure ⒊11, the plasmid in lane 7 (corresponding to the plasmid seen in figure ⒊10A, 
lane 4) and 11 (corresponding to the plasmid seen in figure ⒊10B, lane 6) had DNA molecules 
with corresponding sizes, in addition to a larger DNA fragment of about 6 kb, corresponding to 
a correct linearized plasmid.

Figure 3.11 - Restriction analysis 
of S2-GFP-pEGFP and S2’-GFP-
pEGFP.
Purified plasmids were digested 
with NheI and XhoI, followed by 
application on a 0.8 % agarose gel.
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fig. 3.9B
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S2-GFP-pEGFP and S2’-GFP-pEGFP from lane 4 in figure ⒊10A and lane 6 in figure ⒊10B 
were sent to in-house sequencing. 

3.1.3 Transfection of STAMP2 variants in MDCK II cells
MDCK Ⅱ cells were stably transfected with GFP-S2-pEGFP, S2-GFP-pEGFP, and S2’-GFP-
pEGFP using FuGENE 6 (section ⒉⒌7). Cell colonies that survived the selection with G418 
were examined using confocal microscopy, and only a limited number of the selected colonies 

RESULTS

54



expressed the STAMP2 variants at a detectable level, and these were further studied (data not 
shown).

3.1.4 STAMP2 expression in MDCK II
In order to verify the expression level of the STAMP2 variants, the cell lines were grown in 75 
cm2 cell flasks and harvested (section ⒉⒌⒍1). The cells were lysed using lysis buffer, before 
aliquots of cell lysate were applied onto an SDS-PAGE and Western blotted (figure ⒊12). Anti-
GFP antibodies were used due to the lack of effective antibodies against STAMP⒉

Figure 3.12 - Expression levels of GFP-S2, S2-GFP and S2’-GFP in MDCK II cells.
MDCK Ⅱ cells stably transfected to express GFP-S2, S2-GFP and S2’-GFP were grown in cell flasks. 
The cells were harvested and lysed. 20 µl of the cell lysate was applied on a 4-12% SDS-PAGE gel and 
Western blotted with anti-GFP. 
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All four cell lines expressing GFP-S2 had a high level of expression, while for S2-GFP only one 
of the cell lines expressed a detectable level of STAMP⒉ For S2’-GFP, both cell lines had a low, 
but detectable level of the STAMP2 construct.

Analysis of STAMP2
Three different STAMP2 variants had been stably expressed in MDCK Ⅱ cells, and we wanted 
to investigate the cellular localization of the expressed protein variants, as well as possible post-
translational modifications of the protein. 

3.1.5 Localization studies of STAMP2 in MDCK II cells
GFP-STAMP2 with GFP at the N-terminal end, might have a blocked N-terminal sorting 
signal. Earlier studies of GFP-STAMP2 in LNCaP cells have shown its localization to the Golgi 
apparatus, the plasma membrane and also to vesiculotubular structures (Korkmaz et al. 2005). It 
was therefore of interest to investigate whether the altered location of GFP in the protein 
changed the cellular localization of STAMP⒉
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3.1.5.1 Subcellular localization studies using confocal microscopy
In addition to evaluation of the expression level of the STAMP2 proteins, the magnification and 
resolution of confocal microscopes enables localization studies of proteins in cells. The 
localization can easily be addressed by labeling cells with markers for organelles, such as the 
Golgi apparatus or the nucleus, and subsequently observing the extent of co-localization with 
the novel protein construct. The cells were grown in glass bottomed microwell dishes over 
night, and Golgi staining was performed as described in section ⒉⒌⒑ 
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Figure 3.13 - Localization of GFP-STAMP2, STAMP2-GFP and STAMP2’-GFP in MDCK II 
cells.
MDCK Ⅱ cells stably expressing GFP-STAMP2, STAMP2-GFP, and STAMP2’-GFP were grown 
in glass bottomed microwell dishes. A red fluorescent lipid Golgi marker (BODIPY TR ceramide) 
was added, and the proteins and organelles were visualized in a confocal microscope (Olympus Ⅸ81).

As seen in figure ⒊13 there is a distinct difference in the localization of the different STAMP2 
variants. While GFP-S2 showed a high degree of co-localization with the Golgi marker, S2-
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GFP had a more defined localization to the plasma membrane and vesicular structures, with very 
little co-localization with the Golgi marker. The expression of S2’-GFP was low (figure ⒊12, 
lane 8), but showed a perinuclear localization with some degree of co-localization with the Golgi 
marker, but less than for GFP-S⒉ The perinuclear region of the cells harbors also the ERGIC 
and late endosomal compartments. 

3.1.5.2 Localization studies with subcellular fractionation
To further investigate the differences in localization of GFP-S2, S2-GFP, and S2’-GFP in 
transfected cells, subcellular localization of the STAMP2 variants by subcellular fractionation in 
a sucrose gradient were performed. The cells were grown on large 500 cm2 plates, removed by 
scraping and homogenized, before the nuclei were removed from the cell lysates by 
centrifugation. The post-nuclear supernatants were applied onto sucrose gradients in order to 
separate the organelles according to their density (section ⒉⒎5). Samples from all fractions were 
analyzed by Western blotting with an anti-GFP antibody (figure ⒊14).
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S2-GFP
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1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 2 3 4 5 6 7 8 9 10 11 12 13
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63 kDa
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Figure 3.14 - Subcellular fractionation of GFP-S2, S2-GFP and S2’-GFP in MDCK cells
MDCK Ⅱ cells stably expressing GFP-S2, S2-GFP and S2’-GFP were grown on large plates. Cells were 
harvested and post-nuclear supernatants were separated on sucrose gradients. Fractions were collected 
from the top of the gradient and aliquots were applied on  4-12 % SDS-PAGE gels and Western blotted 
with anti-GFP.

Golgi Plasma Membrane Endosomes and 
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Golgi Plasma Membrane Endosomes and 
lysosomes

Golgi Plasma Membrane Endosomes and 
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Golgi

Golgi
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Fraction 4 (3 for S2’-GFP) is the fraction with the highest concentration of Golgi markers. The 
plasma membrane is primarily localized in fractions 8 to 10 (7-9 for S2’-GFP), while endosomes 
and lysosomes are more concentrated in the last fractions. The subcellular fractionation shows a 
clear difference in the localization of the STAMP2 variants. The results partially support what 
was observed in the confocal microscope. GFP-S2 is highly localized in the Golgi area, but also 
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appears to be at the plasma membrane and in endosome like structures. S2-GFP and S2’-GFP 
are localized partially at the plasma membrane and primarily in vesiculotubular membranes, most 
likely endosomes.

3.1.6 Sugar modification studies of STAMP2 variants
STAMP2 has one predicted N-glycan site (Chen et al. 2009). To investigate whether the 
STAMP2 variants were glycosylated, the cell lysates of cells expressing GFP-S2, S2-GFP, and 
S2’-GFP were treated with PNGase F, an enzyme that removes N-glycans from glycoproteins 
(section ⒉⒎9). The samples were applied onto SDS-PAGE gels and Western blotted (figure 
⒊15).

Figure 3.15 - PNGase F treatment of STAMP2 variants in MDCK II cells.
MDCK Ⅱ cells stably expressing GFP-S2, S2-GFP, or S2’-GFP were grown in cell flasks. The cells 
were harvested and lysed. 30 µl of the cell lysate was treated with PNGase F prior to application 
onto a 10 % SDS-PAGE gel and Western blotting with anti-GFP. 
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Expression levels of the STAMP2 variants differed among the cell lines, but a reduction in the 
molecular mass could be observed for both GFP-S2 and S2-GFP after PNGase F treatment, 
signifying the presence of N-glycans on the proteins. Untreated GFP-S2 in lane 3 appeared to 
have both glycosylated and non-glycosylated versions.  No clear reduction of S2’-GFP in 
molecular mass could be observed after PNGase F treatment, indicating the absence of an N-
glycan on this protein.

