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Abstract 

Luteinizing hormone (LH) and follicle-stimulating hormone (FSH) are gonadotropic 

hormones produced in the anterior pituitary by gonadotrope cells. These hormones are 

key regulators of vertebrate reproduction because of their effects on gonadal 

steroidogenesis and gametogenesis. Even though these hormones are key components of 

the brain-pituitary-gonad axis, which controls reproduction in all vertebrates, the 

regulation of these two hormones and the embryonic development of gonadotrope cells, 

are poorly understood. To better characterize the embryonic development of gonadotrope 

cells and their regulation at puberty, we wanted to develop stable transgenic lines of 

medaka with the gonadotropic hormone promotors (for lhb and fshb) driving fluorescent 

proteins. The tg(lhb:GFP) line already established by the group with the lhb promotor 

driving green fluorescent protein (Gfp) expression, was used to trace the development of 

LH gonadotropes using fluorescent light and confocal microscopy in whole larvae. 

Additionally, qPCR was used to measure developmental lhb gene expression. An 

additional project in this thesis was to develop a transgenic medaka line with the fshb 

promotor driving red fluorescent protein (Rfp). The fshb promotor sequence was ligated 

into a pBluescript II SK vector upstream of the rfp (mCherry) insert. The tg(fshb:RFP) 

construct was later microinjected into one cell stage embryos, which were screened for 

fluorescent expression and grown to sexual maturity. 
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1 Introduction 

The host for my master thesis, the Weltzien-Haug research group, studies the physiological 

control mechanisms involved in reproduction, focusing on the gonadotropin-producing cells 

(gonadotropes) in the pituitary and how they function. The gonadotrope cells synthesize and 

secrete two gonadotropins, follicle-stimulating hormone (FSH) and luteinizing hormone (LH). 

FSH and LH constitute an important part of the brain-pituitary-gonad (BPG) axis, the 

endocrine axis that regulates vertebrate puberty and reproduction (see below). Little is known, 

however, regarding the possible function of gonadotropins during early development. Using a 

recently generated Gfp-transgenic medaka line, it has for the first time in a vertebrate been 

possible to follow the spatial and temporal expression of a gonadotropin (Lh, fish protein, lhb 

fish gene) during embryonic development. This project also included work on generating a 

second transgenic line for the detection of Fsh protein (fshb gene) to gain further insight into 

the expression and function of gonadotropic hormones during early development. 

1.1 Brain-Pituitary-Gonad (BPG) axis 

The BPG axis consists of three physiologically connected components, the hypothalamus in 

the brain, the pituitary and the gonads (figure 1). The BPG axis is vital to reproductive 

maturation in all vertebrates and the basic organization of the axis is highly conserved (Al-

Kindi et al., 2001; Lake et al., 2008). Information from external and internal sources is 

integrated in the brain, which conveys an output in the form of gonadotropin-releasing 

hormone (GnRH) to the pituitary where synthesis and secretion of the gonadotropic 

hormones, LH and FSH, are modulated accordingly. The pulsatile secretion of GnRH was 

believed to be found in all vertebrate species (Dellovade et al., 1998). This is true for 

mammals (for review, see Millar et al., 2004), but there is no conclusive evidence for this 

pulsatility in fish. FSH and LH bind to their cognate receptors and regulate the two main 

activities of the gonads, steroidogenesis and gametogenesis (Schulz and Goos, 1999). 

Gonadal sex steroids control the different stages of gametogenesis together with FSH, while 

LH mainly controls steroidogenesis. These sex steroids can have a positive or negative 

feedback on the pituitary and the brain depending on the maturational state of the organism 

(Schulz and Goos, 1999). In fish, the most important androgen and estrogen are 11-

ketotestosterone and 17-estradiol, respectively (for review, see Borg, 1994). 
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Figure 1 Brain-Pituitary-Gonad (BPG) axis. This figure shows a simplified version of the BPG axis in 

teleosts. Stimulating and inhibiting signals produce an integrated output in the brain, resulting in the release of 

the stimulatory GnRH and the inhibitory dopamine. GnRH binds to receptors in the pituitary, and activation of 

these receptors leads to synthesis and release of FSH and LH. Dopamine can either bind to receptors on the 

gonadotropes or on the cells producing GnRH, directly or indirectly leading to inhibition of FSH and/or LH 

release. FSH and LH act on target cells in the gonads, and initiate the production of sperm and eggs 

(gametogenesis), in addition to synthesis and secretion of steroid hormones (steroidogenesis). The sex steroids 

can have a positive or negative feedback on the pituitary and the brain, depending on the maturational stage. 

Dopamine is a catecholamine neurotransmitter that is shown in some species to oppose the 

effect of GnRH by inhibiting production and release of gonadotropins indirectly via GnRH 

neurons, but also directly at the pituitary level as indicated by the expression of dopamine 

receptors in gonadotropes. This is the case in several teleost species (Chang and Peter, 1983; 

Chang et al., 1990; De Leeuw et al., 1988; Vidal et al., 2004; Yu et al., 1991). The BPG axis 

is not only influenced by the feedback mechanisms within the axis itself. To ensure that 

reproduction takes place when the conditions for offspring survival are optimal, the BPG axis 

is influenced by various external and internal factors. Examples of external factors that have 

been shown to influence the BPG axis include temperature, availability of food, population 

density, photoperiod, lunar phase and pheromones, whereas internal factors include those 
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related to nutritional status, such as leptin, ghrelin, and neurohormones like neuropeptide Y, 

GABA, norepinephrine and various RF-amides (Bromage et al., 2001; Burnard et al., 2008; 

Evans and Claiborne, 2006; Kobayashi et al., 2002; Levavi-Sivan et al., 2010; Schulz and 

Goos, 1999; Tena-Sempere and Barreiro, 2002). During the transformation from a sexually 

immature juvenile to a mature adult, the BPG axis achieves its full hormonal and 

gametogenetic capacity (Norris, 1997). In teleosts, like in other vertebrates, it seems that an 

activation of the GnRH system is a key event in the onset of puberty. However, how and 

when this activation occurs is not fully explained in any vertebrate (Schulz and Goos, 1999; 

Taranger et al., 2010).  

