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1.  General Introduction 

 

1.1 Immunoglobulin 

 

     The adaptive immune response consists of a variety of cells and molecules, among which 

lymphocytes and immunoglobulins (Igs) are the key elements in antigen recognition and 

responses. There are two types of lymphocytes, T cells and B cells. T cells play a pivotal role 

in regulating the immune response and are also responsible for cellular immunity, while B 

cells are essential in the effector phase of humoral immunity. After exposure to antigen and 

mostly with the help of T cells, B cells can differentiate into plasma cells which synthesize 

antibodies or immunoglobulins that can react with antigen. 

     Immunoglobulins are a group of closely related glycoproteins composed of 82-96% 

protein and 4-18% carbohydrate. The basic Ig molecule has a four-chain structure, comprising 

two identical heavy (H) chains and two identical light (L) chains, linked together by inter-

chain disulfide bonds (Fig.1). Intra-chain disulfide bonds are responsible for the formation of 

loops, leading to the compact, domain-like structure of the molecule. The amino terminal 

portions of the H and L chains, characterized by a highly variable amino acid composition, are 

referred to a VH and VL, respectively. The constant part of the L chain is designated as CL, 

while that the H chain are further divided into three distinct subunits: CH1, CH2 and CH3 

(Fig.1). Functionally, the V-regions are involved in antigen binding. The C regions interact to 

hold the molecule together and are involved in several biological activities. 
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Figure 1. Schematic drawing of the basic structure of the human immunoglobulin 
molecule. The amino terminal end is characterized by sequence variability (V) in both H and 
L chains, referred to as the VH and VL regions respectively. The rest of the molecule has a 
relatively constant structure. The C portion of the L chain is termed the CL region or domain. 
The constant portion of the H chain is further divided into three structurally discrete regions: 
CH1, CH2 and CH3. The hinge region is a segment of the H chain, located between the CH1 
and CH2 domains. Fab: Fragment antigen binding; Fc: Fragment crystallisable. The antibody 
illustration is taken from Meulenbroek and Zeijlemaker (1996). 
 
 
 
         The immunoglobulin G (IgG), a major effector molecule of the humoral immune 

response in man accounts for about 75% of the total Igs in the plasma of healthy individuals. 

The Igs of the other classes (IgM, IgA, IgD and IgE) each of which has characteristic 
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properties and functions, constitute the other 25% of the Igs.  

        Antibodies of the IgG class express their predominant activity during a secondary 

antibody response. Thus, the appearance of the specific IgG antibodies generally corresponds 

with the maturation of the antibody response, which is switched on upon repeated contact 

with antigen. In comparison to antibodies of the IgM class, IgG antibodies have a relatively 

high affinity and persist in the circulation for a longe time. The five classes of human Igs can 

be distinguished on the basis of amino acid composition. This is also the basis for antigenic 

differenes between these molecules and for immunological recognition by specific antibodies. 

       The polypeptide chains of Igs are encoded by three non-linked cluster of autosomal 

genes, one cluster coding for H chains of all classes and subclasses, a second one for kappa 

(k) light chains and a third one for lamda (λ) light chains. These three genes clusters are called 

the H-, k-and λ gene families respectively. In humans the H gene family is on chromosome 

14, the k gene family is on chromosome 2 and the λ gene family is on chromosome 22. 

Molecular genetic studies have revealed the arrangement of gene segments within the H chain 

and L chain families. Each H chain is encoded by 4 distinct types of gene segments, 

designated VH (variable), D (diversity), JH (joining) and CH. The V region of the H chain is 

encoded by the VH, D and JH segments. The L chains are encoded by the 3 gene segments, VL, 

JL and CL segments. 

         The C gene segments of the H and L chains encode for the constant regons. Nine 

immunoglobulin H chain isotypes are found in humans: IgM, IgE, IgG (with subclasses IgG1, 

IgG2, IgG3 and IgG4) and IgA (with subclasses IgA1 and IgA2). 

        The CH gene segments determine the class and/or subclass of the H chain, whereas VH, D 

and JH regions determine the antigen-recognizing part of the Ig molecule. The H and L chains 

constant genes lie 3’ to the VH, D, JH, and VL, JL genes, respectively. During maturation of 

progenitor B cells to mature B cells an active H chain exon is formed by VH, D and JH, and 

that of L chain formed by VL and JL somatic gene rearrangements (recombined VHDJH and 

VLJL) which codes for antigen binding variable region of IgG, followed by linkage to a certain 

CH gene locus. This is transcribed to mRNA and subsequently translated to an 

immunoglobulin H chain molecule. The CH gene closest to the JH locus, the Cµ gene (IgM), 

the first isotype gene to be expressed. The other CH genes can subsequently be expressed by 

downstream switching mechanisms with simultaneous deletion of the original isotypic CH 

genes. The DNA rearrangements that underlie isotype switching and confer their functional 

diversity on the humoral immune response are directed by cytokines, especially those released 

 

 
 
                                                                    12 
  

 



by armed effector CD4 T cells (1). 

      Comparisons of the amino acid sequences of the V regions of Igs show that most of the 

variability resides in three regions called the hypervariable regions or the complementarity 

determining regions (CDR1, CDR2 and CDR3; Fig.2). Antibodies with different specificities 

(i.e. different combining sites) have different complementarity determining regions while 

antibodies of the exact same specificity have identical complementarity determining regions 

(i.e. CDR is the antibody combining site). Complementarity determining regions are found in 

both the H and the L chains. The regions between the complementarity determining regions in 

the V region are called the framework regions. Based on similarities and differences in the 

framework regions the immunoglobulin H and L chain variable regions can be divided into 

groups and subgroups. These represent the products of different variable region genes. 
 

 

Figure 2. The antibody structure. The variable domains of both H and L chains of the Fabs 
compose the antigen- binding part of the molecule, termed Fv. Within V domains there are 
three loops designated CDRs 1, 2 and 3, which confer the highest diversity and define the 
specificity of antibody binding. The Ig illustration is taken from Brekke and Sandlie (2003). 
 
 
 
     The most important biological activities of antibodies are related to their effector 

functions, aimed at inactivation or removal of infectious agents and their products (e.g. 
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bacteria, viruses, toxins). Antibodies of the IgG class exert two major effector functions: 



activation of complement and opsonisation. These effector functions, mediated via the 

fragment crystallible (Fc) region, are induced as a result of interaction of the antibody with its 

antigen via the variable Fab moiety. As consequence of antigen exposure, IgG is produced for 

long-term protective immunity. Similar to most other serum proteins, Igs of non-IgG 

subclasses have a relatively short serum half-lives (1-2 days). In contrast, the half-lives of 

most IgG antibodies are considerably longer, 6-8 days in mice (2) and 22-23 days in humans 

(3). This increases the availability of sufficient specific IgG to fight infection.  

      

 

 

  1.1.1 Immunoglobulin G Fc region 

       The Fc region is separated from the antigen binding parts of the IgG molecule by 

inding sites 

f IgG is composed of two H chains that each contributes two C domains. The Fc 

  

 

  

flexible hing region and forms two structural domains, the CH2 and CH3 (Fig.3). 

         Immunoglobulins are remarkable not only for the diversity of their antigen b

but also for their versatility as effector molecules. As the B cell response to an infection gets 

underway, isotype switching diversifies the functional properties of the antibody Fc region, 

which contains binding sites for other proteins and cells of the immune system (Fig.3). Fc 

regions serve two distinct functions: they deliver antibody to anatomical sites that would 

otherwise be inaccessible and they link bound antigen to molecules or cells that will affect its 

destruction. 

        The Fc o

CH2-CH interphase is the binding site for a number of proteins that bind to IgG (Fig.3), 

including protein A from Staphylococcus aureus (SpA) (4) and protein G from Streptococcus 

species (SpG) (5) the rheumatoid factor (6), the herpes simplex virus IgG binding protein gE-

gI (7), the mannose binding lectin (MBL; 8), the mannose receptor (9), the major 

histocompatibility complex (MHC) class I related neonatal Fc receptor (FcRn) (10). The 

complement protein C1q also binds the Fc portion of IgG which play a key role in the 

recognition of immune complexes (11). The binding of C1q to non-aggregated IgG is weak; 

whereas a thousand fold increased upon the formation of immune complexes is observed (11). 
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1.1.2 Fc receptors 

FcγRI, FcγRII, FcγRIII, C1q  

FcRn, MBL, MR, SpA, SpG

CH2  

CH3  
IgG-Fc 

Fab VL 

CL 

VH 

CH1 

Hinge 

Antigen binding site 

Figure.3. A schematic representation of a human IgG isotype with its interaction 
sites. The two antigen binding sites are at the aminoterminal end of each Fab. 
Interaction site for FcγRI, FcγRII, FcγRIII and C1q are at the hinge proximal region of 
IgG-Fc, while the interaction site for FcRn, MBL, MR, SpA and SpG is at the CH2-

 

      Fc receptors are a family of cell surface molecules that bind the Fc region of the Ig-

molecule. Each members of the family recognizes Ig of one isotype or a closely related 

isotypes through a recognition domain on the heavy chain of the Fc receptor. Different cell 

types bear Fc receptors for antibodies of different isotypes. The isotype of antibody thus 

determines which types of cell will be engaged in a given responseIfunction. In humans we 

have Fc receptors for IgG, IgA, IgE and IgM.   

      The Fc receptors which include FcγRI, FcγRIIa, FcγRIIb, FcγRIII and FcRn bind to IgG, 

Fcα/µR to IgA and IgM (pIgR binds dimeric IgA and polymeric IgM), and FcεR to IgE. 

These Fc receptors play a pivotal role in linking the cellular and humoral immune responses 

by facilitating the internalization of immune complexes, antigen presentation, antibody 

dependent cellular cytotoxicity (ADCC), negative regulation of effector functions of Fc 

receptor bearing cells, regulation of the inflammatory cascade, and autoimmunity (12, 13, 14, 15) 

and Ig transport and homeostasis (discussed below). 

      The Fc receptors, except FcRn and pIgR, are composed of one or more Ig-like domains, a 

transmembrane part and a cytosolic tail. Most of the Fc receptors are tightly associated with a 
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Fc receptor γ-chain dimer. The signalling motif is called either ITAM (activating) or ITIM 

(inhibitory). FcγRI, FcγRIII, FcεRI and FcαRI are closely associated with a γ-chain dimer.  

                                                  

1.2 Human serum albumin  

 

     Human serum albumin (HSA) is 66.5 KDa globular protein, which lacks covalently 

bonded carbohydrates and lipids and is synthesized in and secreted from liver cells. The 

primary sequence of HSA shows that the protein is a single polypeptide with 585 residues 

containing 17 pairs of disulfide bridges and one free cysteine. HSA, as well as serum albumin 

from other species, has been found to consist of three homologous domains (I-III; Fig.4), 

probably derived through gene multiplication (16) each comprised of two subdomains (A and 

B) and stabilized by 17 pairs of disulfide bridges.      

     HSA is the most abundant protein in the blood plasma. Its physiological and 

pharmacological properties have been extensively studied over several decades. Such studies 

have revealed that HSA has a high affinity to a very wide range of materials. The important 

physiological role of the HSA is thought to be in the transport, distribution and metabolism of 

many endogenous and exogenous ligands (e.g. fatty acids, amino acids, steroids, metals and 

numerous pharmaceuticals), as well as to maintain the pH and osmotic balance of plasma, 

needed for proper distribution of body fluids between intravascular compartments and  

tissues.  

     It has been known for a long time that the catabolic rate of albumin is directly related to its 

serum concentration (17), but the mechanism has been unknown until recently, when it was 

shown that FcRn binds HSA and prolongs its lifespan (18). 
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D-III 

D-II

D-I

C 

N

 

Figure 4. The ribbon structure HSA molecule. HSA consists of three domains, each 
domain is marked with a different color (blue for domain D-I; yellow D-II; red, D-III). N- and 
C-termini are marked as N and C, respectively. The figure is made by pymol based on crystal 
structure. The crystal structure is from Sugio et al., Crystal structure of HSA at 2.5 A 
resolution protein Eng. v12, p.439-446, 1999  
 
 
 
 
1.3 Major Histocompatibility Complex molecules  

        

      MHC is a set of molecules displayed on cell surfaces that are responsible for lymphocyte 

recognition and antigen presentation. The Class I and Class II MHC molecules belong to a 

group of molecules known as the Ig Supergene Family, which includes Igs, T cell receptors, 

CD4, CD8, and others. The MHC is encoded by several genes located on short arm of human 

chromosome 6.  

       The peptide antigen-presenting MHC molecules are known as classical MHC molecules. 
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There are also structurally related molecules of both classes that do not function in the 

presentation of peptide antigens to T cells: these are known as non-classical MHC molecules. 

The non-classical MHC class II molecules (DM and DO in human) regulate peptide loading 

onto classical MHC class II molecules. The non-classical MHC class I molecules are more 

numerous and diverse, and some are important in activating specialized classes of T cells. A 

notable distinction between classical and non-classical MHC molecules that bears on their 

different functions is the polymorphism of the classical MHC molecules.    

        The classical MHC class I molecules are known as human leukocyte antigens A (HLA-

A), HLA-B and HLA-C in humans and are characterized by a high level of cell surface 

expression and a very high degree of polymorphism (19). In contrast, the nonclassical class Ib 

molecules, HLA-E, HLA-F, HLA-G and other MHC class I related molecules in humans, are 

not significantly polymorphic (20). These exert their function at most levels of the immune 

response, being part of both innate and adaptive immune systems (21).                                                 
 

  

1.4. The MHC class I-related neonatal Fc receptor 

      

1.4.1 Brief overview 

 

         Reflecting the central role of IgG in the immune system, mammals have evolved 

complex mechanisms to transmit immunity from mother to young and to protect IgG from 

catabolism. Knowledge as to how serum IgG levels are maintained at constant levels in the 

circulation is of central importance in understanding the regulation of humoral immunity.        

         Brambell et al. (87), about 40 years ago, put forward a hypothesis to explain serum IgG 

homeostasis. This hypothesis proposed that salvage receptors in cells of unknown type acted 

to bind and recycle pinocytosed IgG molecules back into the serum. He also suggested that 

these receptors were involved in the transmission of maternal IgG from mother to young. The 

putative receptors were believed to be saturable, so that any IgG molecules not receptor bound 

following pinocytosis would suffer degradation. This hypothesis was put forward in the 

absence of any knowledge of the receptor or cell types involved, but at the conceptual level, 

provided a satisfactory model by which IgG homeostasis could be maintained.        

         FcRn was originally identified as the receptor responsible for IgG binding to the 

intestinal epithelium of neonatal rats (22). The gene encoding rat FcRn was first isolated by 
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Simister and Mostov in 1989 (23). Cloning and sequencing of this gene showed that FcRn is a 

MHC class I homolog and expanded the function of these class molecules beyond their 

known role in antigen presentation (23).  

         Further, the genes encoding both mouse and human FcRn (hFcRn) alpha chains have 

been isolated (24, 25). The rodent and human genes share homology, with mouse and rat FcRn 

being highly related and the human form more divergent. The identification of hFcRn in 

human syncytiotrophoblast (25, 26, 27) led to the suggestion that it plays a role in the 

maternofetal transfer of IgGs. The isolation and characterization of hFcRn provided an 

important link between studies of FcRn in rodents and humans. 

 

1.4.2 The structure of neonatal Fc receptor 

 

        The neonatal Fc receptor (FcRn) is a type I glycoprotein heterodimer that comprises a 

glycosylated heavy chain (45 kDa for humans and 51 kDa for rodents) in non-covalent 

association with a soluble light chain consisting of 12 kDa β2 microglobulin (β2m) (Fig.5).  

         Crystallographic structure of rat FcRn shows that like the heavy chain of class I 

molecules, the heavy chain of FcRn consists of three domains, α1, α2 and α3, followed by a 

transmembrane region and small cytoplasmic domain (28). However, FcRn can not bind 

peptides owing to rearrangements of its α-helices, and the counterpart of the MHC peptide 

binding groove in FcRn is filled with side chains. The rearrangement of the FcRn α2 helix 

compared to class I molecules is due to a break in the helix introduced by the presence of 

proline at position 162 resulting in closing of the groove. In class I molecules, the two 

spanning α-helices are separated by a groove (29). In all crystal structures of class I molecules 

solved sofar; the peptide-binding groove is occupied by either a mixture of endogenous 

peptides or by a single defined peptide. Owing to an overall repositioning of the α1 helix and 

bending of the C-terminal portion of the α2 helix, the FcRn helices are considerably closer 

together. Near the middle of the FcRn platform, the α2 helix moves over to fill up the space 

between the helices. Surface representations of the tops of the FcRn and the class I α1 and α2 

domains show that there is no continuous groove in FcRn. This correlates with biochemical 

results showing that soluble FcRn does not contain endogenous peptides (30). The two FcRn 

immunoglobulin-like domains α3 and β2m, superimpose closely upon the corresponding 

domains of class I molecules. Many of the heavy chain/ β2m contacts are conserved between 

FcRn and class I molecules. Compared to class I structures, the FcRn heavy chain makes 
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additional contacts to β2m, in that the loop between β-strands 1 and 2 of α1 domain dips 

downwards to contact β2m. 

         In contrast to extracellular domains, the transmembrane region and cytoplasmic tails of 

FcRn and MHC class I are not closely related (23). There is divergence in the cytoplasmic 

regions consistent with the different functional activities of the two types of proteins. Studies 

of rat FcRn cytoplasmic domain show presence of endocytosis signals (31). Tryptophan at 

position 311 and dileucine motif are necessary components of endocytosis signals. Leucine at 

position 322 and 323, together with aspartic acid at position 317 and/or 318 are parts of a 

typical dileucine-based endocytosis signal (31). In polarized cell models, FcRn in the plasma 

membrane is predominantly at basolateral surface. This distribution depends on signals that 

overlap endocytosis signal. The tryptophan-based basolateral targeting, which requires the 

aspartate pair of the dileucine based-signal, and endocytosis signals are distinct but 

overlapping (32).  