Glycan analysis of transfected MDCK II cells
It has been shown in preliminary experiments that knocking down STAMP2 by addition of 
siRNA in LNCaP cells resulted in a reduced amount of incorporated sulfate into secreted 
macromolecules (Pryǳ and Saatcioglu groups, unpublished data). Based on these experiments, 
and the difference in localization of the STAMP2 variants expressed in MDCK Ⅱ cells, it was of 
interest to further investigate the synthesis and sulfation of glycans in MDCK Ⅱ cells expressing 
the STAMP2 variants.
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3.1.7 Sulfation studies of MDCK II cells expressing GFP-S2, S2-GFP, and 
S2’-GFP
To investigate how the STAMP2 variants influence sulfation of proteoglycans and glycoproteins 
in MDCK cells, both untransfected MDCK Ⅱ control cells and stably transfected MDCK Ⅱ cells 
were labeled with [35S]-sulfate in microwells for 21 hours, as described in section ⒉⒎⒈ The 
radioactive sulfate incorporated into macromolecules during the incubation period was separated 
from the free radioactive sulfate by Sephadex G50 fine gel filtration and determined with a liquid 
scintillation counter. The results are presented in figure ⒊⒗ The media of the control cells 
contained a higher level of [35S]-sulfated macromolecules compared to the media of the 
transfected cells, although the relative standard deviation of 22 % is quite large. The level of 
incorporated radioactive sulfate was reduced in both the media and cell lysates in cells expressing 
GFP-S2, compared to the other cell lines. S2’-GFP contained a slightly increased amount of 
radioactive sulfate in the cell lysate compared to S2-GFP. For S2-GFP and S2’-GFP expressing 
cells, the total production of sulfated macromolecules was not significantly reduced compared to 
that of untransfectd cells, but a larger fraction of the sulfated macromolecules was recovered 
from the media.

Figure 3.16 - Sulfation studies in MDCK II cells grown in wells.
MDCK Ⅱ cells stably expressing GFP-S2, S2-GFP or S2’-GFP were grown in microwells and incubated
with 0.2 mCi/ml [35S]-sulfate for 21 hours. The media and cell lysates were purified on Sephadex G50 
Fine columns before incorporated [35S]-sulfate was detected by liquid scintillation counting. Error bars
indicate standard deviation based on three parallels in one experiment. Control; untransfected
MDCK Ⅱ cells.
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To further investigate the polarized distribution of the sulfated macromolecules, the cell lines 
were grown to confluency on filters and labeled with [35S]-sulfate for 22 hours, as described in 
section ⒉⒎⒈ The amount of incorporated radioactive sulfate was determined with a liquid 
scintillation counter and presented in figure ⒊⒘
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Figure 3.17 - Sulfation studies in MDCK II cells grown on filter.
MDCK Ⅱ cells stably expressing GFP-S2, S2-GFP and S2’-GFP were grown on filters and incubated with
0.2 mCi/ml [35S]-sulfate for 22 hours. Media and cell lysates were purified on Sephadex G50 Fine 
columns before incorporated [35S]-sulfate was determined by liquid scintillation counting. Error bars 
indicate standard deviation based on three parallels in one experiment. Control; untransfected MDCK Ⅱ 
cells.

0

37500

75000

112500

150000

CTRL GFP-S2 S2-GFP S2’-GFP
0

37500

75000

112500

150000

CTRL GFP-S2 S2-GFP S2’-GFP

0

27500

55000

82500

110000

CTRL GFP-S2 S2-GFP S2’-GFP

C
P

M
C

P
M

C
P

M

[35S]-sulfate, apical medium

[35S]-sulfate, cell lysate

[35S]-sulfate, basolateral medium

Also for the filter-grown cells, there was a significant reduction in the production of sulfated 
macromolecules for the GFP-S2 cell line, when compared to the control cells. The secretion of 
labeled macromolecules from S2-GFP and S2’-GFP cells was comparable to that of 
untransfected cells, and the amount of labeled macromolecules in the cell fractions of these two 
cell lines was significantly increased, most dramatically for the S2-GFP cell line.
The results obtained with filter-grown cells were not directly in agreement with those obtained 
for cells grown in 6-well plates, apart from the evident reduction in the production of sulfated 
macromolecules observed for GFP-S2 cells. A major difference is that the cells on filters were 
allowed to form tight monolayers for 3-4 days before radioactive labeling, while the cells grown 
in wells were labeled the day after plating.

Proteoglycans are frequently observed as a high molecular mass smear in SDS-PAGE gels, while 
glycoproteins appear as more distinct bands. To study whether radioactive sulfate had been 
incorporated into glycoproteins or proteoglycans, the radioactively labeled samples from filter-
grown cells, were loaded onto a SDS-PAGE gel and the radioactivity was quantified with a 
phosphorimager screen and analyzed in a Typhoon 9400 phosphorimager (figure ⒊18). The 
amount of sulfate incorporated into PGs (in the upper region of the gel) was dramatically 
reduced for GFP-S2 cells, while there was no significant reduction for S2-GFP and S2’-GFP. 
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The increased incorporation observed for S2-GFP and S2’-GFP cell fractions directly after G50 
Fine chromatography was not evident for the proteoglycan region of the gel. Such differences 
could be due to some [35S]-sulfate non-covalently bound to proteins which is removed during 
SDS-PAGE sample preparation. The amount of sulfated PGs secreted basolaterally was in 
general substantially higher than apically, while GFP-S2 cells showed a slightly less polarized 
secretion of PGs than the other cell lines
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Figure 3.18 - Sulfation of proteoglycans in MDCK II cells stably expressing GFP-S2, S2-GFP or 
S2’-GFP.
(A) MDCK Ⅱ cells were grown on filters and labeled with radioactive sulfate for 22 hours. The media
and cell lysates were harvested and purified on Sephadex G50 Fine columns before the samples were 
applied onto 4-12 % SDS-PAGE gels. (B) Quantification of incorporated radioactive sulfate into PGs 
in (A) using ImageQuant. For (B) the control in each was set as ⒈ (C) Distribution calculated by 
dividing the amount of radioactive macromolecules in one medium compartment (apical or basolateral) 
with the total amount of radioactive macromolecules for both media. Based on results from one 
experiment
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With a 45 % apical, and 55 % basolateral distribution of sulfated PGs, GFP-S2 cells are slightly 
shifted towards a more apical distribution of sulfated PGs, compared to the control cells, S2-
GFP cells, and S2’-GFP cells, which all have a 35 % apical, 65 % basolateral distribution of 
sulfated PGs. It should be noted that this set of experiments is only performed once.

3.1.8 Glycan studies in MDCK cells expressing GFP-S2, S2-GFP, and S2’-
GFP
While radioactive sulfate is mainly incorporated into sulfated GAG chains on PGs, radioactive 
glucosamine is incorporated into both glycans on glycoproteins and GAG chains. A reduction in 
the synthesis of GAG chains would be reflected in the amount of radioactive glucosamine in 
isolated macromolecules, although the effect would be less prominent for glucosamine compared 
to radioactive sulfate. Cells were grown on filters and labeled with glucosamine for 22 hours, 
before the samples was purified by G50 Fine chromatography and the amount of radioactivity 
was determined in a liquid scintillation counter. The results, shown in figure ⒊19, show a clear 
reduction in the amount of incorporated [3H]-glucosamine for GFP-S2 transfected cells. There 
is also a reduction of incorporated glucosamine in the apical medium of S2’-GFP cells compared 
to S2-GFP cells and control cells. This reduction of incorporated glucosamine is neither seen for 
the basolateral medium nor for the cell lysate.

Figure 3.19 - Glycan studies in MDCK II cells.
MDCK Ⅱ cells stably expressing GFP-S2, S2-
GFP and S2’-GFP were grown on filters and 
incubated with 0.2 mCi/ml [3H]-glucosamine 
for 22 hours. The medium and cell lysate were 
purified on Sephadex G50 Fine columns before 
incorporated [3H]-glucosamine was quantified 
liquid scintillation counting. Error bars indicates 
one standard deviation based on three parallels 
in two independent experiments.
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3.1.9 Identification of GAG chain type
In order to identify which types of GAG chains that are attached to PGs secreted into the media 
and present in the cells, aliquots of media and cell lysates from [3H]-glucosamine labeled 
MDCK Ⅱ cells stably expressing GFP-S2, S2-GFP and S2’-GFP were treated with cABC or 
heparinase (sections ⒉⒎7 and ⒉⒎8) and loaded on SDS-PAGE gels. cABC degrades CS chains, 
while heparinase degrades HS chains. Due to their size, PGs are found in the upper part of the 
gel.
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Figure 3.20 - Detection of CS- and HS-GAG chains in MDCK II cells
(A) 100 µl of medium and cell lysate samples from MDCK Ⅱ cells stably transfected with GFP-
S2, S2-GFP and S2’-GFP labeled with radioactive glucosamine were treated with cABC and 
heparinase before application on 4-12 % SDS-PAGE gels. (B) Quantification of sulfate on PGs 
in (A) using ImageQuant. Distribution of HS/CS calculated by dividing the reduction in 
radioactive sulfate by one treatment on the sum of the reduction by both treatments compared to 
the controls.
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As seen in figure ⒊20, the majority of the GAG chains secreted basolaterally and in the cell 
lysate are HS chains. For the untransfected MDCK cells and S2-GFP transfected cells, there is 
nearly a 50/50 distribution between secreted CS and HS chains in the apical medium. GFP-S2 
transfected cells have more secreted CS than HS chains apically, while for S2’-GFP expressing 
cells have mainly HS chains in the apical medium, since no degradation could be observed with 
cABC. For the basolateral medium and cell lysate of GFP-S2 and the cell lysate of S2-GFP, the 
amount of radioactivity in the proteoglycan area of the gel was too low to be detected.

