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SUMMARY 

 

Mesenchymal stem cells (MSCs) derived from adipose tissue are multipotent stem cells able 

to give rise into multiple cell types, not only of the mesodermal lineage, but also of the 

neuroectodermal lineage. In this study, we show that there is an epigenetic basis related to 

the capacity of adipose tissue stem cells (ASCs) to differentiate towards the neurogenic 

pathway. Neurogenic differentiation was induced by a step of mitogenic stimulation (step 1), 

followed by neurogenic induction (step 2), and shown at the gene and protein expression 

levels. Nestin has been extensively used as a marker for neurogenesis. The DNA 

methylation status of several regions of the nestin (NES) gene, including the promoter, a 

muscle-specific enhancer in the first intron, and a neural enhancer in the second intron, was 

determined by bisulphite genomic sequencing prior to and after induction of proliferation 

(step 1) and neurogenic differentiation (step 2). There was a global demethylation of the 

second intron upon proliferation induction and this was followed by a strong upregulation of 

nestin expression at the mRNA and protein level. We observed re-methylation of these 

regions after induction of neurogenic differentiation in vitro, and that was accompanied by a 

steep decline in nestin expression at the mRNA and protein level. These data are consistent 

with nestin being a marker of early neurogenesis. Analysis of post-translational histone 

modifications by chromatin immunoprecipitation reveals dynamic changes at the NES locus 

and on the promoter of a housekeeping gene (GAPDH) associated with step 1 and step 2. 

Our data suggest an epigenetic ‘priming’ of ASCs (at least at the NES locus) towards 

neurogenic differentiation, which is primarily elicited by mitogenic stimulation. 

 

 

 

 



 
8 

INTRODUCTION 

 

1. STEM CELLS 

Stem cells are unspecialized cells which have the ability to replenish themselves (self-renew) 

and can give rise to one or more specialized cell types (differentiate). Stem cells vary in their 

differentiation capacity and can be classified according to their grade of plasticity as 

totipotent, pluripotent, multipotent and unipotent. As they differentiate, their differentiation 

potential becomes more restricted (Fig. I-1). Totipotent stem cells have the biggest versatility 

from all the other stem cell types. In mammals, the fertilized egg and up to 4-8 cell stage 

blastomeres can be considered totipotent, meaning that they can give rise to an entire 

organism, including extra-embryonic tissues. Embryonic stem cells (ESCs) are derived from 

the inner cell mass which gives rise to the embryo itself (Evans and Kaufman, 

1981;Thomson et al., 1998). ESCs are pluripotent in that they have the potential to give rise 

to all three germ layers: endoderm, mesoderm or 

ectoderm, but unlike totipotent stem cells they 

cannot give rise to extra-embryonic tissues. 

Multipotent stem cells have an even more limited 

differentiation potential and they can give rise to 

multiple cell types, preferably within a given 

lineage. Examples are hematopoietic stem cells 

which they can give rise to white blood cells, red 

blood cells and platelets. Unipotent stem cells, or 

progenitor cells, can differentiate into only one cell 

type. Erythroid progenitor cells are one of the many types of unipotent stem cells which exist 

in the body (Martinez-Agosto et al., 2007;Serafini and Verfaillie, 2006). 

 

  

Fig. I-1. Developmental potency stages. As 

the differentiation proceeds the plasticity 

of stem cells becomes more restricted. 

Taken from www.wikipedia.org.  
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Multipotent stem cells are also known as somatic or adult stem cells. They are found 

in virtually all tissues and one possible function is to replenish cells that have died or lost 

their function, throughout an individual’s life. They have been identified in many different 

tissue types such as muscle, 

liver, bone marrow, adipose 

tissue, retina, pancreas, central 

nervous system, dental pulp, 

blood, intestine and skin (Fig. I-

2). Previously, it was thought that 

adult stem cells were restricted in 

their differentiation potential, 

giving rise only to cell types 

limited in their tissue of origin. 

Studies over the past years however 

suggest that adult stem cells from 

some tissues have the ability to differentiate into cell types from all three germ layers 

(Keating, 2006;Serafini and Verfaillie, 2006). This has caused great excitement, since they 

provide an easily accessible source of cells that could potentially treat degenerative 

diseases. 

 

1.1 Mesenchymal stem cells  

Mesenchymal stem cells (MSCs) are multipotent stem cells which are found in the stroma of 

many adult tissues. They have the ability to differentiate in vivo and in vitro into 

mesenchymal lineages, such as adipogenic, osteogenic and chondrogenic lineages. They 

may also give rise to skeletal and cardiac muscle cells, endothelial cells (Pittenger et al., 

1999;Serafini and Verfaillie, 2006), and to some extent, MSCs can be induced to exhibit 

neuronal and hepatic characteristics; this suggests a potential role in tissue repair and 

regeneration (Boquest et al., 2005;Sanchez-Ramos et al., 2000;Weng et al., 2003). These 

Fig. I-2. Sources of multipotent stem cells in the body. 

Source: Collas Lab. 
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observations also suggest that MSCs might be less committed in their differentiation potential 

than previously thought. An important fact about the usage of MSCs is that they can be 

isolated from individual patients, so the immune rejection issue of allogeneic tissue is 

eliminated (Ryan et al., 2005). Firstly MSCs were described by Friedenstein in 1974, as non- 

hematopoietic stem cells present in the bone marrow which were capable of osteogenesis 

(Friedenstein et al., 1974a;Friedenstein et al., 1974b). Since then, MSCs have been found 

and characterized in a wide number of tissues such as adipose tissue (Boquest et al., 

2005;Zuk et al., 2001), umbilical cord (Wang et al., 2004), umbilical cord blood (Lee et al., 

2004), amniotic fluid (In 't Anker et al., 2003), peripheral blood (Gronthos et al., 1994), dermal 

tissue and skeletal muscle (Williams et al., 1999).  

Little is known about the function of MSCs in vivo because of their scarcity in different 

tissues and the lack of reagents required to isolate these cells with high purity and in large 

quantities (Boquest et al., 2005). Because of the lack of a common definition for this type of 

cell population, a series of minimum criteria has been developed for defining multipotent 

mesenchymal stromal cells. According to the International Society for Cellular Therapy, 

MSCs must be plastic-adherent under standard culture conditions and form fibroblast-like 

colonies (Lindroos et al., 2011). The cells must express a series of surface markers such as 

CD105, CD73 and CD90, and lack expression of CD45, CD34, CD14 or CD11b, CD79α or 

CD19 and HLA-DR surface molecules (Dominici et al., 2006). MSCs also lack expression of 

the endothelial cell marker CD31 (Chamberlain et al., 2007). Finally, MSCs must have the 

ability to differentiate into osteoblasts, adipocytes and chondroblasts in vitro (Dominici et al., 

2006).  

MSCs are thought to reside in a dynamic cellular microenvironment known as the 

stem cell niche (Fuchs et al., 2004;Jones and Wagers, 2008). These niches support the 

survival and growth of MSCs by providing them with the factors needed to maintain their 

viability. The niche provides a protective environment against toxins and irradiation and the 

presence of cell-adhesion proteins are important for retaining stem cells in the niche (Jones 

and Wagers, 2008). 
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1.2 Mesenchymal stem cells from adipose tissue 

In order to use stem cells for clinical purposes, there must be a way to obtain them in high 

quantities. Even if adult stem cells have a lower plasticity than ESCs, the use of adult stem 

cells bypass the ethical concerns related to ES cell derivation (Denker, 2006) and potential 

issues of allogeneic immune rejection (Barry et al., 2005). Therefore, they may constitute a 

more attractive source to produce patient-specific cells for future clinical applications and 

drug development. Adipose tissue consists a rich and easily accessible source of MSCs 

(Mirsaidi et al., 2011). Adipose tissue stem cells (ASCs) have the ability to differentiate into 

cell types of mesodermal origin such as adipogenic, osteogenic, and chondrogenic lineages, 

as well as the myogenic lineage, leading to skeletal muscle, smooth muscle and 

cardiomyocytes (Gimble et al., 2007;Halvorsen et al., 2001;Zuk et al., 2001). Interestingly, 

ASCs display a gene expression profile which extends across all three germ layers, a feature 

considered to reflect a form of multilineage priming (Noer et al., 2006). It has previously been 

shown that ASCs have the capacity to differentiate into neuron-like cells and endothelial cells 

(Fig. I-3) (Boquest et al., 2005;Gimble et al., 2007;Jang et al., 2010;Safford et al., 2002;Zuk 

et al., 2002). However, whether ASCs can give rise to, or contribute to, functional tissues of 

these lineages remains the subject of many analyses (Boquest et al., 2007).  

ASCs have similarities in their transcriptome and cell surface markers with bone 

marrow MSCs (BMMSCs), including CD44, CD105, CD73, CD90, and Stro-1, and they are 

both negative for CD45 and CD31 (Boquest et al., 2005;De Ugarte et al., 2003;Fraser et al., 

2006;Strem et al., 2005). Even though BMMSCs have become a standard in stem cell 

research because of their high differentiation potential (Jaiswal et al., 2000;Johnstone et al., 

1998;Pittenger et al., 1999), ASCs can be considered to be an attractive alternative source 

(Gimble et al., 2007;Zuk et al., 2001;Zuk et al., 2002). That is due to the fact that isolation of 

BMMSCs from patients is a painful procedure and the number of cells obtained upon harvest 

is limited (Lindroos et al., 2011). On the other hand, ASCs are abundant (>5 × 106 98% pure 

CD45-CD31− cells can be purified from 100 ml of liposuction material in our laboratory; 

Boquest, unpublished data), they can be easily purified, and they do not require culture for 
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prospective isolation (Boquest et al., 2005;Noer et al., 2006;Zuk et al., 2001). Unlike 

BMMSCs, ASCs are more genetically stable in long term culture (Dahl et al., 2008;Meza-

Zepeda et al., 2008) and they show higher CNF-U potential than BMMSCs (Kern et al., 

2006;Strem et al., 2005). In our laboratory we use a combination of monoclonal antibodies to 

select against CD45+ and CD31+ cells from the stromal-vascular fraction, to purify 

uncultured ASCs before plating (Boquest et al., 2005).    

 

 

 

 

2. NEUROGENIC DIFFERENTIATION  

2.1. Neurogenic differentiation of embryonic stem cells 

ESCs are pluripotent stem cells derived from the inner cell mass of the blastocyst (Evans 

and Kaufman, 1981;Thomson et al., 1995). ESCs have attracted enormous attention owing 

to their potential to differentiate into several cell types representing all three germ layers 

(ectoderm, endoderm and mesoderm); thus, they have been considered to be a powerful tool 

in regenerative medicine (Fathi et al., 2009;Guan et al., 2001;Wianny et al., 2011). Since 

1995, when three independent groups published about the differentiation of mouse ESCs 

into neuronal cells in vitro (Bain et al., 1995;Fraichard et al., 1995;Strubing et al., 1995), 

many strategies have been devised to improve the differentiation of ESCs towards 

neurogenesis. These include the use of chemicals such as retinoic acid (RA) and neurogenic 

Fig. I-3. Adipose-derived MSCs 

display multilineage 

differentiation capacity. This 

panel exhibits examples of 

adipogenic (Oil Red-O staining), 

osteogenic (Alizarin red staining), 

chondrogenic (Toluidine blue 

staining), endothelial, myogenic 

and neurogenic differentiation 

(immunostaining for NEFH).  

Source: Collas lab. 
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medium (Fathi et al., 2009), lineage selection (Ying et al., 2003b), and stromal cell-derived 

inducing activity (Kawasaki et al., 2000). Neuronal cells which were RA-induced, expressed 

tissue specific genes in a developmentally controlled manner and acquired characteristics 

specific for postmitotic nerve cells, including complex electrophysiological and 

immunocytochemical properties (Guan et al., 2001). On the other hand, in vivo, RA is 

identified as a morphogenic and teratogenic compound (Rohwedel et al., 1999), which 

makes it unsuitable for therapeutics.  

Thus, alternative strategies have been established involving multiple steps of 

differentiation and selection of neural progenitor cells. It has been demonstrated that monkey 

and human ESCs can easily be differentiated by prolonged culture without replacing feeder 

layers. The cells undergo a series of morphological changes, forming ‘neural rosettes’ 

reminiscent of the neuroectoderm and under the influence of appropriate developmental 

signals, they can differentiate into several neuronal and glial cell types (Wianny et al., 2011). 

Another strategy leading to neurogenic differentiation involves the formation of embryoid 

body  intermediates, followed by induction of a neurogenic program using a combination of 

serum-free conditions, FGF2 stimulation and mechanical isolation (Wianny et al., 2011). The 

resulting neuronal precursors can be promoted to efficiently differentiate into multiple 

functional post-mitotic neuron types by the addition of neuronal differentiation factors (Bain et 

al., 1995;Okabe et al., 1996). All three main neural cell types have been identified, namely, 

neurons, astrocytes and oligodendrocytes, as seen from gene expression and 

electrophysiological studies (Wobus and Boheler, 2005).  

In vivo, neuroectodermal differentiation of ESCs is regulated tightly by a network of 

transcription factors and co-regulators that coordinate the expression of many genes and 

proteins (Fig. I-4). Oct3/4, Nanog, BMP-dependent SMAD and LIF-dependent JAK/STAT3 

signal transduction pathways are key regulators determining differentiation in mouse ESCs 

(Wobus and Boheler, 2005). Leukemia inhibitory factor (LIF) is a soluble glycoprotein which 

belongs to the interleukin (IL)-6 family of cytokines. LIF acts as a regulator of a variety of cell 

functions through the STAT pathway (Burdon et al., 1999). Absence of LIF, together with the 
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absence of other members of IL-6 family or inactivation of STAT3, disrupts the maintenance 

of pluripotency in ESCs, inducing them to differentiate in vitro (Boeuf et al., 1997). Oct3/4 

levels are important in determining differentiation or maintenance of pluripotency in ESCs 

(Matoba et al., 2006). Oct3/4 promotes self-renewal of ESCs while loss of Oct3/4 leads to 

trophectoderm formation (Niwa et al., 2000). Nanog works together with Oct3/4 to maintain 

the pluripotent state of ESCs and 

its forced expression acts to restrict 

the differentiation inducing potential 

of Oct3/4 (Chambers et al., 

2003;Mitsui et al., 2003). Similarly, 

bone morphogenic protein (BMP) 

acts through the SMAD pathway to 

induce expression of Id genes, 

which are also involved in self-

renewal of ESCs (Ying et al., 2003a).  

On the other hand, the MEK/ERK pathway inhibits ESC self-renewal and promotes 

differentiation (Burdon et al., 1999;Burdon et al., 2002). Imbalance in the concentration of 

these signaling molecules can cause a loss of ESC identity and differentiation towards 

mesodermal, endodermal or neuroectodermal pathways (Wobus and Boheler, 2005). It is 

thought that there are three steps important for induction of neurogenesis: (i) repression of 

BMP signaling, (ii) activation of the fibroblast growth factor (FGF) and Wnt pathways, and (iii) 

accurate spatial and temporal expression of these factors distinguishes the newly induced 

neural plate from mesoderm, endoderm and epidermis (Diez del and Storey, 2001). In 

addition to these factors, there is a large number of transcription factors involved in 

embryonic neural development. These include Prominin1, Musashi, several POU-domain 

transcription factors such as Brn1, bHLH-domain-containing factors such as Numb and 

NeuroD, downstream effectors of Notch signaling, Hes1 and Hes5, Presenilins and Sox2 

(Cai et al., 2002). It is thought that bHLH-domain transcription factors are key regulators of 

Fig. I-4. Regulation of the pluripotency state of ESCs by a 

number of transcription factors and different signaling 

pathways. Taken from (Wobus and Boheler, 2005) 
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neuronal determination and differentiation in ESCs (Kintner, 2002). Thus, the process of 

neurogenesis is the outcome of a complex interplay of temporally and spatially regulated 

factors.   

 

2.2. Neurogenic differentiation potential of mesenchymal stem cells 

MSCs display multilineage differentiation capacity, not only towards mesodermal but also 

towards neuroectodermal pathways (Jang et al., 2010;Kompisch et al., 2010;Wislet-

Gendebien et al., 2005). Numerous ‘neural induction’ protocols have been developed using 

chemicals such as DMSO/BHA (Woodbury et al., 2000), treating cells with a combination of 

growth factors (Deng et al., 2001;Sanchez-Ramos et al., 2000) or co-culturing MSCs with 

neuronal tissues (Abouelfetouh et al., 2004). All these protocols have resulted in a change of 

MSCs towards a neuronal-like morphology accompanied by expression of neural markers 

varying for the different differentiation protocols. These include nestin, NSE, Tau, NeuN, glial 

fibrillary acidic protein (GFAP) and others (Krabbe et al., 2005;Lu et al., 2004;Neuhuber et 

al., 2004). 