1.2 The Pituitary 

Both in teleosts and other vertebrates, including mammals, the pituitary consists of two parts, 

a posterior part (posterior pituitary, neurohypophysis), which derives from the ventral 

diencephalon, and an anterior part (anterior pituitary, adenohypophysis), which have an 

ectoderm origin.  

1.2.1 Anatomy 

The vertebrate pituitary is situated in a bony chamber, sella turcica, situated posterior to the 

optic chiasm and below the hypothalamus (Frisen, 1967). The teleost anterior pituitary can be 

divided into two different compartments; the anteriorly located pars distalis (PD) and the 

posteriorly located pars intermedia (PI). PD can further be divided into rostral (anterior) pars 

distalis (RPD) and proximal pars distalis (PPD) (figure 2) (Frisen, 1967; Levavi-Sivan et al., 

2010; Schreibman et al., 1973; Weltzien et al., 2004). The portal system that transports 

neurohormonal regulators from the hypothalamus to the pituitary in mammals is absent in 

teleost fish. Instead, fish have direct axonal transport of the neurohormonal regulators from 

the hypothalamic neurons to the endocrine cells in the pituitary, through the neurohypophysis 

(pars nervosa, PN) (Ball and Baker, 1969). 



4 

 

 

Figure 2 A schematic diagram of the Atlantic Halibut pituitary. Ball and Baker (1969), states that the 

anatomy of the pituitary gland in teleosts have a common anatomical pattern as seen here in the Atlantic halibut. 

The different hormone-producing cell types have a specific localization in the pituitary. Both FSH- and LH-

producing gonadotropes can be found in the periphery of the PPD and the PI. Abbreviations: P = lactotropes, C = 

corticotropes, T = thyrotropes, S = somatotropes, GF = FSH-producing gonadotropes, GL = LH-producing 

gonadotropes, SL = somatolactotropes, M = melanotropes, RPD = rostral pars distalis, PPD = proximal pars 

distalis, PI = pars intermedia and PN = pars nervosa. From Weltzien et al. (2004). 

The organization of specialized cell types in the pituitary differs between tetrapods and 

teleosts. In teleosts, there is a compartmental organization of the cells with each specific 

hormone-producing cell type located in a specific pituitary compartment (Ball and Baker, 

1969; Schreibman et al., 1973). The same compartmental organization occurs in tetrapods in 

the embryonic stages, while in adults, the cells are distributed in a mosaic pattern (for 

reviews, see Doerr-Schott, 1976; Voss and Rosenfeld, 1992; Weltzien et al., 2004). 

1.2.2 Cell types in the pituitary 

There are six different cell types in the anterior pituitary of most vertebrates, while in the 

anterior pituitary of teleosts there are eight different cell types. This is because most teleosts 

have separate gonadotrope cell types secreting FSH and LH (Naito et al., 1991; Nozaki et al., 

1990; Weltzien et al., 2003). This is in contrast to mammals, which have one gonadotrope cell 

type producing both hormones. Another pituitary cell type specific for teleosts are 

somatolactotropes (Zhu et al., 2004). The different anterior pituitary cell types of teleosts are 

distributed into specific areas, reflecting the initial patterning of the anterior pituitary anlage 

during development (Pogoda and Hammerschmidt, 2007). The RPD contains lactotropes that 
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produce prolactin and corticotropes that produce adrenocorticotropic hormone (ACTH), with 

corticotropes located dorsal to the lactotropes (Liu et al., 2003). The PPD contains thyrotropes 

that produce thyroid stimulating hormone (TSH) and somatotropes that produce growth 

hormone in the dorsal region (Herzog et al., 2003), while the ventral region mainly contains 

gonadotropes (Liu et al., 2003). Somatolactotropes, producing the teleost-specific 

somatolactin, a hormone belonging to the growth hormone/prolactin superfamily, are 

expressed in two different areas of the PI, one area is located at the posterior PI bordering the 

neurohypophysis and the other is located in the anterior part of the PI bordering the PD (Zhu 

et al., 2004). Melanotropes, which produces melanocyte-stimulating hormone (MSH), and 

some corticotropes are also located in the PI, (Liu et al., 2003). 

The two different gonadotropes in teleost fish are mostly located in the PPD of the anterior 

pituitary. FSH and LH -subunit transcripts have been found throughout the PPD in several 

species, e.g. Atlantic halibut (Hippoglossus hippoglossus), and the gonadotropes do not 

appear to be in close contact with the PN (Weltzien et al., 2003). Immunoreactivity to the LH 

-subunit was found throughout the PPD, and in addition along the periphery of the PI (figure 

2). Similar results have been observed in other teleosts, like Atlantic croaker (Micropogonias 

undulatus), spotted seatrout (Cynoscion nebulosus), and red drum (Sciaenops ocellatus), 

Mediterranean yellowtail (Seriola dumerilii) and white sea bream (Diplodus sargus) (Garcia-

Hernandez et al., 1996; Segura-Noguera et al., 2000; Yan and Thomas, 1991). Because of the 

two gonadotropic cell types in teleost fish, this vertebrate class provides good model 

organisms for separately studying the regulation, production and secretion of FSH and LH. 