        The amino acids sequence analysis of mouse and rat heavy chains share 91% identity (24) 

while the hFcRn heavy chain shares 65% amino acids identity with its rat homologue (25). In 

spite of its similarity to MHC class I, the FcRn heavy chain is encoded outside the MHC, on 

chromosome 7 in mice and chromosome 19 in humans. FcRn heavy chains are non.covalently 

associated with β2m, the class I light chain.  

        The β2m which is required for both surface expression and function of FcRn (33) is 

encoded on chromosome 15 in humans. Indications that an association of the FcRn heavy 

chain with β2m is important for the assembly of a functional receptor come from β2m-

knockout mice (34), which showed defects in several functions associated with FcRn. 

Newborn β2m-deficient pups show lower IgG serum level at birth and accumulate less IgG 

before weaning than normal littermates (34). Further, adult mice lacking β2m have a higher 

IgG turnover, resulting in lower serum IgG levels (35, 36, 37). Expression of the hFcRn α-chain 

alone or in combination with β2m in human melanoma FO-1 cells (FO-1) showed that β2m is 

important for cell surface expression of FcRn and that, in the absence of β2m, the receptor is 

retained in the endoplasmic reticulum (38). In the absence of β2m, IgG binding is decreased 

compared with that of native FcRn. Thus, assembly of the FcRn heavy chain with β2m is 

important for both transport of FcRn from the endoplasmic reticulum to the cell surface and 

efficient pH-dependent IgG binding (38). 
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Figure 5. Ribbon structural diagrams of hFcRn, rFcRn, and the class I MHC molecule (HLA-
A2). The illustration is taken from West and Bjorkman (2000). 
  
 
 
1.4.3 FcRn interacts with its ligands in a pH-dependent manner 

 

         Studies have indicated that the distinguishing feature of FcRn interaction with its ligands 

is its strict pH dependence, with binding at acidic pH (6-6.5), and undetectable interaction at 

slightly basic pH (7.4) (39). No conformational change is observed between the structures of 

FcRn at pH 6.5 and pH 8 that could account for the differences in affinity for IgG (40). Rather, 

the pH-dependent FcRn-ligand binding are mediated by electrostatic interactions attributed to 

conserved amino acid residues located at the CH2-CH3 domain of IgG-Fc (Table 1). This 

involves mainly the imidazole groups on H310 and H435 (Fig. 6A) of IgG which are 

positively charged and facilitate interaction with negatively charged residues in the FcRn α2-

domain, whereas at physiological pH 7.4, the side chains are neutral. The main FcRn α2-

domain residues involved are E117, E118, D137 and E135 (Fig. 6B).   
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Table 1.  Variations of IgG sequences in the region involved in the binding of FcRn 
 

 

   The table is taken from Gethie and Ward (2000) 

    

        Reports show that FcRn also binds HSA in a pH dependent manner (18). Studies in FcRn-

deficient mice have shown that the half-life and the steady-state concentration of albumin 

were decreased relative to wild-type mice. The hypothesis that FcRn binds both IgG and HSA 

is also evidenced by a β2m gene mutation that underlies the hypercatabolism and reduced 

serum levels of HSA and IgG in the two siblings with familial hypercatabolic 

hypoproteinemia (41). This experiment of nature confirms that FcRn binds both HSA and IgG. 

        FcRn binds both HSA and IgG simultaneously in a pH dependent manner (42). The pH 

dependence of the FcRn-albumin interaction suggests that, like IgG, albumin binding to the 

receptor might also be mediated through titratable histidine residues. Andersen et al. (43) 

compared the sequence of the FcRn α2-domain from eleven different species, and identified 

histidine residues that were conserved in all (H166) or seven (H161) of these species (Fig.7), 

and showed that the conserved H166 (Fig. 8) is a key player in the FcRn-albumin interaction. 

The corresponding interacting residue on HSA is probably negatively charged and surface 

exposed on domain III. The experiments measuring binding of FcRn to the three recombinant 

albumin domains establish that albumin D-III alone is both necessary and sufficient for 

binding to FcRn (42). Not only is D-III the only domain of the three to bind immobilized 
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shFcRn, but D-III binding is equimolar to HSA binding.  

  

 

 

 

 

 

 

 

 

 

 

Figure 6. (A) pH sensitive histidine residues in the Fc CH2-CH3 interphase of IgG important 
in the FcRn interaction. (B) Shows FcRn α2-domain involved in binding to IgG. Figure is 
taken from Annu.Rev.Immunol.2000.18.739-766. 
 

 

Figure 7. Alignment of predicted α2-domain amino acid sequences from eleven FcRn 
heavy chain. Sequences (rat, mouse, human, macaque, orang-utan, pig, camel, sheep, cattle, 
dog and possum). Amino acid residues that are identical in all sequences are indicated by (*), 
conserved substitutions are indicated by (:), semi-conservative substitutions are indicated by 
(.). The potential N-linked glycosylation site is highlightened by filled circle (●). Amino acid 
residues involved in IgG binding are indicated by downward arrow and partially or fully 
conserved histidine residues (hFcRn heavy chain; H161 and H166A) are indicated by open 
triangle (Δ). The alignment is taken from Andersen et al., (2006). 
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Figure 8. Localization of relevant hFcRn α2-domain residues. A ribbon diagram of the 
crystal structure of shFcRn, the heavy chain is displayed in blue, β2m in green. The IgG 
interacting residues (E115, E116, D130, W131 and L135) are marked as yellow balls and the 
two α2-domain located histidine residues, H161 and H166, are marked in purple. The figure 
are taken from Andersen et al., (2006). 
 
 

1.4.4 The stoichiometry of the FcRn-ligand interaction 

 

        To understand FcRn functions, it is important to explore the structural bases of pH-

dependent IgG-FcRn interaction. In this context, studies have been carried out and different 

models forwarded to show the stoichiometry of the interaction between IgG and FcRn.  

        The stoichiometry of the interaction between soluble FcRn and Fc has been reported as 

either 2:1 for rat FcRn (44) or 1:1 for mouse FcRn. The 1:1 interaction indicate that binding of 
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FcRn to one CH2-CH3 domain interface site precludes an FcRn:Fc interaction at the second 

site (45). Further crystallographic studies show that rat FcRn can interact with the Fc portion 

of IgG in a repeating array in which FcRn dimers are bridged by Fc fragme nts to create an 

"oligomeric ribbon" with a 2n:n stoichiometry. Analysis of complexes formed in solution 

between soluble rat or mouse FcRn and Fc showed that both forms of FcRn produce 2:1 

receptor-ligand complexes, but that alterations of the carbohydrate moieties on mouse FcRn 

can result in an apparent stoichiometry of 1:1 (46).  

         The crystal structure of hFcRn has been determined and compared to the previously 

described structure of rat FcRn and to the structures of MHC and MHC-related proteins. 

Human FcRn is structurally similar to the rat receptor but does not form receptor dimers in the 

crystals as observed in crystals of rat FcRn (47). The interaction between hFcRn and IgG was 

characterized by determining the binding stoichiometry using equilibrium gel filtration and by 

deriving binding affinities for the different human IgG subclasses using a surface plasmon 

resonance assay (47). Like rat and mouse FcRn, hFcRn interacts with IgG with a 2:1 

receptor:ligand stoichiometry. The binding of hFcRn to the four human IgG subclasses shows 

subclass and allotype variations but no clear subclass affinity differences that correlate with 

serum half-lives (47). Further evidences are required for elucidation of the disparities among 

these different models explaining the stoichiometry of interaction between FcRn and IgG.  
 

 

1.4.5 Preferential binding of hFcRn with IgG    

 

         Although mice are widely used in the pre-clinical testing of antibodies, human and 

mouse FcRn have significant differences in binding specificity. It is established that FcRn is 

the receptor that salvages from degradation and regulates the serum half-life of IgG in mice. 

Reports indicate that the human homologue of mouse FcRn serves similar functions in 

humans. Mouse IgG is promiscuous in binding specificity and binds to all IgG of species 

analysed, including human, mouse, rat, guinea pig, bovine, sheep, and rat IgG. In contrast, 

hFcRn is surprisingly stringent, and only interact well with human, rabbit and guinea pig IgGs 

(48).  

         Human FcRn does not bind detectably to mouse IgG1, IgG2a, and shows a very weak 

interaction with mouse IgG2b. The high selectivity of the hFcRn-IgG interaction therefore 

gives a molecular explanation for the observation that mouse IgG is cleared rapidly from the 
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human circulation (49, 50). 

     

1.4.6 Multiple functions of FcRn 

 

1.4.6.1 Transfer of immunity (passive immunization) 

 

         Passive acquisition of antibody is important to the newborn prior to the development of 

a fully functional immune system. Transfer of maternal IgG to the fetus or infant humoral 

immunity to antigens encountered by the mother. Transmission of IgG is mediated by the 

neonatal Fc receptor.  

         In newborn rodents, FcRn on the apical side of intestinal enterocytes bind to maternal 

IgG in ingested milk, escort the IgG across the gut epithelium, then release it into the blood 

stream from the basolateral surface in the process of transcytosis (51, Fig.9a). The pH 

difference between the apical (pH 6.0-6.5) and basolateral (pH 7.0-7.5) sides of intestinal 

epithelial cells ensures efficient unidirectional transport of IgG. 

         Although the acidic pH at the apical surface of intestinal epithelial cells permits cell 

surface FcRn to bind IgG, FcRn can also function in IgG transport when there is no net pH 

gradient. FcRn transports IgG across the syncytiotrophoblastic cells of the human placenta 

(reviwed in 51) in this way. For this function, it is believed that IgG in the blood (pH 7.4) 

enters cells in a receptor-independent manner via fluid phase endocytosis, after which it is 

delivered to acidic endosomes where it binds to FcRn (Fig.9a). Upon delivery of FcRn-IgG 

complexes to the cell surface, the slightly basic pH of the blood causes IgG release into the 

circulation.  

        An ex vivo placental model has been used to analyze the maternofetal transfer of a 

recombinant, humanized (IgG1) antibody in which His435 has been mutated to alanine 

(H435A). In vitro binding studies using surface plasmon resonance indicate that the mutation 

ablates binding of the antibody to recombinant mouse and human FcRn (52). Relative to the 

wild-type antibody, the H435A mutant is deficient in transfer across the placenta. 

Significantly, the mutation does not affect binding to Fc gamma RIII, an FcR that has been 

suggested in earlier studies to mediate the transfer of maternal IgG (53). The analyses 

demonstrate that binding of an IgG to FcRn is a prerequisite for transport across the perfused 

placenta (52). FcRn therefore plays a central role in the maternofetal delivery of IgG and this 

has implications for the use of protein engineering to improve the properties of therapeutic 
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antibodies (52). 

        The placental barrier between maternal and fetal circulatory systems, across which IgG 

must pass, consists of two cell layers and an intervening stroma (54). The first of these cell 

layers is the epithelial syncytiotrophoblast, which completely covers chorionic villi and 

constitutes the point of direct fetal contact with circulating maternal blood. Once across the 

syncytiotrophoblast, IgG appears to transit the villus interstitium via bulk fluid flow (55, 56). 

How IgG crosses the fetal villus capillary endothelial cell layer is not known. 

 

1.4.6.2 Maintenance of IgG and HSA homeostasis 

 

         In addition to mediating the transfer of maternal IgG, FcRn is also important in 

regulating the amount of IgG in serum. Because a high concentration of IgG bathes most 

cells, it is readily internalized by non-specific mechanisms of fluid-phase endocytosis. Unlike 

most other protein solutes internalized by fluid phase endocytosis, however, IgG is rescued 

from degradation in the lysosome by FcRn (57). FcRn binds to IgG and recycles it back to the 

plasma membrane and into circulation. Once FcRn binding is saturated, the non-receptor 

bound IgG is delivered along with other fluid phase cargo to the lysosomes, where it is then 

degraded (Fig.9b). Therefore, IgG level in serum are governed by the saturable nature of the 

intracellular FcRn-IgG interaction (51). As early as in 1966, a mechanism identical to that 

proposed by Brambell for protecting IgG from degradation was applied to albumin as well. 

The inverse relationship between serum albumin concentration and its half life suggested that 

albumin would be protected from a catabolic fate by a receptor-mediated mechanism much 

like that proposed for IgG. Recently, this was confirmed when it was shown that hFcRn binds 

not only hIgG but HSA as well (18). The FcRn-mediated recycling has been shown to save as 

much albumin from degradation as the liver produces (58). It follows that FcRn diverts not 

only IgG but albumin as well from a degradative fate by similar pH-dependent mechanisms, 

prolonging the lifespan of both molecules. It has been suggested that endothelial cells of small 

arterioles and capillaries involve in these functions (59).  It is possible that the organ separated 

from blood by fenestrated or discontinuous endothelium may participate in similar function 

but requires investigation.  
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1.4.6.3 Bidirectional transmission of IgG across mucosal barriers 

 

        Humoral immunity as mediated by IgG plays an important role in mucosal tissues as a 

defense against pathogens. Within the gastrointestinal, respiratory and genitourinary tracts 

immunoglobulins access to mucosal secretions must occur in the context of a barrier imposed 

by epithelial cells that separates the host from the external environment.  

        The FcRn is involved in the bidirectional transmission of IgG/immune complex across 

mucosal barriers (60, 61) (Fig.9C). The FcRn can then transport the IgG/antigen complex back 

across the intestinal barrier into the lamina propria for processing by dendritic cells and 

presentation to CD4(+) T cells for subsequent immune activation (62). This mechanism has 

been associated with defense against an epithelium-associated pathogen Citrobacter 

rodentium (62). In addition, neonatal mice have been shown to be protected against the 

luminal parasite Heligmosomoides polygyrus by IgG delivered directly in milk or via FcRn 

from the neonatal serum into the intestinal lumen to exert its protective effect (63). Thus, FcRn 

through its ability to bind and release IgG, integrates luminal antigen encounters with 

systemic immune compartments and, as such, provides essential host defense at the mucosal 

surfaces.  
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 Figure 9. Mechanisms of FcRn functions: (a) IgG transport. At acidic pH (6.0-6.5) IgG 
will bind to FcRn on the surface of the cell (step 1). Where the pH outside the cell is neutral, 
IgG is internalised by fluid face endocytosis (step 2) and then FcRn binding occurs in the acid 
intracellular compartment. FcRn-IgG complex are transported to basolateral surface (step 3), 
where the pH is basic. (b) Regulation of IgG homeostasis. In endothelial cells IgG is taken 
up by fluid phase endocytosis and delivered to endosome (step 1), where it interacts with 
FcRn. Ligand bound to receptor is either recycled to apical plasma membrane where it 
returned to blood (step 2) or transported to and released at basolateral pole  of the cell (step 3). 
When IgG concentration is high, unbound IgG is delivered to lysosomal degradative 
pathwayalong (step 4). (c) FcRn-IgG in immune activation and tolerance. IgG is taken in at 
basolateral phase of the cell (step 1) and transported by FcRn to the apical pole of the cell, 
where it is released at the surfaceto the (step 2). FcRn-IgG-antigen complexes internalized by 
fluid phase endocytosis or through their interaction with FcRn (step 3) transported to 
basolateral pole of the cell (step 4), delivering immune complexes to the lamina propria for 
subsequent induction of immune activation or tolerance (step 5). The illustration is taken from 
Rojas and Apodaca (2002 ) 
 
 
                          
1.4.6.4 Roles of FcRn in immune cells. 

 

         Studies have shown that FcRn is functionally expressed by monocytes, macrophages, 

dendritic cells and monocytic cell lines such as THP-1 cells (64) but  established cell lines 

derived from B-lymphocyte, T-lymphocyte, and NK cell lineages failed to express FcRn 

heavy chain (64). FcRn is also expressed in polymorphonuclear neutrophils (65). 

          Recent study shows that FcRn is highly expressed in freshly isolated human and mouse 

neutrophils (PMNs) and IgG-mediated phagocytosis by these cells was facilitated by FcRn 

(65). It was found that FcRn enhances phagocytosis in a pH-dependent manner. IgG-opsonized 

bacteria were inefficiently phagocytosed by neutrophils from β2m knock-out or FcRn α-chain 

knock-out mice, which both lack expression of FcRn. Similarly, low phagocytic activity was 

also observed with mutated IgG (H435A), which is incapable of binding to FcRn, while 

retaining normal binding to classical leukocyte Fcγ receptor. They observed FcRn 

translocation to nascent phagosomes, where FcRn facilitates IgG-mediated bacterial 

phagocytosis through signalling motifs found within the cytoplasmic tail. These results point 

to a novel role for FcRn in phagocyte biology (65).   
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1.5 Relevance of FcRn in therapeutics 

 

        The FcRn plays an essential role in extending the half-life (t(1/2)) of IgG antibodies and 

IgG-Fc-based therapeutics in the circulation. The role of FcRn in the regulation IgG 

homeostasis suggests that the modulation of IgG binding affinities for FcRn might be an 

effective approach for the treatment of IgG-mediated disease.   