3.1.10 Sulfation studies of GAG chains 
To investigate potential differences in the sulfation patterns of CS- and HS-GAG chains, the 
media and cell lysates from the [35S]-sulfate labeled cells were treated with cABC or heparinase 
and loaded onto SDS-PAGE gels (figure ⒊21). The upper part of the gel containing the PGs is 
shown.
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Figure 3.21 - Sufation of GAG chains in MDCK II cells
(A) 100 µl of medium and cell lysate samples labeled with radioactive sulfate was concentrated 
and treated with cABC and heparinase before being applied on 4-12 % SDS-PAGE gels. 
(B) Quantification of sulfate on PGs in (A) using ImageQuant. 
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There are only minor differences between the cell lines studied with regard to CS/HS ratio, 
both for the control cells and the STAMP2 expressing cell variants. The majority of the sulfate 
is incorporated on HS GAG chains. GFP-S2 transfected cells have a much lower level of 
radioactive sulfate incorporation into GAG chains than the others cell lines, as observed in 
previous experiments. 

3.1.11 In vitro GAG synthesis
To investigate whether a faulty GAG synthesis apparatus in the GFP-S2 cells could be the cause 
of the difference in GAG synthesis and sulfation, isolated Golgi fractions from the different cell 
lines were incubated with an ATP regenerating system, Mn2+, cytosol, and radioactive sulfate for 
2 hours. The samples were then purified on G50 Fine columns, before the amount of 
incorporated radioactive sulfates into GAG chains was detected by liquid scintillation counting 
(figure ⒊22).

Figure 3.22 - In vitro GAG synthesis
Golgi fractions isolated by subcellular fractionation were 
isolated and incubated for 2 hours with 0.2 mCi/mL 
[35S]-sulfate, an ATP-regenerating system, Mn2+, and 
with cytosol isolated from pig brain. In vitro synthesized 
sulfated GAG chains were purified by Sephadex G50 
Fine chromatography and incorporated [35S]-sulfate was 
quantified in a liquid scintillation counter. Error bars 
represent one standard deviation based on three parallels 
from from two independent experiments.
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None of the Golgi fractions from the different cell lines had a significantly reduced GAG 
synthesis capacity, eliminating the possibility that an inhibited GAG synthesis apparatus caused 
the differences seen in GFP-S2 cells, compared to the other cell lines.

3.2 Work with LNCaP cells
Liver cells do not normally express large amounts of STAMP2, but prostate cancer cells do 
(Korkmaz et al. 2005; Wellen et al. 2007). In preliminary experiments (Pryǳ and Saatcioglu 
groups) addition of STAMP2 siRNA to LNCaP cells resulted in a 25-40% reduction in 
sulfation of macromolecules, while siRNA to STAMP1 did not have a similar effect. To further 
investigate the possible effect of STAMP2 knock-down on glycan synthesis, we obtained an 
LNCaP cell line stably expressing shRNA targeting STAMP1, a STAMP2 homolog, and 
STAMP2 from the Saatcioglu group at IMBV. LNCaP cells stably expressing non-silencing 
shRNA was used as control. Stable knockdown typically give higher and more stable knockdown 
and impose less stress on the cells than transient transfections.
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3.2.1 Sulfation studies of LNCap cells
Radioactive sulfate is incorporated into GAG chains, and to investigate the level of sulfation in 
LNCaP cells and LNCaP cells with STAMP1 and STAMP2 knockdown, the cells were grown 
in microwells and incubated with [35S]-sulfate for 21 hours, before the media and cell lysates 
were purified by G50 Fine chromatography, and the incorporated sulfate was detected by liquid 
scintillation counting. As shown in figure ⒊23 there was no significant difference in the amounts 
of incorporated sulfate in the two knockdown cell lines when compared to the control cells. 
Thus, studies with LNCaP cells with stable knockdown of STAMP2 could not confirm those 
from studies with transient STAMP2 knock-down.

Figure 3.23 - Sulfation studies of LNCaP
LNCaP cells with stable knockdown of endogenous STAMP1 and STAMP2 were grown in 
microwell plates and incubated with [35S]-sulfate for 21 hours. The media and cell lysates were 
purified on Sephadex G50 Fine columns before incorporated [35S]-sulfate was determined by 
liquid scintillation counting. Control set as ⒈ Error bars represent one standard deviation based 
on three parallels in two independent experiment. LNCaP cells with non-silencing shRNA were 
used as control. K.D. = knockdown.
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3.2.2 Glycan studies of LNCaP cells
Glucosamine is incorporated into both GAG chains and glycans on glycoproteins. To investigate 
whether the stable knockdown of STAMP1 or STAMP2 had an effect on synthesis of GAG 
chains and/or glycoproteins, the cells were grown in microwells and incubated with [3H]-
glucosamine for 21 hours, before the media and cell lysates were purified by G50 Fine 
chromatography, and incorporated sulfate was determined by liquid scintillation counting. As 
seen in figure ⒊24, there was no significant difference in the amount of incorporated 
glucosamine among the cell lines. 
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[3H]-GlcN, cell lysate

Figure 3.24 - Glycan studies of LNCaP cells
LNCaP cells with stable knockdown of STAMP1 and STAMP2 were grown in microwell plates 
and incubated with [3H]-glucosamine for 21 hours. The medium and cell lysate were purified on 
Sephadex G50 Fine columns before incorporated [3H]-glucosamine was determined by liquid 
scintillation counting. Error bars represent one standard deviation based on three parallels in two 
experiments. LNCaP cells with non-silencing shRNA were used as control. K.D. = knockdown
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4. DISCUSSION
The correct subcellular localization of proteins is often dependent on sorting signals. 
Signals for proper targeting of transmembrane proteins are often found in their 
cytoplasmic portion or their localization is determined by the length of the 
transmembrane domain (Rayner and Pelham 1997; Bonifacino and Traub 2003). An N-
terminally GFP-tagged STAMP2 variant had previously been observed in the Golgi 
apparatus, at the plasma membrane and in VTS in COS-1 cells. Due to the possible 
blocking of an N-terminal sorting signal by the GFP-tag, two new STAMP2 variants, 
where the GFP-tag was relocated 20 amino acids in from the N-terminus, were made. 
One of the two new variants had a three amino acid deletion in the ferric-reductase 
domain. When these STAMP2 variants were transfected into MDCK Ⅱ cells they 
seemed to localize somewhat differently (figure ⒊13), as observed by confocal 
microscopy. GFP-S2, with GFP at the N-terminus, showed a significant co-localization 
with a lipid-based Golgi marker, but was also detected at the plasma membrane. S2-
GFP, with exposed N-terminus, was primarily observed at the plasma membrane and in 
endosome-like stuctures. S2’-GFP, with exposed N-terminus and a deletion in ORD, 
was to a large extent observed in the perinuclear area, but with limited co-localizing with 
the Golgi marker. These results were in agreement with subcellular fractionation 
experiments with the STAMP2 expressing cells (figure ⒊14), in which the STAMP2 
variants showed a distribution corresponding to what was seen in the confocal 
microscope. For GFP-S2 a significant fraction of the recombinant protein localized to 
the Golgi region, both in the confocal microscope study and in the sucrose gradients. 
For the variants with the GFP portion deeper into the N-terminal region, there was less 
observable activity in the Golgi region by both methods.