1.2.3 Gonadotropins: FSH and LH 

FSH and LH are part of a larger family of cysteine knot-forming polypeptide glycoproteins, 

which form non-covalently linked heterodimers between an -subunit and a -subunit. The 

glycoprotein tropic hormones, FSH, LH, TSH and the placenta specific chorionic 

gonadotropin (CG), have an identical -subunit (glycoprotein alpha, GPA), while the -

subunit is unique to each hormone and is responsible for the biological activity. The specific 

FSH, LH, TSH, CG and the common -subunit are all encoded by distinct genes 

(Norris, 1997; Pierce and Parsons, 1981). In addition, two recently discovered glycoproteins 

have been identified in some invertebrates and vertebrates, ranging from nematodes to 

humans. These glycoproteins are termed glycoprotein beta 5 (GPB5) and glycoprotein alpha 2 
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(GPA2) (Hsu et al., 2002). As these proteins are found in invertebrates it has been suggested 

that they represent an ancestral glycoprotein evolutionary related to the glycoproteins of the 

endocrine system (Roch et al., 2011). GPB5 and GPA2 are highly expressed in the hindgut of 

Drosophila melanogaster and have been suggested to function as an insect anti-diuretic 

hormone (Sellami et al., 2011). Moreover, GPB5 and GPA2 have also been suggested to act 

as a neural signaling molecule controlling intestinal function in nematodes (Oishi et al., 

2009). 

Upon release, FSH and LH bind to their respective receptors, FSH-R and LH-R, in the 

gonads, thereby stimulating gametogenesis and steroidogenesis. A large N-terminal 

extracellular domain responsible for the specific recognition and binding of the ligands 

characterizes the glycoprotein hormone receptors. In most teleost species investigated, the Lhr 

is highly specific for Lh, while the Fshr binds both Fsh and Lh with higher affinity for Fsh 

(Miwa et al., 1994; So et al., 2005; Yan et al., 1992). This differs from the situation in 

mammals, where the FSH and LH receptors are highly specific for their cognate hormones 

with few cases of cross reactivity (Braun et al., 1991; Tilly et al., 1992). The loose 

discrimination of gonadotrope receptors in fish could explain the potency of Lh to carry out 

almost all functions that are attributed to Fsh (Evans and Claiborne, 2006). Gonadotropin 

receptors are shown to be expressed in multiple tissues also outside the BPG axis in teleosts, 

for example in the gills of male Atlantic cod as well as head-kidney, muscle, stomach, heart 

and seminal vesicles in African catfish (Kumar et al., 2001; Mittelholzer et al., 2009; Rocha et 

al., 2007; So et al., 2005; Vischer and Bogerd, 2003; Wong and Van Eenennaam, 2004). This 

suggests that Lh and Fsh could be involved in many physiological processes although non-

reproductive functions are largely unknown. The roles of Fsh and Lh during embryogenesis 

are not well studied, but there are some indications that Lh can have a function during the 

embryonic development in some species. A role of Lh in early development of fish has been 

suggested based on knockdown experiments in zebrafish, where increased mortality and gross 

abnormalities were found in morphant larvae (Chen and Chiou, 2010). However, a distinct 

function for LH in early embryonic development remains to be clarified. 
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1.3 Medaka as a research model 

Medaka, Oryzias latipes, is a small fresh water fish, which primarily live in rice-fields in East 

Asia. It is a teleost with a short generation time, reaching sexual maturity within 2 to 2.5 

months. The adult size is around 3 cm (Takeda and Shimada, 2010). 

One reason why many fish, including medaka, are good model organisms for embryonic 

developmental studies is that they are oviparous, which means that the eggs develop outside 

the body. Medaka has several advantages as a model organism, one of them being that the 

eggs of medaka are transparent (Kinoshita, 2009; Takeda and Shimada, 2010). Transparent 

eggs make in vivo analysis of embryonic development possible. Medaka has a suitable 

breeding cycle, as they can spawn every morning when the light is turned on with a constant 

photoperiod. Females lay between 10 – 30 eggs each day. The eggs can develop in a wide 

range of temperatures, from 6 °C to 40 °C, and in low temperatures the development of the 

embryo slows down (Takeda and Shimada, 2010). This is convenient when performing 

microinjections, where the egg has to be at the one cell stage (0 – 1 hours post fertilization). 

The eggs can be kept on ice for 3 hours without harming the embryo.  

The medaka genome is sequenced and there are several advanced techniques available to 

study this organism, for example the possibility to develop transgenic lines. Our group had 

already established a transgenic medaka line, with Gfp (which originate from sea pansy) 

coupled to the lhb promotor region. For the current project, this transgenic line was used to 

investigate the Gfp-lhb expression during medaka embryogenesis. 

1.4 Embryonic development of medaka 

The embryonic development of medaka is divided into 39 stages based on diagnostic features 

of the developing embryos (Kinoshita, 2009; for review, see Iwamatsu, 2004) . The principal 

diagnostic features are the number of blastomeres, the form of the blastoderm, the extent of 

epiboly, the development of the central nervous system (CNS), the number and form of 

somites, and development of different organs and other structures in the embryo (Iwamatsu, 

2004). The embryonic development of medaka explained in this section is based on the work 

of Iwamatsu (2004) and Kinoshita et al (2009). In this paragraph, I will explain more closely 

some of the stages investigated in this thesis. The following text describes visual aspects of 
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the embryonic development, and will be helpful when discussing the results of the qualitative 

analysis of lhb expression explained later in this thesis. 

 

Figure 3 Selected stages of medaka development. Selected stages of medaka development shown in dorsal and 

lateral view. Abbreviations: ab, swim (air) bladder; bc, body cavity; bd, blastodisc; cd, Cuvierian duct; ea, otic 
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(ear) vesicle; ev, otic (ear) vesicle rudiment; fb, fore-brain; gb, gallbladder; gp, guanophores; gt, gut tube; hb, 

hind-brain; kv, Kupffer´s vesicle; l, lens; lv, liver; mb, mid-brain; ml, membrane labyrinth; mv, median yolk 

vein; no, notochord; op, olfactory pit; ot, otolith; pf, pectoral fin; pi, pineal gland; sc, spinal cord; sp, spleen; vl, 

vein of liver. Adapted from Iwamatsu (2004). 

Stage 1 (0-1 hpf) One 

cell stage 

The egg is surrounded by a thick egg envelope called the chorion. A 

large transparent yolk sphere is located in the center of the egg. In 

the animal pole the lens-shaped blastodisc is visible, and in the 

vegetal pole there are oil droplets in a spheric pattern. 