         Several studies have demonstrated a correlation between the binding affinity of IgGs to 

FcRn and their serum half-lives in mice, including engineered antibody fragments with longer 

serum half-lives (66). Studies also extended this correlation to human IgG2 antibody variants 

in primates (67). Further, several human IgG1 mutants with increased binding affinity to 

hFcRn at pH 6.0 were generated that retained pH-dependent release. A pharmacokinetics 

study in rhesus monkeys of the IgG1 variants indicated that its serum half-life was 

approximately 2.5-fold longer than the wild-type antibody (68). Antigen binding was 

unaffected by the Fc mutations, while several effector functions appeared to be minimally 

altered. These properties suggest that engineered antibodies with longer serum half-lives may 

prove to be effective therapeutics in humans (68) 

        Engineering the Fc region of a hIgG to generate a mutated antibody that modulates the 

concentrations of endogenous IgGs in vivo has been shown. An IgG whose Fc region was 

engineered to bind with higher affinity and reduced pH dependence to FcRn potently inhibits 

FcRn-IgG interactions and induces a rapid decrease of IgG levels in mice (69). Such FcRn 

blockers (or 'Abdegs,' for antibodies that enhance IgG degradation) may have uses in reducing 

IgG levels in antibody-mediated diseases and in inducing the rapid clearance of IgG-toxin or 

IgG-drug complexes. The Abdeg design is to alter the level of endogenous, unmanipulated 

IgGs by enhancing their clearance rates.  

         FcRn blockade by intravenous Ig (IVIG) significantly increases the catabolism of serum 

IgG in mice (70). Studies on the therapeutic effects of an anti-rat FcRn mAb, 1G3, in two rat 

models of myasthenia gravis resulted in dose-dependent amelioration of the disease symptoms 

after passive experimental autoimmune myasthenia gravis was induced by administration of 

an anti-acetylcholine receptor (AChR) mAb (71). The effect of 1G3 was also studied in an 

active model of experimental autoimmune myasthenia gravis in which rats were immunized 

with AChR. Treatment with 1G3 significantly reduced the severity of the disease symptoms 

as well as the levels of total IgG and anti-AChR IgG relative to untreated animals. These 

shows that FcRn blockade may be an effective way to treat antibody mediated autoimmune 
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diseases (71) 

         In imaging, it is desirable to have a short half-life and, although this can be achieved by 

using Fab fragments, it is now also possible to engineer complete antibodies with single 

amino acid substitution (e.g. Ile253 to Ala) (72, 73), which have reduced serum persistence.  

          Since it was recently discovered that HSA binds to FcRn and extends its lifespan, there 

may be focus on the possibility of constructing albumin coupled drugs, as these will have 

FcRn binding properties and a prolonged in vivo half-life. 

          Retargeting T lymphocytes to tumor cells for destruction by recombinant bispecific 

antibodies (e.g. single chain dibody) have been reported. However, therapeutic efficacy is 

hampered by a short serum half-life of these small molecules having molecule masses of 50-

60 kDa. Thus, improvement of the pharmacokinetic properties of small bispecific antibody 

formats is required to enhance efficacy in vivo. Taking advantage of long half-life conferred 

by FcRn, recombinant bispecific antibody-albumin fusion proteins were generated and fusion 

to HSA strongly increases circulation time for biological activity and pharmacokinetic 

properties (74). Rapid targeting, excellent tumor deposition and retention, coupled with high 

tumor to blood ratios may make albumin.Fab fusion an exceptional molecule for imaging and 

cancer therapy (75).  

          As FcRn targeting drug, delivery of erythropoietin (Epo) conjugated to the Fc domain 

of IgG1 in mouse and non-human primates has been reported (76, 77). FcRn-dependent 

absorption was most efficient when the Epo-Fc fusion protein was deposited predominantly in 

the upper and central airways of the lung, where epithelial expression of FcRn was most 

prominently detected. The bioavailability of the EpoFc monomer when delivered through the 

lung was approximately equal to that reported for unconjugated Epo delivered s.c. in humans 

(Bitonti et al., 2004). This points to a functional FcRn-dependent transport pathway in the 

lung that can be used for the delivery of therapeutic proteins. 
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PROJECT DESCRIPTION 

 

1. Background 
 

The MHC class I related neonatal Fc receptor, FcRn was first described functionally in 

rodents as the receptor that transfers IgG in the maternal milk from the intestine of neonate 

rodents to the blood stream (39, 78). The human form of FcRn was identified in the placental 

syncytiotrophoblast, showing that this receptor plays a role in passive immunization of the 

fetus by maternofetal transport of IgG (27, 81, 82, 25).  

     Subsequent studies have shown FcRn mRNA in many tissues of adult rats, mice and 

humans, and FcRn is present in several adult tissues and in cell lines. In addition to mediating 

the transfer of maternal IgG, FcRn is also important in regulating the amount of hIgG in 

serum by prolonging its half-life. Reports show that FcRn also binds HSA in a pH dependent 

manner (18).  

   A hallmark of FcRn interaction with its ligands is its strict pH dependence. The binding 

occurs at the cell surface or in the intracellular vesicles where the pH is 6.0-6.5, while IgG is 

released at pH 7.0-7.5 (39, 88).  

 

2. Methods: Cell culture, RT-PCR, ELISA, Western immunoblotting and flow cytometry 

 

3. The aims of the study are to investigate: 

 

  1. Expression of FcRn in human immune cells and hepatocytes. 

  2. Ligand binding properties of soluble and membrane-bound FcRn. 

  3. Effects of anti-inflammatory substances on FcRn expression. 
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ABSTRACT 

 

         Expression and diverse functions of MHC class I related neonatal Fc receptor in 

different tissues is continually reported. To contribute to the understanding of how the 

receptor functions according to cell type, we investigated the expression and ligands binding 

properties of FcRn in human immune cells and hepatocytes. Here, we report that 

heterodimeric FcRn is expressed in these cells as evidenced by RT-PCR, Western 

immunoblottting and flow cytometry. The receptor expression is shown to be predominantly 

intracellular as compared to that on the surface. Our report on human hepatocytes and 

monocytic K-562 cells is for the first time. In addition, the human hepatic cell lines were 

shown to express FcγRII but no evidence of FcγRI and FcγRIII. Our pH dependent cell 

binding assays have demonstrated increased binding of hIgG and HSA to membrane-bound 

hFcRn at acidic pH in these cells and the pH dependent binding of IgG is Fc mediated. The 

increased binding of IgG and HSA at acidic pH is completely mediated by FcRn as shown by 

anti-FcRn inhibition and not affected by isotype goat IgG. It was found that IgG and HSA 

bind to the membrane-FcRn independently of each other and this is the first report of pH 

dependent HSA binding to a membrane-bound hFcRn. Moreover, we have shown that anti-

inflammatory substances such as both naturally occurring and synthetic glucocorticoids, and 

L-thyroxine clearly downregulate the FcRn expression in human monocytic U-937 and 

hepatic cell lines. 
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2. INTRODUCTION 

     

     IgG and HSA are the most abundant of the serum proteins and their long half-life is due to 

FcRn binding properties.       

     The FcRn was first described functionally in rodents as the receptor that transfers IgG in 

the maternal milk from the intestine of neonate rodents to the blood stream (1, 2). 

Subsequently, the isolation and characterization of rat FcRn from the yolk sac endoderm led 

to the proposal by Roberts et al (3) that this Fc receptor was involved in the maternofetal 

transfer of IgGs. The human form of FcRn was identified in the placental syncytiotrophoblast, 

suggesting that this receptor plays a role in passive immunization of the fetus by maternofetal 

transport of IgG (4, 5, 6, 7). Subsequent studies have shown FcRn mRNA in many tissues of 

adult rats, mice and humans, and FcRn is present in several adult tissues and in cell lines. 

      FcRn is a MHC class I related molecule that comprises a glycosylated heavy chain (45 

kDa for humans and 51 kDa for rodents) in non-covalent association with β2m (12 kDa). 

Assembly of the FcRn heavy chain with β2m is important for both transport of FcRn from the 

endoplasmic reticulum to the cell surface and functions (8, 9). 

     In addition to mediating the transfer of maternal IgG, FcRn is also important in regulating 

the amount of hIgG in serum by prolonging its half-life. The rate of IgG turnover increases as 

the amount of IgG in the serum rises (10). Turnover occurs in endothelial cells and involves a 

saturable process that is FcRn mediated (11).  This has been demonstrated in β2m deficient 

mice that have abnormally low IgG half life in comparison to control animals (12).  

The FcRn is also involved in the bidirectional transmission of IgG/immune complex across 

mucosal barriers (13, 14). The FcRn can then transport the IgG/antigen complex back across the 

intestinal barrier into the lamina propria for processing by dendritic cells and presentation to 

CD4(+) T cells for subsequent immune activation (15). This mechanism has been associated 

with defense against an epithelium-associated pathogen Citrobacter rodentium (15). In 

addition, neonatal mice have been shown to be protected against the luminal parasite 

Heligmosomoides polygyrus by IgG delivered directly in milk or via FcRn from the neonatal 

serum into the intestinal lumen to exert its protective effect (16). Thus, FcRn integrates 

luminal antigen encounters with systemic immune compartments and, as such, provides 

essential host defense at the mucosal surfaces.   

     A distinguishing feature of FcRn interaction with IgG is its pH dependence. The binding 

occurs at the cell surface or in the intracellular vesicles where the pH is 6.0-6.5, while IgG is 
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released at pH 7.0-7.5 (1, 17). IgG molecules that do not bind to FcRn are delivered to the 

default lysosomal pathway and degraded (18). The interaction site for hFcRn on IgG has been 

mapped and shown to encompass conserved residues at the CH2-CH3 domain interphase, and 

these residues include Ile253, His310 and His435 (19, 20, 21, 22, 23). The IgG histidine residues 

regulate the pH dependent interaction, resulting in stronger binding at acidic pH relative to 

neutral pH. In addition, it has been shown that the interaction between hFcRn and IgG is 

highly stringent as hFcRn only shows binding to a limited number of species. In contrast, 

rodent FcRn does not show this stringency (24). It has been shown that residue Leu137 of 

hFcRn is responsible for this specificity (25). 

      Reports show that FcRn also binds HSA in a pH dependent manner (26). Studies in FcRn-

deficient mice have shown that the half-life and the steady-state concentration of albumin 

were decreased relative to wild-type mice. The FcRn-mediated recycling has been shown to 

save as much albumin from degradation as the liver produces (27). It follows that FcRn diverts 

not only IgG, but albumin as well from a degradative fate by similar pH-dependent 

mechanisms, prolonging the lifespan of both molecules. 

    FcRn binds both HSA and IgG simultaneously (28). A recent report has shown that the 

conserved H166 residue in the α2-domain of hFcRn heavy chain has a central role in 

facilitating the pH-dependent binding to HSA (29). The corresponding interacting residue on 

HSA is probably negatively charged and surface exposed on domain III (28). Significantly, 

H166 is conserved in eleven species investigated, and this strongly suggests that FcRn utilizes 

a common mechanism for maintaining albumin concentration at high levels in all these 

species (29). The IgG interacting residues on FcRn α2-domain are E115, E116, D130, W131 

and L135.   

       Recently, studies have shown that FcRn is also functionally expressed by monocytes, 

macrophages, DCs, PMNs and monocytic cell lines such as THP-1 cells (30) but not in B-

lymphocyte, T-lymphocyte, and NK cell lineages (30, 31). The functional role in immune cells 

is far from fully understood, but recent data show that FcRn enhances phagocytosis in a pH-

dependent manner. IgG-opsonized bacteria were inefficiently phagocytosed by neutrophils 

from β2m and or FcRn heavy chain deficient mice, similarly, low phagocytic activity was 

observed with mutated IgG (H435A), which is incapable of binding to FcRn, while retaining 

normal binding to the classical leukocyte Fcγ receptor. In addition, FcRn translocation to 

phagosomes was shown to be facilitated through signalling motifs found within the FcRn 

cytoplasmic tail. These results point to a novel role for FcRn in phagocyte biology (31). 
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    Even though the binding of IgG to FcRn in immune cells has been described, there is no 

report on HSA binding and its functional consequences. 

        The presence of polymerized albumin receptor on Hep-G2 cell has been reported, and 

purified hepatitis B virus attach to the cells via this receptor. Synthetic peptides analogous to 

part of its surface protein were used to study polymerized albumin-dependent attachment of 

the virus to Hep-G2 cells. Antibodies raised against the peptide were used to inhibit the 

hepatitis B virus attachment to HepG2 cells. Polymerized albumin has specific saturable 

receptor on HepG2 cells with two classes of binding sites (40). 

         Further studies suggest that polymeric human serum albumin may facilitate the 

attachment of the virus during the infectious process. Hepatocytes showed binding activity for 

both polymeric and monomeric albumin from different species. The receptor-ligand 

interaction was temperature and pH dependent (42). These findings suggest that human 

hepatocytes display species-non-specific albumin binding sites, which are glycoproteins (42). 

    FcRn has been shown to be functionally expressed on the surface of adult rat hepatocytes 

and hypothesized to mediate transport of IgG from serum to bile (13). However, other report 

shows that serum to bile transport of IgG was unaffected in mice functionally deleted for 

FcRn (32). Accordingly, the hypothesis is rejected that FcRn functions as sorting receptor in 

liver. In contrast, FcRn in hepatocytes has been implicated in protecting IgG from the 

catabolism that accompanies endocytic activity these cells (32). Eventhough the expression of 

FcRn is reported in rat hepatocytes no data from human studies exist. In addition, there are 

disparities about FcRn functions in hepatocytes as related to IgG and HSA homeostasis. 

Taken together, the expression of FcRn in immune cells and hepatocytes, and its functional 

importance in relation to IgG and HSA homeostasis, and IgG-mediated phagocytosis demand 

further investigations. 

     In the present study, we investigated the expression and functional binding of IgG and 

HSA to human immune cells (monocytic U-937, THP-1, K-562) and freshly isolated 

peripheral blood mononuclear cells (PBMC). We found that both ligands showed increased 

binding at acidic pH to membrane-bound FcRn, and the receptor-ligand interactions were 

blocked by excess amount of IgG, HSA, protein G or polyclonal anti-FcRn antibodies. This is 

the first report demonstrating HSA binding in a pH dependent fashion to a membrane-bound 

FcRn. 

     In addition, we report that FcRn is expressed in human hepatic cell lines (Hep3B and 

HepG2). We show that the receptor is functionally expressed as revealed by increased binding 
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to both IgG and HSA at acidic pH. Assessments of other Fcγ receptors show that FcγRII 

(CD32) is expressed but not FcγRI (CD64) and FcγRIII (CD16). We also demonstrate that 

treatment of anti-inflammatory substances clearly downregulate FcRn expression in both 

monocytic and hepatic cell lines. 
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            ABBREVIATIONS 

                                                                            
Ab                                           Antibody 
AChR                                     Anti-acetylcholine receptor      
BCA                                        Bicinchoninic acid 
C-terminus                             Carboxy terminus 
DC                                           Dendritic cells 
Epo                                          Erythropoietin 
Fab                                          Fragment antigen binding 
Fc                                             Fragment crystallible 
FcRn                                       Neonatal Fc receptor 
FITC                                       Fluorescein isothiocyanate 
hFcRn                                     Human FcRn 
hIgG                                        Human IgG 
HLA                                        Human leukocyte antigen 
HSA                                        Human serum albumin 
HSV                                        Herpes simplex virus 
Hep                                         Hepatic 
Ig                                             Immunoglobulin 
ITP                                          Immune thrombocytopenia 
IVIG                                        Intravenous Ig therapy 
MDCK                                    Madin-Darby canine kidney 
mIgG                                       Mouse IgG 
N-terminal                              Amino terminal 
rFcRn                                      Rat FcRn 
shFcRn                                    Soluble human FcRn 
SPR                                         Surface plasmon resonance 
WT                                          Wild type  
BSA                                         Bovine serum albumin 
β2m                                          β2-microglobulin 
CIP                                          Calf intestinal phosphatase 
E.coli                                       Escherichia coli 
FCS                                         Foetal calf serum 
HRP                                        Horseradish peroxidase 
hβ2m                                       Human β2-microglobulin 
ON                                          Over night 
OriP                                        Origin of replication 
PCR                                        Polymerase chain reaction 
RT-PCR                                 Reverse transcriptase PCR  
PS                                            Penicillin 
PBMCs                                   Peripheral blood mononuclear cells 
RPM                                       Round per minute 
RT                                           Room temperature 
SDS-PAGE                            Sodium dodecyl polyacrylamide 
Skm                                        Skimmed milk 
ELISA                                    Enzyme-linked immunosorbent assay 
TM hFcRn                             Transmembrane human FcRn 
GAPDH                                 Glyceraldehyde phosphate dehydrogenase
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3.  Materials and methods 

 

3.1 General methods 

 

3.1.1Vectors 

 

          The eukaryotic vector pcDNA3 (Figure 1A) was originally from Invitrogen (Grand 

Island, NY). It was modified with a gene encoding glutathione S-transferase (GST) 

inserted into the polylinker on restriction sites XhoI and ApaI giving rise to pcDNA3-

GST vector. As such it was a gift from F. E. Johansen (The National Hospital, Oslo, 

Norway). The vector was further modified with cDNA encoding extracellular part of 

human FcRn (hFcRn) heavy chain inserted into the polylinker at EcoRΙ and XhoΙ  

restriction sites and cDNA encoding human β2-microglobulin (hβ2m) in the restriction 

site NruΙ resulting in the pcDNA3-FcRn-GST.Pcmv-beta2m-polyA vector (Figure 1B; 

Berntzen et al, 2005). The vectors pEGFP-N1, pECFP-N1, pERFP-N1 and pEYFP-N1 

(BD Biosciences Clontech, Qume Drive, San Jose, CA, USA) were gifts from Oddmund 

Bakke (IMBV, University of Oslo, Norway). A schematic representation of pEGFP-N1 is 

shown in figure 2. 