However, although the detection of neuronal markers suggests that MSCs display 

some neuronal characteristics, the cellular localization of some of these markers is often 

different from that of mature neurons (Krabbe et al., 2005). Nevertheless, in vivo studies 

have shown that intravascular administration of MSCs, and in particular BMMCs, significantly 

improves the functional outcome in rodents after induction of stroke (Chen et al., 2001), brain 

trauma (Lu et al., 2001), and Parkinson syndromes (Li et al., 2001). How the transplanted 

cells contribute to improving symptoms in these animal models and whether MSCs do harbor 

the ability to differentiate into mature, functional neurons remains however a matter of debate 

(Chen et al., 2006;Lu et al., 2004;Montzka et al., 2009). 
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3.  NESTIN AND NEUROGENESIS 

3.1. The intermediate filament protein nestin 

Intermediate filaments (IFs) are one of the three components that, together with 

microfilaments and microtubules, constitute the cytoskeleton (Fig. I-5). These three 

cytoskeletal elements work together to confer cell integrity, structure and shape, and 

organelle motility (Herrmann et al., 2007). One of the characteristics that make intermediate 

filaments unique comparing to the other filaments is the fact that this component is 

continuously remodeled during development of many tissues (Kim and Coulombe, 2007). An 

example is the developing central nervous system (CNS) where there is a specific spatial 

and temporal expression of IF genes (Dahlstrand et al., 1992a). There are six major types of 

IFs on the basis of similarities in their primary sequence (Liem, 1993;Yoon et al., 2001).   

Nestin is an intermediate 

filament type VI protein (Lendahl 

et al., 1990;Steinert and Liem, 

1990) which is expressed in 

neural progenitor cells of the 

developing CNS and in 

developing skeletal muscle 

(Michalczyk and Ziman, 2005). 

Comparison analysis of the rat 

and human introns in the nestin 

gene shows that nestin is more 

related to type IV IFs, which 

include neurofilament (NF) L, M 

or H and α-internexin (Dahlstrand 

et al., 1992b). In addition to these 

two IF classes which are 

Fig. I-5. The three main components of the cytoskeleton.   

(A) Neurons exhibit extensive branching forming 

connections in the nervous system. They consist of three 

main polymers:  microtubules (green), intermediate 

filaments (purple), and  actin filaments (red). (B) A 

migrating growth cone as indicated by an 

immunofluorescence micrograph. (C) The neuronal axon 

where a structural matrix is formed by a class of neuronal 

intermediate filaments (neurofilaments) which embed 

microtubules. (D) Actin filament network in the growth 

cone.  Taken from (Fletcher and Mullins, 2010). 
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expressed at various stages of CNS development, type III IFs are also expressed in the CNS 

and include vimentin, GFAP, peripherin and plasticin. It is possible to follow the stages of 

CNS development by observing the expression pattern of the various IFs. Vimentin and 

nestin are largely associated with mitotically active cells (Dahlstrand et al., 1995). Nestin 

expression is correlated with proliferating neural progenitor cells in many but not all 

proliferating regions of the CNS (Dahlstrand et al., 1995;Liem, 1993). Upon differentiation 

nestin is downregulated and replaced by tissue-specific IFs, including the three neurofilament 

proteins, NF-L, NF-M and NF-H in mature neurons and GFAP in astrocytes. Downregulation 

of nestin has been correlated with cells leaving the proliferative state and becoming post-

mitotic (Dahlstrand et al., 1995;Michalczyk and Ziman, 2005).  

 Nestin has been extensively used as a marker of neuroepithelial stem cells, where it 

was first identified (Dubois et al., 2006;Lendahl et al., 1990). Multiple possible functions have 

been assigned to nestin. Previous studies on embryonic carcinoma cells suggest a role for 

nestin in growth cone guidance during axon elongation (Yan et al., 2001). Another function 

suggested for early expressed IFs, such as nestin, is the establishment of a de novo IF 

network. These early IFs, can be used as a scaffold by IFs expressed later in development to 

establish a more specialized system for long-term maintenance of a post-mitotic cell type 

(Dahlstrand et al., 1995). Nestin is important to promote the survival of neural progenitor cells 

facing oxidative stress and apoptosis (Kim and Coulombe, 2007;Sahlgren et al., 2006). This 

is plausible as nestin is able to regulate the activity of cyclin-dependent kinase 5 (cdk5) and 

its regulator p53 (Kim and Coulombe, 2007;Sahlgren et al., 2006). 

The range of expression level of nestin is wider than previously thought; it is indeed 

not restricted to neural stem cells and neural progenitor cells (Wiese et al., 2004). Nestin is 

expressed, in a transient fashion, in many cell types during development, for example in 

migrating and proliferating cells that have the potential to develop in neuroectodermal, 

endodermal and mesodermal lineages (Wiese et al., 2004). This indicates that nestin is not 

only a marker for neural progenitor cells, but also a marker of multi-lineage differentiation 

potential in multipotent cells.  
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During adulthood, nestin expression does not persist and it is usually restricted to 

more defined regions. These areas contain a ‘niche’ of cells which have the ability to 

proliferate, differentiate and migrate after being activated (Wiese et al., 2004). In addition to 

progenitor cells, some mature cell types also express nestin. Some examples are pancreatic 

endothelial cells (Klein et al., 2003;Lardon et al., 2002), intestinal cells of Cajal (Tsujimura et 

al., 2001;Vanderwinden et al., 2002), retina (Mayer et al., 2003) and Schwann cells (Frisen et 

al., 1995;Hockfield and McKay, 1985). The role of nestin in these mature cell types, which 

are not in the proliferative state, remains unknown.   

After injury, or in certain tumors, nestin is sharply upregulated or re-expressed; 

suggesting remodeling or reversion to a less mature state (Wiese et al., 2004). Indeed, 

nestin expression is thought to be involved in a wide range of cancers, including of the CNS 

(Dahlstrand et al., 1992a;Tohyama et al., 1992), colon (Teranishi et al., 2007), prostate 

(Kleeberger et al., 2007), breast (Liu et al., 2010) and pancreas (Matsuda et al., 2011). 

Nestin has been correlated with aggressive growth and metastasis in some tumors (Ishiwata 

et al., 2011). Recent studies have shown that nestin is able to regulate the migration rate of 

prostate cancer cells, the downregulation of which can cause up to a 5-fold retardation in 

metastasis (Kleeberger et al., 2007). Apart from cancer, nestin has also been implicated in 

many diseases, such as multiple sclerosis (Moreels et al., 2008), several neurodegenerative 

diseases such as Parkinson’s (Buervenich et al., 2001), Alzheimer’s (Pugliese et al., 2010), 

and Creutzfeldt-Jakob disease (CJD) (Mizuno et al., 2003), coronary heart disease (Suguta 

et al., 2007), and liver damage (Niki et al., 1999). In all these cases, there is an upregulation 

of nestin in the damaged tissues, supporting the idea that nestin may function in the 

regeneration of adult tissues. 

 

3.2. Genomic organization and regulation of the nestin gene 

The nestin gene (NES) 

There is remarkable similarity in the organization of the human, mouse and rat nestin (NES) 

gene. The gene is conserved during evolution and contains four exons and three introns 
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(Zhong et al., 2008). Studies in transgenic mice have shown that tissue-specific expression 

of nestin in muscle and neural progenitor cells is regulated by two enhancer elements in the 

first and second intron, respectively (Jin et al., 2006;Zhong et al., 2008;Zimmerman et al., 

1994). Interestingly, no cell-type specific regulatory elements have been identified in the 

upstream region of the Nes promoter up to position -3809 relative to the transcription start 

site (TSS). Nonetheless, the Nes promoter can drive nestin expression in various 

mammalian cell lines, thus showing no cell-type specificity. The minimal promoter region of 

the mouse Nes gene has been identified in region -11 to +183 relative to the TSS. Two 

transcription factors are essential for Nes promoter activity, namely Sp1 and Sp3 which bind 

to two adjacent Sp1 sites in the basal promoter region; these are notably involved in the 

transcriptional regulation of a number of ‘housekeeping’ genes (Cheng et al., 2004).  

 

The intron 1 of NES contains a muscle-specific enhancer 

From transgenic experiments in mice, the muscle-specific Nes enhancer has been localized 

in the +291 to +661 region of the Nes first intron. Two E-boxes reside in this area, which are 

considered to be essential for enhancer activity in differentiating myoblasts (Zhong et al., 

2008). As is the case with neurogenesis, skeletal muscle development is also accompanied 

by changes in the composition of intermediate filaments (Zhong et al., 2008). Nestin is 

upregulated in proliferating myoblasts and it is sharply downregulated during differentiation, 

being replaced by desmin, another IF protein, in mature myofibers (Zhong et al., 2008). It has 

been proposed that nestin has the capacity to determine the progress of myoblast 

differentiation. The functionality of nestin in myogenesis has been evaluated in knock-down 

experiments in mice, in which nestin depletion accelerates myogenic differentiation (Pallari et 

al., 2011). MyoD, a transcription factor involved in determination and terminal differentiation 

of skeletal muscle (Berkes and Tapscott, 2005), binds to its consensus sequence CANNTG 

(E-box) in the regulatory region of muscle-specific genes, regulating their expression 

(Blackwell and Weintraub, 1990;Lassar et al., 1989). Recent studies suggest that MyoD is 

one of the proteins involved in the regulation of the first intron of the Nes gene: it binds to the 
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muscle-specific enhancer and directs nestin expression in muscle progenitor cells (Zhong et 

al., 2008). 

 

The intron 2 of NES contains a neural-specific enhancer 

The discovery of two neural enhancer elements in the second intron of the Nes gene has 

defined a hallmark in our understanding of the regulation of nestin expression in the CNS 

(Lothian et al., 1999). This enhancer region resides in the 3’ portion of the second intron; it 

contains not only general but also region-specific enhancer elements, one for general CNS 

expression and another for expression in the midbrain (Kappen and Yaworsky, 2003;Lothian 

et al., 1999;Yaworsky and Kappen, 1999). These relevant CNS enhancer elements can act 

and be regulated independently of each other, and they show a high degree of conservation 

based on sequence comparisons between mouse, rat and human (Kappen and Yaworsky, 

2003). This neural enhancer contains putative binding sites for a wide range of transcription 

factors including RXRs, SOX and POU domain transcription factors, which have been found 

in rodents to bind at different developmental time points to the Nes enhancer and regulate 

Nes expression in the CNS (Dubois et al., 2006;Josephson et al., 1998;Kappen and 

Yaworsky, 2003;Lothian et al., 1999;Tanaka et al., 2004).  

A 714 base pair (bp) region in the 3’ end of the second intron of Nes, which has the 

highest degree of similarity between species, is where important control elements reside 

(Lothian and Lendahl, 1997). Within that region, a 374 bp area is sufficient for enhancer 

activity and a 120 bp element is essential for nestin expression throughout the CNS. This 

region has binding sites for a number of nuclear hormone receptors such as TRs, RXR, RAR 

and COUP-TF, which are all important for mammalian development (Lothian et al., 1999). 

This  suggests that nuclear hormone receptors play an essential role in nestin expression in 

the developing CNS (Lothian et al., 1999). These factors can positively or negatively regulate 

nestin expression (Lothian et al., 1999). This 120 bp region also contains a POU domain 

transcription factor binding site that can be bound by different members of the POU family at 

different developmental stages (Josephson et al., 1998;Lothian et al., 1999). According to 
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previous studies there is an interplay between POU and SOX family transcription factors, 

which elicit gene activation synergistically, and are essential for the regulation of the Nes 

gene (Fig. I-6) (Jin et al., 2009;Tanaka et al., 2004).  

Nestin is thought to be regulated in a cell-cycle dependent manner: Downregulation of 

nestin during G2-M phase coincides with the cell-cycle dependent phosphorylation of an 

upstream regulator, Brn2, which leads to a reduced binding activity on the Nes CNS-specific 

enhancer. This suggests that nestin is absent in post-mitotic neurons due to the absence of 

Brn2 activity (Sunabori et al., 2008). 

 

 

 

 

 

The ventral midbrain, where nestin is markedly expressed, is a source of 

dopaminergic neurons (Kappen and Yaworsky, 2003), the loss of which leads to 

neurodegenerative disorders such as Parkinson’s disease. The second enhancer of Nes, 

specific for expression of nestin in the midbrain, is located upstream from the CNS-specific 

enhancer, within a 204 bp segment. This enhancer consists of two elements, a midbrain-

specific and a tissue non-specific transcriptional potentiator (Fig. I-7) (Kappen and Yaworsky, 

2003;Yaworsky and Kappen, 1999). The midbrain enhancer is activated early in 

development, however, unlike the CNS enhancer, its activity is not maintained at later 

developmental stages (Yaworsky and Kappen, 1999). There are putative binding sites for 

nuclear hormone receptors and with one mismatch, there is one site for binding of the orphan 

nuclear receptor Nurr1. Nurr1 is a transcription factor important for the generation of 

Fig. I-6. Potential SOX2 binding site found adjacent to the POU factor binding site and which are 

involved in regulation of the CNS enhancer (sequence of the mouse Nes gene). The human 

nestin enhancer sequence for SOX binding site is altered to GACAATG, while the sequence for 

the POU binding site is conserved between mouse, rat and human (Tanaka et al., 2004). 
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dopaminergic neurons, so it may also function in the regulation of nestin (Kappen and 

Yaworsky, 2003;Yaworsky and Kappen, 1999). There have not been any putative regulatory 

sites found in the region of the potentiator element; however without this element, the 

midbrain-specific enhancer loses its transcriptional activity (Kappen and Yaworsky, 2003). 

 

 

 

Cells of the midbrain can activate both midbrain and CNS enhancers, while other 

CNS cells can activate only the CNS-specific enhancer (Yaworsky and Kappen, 1999). This 

suggests that there must be some heterogeneity in the transcription factor repertoire in 

different cell types in the CNS, leading to differential regulation of the Nes neural enhancer. It 

has become clear that different populations of cells can be distinguished based on Nes 

enhancer activity (Yaworsky and Kappen, 1999). This suggests that nestin could potentially 

be used for the development of gene therapy strategies against neurodegenerative diseases. 

 

 

 

Fig. I-7. The second intron of nestin contains 

two enhancer elements:  the midbrain 

enhancer and the CNS enhancer. The two 

enhancer elements require at least two sites 

for activity which are bound by distinct 

transcription factors. Two POU-domain 

transcription factors are essential for the 

CNS enhancer activity (Josephson et al., 

1998) and two elements are required for the 

midbrain enhancer activity, one nuclear 

receptor protein and an unidentified factor. 

The numbers indicated are specific for the 

rat sequence. Taken from (Kappen and 

Yaworsky, 2003). 
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4.  EPIGENETIC REGULATION OF GENE EXPRESSION: ROLE OF DNA 

METHYLATION AND HISTONE MODIFICATIONS  

4.1. Introduction to epigenetics 

In multicellular organisms, nearly all the 

cells are genetically the same, meaning 

that they contain identical DNA. 

Nevertheless, there are dramatic 

differences, when it comes to function and 

structure, suggesting that these variations 

must be specified by information not 

encoded in the nucleotide sequence itself 

(Meehan, 2003). Superimposed upon the 

DNA sequence is a layer of ‘heritable’ 

epigenetic information, which results in 

differential gene expression for each cell 

type during development and is sustained 

throughout successive series of mitoses 

(Jaenisch and Bird, 2003). This field is 

known as ‘epigenetics’ and involves 

heritable modifications of DNA and 

chromatin which affect gene function but do not involve alterations of the DNA sequence 

itself (Collas et al., 2007).  

Epigenetic modifications play a major role in development and cell differentiation, and 

are essential for the functional implication of extracellular stimuli (Jaenisch and Bird, 

2003;Vaissiere et al., 2008). Epigenetic modifications fall into two main classes: DNA 

methylation and histone modifications (Fig. I-8).  

Fig. I-8. Overview of the two main components of 

the epigenetic code: DNA methylation and 

histone modifications. Taken from (Qiu, 2006).  
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In vertebrates, DNA methylation occurs in the context of CpG dinucleotides and the 

majority of CpGs in the genome are methylated (Bird, 2002;Goll and Bestor, 2005). The 

methyl groups on CpG dinucleotides are recognized by proteins which may activate or 

repress the expression of a gene through regulation of chromatin structure (Jaenisch and 

Bird, 2003;Qiu, 2006). DNA methylation is often associated with gene silencing and 

heterochromatin formation, where there is a complex interplay between numerous systems, 

collectively forming a self-reinforcing network that promotes the spreading of the silenced 

chromatin (Beisel and Paro, 2011;Lande-Diner and Cedar, 2005).  

Whereas DNA methylation constitutes a major component of the gene regulation 

machinery, additional regulatory effects are elicited by another major member of the 

epigenetic machinery, namely the post-translational modifications of histones. Histones and 

in particular their N-terminal tails have been shown to harbor a large number of modified 

residues. These modifications promote or are repressive against gene expression 

(Kouzarides, 2007). As DNA methylation, they also modulate the binding of transcriptional 

regulatory complexes to specific sequences (Li, 2002). Although histone modifications have 

received the most attention, chromatin may also be modified by the dynamic incorporation of 

histone variants such as the replication-independent deposition of H3.3 which marks active 

chromatin (Henikoff et al., 2004;Mito et al., 2005;Mito et al., 2007).  