Stage 20 (1 day, 7 h 

30 min) 4 somite 

stage 

Somites are masses of mesoderm distributed along the two sides of 

the neural tube that will eventually develop into muscle and the 

vertebral column. At this stage they are clearly distinguishable as 

two symmetric blocks on both sides of the embryo. A paired placode 

of otic (auditory) vesicles appears at the posterior region of the head. 

The fore-, mid- and hindbrain are now visible. 

Stage 21 (1 day, 10 h) 

6 somite stage 

The lenses begin to form at this stage. The small otic vesicles 

appear, but they lack otolith. The three regions of the brain are well-

defined, and the neural fold is seen as a median line along the body. 

The anterior region of the brain develops into the telencephalon and 

rostral diencephalon. The intermediate region gives rise to the 

caudal diencephalon, mesencephalon, and metencephalon. The 

posterior region develops into the myencephalon. Bilateral to the 

mid-brain and hind-brain, you can recognize the flat body cavity on 

the surface of the yolk sphere. 

Stage 22 (1 day, 14 h) 

9 somite stage 

The heart anlage appears underneath the head from the posterior end 

of the mid-brain to the anterior end of the hind-brain. The body 

cavity extends anteriorly, incomplete lenses are present in the eyes, 

and the vesicular otocyst is defined. 

Stage 25 (2 days, 2 h), 

18-19 somite stage 

This stage includes the onset of blood circulation. The otoliths 

appear as two structures containing small granules lying against the 

inner surface of each well-expanded otocyst. The embryonic body 
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encircles nearly 7/12 of the yolk sphere. 

Stage 29 (3 days, 2 h) 

34 somite stage 

The embryonic body encircles about ¾ of the yolk sphere. The 

structures inside the heart are differentiated. Internal ear formation 

occurs at this stage. 

Stage 32 (4 days, 5 h) 

Somite completion 

stage 

Swim bladder, kidneys and the structures inside the otic vesicles can 

be seen. 

Stage 34 (5 days, 1 h) 

Pectoral fin blood 

circulation stage 

The tip of the caudal fin reaches the eye, and the fin has developed 

several melanophores. The pectoral fins have blood circulation and 

frequently move. 

Stage 39 (9 days) 

Hatching stage 

The total length of the larvae is about 3.8 – 4.2 mm. The embryos 

dissolve the inner layer of the chorion, tear the single outer layer by 

moving the body and escape. 

 

1.4.1 Pituitary gland formation 

In all vertebrates, the pituitary gland is an organ with dual origin where the posterior pituitary 

derives from the neuroectoderm and the anterior pituitary derives from non-neural tissue (Zhu 

et al., 2007). The initial steps of anterior pituitary formation in vertebrate species can be 

traced back to early segmentation stages, which start shortly after the completion of 

gastrulation (Pogoda and Hammerschmidt, 2009). In mammals, the pituitary develops through 

a fusion of two tissues (figure 4). In early gestation in mammals, a finger of ectoderm grows 

upward from the roof of the mouth. This protrusion is called Rathke’s pouch and will develop 

into the anterior pituitary. This invagination of Rathke’s pouch towards the diencephalon (the 

separation of the pouch from the oral ectoderm) marks the first detectable expression of a 

pituitary preprohormone, proopiomelanocortin (pomc), in mouse and rat (Begeot et al., 1982; 

for review, see Kioussi et al., 1999). Pomc is a precursor for several derivatives, including 

ACTH and -MSH. At the same time as Rathke’s pouch is developing, another finger of 

ectodermal tissue, the infundibulum, evaginates ventrally from the diencephalon of the 
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developing brain. This extension of the ventral brain will become the posterior pituitary 

(Norris, 1997). 

 

Figure 4 Pituitary development in mammals. This figure shows a representation of the interaction between the 

infundibulum (I) and Rathke’s pouch (RP). The infundibulum extends down from the developing brain and 

contacts Rathke’s pouch from the embryonic pharynx. Rathke’s pouch will develop into the non-neural anterior 

pituitary (adenohypophysis, AH) and the infundibulum will develop into the posterior pituitary 

(neurohypophysis, NH). 

In zebrafish, however, after the completion of gastrulation the neural plate is bordered by the 

preplacodal ectoderm (ppe) rostrally and the neural crest caudally. The anterior pituitary cells 

(together with various other cell types) derive from the ppe. The cells here are arranged in a 

specific spatial pattern, and the most anterior domain of the ppe (the anterior neural ridge) 

contains the future anterior pituitary cells (Pogoda and Hammerschmidt, 2009). The posterior 

pituitary derives from the ventral diencephalon (Pogoda and Hammerschmidt, 2007). There 

are no invagination equivalent to Rathke’s pouch formation in zebrafish (Herzog et al., 2003). 

Instead, pituitary cells, which are distributed in a horseshoe-like pattern, move inwards 

together with precursor cells of the mouth during oral cavity formation, with medial cells of 

the placode ending up posteriorly and lateral cells ending up anteriorly, resulting in an 

anterior-posterior, rather than dorsoventral, patterning of the anterior pituitary (Herzog et al., 

2003). Moreover, there are evidence showing the differentiation of pomc and prolactin 

expressing pituitary cell types in zebrafish prior to any inward movement that could be 

equivalent to Rathke’s pouch formation (Herzog et al., 2003; Liu et al., 2008). 
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Figure 5 Development of the zebrafish anterior pituitary. The first row shows lateral views of the 

headregions of embryos and larvae at different developmental stages. The second row shows dorsal views of the 

zebrafish embryo and larvae. The anterior pituitary is shown in light blue, yellow color indicates the neural 

ectoderm (ne) and the preplacodal ectoderm (ppe) is shown in purple. Adapted from Podoga and 

Hammerschmidt (2009). 