It has been demonstrated that some transmembrane proteins expressed in epithelial 
MDCK Ⅱ cells, lacking basolateral sorting information in their cytoplasmic tail through 
mutation, may possess N-linked glycans that can act as recessive apical sorting signals. 
The removal of both apical and basolateral sorting signals can cause an accumulation of 
the protein in the Golgi apparatus of MDCK cells (Gut et al. 1998). STAMP2 has one 
predicted N-glycan site (Chen et al. 2009). Both GFP-S2 and S2-GFP were shown to be 
glycosylated, when expressed in MDCK Ⅱ cells (figure ⒊15). S2’-GFP, however, did not 
show a significant reduction in molecular mass when treated with PNGase F, an enzyme 
that cleaves between the innermost GlcNAc and the asparagine residue of N-glycan 
chains. GFP-S2 localized partly to the Golgi apparatus, despite the presence of an N-
glycosylated form. No predominant apical distribution was seen in the confocal 
microscope (data not shown), indicating that N-glycans did not act as a recessive apical 
sorting signal for STAMP⒉ The difference in glycosylation between S2-GFP and S2’-
GFP is most likely caused by the deletion of amino acid 310 - 312 in one of the 
transmembrane domains in the ORD of S2’-GFP. The proximity of the deletion to the 
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predicted N-glycan site at N323, could suggest a conformational change preventing the 
transfer of an oligosaccharide onto the asparagine residue.

When filter-grown STAMP2-expressing MDCK Ⅱ cells were labeled with radioactive 
sulfate, GFP-S2 had a drastically reduced amount of radioactive sulfate incorporated into 
macromolecules in both the apical and basolateral media compared to the other cell 
lines. The control, S2-GFP and S2’-GFP cells had all similar levels of secreted, sulfated 
macromolecules in the media. In the cell lysates, the amount of radioactive sulfate 
incorporated into the macromolecular fraction was increased for both S2-GFP and S2’-
GFP after Sephadex G50-fine chromatography, but this increase was not observed when 
the incorporation into PGs was addressed by SDS-PAGE. This could be due to removal 
of some radioactive sulfate non-covalently bound to proteins (after Sephadex G50-fine 
chromatography) during sample preparation for SDS-PAGE. For GFP-S2, a further 
decrease in the incorporation of radioactive sulfate into macromolecules in the cell lysate, 
compared to the control cells, was observed, when only measuring the amount of 
radioactivity incorporated in PGs. The distribution of secreted, sulfated PGs was also 
slightly different for GFP-S2, when compared to the untransfected control, S2-GFP, and 
S2’-GFP cells, with a slightly higher relative fraction of secreted PGs in the apical 
medium.

The reduction observed in [35S]-sulfate incorporation into macromolecules for GFP-S2 
expressing cells, when compared to control cells, was matched by a similar reduction 
when the cells were labeled with [3H]-glucosamine. This indicates a reduction in the 
synthesis of GAG chains, when compared to the other cell lines, and not only a 
reduction in sulfation. When treating both media and cell lysate samples from each of 
the cell lines with the CS degrading enzyme cABC, only small reductions in the sulfate 
levels of PGs could be observed, while after heparinase treatment, there was a more 
pronounced reduction. This indicates that most of the GAG chains secreted into the 
media and present in the cell fractions were of HS type. One notable exception was the 
apical medium of GFP-S2 expressing cells, where there was more CS than HS. 
Unfortunately, the amount of radioactive glucosamine in the PG area of the gel was 
below the detection limit for some of the samples. A similar experiment with [3H]-
sulfate labeled cell lines showed that the majority of the sulfate was incorporated into HS 
GAG chains, except for PGs secreted into the apical medium from S2-GFP and S2’-GFP 
expressing cells, where the macromolecular sulfate is distributed 50/50 between CS and 
HS chains.

The reduced GAG synthesis in GFP-S2 expressing MDCK cells cannot be explained 
conclusively. Since STAMP2 is not normally expressed in MDCK cells, a PG recycling 
circuit would operate in the absence of STAMP⒉ It has previously been suggested that 
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the GAG chains of PGs undergo autocleavage followed by resynthesis of the GAG 
chains, first proposed by Mani et al. (2000). The HS chains on glypican-1 were shown 
to be cleaved off after endocytosis of the GPI-anchored protein core, before it was 
recycled to the Golgi apparatus where HS-GAG chains were resynthesized on the 
protein core. The GAG chain cleavage required copper ions in endosomes (Ding et al. 
2002). The reduced GAG synthesis in GFP-S2 expressing MDCK cells could therefore 
either be caused by reduced cleavage of GAG chains in the endocytic pathway, and thus 
also a reduced demand for resynthesis, or the localization of GFP-S2 to the Golgi 
apparatus could have an inhibitory effect on GAG polymerization. In in vitro studies, 
however, the Golgi fractions isolated from all the three novel cell lines and the control 
MDCK cells had similar capacities for GAG polymerization.

The intracellular localization of endogenously expressed STAMP2 has not been firmly 
established. The main localization studies were conducted with the GFP-S2 construct 
expressed with a Golgi localization in this work. Lack of good antibodies has made the 
localization of the endogenously expressed protein with sufficient resolution difficult. 
Thus, it can at present not be concluded whether STAMP2 naturally resides in the 
Golgi apparatus or not, nor which of the expressed constructs that results in the most 
relevant intracellular expression pattern. Still, it would be of interest to compare the 
differences in localization of GFP-S2 and S2-GFP more thoroughly. One aspect that 
also could be interesting to address, is the topology of these two recombinant proteins in 
the intracellular membranes, to investigate whether different topologies could explain the 
differences observed for the two cell lines. 

Radioactive labeling of LNCaP cells stably transfected with shRNA against STAMP1 or 
STAMP2, showed no significant difference in the incorporation of [3H]-glucosamine or 
[35H]-sulfate into macromolecules, compared to control cells stably transfected with 
non-silencing shRNA. The previously observed effects of STAMP2 knockdown on the 
incorporation of radioactive sulfate into macromolecules in LNCaP cells were performed 
with transient knockdown, using siRNA (unpublished results). This could be due to 
that the stable knockdown cell lines have developed mechanisms to compensate for the 
loss of STAMP⒉ The development of compensatory mechanisms in LNCaP cells with 
stable knockdown for STAMP1 and STAMP2 has previously been reported by Jonson 
(2009). Culturing of stable STAMP2 knockdown LNCaP cells over time resulted in a 
selection of cells expressing low levels of shRNA and thus nearly normal levels of 
STAMP2 were expressed.

In summary, three GFP-tagged STAMP2 variants were transfected into MDCK Ⅱ cells. 
The variant with GFP fused to the very N-terminal end localized primarily to the Golgi 
apparatus, and showed a drastically reduced synthesis and sulfation of GAG chains, 
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compared to the variants with exposed STAMP2 N-terminus, which were located to the 
plasma membrane and endosomal compartment. 

GAG chains of recycled PGs have been shown to be cleaved off their protein core in 
endosomes, in a copper-dependent manner, before further transfer of the protein cores 
to the Golgi apparatus, where new GAG chains are synthesized. A possible role of 
STAMP2 could be reduction of copper ions for transport into endosomes by the 
reduction state specific metal transporters DMT1 and CTR1 for cleavage of GAG 
chains on recycled proteoglycans, but this possibility awaits further investigation.
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Further studies
Through the work of this thesis we have obtained indications that STAMP2 can play a 
role in the cleavage of GAG chains of endocytosed PGs. To investigate this claim, it 
would be of interest to further study the reductase activity of the deletion mutant of 
STAMP2, considering the lack of observable difference between the mutant and a non-
mutated variant. If the reductase activity is still present, it would be very interesting to 
repeat the experiments performed in this thesis, using another mutant without reductase 
activity.

Because of the low levels of S2-GFP and S2’-GFP in the transfected MDCK Ⅱ cells, 
repeating the transfection to obtain cell lines with higher expression levels would also be 
of interest in addressing the role of STAMP2 in PG recycling.