A.                                                                                                            B. 
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Figure 1. Plasmid maps 
A. The original vector map for pcDNA3 as it appears in the vector catalogue available at: 
http://www.invitrogen.com. B. The map shows pcDNA3-FcRn-GST.Pcmv-beta2m-polyA 
with the sequence encoding the extracellular part of hFcRn heavy chain in the polylinker 
between the restriction sites EcoRI and XhoI, and hβ2m in the NruΙ site. CMV: promoter 
for cytomegalovirus, BGH pA: polyadenylation signal from the bovine growth hormone 
gene, SV40ori: origin of replication from SV40 virus, SV40: the promoter from SV40 
virus, ColE1: origin, Ampicillin: resistance gene for replication in bacteria, Neomycin: 
resistance gene for selection of stable expression in mammalian cells, T7: the T7 
promoter, Sp6: the Sp6 promoter. The complete vector sequence for pcDNA3 is available 
at: http://www.invitrogen.com. The illustration of the pcDNA3-GST vector was 
performed using the programme pDRAW32 available at: http://www.acaclone.com. 
Restriction enzymes shown in blue are unique restriction sites. 
 
 

 

 
Figure 2. Plasmid map 
The original vector map for pEGFP-N1 as it appears in the vector catalogue available at: 
www.bdbiosciences.com. CMV IE: Human cytomegalovirus immediate early promoter 
MCS: multiple cloning sites, EGFP: Enhanced green fluorescent protein gene, SV40 
polyA: Early mRNA polyadenylation signal, f1 ori: single-strand DNA origin, P: SV40 
early promoter, SV40 ori: SV40 origin of replication, Kan /Neo: Kanamycin/neomycin 
resistance gene, HSV TK: Herpes simplex virus tyymidine kinase polyadenylation signal, 
pUC: plasmid replication origin. 
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3.1.2 The Wizard™ Plus Minipreps DNA Purification System 

 

          The Wizard™ Plus Minipreps DNA Purification System from Promega (Madison 

WI, USA) was routinely used for small-scale purification of plasmid DNA. Plasmid DNA 

was purified using reagents and anion exchange resin columns supplied with the kit. The 

purification was done as described in the protocol. The minipreps were eluted in distilled 

H2O (dH2O), and their DNA concentration and purity were determined by 

spectrophotometric measurement (A 280/260nm) on a GeneQuant spectrophotometer 

(Amersham Pharmacia Biotech, UK). The integrity of plasmid constructs were confirmed 

by restriction analysis, agarose gel electrophoresis and verified by sequencing by GATC 

(Gmbh, Konstanz, Germany). 

 

3.1.3 The Wizard™ Plus Midipreps DNA Purification System 

 

          Prior to transfection of the plasmid constructs, the plasmids were isolated using the 

The Wizard™Plus Midipreps DNA Purification System (Promega). Plasmid DNA was 

purified essentially as described in the kit protocol. 

 

3.1.4 DNA precipitation 

 

          The seeDNA™ co-precipitant for RNA and DNA kit (Amersham Pharmacia 

Biotech) was used for nucleic acid precipitation of restriction digests and ligation 

reactions prior to transformation. The precipitation was done as described in the protocol, 

using the reagents supplied in the kit, except from ethanol. Briefly, 2 μl of uniform 

seeDNA suspension and 0.1 volumes of 3 M sodium acetate, pH 5.2, were added to the 

DNA and mixed briefly. Then 2 volumes of 95% ethanol was added, vortexed 5-10 sec. 

and incubated at room temperature (RT) for 2 min. The sample was centrifuged at 14000 

xg for 5 min, supernatant (SN) was removed and a pink pellet was observed. The pellet 

was rinsed in 500 μl 70% (v/v) ethanol, followed by a brief vortex, and centrifuged as 
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above. The pink pellet was resuspended in dH2O.     

 

3.1.5 Restriction enzyme digestion of DNA 

 

          Restriction enzyme digestion of DNA was performed according to the specific 

conditions required for the individual restriction enzymes (e.g. buffer, BSA and 

temperature). The reactions were incubated for at least two hours at the recommended 

temperature. All restriction enzymes and buffers were from New England BioLabs (NEB, 

Beverly, MA).   

 

3.1.6 Bacterial transformation 

 

3.1.6.1 Transformation by electroporation 

 

          Bacterial transformations were performed with electrocompetent XL1-blue 

Escherichia Coli (E. coli) cells (Stratagene, La jolla, CA) E. coli cells (Stratagene), 

essentially as described in Molecular Cloning (Sambrook et al., 2001) and BIO-Rad 

Genepulser™ electroporation manual. Briefly, 50 μl cells were thawed on ice. A portion 

of 2 μl SeeDNA precipitated (1.1.4) ligation mixture was added, and the cells were 

incubated on ice. The transformation mixture was then pulsed in an ice-cold 0.1cm gap 

electroporation BTX Disposable Cuvette P/N (BTX Inc., Hawthorne, NY). The Gene-

pulser™ apparatus (BTX Inc.) was used with the following settings: 25 μF, 200 Ω and 

1.30 kV. After electroporation, 1 ml of 2 xYT medium was added to the cuvette and 

transferred to an Eppendorf tube (Eppendorf AG, Hamburg, Germany) for incubation at 

37°C for 1 hour (h). The cells were plated on agar plates containing 100 mg/ml ampicillin 

and incubated over night (ON) at 37°C. The resulting colonies were screened.  
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3.1.6.2 Transformation of CaCl2 competent Top10F E.coli cells 

 

           The CaCl2 competent Top10F E.coli cells were thawed on ice. 300 µl cells were 

added to each tube with SeeDNA precipitated (1.1.4) ligation mixture and incubated on 

ice for 45 min. The cells were then exposed to heat-shock by incubating at 42ºC for 2 

min. 1 ml 1x LB medium was added to the cells and further incubated at 37ºC for 60 min.  

The cells, then centrifuged at 4000 rpm for 4 min at RT. The supernatant was discarded 

and the pellet was resuspended in the remaining medium and plated on agar plates 

containing 100 mg/ml ampicillin and incubated over night (ON) at 37°C. The resulting 

colonies were screened.  

 

3.1.7 SDS-PAGE 

 

        Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) was 

carried out according to general protocol. Briefly, gel apparatus was assembled and the 

Criterion XT™ Precast Gel (4-12% Bis-Tris or 4-15% Tris-HCl; Bio-Rad Laboratories, 

Alfred Nobel Drive, Hercules, CA) was placed in the tank that was filled with Running 

buffer (144 g/l glycine, 36.3 g/l and 10% SDS or XT MOPS running buffer, 1x; 

PIERCE). The comb was removed and the wells in the stacking gel were rinsed with 

running buffer. Protein samples and molecular weight standard were mixed with loading 

buffer (Tris-HCl, SDS, DTT, glycerol and bromophenol blue) and applied to the wells 

and electrophoresed for 1 h and 40 min at 100v. 

 

3.1.8 Agarose gel electrophoresis 

 

          Depending on the size of the DNA fragments to be separated, 1-2 % agarose gels 

were prepared. Analytic as well as preparative gels containing agarose (Sigma, St. Louis, 

MO) were dissolved in 50 μl 1x TAE buffer (40 mM Tris-acetate, 1 mM EDTA) and 1 

μg/ml ethidium bromide. 6 x SB was added to each sample before electrophoresis. Gel 
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electrophoresis was carried out in 1x TAE buffer at 90-100 V/250 mA. DNA was 

visualized by exposure to UV-light and compared with lamda HindΙΙΙ or phix174 size 

markers (New England Bio Labs). 

3.1.9 Purification of PCR products 

          Products from the polymerase chain reactions (PCR) were purified using the 

QIAquick PCR Purification Kit (QIAGEN, Hilden, Germany), which is based on 

adsorption of DNA to silica particles in the presence of high salt concentration. The 

purification was performed according to the QIAGEN manual with using the reagents 

supplied with the kit. 

3.1.10 Extraction of DNA from agarose gel 

 

          DNA fragments were separated by agarose gel electrophoresis and purified using 

the QIAquick Gel Extraction Kit (QIAGEN), which is based on solubilization of agarose 

and selective adsorption of DNA to silica particles in the presence of high salt 

concentration. The purification was performed according to the QIAGEN manual using 

the reagents supplied with the kit. 

 

3.1.11 Modification of DNA ends  

 

         Calf intestinal phosphatase (CIP) (Finnzymes, Espoo, Finland) was used to remove    

phosphate residues from the 5´ protruding ends of the linearized vector in order to reduce 

the background due to religation of the vector. 0.5 units CIP/pmol DNA ends were added 

to restriction enzyme digestion mixture, which include a specific CIP buffer (Finnzymes), 

for at least 1 h. The reaction was inactivated by heating to 75°C for 10 min in the 

presence of the 5 mM EDTA (pH 8.0). 
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3.1.12 Ligation of DNA fragments 

 

         Appropriate amounts of insert and vector fragments were added to 2 μl of 10x 

ligation buffer (Roche Diagnostics, GmbH, Mannheim, Germany) and 1 μl of T4 Ligase 

(Roche Diagnostics). The ligation reaction volume was adjusted to 20 μl with dH2O. The 

ligation reaction was allowed to occur ON at RT or at 20°C, before heat inactivation at 

65°C for 20 min. All ligations were performed as described above. 

3.2 Cells 

      The adherent human hepatocarcinoma cell lines Hep-3B and Hep-G2 (Gift from 

Trond Berg; IMBV, University of Oslo. Norway) were maintained in Dulbecco modified 

eagle medium (DMEM) (BioWhittaker, Belgium), supplemented with 4 mM L-

glutamine, 100 U/ml penicillin (PS; Integro, The Netherlands), 0.1 mM nonessential 

aminoacids (NEAA), and 10 % foetal calf serum (FCS; Integro). The human monocytic 

cell lines U937, THP-1 and K-562 (American Type Cultur Collection, Manassas, VA, 

USA) were maintained in RPMI 1640 (BioWhittaker), supplemented with 100 U/ml PS 

and 10 % FCS. All reagents were from Gibco (BRL, Paisley, Scotland). Madin-Darby 

Canine Kidney (MDCK) cells stably transfected with hβ2m was established by Julie Dee 

Qian (IMBV, University of Oslo, Norway) and maintained in Dulbecco modified eagle 

medium (DMEM), supplemented with 4 mM L-glutamine, 100 U/ml penicillin, and 10 % 

FCS. Hybridoma cell line expressing anti-FcRn mouse monoclonal antibody 1G3 was 

obtained from ATCC (American Type Cultur Collection, Manassas, VA, USA) and 

cultured according to the supplier’s protocol. Briefly, cells were plated at a seeding 

density of 120,000 cells/cm2 in a 75-cm2 flask, and cultures were maintained in a 

humidified atmosphere (5% CO2-95% air) at 37ºC with HL-1 medium (BioWhittaker, 

Walkersville, MD, USA) supplemented with 4 mM L-glutamine (Invitrogen), 1 mM 

sodium pyruvate (Invitrogen), and 1% FCS (Invitrogen), and the cells were further 

cultured to confluency. The supernatant was harvested and IgG was purified (1.12)  

54 

  
                                                                               
                                                                                                                                   
  

 
 



3.3 Cell lysate preparation 

 

       Total cell lysate was made by using CelLytic M cell lysis Reagent (Sigma, Saint 

Louis, USA) together with protease inhibitor cocktail (Sigma) as described in the general 

protocol. Briefly, approximately 8-10 x 106 cells were washed by centrifugation at 1200 

rpm for 5 min. Pelleted cells were resuspended in 700 µl CelLytic M reagent with 30 µl 

protease inhibitor cocktail and incubated on a shaker for 15 min. The lysed cells were 

centrifuged for 15 min at 4000 rpm to remove cellular debris. Then, supernatant collected 

was stored at -70ºC until use.  

 

3.4 BCA Protein Assay (Quantification of total protein in cell lysates) 

 

      The total protein in lysate (1.3) was quantified using the BCA™ protein assay Kit 

(PIERCE, Meridian Road Rockford, USA) according to the manufacturer’s protocol. 

Briefly, BCA™ Working Reagent was prepared by mixing Reagent A with Reagent B in 

a 50:1 ratio, and 25 µl duplicates of diluted lysates were incubated with 200 µl Working 

Reagent at 37 ºC for 30 min. After cooling the plate to room temperature (RT), the 

absorbance was measured at 570 nm on a VICTOR™ 1420 Multilabel counter 

(PerkinElmer Life Sciences, Welleslay, MA, USA). Standard curves were prepared from 

a series of dilutions of bovine serum albumin (BSA) ranging from 20-2000 µg/ml. 

 

3.5 Total RNA isolation 

 

          The total RNA was harvested using the method described by Absolutely RNA 

Miniprep Kit (Stratagene). Briefly, 600 µl lysis buffer was added to 5-6 x 106 pelleted 

cells, mixed and vortexed. The lysate was filtered by passing through filter spin cup that 

were seated in receptacle tube. The filtrate retained was mixed with equal volume of 70% 

ethanol, and 700 µl of the mixture transferred to RNA-binding spin cups seated in 

receptacle tubes. The spin cups retained and washed with low salt wash buffer and treated 

with 5 µl of Rnase-free DNaseΙ mixed with 50 µl DNase digestion buffer by incubating 
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at 37ºC for 15 min. The spin cups were washed with high and low salt wash buffer in 

succession. The RNA eluted using elution buffer. The extracted total RNA was quantified 

by ND-1000 spectrophotometer at 260 nm (NanoDrop Technologies, Wilmington, DE, 

USA).  

 

3.6 cDNA synthesis 

 

       For cDNA synthesis 2 µg of total RNA was subjected to reverse transcription (RT) 

reaction using Superscript ΙΙ reverse transcriptase (Invitrogen), and anchored Oligo 

(dT)20 primer (Invitogen). The samples were denatured at 95ºC for 5 min in order to 

remove secondary structure of RNA prior to addition of RTase (Invitrogen), followed by 

further by incubations at 25ºC for 10 min, 42ºC for 60 min, 70ºC for 5 min and finally 

4ºC for 2 min. The yielded first-stranded cDNA was stored at -70ºC until use. 

 

3.7 Polymerase chain reaction (PCR) for amplication of hFcRn transcripts 

 

       Aliquots of cDNA were subjected to PCR reaction using primers (Table 1) specific 

to the transmembrane hFcRn (TM-hFcRn; FcRnforwnew and FcRnrevnew) and hβ2m 

(β2mforw2 and β2mrev). These were designed based on published sequences of TM-

hFcRn (1098 bp, GeneBank, NM 004107) and hβ2m (360 bp, GeneBank, NM 004048). 

All primers were from Medprobe (Eurogenetic, San Diego, USA). The melting 

temperatures were estimated using the formula Tm= 2(A+T) + 4(G+C). Each PCR 

reaction was performed in a final volume of 50 µl with 0.5 µl of high fidelity Phusion 

DNA polymerase (Finnzymes, Finland) 0.02 µM of each primer using Thermal cycler 

(Eppendorf Mastercycler® Gradient). PCR reaction procedures commenced with a 

denaturation at 95ºC for 5 min followed by amplification with a total of 35 cycles at 95ºC 

for 2 min, 68ºC for 2 min and 72ºC 10 min. The samples from each PCR products were 

electrophoresed on 2% agarose gel and were examined with respect to phix174 DNA 

ladder (1.1.7). Negative controls were samples reaction omitting either or both cDNA and 
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primers were also prepared. The housekeeping gene for glyceraldehyde-3- phosphate 

dehydrogenase (GAPDH) was amplified as described (M. Sporstol, 2007). 

 

3.8 Cloning of sequence encoding TM-hFcRn and hβ2m 

  

       The amplified TM-hFcRn cDNA was digested (1.1.5) with XhoΙ (NEB) and EcoRI 

(NEB), purified (1.1.10) and cloned as a 1098 bp fragment into the polylinker of 

pcDNA3-FcRn-GST.Pcmv-beta2m-polyA. This gave rise to pcDNA3-(TM-hFcRn)-

GST.Pcmv-beta2m-polyA vector. The PCR product for hβ2m was digested (1.1.5) with 

restriction enzymes HindΙΙΙ and XbaΙ, purified (1.1.10) and cloned as a 360 bp fragment 

into pcDNA3-GST on HindIII (NEB) and XbaI (NEB) sites. This gave rise to the 

pcDNA3-hβ2m vector.  

 

3.9 Subcloning of the sequence encoding TM-hFcRn into fluorescent vectors 

 

          The vector pcDNA3-(TM-hFcRn)-GST.Pcmv-beta2m-polyA (1.8) was used as a 

template for amplication by PCR of TM-hFcRn cDNA (1.7) with primers GFPforw and 

NewFPVrev (Table 2). The PCR product was digested using XhoI and EcoRI (1.1.5) and 

subcloned in N-terminal fusion of the genes of the fluorescent proteins in pEGFP-N1, 

pECFP-N1, pERFP-N1 and pEYFP-N1). This gave rise to pTM-hFcRn-EGFP-N1, pTM-

hFcRn-ECFP-N1, pTM-hFcRn-ERPP-N1 and pTM-hFcRn-EYFP-N1 vectors.   
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Table 1. Primers used for amplication of TM-hFcRn  and hβ2m:      

                                                                                                                                                                              

Sequence                                       Primer     

 

 

 

FcRnforwnew:      5’ ATTGAATTCaATGGGGGTCCCGCGGCCTCAG 3’ 

FcRnrevnew:         5’ ATTCTCGAGTCAbGGCGGTGGCTGGAATCACATTTAC 3’ 

β2mforw2:             5´-TCC AAG CTTGGC GGG-3´ 

β2mrev:                  5´-GTT CTT GAACCT CCA-3´ 

 

 
a: The restriction sites are bold. 

b: Stop codon is underlined 

 

 

Table 2. Primers used for construction of the pFcRn-EGFP-N1, pFcRn-ECFP-N1, 

pFcRn-ERFP-N1 and pFcRn-EYFP-N1 vectors:  

     

                                                                                                                                                                                            

Sequence                                   Primer            

 

 

GFPforw:                   5’ ATTCTCGAGaATGGGGGTCCCGCG 3’ 

                        

NewFPVrev:             5’ATTGAATTCCGGCGGTGGCGTGGAATCACATTTAC 3’  

 

 

a: The restriction sites are bold 
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3.10 Transient transfection of MDCK cells expressing hβ2m with fluorescent protein 

vectors  

          All constructs were transiently transfected using the LIPO-FECTAMINE™ method 

(Invitrogen). The day before transfection, the cells were trypsinized (BioWhittaker) and 

counted. 4x 105 MDCK cells per ml were plated in a 12 wells plate with microscope 

cover slip placed in the center. The day after, the cells were 70-80% confluent. A portion 

of 10 μg DNA was added to 500 μl medium without serum (OPTI-MEM) for each bottle 

to be transfected. 20 μl LF2000 Reagent (Invitrogen) was diluted into 500 μl medium 

without serum and incubated for 5 min at RT. Diluted LF2000 was combined with the 

diluted DNA and incubated at RT for 20 min to allow DNA-LF2000 to form. The 

complexes were added directly to each 12 wells plate and mixed with the cells before 

incubation at 37°C in a CO2 incubator. After 24 h cells washed, fixed, Hoechst (Sigma) 

stained (for nuclear staining) and mounted on microscope slides for examination with 

Confocal microscope.  