The patterning of the pituitary anlage and terminal differentiation of pituitary cells in 

zebrafish start while cells are still organized in a placodal fashion at the anterior edge of the 

developing brain in early segmentation stages (Herzog et al., 2003). In zebrafish, the 

lactotropes, somatolactotropes and corticotropes differentiate and start expression of their 

respective hormone genes prolactin, somatolactin and pomc before anterior pituitary 

internalization is initiated (Herzog et al., 2003; Lopez et al., 2006). At the onset of anterior 

pituitary internalization, the anterior pituitary anlage has acquired a horseshoe-like shape, 

lining the anterior and lateral borders of the ventral diencephalon (Herzog et al., 2004; Liu et 

al., 2008; Pogoda and Hammerschmidt, 2007). The anterior pituitary lies between the ventral 

diencephalon and the dorsal roof of the mouth and as it gets pressed between these two 

structures, it becomes progressively shifted posterior-wards (figure 5). At this time of 

development gpa and tsh can be detected (Herzog et al., 2003). However, the -subunits of 

Fsh and Lh, which gives the gonadotropins their specific biological activity, have been 

detected in the embryonic stages, but the tissue specificity is unknown (Nica et al.,2006). The 

distinct pituitary cell lineages display a specific pattern along the anterior-posterior axis of the 

gland when the anterior pituitary has reached its final position in the developing larva 

(Pogoda and Hammerschmidt, 2007). 
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1.4.2 Gut tube formation 

While investigating the tg(lhb:GFP) medaka line, it became evident that the lhb expressing 

cells were not located in the pituitary (see Results). Therefore, other tissues located in the area 

of the Gfp expressing cells needed to be investigated in more detail. The gut endoderm is the 

site of nutritional digestion and absorption and has an essential function in embryonic 

development by providing the anlage and signals to form the many endoderm derived organs 

such as thyroid, liver and pancreas (Kobayashi et al., 2006). The digestive system and its 

development are extensively studied in amniotes (for a review, see Grapin-Botton and 

Melton, 2000). Wells and Melton (1999) compared the gut tube formation in frog (Keller, 

1975), chick (Rosenquist, 1971), and mouse (Lawson and Pedersen, 1987) and found that the 

process of gut tube formation is highly conserved in many vertebrates. The gut formation 

consists of two invaginations of the endodermal sheet, one at the anterior end to form the 

foregut, followed by a posterior invagination to form the hindgut (Wells and Melton, 1999). 

Now, the mesoderm consists of two layers. The inner layer, the splanchnic mesoderm, is 

closely associated with the endoderm and undergoes muscle differentiation around the 

endoderm. Later in the developmental phase, there is an axial growth of the foregut and 

hindgut from the intervening endoderm. At the same time, morphogenesis of the midgut takes 

place. This process completes the formation of the continuous gut tube (Wells and Melton, 

1999). 

There are, however, some differences in gut tube formation when it comes to fish. In 

zebrafish, the most anterior domain that will develop into the pharynx and esophagus 

develops separately from the more posterior domains of the gut tube. In amniotes, the anlagen 

of the pharynx, esophagus and intestine primordial arise from the foregut. Whereas gut tube 

formation in amniotes involves folding of an endodermal sheet, the zebrafish gut tube 

formation involves rearrangement of newly polarized cells (Wallace and Pack, 2003). This 

suggests that there are some unique differences in gut tube formation in terms of 

morphogenesis between species, even though many genetic factors seem to be conserved 

(Kobayashi et al., 2006).  

In medaka, as in zebrafish, the anterior part of the endodermal sheet gives rise to the pharynx 

and esophagus and the remaining part of the endodermal sheet gives rise to the intestine. The 

part that gives rise to the intestine is called the gut tube. The gut tube can further be divided 

into the rostral, intermediate and caudal portions (Kobayashi et al., 2006). 
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Figure 6 A schematic representation of the gut tube formation in medaka. The gut tube formation starts by 

generating a bilayer at stage 22 in the anterior portion of the endoderm. The development of the gut tube is 

finished when the lumen of the gut is finally visible in the caudal region at stage 26. From Kobayashi et al. 

(2006). 

Before the gut tube formation starts (stage 21, 34 hpf), the endodermal sheet is a monolayer of 

cells located ventral in the larvae (figure 6). The gut tube formation is initiated when the 

rostral part of the endoderm starts to migrate towards the midline, to form a cell aggregate, in 

the rostral portion of the gut tube. This cell aggregate forms a dorso-ventrally flattened bilayer 

of cells, while the cells in the caudal portion still maintains as a monolayer. The rostral 

portion of the gut tube now forms a rod-like structure but the lumen is still not visible. The 

rostral portion starts to show a radial organization, with nuclei on the basal side, at stage 24 

(44 hpf) and this is the same time as the liver bud is observed for the first time, positioned 

slightly left of the midline. When the lumen is visible for the first time in the rostral portion of 

the gut tube, the cells in the caudal portion starts to migrate towards the midline. The 

development of the gut tube gradually expands posteriorly to finally reaching the caudal end, 

the cloaca, at stage 26 (54 hpf). The gut tube formation is finished when the most caudal part 

finally acquires a lumen (Kobayashi et al., 2006).  
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1.5 Generation of transgenic lines 

Transgenesis is the process by which an exogenous gene can be introduced into an organism, 

enabling the organism to express a new gene and, if the gene gets incorporated into the 

germline, transmit that gene to its offspring. By increasing the magnitude of gene expression 