Another interesting prospect would be localization studies without GFP, using 
immunofluorescence microscopy to detect the true intracellular localization of STAMP2, 
without concern for  abberant localization induced by GFP. Such studies could 
preferentially be conducted with comparison to endosomal markers, to better study the 
localization of STAMP2 to different classes of endosomes. Such studies could be 
conducted both at the immunofluorescence and the electron microscopy level. Though, 
this would require the development of improved antibodies against STAMP⒉ The  
experiments with LNCaP cells could be repeated using cell lines with an inducible 
knockdown of STAMP1 and STAMP2, within an optimal time frame, to prevent the 
development of compensatory mechanisms.
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APPENDICES

Appendix 1 - Sequences

Primer sequences:

P201	
  -­‐	
  STAMP2-­‐F1
ATTGCTAGCGTAATGGAGAAAACTTGTATAGATGCACTTCCTCTTACTATGAATTCTTCAGAAAAGCAAGAGGTGAGCAAGGGCGAGG

P202	
  -­‐	
  STAMP2-­‐R1
GTTCCAAAAATACATACAGTCTTGTACAGCTCGTCCATGC

P203	
  -­‐	
  STAMP2-­‐R2
AATCTCGAGCTACTAGTGTTTTGAGTTCCTTTCCC

Red = NheI restriction site
Underlined = Start codon, Met for STAMP2 gene
Blue = EcoRI restriction site
Green = eGFP sequence
Purple = XheI restriction site

STAMP1 amino acid sequence from UniProt (Q8NFT2)
	
  	
  	
  	
  	
  	
  	
  	
  10	
  	
  	
  	
  	
  	
  	
  	
  	
  20	
  	
  	
  	
  	
  	
  	
  	
  	
  30	
  	
  	
  	
  	
  	
  	
  	
  	
  40	
  	
  	
  	
  	
  	
  	
  	
  	
  50	
  	
  	
  	
  	
  	
  	
  	
  	
  60	
  
MESISMMGSP	
  KSLSETCLPN	
  GINGIKDARK	
  VTVGVIGSGD	
  FAKSLTIRLI	
  RCGYHVVIGS	
  

	
  	
  	
  	
  	
  	
  	
  	
  70	
  	
  	
  	
  	
  	
  	
  	
  	
  80	
  	
  	
  	
  	
  	
  	
  	
  	
  90	
  	
  	
  	
  	
  	
  	
  	
  100	
  	
  	
  	
  	
  	
  	
  	
  110	
  	
  	
  	
  	
  	
  	
  	
  120	
  
RNPKFASEFF	
  PHVVDVTHHE	
  DALTKTNIIF	
  VAIHREHYTS	
  LWDLRHLLVG	
  KILIDVSNNM	
  

	
  	
  	
  	
  	
  	
  	
  130	
  	
  	
  	
  	
  	
  	
  	
  140	
  	
  	
  	
  	
  	
  	
  	
  150	
  	
  	
  	
  	
  	
  	
  	
  160	
  	
  	
  	
  	
  	
  	
  	
  170	
  	
  	
  	
  	
  	
  	
  	
  180	
  
RINQYPESNA	
  EYLASLFPDS	
  LIVKGFNVVS	
  AWALQLGPKD	
  ASRQVYICSN	
  NIQARQQVIE	
  

	
  	
  	
  	
  	
  	
  	
  190	
  	
  	
  	
  	
  	
  	
  	
  200	
  	
  	
  	
  	
  	
  	
  	
  210	
  	
  	
  	
  	
  	
  	
  	
  220	
  	
  	
  	
  	
  	
  	
  	
  230	
  	
  	
  	
  	
  	
  	
  	
  240	
  
LARQLNFIPI	
  DLGSLSSARE	
  IENLPLRLFT	
  LWRGPVVVAI	
  SLATFFFLYS	
  FVRDVIHPYA	
  

	
  	
  	
  	
  	
  	
  	
  250	
  	
  	
  	
  	
  	
  	
  	
  260	
  	
  	
  	
  	
  	
  	
  	
  270	
  	
  	
  	
  	
  	
  	
  	
  280	
  	
  	
  	
  	
  	
  	
  	
  290	
  	
  	
  	
  	
  	
  	
  	
  300	
  
RNQQSDFYKI	
  PIEIVNKTLP	
  IVAITLLSLV	
  YLAGLLAAAY	
  QLYYGTKYRR	
  FPPWLETWLQ	
  

	
  	
  	
  	
  	
  	
  	
  310	
  	
  	
  	
  	
  	
  	
  	
  320	
  	
  	
  	
  	
  	
  	
  	
  330	
  	
  	
  	
  	
  	
  	
  	
  340	
  	
  	
  	
  	
  	
  	
  	
  350	
  	
  	
  	
  	
  	
  	
  	
  360	
  
CRKQLGLLSF	
  FFAMVHVAYS	
  LCLPMRRSER	
  YLFLNMAYQQ	
  VHANIENSWN	
  EEEVWRIEMY	
  

	
  	
  	
  	
  	
  	
  	
  370	
  	
  	
  	
  	
  	
  	
  	
  380	
  	
  	
  	
  	
  	
  	
  	
  390	
  	
  	
  	
  	
  	
  	
  	
  400	
  	
  	
  	
  	
  	
  	
  	
  410	
  	
  	
  	
  	
  	
  	
  	
  420	
  
ISFGIMSLGL	
  LSLLAVTSIP	
  SVSNALNWRE	
  FSFIQSTLGY	
  VALLISTFHV	
  LIYGWKRAFE	
  

	
  	
  	
  	
  	
  	
  	
  430	
  	
  	
  	
  	
  	
  	
  	
  440	
  	
  	
  	
  	
  	
  	
  	
  450	
  	
  	
  	
  	
  	
  	
  	
  460	
  	
  	
  	
  	
  	
  	
  	
  470	
  	
  	
  	
  	
  	
  	
  	
  480	
  
EEYYRFYTPP	
  NFVLALVLPS	
  IVILGKIILF	
  LPCISRKLKR	
  IKKGWEKSQF	
  LEEGIGGTIP	
  

	
  	
  	
  	
  	
  	
  	
  490	
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STAMP2 amino acid sequence from UniProt (Q687X5)

	
  	
  	
  	
  	
  	
  	
  	
  10	
  	
  	
  	
  	
  	
  	
  	
  	
  20	
  	
  	
  	
  	
  	
  	
  	
  	
  30	
  	
  	
  	
  	
  	
  	
  	
  	
  40	
  	
  	
  	
  	
  	
  	
  	
  	
  50	
  	
  	
  	
  	
  	
  	
  	
  	
  60	
  
MEKTCIDALP	
  LTMNSSEKQE	
  TVCIFGTGDF	
  GRSLGLKMLQ	
  CGYSVVFGSR	
  NPQKTTLLPS	
  

	
  	
  	
  	
  	
  	
  	
  	
  70	
  	
  	
  	
  	
  	
  	
  	
  	
  80	
  	
  	
  	
  	
  	
  	
  	
  	
  90	
  	
  	
  	
  	
  	
  	
  	
  100	
  	
  	
  	
  	
  	
  	
  	
  110	
  	
  	
  	
  	
  	
  	
  	
  120	
  
GAEVLSYSEA	
  AKKSGIIIIA	
  IHREHYDFLT	
  ELTEVLNGKI	
  LVDISNNLKI	
  NQYPESNAEY	
  

	
  	
  	
  	
  	
  	
  	
  130	
  	
  	
  	
  	
  	
  	
  	
  140	
  	
  	
  	
  	
  	
  	
  	
  150	
  	
  	
  	
  	
  	
  	
  	
  160	
  	
  	
  	
  	
  	
  	
  	
  170	
  	
  	
  	
  	
  	
  	
  	
  180	
  
LAHLVPGAHV	
  VKAFNTISAW	
  ALQSGALDAS	
  RQVFVCGNDS	
  KAKQRVMDIV	
  RNLGLTPMDQ	
  

	
  	
  	
  	
  	
  	
  	
  190	
  	
  	
  	
  	
  	
  	
  	
  200	
  	
  	
  	
  	
  	
  	
  	
  210	
  	
  	
  	
  	
  	
  	
  	
  220	
  	
  	
  	
  	
  	
  	
  	
  230	
  	
  	
  	
  	
  	
  	
  	
  240	
  
GSLMAAKEIE	
  KYPLQLFPMW	
  RFPFYLSAVL	
  CVFLFFYCVI	
  RDVIYPYVYE	
  KKDNTFRMAI	
  

	
  	
  	
  	
  	
  	
  	
  250	
  	
  	
  	
  	
  	
  	
  	