3.11 Anti-hFcRn production  

        Recombinant soluble human FcRn (shFcRn) or the hFcRn heavy chain only 

(Andersen et al, 2007, document submitted) was used for goat immunization. The 

immunization and antisera collection were made in collaboration with T. E. Michaelsen 

(Norwegian Public Health Institute, Norway). Briefly, goats were immunized 

subcutaneously with 50 μg purified shFcRn or only the hFcRn heavy chain in 500 μl PBS 

pH 7.3 mixed with 750 μl Freund Complete Adjuvant  (Difco, Detroit USA). On day 11 

after immunization a booster dose (50 μg) was given with Freund Incomplete Adjuvant 

(Difco, Detroit, USA), which was repeated 24 days later. After additional four weeks, the 

goats were bled regularly every second week. Two additional booster doses (50 μg) with 

Freund Incomplete Adjuvant were given six and fourteen weeks after the third 

immunization. The collected and pooled anti-FcRn goat sera were filtered prior to 
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purification. 

3.12 Anti-hFcRn purification 

         Purification of polyclonal anti-hFcRn antibody from goat sera or mouse hybridoma 

cell culture supernatant (mAb 1G3) was performed using HiTrap protein G HP, 5 ml 

column (GE Healthcare Bio-Sciences AB Uppsala, Sweden) or a hFcRn heavy chain 

coupled affinity matrix (Andersen et al, unpublished). The protein G purification was 

performed as described in the manual. The column was connected to AKTA™ 

chromatography system (Bio-Rad, BioLogic LP). The column was cleaned with elution 

buffer (0.1 M glycine-Hcl pH 2.7) and then equilibrated by washing with 10 column 

volumes of binding buffer (20 mM sodium phosphate pH 7.0). Equal volume of filtered 

(0.45 µm; Numbrecht, Germany) sample and binding buffer were mixed and loaded to 

the system. The flow through was collected. The column was washed with 5-10 column 

volume of binding buffer or until no material appears in the effluent. The wash fractions 

were collected. The sample was eluted with 2 to 5 column volumes of elution buffer (0.1 

M glycine-HCl) in collection tubes containing neutralizing buffer (1M Tris-Hcl, pH 9.0). 

The column was re-equilibrated with binding buffer.  

        The purity of the eluates was analysed on SDS-PAGE (1.1.7) and upconcentrated 

using Amicon Centricon Plus-20 (YM-100) Centrifugal Filter Devices (Millipore 

Corporation Bedford, MA, USA) for concentration and purification. The final 

concentration was estimated using ND-1000 spectrophotometer at 280 nm (NanoDrop 

Technologies, Wilmington, DE, USA).  Antibodies (~3 mg/ml) were biotinylated using 1 

mg/ml biotin N-hydroxysuccinimide ester (Sigma), and incubated on rotator for 4 h at RT 

followed by 4°C ON. The mixture was then spun through a centricon YM-10 (Millipore) 

five times to remove un-conjugated NHS-biotin (J.T. Andersen, IMBV, UIO, Norway). 

 

3.13 Anti-hFcRn analysis by ELISA  

  

      The 96-Wells plate (Nunc, Denmark) was coated with 2 µg/ml of shFcRn (Andersen 
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et al, 2007 submitted) or 2 µg/ml of hβ2m (Abcam, Cambridge, UK) and stored at 4º ON. 

As a blocking solution, 2% dry skim milk (Accumedia Manufacturers Inc.Lansing, MI, 

USA) /1x PBS (Skm/PBS) was added to the coated wells at RT for 1h. The purified 

polyclonal anti-hFcRn (1.12) diluted (1:100, 1:1000, 1:10000) in 2% Skm/ PBS was 

added to the wells and incubated at RT for 1 h. The wells were washed four times with 1x 

PBS supplemented with Tween 20 (PBST). Wells were then incubated for 1 h at RT with 

a horseradish peroxidase (HRP) conjugated protein G (1:3000; Calbiochem, San Diego, 

CA, USA). Wells were washed four times with PBST before 100 µl of the substrate 2,2’-

azino-bis 3-etylbenzthiazoline-6-sulfonic acid (ABTS; Sigma) in 2 mM citric acid, pH 4, 

diammonium salt (Sigma) containng 0,2% H2O2 was added (ABTS/ H2O2). The colour 

reaction was measured by absorbance at 405 nm on a Sunrise TECAN spectrophotometer 

(TECAN Maennedorf, Switzerland). The schematic representation is shown in figure 3. 

 

3.14 Detection of intact hFcRn in cell lysate by ELISA 

       The 96-Wells plate (Amersham Pharmacia Biotech) was coated with 50-100 µg/ml  

described in (1.13). 

HRP HRP 

        Plate coated with shFcRn 
       or β2m or cell lysate lysate 

Goat anti-hFcRn 

       Protein G HRP conjugate,   
           (1:3000) 

Substrate (ABTS) 

 

   
  

Figure 3. Detection of hFcRn binding by anti-hFcRn. Wells were coated with shFcRn, 
hβ2m or total protein in lysate at 4°C ON, then washed and incubated with anti-hFcRn 
antibody. Detection was using a HRP- conjugated protein G before substrate was added. 
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3.15 Western immunoblotting dectetion of FcRn expression  

 

          Normalized cell lysate (1.4) with 40-50 µg total protein was reduced in 2 µl of 

dithiohreitol (DTT; Sigma) electrophoresed through a 12% SDS-PAGE (1.1.7). Proteins 

were blotted from the gels onto a Polyvinylidene fluoride (PVDF) membrane (Millipore 

Corporation Bedford, USA) in Tris/glycine buffer (25 mM Tris and 192 mM glycine, 

20% methanol, pH 8.3) at 25V for 35 min. The membrane was blocked in 4% Skm /PBS 

for 1 h at RT. After blocking, membrane was washed in Skm/PBS three times for 5 min 

on shaking and probed with polyclonal goat anti-hFcRn (1.12) diluted 1:1000 in 4% 

Skm/PBS, and anti-hβ2m from rabbit (1:5000; Sigma) at RT for 1 h. Then, membrane 

was washed five times for 5 min with PBST. The HRP-conjugated mouse monoclonal 

antibody (1:5000; Sigma) or the HRP-conjugated anti-rabbit antibody diluted 1:5000 

(from donkey; Amersham Pharmacia Biotech) were added and incubated at RT for 1 h. 

The membrane was washed five times for 5 min before the membrane was treated with 

SuperSignal West pico Lumino/Enhancer and stable peroxidase solutions (PIERCE). The 

treated membrane was detected on Kodak film using Optimax x-ray film processor 

(Protec medizintechnik GmbH co. KG, Germany). 

 

3.16 pH dependent IgG-FcRn binding assay on lysates  

 

         100 µl hIgG coupled sepharose (Amersham Biosciences) was placed in eppendorf 

tubes and calibrated with 1ml sodium/potassium phosphate buffer with pH 5.5 (buffer 

5.5) or pH 7.4 (buffer 7.4) on rotation for 10 min, centrifuged at 10, 000 rpm for 5 min 

and  repeated three times. 400-600 µg of total protein in lysate (1.3) and 1ml buffer with 

pH 5.5 or pH 7.4 was mixed and pH was checked with pH-indicator strips (Merck KGaA, 

Darmstadt, Germany). Lysates were then added to the sepharose-hIgG and incubated in 

buffer with 5.5 or 7.4 ON at 4ºC. The mixtures were washed three times for 10min on 

rotation with centrifugation in between in one ml buffer with pH 5.5 or pH 7.4. The 

bound proteins were eluted with sodium/potassium phosphate with pH 8. Western 

immunoblotting analysis was made on eluted fractions as described (1.15). 
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3.17 Isolation of peripheral blood mononuclear cells (PBMC) 

 

        Blood was collected in tubes with heparin from a volunteer. Peripheral blood 

mononuclear cells (PBMC) were isolated by means of a density gradient centrifugation 

technique in which Lymphoprep™ (NYCOMED PHARMA AS, Oslo Norway) was used 

as a gradient medium. Briefly, 10 ml of 1x PBS pipetted to each of the centrifuge tube 

containing 10 ml blood. 5 ml of blood/PBS poured down to 5 ml Lymphoprep placed at 

the bottom of the tube and centrifuged at 2000 rpm for 20 min at 20ºC without brake.  

The PBMC located in the interphase collected using a Pasteur pipette and transferred to 

centrifuge tube. Equal volume of PBS was added and centrifuged at 1700 rpm for 5 min 

at 4ºC with brake three times. Then, the cells were counted using a hemocytometer. 

 

3.18 Assessment of expression of FcγRΙ, FcγRΙΙ and FcγRΙΙΙ by Flow cymetry 

 

        For each staining, 2 x 106 cells were washed three times with 1x PBS, and added to 

96-wells plates (Nunc). Cells were blocked with 2% bovine serum albumin (BSA; 

Sigma) in PBS (BSA/PBS) for 1h, washed by centrifugation at 800 rpm three times for 5 

min with PBS/BSA. The cells were stained with Fluorescein Isothiocyanate (FITC) 

conjugated mouse anti-human CD64 antibody (Serotec Ltd, Oxford, UK), anti-human 

CD32 antibody (BD Pharmingen, Franklin lakes, NJ, USA) and detected by goat anti-

mouse FITC (CALTAG Laboratories, Burlingame, California, USA), and with 

biotinylated mouse anti-CD16 monoclonal antibody (Abcam) followed by streptavidin 

FITC (DakoCytomation Ltd., cambridgeshire, UK). Finally, the stained cells were fixed 

by treating with 3 % paraformaldeyde (PFA; Fluka) for 30 min. 

 

3.19 Analysis of surface and intracellular expression of FcRn by Flow cytometry  

 

          For each staining, approximately 2 x 106 cells were washed three times with 1x 

PBS, and added to 96-wells plates (Nunc). Cells were blocked with 2% BSA/PBS for 1 h, 

washed by centrifugation at 800 rpm three times for 5 min with PBS/BSA. Cells were 
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incubated for 1 h with biotinylated polyclonal anti-hFcRn, isotype control goat IgG (Gift 

from T. M. Michalesen) diluted 1:100 in 2% BSA/PBS or the 1G3 monoclonal anti-FcRn  

(1.12) diluted 1:50 in 2% BSA/PBS. The cells were washed and centrifugated at 800 rpm 

three times for 5min with 2% PBS/BSA. Cells incubated for 1 h with streptavidin-FITC 

or anti-mouse IgG F(ab’)2 FITC produced in goat (Sigma) diluted 1:200 in 2% BSA/PBS, 

washed by centrifugation at 800 rpm three times for 5 min with 2% PBS/BSA. All 

staining was conducted at 4ºC and also were fixed with 3% PFA for 30 min. For 

intracellular staining, the cells were permeabilized by treatment with 0.5% saponin 

(Sigma) for 30 min and stained as above.    

 

 3.20. Surface plasmon resonance analyses 

 

         Surface plasmon resonance experiments were carried out using a Biacore 3000 

(Biacore AB, Uppsala, Sweden). Flow cells of CM5 sensor chips were coupled with 

shFcRn (~800 RU) using amine coupling chemistry all as described in the protocol 

provided by the manufacturer. The coupling was performed by injecting 10 μg/ml of the 

protein in 10 mM sodium acetate, pH 5.0 (Biacore AB). For all binding experiments the 

phosphate buffer (67 mM phosphate buffer, 0.15 M NaCl, 0.005 % Tween20) at pH 5.5 

was used as running buffer as well as dilution buffer. Injection of 15 μg/ml FITC 

conjugated human IgG (hIgG) (Sigma) or 268 μg/ml FITC-conjugated HSA (Sigma) was 

performed at 10 μl/min at 25°C.  

 

3.21 Analysis of pH dependent FcRn-IgG/HSA binding by Flow cytometry.      

         

        For each staining, 2 x 106 cells were washed with 1x PBS three times and added to 

96-wells plates (Nunc) and fixed by treating with 3% PFA for 30 min. The cells were 

washed by centrifugation at 800 rpm with buffer pH 5.5 or 7.4. Then, the cells were 

incubated for 1 h with blocking solution (0.5% Skm milk in buffer pH 5.5 or 7.4) and pH 

was checked using pH-indicator strips (Merck). The cells washed further with 
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corresponding buffers and then incubated with hIgG-FITC (10-100 µg/ml; Sigma) or 

HSA-FITC (15-100 µg/ml; Sigma), and mF(ab’)2 fragment-FITC (Sigma) or mIgG2a-

FITC (Sigma) were used as controls for 1 h. Double staining was carried out using hIgG-

FITC (10-100 µg/ml) and HSA-FITC (15-100 µg/ml) at the same time. Inhibition 

analysis with polyclonal anti-hFcRn (1.12), unconjugated hIgG (Aventis Behring GmbH, 

Marburg, Germany), HSA (Sigma) or protein G from Streptococcus species (Fluka, 

Buchs, Switzerland) was performed. The cells were then washed and analysed with Flow 

cytometry using buffer pH 5.5 or 7.4.  

 

 3.22 Flow cytometric analysis of the effect of anti-inflammatory drugs on FcRn 

expression 

 

        Approximately, 6 x 105-7 x 105 cells were treated with 10 nM-1000 nM of 

corticosterone, prednisolone, beclomethasone dipropionate, and thyroxine (all from 

Sigma) in corresponding growth media. After 3 days, 2 x 106 cells were stained as 

described (1.19) and analysed by Flow cytometry.  
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4. RESULTS 

 

4.1 Generation and functional testing of hFcRn preparations 

 

     To produce an hFcRn specific antiserum, goats were selected for immunization due to 

previous studies that clearly demonstrate highly stringent binding specificity of hFcRn 

with no detectable binding to goat/sheep IgG Fc (24). In addition, goat IgG subclasses 

have low or no binding affinity for other human Fcγ-receptors. Immunizations were made 

with intact shFcRn and isolated hFcRn heavy chains. Goat antisera were produced and 

purified as described in materials and methods. Protein G purified preparations were 

analysed by non-reducing SDS-PAGE (Fig. 1A). As expected, the goat IgG migrated as 

bands corresponding to ~150 kDa. To test the functional integrity of purified anti-hFcRn 

preparations, an ELISA was performed with coating of shFcRn followed by serial 

dilutions of the preparations. Figure 1 shows that antibodies from goat immunized with 

intact shFcRn reacted towards both intact shFcRn (G2448; Fig. 1B) and the hβ2m subunit 

(G2448; Fig. 1C). In contrast, those with the hFcRn heavy chain only reacted with intact 

shFcRn (G3231; Fig.1D) but not hβ2m (G3231; Fig.1E). The antibody preparations were 

further purified on FcRn heavy chain coupled affinity matrix. 

                                                                                       

                          A.                                                          
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B.                                                                              C. 

 

 
 

 

 

 

 

 

D.                                                                                   E. 

 

 

 

 

 

 

 
Figure 1. Analyses of anti-FcRn antibody preparations. (A) Non-reducing 12% SDS-
PAGE analysis of antibody fractions eluted from the protein G column. Lane 1 
corresponds to G2248. Lane 2 corresponds to G3231. The molecular size is indicated by 
an arrow. ELISA on antibody preparations from goat immunized with intact shFcRn 
tested against shFcRn (B) and hβ2m (C). ELISA on antibody preparations from goat 
immunized with only the hFcRn heavy chain tested against shFcRn (D) and hβ2m (E). 
Tap 0 samples are taken from pre-immunized goats. Tap 1-7 samples are taken post 
immunizations. Each sample was diluted 1:100, 1:1000 and 1:10000. 
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4.2 Expression of FcRn and Fcγ receptors on human monocytic cell lines  

 

        To determine the expression profile of FcRn in human immune cells, we examined 

three human monocytic cell lines (U-937, THP-1, and K-562). Flow cytometric analyses 

were performed using the purified polyclonal anti-FcRn preparation (G3231). The 

histograms in figure 2 reveal the expression of hFcRn on the cell surface of all three cell 

lines (Fig. 2A, C and E). In addition, the total expression was determined after saponin 

treatment (Fig. 2B, D and F). The FcRn expression was also confirmed using a 

commercial available anti-FcRn monoclonal (1G3) antibody (data not shown). These 

results are in agreement with previous reports showing FcRn expression in monocytic U-

937 and THP-1 cell lines (30, 31). Our data for the first timeshow FcRn expression on the 

K-562 cell line.  

        To explore functional binding of IgG to surface expressed hFcRn, the expression 

profiles of classical Fcγ receptors have to be assessed. The monocytic cell lines were 

stained with specific antibodies and analyses by flow cytometry. The data obtained show 

expression of FcγRI (Fig. 3A, D and G) and FcγRII (Fig. 3B, E and H), but no evidence 

for FcγRIII expression (Figure 3C, F and I). 
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A. B.