(for example with an extra copy controlled by a strong promotor) or by introducing a reporter 

gene downstream an endogenous promotor sequence, it is possible to study the expression and 

function of genes. Transgenic organisms are, therefore, powerful tools for elucitading gene 

function. There are several methods to facilitate transgenesis and two of these methods will be 

described in this thesis; the bacterial artificial chromosome (BAC) method (described in 

section 2.3) and plasmid-based transgenesis with meganuclease technology. When the BAC 

method is utilized, a BAC containing the gene of interest is selected. These are readily 

available for many species as there are existing libraries where BACs are generated for 

genomes sequencing projects and you can find a BAC containing the gene of interest. A BAC 

is much bigger than a conventional plasmid and could contain all the distal regulatory 

sequences of the gene of interest, depending on its location in the BAC. The inclusion of 

major regulatory elements would minimize the chance of having ectopic expression. When 

generating a reporter construct with a BAC, a fluorescent protein is inserted downstream of 

the promotor region of the gene of interest. On the other hand, when performing a 

conventional plasmid-based transgenesis to generate a reporter construct, both the promotor 

region of the gene of interest and a fluorescent protein needs to be ligated into a vector. In this 

method, the distal regulatory sequences of the promotor region will not necessarily be present 

in the vector. This could have an effect on the transcription of the gene of interest in the 

organism. In this thesis, a vector with meganuclease sites on either side of the transgenic 

insert was used. The integration of a transgene into the genome is easier with smaller 

constructs and meganuclease sites are reported to facilitate the integration of transgenic 

constructs into the medaka genome (Rembold et al., 2006; Thermes et al., 2002). In this way, 

the integration of a transgene (cut out with meganuclease enzyme) is expected to be integrated 

with higher efficiency than a BAC construct. However, the larger portion of a promotor 

region in a BAC construct may improve the specificity of the transgenic construct after 

integration.  
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1.6 Aims of this study 

In my thesis, a characterization of an already established transgenic medaka line was 

performed. To get a comprehensive structure of the technical experience in my thesis we 

wanted to include the generation of another transgenic construct and development of a second 

transgenic line. This will also help the overall scientific aims of my research group. The aims 

of my thesis are therefore:  

1.  Characterization of the spatial and temporal lhb gene expression during medaka embryonic 

development to clarify the possible function of this hormone during development.  

2. Generation of a tg(fshb:RFP) construct and a stable transgenic medaka line for subsequent 

characterization of fshb gene expression during medaka embryonic development.  
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2 Materials and methods 

In this thesis, a tg(lhb:GFP) line (Gfp, downstream of the lhb promotor) was used for 

qualitative and quantitative analysis of the lhb expression in embryos. Since our lab had 

already established the tg(lhb:GFP) line, generation of a new transgenic line with red 

fluorescent protein (Rfp) coupled to the fshb promotor (fshb:RFP) was also included to 

complement the overall aims of this thesis. A methodological overview of this master thesis is 

shown in figure 7. 

The in situ hybridization (ISH) experiments explained in this thesis were performed by 

another member of my group, Jon Hildahl. The experiments were included because they 

provide further evidence that Gfp-lhb was expressed outside the developing pituitary during 

embryogenesis.  
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Figure 7 Overview of the methodological approach used in this master thesis. Experiments to generate the 

tg(fshb:RFP) line is marked in red, while analysis of the tg(lhb:GFP) line is marked in green. Black indicates 

experiments where wildtype fish were used. 
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2.1 Generation of the tg(fshb:RFP) construct 

To establish a fluorescent reporter transgenic line, a vector containing a fluorescent protein 

sequence downstream of a target gene promotor, needed to be generated (figure 8). As 

mentioned earlier, different methods can be utilized to generate such a transgenic construct. 

The BAC homologous recombination technology (Nakamura et al., 2008) was applied in 

attempts to generate a tg(fshb:GFP) line, but we could not identify any positive fish in the F0 

generation nor F1 generation. Instead, a plasmid-based construct with meganuclease 

technology was generated. A PCR reaction with genomic DNA from medaka as template and 

fshb primers was used to produce a fshb promotor insert. After restriction enzyme digestion of 

the fshb insert and the rfp vector, the fshb insert was ligated into the corresponding restriction 

sites of the pBluescript II SK vector. The vector then contained the fshb promotor upstream of 

the rfp sequence. After several controls (described in sections 2.1.8 – 2.1.10), the construct 

was microinjected into one cell stage medaka embryos. The meganuclease sites on both sides 

of the transgene would cut the transgene out of the vector and mediate a more efficient 

incorporation into the genome. When incorporated into the genome, Rfp was expected to be 

expressed in the same cells and at the same time as endogenous fshb. 
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Figure 8 Overview of the methodological approach used in the generation of the tg(fshb:RFP) construct. 

The methodological steps in this figure are described in detail in the next sections. * A pBluescript II SK vector 

containing rfp insert and meganuclease cut sites was kindly provided by Dr. Christoph Winkler at The National 

University of Singapore. It is the mCherry sequence ligated into a pBluescript vector. We received the sample as 

a miniprep. 

2.1.1 PCR of the fshb promotor 

The fshb promotor sequence, exon 1, intron 1 and the first part of exon 2 just upstream the 

endogenous start site (see figure 9 A) were PCR amplified using AccuPrime Taq DNA 

polymerase high fidelity (Invitrogen, Carlsbad, CA, USA), with 105 ng of medaka genomic 
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DNA (21 ng/μl) as template for each reaction. Two different primer pairs for fshb were used 

(fshbF1+fshbR for the long promotor sequence and fshbF2+fshbR for the short promotor 

sequence, see table 1), with expected PCR product lengths of 4000 and 2500 bp, respectively. 

The two different lengths of the promotor region were used because we wanted to include as 

much promotor as possible, but the integration into the genome is more efficient with smaller 

inserts. The reverse primer used in the PCR reactions was the same for both fshb inserts and 

integrated a BamHI cut site in the 3´-end of the fshb sequence. The forward primers were 

different, with an EcoRI cut site integrated in the forward primer sequence for the short (2500 

bp) fshb insert, while an endogenous EcoRI cut site was identified just downstream of the 

forward primer sequence in the long (4000 bp) fshb sequence. 