  260	
  	
  	
  	
  	
  	
  	
  	
  270	
  	
  	
  	
  	
  	
  	
  	
  280	
  	
  	
  	
  	
  	
  	
  	
  290	
  	
  	
  	
  	
  	
  	
  	
  300	
  
SIPNRIFPIT	
  ALTLLALVYL	
  PGVIAAILQL	
  YRGTKYRRFP	
  DWLDHWMLCR	
  KQLGLVALGF	
  

	
  	
  	
  	
  	
  	
  	
  310	
  	
  	
  	
  	
  	
  	
  	
  320	
  	
  	
  	
  	
  	
  	
  	
  330	
  	
  	
  	
  	
  	
  	
  	
  340	
  	
  	
  	
  	
  	
  	
  	
  350	
  	
  	
  	
  	
  	
  	
  	
  360	
  
AFLHVLYTLV	
  IPIRYYVRWR	
  LGNLTVTQAI	
  LKKENPFSTS	
  SAWLSDSYVA	
  LGILGFFLFV	
  

	
  	
  	
  	
  	
  	
  	
  370	
  	
  	
  	
  	
  	
  	
  	
  380	
  	
  	
  	
  	
  	
  	
  	
  390	
  	
  	
  	
  	
  	
  	
  	
  400	
  	
  	
  	
  	
  	
  	
  	
  410	
  	
  	
  	
  	
  	
  	
  	
  420	
  
LLGITSLPSV	
  SNAVNWREFR	
  FVQSKLGYLT	
  LILCTAHTLV	
  YGGKRFLSPS	
  NLRWYLPAAY	
  

	
  	
  	
  	
  	
  	
  	
  430	
  	
  	
  	
  	
  	
  	
  	
  440	
  	
  	
  	
  	
  	
  	
  	
  450	
  
VLGLIIPCTV	
  LVIKFVLIMP	
  CVDNTLTRIR	
  QGWERNSKH	
  

GFP-S2 sequence
ATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCG
GCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCCACCCTCGTGAC
CACCCTGACCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTC
CAGGAGCGCACCATCTTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGAACCGCATCGAGC
TGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGCTGGAGTACAACTACAACAGCCACAACGTCTATATCATGGCCGACAA
GCAGAAGAACGGCATCAAGGTGAACTTCAAGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCTCGCCGACCACTACCAGCAGAACACCCCC
ATCGGCGACGGCCCCGTGCTGCTGCCCGACAACCACTACCTGAGCACCCAGTCCGCCCTGAGCAAAGACCCCAACGAGAAGCGCGATCACATGG
TCCTGCTGGAGTTCGTGACCGCCGCCGGGATCACTCTCGGCATGGACGAGCTGTACAAGGAGAAAACTTGTATAGATGCACTTCCTCTTACTAT
GAATTCTTCAGAAAAGCAAGAGACTGTATGTATTTTTGGAACTGGTGATTTTGGAAGATCACTGGGATTGAAAATGCTCCAGTGTGGTTATTCT
GTTGTTTTTGGAAGTCGAAACCCCCAGAAGACCACCCTACTGCCCAGTGGTGCAGAAGTCTTGAGCTATTCAGAAGCAGCCAAGAAGTCTGGCA
TCATAATCATAGCAATCCACAGAGAGCATTATGATTTTCTCACAGAATTAACTGAGGTTCTCAATGGAAAAATATTGGTAGACATCAGCAACAA
CCTCAAAATCAATCAATATCCAGAATCTAATGCAGAGTACCTTGCTCATTTGGTGCCAGGAGCCCACGTGGTAAAAGCATTTAACACCATCTCA
GCCTGGGCTCTCCAGTCAGGAGCACTGGATGCAAGTCGGCAGGTGTTTGTGTGTGGAAATGACAGCAAAGCCAAGCAAAGAGTGATGGATATTG
TTCGTAATCTTGGACTTACTCCAATGGATCAAGGATCACTCATGGCAGCCAAAGAAATTGAAAAGTACCCCCTGCAGCTATTTCCAATGTGGAG
GTTCCCCTTCTATTTGTCTGCTGTGCTGTGTGTCTTCTTGTTTTTCTATTGTGTTATAAGAGACGTAATCTACCCTTATGTTTATGAAAAGAAA
GATAATACATTTCGTATGGCTATTTCCATTCCAAATCGTATCTTTCCAATAACAGCACTTACACTGCTTGCTTTGGTTTACCTCCCTGGTGTTA
TTGCTGCCATTCTACAACTGTACCGAGGCACAAAATACCGTCGATTCCCAGACTGGCTTGACCACTGGATGCTTTGCCGAAAGCAGCTTGGCTT
GGTAGCTCTGGGATTTGCCTTCCTTCATGTCCTCTACACACTTGTGATTCCTATTCGATATTATGTACGATGGAGATTGGGAAACTTAACCGTT
ACCCAGGCAATACTCAAGAAGGAGAATCCATTTAGCACCTCCTCAGCCTGGCTCAGTGATTCATATGTGGCTTTGGGAATACTTGGGTTTTTTC
TGTTTGTACTCTTGGGAATCACTTCTTTGCCATCTGTTAGCAATGCAGTCAACTGGAGAGAGTTCCGATTTGTCCAGTCCAAACTGGGTTATTT
GACCCTGATCTTGTGTACAGCCCACACCCTGGTGTACGGTGGGAAGAGATTCCTCAGCCCTTCAAATCTCAGATGGTATCTTCCTGCAGCCTAC
GTGTTAGGGCTTATCATTCCTTGCACTGTGCTGGTGATCAAGTTTGTCCTAATCATGCCATGTGTAGACAACACCCTTACAAGGATCCGCCAGG
GCTGGGAAAGGAACTCAAAACACTAGTAGCTCGAG

Green = eGFP
Blue = EcoRI restriction site
Orange = nucleotides deleted in S2’-GFP
Purple = XheI restriction site

S2-GFP sequence
ATTGCTAGCGTAATGGAGAAAACTTGTATAGATGCACTTCCTCTTACTATGAATTCTTCAGAAAAGCAAGAGGTGAGCAAGGGCGAGGAGCTGT
TCACCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCTA
CGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCCACCCTCGTGACCACCCTGACCTACGGCGTGCAGTGC
TTCAGCCGCTACCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCAAGG
ACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGA
CGGCAACATCCTGGGGCACAAGCTGGAGTACAACTACAACAGCCACAACGTCTATATCATGGCCGACAAGCAGAAGAACGGCATCAAGGTGAAC
TTCAAGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCTCGCCGACCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGCTGC
CCGACAACCACTACCTGAGCACCCAGTCCGCCCTGAGCAAAGACCCCAACGAGAAGCGCGATCACATGGTCCTGCTGGAGTTCGTGACCGCCGC
CGGGATCACTCTCGGCATGGACGAGCTGTACAAGACTGTATGTATTTTTGGAACTGGTGATTTTGGAAGATCACTGGGATTGAAAATGCTCCAG
TGTGGTTATTCTGTTGTTTTTGGAAGTCGAAACCCCCAGAAGACCACCCTACTGCCCAGTGGTGCAGAAGTCTTGAGCTATTCAGAAGCAGCCA
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AGAAGTCTGGCATCATAATCATAGCAATCCACAGAGAGCATTATGATTTTCTCACAGAATTAACTGAGGTTCTCAATGGAAAAATATTGGTAGA
CATCAGCAACAACCTCAAAATCAATCAATATCCAGAATCTAATGCAGAGTACCTTGCTCATTTGGTGCCAGGAGCCCACGTGGTAAAAGCATTT
AACACCATCTCAGCCTGGGCTCTCCAGTCAGGAGCACTGGATGCAAGTCGGCAGGTGTTTGTGTGTGGAAATGACAGCAAAGCCAAGCAAAGAG
TGATGGATATTGTTCGTAATCTTGGACTTACTCCAATGGATCAAGGATCACTCATGGCAGCCAAAGAAATTGAAAAGTACCCCCTGCAGCTATT
TCCAATGTGGAGGTTCCCCTTCTATTTGTCTGCTGTGCTGTGTGTCTTCTTGTTTTTCTATTGTGTTATAAGAGACGTAATCTACCCTTATGTT
TATGAAAAGAAAGATAATACATTTCGTATGGCTATTTCCATTCCAAATCGTATCTTTCCAATAACAGCACTTACACTGCTTGCTTTGGTTTACC
TCCCTGGTGTTATTGCTGCCATTCTACAACTGTACCGAGGCACAAAATACCGTCGATTCCCAGACTGGCTTGACCACTGGATGCTTTGCCGAAA
GCAGCTTGGCTTGGTAGCTCTGGGATTTGCCTTCCTTCATGTCCTCTACACACTTGTGATTCCTATTCGATATTATGTACGATGGAGATTGGGA
AACTTAACCGTTACCCAGGCAATACTCAAGAAGGAGAATCCATTTAGCACCTCCTCAGCCTGGCTCAGTGATTCATATGTGGCTTTGGGAATAC
TTGGGTTTTTTCTGTTTGTACTCTTGGGAATCACTTCTTTGCCATCTGTTAGCAATGCAGTCAACTGGAGAGAGTTCCGATTTGTCCAGTCCAA
ACTGGGTTATTTGACCCTGATCTTGTGTACAGCCCACACCCTGGTGTACGGTGGGAAGAGATTCCTCAGCCCTTCAAATCTCAGATGGTATCTT
CCTGCAGCCTACGTGTTAGGGCTTATCATTCCTTGCACTGTGCTGGTGATCAAGTTTGTCCTAATCATGCCATGTGTAGACAACACCCTTACAA
GGATCCGCCAGGGCTGGGAAAGGAACTCAAAACACTAGTAGCTCGAG