 

4.2. DNA methylation  

DNA methylation is essential for important stages in mammalian development such as X-

chromosome inactivation, genomic imprinting, long-term gene silencing and regulation of 

chromatin structure (Bird, 1997;Hore et al., 2007;Lande-Diner et al., 2007;Miranda and 

Jones, 2007;Reik, 2007;Suzuki and Bird, 2008;Yen et al., 2007). DNA methylation is a 

covalent modification which involves the addition of a methyl group in the 5 position of a 

cytosine at CpG dinucleotides (Fig. I-9A). These can be found randomly in the genome, in 

clusters, or in clusters within a CpG island (Collas, 2009). The methylation pattern is 

symmetrical in the two DNA strands (Fig. I-9B) (Klose and Bird, 2006). The human genome 
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is characterized by an 

underrepresentation of CpGs, 

because of the high mutational rate of 

CpG dinucleotides, since cytosine is 

vulnerable to deamination, and 

deamination of 5-methylcytosine 

(5mC) produces thymidine (Fryxell 

and Moon, 2005). However, this is not 

the case for CpG islands. Firstly 

proposed by Gardiner and Frommer in 

1987, the definition of a CpG island is 

considered to be a 200-bp stretch of 

DNA with a G+C content greater than 50% and an observed/expected CG frequency greater 

than 0.6 (Gardiner-Garden and Frommer, 1987). A latter definition, which was proposed by 

Takai and Jones in 2002, provides a more concrete association of CpG islands with the 5’ 

region of genes, excluding most Alu-repetitive elements. According to this definition, a CpG 

island is a region of DNA greater than 500 bp with a C+G content higher than 55% and an 

observed/expected CG frequency greater than 0.65 (Takai and Jones, 2002). CpG islands 

are commonly found in the 5’ regulatory regions of housekeeping genes and they remain 

usually unmethylated (Weber et al., 2007). Aberrant DNA methylation of CpG islands has 

been associated with aging and carcinogenesis. CpG islands in the promoters of tumor 

suppressor genes which are normally unmethylated, are methylated in cancer cells, leading 

to the repression of these genes (Issa, 2000;Jones and Baylin, 2002;Laird, 2005). Generally, 

CpG islands in promoters are nucleosome destabilizing elements and facilitate establishment 

of a poised transcriptional state (Singh, 2009). They have certain characteristics which make 

them unique among other types of promoters, such as the lack of a functional TATA box or 

DPE elements, and the presence of multiple GC motifs which are usually bound by the 

ubiquitous transcription factor, Sp1 (Baumann et al., 2010).  

Fig. I-9. DNA methylation. (A) DNMTs catalyze the 

addition of a methyl group to the 5 position of a 

cytosine in a CpG dinucleotide. (B) DNA methylation 

is symmetrical and occurs on both DNA strands.   
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4.2.1. Targeted DNA methylation by DNMTs 

DNA methylation is catalyzed by a conserved group of proteins namely, DNA 

methyltransferases (DNMTs). There are three different DNMTs currently known: DNMT1 

which is responsible for maintenance methylation, and DNMT3a and DNMT3b which are 

involved in de novo methylation (Robertson, 2002). DNMT1 has a high affinity for 

hemimethylated substrates, which is important for the high-fidelity of the DNA methylation 

pattern onto the daughter strands after DNA replication. On the other hand, DNMT3a and 

DNMT3b have a strong preference for non-methylated DNA (Dhe-Paganon et al., 2011). 

DNMT3a and DNMT3b are important for the establishment of the de novo DNA methylation 

that takes place during development and differentiation, to repress genes that are no longer 

required after cell differentiation (Turek-Plewa and Jagodzinski, 2005). From current studies, 

it is also thought that DNMT3a and DNMT3b complete the methylation process and correct 

errors that might be left behind by DNMT1. This mechanism ensures that DNA methylation is 

maintained with high fidelity after replication (Dhe-Paganon et al., 2011).  

There are two other DNMT-like proteins, but without any documented DNMT activity, 

DNMT2 and DNMT3L (Tang et al., 2003). DNMT2 has been shown to have cytoplasmic 

tRNA methyltransferase activity (Goll et al., 2006;Rai et al., 2007) and is important for the 

protection of tRNAs from stress-induced cleavage (Schaefer et al., 2010). DNMT3L, which is 

a member of the DNMT3 family, has been implicated to play an important role in maternal 

methylation imprinting by enhancing the catalytic activity of DNMT3A and DNMT3B through 

physical interactions (Suetake et al., 2004).  

 

4.2.2. Transcriptional gene silencing by DNA methylation 

DNA methylation is generally associated with long-term repression of gene expression 

(Boyes and Bird, 1991;Kass et al., 1997;Siegfried et al., 1999), and many studies have 

investigated the mechanisms that underpin this relationship. Two main models have 

emerged. In one model, methylation causes a physical hindrance of transcription factor 
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binding to their recognition motifs, inhibiting transcription (Fig. I-10A). A second model 

involves the recruitment of transcriptional co-repressor complexes mediated by methyl CpG-

binding domain (MBD) proteins which recognize methylated DNA and induce gene silencing 

(Fig.I-10B) (Klose and Bird, 2006). Firstly characterized in 1989, as mammalian proteins 

binding specifically to methylated CpGs (Meehan et al., 1989),  MBPs constitute a family of 

five methyl-binding proteins characterized by the presence of a common methyl-CpG-binding 

domain (Klose and Bird, 2006). Four of this family members, MeCP2, MBD1, MBD2 and 

MBD4, specifically recognize methyl-CpG; MBD3, however, contains amino acid 

substitutions that prevent binding to methyl-CpG. Another  MBP called Kaiso lacks the MBD 

but recognizes methylated DNA through zinc-finger domains (Prokhortchouk et al., 2001). 

DNMTs, in addition to their catalytic activity, can also interact with chromatin modifying 

enzymes such as histone deacetylates (HDACs) (Fuks et al., 2000;Fuks et al., 2001;Geiman 

et al., 2004), histone methyl transferases (HMTs) (Fuks et al., 2003;Geiman et al., 2004) and 

the ATP-dependent chromatin remodeling protein hSNF2H (Geiman et al., 2004) inducing 

chromatin alterations and transcriptional repression (Fig I-10C). Lastly, DNA methylation 

may exert its repressive effects directly in the gene body, within intronic and exonic regions, 

resulting in reduced gene expression (Hsieh, 1997). This may be caused by reducing the 

occupancy of RNA polymerase II or by blocking the chromatin accessibility over the 

methylated gene body. The mechanism behind the repressive effect of DNA methylation in 

the gene body remains unclear but it is thought to involve the function of MBPs in inhibition of 

elongation (Fig. I-10D) (Klose and Bird, 2006).  
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4.2.3. Transcriptional states in different CpG content promoters 

Genome-wide DNA methylation profiling studies show that there is a correlation between 

promoter DNA methylation and promoter activity, depending on the CpG content of the 

promoter (Weber et al., 2007). High CpG content promoters (HCPs), which are often 

associated with housekeeping genes, and genes with more complex expression patterns 

such as those expressed during embryonic development (Mikkelsen et al., 2007), display no 

or weak methylation even when the promoter is inactive (Weber et al., 2007). Moreover, the 

expression pattern of genes with intermediate CpG content promoters (ICPs) is in general 

inversely correlated to the degree of methylation (Weber et al., 2007). Lastly, it seems that 

there is no correlation between promoter activity and the extent of DNA methylation in low 

CpG content promoters (LCPs). In fact, most LCPs are methylated regardless of 

transcriptional status (Weber et al., 2007), suggesting that other mechanisms regulate the 

activity of LCPs. Highly tissue-specific genes are considered to belong to this class of 

promoters (Mikkelsen et al., 2007). Overall, these results indicate that HCPs globally remain 

unmethylated regardless of transcriptional activity, ICPs are repressed when methylated and 

LCPs are usually methylated. 

 

Fig. I-10. Mechanisms of DNA methylation-mediated repression. (A) Inhibition of transcription 

factor binding by DNA methylation. (B) Recruitment of a transcriptional co-repressor complex by 

MBPs. (C) Recruitment of histone modifying complexes (HDACs, HMTs) by DNMTs. (D) Inhibition 

of transcriptional elongation by of MBPs in the gene body.  Taken from (Klose and Bird, 2006). 
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4.3 Post-translational modifications of histones 

In the nucleus, DNA is packed into chromatin. The nucleosome is the fundamental building 

block of chromatin. It contains ~147 bp of DNA wrapped twice around a histone octamer that 

consists of two copies of each of the core histones H2A, H2B, H3, and H4 (Kouzarides, 

2007). H1, the linker histone, is associated with the linker DNA between nucleosomes (Fan 

et al., 2003). Disordered N-terminal and C-terminal tails of histones protrude from the 

nucleosome through the minor groove channels and they are ideally located for covalent 

modifications (Khorasanizadeh, 2004). These freely protruding histone tails, are able to make 

interactions with other histone or non-histone proteins in the vicinity (Zheng and Hayes, 

2003). Histones are among the most well conserved proteins in evolution and they are 

susceptible to a big variety of post-translational modifications which may have a positive or a 

negative effect on gene expression (Huang et al., 2009).  

Different types of modifications have been identified on histone tails such as 

acetylation, methylation, phosphorylation, 

ubiquitylation, sumoylation, ADP ribosylation, 

deimination and proline isomerization (Tan et 

al., 2011). Various histone modifications are 

recognized by different proteins leading to 

the constitution of transcriptionally active or 

repressive regions in the nucleus (Cosgrove 

and Wolberger, 2005). The appearance of a 

given modification is dependent on signaling 

events prevailing in the cell at a specific 

time, for instance at a specific 

developmental time point (Vastenhouw et 

al., 2010; Lindeman et al., 2011).  

Post-translational modifications on 

Fig. I-11. Post-translational histone modifications.  

Histone tails can be methylated, acetylated, 

phosphorylated, ubiquitylated or sumoylated to 

regulate gene expression. Together with histone 

variants and chromatin binding proteins are 

thought to constitute the ‘histone code’.  Taken 

from (Scharf and Imhof, 2011). 
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histones H3 and H4 and in particular, acetylation and methylation of lysine residues have 

been the best characterized so far (Fig. I-11). Lysine acetylation is a modification closely 

associated with transcriptional activation. It involves the reversible addition of an acetyl group 

to the lysine residues of the N-terminal tails of H3 and H4, resulting in the neutralization of 

the positively charged histone tails (Sterner and Berger, 2000). It is thought that acetylation 

makes nucleosomal DNA more accessible to the transcriptional machinery due to the 

disruption of the electrostatic interactions between DNA and histones (Bannister and 

Kouzarides, 2011). This can be illustrated by H4K16ac which has a significant negative effect 

on the formation of the 30 nm fiber, and disrupts the formation of higher order chromatin 

structures by impeding the ability of chromatin to form cross-fiber interactions (Shogren-

Knaak et al., 2006). Acetylated lysines are recognized by bromodomains within nucleosome 

remodeling complexes, creating a chromatin conformation accessible by the transcriptional 

machinery (Bernstein et al., 2007). Acetylation is a dynamic process and is regulated by the 

opposing effects of two families of enzymes namely, histone acetyl transferases (HATs) and 

HDACs. HATs can be classified into three main families, GNAT, MYST and CBP/p300, 

depending on amino-acid sequence homology and conformational structure (Hodawadekar 

and Marmorstein, 2007).  HDACs oppose the effects of HATs reversing acetylation of lysine 

residues and stabilizing local chromatin structure, potentially leading to transcriptional 

repression (Bannister and Kouzarides, 2011).   

Histone methylation can induce either a positive or a negative effect in transcriptional 

regulation depending on the modified residue. Histone methylation mainly occurs on the side 

chains of lysines and arginines, where the former may be mono-, di-, tri- methylated, while 

the latter may be mono-, symmetrically or asymmetrically dimethylated. Unlike other 

modifications, such as acetylation and phosphorylation, histone methylation does not affect 

the charge of the histone proteins (Bannister and Kouzarides, 2011). Methylation of histone 

H3 lysine 4 (H3K4) and H3K36 are commonly associated with transcribed chromatin. H3K4 

trimethylation (H3K4me3) and H3K9/K14 acetylation modifications in conjunction with 

H3K36me3 seem to constitute a signature of actively transcribed genes (Li et al., 2007). 
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Nonetheless, a large number of promoters harbor H3K4me3 at the TSS and are not 

transcriptionally active (Lenhard et al., 2012). 

On the contrary, methylation of H3K9, H3K27, and H4K20 generally correlates with 

repression (Bernstein et al., 2007). In particular, methylated H3K9 and H3K27 are 

recognized by two different sets of proteins, heterochromatin protein 1 (HP1) and Polycomb 

group (PcG) proteins, respectively (Margueron et al., 2005), mediating the formation of 

repressive chromatin. HP1 shows preference for both di- and tri- methylation of H3K9 

(H3K9me2, H3K9me3), while Polycomb preferentially interacts with H3K27me3 (Fischle et 

al., 2003).  Histone methylation is catalyzed by histone lysine methyltransferases (HMTs), 

which are characterized by a conserved SET-domain essential for their activity (Bannister 

and Kouzarides, 2011). Recent studies have identified histone demethylases (HDMases) 

(Shi et al., 2004;Shi and Whetstine, 2007;Tsukada et al., 2006;Yamane et al., 2006), the 

existence of which has for long time been controversial (Kouzarides, 2007). The large 

number of histone modifications and the factors involved in their dynamic regulation create 

an enormous potential for functional responses.  

Chromatin structure undergoes numerous alterations during development (Delaval 

and Feil, 2004;Margueron et al., 2005). Likewise, key developmental genes undergo 

dynamic changes in chromatin accessibility during ESC differentiation (Chambeyron and 

Bickmore, 2004;Perry et al., 2004), with lineage-specific genes being kept in a ‘poised’ but 

potentially-active state. Genome-wide and locus-specific ChIP analyses demonstrate that 

poised genes in mouse ESCs are associated with a ‘bivalent’ combination of modifications 

characterized by the presence of H3K4me3, a mark of active genes, and H3K27me3, a mark 

of repressed genes (Bernstein et al., 2006). This ‘bivalent’ state is established by an interplay 

between PcG and Trithorax group (TrxG) of proteins which mediate trimethylation of H3K27 

and H3K4 respectively (Azuara et al., 2006;Bernstein et al., 2006;Delaval and Feil, 2004). 

Several transcription factors which are not expressed in mouse ESCs but at later stages of 

lineage specification are marked on their promoters by H3K4me3, H3K27me3 and H3K9ac 
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(Azuara et al., 2006) with H3K27me3 working as a transcriptional molecular brake in a 

context of transcriptionally permissive chromatin (Fig. I-12) (Bernstein et al., 2006). 

 

 

 

 

 

4.4 Epigenetic mechanisms involved in neurogenic differentiation of ESCs 

There is a great number of transcription factors identified which are involved in neurogenesis 

and neuronal differentiation and specification (Kintner, 2002). Epigenetic modifications are 

thought to play an major role in the selective expression or reversible silencing of genes at 

different stages of development (Fig. I-13) (Copray et al., 2009). Differentiation of ESCs into 

neural progenitor cells (NPCs) is accompanied by silencing of genes related to pluripotency 

and to non-neural lineage (Mohn et al., 2008). At the same time the ‘poised’ state at the 

promoters and enhancers of the neural genes is resolved by the loss of repressive marks as 

they become transcriptionally accessible (Mikkelsen et al., 2007). 

It has been shown that stem cells contain a low level of DNA methylation at CpG-rich 

sequences. As differentiation proceeds, methylation of CpG island promoters and CpG-rich 

sequences outside promoter regions occurs with almost no detectable demethylation. Thus, 

DNA methylation increases during lineage specification (Mohn and Schubeler, 2009). One of 

the reasons for the selectivity of de novo DNA methylation of stem cell promoters could be 

that DNA methylation may stably repress the pluripotency program and prevent abnormal 

reactivation and de-differentiation during development (Mohn et al., 2008). This is supported 

by experimental data since reprogramming of somatic cells to a pluripotent state is overally 

Fig. I-12. The ’bivalency ’state. Lineage specific genes are repressed but poised for 

activation by a combination of H3K4m3 and H3K27m3. Adapted from (Noer et al., 2009).  
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becoming more efficient by the use of DNMT inhibitors such as 5-aza-cytidine (Mikkelsen et 

al., 2008).  

In addition to promoters, there is increasing evidence that distal regulatory regions 

such as enhancers and silencers might be dynamically regulated by DNA methylation and 

demethylation during neural differentiation of ESCs. In particular, distal regulatory elements 

that surround active developmental genes such as Olig2, undergo a CpG demethylation 

process and a gain of H3K4me2, a mark of active transcription, during neural differentiation 

(Meissner et al., 2008); this observation, together with recent studies of a genome-wide DNA 

methylation analysis at single-base resolution (Lister et al., 2009), raises the possibility that 

CpG methylation of distal regulatory elements also contributes to the poised state of 

developmental genes (Hirabayashi 2010).   