Table 1 Primer list 

Primer Genes Application Primer sequences 

bactF bactin co-localization 5´-ACCCTGTCCTGCTCACTGAA-3´ 

bactR bactin co-localization 5´-GCAGGGCTGTTGAAAGTCTC-3´ 

lhbF1 lhb qPCR 5´-CCACTGCCTTACCAAGGACC-3 

lhbF2 lhb co-localization 5´-CACAGCCTGCAGATACATGAG-3' 

lhbR lhb co-localization, qPCR 5´-AGGAAGCTCAAATGTCTTGTAG-3´ 

fshbF1 fshb generate long 

tg(fshb:RFP) 

5´-CCCAGTGTTAAGGTTTCAGA-3´ 

fshbF2 fshb generate short 

tg(fshb:RFP) 

5´-GAATTCGCCTCTGTAAATGAATGTG-3´ 

fshbF3 fshb sequencing of 

tg(fshb:RFP) construct 

5´-TCAAGCTCATGTTCTAAAGTGATGT-3´ 

fshbR fshb generate tg(fshb:RFP) 5´-GGATCCCCTCTGCCTGGTGCAGT-3´ 

gfpF gfp co-localization 5´-GTGAGCAAGCAGATCCTGAAG-´3 

gfpR gfp co-localization 5´-TACTTGGTGAAGGTGCGGTTG-´3 

lhx3F lhx3 co-localization 5´-CTAGAACATCCGGGCTCA-´3 

lhx3R lhx3 co-localization 5´-ATCTAACCAGGACGCAGGA-´3 

16sF 16s qPCR 5´-CGATCAACGGACCGAGTTACC-3´ 

16sR 16s qPCR 5´-AATAGCGGCTGCACCATTAGG-3´ 

 

Molecular grade water was mixed with 5 l 10X AccuPrime Buffer II, 1l sense primer (10 

M), 1 l antisense primer (10 M), 5 l template DNA and 1 l Accuprime Taq high fidelity 

to a final volume of 50 l. The PCR reaction was performed on a thermal cycler 

(Mastercycler gradient, Eppendorf, Hamburg, Germany) with the following cycling 

parameters: 94 C for 2 min; 30 cycles of 94 C for 30 sec, a gradient on the heat block of 45 

– 55 C for 30 sec, 68 C for 4 min; followed by an additional elongation step at 68 C for 10 
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min. A gradient was used in the annealing step because the two different primer pairs had 

melting temperatures of 54.2 and 52.0 C, respectively. By using a gradient, several PCR 

reactions were performed simultaneously. The PCR products were run on a 1% agarose gel to 

verify the product size (for gel picture, see results) and as a first step to purify the correct PCR 

product by gel extraction. 

2.1.2 Gel extraction 

Gel extraction was performed following the QIAquick Gel Extraction Kit Protocol (Qiagen, 

Hilden, Germany). The chosen DNA fragment was excised from the gel, the weight measured 

and 3 volumes of Buffer QG added to dissolve the gel. This process was enhanced by 

incubation at 50 ºC for 10 min. To increase the yield of DNA fragments, one gel volume of 

isopropanol was added to the sample. The sample was transferred to a QIAquick column that 

binds DNA before centrifuged using a Kubota 3500 centrifuge (Kubota, Tokyo, Japan) at 

10,000 g for 1 min. Buffer QG was added to remove all traces of agarose, then Buffer PE to 

wash the DNA with a 1 min centrifugation (10,000 g) following each step. The flow-through 

was discarded and the sample centrifuged at 10,000 g for 1 min to completely dry the 

membrane. By adding 30 µl elution buffer to the membrane then centrifuge for 1 min, DNA 

was eluted.   

2.1.3 Ligation 

Ligation of fshb promotor into pGEM-T Easy vector was performed according to the 

manufacturer’s protocol (Promega, Madison, WI, USA). Five µl 2x rapid ligation buffer, 1 µl 

pGEM-T Easy vector (50 ng), 1 µl T4 DNA ligase and 3 µl of fshb PCR product were mixed 

before incubation at room temperature for 1 hour, followed by incubation at 4 C overnight to 

increase ligation efficiency. 

Ligation of the fshb PCR product into pBluescript II SK vector (containing the rfp insert) used 

the same components as the ligation reaction described above, however, the amount (ng) of 

fshb promotor insert and pBluescript II SK vector/rfp was calculated from the following 

equation:  
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Equation 1 

insertng3
bpvector

bpinsertvectorng



 

The reaction was incubated at room temperature for 1 hour, followed by incubation at 4 C 

overnight to increase ligation efficiency. 

2.1.4 Transformation 

Three different transformation reactions were carried out when generating the tg(fshb:RFP) 

construct. First, a transformation with the fshb promotor inserted in pGEM-T Easy vector was 

performed. Second, the construct with an rfp sequence ligated into a pBluescript II SK vector 

was provided as a miniprep sample and a transformation reaction was performed to increase 

the amount of construct. Third, a transformation reaction was carried out after ligation of fshb 

insert into the rfp (pBluescript II SK) vector.  

Transformation reactions were performed following the manufacturer’s protocol (Promega). 

When transformation was done with the pBluescript II SK/rfp miniprep or after the fshb 

ligation reaction, 1 µl or 3 µl of the sample was used, respectively. To a tube containing DNA 

of interest, 50 µl of JM109 High Efficiency competent cells (>108 cfu/g) (Promega) was 

added. The sample was placed on ice for 20 min then heat-shocked at 42 C for 45-50 sec. 

Following 2 min on ice, 950 µl of Super Optimal Broth with Catabolite repression (SOC) 

medium was added to the reaction and the tube incubated at 37 ºC for 1.5 hours with shaking. 

The transformation culture was plated out on two different selective LB/Ampicillin/IPTG/X-

Gal plates with different volumes (25 µl and 50 µl) before incubation overnight at 37 ºC. 

Blue/white color selection was used to eliminate cultures where the insert were not present. 