Red = NheI restriction site
Green = eGFP
Blue = EcoRI restriction site
Orange = nucleotides deleted in S2’-GFP
Purple = XheI restriction site

S2’-GFP sequence
ATTGCTAGCGTAATGGAGAAAACTTGTATAGATGCACTTCCTCTTACTATGAATTCTTCAGAAAAGCAAGAGGTGAGCAAGGGCGAGGAGCTGT
TCACCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCTA
CGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCCACCCTCGTGACCACCCTGACCTACGGCGTGCAGTGC
TTCAGCCGCTACCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCAAGG
ACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGA
CGGCAACATCCTGGGGCACAAGCTGGAGTACAACTACAACAGCCACAACGTCTATATCATGGCCGACAAGCAGAAGAACGGCATCAAGGTGAAC
TTCAAGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCTCGCCGACCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGCTGC
CCGACAACCACTACCTGAGCACCCAGTCCGCCCTGAGCAAAGACCCCAACGAGAAGCGCGATCACATGGTCCTGCTGGAGTTCGTGACCGCCGC
CGGGATCACTCTCGGCATGGACGAGCTGTACAAGACTGTATGTATTTTTGGAACTGGTGATTTTGGAAGATCACTGGGATTGAAAATGCTCCAG
TGTGGTTATTCTGTTGTTTTTGGAAGTCGAAACCCCCAGAAGACCACCCTACTGCCCAGTGGTGCAGAAGTCTTGAGCTATTCAGAAGCAGCCA
AGAAGTCTGGCATCATAATCATAGCAATCCACAGAGAGCATTATGATTTTCTCACAGAATTAACTGAGGTTCTCAATGGAAAAATATTGGTAGA
CATCAGCAACAACCTCAAAATCAATCAATATCCAGAATCTAATGCAGAGTACCTTGCTCATTTGGTGCCAGGAGCCCACGTGGTAAAAGCATTT
AACACCATCTCAGCCTGGGCTCTCCAGTCAGGAGCACTGGATGCAAGTCGGCAGGTGTTTGTGTGTGGAAATGACAGCAAAGCCAAGCAAAGAG
TGATGGATATTGTTCGTAATCTTGGACTTACTCCAATGGATCAAGGATCACTCATGGCAGCCAAAGAAATTGAAAAGTACCCCCTGCAGCTATT
TCCAATGTGGAGGTTCCCCTTCTATTTGTCTGCTGTGCTGTGTGTCTTCTTGTTTTTCTATTGTGTTATAAGAGACGTAATCTACCCTTATGTT
TATGAAAAGAAAGATAATACATTTCGTATGGCTATTTCCATTCCAAATCGTATCTTTCCAATAACAGCACTTACACTGCTTGCTTTGGTTTACC
TCCCTGGTGTTATTGCTGCCATTCTACAACTGTACCGAGGCACAAAATACCGTCGATTCCCAGACTGGCTTGACCACTGGATGCTTTGCCGAAA
GCAGCTTGGCTTGGTAGCTCTGGGATTTGCCTTCCTTCATGTCCTCTACACACTTATTCGATATTATGTACGATGGAGATTGGGAAACTTAACC
GTTACCCAGGCAATACTCAAGAAGGAGAATCCATTTAGCACCTCCTCAGCCTGGCTCAGTGATTCATATGTGGCTTTGGGAATACTTGGGTTTT
TTCTGTTTGTACTCTTGGGAATCACTTCTTTGCCATCTGTTAGCAATGCAGTCAACTGGAGAGAGTTCCGATTTGTCCAGTCCAAACTGGGTTA
TTTGACCCTGATCTTGTGTACAGCCCACACCCTGGTGTACGGTGGGAAGAGATTCCTCAGCCCTTCAAATCTCAGATGGTATCTTCCTGCAGCC
TACGTGTTAGGGCTTATCATTCCTTGCACTGTGCTGGTGATCAAGTTTGTCCTAATCATGCCATGTGTAGACAACACCCTTACAAGGATCCGCC
AGGGCTGGGAAAGGAACTCAAAACACTAGTAGCTCGAG

Red = NheI restriction site
Green = eGFP
Blue = EcoRI restriction site
Purple = XheI restriction site

APPENDICES

85



pGEM-T Easy plasmid map

pGEM-T Easy vector (Promega) contains a gene for ampicillin resistance for selection in 
E. coli.

pEGFP-C1 plasmid map

pEGFP-C1 expression vector (Clontech) is a eukaryotic expression vector with a CMS 
promotor. The vector contains a gene for kanamycin resistance for selection in E. coli 
and G418 selection in stably transfected eukaryotic cells.
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Amino acid abbreviations

Amino Acid   3-Letter   1 Letter
Alanine Ala A
Arginine Arg R

Asparagine Asn N
Aspartic acid Asp D

Cysteine Cys C
Glutamic acid Glu E

Glutamine Gln Q
Glycine Gly G

Histidine His H
Isoleucine Ile I
Leucine Leu L
Lysine Lys K

Methionine Met M
Phenylalanine Phe F

Proline Pro P
Serine Ser S

Threonine Thr T
Tryptophan Trp W

Tyrosine Tyr Y
Valine Val V
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Appendix 2 - Materials

Table 1 - Reagents

Reagent Manufacturer Cat. No. Used for

DMEM (Dulbecco's Modified 
Eagle's Medium)

Lonza BE12-614F Cell culture

DMSO (Dimethyl sulfoxide) Duchefa Biochemie D1370.0250 Cell culture
FuGene 6 Transfection Reagent Roche 11 815 091 001 Cell culture
G418 Sigma A1720 Cell culture
G418 Duchefa Biochemie G017⒌0005 Cell culture
L-Glutamin Lonza 17-605E Cell culture
Pen-Strep Lonza 17-602E Cell culture
RPMI-1640 medium Invitrogen 041-90985M Cell culture
Sephadex G50 Fine GE Healthcare 17-0042-02 Cell culture
Trypsin-EDTA Gibco 25300-104 Cell culture
Ultima Gold XR Perkin Elmer 6013119 Cell culture
1 kb DNA Ladder, GeneRuler Fermentas SM0311 Cloning
6X Loading Dye Solution Fermentas R0611 Cloning
Acetic Acid Merck K38877863 825 Cloning
Ampicillin sodium salt Sigma A0166-25G Cloning
Bacto-Agar DB 214010 Cloning
Chloroform Prolabo 22 7⒒290 Cloning
Difco LB Broth BD 244620 Cloning
dNTP Fermentas R0149, R0159, 

R0169, R0179
Cloning

EDTA Sigma E5134-500G Cloning
Ethidium bromide Sigma E1510 Cloning
Glycerol VWR 2438⒏295 Cloning
Kanamycin sulfate Sigma K1377-5G Cloning
pGEM T-Easy Vector System Promega A1360 Cloning
Tris VWR 3362⒈26 Cloning
UltraPure Agarose Invitrogen 15510-027 Cloning
BODIPY TR ceramide Invitrogen D-7540 Confocal microscopy
Hoechst 33258, pentahydrate Invitrogen H3569 Confocal microscopy
ATP Sigma A2383 In vitro GAG synthesis
Creatine phosphokinase Sigma C6638 In vitro GAG synthesis
Phosphocreatine Sigma P7936 In vitro GAG synthesis
Amplify GE Healthcare NAMP100V SDS-PAGE
Benchmark Fluorescent Protein 
Standard

Invitrogen LC5928 SDS-PAGE

XT MOPS Running Buffer BioRad 161-0788 SDS-PAGE
XT Reducing Agent BioRad 161-0792 SDS-PAGE
XT Sample Buffer (4X) BioRad 161-0791 SDS-PAGE
Sucrose Merck K33729587 505 Subcellular 

fractionation
10X Tris/CAPS buffer BioRad 161-0778 WB
Blotting Grade Blocker Non-
Fat Dry Milk

BioRad 170-6404 WB

ECF Substrate for Western Blot GE Healthcare RPN5785 WB
Polyoxyethylene-sorbitan 
monolaureate (Tween 20)

Sigma P-7949 WB
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Table 2 - Restriction enzymes

Restriction enzymes and buffers Manufacturer Cat. No.