C. D.

E. F.

 
Figure 2. Expression and cellular distribution of FcRn in human monocytic cell 
lines.   Cells were stained with biotinylated anti-FcRn followed by streptavdin-FITC and 
analysed by flow cytometry. U-937 cells surface stained (A) and total (B).  THP-1 cells 
surface stained (C) and total (D). K-562 cells surface stained (E) and total (F). FcRn 
expression is shown as gray filled histograms, streptavidin-FITC and isotype 
(biotinylated goat IgG) controls as unfilled histograms. Histograms are given with 
ordinate indicating number of cells and abscissa indicating the fluorescence intensity. 
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B. C. 

G. 

D. E. F. 

H. I. 

 
A. 

 
Figure 3. Expression of Fcγ receptors. Cells were stained with monoclonal antibodies 
towards each Fcγ receptor as described in material and methods. U-937 cells surface 
stained for FcγRI, FcγRII and FcγRIII (A, B and C). THP-1 cells surface stained for 
FcγRI, FcγRII and FcγRIII (E, F and G). K-562 cells surface stained for FcγRI, FcγRII 
and FcγRIII (G, H and I). Fcγ receptors are shown as gray filled histograms and controls 
(isotype and secondary antibodies) as unfilled histograms. Histograms are given with 
ordinate indicating number of cells and abscissa indicating the fluorescence intensity. 
 

4.3 pH dependent binding of IgG and HSA to human monocytic cell lines  

 

        Initially, the functional integrity of FITC conjugated hIgG and HSA were tested by 

surface plasmon resonance. Recombinant shFcRn was immobilized on CM5 sensor chips 

by amine coupling. Representative sensorgrams show that IgG-FITC and HSA-FITC 

bind FcRn in a pH dependent manner, binding at pH 6.0 and release at pH 7.4 (Appendix 

A). 

        To investigate the functional binding of these ligands, we continued using the U-937 
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cell line. A pH dependent cell binding assay was established where fixed cells were 

stained with IgG-FITC or HSA-FITC at pH 5.5 and pH 7.4 followed by flow cytometry , 

all as described in material and methods. Figures 4A-B show the binding of the ligands 

expressed as mean fluorescence intensity (MFI) at pH 5.5 and pH 7.4. Increased binding 

of IgG-FITC (Fig. 4A) and HSA-FITC (Fig. 4B) were observed at acidic pH compared to 

pH 7.4, which supports functional binding to FcRn. In contrast, the Fc removed F(ab’)2 

fragment and mIgG2a did not bind (Fig. 4A). Furthermore, labelled hIgG pre-incubated 

with Streptococcus protein G showed reduced binding (Fig. 4A). These data are in 

agreement with an IgG Fc-mediated interaction and a stringent discrimination of mIgG as 

reported by others (25, 24).  

        To assess the contribution of FcRn in the increased binding of IgG and HSA shown 

at acidic pH, inhibition studies were performed with pre-incubation of cells with 

unlabelled hIgG and HSA. Figures 5A-B clearly show decreased binding of IgG-FITC 

and HSA-FITC in the presence of IgG and HSA at pH 5.5. Furthermore, the polyclonal 

anti-FcRn has been shown to block the interactions sites of IgG and HSA on hFcRn 

(Andersen et al., unpublished). Importantly, we here demonstrate that pre-incubation of 

cells with the anti-FcRn preparation dramatically decreased binding of IgG as well as 

HSA (Fig.5). Thus, the data presented strongly support functional and pH dependent 

binding to hFcRn. In addition, this is the first report showing pH dependent binding of 

HSA to membrane-bound FcRn.      
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  A.                                                                             B.                                               

                      

 

 

        

 
 
 
 
 
 
 
Figure 4. FcRn ligands binding to monocytic U-937 cells. (A) Binding of hIgG, 
F(ab’)2 and mIgG2a to U-937 cells at pH 5.5 and at pH 7.4. (B) Binding of HSA at pH 
5.5 and pH 7.4. The binding is expressed as mean fluorescence intensity (MFI). The 
experiments were repeated with similar results. 
 
  

        To determine whether hIgG and HSA bind to membrane-bound hFcRn   

independently of each other, we functionally stained cells with IgG-FITC and HSA-FITC 

simultaneously at acidic pH. Figure 6 shows that simultaneous staining gave an additive 

binding affect compared with individual staining, which may indicate that both ligands 

bind simultaneously to hFcRn. These data are in agreement with biochemical studies 

performed on recombinant soluble molecules (26, 28, 29). Taken together, the results 

suggest that both IgG and HSA bind membrane-bound hFcRn and that the increased 

binding at acidic pH is completely mediated by FcRn. 
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A.                                                                              B.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 5. hFcRn-ligand inhibition analysis on U-937 cells. (A) Pre-incubation of U-
937 cells with unlabelled hIgG, polyclonal anti-FcRn and protein G blocked the hIgG-
FITC binding. (B) Pre-incubation of U-937 cells with unlabelled HSA and polyclonal 
anti-FcRn Ab blocked the HSA-FITC binding. The binding is expressed as mean 
fluorescence intensity (MFI). The experiments were repeated with similar results.  
  

 

 

 
 
 
 
 
 
 
 
Figure 6. The hIgG and HSA bind to membrane bound hFcRn independently of 
each other. U-937 cells were surface stained with HSA-FITC and hIgG-FITC 
simultaneously. HSA-FITC, hIgG-FITC and together are shown as white, gray and black 
filled histograms, respectively. Histograms are given with ordinate indicating number of 
cells and abscissa indicating the fluorescence intensity. 
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4.4 Expression of FcRn and Fcγ receptors on peripheral blood mononuclear cells 

 

        To extend the observations with human monocytic cell lines to primary immune 

cells, we isolated PBMCs and performed flow cytometry to determine FcRn expression. 

We found that these cells express FcRn as showed both on cell surface (Fig.7A) and total 

(Fig.7B). In addition, the expression profiles of classical Fcγ receptors were assessed. 

The PBMCs were stained with monoclonal antibodies and analysed by flow cytometry. 

The data obtained show expression of FcγRI (Fig. 8A) and FcγRII (Fig. 8B) but no 

evidence for FcγRIII expression (Fig. 8C). 

 

 

A. B. 

Figure 7. Expression and cellular distribution of FcRn in PBMCs. Cells were stained 
with biotinylated anti-FcRn followed by streptavdin-FITC and analysed by flow 
cytometry. PBMCs surface stained (A) and total (B). FcRn expression is shown as gray 
filled histograms, streptavidin-FITC and isotype (biotinylated goat IgG) controls as 
unfilled histograms. Histograms are given with ordinate indicating number of cells and 
abscissa indicating the fluorescence intensity. 
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A. B. C.

 

Figure 8. Expression of Fcγ receptors. Cells were stained with monoclonal antibodies 
towards each Fcγ receptor as described in material and methods. PBMCs surface stained 
for FcγRI, FcγRII and FcγRIII (A, B and C). Fcγ receptors are shown as gray filled 
histograms and controls (isotype and secondary antibodies) as unfilled histograms. 
Histograms are given with ordinate indicating number of cells and abscissa indicating the 
fluorescence intensity. 
 
 

        To investigate the functional binding of IgG and HSA, the pH dependent cell 

binding assay was used. Figures 9A and 9C show binding of the ligands expressed as 

mean fluorescence intensity (MFI) at pH 5.5 and pH 7.4. Increased binding of IgG-FITC 

(Fig. 9A) and HSA-FITC (Fig. 9C) was observed at acidic pH compared to pH 7.4. In 

addition, labelled hIgG pre-incubated with Streptococcus protein G reduced IgG-FITC 

binding, clearly demonstrating Fc mediated binding at pH 5.5 (Fig. 9B). Furthermore, 

pre-incubation of PBMCs with the anti-FcRn preparation shows great impact on the pH 

dependent binding of both IgG (Fig. 9A) and HSA (Fig. 9C). Importantly, irrelevant goat 

IgG did not affect binding of either ligands.  
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      B.                                                          C.                      

 
 

 

                                                                                               

 

 

 

 

 

Figure 9. hFcRn-ligand inhibition analysis on PBMCs. (A) Binding of IgG-FITC 
alone or in the presence of goat IgG or polyclonal anti-FcRn followed by hIgG-FITC at 
pH 7.4 and pH 5.5. (B) Binding of IgG-FITC and IgG-FITC pre-incubated with 
Streptococcus protein G. (C) Binding of HSA-FITC alone or in the presence of goat IgG 
or polyclonal anti-FcRn followed by HSA-FITC at pH 7.4 and pH 5.5. The binding is 
expressed as mean fluorescence intensity (MFI). .  
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4.5 Human hepatocytes express FcRn mRNA 

 

        Expression and diverse functions of FcRn in different tissues is continually reported. 

To contribute to the understanding of how the receptor functions according to cell type, 

we investigated the expression of FcRn in human hepatocytes.  

        To investigate whether human hepatocytic cell lines (Hep-3B and Hep-G2) express 

specific mRNA for the hFcRn heavy chain, RT-PCR was performed. The monocytic U-

937 cell line was used as a positive control in addition to the housekeeping gene GAPDH 

that was used as an internal control in all reactions. First, reverse transcriptions were done 

on total RNA from the cells using anchored Oligo (dT)20 primer which enable synthesis 

of full-length cDNA, followed by PCR with primers specific for heavy chain. The PCR 

products were run on an agarose gel, and as shown in figure 10A, fragments were 

obtained from both hepatic cell lines and they migrated as expected bands of 1098 bp. To 

determine whether the PCR products were indeed amplified hFcRn heavy chain, the 

bands were excised and purified for sequencing. The PCR products sequenced (Appendix 

B) were identical to the previously determined cDNA sequence of hFcRn (GeneBank, 

NM 004107; 7). Furthermore, the mRNA for β2m was reverse transcribed and PCR 

amplified (Fig. 10B). The amplified fragments migrated as bands corresponding to the 

expected size of 360 bp. These results showed that hFcRn transcripts were expressed in 

human hepatocytes. 

       The hFcRn heavy chain cDNA in pcDNA3-(TM-hFcRn)-GST.Pcmv-beta2m-polyA 

vector was subcloned into fluorescent protein vectors. To show whether the constructs 

are functional, MDCK cell line stably expressing hβ2m transiently transfected with 

vectors encoding fluorescent proteins in N-terminal fusion with hFcRn heavy chain 

cDNA. Analysis of these cells by confocal microscopy showed FcRn expression and its 

distribution in edosomal compartments of the cells (Appendix C). 
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 Figure 10. Expression of the hFcRn heavy chain and hβ2m mRNA. RNA was 
reverse transcribed and PCRs were performed as described in material and methods. (A) 
The hFcRn heavy chain PCR products amplified from U-937 (Lane 1), Hep3B (Lane 2) 
and HepG2 (Lane 3). (B) The hβ2m PCR products from U-937 (Lane 1), Hep-3B (Lane 
2), Hep-G2 (Lane 3) and the pCDNA3-hβ2m vector (Lane 4). (C) The GAPDH PCR 
products amplified from U-937 (Lane 1), Hep-3B (Lane 2) and Hep-G2 (Lane 3). 
Amplified PCR products were run on 1 % agarose gel and stained with ethidium 
bromide. St. is standard molecular weight phixX174 DNA marker. The molecular sizes 
are indicated by arrows. 
 
 

4.6 Human hepatocytes express FcRn  

 

        Western immunoblotting was carried out on total lysates using the polyclonal anti-

hFcRn preparation. Figure 11A shows detection of bands corresponding to ~45 kDa in 

lysates from all cell lines. In addition, bands of ~12 kDa corresponding to hβ2m were 

detected. The protein bands are consistent with the calculated molecular weight of hFcRn 

heavy chain and hβ2m. ELISA analyses on total lysates also support the expression of 

both proteins (data not shown). Furthermore, Western immunoblotting of total protein 

isolated from human liver shows detectable expression of the both the hFcRn heavy chain 
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as well as the hβ2m subunit (Andersen et al; data not shown).  



 
 

       

       

   

ein lysates 

      Furthermore, flow cytometric analyses were performed to demonstrate surface 

  1          2   3         4  5            6 

                    45 kDa 

A. 

                                                                                                     

                                    B. 

                        

                                                                                                                           

1 2 3 

            12 kDa 

Figure 11. Expression of hFcRn. (A) Detection of hFcRn heavy chain in prot
from U-937 (Lane 1 and 2), Hep-3B (Lane 3 and 4) and Hep-G2 (Lane 5 and 6) cells by 
western immunoblotting. (B) Detection of hβ2m in protein lysates from U-937 (Lane 1), 
Hep-3B (Lane 2) and Hep-G2 (Lane 3) by western immunoblotting. Similar experiments 
repeated with identical results. 
 

  

expression of hFcRn using the goat anti-FcRn preparation. Figure 12 shows histograms 

for surface staining of Hep-3B (Fig. 12A) and Hep-G2 (Fig. 12B), and total hFcRn 

expression was verified after saponin treatment of Hep-3B (Fig. 12C) and Hep-G2 (Fig. 

12D). The presence of a shoulder seen for both hepatic cell lines at surface was detected 

in all experiments. The results clearly reveal the presence of the transmembrane hFcRn. 

Taken together, both FcRn subunits were shown to be expressed in the hepatic cell lines 

ensuring the expression of a complete heterodimeric transmembrane FcRn.  
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.                                                                              B.    

.                                                                             D. 

.7 Functional FcRn is expressed in human hepatocytes  

o investigate the functionality of FcRn expressed in human hepatocytes, a pH-

A

 

 

 

 

 

C

 

 

 

 

Figure 12. Expression and cellular distribution of FcRn in human hepatocytes. Cells 
were stained with biotinylated anti-FcRn followed by streptavdin-FITC and analysed by 
flow cytometry. Hep-3B cells surface stained (A) and total (B). Hep-G2 cells surface 
stained (C) and total (D). FcRn expression is shown as gray filled histograms, 
streptavidin-FITC and isotype (biotinylated goat IgG) controls as gray lined histograms. 
Histograms are given with ordinate indicating number of cells and abscissa indicating the 
fluorescence intensity. 
 
 

4

 

T

dependent binding assay was established. Total protein lysates were immunoprecipitated 

using hIgG covalently coupled to Sepharose 4B. Binding experiments were performed at 

pH 5.5 as well as at pH 8.0, all as described in material and methods. Eluted fractions 

were applied to reducing SDS-PAGE analysis followed by Western immunoblotting. 
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Figure 13 shows that hFcRn binds IgG at pH 5.5 but not at pH 8.0. The major bands 

correspond to ~ 45 kDa, which is in agreement with the expected size of the hFcRn heavy 

chain. In addition, hβ2m was co-eluted and detected as a band of ~12 kDa. Taken 

together, the data show that hFcRn is expressed by the hepatocytes as a heterodimeric 

molecule and is to binds IgG at pH 5.5 but not at pH 8. The results confirm the results 

from are similar with previous work that describes pH dependent binding of IgG to a 

receptor in rat neonatal enterocytes (45).  

                       

 
 

 Detection of pH-dependent FcRn binding to hIgG. 400-600 µg of total 

-          +      -        +       -       + 

+         -       +       -        +      - 
pH 5.5 

pH 8.0 

         1           2        3        4        5        6

45 kDa  

12 kDa  

      

 
Figure 13.
proteins were incubated with human IgG coupled Sepharose at 4ºC at pH 5.5 or pH 8.0 as 
described in materials and methods. The eluted fractions were subjected to 12 % SDS-
PAGE under reducing conditions. U-937 fractions from experiments performed at pH 5.5 
(lane 1) and pH 8.0 (lane 2). Hep-3B fractions from experiments performed at pH 5.5 
(lane 3) and pH 8.0 (lane 4). Hep-G2 fractions from experiments performed at pH 5.5 
(lane 5) and pH 8.0 (lane 6). Proteins were probed with goat anti-hFcRn heavy chain and 
rabbit anti-hβ2m antibodies followed by HRP-conjugated secondary antibodies. The 
location and size of the hFcRn heavy chain and hβ2m are indicated by arrows.   
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.8 Membrane-bound hFcRn binds both hIgG and HSA in a pH dependent manner 

   To explore IgG binding to surface expressed hFcRn, the expression profiles of 

To investigate whether the membrane-bound FcRn binds IgG in a pH dependent manner, 

4

 

  

classical Fcγ receptors had to be considered. Both hepatic cell lines were stained and data 

obtained showed expression of the low affinity binding FcγRII (CD32) but no evidence 

of FcγRI (CD64) and FcγRIII (CD16) expression (Fig.14).  

 

 
Figure 14. Expression of Fcγ receptors. Cells were stained with monoclonal antibodies 

A. B.

D. E. F.

C.

towards each Fcγ receptor as described in material and methods. Hep-3B cells surface 
stained for for FcγRI, FcγRII and FcγRIII (A, B and C). Hep-G2 cells surface stained for 
FcγRI, FcγRII and FcγRIII (D, E and F). Fcγ receptors are shown as gray filled 
histograms and controls (isotype and secondary antibodies) as unfilled histograms. 
Histograms are given with ordinate indicating number of cells and abscissa indicating the 
fluorescence intensity. 
 
 

cells were stained using hIgG-FITC followed by flow cytometry analyses. We found that 

Hep-3B showed increased binding of hIgG at pH 5.5 as compared to pH 7.4 (Fig.15A-B). 
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       To confirm selective ligand binding, cells were pre-incubated with unlabelled hIgG 

 A

 

 

 

 

 

 

 
 
Figure 15. FcRn ligands binding to Hep3B cells. (A) Binding of hIgG-FITC, Fab2 and 
mIgG2a (A) to Hep3B cells at pH 5.5 and at pH 7.4. (B) Binding of HSA at pH 5.5 and 
pH 7.4. The binding is expressed as mean fluorescence intensity (MFI). The experiments 
were repeated with similar results. 
 