Epigenetic regulation of neural differentiation of ESCs also involves dynamic changes 

on histone modifications. The transition of ESCs to NPCs is accompanied by the loss of 

H3K27me3 modification in the ‘poised’ promoters of many genes involved in the neural 

lineage (Mikkelsen et al., 2007). The loss of H3K27me3 and the maintenance of the 

H3K4me3 mark results in increased expression of these genes (Mikkelsen et al., 2007). 

Genes which are not neural-lineage related lose their bivalency mark, H3K4me3 and 

H3K27me3 (some may retain H3K27me3), reflecting the limited differentiation potential of 

NPCs (Mikkelsen et al., 2007). In addition, H3K4me3 loss is accompanied by a gain of the 

repressive H3K9me2 mark on the promoter of pluripotent genes (Golebiewska 2009); this 

may be followed by a gain of H3K9me3 leading to long-term repression in the terminally 

differentiated neurons (Hirabayashi 2010).  

Although genes that function in the neural progenitor state are activated, genes 

involved in terminal neuronal differentiation become poised by the gain of H3K27me3 and 

H3K4me2 marks in NPCs. These remain silenced until they receive appropriate 

differentiation cues. At that time, these genes lose H3K27me3 to become expressed (Mohn 

2008). This suggests that the differentiation potential of tissue-specific stem cells may also 

be determined by a set of genes resting in a bivalent ‘poised’ state. There has not been so 
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far any research regarding the epigenetic regulation of neurogenic differentiation of ASCs; 

this is the focus of this thesis. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. I-13. Differentiation capacity of stem 

cells in each developmental stage. Stem 

cells lose their differentiation potential 

sequentially as they acquire specific cell 

fates. Transition to NPCs is accompanied 

by silencing of genes related to 

pluripotency and to non-neural linage 

and activation of’poised’ promoters and 

enhancers involved in the neural lineage. 

In turn, genes involved in terminal 

differentiation become ‘poised’ until 

they receive appropriate differentiation 

cues. Taken from (Hirabayashi and 

Gotoh, 2010). 
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AIMS OF THE STUDY 

 

Little is known on the differentiation potential of adipose stem cells (ASCs) towards the 

neurogenic lineage and on associated epigenetic changes. The goal of this study was to 

determine whether ASCs have the ability to differentiate towards the ectodermal lineage, 

specifically towards the neurogenic lineage.             

The aims of the study were to: 

1. Determine the effect of proliferative stimulation and neurogenic differentiation of 

ASCs at the phenotypic level (light and scanning electron microscopy), gene 

expression level (RT-PCR), protein expression level (immunofluorescence 

labeling), and by monitoring cell cycle arrest (EdU staining) 

2. Determine, by bisulphite genomic sequencing, DNA methylation changes upon 

proliferative stimulation and neurogenic induction of ASCs, in the promoter, 

muscle-specific enhancer and neural enhancer of the NES gene 

3. Assess, by chromatin immunoprecipitation, histone modification changes on a 

gene associated with neurogenesis (NES) upon proliferative stimulation and 

neurogenic differentiation of ASCs.  

 

In the course of this project, I was guided and assisted by Dr. Jean-Luc Boulland and Dr. 

Andrew Boquest. In particular, Dr. Boquest performed most of the cell culture and 

neurogenic differentiation. Dr. Boulland performed immunofluorescence and confocal 

imaging analysis of neurogenic-induced ASCs for the following proteins: NEFH, NEUROG1, 

TUJI, MAP2, SYNAPSIN, MUNC, SYNAPTOTAGMIN and GEPHYRIN (illustrated in Fig. R-

4A, 4B, 4C and 4D) 
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MATERIALS AND METHODS 

 

Cells 

 

ASCs were isolated and purified from the stromal vascular fraction of human adipose tissue 

as reported earlier (Boquest et al., 2006b). Briefly, adipose tissue was obtained from 

liposuction material and stromal cells were isolated in a series of steps including collagenase 

and DNase digestion, sedimentation and straining. Stromal stem cells were separated from 

unwanted cells using magnetic cell sorting to eliminate CD45+ (hematopoietic) and CD31+ 

(endothelial) cells, resulting in the collection of CD45- CD31- cells; these cells have 

previously been shown to have MSC properties (Boquest et al., 2005) and are referred to as 

adipose stem cells (ASCs). The freshly isolated ASCs were firstly cultured in DMEM:F12 

medium containing 50% fetal calf serum (FCS), and after ~16 h, the medium was replaced 

with DMEM:F12 containing 10% FCS. After 3 weeks, colonies were passaged by 

trypsinization at a split ratio if 1:3; cells were washed 2x in Hanks’ Balanced Salt solution 

(HBSS) (Sigma-Aldrich), and treated with 0.25% trypsin-EDTA (Sigma-Aldrich) to induce cell 

detachment from the culture surface. Trypsinization was stopped by the addition of 

DMEM/F12 10% FCS and cells were replated into 162 cm2 cell culture flasks (0.5 x 106 

cells/flask) for an additional 7 day culture period. We used cells from one donor in this study, 

at passages 5-13. Cells were isolated and banked in liquid nitrogen prior to the start of the 

project.  

 

Mitogenic stimulation of ASCs 

The neurogenic induction protocol used in this study has been developed by Dr. Andrew 

Boquest, senior scientist in the laboratory, prior to the start of this project. This protocol 

consists of two distinct main steps, namely (1) induction of mitogenic proliferation of ASCs, 

followed by (2) induction of neurogenic differentiation per se.  

 Cells were cultured at ~70% confluency in DMEM/F12/10%FCS, passaged by 

trypsinization and cultured in stimulation medium to induce faster proliferation. The 
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stimulation medium consisted of Knockout DMEM (high glucose DMEM containing 4.5 g/l 

glucose and glutamax; Gibco) with 10% FCS, 1x B27 neural cell culture supplement (Gibco), 

10 ng/ml EGF, 20 ng/ml bFGF, 1x L-glutamine, 1x penicillin/streptavidin. Cells were 

stimulated for 14 days during which they divided approximately 20-24 h, prior to induction of 

neurogenic differentiation. Media was left unchanged during a 7-day culture period.  

 

Neurogenic induction 

The second step of neurogenic differentiation consisted in neurogenic induction of the 

mitogenically stimulated cells per se. Stimulated cells were plated onto either 100-mm cell 

culture petri dishes (0.5x106 cells/dish) (BD Biosciences) for bisulphite sequencing, RT-PCR 

and ChIP analysis, or onto 24-well plates (2x104) (Nunc) for electron microscopy or 

immunohistochemical studies. Cultures were incubated for at least 6 h to allow cell 

attachment to the surface. After removal of stimulation culture media, cells were washed 

twice using serum-free Knockout DMEM, since differentiation should be carried out in a 

serum-free environment (Lowell et al., 2006). For neurogenic differentiation, cells were 

induced in neurobasal medium, designed both for long and short term maintenance of 

homogeneous population of neuronal cells without the need of an astrocyte feeder layer 

(Gibco) (Brewer, 1995). The neurobasal medium contained 0.5 mM 1-methyl-3 

isobutylxanthine (IBMX), 1 µM dexamethasone, 10 µM forskolin, 0.2 mM 8CPT-cAMP 

(Biologic), 10 mM valproic acid (VPA), 1% FCS, 1x B27, 0.2% penicillin/streptavidin and 1x 

L-glutamine. Neuronal induction media was changed on a weekly basis. 

 

Scanning electron microscopy (SEM) 

Cells were cultured and/or differentiated into neuronal-like cells on sterile glass coverslips 

and then fixed with 2,5% glutaraldehyde in 0.1 M HEPES buffer, pH 7.4, and stored 

overnight at 0-4°C. The samples were rinsed  2 x 10 min in 0.1M HEPES buffer and this was 

followed by a stepwise dehydration procedure by exposure to increasing concentration of 
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ethanol: 70% for 10 min, 80% for 10 min, 90% for 10 min, 96% for 10 min and 4 x 100% 

each for 15 min. The samples were placed in suitable specimen holders and transferred to 

the Critical Point Dryer (Baltec CPD 030) to further dehydrate the biological tissue prior to 

examination to the scanning electron microscope. Samples were mounted and transferred to 

a Cressington 308UHR to be sputtered with platinum. This device is widely used for 

observing specimen surface morphology; metal coating aims to increase the signal to noise 

ratio and to make the surface electrically conductive. Samples were observed on a HITACHI 

S-4800 field-emission scanning electron microscope at the Electron Microscopy Unit of the 

Department of Molecular Biosciences, University of Oslo. Samples were analyzed using a 

built-in software. The secondary electron (SE) detector of the microscope collects SE from 

various sources and backscattered electrons. The HITACH S-4800 contains two SE 

detectors; the upper, placed above the objective lens and the lower, placed in the specimen 

chamber. Signals from these two detectors can be collected individually or mixed. The SE 

detector used in this project was mixed, the accelerating voltage varied between 5000 and 

10000 Volt, the working distance was at 8500 m and the emission current ranged from 7000 

to 15600 nA. 

 

Immunofluorescence 

Cells were cultured and/or differentiated into neuronal-like cells on sterile glass coverslips 

and fixed with 4% paraformaldehyde in PBS for 1 h. The cells were rinsed 3 times in PBS 

and treated with 1 M ethanolamine-HCl in 0.1 M sodium phosphate buffer (NaPi), pH 7.4. 

The cells were blocked for one hour with 10% (v/v) normal goat serum (NGS), 3% (w/v) BSA 

in 0.1M Tris base and 0.3 M of NaCl, 0.5% (w/v) Triton X-100, pH 7.4 (TBST) and incubated 

overnight at room temperature (RT) with primary antibodies diluted in 3% NGS and 1% BSA 

in TBST. Neuronal and neurogenic proteins were detected using the following antibodies: 

anti-NEFH (Millipore, AB1989) at a 1/100 dilution, anti-NEUROGENIN-1 (Origene 

technologies, TA500305, clone 3F9) at 1/50, anti-SYNAPTOTAGMIN-1 (Synaptic Systems, 

105002) at 1/300, anti-GEPHYRIN (Synaptic systems 147011) at 1/200, anti-SYNAPSIN 1-2 
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(Synaptic systems, 106004) at 1/1000, anti-MUNC-13-1 (Synaptic systems, 126103) at 

1/300, anti-MAP2 (Millipore, AB5622) at 1/400, anti-TUJI (Sigma T8660) at 1/100, anti-

NESTIN (Millipore, MAB5326) at 1/200 and anti-KI67 (BF550609) at 1/100. After rinsing with 

3% NGS, 1% BSA in TBST, slides were incubated with secondary antibodies coupled to 

fluorescent dyes (Alexa-488, Alexa-555 and Alexa-633) for 1 h at RT. Cells were rinsed 1x 

10 min in NaPi or PBS, 1x 5 min in NaPi (or PBS) – Hoescht (or DAPI) to counterstain DNA 

and finally 1x 10 min in NaPi or PBS. Samples were mounted on Fluoromount G water base 

with ProLong Gold Antifade (Invitrogen) and observed on a Zeiss Axiovert microscope 

equipped with LSM 510 Meta confocal unit (Zeiss).   

 

Cell proliferation assessment with 5-ethynyl-2’deoxyuridine (EdU)   

Detection of DNA synthesis in proliferating cells relies on the incorporation of labeled DNA 

precursors into cellular DNA during the S phase of the cell cycle (Bick and Davidson, 

1974;Gratzner, 1982). A highly sensitive and fast method to detect DNA synthesis in 

proliferating cells, is based on the incorporation of EdU and its subsequent detection by a 

fluorescent azide through a Cu(I)-catalyzed [3 + 2] cycloaddition reaction (‘click’ chemistry) 

(Salic and Mitchison, 2008).  

Briefly, cells were cultured and/or differentiated into neuronal-like cells on sterile glass 

coverslips and incubated with 10 µM EdU for 8 to 24 h at 37°C. The cells were fixed with 4% 

formaldehyde in NaPi for 15 to 60 min at RT. Cells were washed twice with 3% BSA in PBS 

and permeabilized with 0.5% Triton X-100 in PBS for 20 min at RT. For EdU detection, cells 

were washed twice with 3% BSA in PBS and incubated with Click-iTTM reaction cocktail 

(Invitrogen), containing 1x Click-iT reaction buffer, CuSO4 , Alexa Fluor azide 488, and 

reaction buffer additive, for 30 min at RT, protected from light. The cells were rinsed 1x with 

3x BSA-PBS for 10 min, 1x with PBS- Hoescht (or DAPI) for 5 min and 1x with PBS for 10 

min and mounted with ProLong Gold Antifade (Invitrogen). Samples were visualized on a 

Zeiss Axioplan 2 microscope (Zeiss, Jena, Germany) with an AxioCam.  
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Reverse transcription polymerase chain reaction (RT-PCR) 

RNA was purified from ~0.5x106 cultured cells using the RNeasy® Mini Kit (Qiagen RNeasy). 

cDNA was produced from a starting amount of 0.5 μg RNA using the Iscript cDNA synthesis 

kit (BioRad). In short, 20 µl of the cDNA synthesis reaction was subjected to the following 

conditions: 5 min at 25°C, 30 min at 42°C and 5 min at 85°C. cDNA is synthesized in vitro, 

from an mRNA template using the enzyme reverse transcriptase, resulting in single-stranded 

cDNA production. PCR was carried out on the produced cDNA to allow for detection of 

mRNA expression levels in the cells of interest. The PCR conditions are as follows: 

initialization step at 95˚C for 5 min, 30 or 35 cycles of denaturation step at 95˚C 30 sec, 

annealing step at 60˚C 30 sec and elongation step at 72˚C 30 sec, followed by the final 

elongation at 72˚C for 10 min to ensure that any remaining single-stranded DNA is fully 

extended. For most genes we used 30 PCR cycles, however, for those that were 

characterized by low expression levels, we used 35 cycles, as indicated.  

RT-PCR products were visualized by 1% agarose gel electrophoresis using ethidium 

bromide staining. Products were electrophoresed for ~50-70 min at 70 V.  Product size was 

determined using the 1 kb Plus DNA ladder (Invitrogen). Gels were visualized using a GEL 

DOC2000 (BioRad). The regions examined were downstream of the transcription start site 

(TSS) (Ensembl; www.ensembl.org/Homo_sapiens) and primers were designed to be exon 

spanning to ensure amplification was limited only to mRNA (http://frodo.wi.mit.edu/primer3/). 

Gene accession numbers, primer sequences as well as amplicon sizes are given in Table M-

1 below. 

 

Bisulphite genomic sequencing 

DNA was purified from ~0.5x106  cultured cells using the DNeasy Blood and Tissue Kit 

(Qiagen DNeasy), and bisulphite-converted as previously described (Noer et al., 2006) using 

the MethylEasyTM and MethylEasyTM Xceed kits (Human Genetic Signatures). Converted 

DNA was amplified by PCR, using primers designed with Methprimer 

http://www.ensembl.org/Homo_sapiens
http://frodo.wi.mit.edu/primer3/
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(www.urogene.org/methprimer/index1.html). Seven primer sets were designed for the neural 

progenitor marker, Nestin (NES). The primers are spanning regions of the proximal promoter, 

including the TSS or more upstream of the TSS, as well as the first and second intron 

(Ensembl; www.ensembl.org/Homo_sapiens) (Fig. R-6). Primer sequences, amplicon sizes 

as well as CpG numbers are given in Table M-2. PCR was carried out with the following 

conditions: 95˚C for 5 min and 35 cycles of 95˚C 1min, 54/58˚C 2 min and 72˚C 2 min, 

followed by 15 min at 72˚C. PCR products were cloned into E. coli using TOPO TA cloning 

(Invitrogen). Briefly, the TOPOCloning reaction (PCR product and M13 vector) was added 

into a vial of One Shot® chemically competent E. coli and incubated on ice for 5 to 30 min. 

Cells were heat-shocked for 30 sec at 42°C and immediately transferred on ice. Cells were 

incubated for 1 h in S.O.C. medium (nourishing medium) and plated on selective X-Gal and 

LB plates for blue/white selection. White colonies were selected and individual clones were 

reverse sequenced (GATC Biotech and MWG Biotech), using reverse pUC/M13 sequencing 

primers, commonly used in our group. Reverse sequencing was used to unveil either an 

adenine (A) corresponding to an unmethylated cytosine (C) (converted to a uracil (U) by 

bisulphite then to a thymine (T) by PCR, reverse-sequenced as an A, complementary to T), 

or a guanine (G), corresponding to a methylated cytosine (unconverted by bisulphite and 

reverse-sequenced as a G, complementary to C). 