BSA (100X) NEB B9001S

Buffer 2 (10X) NEB B7002S

EcoRI NEB R0101S

EcoRI Buffer NEB B0101S

NheI NEB R0131S

XhoI NEB R0146S

Table 3 - Other enzymes

Other Enzymes Manufacturer Cat. No.

10X T4 DNA Ligase Buffer Fermentas B69
Advantage® 2 Polymerase Mix (Enzyme + Buffer) Clontech 639201
cABC Seikagaku Corp. 100332
PNGase F NEB P0705S
T4 DNA Ligase Fermentas EL0014

Table 4 - Kits

Kits Manufacturer Cat. No.

QIAquick Gel Extraction Kit QIAGEN 28704
QIAquick Spin Miniprep Kit QIAGEN 27104
HiSpeed Plasmid Midi Kit QIAGEN 12643
NucleoSpin Plasmid Machery Nagel 740 58⒏250
NucleoSpin Extract Ⅱ Machery Nagel 740 60⒐50

Table 5 - Antibodies

Antibodies Manufacturer Cat. No.

Rb pAb to GFP Abcam ab6556-25
Anti-rabbit IgG alikaline phosphatase linked 
whole antibody (from goat) GE Healthcare NIF1317

Table 6 - Radioactive isotopes

Radioactive isotopes Manufacturer Cat. No.

[35S]Sulphuric acid Hartmann Analytic 126979
[3H]Glucosamine HCl American Radiolabeled Chemicals Inc. 0110A

Table 7 - Disposable equipment

Disposable equipment Manufacturer Cat. No.

10 cm2 petri dish Sarstedt

10 ml syringe BD 302188
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Disposable equipment Manufacturer Cat. No.

15 ml tubes Sarstedt
50 ml tubes Sarstedt

6 well culture cluster Costar 3516
Amersham Hyperfilm MP GE Healthcare 28906843

BD Microlance 3 22 ½ G needle BD 301000
Cell flasks
Criterion XT Precast Gel 10 % Bis-Tris BioRad 345-0111
Criterion XT Precast Gel 4-12 % Bis-Tris BioRad 345-0123

Cryogenic vial Corning 430488
Extra thick Blotting paper BioRad 1703967

Glass bottom microwell dish MatTek Corp. P35G-⒈5-14-C
Hybond™-P PVDF membrane GE Healthcare RPN303F

Microfuge tube Sarstedt
Sterile 5, 10 and 25 ml pipettes Sarstedt
Transwell Permeable Support 0.4 µl polycarbonate 
membrane

Costar 3412

Ultra-Clear Centrifuge Tubes Beckman 344085

Table 8 - Equipment

Equipment Manufacturer
Agarose gel electrophoresis chamber VWR
Autoclave SS-325 TOMY
Cell incubator
Centrifuge 5415R Eppendorf
Confocal microscope Ⅸ81 Olympus
Dri-Block DB-2D Techne
Gel electrophoresis power supply Pharmacia
GS-15R Centrifuge Beckman
Liquid scintillation analyzer 1900 TR Packard
miniSpin Eppendorf
NanoDrop-1000 Thermo Scientific
Optima LE-80K Ultracentrifuge Beckman Coulter
Peltier Thermal Cycler-200 BioRad
pH meter 420 Thermo
Trans-Blot Semi-Dry Electrophoretic Transfer Cell BioRad
Typhoon 9400 Variable Mode Imager GE Healthcare
UV transilluminator UⅥ Tec
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Appendix 3 - Solutions

MilliQ (MQ) water
Ultra-pure distilled water purified by the Millipore MQ system and autoclaved before 
use.

LB medium 
Add 20 g LB broth to 1000 ml MQ water. Autoclave solution and let it cool down to  
50 °C before adding 500 µl of ampicillin (50 µg/ml) or kanamycin (50 µg/ml)

LB plates 
Make LB medium and add ⒈5 % bactoagar before autoclaving. Let the solution cool 
down to 50 °C before adding antibiotics. Transfer solution to petri dishes and stack the 
dishes upside down to prevent condensation. Store in sealed plastic bags at 4 °C.

SOB medium 
Mix 10 g Trypton, ⒉5 g yeast extract, 0.25 g NaCl and 415 µl KCl (3 M) in 500 ml MQ 
water and adjust pH to ⒎0. Autoclave solution. Add ⒉5 ml sterile MgCl2 (2 M) before 
use.

EDTA (0.5 M) 
Add 9⒊05 g EDTA disodium salt to 400 ml MQ water. Adjust pH to ⒏0 using NaOH. 
Add MQ water to a final volume of 500 ml.

50X TAE 
Mix 242 g Tris base, 5⒎1 ml acetic acid and 100 ml EDTA (0.5 M) in 750 ml distilled 
water and adjust pH to ⒏0. Adjust volume to 1 l using distilled water.

1 M PIPES 
Dissolve 34⒉4 g PIPES in 1 l MQ water and autoclave before use.

Transformation buffer (TB) 
Mix 10 mM PIPES, 15 mM CaCl2, 250 mM KCl, 55 mM MnCl2. Adjust pH to ⒍7 
using 5 M KOH.

Lysis buffer 
Mix 1 % (5 g) Nonidet P-40, 50 mM (25 ml of 1M) Tris (pH ⒎5), 2 mM (0.3722 g) 
EDTA, 150 mM (⒙75 ml of 4M) NaCl and 35 µg/ml (⒘5 mg) PMFS. Adjust 
volume to 500 ml using MQ water.
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SDS-PAGE

XT-MOPS Running buffer 
Add 50 ml XT-MOPS (20X) to 950 ml dH2O.

Western blotting

Cathode buffer 
Mix 100 ml Tris/CAPS buffer (10X), 10 ml 10% SDS, and 890 ml dH2O. 

Anode buffer 
Mix 100 ml Tris/CAPS buffer (10X), 150 ml methanol, and 750 ml dH2O.

10X TBS 
Mix 80 g NaCl, 200 ml 1 M Tris-HCl  (pH ⒎4) and 1M000 ml dH2O.

1X TTBS 
Mix 100 ml 10X TBS, 1 ml Tween-20 and 900 ml dH2O.

Subcellular fractionation

Homogenization buffer 
Add 25 mM (4⒉78 g) sucrose and 3 mM (0.102 g) imidazole to 500 ml dH2O and 
adjust pH to ⒎⒋

1.3 M Sucrose solution 
Add ⒈3 M (4⒋5 g) sucrose, 15 mM (0.25 g) CsCl, and 1 mM (0.024 g) HEPES to 100 
ml dH2O.

1.15 M Sucrose solution 
Add ⒈15 M (3⒐36 g) sucrose, 15 mM (0.25 g) CsCl, and 1 mM (0.024 g) HEPES to 
100 ml dH2O.

2 M Sucrose solution 
Add 2 M (6⒏46 g) sucrose, 10 mM (0.168 g) CsCl, and 1 mM (0.024 g) HEPES to 100 
ml dH2O.

0.9 M Sucrose solution 
Add 0.9 M (30.81 g) sucrose and 1 mM (0.024 g) HEPES to 100 ml dH2O.
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