 

  

and HSA. The results clearly demonstrate competitive binding by showing decreased 

binding of FITC conjugated ligands to Hep-3B (Fig.16A-B). Furthermore, cells were pre-

blocked with polyclonal anti-FcRn followed by staining with IgG-FITC and HSA-FITC. 

In addition, labelled hIgG pre-incubated with Streptococcus protein G resulted in reduced 

IgG-FITC binding, clearly demonstrating Fc mediating binding at pH 5.5 (Fig. 16A). 

Figure 15A-B shows that targeting of hFcRn with anti-FcRn inhibits functional binding 

of the ligands. Thus, the increased binding shown at acidic pH is related to specific FcRn 

binding. Similar results were obtained from experiments performed on the Hep-G2 cell 

line (data not shown).    
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A.                                                                           B.  

 

 

 

 

 

 

 

Figure 16. hFcRn-ligand inhibition analysis on Hep-3B cells. (A) Hep-3B cells stained 
with IgG-FITC alone or stained after pre-incubation with polyclonal anti-FcRn or in 
presence of protein G. (B) Hep-3B cells stained with HSA-FITC alone or stained after 
pre-incubation with polyclonal anti-FcRn. The binding is expressed as mean fluorescence 

intensity (MFI). The experiments were repeated with similar results.  
                                             

        To determine whether IgG and HSA bind to membrane-bound hFcRn 

simultaneously, cells were stained with either IgG-FITC or HSA-FITC alone or 

simultaneously at pH 5.5. Figure 17 shows that double staining of Hep-3B resulted in an 

additive binding effect compared with individual staining. 

 

 

 

84 

  
                                                                               
                                                                                                                                   
  

 
 



  

 

Figure 17. The hIgG and HSA bind to membrane bound hFcRn independently of 
each other. Hep-3B cells were surface stained with HSA-FITC and hIgG-FITC 
simultaneously. HSA-FITC, hIgG-FITC and together are shown as white, gray and black 
filled histograms, respectively. Histograms are given with ordinate indicating number of 
cells and abscissa indicating the fluorescence intensity. 
 
 
4.9 Anti-inflammatory substances modulate the expression of the hFcRn 

 

         Previous data have shown down regulation of rat FcRn three weeks postnatally (43, 

44). The molecular mechanism is not fully understood, but exposure to exogenous 

glucocorticoides and thyroxine hormone causes inhibition of transepitelial transport of 

orally administered IgG. These classes of substances are widely used as anti-

inflammatory agents in first-line therapy of persistent asthma, inflammatory and immune 

diseases (48). To assess whether glucocorticoides and L-thyroxine influence IgG transport 

by regulation of hFcRn expression, the monocytic U-937 cell line in addition to the 

hepatic cell lines (Hep-3B and Hep-G2) were treated with different naturally occurring 

hormones (corticosterone and L-thyroxine) as well as a synthetic version (prednisolone). 

Cells were given 0.010-1 μM of each substance and three days post treatment, and the 

hFcRn expression was assessed by flow cytometric analyses. The results clearly 

demonstrate decreased receptor surface expression on both U-937 (Fig. 18A) and Hep-3B 

(Fig. 18B) in a concentration dependent manner for all substances given, compared to 

untreated cells. In addition, two other clinically used anti-inflammatory synthetic versions 

(dexamethasone and beclomethasone dipropionate) were tested and shown to 
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downregulate hFcRn in a similar manner (data not shown). Similar results were also 

obtained with the Hep-G2 cell line (data not shown). Furthermore, the effect on total 

hFcRn expression was investigated using 1 μM of the given substance. Three days post 

treatment cells were permeablized followed by staining of hFcRn. The data obtained 

show a dramatic downregulation of receptor expression in U-937 (Fig. 18C) and Hep-3B 

(Fig. 18D) for all substances tested. These data may contribute to the clinical 

understanding of anti-inflammatory treatment, especially in regard to critical regulation 

of IgG and HSA homeostasis. 
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Figure 18. Effects of anti-inflammatory substances on FcRn expression. (A) FcRn 
surface expression in U-937 cells after treating with 0.01 μM, 0.1 μM, and 1.0 µM of L-
thyroxine (LT), corticosterone (CT) or predisolone (PD). (B) Total FcRn expression in U-
937 cells after treating with 1 µM L-thyroxine, corticosterone and predisolone. (C) FcRn 
surface expression in Hep-3B cells after treating with 0.01 μM, 0.1 μM, and 1.0 µM of L-
thyroxine (LT), corticosterone (CT) and predisolone (PD). (D) Total FcRn expression in 
Hep-3B cells after treating with 1 µM L-thyroxine, corticosterone and predisolone. The 
FcRn expression is shown as mean fluorescence intensity (MFI) three days post 
treatment.   
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5.  Discussion 

 

         Originally, FcRn was characterized functionally as the receptor that transfers IgG in 

the maternal milk from the intestine of neonatal rats to the blood stream. This is 

paralleled by transfer of IgG to fetus by transplacental transport in humans. Subsequent 

studies have revealed expression of the receptor and important functions beyond 

neonatal/fetal life in adult mammals including human. In this context, there is no report 

on FcRn expression and functions in human hepatocytes and limited data in immune 

cells. In this study, we have shown FcRn expression in three human monocytic U-937, 

THP-1 and K-562 cells, and PBMCs. Our studies, for the first time demonstrate that 

FcRn is expressed by human hepatic Hep-3B and Hep-G2 cells. We also found that the 

hepatic cells express FcγRII. Whether it is isoform A or B and its function remains be 

described. 

        It has been described that FcRn binds IgG in the slightly acidic pH of the intestinal 

lumen of neonatal rodent, and that IgG is released into the blood stream where the pH is 

basic (pH 7.4) (44). In our investigations, we found that binding of human monocytic cells 

and hepatocytes to hIgG and HSA display complete pH-dependence, showing increased 

binding at pH 5.5. In this study, we demonstrate that pre-incubation of cells with the 

polyclonal anti-FcRn preparation from goat blocked the binding of IgG as well as HSA 

observed at pH 5.5. This is important, because goat IgGs does not bind to human Fcγ 

receptors and hFcRn shows no binding to goat IgGs. Furthermore, irrelevant goat IgG did 

not affect the binding. Therefore, it can be concluded that the increased binding of hIgG 

and HSA to membrane-bound hFcRn is only due to FcRn. In light of these observations, 

the possibility of FcRn blockade by anti-FcRn has important therapeutic implications in 

humans. FcRn blockade by intravenous Ig (IVIG) significantly increases the catabolism 

of serum IgG in mice (45). Studies on the therapeutic effects of an anti-rat FcRn mAb, 

1G3, in two rat models of myasthenia gravis resulted in dose-dependent amelioration of 

the disease symptoms after passive experimental disease was induced by administration 

of an anti-acetylcholine receptor (AChR) mAb (46). The effect of 1G3 was also studied in 

an active model of experimental autoimmune myasthenia gravis in which rats were 
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immunized with AChR, and again treatment with 1G3 significantly reduced the severity 

of the disease symptoms as well as the levels of total IgG and anti-AChR IgG relative to 

untreated animals (46). 

        In addition, we report for the first time the pH dependent binding of HSA to 

membrane bound FcRn. Simultaneous staining of both ligands resulted in an additive 

binding effect compared with individual staining, which may indicate that both ligands 

bind independently to hFcRn. These data are in agreement with data obtained on 

biochemical studies performed on recombinant molecules (26, 28, 29).   

         In our studies, FcRn was found both intracellularly and on the cell surface of the 

monocytic cells, PBMCs and hepatocytes. The expression of FcRn on the surface may 

indicate a function of FcRn under physiological condition which involves delivery of IgG 

and HSA from the intracellular to extracellular milieu as protection from lysosomal 

degradation. Alternatively, the role of the surface FcRn may be in receptor mediated 

endocytosis, where FcRn may bind its ligands at acidic pH and the FcRn-ligand 

complexes delivered to acidic endosomal compartments in the cell. This is possible for 

FcRn expressed on the surface of immune cells and might have a role in pathological 

conditions such as tissue inflammation (33) and tumor infiltration (34, 35), where acidic 

extracellular conditions are created by alterations in tissue metabolism. The extracellular 

pH within solid tumors has been observed to be below physiological levels, ranging from 

5.6-7.7 (34) which includes the pH optimum of FcRn binding. Macrophages are recruited 

in the earliest phases of inflammatory condition such as inflammatory bowel disease (36) 

and they widely infiltrate to solid tumor tissues (37).  

        Where the pH outside the cell is neutral, IgG and HSA are initially internalized by 

endocytosis and FcRn binding occurs at low pH in intracellular compartments. Unbound 

IgG and HSA are delivered to the default lysosomal pathway and degraded. In contrast, 

the bound IgG and HSA to FcRn are protected and recycled back into surrounding tissue 

fluid. The fact that most of the receptor is found intracellularly, and that the steady state 

level of surface FcRn is very low suggests rapid recycling or that most of FcRn remain 

inside vesicles. Both immune cells and hepatocytes harbour Fcγ receptors for immune 

complexes, and these may deliver IgG to acidic compartments. Regarding albumin 
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uptake by receptor mediated mechanism, little is known about albumin receptors on such 

cells. None is characterized on immune cells, and a receptor for glutaraldehyde treated 

albumin is implicated in hepatitis B virus infection (38, 39, 40, 41). 

        FcRn was shown to be functionally expressed on the surface of adult rat hepatocytes 

and hypothesized to mediate transport of IgG from serum to bile (13). Rather, FcRn in 

hepatocytes has been implicated in protecting IgG from catabolism (32). Here, we confirm 

that the expression of FcRn by hepatocytes both on the surface and intracellularly may 

indicate a role in protection of IgG and HSA from catabolism and the maintenance of IgG 

and HSA levels in the blood. Therefore, the expression of FcRn on the cell surface of 

hepatocytes may reflect highly active sorting of IgG and HSA by FcRn from the 

endocytic pathway to the cell surface. Human hepatocytes have similar plasma fluid 

exposure as that of vascular endothelial cells which are the cells suggested protecting IgG 

from degradation (11). Histologically, human hepatocytes are in direct contact with huge 

amount of plasma fluid for the reason that separation from the blood stream is by 

discontinuous or fenestrated sinusoidal capillary that lack basement membrane. The 

human liver has two blood supplies and at any one time, as much as 10% of all the blood 

in the body is present in the liver. This anatomical context points to hepatocytes as the 

place where major catabolism of plasma proteins like IgG and albumin can occur. 

        Interestingly, both hepatocytes and hepatitis B virus bind albumin. Hepatitis B virus 

is known to infect hepatocytes and the infectivity of the virus is facilitated by the 

presence of surface antigen associated albumin binding protein. A receptor for 

glutaraldehyde treated albumin is found on hepatocytes (38, 39, 40, 41), and liver the only 

place where albumin biosynthesis takes place. Specific albumin receptors exist and are 

characterized as glycoproteins (42), however, its/their exact molecular identity remains to 

be elucidated. 

         Previous data on neonatal rats have shown downregulation of rat FcRn three weeks 

postnatal life (44). Exogenous glucocorticoids and thyroxine hormone have shown 

inhibition of transepithelial transport of orally administered IgG (43). Whether these 

effects are due to decreased FcRn expression has not thoroughly been investigated. 

        To address the question whether glucocorticoids, and L-thyroxine could influence 
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the hFcRn expression, the monocytic U-937 cells in addition to the hepatic Hep-3B and 

Hep-G2 cells were treated with different naturally occurring hormones (corticosterone 

and L-thyroxine) as well as a synthetic ones such as prednisolone, dexamethasone and 

beclomethasone dipropionate. The results clearly demonstrate decreased receptor 

expression on human U-937, Hep-3B and Hep-G2 cells in a concentration dependent 

manner for substances tested, compared to the untreated cells. In the present study, the 

sensitivity of the substances used and the time that needs to produce the effect were not 

considered. However, the results correlate well with clinical and experimental 

observations. Patients on glucocorticoid therapy often have decreased serum IgG 

concentration (49). This clinical observation has not been addressed in relation to factors 

that maintain IgG serum levels. Different factors may contribute to this observation but 

under the condition that FcRn expression is diminished, it is possible that IgG is neither 

transported nor protected from degradation. This is consistent with the previous report 

that hydrocortisone treatment results in hypogammaglobulinemia. The ability of 

glucocorticoids to decrease FcRn expression at the transcriptional level has been 

suggested (43) even though the exact mechanism is not understood. 

        Regarding HSA, there is no report on the correlation of glucocorticoids therapy and 

decreased serum concentration. But, we postulate that identical mechanism may operate 

given that FcRn binds in its function both to IgG and HSA in a similar fashion. 

        The levels of sensitivity, time period for action required, and the exact mechanisms 

involved in downregulation of FcRn expression and its correlation to reduced serum 

concentration of IgG and HSA need further investigation. 

         Such data may contribute to the clinical understanding of anti-inflammatory 

treatments, especially with regard to the regulation of IgG and HSA homeostasis. 

 

 

 

 

91 

  
                                                                               
                                                                                                                                   
  

 
 



REFERENCES 

 

1. Rodewald, R. pH-dependent binding of immunoglobulins to intestinal cells of 
the neonatal rat. The Journal of cell biology 71, 666-669 (1976). 

 
2. Rodewald, R. & Abrahamson, D.R. Receptor-mediated transport of IgG 

across the intestinal epithelium of the neonatal rat. Ciba Foundation 
symposium, 209-232 (1982). 

 
3. Roberts, D.M., Guenthert, M. & Rodewald, R. Isolation and characterization 

of the Fc receptor from the fetal yolk sac of the rat. The Journal of cell 
biology 111, 1867-1876 (1990). 

 
4. Kristoffersen, E.K. & Matre, R. Co-localization of beta 2-microglobulin and 

IgG in human placental syncytiotrophoblasts. European journal of 
immunology 26, 505-507 (1996). 

 
5. Leach, J.L., Sedmak, D.D., Osborne, J.M., Rahill, B., Lairmore, M.D. & 

Anderson, C.L. Isolation from human placenta of the IgG transporter, FcRn, 
and localization to the syncytiotrophoblast: implications for maternal-fetal 
antibody transport. J Immunol 157, 3317-3322 (1996). 

 
6. Simister, N.E. & Story, C.M. Human placental Fc receptors and the 

transmission of antibodies from mother to fetus. Journal of reproductive 
immunology 37, 1-23 (1997). 

 
7. Story, C.M., Mikulska, J.E. & Simister, N.E. A major histocompatibility 

complex class I-like Fc receptor cloned from human placenta: possible role in 
transfer of immunoglobulin G from mother to fetus. The Journal of 
experimental medicine 180, 2377-2381 (1994). 

 
8. Praetor, A. & Hunziker, W. beta(2)-Microglobulin is important for cell 

surface expression and pH-dependent IgG binding of human FcRn. Journal 
of cell science 115, 2389-2397 (2002). 

 
9.    Zhu, X., Peng, J., Raychowdhury, R., Nakajima, A., Lencer, W.I. & 

Blumberg, R.S. The heavy chain of neonatal Fc receptor for IgG is 
sequestered in endoplasmic reticulum by forming oligomers in the absence of 
beta2-microglobulin association. The Biochemical journal 367, 703-714 
(2002). 

 
10. Brambell, F.W., Hemmings, W.A. & Morris, I.G. A Theoretical Model of 

Gamma-Globulin Catabolism. Nature 203, 1352-1354 (1964). 

92 

  
                                                                               
                                                                                                                                   
  

 
 



 
11. Borvak, J., Richardson, J., Medesan, C., Antohe, F., Radu, C., Simionescu, 

M., Ghetie, V. & Ward, E.S. Functional expression of the MHC class I-
related receptor, FcRn, in endothelial cells of mice. International immunology 
10, 1289-1298 (1998). 

 
12. Ghetie, V., Hubbard, J.G., Kim, J.K., Tsen, M.F., Lee, Y. & Ward, E.S. 

Abnormally short serum half-lives of IgG in beta 2-microglobulin-deficient 
mice. European journal of immunology 26, 690-696 (1996). 

 
13. Blumberg, R.S., Koss, T., Story, C.M., Barisani, D., Polischuk, J., Lipin, A., 

Pablo, L., Green, R. & Simister, N.E. A major histocompatibility complex 
class I-related Fc receptor for IgG on rat hepatocytes. The Journal of clinical 
investigation 95, 2397-2402 (1995). 

 
14. Yoshida, M., Claypool, S.M., Wagner, J.S., Mizoguchi, E., Mizoguchi, A., 

Roopenian, D.C., Lencer, W.I. & Blumberg, R.S. Human neonatal Fc 
receptor mediates transport of IgG into luminal secretions for delivery of 
antigens to mucosal dendritic cells. Immunity 20, 769-783 (2004). 

 
15. Yoshida, M., Masuda, A., Kuo, T.T., Kobayashi, K., Claypool, S.M., 

Takagawa, T., Kutsumi, H., Azuma, T., Lencer, W.I. & Blumberg, R.S. IgG 
transport across mucosal barriers by neonatal Fc receptor for IgG and 
mucosal immunity. Springer seminars in immunopathology 28, 397-403 
(2006). 

 
16. Harris, N.L., Spoerri, I., Schopfer, J.F., Nembrini, C., Merky, P., Massacand, 

J., Urban, J.F., Jr., Lamarre, A., Burki, K., Odermatt, B., Zinkernagel, R.M. 
& Macpherson, A.J. Mechanisms of neonatal mucosal antibody protection. J 
Immunol 177, 6256-6262 (2006). 

 
17. Ghetie, V. & Ward, E.S. Multiple roles for the major histocompatibility 

complex class I- related receptor FcRn. Annual review of immunology 18, 
739-766 (2000). 