Methylation profiles are shown as black dots (each dot representing a methylated C in 

a CpG dinucleotide) or white dots (each dot representing an unmethylated CpG) for each 

bacterial clone (rows). Each dot represents one CpG in the 5’-3’ order with No. 1 being the 

5’-most cytosine in the sequence examined. Average methylation of the regions examined 

and numbers of methylated cytosines for a given CpG were compared pairwise for different 

time points before and after induction of neurogenic differentiation using Fisher’s exact test 

and two-tailed P values. 
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Chromatin immunoprecipitation (ChIP) 

ChIP was performed on cultured ASCs as previously described (Dahl and Collas, 2007), 

prior to and after induction of neurogenic differentiation. Briefly, immediately before cell 

harvest, cells were resuspended with 20 mM Na-butyrate, a histone deacetylase inhibitor, in 

PBS. DNA and proteins were cross-linked by addition of 1% formaldehyde to stabilize these 

interactions in the cell population, and cells were incubated for 10 min at RT. Fixation was 

stopped by addition of 0.125 M glycine in PBS for 5 min at RT. Cross-linked cells were 

washed and lysed on ice in 50 mM Tris-HCl, pH 8, 10 mM EDTA, 1% SDS, protease 

inhibitors, 1 mM PMSF and 20 mM Na-butyrate for 5 min. Aliquots of 200 µl of chromatin 

were sonicated using a bath sonicator (Bioruptor UCD-200; Diagenode), 3 x 15 min, 30sec 

ON/OFF at high power to produce chromatin fragments of ~200 bp. The lysate was 

centrifuged, the supernatant collected and the amount of chromatin was measured by 

absorbance at A260 (DNA absorbance). Paramagnetic dynabeads (Protein A Dynabeads; 

Invitrogen) were washed twice in RIPA buffer (10 mM Tris-HCl, pH 8, 1 mM EDTA, 0.5 mM 

EGTA, 1% Triton X-100, 0.1% SDS, 0.1% Na-deoxycholate, 140 mM NaCl) and 

resuspended in 1 volume of RIPA buffer. Coupling of antibody to the magnetic beads was 

done by addition of the beads (10 µl) to 90 µl of RIPA buffer and 2.5 µg of primary antibody 

and followed by a 2-h incubation on a rotator at 40 rpm at 4°C. In these experiments, 

chromatin was diluted to a concentration of 0.8 A260 units in RIPA buffer containing 20 mM 

Na-Butyrate (0.8 units is equivalent to ~ 40,000 cells). Chromatin was mixed with antibody-

bead complexes in RIPA buffer and the coupling was carried out overnight on a rotator at 40 

rpm at 4°C. Immune complexes were washed 3x in RIPA buffer and 1x in TE buffer (10 mM 

Tris-HCl, pH 8.0, 10 mM EDTA). Each wash lasted for 4 min on a rotator at 40 rpm at 4°C. 

The contents were transferred to new tubes and the cross-linking was reversed and DNA 

eluted for 2 h at 68°C by addition of 150 µl elution buffer (20 mM Tris-HCl, pH 7.5, 5 mM 

EDTA, 20 mM sodium butyrate, 50mM NaCl) containing 1% SDS and 50µg/ml proteinase K. 

Elution buffer was recovered, ChIP material was re-extracted and both supernatants were 

added together. Another 200 µl elution buffer was added to the eluted ChIP material and 
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DNA was purified by phenol-chloroform-isoamylalcohol extraction and ethanol precipitation. 

Two independent ChIPs were done per experiment.  

The antibodies used were against specific modifications of histone H3 and included, 

from Millipore, anti-H3K4me3 (No. 07-473), from Diagenode, anti-H3K27me3 (No. 069-050), 

and anti-H3K9me3 (No. 056-050). As a negative control we used IgG from Millipore (DAM 

1437337), and it gave no enrichment on the level of the background as expected (data not 

shown).  

Immunoprecipitated DNA was analyzed by duplicate real time PCR, by a MyiQ Real-

time PCR Detection System using IQ SYBR® Green. PCR was carried out with the following 

conditions: 95°C for 3 min and 40 cycles of 95°C for 30 s, 60°C for 30 s, and 72°C for 30 s. 

ChIP data are illustrated as mean±SD percent precipitated DNA relative to input. The primers 

are spanning regions of the proximal promoter of one neurogenic gene (NES) and one 

house-keeping gene (GAPDH) as well as the first and second intron of NES. Primer 

sequences as well as amplicon sizes are given in Table M-3 . 
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Table M-1. RT-PCR primers used in this study. 

 

 

Gene  

F: forward primer  

R: reverse primer  

Amplicon 

size (bp) 

 Gene Accession 

Number 

 

CACNA1A     F: CTGCACTGACGAGTCCAAAG 

R: GGTGAAGAGGGTCAGCAGAG  

151   NM_000068  

CDK5 F: TGAGGTGGTCACACTGTGGT 

R: CTGGTCATCGACATCATTGC 

154  NM_004935  

CHGA F: AGGAGGAGGAGGAGGACAAC 

R: TTCTTCTCCTCGGGGTAGC 

176  NM_001275  

CNP F: CTGAGCTGCAGTTTCCCTTC 138  NM_033133  

 R: CACGGTACTTGTCCACGATG     

ENG F: GCCAGCATTGTCTCACTTCA 180  NM_001114753  

 R: ATGCGCAACAAGCTCTTTCT     

GAPDH F: TCGGAGTCAACGGATTTGGT 148  NM_002046  

 R: TTGCCATGGGTGGAATCATA     

GFAP   F: GAAAGAGATCCGCACGCAGTAT 188  NM_002055  

 R: ACTCCAGGTCGCAGGTCAAG     

GNRHR   F: TTCTGCTCTCTGCGACCTTT 158  NM_000406  

 R: ATCCAGTGGCATGACAATCA     

KISS1   F: GCTACTGCTTTTCCTCTGTGC 161  NM_002256  

 R: CAGTAGCAGCTGGCTTCCTC     

KCNC1 F: GAGGACGAGCTGGAGATGAC 163  NM_001112741  

 R: TGAAGAAGAGGGAAGCGAAG     

XCL1     F: CTCCTTGGCATCTGCTCTCT    139  NM_005283  

 R: AGCCTTCCGTGATGGTGTAG     

MAP2   F: CGCTCAGACACCCTTCAGATAAC 122  NM_002374  

 R: AAATCATCCTCGATGGTCACAAC     

MBP F: CCCCGTAGTCCACTTCTTCA 145  NM_001025081  

 R: TCCCTTGAATCCCTTGTGAG     

NEFH   F: GAGGAACACCAAGTGGGAGA 160  NM_021076  

 R: TTCTGGAAGCGAGAAAGGAA     

NES F: CACCTGTGCCAGCCTTTCTTA 170  NM_006617  

 R: TTTCCTCCCACCCTGTGTCT     

NEUROD1   F: GCCCCAGGGTTATGAGACTA 160  NM_002500  

 R: GCTCCTCGTCCTGAGAACTG     

NEUROG1/2/3 F: ACCGCATGCACAACTTGA 127  *  

 R: GCCAGAGCCCAGATGTAGTT     

OLIG2   F: GACAAGCTAGGAGGCAGTGG 111  NM_005806  

 R: CGGCTCTGTCATTTGCTTCT     

RBFOX3 F: CAACGGCTGGAAGCTAAATC 160  NM_001082575  

 R: CGCAGCCCGAAATGTATTAT     

SCN1A   F: CTGGTGTTGGCTGGACTTCT 154  NM_001165963  

 R: CCTCATCCCTTCAAATCGAG     

TUBB3 F: GGCCTTTGGACATCTCTTCA 

R: ATACTCCTCACGCACCTTGC 

241  NM_006086  

 

*NEUROG1  NM_006161 

  NEUROG2 NM_024019 

  NEUROG3 NM_020999 
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 Table M-2. Bisulphite sequencing primers used in this study. 

 

 

Gene  

F: forward primer  

R: reverse primer  

Amplicon 

size (bp) 

No. of 

CpGs 

Bisulphite sequencing primers   

NES promoter F1: GGGTATATTATAAAGGTTGGATAAATTTG 

R1: TTACCTAAATCTCCATCAAAAAAAA 

287 9 

 F2: TTTTTGATTTTTAAGGGGTTAAGGT 

R2: AAACAACTCATTCTACTCCTCCAAC 

345 24 

NES intron 1 F1:  GGTTAGTTGGTTGTTGAATTAGGAG 

R1: ACCCAAACAAAAAACTATTTTCTCA 

481 12 

 F2: TAGAATTTAGAATATGTGGGAAATGG 

R2: ATCCCTTCTATAAACCAACCTACCT 

482 10 

NES intron 2 F1: GAAAGGAGGAGAGGTAAGGTTTAGA 

R1: ACCCTTCCCCTTAATAACTTCACTA 

425 7 

 F2: AGATGAGGGTTTTGATTTTTAGTGA 

R2: CACACCCACACAAAACTTAAACTAA 

366 6 

 F3: TGGAGATTTGAGTAATGTTTTGTGT 

R3: AATAAAAAACCACCCCTCCTTAAT 

351 5 

 

Table M-3. ChIP primers used in this study. 

 

 

Gene  

F: forward primer  

R: reverse primer  

Amplicon 

size (bp) 

 

ChIP primers 
GAPDH F: CTGAGCAGTCCGGTGTCACTAC 

R: GAGGACTTTGGGAACGACTGAG  

166  

NES promoter F: GCTGCCACTCTCTGACCTCT 

R: AGAGACCGACGGGGACAAT 

158  

NES intron 1 F: AGTTCCTCACAGCCCTCCTT 

R: TCTCAGCTGCTGGTCACATC 

165  

NES intron 2 F: TTCCCCAGAATCCTCTCCTT 

R: AGTCGGACATTGCCCTACAC 

167  
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RESULTS 

 

1. Method of mitogenic stimulation and neurogenic differentiation of ASCs 

 

 

 

The ASC stimulation treatment (step1) substitutes standard growth medium with DMEM/F12 

containing 10% FCS, with knockout DMEM (containing 4.5 g/L glucose and Glutamax), 20 

ng/ml EGF, 20 ng/ml bFGF, 1 x B27 supplement. ‘Stimulated ASCs’, as referred in the 

current study, are ASCs which have been stimulated for 14 days. This has been a great 

advantage, in particular for stem cell culture since stem cells are isolated in limited amounts 

and do not grow as fast under standard conditions. Of note, culture of ASCs in stimulation 

medium does not alter ASC differentiation properties towards the adipogenic or osteogenic 

pathways, nor does it alter surface marker expression (Boulland et al., manuscript 

submitted). After 14 days of culture in stimulation medium, cells were subjected to 

neurogenic differentiation. Stimulated cells were plated either on 24 well plates or on 100 mm 

cell culture petri dishes and left for at least 6 h for attachment to occur. Neurogenic 

differentiation was induced by adding neurobasal medium containing 1% FCS, 1x B27, 0.5 

mM 1-methyl-3-isobutylxanthine, 1 µM dexamethasone, 0.2 mM 8CPT-cAMP, 10 mM 

valproic acid and 10 µM forskolin (Fig. R-1). Cells induced towards the neurogenic pathway 

were isolated on day 1, day 3, day 7, day 14 and day 21 for various experiments. 

   

Fig. R-1. Steps leading to neurogenic differentiation of ASCs. Stimulation of proliferation  leads to a 

dramatic increase in cell numbers. After 14 days in stimulation media ‘stimulated’ ASCs are induced 

to differentiate, giving rise to neuronal-like cells. 



 
47 

2. Morphological changes associated with neurogenic differentiation 

We examined morphological changes associated with induction of neurogenic differentiation, 

by light microscopy and SEM (Fig. R-2). For light microscopy, cells were induced to 

differentiate for 7 days (Fig. R-2A, B, C); for SEM, cells were fixed and coated in platinum 

before and after neurogenic induction, on day 3 and after 3 weeks (Fig. R-2D, E, F, G, H, I).  

ASCs had a fibroblast-like appearance with a spindle-shape at confluency (Fig. R-2A, 

B, D). Induction of neurogenic differentiation was followed by changes concerning cell size 

and shape over time. Early stages of differentiation (day 3) are accompanied by cells 

exhibiting a spherical cell-soma with mainly bipolar processes and in some cases tri- and 

multipolar extensions. Interestingly, we could observe terminal branching and intercellular 

contacts, forming a type of cellular network (Fig. R-2E, G, H, I). At later stages of 

differentiation (day 21), cells acquired a more neuronal-like structure with thinner and bigger 

cell soma, extensive branching and longer and thinner protrusions which extend in different 

directions (Fig. R-2F). These results collectively indicate that neurogenic induction elicits 

morphological changes in ASCs, suggestive of acquisition of a neuron-like phenotype.  

   C    

 

 

 

Figure R-2. Morphological changes 

associated with neurogenic 

differentiation. (A) Unstimulated ASCs. 

Bar, 50 µm.  (B) Stimulated ASCs. Bar, 

50 µm.  (C) Neurogenic-induced ASCs, 

day 7. Bar, 37.5 µm. (D)  Unstimulated 

ASCs,  magnification  800. Bar, 50 µm. 

(E) Neurogenic-induced ASCs  Day 3, 

magnification = 1300. Bar, 40 µm. (F) 

Neurogenic-induced ASCs Day 21, 

magnification 600. Bar, 50 µm. (G) 

Neurogenic-induced ASCs  Day 3, 

magnification 1300. Bar, 40 µm. (H) 

Neurogenic-induced ASCs  Day 3, 

magnification 8000. Bar, 5 µm. (I) 

Neurogenic-induced ASCs Day 3, 

magnification 7000. Bar, 5 µm.  
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3. Transcriptional changes associated with neurogenic differentiation 

To further evaluate the extent of neurogenic differentiation of ASCs and assess whether the 

neurogenic-induced cells acquired a gene expression pattern similar to neurons, we 

investigated the gene expression level of some neural-specific genes. Neurogenic 

differentiation was evaluated by RT-PCR analysis of expression of several genes, markers of 

the neurogenic- immature early markers, regulators of neurogenesis- (NESTIN, 

NEUROG1/2/3 [a designation reflecting the detection of a common transcript of the 

NEUROG1,NEUROG2 and NEUROG3 genes], NEUROD1, OLIG2), neuronal- mature 

markers of neurons- (NEFH, RBFOX3, TUBB3, MAP2, CACNA1A, SCN1A, KCNC1), glial- 

astrocytic, oligodendrocytic- (GFAP,MBP, CNP) and neuroendocrine (CHGA, KISS1, XCL1, 

GNRHR) pathways (Fig. R-3A). These markers were evaluated prior to, and on day 1 and 7 

of neurogenic induction. We also performed PCR without RT to control for DNA 

contamination using NEUROG1/2/3 and GAPDH primers; as expected these gave no PCR 

products (Fig.R-3B).  

The stem cell marker ENG (CD105) (Pierelli et al., 2001) was clearly expressed in 

both unstimulated and stimulated ASCs as expected; upon induction of neurogenic 

differentiation, ENG became slightly downregulated, particularly at day 7. CDK5, a critical 

signaling determinant in development and regulator of nestin (Sahlgren et al., 2003), was 

upregulated upon mitogenic stimulation. Consequently, we detected strong nestin (NES) 

upregulation upon mitogenic stimulation. Expression of NES, a marker of neural progenitor 

cells (Lendahl et al., 1990), was maintained in the early stages of neurogenic induction (day 

1) but steeply decreased thereafter. In addition, transcripts for NEUROG1/2/3, which 

encodes a transcription factor required for neurogenesis and is a regulator of NeuroD (Seo et 

al., 2007), were detected in unstimulated and stimulated ASCs. On day 1 of neurogenic 

induction, NEUROG1/2/3 was slightly upregulated, yet its expression sharply declined by day 

7. Of note, further transcript analysis using NEUROG1, 2 or 3-specific RT-PCR primers 

indicate that whereas NEUROG3 transcripts were not detected at any of the stages 

examined here, NEUROG1 and 2 mRNAs were detected (data not shown), consistent with a 
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neurogenic induction process. The neurogenic NEUROD1 and OLIG 2 transcripts were not 

detected in ASCs. Upon differentiation however, there was a steep increase in the 

expression of NEUROD1, a transcription factor essential for survival and maturation of adult-

born neurons (Gao et al., 2009), which coincided with the expression peak of 

NEUROGENIN1/2/3. OLIG2, a transcription factor important for motoneuron and 

oligodendrocyte fate specification and competitor of neurogenin (Lee et al., 2005b;Zhou et 

al., 2001), was also upregulated on day 1, with a dramatic increase on day 7. This suggests 

a sequential activation and repression of neurogenic genes leading to a signal cascade, and 

possibly determining the neural pathway of these cells. 

We next determined changes in expression of a set of neuronal marker genes. We 

observed that with the exception of CACNA1A and to some extent TUBB3 and SCN1A all 

other genes, namely NEFH, RBFOX3, MAP2 and KCNC1 were not detected in unstimulated 

ASCs. However, they were upregulated at later stages. In particular, NEFH, one of the major 

components of the neuronal cytoskeleton filaments (Lee and Cleveland, 1996),  became 

detected upon mitogenic stimulation and remained expressed throughout the differentiation 

period. RBFOX3 (encoding NeuN), a neuronal nuclear protein and a marker associated with 

the initiation of neuronal terminal differentiation (Mullen et al., 1992), was detectable only on 

day 1 after induction of neurogenic differentiation. TUBB3, a major constituent of 

microtubules important for the nervous system development and essential for proper axon 

guidance and maturation (Tischfield et al., 2010), was sharply induced upon mitogenic 

stimulation and remained expressed after neurogenic induction. MAP2, a microtubule 

assembly-promoting protein important for outgrowth of neuronal processes, synaptic 

plasticity and neuronal cell death (Sanchez et al., 2000), was also detected, although at low 

level, upon differentiation. Surprisingly, CACNA1A, a neuronal voltage gated calcium channel 

subunit which has been associated with a wide range of neurological disorders (Romaniello 

et al., 2010), was expressed in ASCs prior to and after induction of neurogenic differentiation. 

In addition, SCN1A and KCNC1, genes coding for voltage-sensitive ion channels (Lehmann-

Horn and Jurkat-Rott, 1999), were upregulated upon induction of neurogenic differentiation, 
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followed by a decline on day 7. Collectively, this transcription analysis supports the view that 

ASCs may have the potential to differentiate towards the neuronal pathway in vitro. 

Next, we investigated the expression pattern of glial cell marker genes. GFAP, an 

intermediate filament protein and astroglial-specific marker (Eliasson et al., 1999), was not 

expressed at detectable levels prior to or after induction of neurogenic differentiation. This 

was notably consistent with the induction of neurogenin, which is an inhibitor of GFAP (Sun 

et al., 2001). Interestingly, the oligodendrocytic markers CNP and MBP were expressed in 

ASCs. CNP, a microtubule-assembly myelin protein that directs process outgrowth in 

oligodendrocytes (Lee et al., 2005a), maintained nearly the same expression pattern at all 

stages. On the other hand, MBP, a gene involved in the formation of myelin sheaths and 

essential for oligodendrocyte morphogenesis at later stages of cell differentiation (Galiano et 

al., 2006), was downregulated upon induction of differentiation. This is consistent with 

neurogenin being an inhibitor of glial differentiation (Sun et al., 2001). This suggests that 

neurogenic-induced ASCs might repress a differentiation pathway towards the 

oligodendrocytic and astrocytic lineage.  

The last set of genes examined included neuroendocrine cell marker genes. They 

were characterized by substantial variations in their expression patterns. CHGA, a secretory 

protein acting at the cross-road between the neuroendocrine and the cardiovascular systems 

(Di and Morganti, 2011), and KISS1, a gene encoding for kisspeptins which are potent 

stimulators of gonadotropin release in several mammalian species (Colledge, 2009), were 

upregulated upon neurogenic differentiation (KISS1 to a larger extent). However, KISS1 

expression did not persist at a later stage of differentiation. XCL1 (Leptin), which has 

implications on brain development and glucose homeostasis (Jackson et al., 2011) and 

GNRHR, which in conjunction with GnRH is the primary regulator of reproduction in 

vertebrates (Hapgood et al., 2005), were also detectable in stimulated ASCs and until day 1 

after induction of differentiation, suggesting their induction in a minor proportion of the cells. 

Overall, our data suggest that neurogenic-induced ASCs preferably differentiate towards the 

neuronal lineage, gradually repressing differentiation to other neural pathways.  
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4. Effect of neurogenic induction in the protein expression 

Using immunofluorescence, we next analyzed the expression of different neurogenic 

(NEUROG1) and  neuronal (NEFH, TUJI, MAP2, SYNAPSIN, MUNC, SYNAPTOTAGMIN 

and GEPHYRIN) proteins to further elucidate the neurogenic potential of ASCs after 14 days 

of culture in neurogenic medium (Fig. R-4). These results are in agreement with the gene 

expression patterns, as we found immunoreactivity against NEUROG1, NEFH, TUJI 

(TUBB3) and MAP2. Double-immunolabeling of NEFH and NEUROG1 (Fig. R-4A), gave 

Fig. R-3.  In vitro neurogenic differentiation of ASCs. (A) RT-PCR analysis of gene expression of 
neurogenic, neuronal, glial and neuroendocrine specific markers in unstimulated and stimulated 
ASCs and at day 1 and day 7 after induction of neurogenic differentiation.  As a positive control 
for the primer-efficiency  we used RNA isolated from retina, NPCs and white matter (left). Water 
was used as a negative control (-) (right). Genes were run at 30xcycles (ENG, CDK5, NES, NEFH, 
TUBB3, MAP2, MBP, CNP, CHGA, KISS1, XCL1, GNRHR, GAPDH) and at 35xcycles (NEUROG1/2/3, 
NEUROD1, OLIG2, RBFOX3, CACNA1A, SCN1A, KCNC1, GFAP).  (B)–RT, no Reverse Transcription 
reaction control for day 1 and day 7 after induction of neurogenic differentiation for the genes 
NEUROG1/2/3 and GAPDH. 
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positive staining after induction of differentiation. NEFH, in correlation with being the most 

abundant cytoskeletal element in neuronal axons (Sasaki et al., 2009), was detected 

throughout the neurite-like processes in the neurogenic-induced ASCs. In contrast, 

NEUROG1, a nuclear transcription factor important for promotion of neurogenesis (Sun et 

al., 2001), was predominantly localized in the nucleus in neurogenic-induced ASCs. Next, we 

examined protein expression and localization of TUJI, a building block of neuronal 

microtubules with highest expression during periods of axon guidance and maturation 

(Tischfield et al., 2010), and MAP2, one of the most abundant proteins in the brain largely 

located in neuronal cell bodies and dendrites (Sanchez et al., 2000). Double-staining against 

those proteins (Fig. R-4B) showed strong expression upon induction of neurogenic 

differentiation, with localization of TUJI overall the neurite-like processes and MAP2 mostly 

concentrated in the perikaryon (cell-soma) and in the proximal part of the neurite-like 

processes. Of note, the majority of the neurogenic-induced ASCs stained for the above 

proteins. Our immunostaining experiments show that these neurogenic and neuronal 

proteins acquired relatively the expected distribution across the cell, suggesting that 

neurogenic-induced ASCs may acquire neuronal characteristics. To support this view, 

immunostaining analysis of human NPCs showed similar labeling patterns as in neurogenic-

induced ASCs (Boulland et al., manuscript submitted). 

Furthermore, we also examined the protein expression of three proteins, MUNC-13, 

SYNAPSIN 1-2, SYNAPTOTAGMIN, which are part of the machinery involved in the release 

of presynaptic vesicles; MUNC-13 is a family of proteins which are mostly expressed in brain 

and have a central role in synaptic vesicle priming (maturation to a fusion competent state) 

and is selectively targeted to presynaptic active zones (Koch et al., 2000). SYNAPSIN 1-2, 

are abundant synaptic-vesicle phosphoproteins that are known to regulate neurotransmitter 

release (Sun et al., 2006). SYNAPTOTAGMIN, is a Ca2+-binding protein which participates in 

triggering neurotransmitter release at the synapse (Fernandez-Chacon et al., 2001).  All 

three proteins stained strongly in neurogenic-induced ASCs. In particular, we detected 

MUNC-13 (Fig. R-4C) mostly in the perikaryon and proximal part of the neurite-like 
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processes. In contrast, SYNAPSIN (Fig. R-4C) was largely located at the distal-part of the 

neurite-like processes in comparison to the perikaryon. Another vesicle-associated protein, 

SYNAPTOTAGMIN (Fig. R-4D) was detected throughout the neurite-like processes as well 

as the perikaryon of the cells.  Moreover, GEPHYRIN, a scaffolding protein often associated 

with clusters of postsynaptic GABAergic and glycine receptors (Kneussel and Betz, 2000), 

was detected in the perikaryon of some cells (Fig. R-4D).  

Notably, whereas localization of GEPHYRIN in the perikaryon was relatively as 

expected from its localization in neuronal cells (Kneussel and Betz, 2000), the localization of 

the presynaptic markers MUNC-13, SYNAPSIN 1-2, and SYNAPTOTAGMIN in the 

cytoplasm was unexpected. However, these presynaptic proteins were detected in clusters, a 

characteristic of synaptic vesicles in a resting presynaptic terminal in neurons (Pechstein and 

Shupliakov, 2010). Interestingly, immunolabeling of SYNAPTOTAGMIN in human NPCs 

showed similar labeling patterns (Boulland et al., manuscript submitted). These data suggest 

that there might be a lack of mature nerve-terminals or appropriate guiding signals in 

neurogenic-induced ASCs. To support this view, immunostaining analysis of 

SYNAPTOTAGMIN in individual cultured neurons also showed similar labeling patterns as in 

neurogenic-induced ASCs (Gardzinski et al., 2007). There was only a restricted number of 

cells which were stained for the above proteins (~10%), suggesting that cells do not respond 

in the same way when induced to differentiate. 
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5. Effects of neurogenic induction on the cell cycle 

Downregulation of Nes has been correlated with cells leaving the proliferative state and 

becoming post-mitotic (Dahlstrand et al., 1995). Using immunofluorescence, we investigated 

NESTIN expression prior and after induction of neurogenic differentiation (Fig. R-5A,B,C,D). 

In particular, all cells examined were immunoreactive for NESTIN during mitogenic 

stimulation. This was followed by a gradual decline in immunoreactivity upon induction of 

differentiation.  At later stages of differentiation (day 7) there was no detectable NESTIN 

expression. This strongly suggests that the cells are going towards a post-mitotic state upon 

induction of neurogenic differentiation. 

To further evaluate the effects of neurogenic induction on the cell cycle, we used 

immunofluorescence for the detection of a cell-endogenous marker, tightly associated with 

cell proliferation, namely KI-67. KI-67 is a nuclear protein, expressed in all phases of the cell-

cycle except the resting phase (G0), thus providing an effective marker of proliferation in the 

D 

Fig. R-4. Localization of neurogenic and neuronal markers  in neurogenic-induced ASCs as observed 

by immunofluorescence analyses using specific antibodies against NEFH, NEUROG1, TUJI, MAP2, 

SYNAPSIN, MUNC13, SYNAPTOTAGMIN, GEPHYRIN. Staining for these markers was performed after 

two weeks of differentiation. (A) Neurogenic-induced ASCs stain positive for the neuron-specific 

markers NEFH-NEUROG1. Localization of NEFH was detected in the neurite-like processes while 

NEUROG1 in the nucleus of the treated cells. Bar 10 µm. (B) Neurogenic-induced ASCs expressing 

TUJI  and MAP2. TUJI was located in the neurite-like processes while MAP2 in the perikaryon and 

proximal part of the neurite-like processes. Bar 10 µm. (C) Staining of neurogenic-induced ASCs for 

SYNAPSIN and MUNC-13. SYNAPSIN was largely localized in the distal part of the neurite-like 

processes while detection of MUNC-13 was mostly found in the perikaryon and proximal part of 

the neurite-like processes. Bar 10 µm. (D) Double-labeling of SYNAPTOTAGMIN and GEPHYRIN gave 

positive staining, with SYNAPTOTAGMIN located both in the neurite-like processes and perikaryon 

of cells and GEPHYRIN located in the perikaryon. Bar 8 µm. 
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initial phase of adult neurogenesis (Kee et al., 2002). Consistent with NESTIN expression 

pattern, the majority of the cells were stained for KI-67 (Fig. R-5J, K, L) at the mitogenic 

stimulation stage. Neurogenic induction was followed by a gradual decline in 

immunoreactivity with almost no detectable levels at day 7. These results suggest that the 

cells exit the cell-cycle and enter a resting phase or G0.  

To strengthen this view, we also performed proliferation assessment by EdU 

incorporation, to allow microscopic analysis of the effect of the neurogenic differentiation 

treatment on the cell cycle, in vitro (Fig. R-5E, F, G, H). In good agreement with NESTIN 

expression, there was an increase in the proliferation rate of ASCs upon mitogenic 

stimulation, followed by a dramatic decrease upon induction of neurogenic differentiation. 

Quantification studies confirm these data and show a steep decline in the proliferation rate of 

ASCs after neurogenic induction (Fig. R-5-I). Overall, our results indicate that neurogenic-

induced ASCs become post-mitotic, a characteristic of terminally-differentiated cells. 

 

 

  

Fig. R-5. Evaluation of the effects of the 

neurogenic treatment on the cell cycle. 

(A-D)  NESTIN immunostaining for 

unstimulated, stimulated and 

neurogenic-induced ASCs at day 1 and 

7. The transition from a proliferating to 

a post-mitotic cell state is accompanied 

by a rapid decrease of NESTIN. Bar 25 

µm. (E-H) Proliferation assessment by 

EdU incorporation for unstimulated, 

stimulated and neurogenic-induced 

ASCs at day 1 and 7. Neurogenic-

induced ASCs are exiting the cell cycle, 

with no detectable EdU incorporation 

at Day 7. Bar 100 µm. (I) Percentage of 

EdU-positive cells for the different 

treatments and time points. (J-L) KI67 

immunostaining for stimulated ASCs 

and day 1 and 7 after neurogenic 

induction. Bar 100 µm. 
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6. Epigenetic changes associated with ASC mitogenic stimulation and 

neurogenic induction 

6.1. CpG methylation changes elicited by mitogenic stimulation and neurogenic 

induction 

6.1.1. Nestin regions examined by bisulphite sequencing 

 

Fig. R-6. (A) An overview of the NES gene, consisting of four exons and three introns. (B) 

Genomic regions examined by bisulphite sequencing in the NES gene. TSS (+1), transcription 

start site. Numbers designate amplicon positioning relative to the TSS and the length of the 

regions examined is shown in bp. 
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PCR primers specific for bisulphite-converted DNA were designed to include several areas of 

the promoter region, first and second intron of NES (Fig. R-6). In the NES promoter, we have 

analyzed two regions, one more upstream from the TSS (+1) and one which spans the TSS 

together with a downstream region of exon 1. The first amplicon lies between nucleotides -

913 to -627 relative to the TSS and covers a 287 bp region including 9 CpGs. The second 

amplicon is between nucleotides -103 to +241 relative to the TSS and covers a 345 bp region 

including 24 CpGs. This region is suggested to have the highest activity among other regions 

in the Nes promoter (Cheng et al., 2004). We also analyzed the DNA methylation pattern in 

the first intron of NES where there is a muscle-specific enhancer element important for 

regulation of myoblast differentiation (Zhong et al., 2008). The first primer set spans the 

region between nucleotides +1008 and +1488 relative to the TSS, with an amplicon size of 

481 bp and 12 CpGs included in this region. The second primer set covers the region 

between nucleotides +1537 and +2018 relative to the TSS, with a product size of 482 bp and 

10 CpGs in this region. 

There are two neural enhancer elements residing in the second intron of Nes, one 

midbrain-specific and one CNS-specific (Yaworsky and Kappen, 1999). We analyzed three 

different regions in this second intron, one in the 5’ region and two in the 3’ region of the 

intron. The first primer set spans the region between nucleotides +2270 and +2694 relative to 

TSS, with an amplicon size of 425 bp containing 7 CpGs. A sequence comparison between 

the rat and human NES second intron revealed that this is the least conserved region of the 

intron (Yaworsky and Kappen, 1999). The second primer set spans the region between 

nucleotides +2918 and +3283 relative to the TSS, with an amplicon size of 366 bp containing 

6 CpGs. This area is known to hold the enhancer that regulates Nes expression in the 

midbrain (Yaworsky and Kappen, 1999). The last primer set spans the region between 

nucleotides +3240 and +3590 relative to the TSS, with an amplicon size of 351 bp containing 

5 CpGs. This is the region suggested to be specific for expression of Nes in the CNS 

(Kappen and Yaworsky, 2003).  
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6.1.2. CpG methylation profiles of NES promoter and NES intron 2 

In this experiment, we were interested in analyzing the DNA methylation pattern for several 

regions of NES before and after induction of neurogenic differentiation. The promoter region 

examined in unstimulated ASCs and day 14 after induction of differentiation, remained 

globally unmethylated, consistent with its localization in a CpG-rich region (Fig. R-7A) 

(Appanah et al., 2007). This strongly suggests that the NES promoter region is not regulated 

by DNA methylation. 

The second intron of NES (intron 2) was characterized by significant global changes 

(P≤0.02) in the methylation pattern, in particular in the region where the two enhancer 

elements are thought to reside (Fig. R-7B, D). On the other hand, the changes in DNA 

methylation at the single CpG level were not significant (Fig. R-7C). The first amplicon (I2-1) 

which represents the 5’ region of the intron remained heavily methylated throughout the 

various treatments with no significant changes in the DNA methylation pattern (P>0.05). The 

second (I2-2) and third (I2-3) amplicon, however, spanning the regions for the midbrain and 

CNS enhancers, respectively, were characterized by a global demethylation upon mitogenic 

stimulation. The two regions became fast remethylated upon induction of neurogenic 

differentiation and remained heavily methylated until day 14.  