 
18. Ward, E.S., Zhou, J., Ghetie, V. & Ober, R.J. Evidence to support the 

cellular mechanism involved in serum IgG homeostasis in humans. 
International immunology 15, 187-195 (2003). 

 
19. Kim, J.K., Tsen, M.F., Ghetie, V. & Ward, E.S. Localization of the site of the 

murine IgG1 molecule that is involved in binding to the murine intestinal Fc 
receptor. European journal of immunology 24, 2429-2434 (1994). 

 
20. Burmeister, W.P., Gastinel, L.N., Simister, N.E., Blum, M.L. & Bjorkman, 

P.J. Crystal structure at 2.2 A resolution of the MHC-related neonatal Fc 

93 

  
                                                                               
                                                                                                                                   
  

 
 



receptor. Nature 372, 336-343 (1994). 
 
21. Medesan, C., Matesoi, D., Radu, C., Ghetie, V. & Ward, E.S. Delineation of 

the amino acid residues involved in transcytosis and catabolism of mouse 
IgG1. J Immunol 158, 2211-2217 (1997). 

 
22. Kim, J.K., Firan, M., Radu, C.G., Kim, C.H., Ghetie, V. & Ward, E.S. 

Mapping the site on human IgG for binding of the MHC class I-related 
receptor, FcRn. European journal of immunology 29, 2819-2825 (1999). 

 

23. Martin, W.L., West, A.P., Jr., Gan, L. & Bjorkman, P.J. Crystal structure at 
2.8 A of an FcRn/heterodimeric Fc complex: mechanism of pH-dependent 
binding. Molecular cell 7, 867-877 (2001). 

 
24. Ober, R.J., Radu, C.G., Ghetie, V. & Ward, E.S. Differences in promiscuity 

for antibody-FcRn interactions across species: implications for therapeutic 
antibodies. International immunology 13, 1551-1559 (2001). 

 
25. Zhou, J., Johnson, J.E., Ghetie, V., Ober, R.J. & Ward, E.S. Generation of 

mutated variants of the human form of the MHC class I-related receptor, 
FcRn, with increased affinity for mouse immunoglobulin G. Journal of 
molecular biology 332, 901-913 (2003). 

 
26. Chaudhury, C., Mehnaz, S., Robinson, J.M., Hayton, W.L., Pearl, D.K., 

Roopenian, D.C. & Anderson, C.L. The major histocompatibility complex-
related Fc receptor for IgG (FcRn) binds albumin and prolongs its lifespan. 
The Journal of experimental medicine 197, 315-322 (2003). 

 
27. Kim, J., Bronson, C.L., Hayton, W.L., Radmacher, M.D., Roopenian, D.C., 

Robinson, J.M. & Anderson, C.L. Albumin turnover: FcRn-mediated 
recycling saves as much albumin from degradation as the liver produces. 
American journal of physiology 290, G352-360 (2006). 

 
28. Chaudhury, C., Brooks, C.L., Carter, D.C., Robinson, J.M. & Anderson, 

C.L. Albumin binding to FcRn: distinct from the FcRn-IgG interaction. 
Biochemistry 45, 4983-4990 (2006). 

 
29. Andersen, J.T., Dee Qian, J. & Sandlie, I. The conserved histidine 166 

residue of the human neonatal Fc receptor heavy chain is critical for the pH-
dependent binding to albumin. European journal of immunology 36, 3044-
3051 (2006). 

 
30. Zhu, X., Meng, G., Dickinson, B.L., Li, X., Mizoguchi, E., Miao, L., Wang, 

Y., Robert, C., Wu, B., Smith, P.D., Lencer, W.I. & Blumberg, R.S. MHC 

94 

  
                                                                               
                                                                                                                                   
  

 
 



class I-related neonatal Fc receptor for IgG is functionally expressed in 
monocytes, intestinal macrophages, and dendritic cells. J Immunol 166, 3266-
3276 (2001). 

 
31. Vidarsson, G., Stemerding, A.M., Stapleton, N.M., Spliethoff, S.E., Janssen, 

H., Rebers, F.E., de Haas, M. & van de Winkel, J.G. FcRn: an IgG receptor 
on phagocytes with a novel role in phagocytosis. Blood 108, 3573-3579 (2006). 

 
 
32. Telleman, P. & Junghans, R.P. The role of the Brambell receptor (FcRB) in 

liver: protection of endocytosed immunoglobulin G (IgG) from catabolism in 
hepatocytes rather than transport of IgG to bile. Immunology 100, 245-251 
(2000). 

 
33. Edlow, D.W. & Sheldon, W.H. The pH of inflammatory exudates. 

Proceedings of the Society for Experimental Biology and Medicine. Society 
for Experimental Biology and Medicine (New York, N.Y 137, 1328-1332 
(1971). 

 
34. Tannock, I.F. & Rotin, D. Acid pH in tumors and its potential for 

therapeutic exploitation. Cancer research 49, 4373-4384 (1989). 
 
35. Gerweck, L.E. & Seetharaman, K. Cellular pH gradient in tumor versus 

normal tissue: potential exploitation for the treatment of cancer. Cancer 
research 56, 1194-1198 (1996). 

 
35. Tannock, I.F. & Rotin, D. Acid pH in tumors and its potential for 

therapeutic exploitation. Cancer research 49, 4373-4384 (1989). 
 
36. Brandtzaeg, P., Haraldsen, G. & Rugtveit, J. Immunopathology of human 

inflammatory bowel disease. Springer seminars in immunopathology 18, 555-
589 (1997). 

 
37. Martinet, N., Charles, T., Vaillant, P., Vignaud, J.M., Lambert, J. & 

Martinet, Y. Characterization of a tumor necrosis factor-alpha inhibitor 
activity in cancer patients. American journal of respiratory cell and molecular 
biology 6, 510-515 (1992). 

 
38. Lenkei, R., Onica, D. & Ghetie, V. Receptors for polymerized albumin on 

liver cells. Experientia 33, 1046-1047 (1977). 
 
39. Trevisan, A., Gudat, F., Guggenheim, R., Krey, G., Durmuller, U., Luond, 

G., Duggelin, M., Landmann, J., Tondelli, P. & Bianchi, L. Demonstration of 
albumin receptors on isolated human hepatocytes by light and scanning 
electron microscopy. Hepatology (Baltimore, Md 2, 832-835 (1982). 

95 

  
                                                                               
                                                                                                                                   
  

 
 



 
40. Wright, T.L., Lysenko, N., Ockner, R.K. & Weisiger, R.A. Interaction of 

natural and synthetic albumin polymers with hepatocytes. Hepatology 
(Baltimore, Md 7, 294-301 (1987). 

41. Yu, M.W., Finlayson, J.S. & Shih, J.W. Interaction between various 
polymerized human albumins and hepatitis B surface antigen. Journal of 
virology 55, 736-743 (1985). 

 
42. Thung, S.N. & Gerber, M.A. Albumin binding sites of human hepatocytes. 

Liver 3, 290-294 (1983). 
 
43. Martin, M.G., Wu, S.V. & Walsh, J.H. Hormonal control of intestinal Fc 

receptor gene expression and immunoglobulin transport in suckling rats. The 
Journal of clinical investigation 91, 2844-2849 (1993). 

 
 
44. Martin, M.G., Wu, S.V. & Walsh, J.H. Ontogenetic development and 

distribution of antibody transport and Fc receptor mRNA expression in rat 
intestine. Digestive diseases and sciences 42, 1062-1069 (1997). 

 

45. Simister, N.E. & Rees, A.R. Isolation and characterization of an Fc receptor 
from neonatal rat small intestine. European journal of immunology 15, 733-
738 (1985). 

 
46. Li, N., Zhao, M., Hilario-Vargas, J., Prisayanh, P., Warren, S., Diaz, L.A., 

Roopenian, D.C. & Liu, Z. Complete FcRn dependence for intravenous Ig 
therapy in autoimmune skin blistering diseases. The Journal of clinical 
investigation 115, 3440-3450 (2005). 

 
47. Liu, L., Garcia, A.M., Santoro, H., Zhang, Y., McDonnell, K., Dumont, J. & 

Bitonti, A. Amelioration of experimental autoimmune myasthenia gravis in 
rats by neonatal FcR blockade. J Immunol 178, 5390-5398 (2007). 

 

48. Cable, B.B., Wassmuth, Z., Mann, E.A., Hommer, D., Connely, G., Klem, C., 
Quance-Fitch, F.J. & Bolger, W.E. The effect of corticosteroids in the   
treatment of experimental sinusitis. American journal of rhinology 14, 217-
222 (2000). 

 

49.      Butler, W.T., and R. D. Rossen. 1973. Effects of corticosteroids on immunity 
in man.I. Decreased serum IgG concentration caused by 3 or 5 days of hifh 
doses of methylprednisolone. J. Clin. Invest. 52:2629.  

96 

  
                                                                               
                                                                                                                                   
  

 
 



 

Appendix A.   
 
The functional integrity of FITC conjugated hIgG and HSA were tested by surface 
plasmon resonance.  
 
Recombinant shFcRn was immobilized on a CM5 sensor chip by amine coupling. IgG-
FITC and HSA-FITC were injected at pH 6.0 followed by injection of a buffer with pH 
7.4. Representative sensorgrams show that IgG-FITC (1) and HSA-FITC (2) bind FcRn 
in a pH dependent manner, binding at pH 6.0 and release at pH 7.4. 
 
 
 
          1. 
 
              
 
 
 
 
 
 
 
 
 
 
 
 
          2. 
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Appendix B. 
 
Sequence of transmembrane (TM) human FcRn isolated from the hepatic HepG2 
cell line: 
  
Template: pcDNA3-TM hFcRn-GST-Pcmv-β2m-polyA 
Primer: FcRn primer-2926 and GST-rev (custom designed by GATC) 
Total length: 1098 nucleotides 
 
GATC Gmbh, Germany, performed the sequencing reactions and the results are given 
below with CLUSTAL W (1.83) multiple sequence alignment. 
In the alignment: “Human” stands for the published cDNA sequence of hFcRn  
(GeneBank, NM 004107). The isolated TM hFcRn cDNA from HepG2 cells is aligned. 
The sequences are 100% identical. The start codons (ATG) are shown in bold and the 
stop codons (TGA) are underlined.  
  
Human       ATGGGGGTCCCGCGGCCTCAGCCCTGGGCGCTGGGGCTCC 40 
HepG2       ATGGGGGTCCCGCGGCCTCAGCCCTGGGCGCTGGGGCTCC 40                  
            **************************************** 
Human       TGCTCTTTCTCCTTCCTGGGAGCCTGGGCGCAGAAAGCCA 80                  
HepG2       TGCTCTTTCTCCTTCCTGGGAGCCTGGGCGCAGAAAGCCA 80                  
            ****************************************       
Human       CCTCTCCCTCCTGTACCACCTTACCGCGGTGTCCTCGCCT 120  
HepG2       CCTCTCCCTCCTGTACCACCTTACCGCGGTGTCCTCGCCT 120 
            **************************************** 
Human       GCCCCGGGGACTCCTGCCTTCTGGGTGTCCGGCTGGCTGG 160 
HepG2       GCCCCGGGGACTCCTGCCTTCTGGGTGTCCGGCTGGCTGG 160 
            ****************************************                     
Human       GCCCGCAGCAGTACCTGAGCTACAATAGCCTGCGGGGCGA 200 
HepG2       GCCCGCAGCAGTACCTGAGCTACAATAGCCTGCGGGGCGA 200 
            **************************************** 
Human       GGCGGAGCCCTGTGGAGCTTGGGTCTGGGAAAACCAGGTG 240 
HepG2       GGCGGAGCCCTGTGGAGCTTGGGTCTGGGAAAACCAGGTG 240 
            **************************************** 
Human       TCCTGGTATTGGGAGAAAGAGACCACAGATCTGAGGATCA 280 
HepG2       TCCTGGTATTGGGAGAAAGAGACCACAGATCTGAGGATCA 280 
            **************************************** 
Human       AGGAGAAGCTCTTTCTGGAAGCTTTCAAAGCTTTGGGGGG 320 
HepG2       AGGAGAAGCTCTTTCTGGAAGCTTTCAAAGCTTTGGGGGG 320 
            **************************************** 
Human       AAAAGGTCCCTACACTCTGCAGGGCCTGCTGGGCTGTGAA 360 
HepG2       AAAAGGTCCCTACACTCTGCAGGGCCTGCTGGGCTGTGAA 360 
            **************************************** 
Human       CTGGGCCCTGACAACACCTCGGTGCCCACCGCCAAGTTCG 400 
HepG2       CTGGGCCCTGACAACACCTCGGTGCCCACCGCCAAGTTCG 400 
            **************************************** 
Human       CCTGAACGGCGAGGAGTTCCATGAATTTCGACCTCAAGCA 440 
HepG2       CCTGAACGGCGAGGAGTTCCATGAATTTCGACCTCAAGCA 440 
            **************************************** 
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Human       GGGCACCTGGGGTGGGGACTGGCCCGAGGCCCTGGCTATC 480 
HepG2       GGGCACCTGGGGTGGGGACTGGCCCGAGGCCCTGGCTATC 480  
            **************************************** 
Human       AGTCAGCGGTGGCAGCAGCAGGACAAGGCGGCCAACAAGG 520 
HepG2       AGTCAGCGGTGGCAGCAGCAGGACAAGGCGGCCAACAAGG 520 
            **************************************** 
Human       AGCTCACCTTCCTGCTATTCTCCTGCCCGCACCGCCTGCG 560 
HepG2       AGCTCACCTTCCTGCTATTCTCCTGCCCGCACCGCCTGCG 560 
            **************************************** 
Human       GGAGCACCTGGAGAGGGGCCGCGGAAACCTGGAGTGGAAG 600 
HepG2       GGAGCACCTGGAGAGGGGCCGCGGAAACCTGGAGTGGAAG 600 
            ****************************************                       
Human       GAGCCCCCCTCCATGCGCCTGAAGGCCCGACCCAGCAGCC 640 
HepG2       GAGCCCCCCTCCATGCGCCTGAAGGCCCGACCCAGCAGCC 640 
            **************************************** 
Human       CTGGCTTTTCCGTGCTTACCTGCAGCGCCTTCTCCTTCTA 680  
HepG2       CTGGCTTTTCCGTGCTTACCTGCAGCGCCTTCTCCTTCTA 680 
            **************************************** 
Human       CCCTCCGGAGCTGCAACTTCGGTTCCTGCGGAATGGGCTG 720 
HepG2       CCCTCCGGAGCTGCAACTTCGGTTCCTGCGGAATGGGCTG 720 
            **************************************** 
Human       GCCGCTGGCACCGGCCAGGGTGACTTCGGCCCCAACAGTG 760 
HepG2       GCCGCTGGCACCGGCCAGGGTGACTTCGGCCCCAACAGTG 760 
            **************************************** 
Human       ACGGATCCTTCCACGCCTCGTCGTCACTAACAGTCAAAAG 800 
HepG2       ACGGATCCTTCCACGCCTCGTCGTCACTAACAGTCAAAAG 800 
            **************************************** 
Human       TGGCGATGAGCACCACTACTGCTGCATTGTGCAGCACGCG 840 
HepG2       TGGCGATGAGCACCACTACTGCTGCATTGTGCAGCACGCG 840 
            ****************************************                 
Human       GGGCTGGCGCAGCCCCTCAGGGTGGAGCTGGAATCTCCAG 880 
HepG2       GGGCTGGCGCAGCCCCTCAGGGTGGAGCTGGAATCTCCAG 880 
            **************************************** 
Human       CCAAGTCCTCCGTGCTCGTGGTGGGAATCGTCATCGGTGT 920 
HepG2       CCAAGTCCTCCGTGCTCGTGGTGGGAATCGTCATCGGTGT 920 
            **************************************** 
Human       CTTGCTACTCACGGCAGCGGCTGTAGGAGGAGCTCTGTTG 960 
HepG2       CTTGCTACTCACGGCAGCGGCTGTAGGAGGAGCTCTGTTG 960 
            ****************************************                
Human       TGGAGAAGGATGAGGAGTGGGCTGCCAGCCCCTTGGATCT 1000 
HepG2       TGGAGAAGGATGAGGAGTGGGCTGCCAGCCCCTTGGATCT 1000 
            **************************************** 
Human       CCCTTCGTGGAGACGACACCGGGGTCCTCCTGCCCACCCC 1040 
HepG2       CCCTTCGTGGAGACGACACCGGGGTCCTCCTGCCCACCCC 1040 
            **************************************** 
Human       AGGGGAGGCCCAGGATGCTGATTTGAAGGATGTAAATGTG 1080 
HepG2       AGGGGAGGCCCAGGATGCTGATTTGAAGGATGTAAATGTG 1080 
            ****************************************  
Human       ATTCCAGCCACCGCCTGA 1098  
HepG2       ATTCCAGCCACCGCCTGA 1098 
            ******************  
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 Appendix C. 
 Transient transfection of MDCK cells expressing hβ2m with fluorescent protein 

vectors.  

 
The MDCK cell line stably expressing hβ2m was transiently transfected with vectors 
encoding fluorescent proteins in N-terminal fusion with the hFcRn heavy chain 
cDNA. The cells were examined with confocal microscope. 
 
1. pEGFP-N1-TM hFcRn is transmembrane human FcRn in N-terminal fusion with 

green fluorescent protein (GFP) gene in pEGFP-N1 vector. Deep green staining 
shows FcRn distribution in edosomal compartments. 

2. pREP-N1-TM hFcRn is transmembrane human FcRn in N-terminal fusion with 
red fluorescent protein (RFP) gene in pRFP-N1 vector. Deep red staining shows 
FcRn distribution in endosomal compartments. 

 
     Nucleus/DNA was stained blue with Hoechst 

 

 

1.                                                           2. 

pEGFP-N1- TM hFcRn 
 

pRFP-N1-TM hFcRn 
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