DNA methylation changes in I2-2 were extremely significant (P<0.0001), upon 

mitogenic stimulation (step1) and induction of neurogenic differentiation (step2) in ASCs. 

There were no significant changes in the methylation pattern of neurogenic-induced ASCs 

during the differentiation treatment (P>0.05). In I2-3, mitogenic stimulation was accompanied 

by a significant change in methylation (P = 0.0207), and a very significant change upon 

induction of differentiation (P=0.0023). However, the changes in neurogenic-induced ASCs 

during the treatment were not significant (P>0.05). Overall, these data show DNA 

methylation changes in the NES neural enhancer elicited by mitogenic stimulation and 

neurogenic induction. The data suggest that this enhancer might be regulated at the DNA 

methylation level, and that there might be putative transcription factor binding sites which 

become accessible upon  global demethylation of this enhancer region. 

A 
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6.1.3. CpG methylation profiles of NES intron 1 

Previous studies in our group have established that ASCs do not posses the ability to 

differentiate towards the myogenic lineage (Sørensen et al., 2009). Therefore we were 

interested to investigate the DNA methylation state of the first intron of NES, important for 

myoblast differentiation (Zhong et al., 2008), and whether there are any differences elicited 

by the various treatments (Fig. R-8A, B). 

Fig. R-7. CpG methylation profiles of the NES locus. Diff stands for neurogenic 

differentiation (A) Bisulphite sequencing data for undifferentiated and neurogenic-induced 

ASCs for the promoter region.  (B) Bisulphite sequencing data for  unstimulated, stimulated 

and in vitro neurogenic-induced ASCs for the second intron. Each dot depicts one CpG in 

the 5’-3’ order and each row of dots represents one bacterial clone (i.e., one genomic 

allele). Positioning of each CpG in each region is shown is Fig. R-6B. (C) DNA methylation 

profiles of the regions examined in the second intron, as indicated from (B). (D)  

Percentage of methylation in each region of the second intron and for  each treatment, 

determined from (B). a,b p< 0.001, c,d p= 0.02 and d,e p< 0.01 (t-test). 
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The first intron of NES (intron 1) was found to be heavily methylated in unstimulated 

ASCs. There were no significant global methylation changes upon mitogenic stimulation or 

induction of neurogenic differentiation (P>0.05). Interestingly, however, when we more 

closely examined the first amplicon (I1-1), we observed significant differences at the DNA 

methylation pattern at the local level. We detected a dynamic methylation and demethylation 

of some specific CpGs. In particular, CpG No. 3 was demethylated after mitogenic 

stimulation and this was followed by a gradual remethylation upon induction of differentiation, 

being almost completely methylated by day 14. The difference in the methylation status 

between stimulated ASCs and day 14 neuronal-like cells was significant (P=0,0237). There 

was also a significant difference in the methylation pattern between the various treatments 

for two CpGs (No. 5 and 6) with P values between unstimulated ASCs and day 14 

neurogenic-induced ASCs equal to 0.03 and less than 0.0001, respectively. CpG No. 5 was 

almost completely unmethylated in unstimulated ASCs; however upon induction of 

differentiation it became gradually hypermethylated. On the contrary, CpG No. 6 was 

hypermethylated in unstimulated ASCs, however by day 14 was converted to a 

hypomethylated form. There were also some other CpGs which had a less significant change 

in there methylation pattern (No. 9, 11). CpG No. 9 was less methylated in unstimulated 

ASCs while upon mitogenic stimulation and after induction of neurogenic differentiation it 

remained completely methylated. CpG No. 11 was relatively unmethylated in the 

unstimulated, stimulated and day 1 neurogenic-induced ASCs; however it became heavily 

methylated by day 14. There were a few other CpGs which remained relatively unaltered at 

all time points (No. 2, 7, 8, 10, 12); in all cases these CpGs were hypermethylated. These 

dynamic alterations in the methylation of specific CpGs support the view for the presence of 

putative transcription factor binding sites important for regulation of the first intron of NES. 
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The second amplicon (I1-2) maintained relatively the same methylation pattern during 

the various conditions with no significant alterations at the global or local level, suggesting 

that it does not attain a dynamic role in nestin regulation upon mitogenic stimulation and 

differentiation. Interestingly, the presence of 3 CpGs being markedly hypomethylated 

suggests that there might be putative transcription factor binding sites essential for regulation 

of the first intron of NES, remaining consistently accessible for regulation.   

 

 

 

 

 

Fig. R-8. DNA methylation profiles in 

the NES first intron in unstimulated,  

stimulated  and in vitro neurogenic-

induced ASCs. Diff stands for 

neurogenic differentiation. (A) 

Bisulphite sequencing data for 

undifferentiated and neurogenic-

induced ASCs. (B) DNA methylation 

profiles of the regions examined, as 

indicated from (A). The significance 

values of the three CpGs were:  CpG 

No. 3, p=0.023 between stimulated 

and neurogenic-induced ASCs at day 

14. CpG No. 5, p=0.03 between 

unstimulated and neurogenic-induced 

ASCs at day 14. CpG No. 6, p<0.0001 

between unstimulated and 

neurogenic- induced ASCs at day 14. 
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6.2. Changes in histone modifications elicited by mitogenic stimulation and 

neurogenic induction 

6.2.1. Regions examined by ChIP     

 

 

 

We designed genomic DNA ChIP primers to include the proximal promoter regions of NES 

and of the house-keeping gene GAPDH. For the NES gene, we also examined a region in 

the first (muscle-specific enhancer) and second intron (neural enhancer) (Fig. R-9). 

In the NES promoter, we analyzed a region covering 158 bp ranging from nucleotides 

–112 to +46 relative to TSS. In the first intron, a 165 bp region was examined, spanning 

nucleotides +1304 to +1468 relative to the TSS. The second intron region examined spanned 

nucleotides +3443 to +3609 relative to the TSS, with an amplicon size of 167 bp. This area is 

important for the function of the CNS-specific enhancer and it contains a number of putative 

transcription factor binding sites (Lothian et al., 1999). Finally, the GAPDH promoter region 

examined spanned nucleotides –536 to –371 with an amplicon size of 166 bp.  

 

6.2.2. Histone modification changes at the NES locus 

DNA methylation has been shown to correlate with Nes repression; however DNA 

demethylation is not sufficient to mediate activation of Nes transcription (Han et al., 2009). To 

Fig. R-9. Genomic regions examined by Chromatin immunoprecipitation (ChIP) in 

NES, and GAPDH. TSS (+1), transcription start site. Numbers designate amplicon 

positioning relative to the TSS and the length of the regions examined is shown in bp. 
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expand our understanding of the epigenetic events associated with NES expression upon 

neurogenic induction of ASCs, we examined by ChIP whether transcriptionally repressive or 

permissive histone modifications on the NES locus were affected upon ASC mitogenic 

stimulation and neurogenic induction. We investigated the following histone modifications: 

H3K4me3, H3K27me3 and H3K9me3, three modifications commonly associated with, 

respectively, the TSS of most genes (active or inactive; H3K4me3), and with the promoter of 

transcriptionally inactive genes (H3K9me3 and H3K27me3). ChIP analysis was performed 

prior to and after mitogenic stimulation and following induction of neurogenic differentiation. 

Quantitative PCR was used to identify the enrichment of each modification on a specific 

genomic fragment, relative to input chromatin. 

In undifferentiated ASCs prior to stimulation (unstimulated), all regions of NES 

examined were enriched in H3K4me3, H3K27me3 and H3K9m3, consistent with the very 

weak expression of NES. Upon mitogenic stimulation, H3K4me3 levels on the NES promoter 

remained unaltered while there was a steep decline in the repressive marks H3K27me3 and 

H3K9me3 (Fig. R-10A), leading to an increase in the signal ratio of H3K4me3 to H3K27me3. 

As  H3K4me3 marks most promoters regardless of their activity (Mikkelsen et al., 2007;Roh 

et al., 2006;Zhao et al., 2007), an increased H3K4me3/H3K27me3 ratio can be interpreted 

as an indicator of transcriptional activation (Noer et al., 2009). Induction of neurogenic 

differentiation was accompanied by an increase in H3K27me3 and H3K9me3, consistent with 

NES downregulation at the mRNA and protein levels (Fig. R-10A). These data indicate that 

NES promoter activity correlates with dynamic changes in associated histone modifications.  

The CNS enhancer in the second intron of NES (intron 2) displayed similar 

modification changes as the NES promoter. Upon mitogenic stimulation, H3K4me3 levels 

remained unaltered, while H3K27me3 and H3K9me3 exhibited a steep decline (Fig. R-10B). 

Neurogenic induction was accompanied by an increase in H3K27me3 and H3K9me3, 

consistent again with NES repression on day 7 (Fig. R-10B). This is in agreement with our 

DNA methylation data and supports the view that NES is under epigenetic control.  
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Overall, these results indicate a strong correlation between NES expression patterns 

and promoter enrichment in permissive and repressive histone marks. This also holds true 

for the CNS enhancer (intron 2) for these marks. This is consistent with previous data 

showing that the NES neural enhancer plays a major role in the regulation of NES 

expression (Zimmerman et al., 1994) and suggests a regulation of NES expression at the 

level of histone modifications (in addition to DNA methylation). 

The NES muscle-specific enhancer in the first intron (intron 1), is also subjected to 

changes at the histone level. Whereas no changes were detected in H3K4me3 enrichment in 

this intron, mitogenic stimulation was associated with a decrease in H3K27me3 and 

H3K9me3, whereas re-enrichment occurred after neurogenic induction (Fig. R-10C). These 

results suggest that the mitogenic stimulation treatment might initialize an active state on the 

NES muscle-specific enhancer, consistent with previous studies supporting that Nes intron 1 

can induce reporter gene expression in both neural and muscle precursor cells (Zimmerman 

et al., 1994) 

 

  

 

                     

Fig. R-10. Histone modifications associated with 

different regions of the NES locus: promoter 

region, intron 1 and intron 2, in unstimulated, 

stimulated and neurogenic-induced ASCs. (A) ChIP 

analysis of H3K4me3, H3K27me3 and H3K9me3 

association with the NES promoter. (B) ChIP 

analysis of H3K4me3, H3K27me3, H3K9me3 for 

the NES intron 2. (C) ChIP analysis of H3K4me3, 

H3K27me3 and H3K9me3 for the NES intron 1. 

Data are from two independent ChIPs each 

analyzed by duplicate quantitative PCRs. 



 
65 

6.2.3. Histone modification changes in the GAPDH promoter 

In agreement with its constitutive activation, the GAPDH promoter was strongly enriched in 

H3K4me3 with no H3K27me3 or H3K9me3 in ASCs. H3K4me3 remained elevated after 

mitogenic stimulation and induction of differentiation. Interestingly, the GAPDH promoter 

became slightly enriched in the repressive histone marks H3K27me3 and H3K9me3 upon 

induction of neurogenic differentiation. The results were in good agreement with the mRNA 

expression profiles which indicated that there was a slight decrease in the expression of 

GAPDH at Day 14 (data not shown). Overall, these data suggest that these neuronal-like 

cells might become post-mitotic, low energy demanding cells, since GAPDH expression is 

higher in energy-demanding tissues (Barber et al., 2005). 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. R-11. Histone modifications 

associated with the GAPDH promoter 

in undifferentiated and neurogenic-

induced ASCs. ChIP analysis of 

H3K4me3, H3K27me3 and H3K9me3 

association with the GAPDH promoter. 
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DISCUSSION 

 

This project evaluates the capacity of ASCs to differentiate towards the neurogenic lineage 

and tests the hypothesis that there is an epigenetic basis related to the differentiation 

potential of ASCs towards the neurogenic pathway. Using the neurogenic marker, NES, as a 

model to study the epigenetic changes acquired upon induction of neurogenic differentiation, 

we show that there are dynamic changes in both DNA methylation and histone modifications 

along with dramatic changes in morphology and gene expression pattern before and after 

induction of neurogenesis in ASCs. Nevertheless, as MSCs from various sources have 

distinct differentiation capacities, different ASC clones similarly have distinct differentiation 

potential (Boquest et al., 2005). We show that there is a sequential activation and repression 

of neurogenic-specific genes taking place that might lead ASCs to differentiate towards the 

neurogenic pathway. Using bisulphite sequencing, we suggest that NES might be regulated 

at the DNA methylation level. In addition, using chromatin immunoprecipitation, we 

demonstrate that there are dynamic changes at the histone level following mitogenic 

stimulation and induction of neurogenic differentiation on the NES locus. Both our bisulphite 

sequencing and ChIP results are in agreement and are strengthened by the morphological 

and gene expression profiling data at the mRNA and protein level.  

 

In vitro differentiation potential of ASCs 

ASCs display a neuronal-like morphology after neurogenic induction  

The possibility of generating neural cells from human ASCs (hASCs) in vitro, could be very 

promising for the treatment of neurodegenerative diseases since ASCs are easily isolated 

and they can be obtained in high amounts (Boquest et al., 2005). Neurogenic-induced ASCs, 

acquired dramatic changes in their structure and adopted a neuronal-like morphology. This 

was also accompanied by expression of neurogenic-specific genes and the significant 

reduction of cell proliferation upon differentiation, characteristics comparable to neural 

progenitors. These results, even though promising, must, however, be interpreted with 
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caution, in particular regarding morphological changes, as these might be caused by 

alterations in the cell cycle progression or even cytoskeletal collapse (Bertani et al., 

2005;Kompisch et al., 2010).  

Several protocols have been developed for induction of neurogenic differentiation of 

MSCs ranging from the use of chemicals (Woodbury et al., 2000), to more complex media 

containing growth factors (Deng et al., 2001;Sanchez-Ramos et al., 2000). Even when MSCs 

were induced by a simple treatment as chemicals, phenotypic alterations were taking place 

with the cells exhibiting a neuronal-like morphology followed by expression of only a few 

genes, such as NSE, NEUN and TAU (Bertani et al., 2005). In addition, immunoreactivity for 

certain neuronal proteins was observed, such as NEUN, but their localization was aberrant, 

supporting the idea that this change in cell morphology might be an artifact or rather a 

response of cells to environmental stress rather than a differentiation trait (Bertani et al., 

2005). Therefore, whether MSCs can differentiate into functional neurons remains 

controversial. 

 

ASCs display a unique gene expression pattern at the mRNA and protein level 

Our work is in agreement with previous studies (Cardozo et al., 2010;Dhar et al., 2007;Jang 

et al., 2010;Safford et al., 2002), confirming that ASCs can undergo commitment towards a 

neurogenic fate. At the mRNA level, our results demonstrate that ASCs express MSC-

specific markers such as CD44, CD90 (data not shown) and CD105 and upon neurogenic 

differentiation, they start acquiring the expression of neural markers followed by gradual 

dowregulation of the stem cell markers. In our experiment, we observed that ASCs tended to 

express neuronal and neurogenic genes and to a lesser extent oligodendrocytic markers. On 

the contrary, we did not detect expression of the astroglial marker GFAP, indicating that our 

ASCs were probably not differentiating towards the astrocytic pathway. This might be 

explained by the presence of epidermal growth factor (EGF), an agent used in the stimulation 

media, reported to restrict astrocytic lineages (Jang et al., 2010), or even by the presence of 
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the bHLH transcription factor Neurogenin 1 which inhibits the differentiation of neural stem 

cells into astrocytes (Sun et al., 2001). 

It has been demonstrated that foskolin, a diterpene that activates adenylate cyclase in 

a variety of mammalian cells (Litosch et al., 1982), induces expression of neuronal markers 

such as NSE, NEFH and TUJI in human MSCs cultured in serum-free conditions (Kim et al., 

2005;Rooney et al., 2009). Our work shows that neurogenic-induced ASCs exhibit increased 

immunoreactivity for the neuronal and neurogenic markers NEFH, NEUROG1, TUJI, MAP2, 

confirming results at the gene expression level (mRNA) as well as increased expression at 

the protein level of SYNAPTOTAGMIN, GEPHYRIN, SYNAPSIN and MUNC-13. We also 

observed expression at the mRNA level for a number of neurogenic genes such as NES, 

NEUROG1/2, NEUROD1 and OLIG2, neuronal genes such as RBFOX3 (NeuN), and 

oligodendrocytic markers such as MBP and CNP. Interestingly we found increased 

expression at the mRNA level for the three different ion channels CACNA1A (calcium 

channel, voltage-dependent, P/Q type, alpha 1A subunit), SCN1A (sodium channel, voltage-

gated, type I, alpha subunit) and KCNC1 (potassium voltage-gated channel, Shaw-related 

subfamily, member 1), which are important for the electrophysiological properties that 

characterizes neurons in the nervous system. Thus, ASCs have the ability to differentiate into 

neuronal cells in vitro and exhibit neuronal cell properties much like neuronal cells derived 

from other types of MSCs (Cho et al., 2005) or embryonic stem cells (Biella et al., 2007).  

 

CpG methylation patterns in the NES gene  

The NES promoter region houses a CpG island 

The promoter region of the NES gene examined in this study was globally unmethylated both 

before and after induction of neurogenic differentiation, consistent with the observation that 

the TSS of this gene is located within a CpG island. The majority of mammalian gene 

promoters reside within regions of the genome called CpG islands. These regions are often 

protected from DNA methylation enabling the constitutive expression of these genes 

(Blackledge and Klose, 2011;Collas, 2009), aberrant methylation of which is tightly 
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associated with carcinogenesis. It was once thought that only housekeeping gene promoters 

were marked by CpG islands but it is now evident that many tissue-specific gene promoters 

are also encompassed within CpG islands (Blackledge and Klose, 2011), as in our case. 

These observations argue that the NES promoter is not regulated at the DNA methylation 

level, but it might use other mechanisms to regulate gene expression, for example, at the 

chromatin level.  

Alternatively, one might also argue that the NES promoter might not be essential for 

the regulation of nestin expression. This possibility would be in agreement with the analysis 

of the Nes gene in transgenic mice which indicate that there are no regulatory elements for 

nestin specific expression identified in the region upstream of the first exon of Nes gene 

(Cheng et al., 2004).  

 

Dynamic global changes in the neural enhancer of NES 

Since the Nes promoter is unable to drive cell-type specific expression (Zimmerman et al., 

1994), then what confers Nes its strict regulation and the CNS-specific expression pattern? 

Interestingly, regulation of Nes, together with several other intermediate filaments, is 

conferred by downstream enhancer elements (Zimmerman et al., 1994). Enhancers are 

distal elements which enhance the activity of the promoter. What characterizes enhancers is 

that they may act over long distances, independently of orientation and they can be upstream 

or downstream (e.g. in the NES gene) of the gene they regulate. They also contain multiple 

binding sites for diverse factors and determine the tissue-specificity of the gene they direct 

(Ong and Corces, 2011).  

Two enhancer elements reside in the 3’ region of the Nes second intron, one specific 

for the developing midbrain and one specific for expression of Nes in the CNS. The 204 bp 

midbrain enhancer resides between bases +1068 and +1271 and the 206 bp CNS enhancer 

between bases +1272 and +1477 relative to the start of the second intron  (Yaworsky and 

Kappen, 1999). All three regions examined in the second intron of NES were strongly 

methylated in unstimulated ASCs, compatible with low level of transcription. However, in 
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stimulated ASCs, where cells expressed high levels of NES mRNA and protein, we found 

that the NES two enhancer elements (3’ region) underwent a global demethylation, strongly 

suggesting that the NES neural enhancer may be regulated by DNA methylation. Our data 

also suggest that there might be putative transcription factor binding sites that regulate the 

expression of the gene during neural differentiation and central nervous system development 

(Jin et al., 2009;Josephson et al., 1998;Tanaka et al., 2004). 

Midbrain cells expressing Nes can activate both enhancers, in comparison to other 

CNS cells which activate only the CNS-specific enhancer (Yaworsky and Kappen, 1999). 

This suggests that these cell types have different repertoires of transcription factors and 

apart from their physical proximity, these enhancer elements can be regulated in an 

independent manner (Kappen and Yaworsky, 2003;Yaworsky and Kappen, 1999). Prior to 

cell type specification or lineage restriction, the Nes enhancer elements are activated in 

progenitor cells. Although Nes was once thought to be a general marker of neural stem cells, 

it is feasible to identify and isolate distinct populations of progenitor cells by virtue of Nes 

enhancer activity (Yaworsky and Kappen, 1999). Our bisulphite sequencing data show that 

both enhancers are demethylated upon stimulation of proliferation suggesting that this 

treatment may ‘’prime’’ NES for expression 

The 5’ most region examined in the second intron of NES remained heavily 

methylated throughout the different treatments, suggesting that it does not contain regulatory 

elements essential for NES expression. This region is the least conserved between rat and 

human compared to the 3’ region which is highly conserved (Yaworsky and Kappen, 1999). 

A recent study in NSC-like cells and primary cultured astrocytes have shown that the 5’ part 

of the intron also contains an enhancer element, however, it has quite distinct properties from 

the 3’ portion (Zhang et al., 2005). It is thought that this enhancer element contributes to the 

transcriptional suppression of the neural enhancer in NSC-like cells but on the other hand it 

activates Nes expression in astrocytes. There are also multiple putative binding sites for 

transcription factors, which might play an important role in the regulation of this enhancer 

element (Zhang et al., 2005). In ASCs, the entire area examined was heavily methylated, 
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suggesting DNA-methylation-dependent repression of the enhancer. This is consistent with 

the inadequacy of ASC differentiation towards the astrocytic lineage.  

 

Dynamic local changes in the muscle-specific enhancer of NES 

Skeletal muscle development is also accompanied by changes in intermediate filament 

composition, with myogenic progenitor cells and myocytes expressing Nes, while upon 

maturation into myofibers nestin is exchanged for desmin (Pallari et al., 2011). Nes 

expression in the developing skeletal muscle is regulated by a muscle-specific enhancer in 

the first intron of Nes gene (Zhong et al., 2008). It has also been shown that the first intron 

can induce reporter gene expression in both neural and muscle progenitor cells in transgenic 

mice (Zimmerman et al., 1994).  

Our bisulphite sequencing results show marked differences on specific CpGs for the 

different treatments, in comparison with the second intron of NES which shows changes at 

the global level. This indicates that  there might be specific transcription factors which bind to 

the first intron and regulate nestin expression. Whether the first intron has an important role 

for expression of NES during induction of neurogenesis or whether the treated ASCs acquire 

a potential to differentiate towards the myogenic lineage remains uncertain. It would be 

interesting to determine whether these dynamic local changes in the methylation pattern 

could promote the myogenic potential of ASCs.      

 

Transcription factor binding elements are unmethylated 

CpG methylation is implicated to be essential for the maintenance of a silent chromatin state 

through recruitment of methyl binding proteins which can act as repressors or they can 

actively recruit repressor proteins (Jaenisch and Bird, 2003). In many cases, DNA 

methylation prevents binding of transcription factors to their recognition site, if these contain 

methylated CpGs (Kudo, 1998). The Nes core promoter region -161/+183 contains several 

putative cis-elements such as AP1 and AP2 binding sites (AP1 may not be essential for 

promoter activity), a TATA-like sequence (TATGAA) and two Sp1-binding sites which are 
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important for promoter activity (Cheng et al., 2004). The unmethylated state of the NES 

promoter in ASCs is consistent with an ‘open’ chromatin configuration compatible with 

potential binding of transcription factors. Moreover, Sp1 are transcription factors typically 

binding to GC-box motifs and they can trigger basal gene expression (Cheng et al., 2004). In 

agreement with this, Nes shows no cell-type specificity and it can function in different 

mammalian cell lines (Cheng et al., 2004). 

A number of transcription factors have been identified to regulate the Nes neural 

enhancer. A 206-bp region, now termed the CNS enhancer, contains two POU-domain 

protein binding sites and a SOX-domain binding site. The SOX and POU binding elements 

are adjacent and essential for the regulation of the enhancer and synergic interactions 

between group B1/C SOX and class III POU within the nucleus determine Nes expression 

(Tanaka et al., 2004). The B1 SOX group of genes represented by SOX2 and including 

SOX1 and SOX3 are transcription factors associated with early neurogenesis (Mizuseki et 

al., 1998;Pevny et al., 1998;Streit et al., 1997;Uchikawa et al., 2003). The class III POU 

transcription factors including Brn1, Brn2, Brn4, and Oct-6 are also widely expressed in the 

developing CNS (Alvarez-Bolado et al., 1995;He et al., 1989). Together, various 

combinations of SOX and POU factors interplay to differentially regulate the Nes CNS 

enhancer (Tanaka et al., 2004). The region where these binding sites reside in the CNS 

enhancer undergo extensive demethylation upon mitogenic stimulation of ASCs making 

these sites potentially available for binding. Transcription factor binding in this enhancer 

region may protect it from re-methylation in the proliferative state.  

Nuclear hormone receptors are important in development, differentiation and organ 

physiology (Eberl and Littman, 2003). Nuclear receptors such as TRs, RAR, RXR, and 

COUP-TF exert their effects by binding to motifs comparable to ER2 and IR1 in the NES 

CNS enhancer. Studies in transgenic mice have demonstrated that the NES CNS enhancer  

contains binding sites for all four members of the nuclear hormone receptor family implicating 

that nuclear hormone receptors are involved in regulation of the NES gene (Lothian et al., 

1999). Depending on their combinatorial control can exert either positive or negative effects 
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on NES expression (Lothian et al., 1999). This might indicate that the NES neural enhancer 

is likely to be a hormone response element. 

The 204 bp region upstream from the CNS enhancer has been demonstrated to 

harbor the midbrain-specific enhancer of Nes (Kappen and Yaworsky, 2003). A tissue-

specific enhancer activity is plausible by the cooperation of two elements, a midbrain-specific 

element and a transcriptional potentiator element. Activation of the midbrain enhancer 

element is achieved by binding of a nuclear receptor-type protein in the midbrain-specific 

element, in conjunction with an unidentified potentiator element (Kappen and Yaworsky, 

2003). It is speculated that Nurr1, an orphan nuclear receptor important for dopaminergic cell 

differentiation (Zetterstrom et al., 1997), is involved in Nes midbrain enhancer element 

regulation (Kappen and Yaworsky, 2003). Finally, Sonic hedgehog, a secreted factor which 

controls differentiation of specific cell types in the ventral midbrain (Chiang et al., 

1996;Ericson et al., 1996), is also considered to control the midbrain enhancer activity 

(Lothian et al., 1999). Our bisulphite sequencing results show a global demethylation taking 

place in this area upon ASC mitogenic stimulation, further supporting the view that 

neurogenic-induced ASCs may differentiate towards midbrain-like neuronal cells. This could 

have great implications for the treatment of neurodegenerative diseases, since the ventral 

midbrain region is the main source of dopaminergic neurons, which are selectively lost in 

Parkinson’s disease (Choi et al., 2005) 

The muscle-specific enhancer of Nes resides in the first intron with the core enhancer 

being located to the +291- +661 region of the first intron (Zhong et al., 2008). Two E-boxes 

are essential for enhancer activity since their deletion abolishes activity. The second E-box is 

thought to contain a consensus sequence similar to that recognized by MyoD, a transcription 

factor important for differentiation of skeletal muscle (Zhong et al., 2008). Our results show 

that the CpGs around these E-boxes are heavily methylated probably inhibiting transcription 

factor binding. Nevertheless, we observe a dynamic change in the methylation pattern at a 

local level on other CpGs, suggesting transcription factor binding at other sites than the E-

boxes. Unfortunately, no regulatory elements have been indentified in previous studies. It 
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would be interesting to determine whether these changes in CpG methylation in this region 

could induce the cells towards a myogenic fate or regulate their neurogenic differentiation. 

These observations, in particular for the NES promoter and the NES muscle-specific 

enhancer, argue that in non-coding regulatory elements such as promoters and enhancers, 

unmethylated CpGs have the tendency to reside within or nearby binding sites for 

transcription factors. Through binding to their recognition motifs, these factors might mask 

these CpGs and keep them in their unmethylated form (Bird, 2002); by other mechanisms 

(e.g. H3K4me3), these CpGs may also be protected from DNA methylation, allowing 

transcription factor binding (Cedar and Bergman, 2009). This is in agreement with promoter 

studies which demonstrate that induced alterations on the methylation state of specific CpGs 

affect factor binding and transcription (Campanero et al., 2000;Comb and Goodman, 

1990;Prendergast et al., 1991).  

Although, the NES CpG promoter remains unmethylated invariably and the NES 

muscle-specific enhancer is characterized by CpG-specific changes in DNA methylation, this 

is not the case for the NES neural enhancer. In contrast to promoter CpG islands which are 

rarely methylated (Shen et al., 2007;Weber et al., 2007) irrespective of activity (Weber et al., 

2007), the methylation pattern of enhancer elements is a common tissue-specific feature that 

correlates well with both chromatin accessibility and transcription factor binding (Wiench et 

al., 2011). Recent studies have shown a general decrease in methylation at active 

enhancers, suggesting that sustaining these elements in an unmethylated state might be 

important for their availability for protein-DNA interactions (Lister et al., 2009;Schmidl et al., 

2009), consistent with the global demethylation of NES neural enhancer. In addition, 

methylation of CpGs are dynamic epigenetic marks that undergo extensive changes during 

cellular differentiation, particularly in regulatory regions outside core promoters (Meissner et 

al., 2008). The fast remethylation of the enhancer region upon neurogenic induction suggests 

that these dynamic epigenetic changes may be associated with enhancer inactivation. This is 

consistent with the dynamic downregulation of NES expression at the mRNA and protein 

level and the enrichment of repressive chromatin marks  after neurogenic-induction. 
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Regulation of gene expression by histone modifications 

NES as a predictor of differentiation capacity 

In agreement with previous studies (Han et al., 2009), we observed that DNA methylation-

dependent gene silencing regulates NES gene expression. Nevertheless, DNA methylation is 

not the primary determinant of gene expression (Boquest et al., 2006a;Collas, 2010;Noer et 

al., 2006), and DNA demethylation is not sufficient to induce activation of Nes transcription 

(Han et al., 2009). Then, what regulates activation of gene expression or activation potential, 

upon stimulation and induction of differentiation?  

Another epigenetic mechanism, that is, post-translational histone modifications play a 

major role. Chromatin modifications are essential in the transfer of cell fate information during 

stem cell proliferation and differentiation (Kouzarides, 2007). The ‘poised’ state is of key 

importance for determining the differentiation potential of a cell (Hirabayashi and Gotoh, 

2010). We show that the NES promoter and neural enhancer are bivalently marked 

suggesting that ASCs are epigenetically pre-patterned to differentiate toward a neural cell 

fate. The repressive marks H3K27me3 and H3K9me3 are decreased upon mitogenic 

stimulation, which is consistent with gene activation. On the other hand, NES downregulation 

is characterized by an increase in enrichment for H3K27me3 and H3K9me3 retrieving the 

repressive state of the gene. From previous studies in our laboratory, adipogenic promoters 

in undifferentiated ASCs were also enriched in H3K4me3 and H3K27me3 histone marks, 

while upon adipogenic differentiation, H3K27me3 on adipogenic promoters, was notably 

decreased (Noer et al., 2009). Together with the bivalent marks adipogenic promoters were 

also kept in an unmethylated state, as in our case. Taken together, these studies further 

support the view that ASCs might be epigenetically primed to differentiate towards the 

neurogenic lineage upon proliferation induction.  

Genome-wide analysis of a range of histone modifications by CHIP-seq has revealed 

that although the chromatin signatures of promoters are remarkably similar for different cell 

types, epigenetic states associated with enhancers display more pronounced tissue-

specificity. Enhancers are considered to be the most variable class of transcriptional 
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regulatory elements in a cell-type specific manner, suggesting that enhancers are essential 

in driving cell-type specific gene expression (Heintzman et al., 2009). Two histone 

modifications, which are thought to constitute an ‘identity’ for enhancers, are H3K27ac and 

H3K4me1. The neural and muscle-specific enhancers of NES contain both modifications 

which are highly enriched in ASCs throughout the different treatments (data not shown), 

consistent with previous studies which suggest that H3K27ac together with H3K4me1 is 

correlated with enhancers near active genes (Bulger and Groudine, 2011). Overall these 

data indicate that there is a complex interplay between histone modifications in the regulation 

of NES expression. They also argue that the NES gene in ASCs exists is an opened but 

‘poised’ chromatin state, in which the proper cues might promote neurogenic differentiation.  

 

Commitment of ASCs to the neurogenic lineage 

The differentiation potential of a cell is based on two mechanisms of gene silencing at 

developmental gene loci; (i) transient silencing that confers a poised state, and (ii) long-term 

or permanent silencing (Hirabayashi and Gotoh, 2010). The ‘bivalent’ state of developmental 

genes acts as a brake preventing premature cell differentiation while maintaining the capacity 

of the genes to be activated in the future (Collas, 2009). Therefore, it may be used as an 

predictor to determine the differentiation potential of a cell. NES, a gene closely associated 

with neurogenesis, is characterized by a ‘bivalency’ in unstimulated ASCs, upon mitogenic 

stimulation though, is lost. Furthermore, DNA methylation may permanently repress genes 

associated with pluripotency and lineage-specification but it may also act transiently, as is 

the case of some distal enhancers of developmental genes in ESCs (Hirabayashi and Gotoh, 

2010). NES becomes transiently demethylated upon mitogenic stimulation, suggesting that 

genes that are thought to be silenced through long-term or permanent silencing can be de-

repressed under certain circumstances.  

Further characterization of the chromatin states of master regulatory genes involved 

in neurogenesis at each stage of neural development and understanding the mechanisms 

underlying cell fate restriction will be of substantial value in the field of regenerative medicine. 
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This could lead to innovation of new strategies to expand fate restriction and enhance the 

plasticity of committed cells towards alternative cell fates. 
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