The lacZ gene is coded in the multiple cloning site (MCS) of the plasmid. If an insert disrupts 

this gene, there will not be generated any -galactosidase, thus the colony will have a white 

color. If -galactosidase is made, the colony will be blue and the insert will not be present in 

the plasmids of the colony. 
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2.1.5 Miniprep 

Plasmid DNA purification was performed according to the manufacturer’s protocol (QIAGEN 

Plasmid Mini Kit, Qiagen). From the selective agar plates, a single white colony was picked 

then incubated in 3 ml LB medium with ampicillin for 16 hours at 37 ºC with vigorous 

shaking. The bacterial cells were harvested by centrifugation (Beckman Coulter Allegra X-

22R centrifuge) at 6000 g for 15 min at 4 ºC. Addition of 300 µl Buffer P1 would re-suspend 

the bacterial pellet. To lyse the bacterial cells, Buffer P2 was added and the tube inverted until 

the suspension was homogenous. The sample was incubated at room temperature for 5 min. 

Chilled Buffer P3 was added to precipitate the genomic DNA (gDNA), proteins, cell debris 

and potassium dodecyl sulfate (KDS). The solution was mixed by inverting the tube, then 

incubated on ice for 5 min. Cold buffer and incubation on ice enhanced the precipitation 

process. Centrifugation at 18,000 g for 10 min was used to pellet the precipitate, before 

removing the supernatant containing the plasmid DNA. A QIAGEN-tip 20 column was 

equilibrated by applying Buffer QBT, followed by addition of the supernatant containing 

plasmid DNA. The column was washed with Buffer QC and DNA eluted with Buffer QF. The 

DNA was precipitated by adding 0.7 volume of isopropanol, whereupon the sample was 

mixed and centrifuged at 18,000 g for 30 min. After centrifugation the supernatant was 

removed then the DNA pellet washed with 70 % ethanol and centrifuged at 18,000 g for 10 

min. The 70% ethanol removes precipitated salt and replaces isopropanol with the more 

volatile ethanol, making the DNA easier to re-dissolve. The pellet was air-dried and then re-

dissolved in 50 µl nuclease-free water (Ambion). The amount of DNA extracted was 

measured with NanoDrop spectrophotometer (Thermo Fisher scientific, USA). 

2.1.6 Restriction enzyme digestion 

Both pBluescript II SK with rfp insert (restriction sites shown in figure 9B, pBluescript vector 

shown in figure 9C) and pGEM-T Easy vector with fshb promotor insert were cut with two 

restriction enzymes, EcoRI and BamHI. A reaction mix with 2 l 10x REACT 3 buffer, 1 l 

EcoRI, 1 l BamHI, 1 g vector and dH2O up to 20 l was prepared then the reaction 

incubated at 37 C for 1.5 hours before being inactivated by incubation at 65 C for 15 min. 
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Figure 9 Sequences and vector included in the tg(fshb:RFP) construct. A) Representation of the long and 

short fshb sequences generated from the PCR reaction. EcoRI and BamHI are the restriction enzymes used to cut 

out the fshb sequence from gDNA used to generate the construct from the endogenous fshb sequence. fshb 

translation start site is not included in the sequence used for the construct, hence the rfp translation start site will 

be used instead. ORF: open reading frame. B) Cut sites in the pBluescript II SK vector and the rfp sequence. The 

fshb sequence was ligated into the vector upstream of the rfp sequence between EcoRI and BamHI restriction 

sites. C) Schematic representation of the pBluescript SK II+ vector with rfp (red) and long fshb sequence (blue) 

included. Primers for sequencing (pUC/M13 and fshbF3) are shown. The primer named fshbF2 shows where the 

short fshb sequence starts. Restriction enzyme cut sites for NcoI, BamHI and EcoRI are also shown in the 

representation.  

2.1.7 Midiprep 

Plasmid purification was performed according to the manufacturer’s protocol (QIAGEN 

Plasmid Midi and Maxi Kits, Qiagen). One colony from a blue/white selective plate and 5 ml 

LB medium with ampicillin (50 g/l) was incubated for 8 hours at 37 C with vigorous 

shaking (300 rpm). This liquid culture was diluted 1/500 into fresh selective LB medium then 

set to grow at 37 C for 16 hours with vigorous shaking. The bacterial cells were harvested by 

centrifugation at 6000 g for 15 min at 4 C, before the pellet was re-suspended in a re-

suspension buffer containing RNase A. Next, lysis buffer was added and the suspension 

mixed by inverting the tube several times followed by incubation at room temperature for 5 
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min. The addition of cold neutralization buffer would precipitate gDNA. After vigorous 

shaking, the tube was incubated on ice for 15 min to enhance precipitation. The cell 

suspension was then centrifuged, before the supernatant containing plasmid DNA was 

removed. A Qiagen-tip 100 column was equilibrated using the equilibration buffer QBT, and 

the supernatant applied to the column. After the supernatant had entered the resin, the column 

was washed two times with wash buffer QC, then DNA eluted by applying the elution buffer 

QF. DNA was precipitated by adding 0.7 volumes of isopropanol and centrifuged at 15,000 g 

for 30 min at 4 C. The pellet was washed with 70% ethanol then centrifuged at 15,000 g for 

10 min. After centrifugation ethanol was removed and the pellet air-dried. The pellet was re-

dissolved in 50 l TE buffer. 

2.1.8 Control: PCR with fshb primers 

A PCR reaction with the tg(fshb:RFP) constructs as template and fshb primers were done to 

confirm the incorporation of fshb insert into the vector. The PCR reactions using AccuPrime 

Taq high fidelity polymerase (Invitrogen) were run on a thermal cycler (Mastercycler 

gradient, Eppendorf) with the parameters described in section 2.1.1. 

2.1.9 Control: Restriction enzyme digestion with NcoI 

An additional control of the tg(fshb:RFP) construct was carried out by performing a 

restriction enzyme digestion with the restriction enzyme NcoI. Molecular grade water was 

mixed with 2 l NEBuffer 3, 1 l NcoI enzyme, 1 g of midiprep reaction to a final volume 

of 20 l and incubated for 1 hour at 37 C. NcoI had restriction sites inside the fshb and rfp 

sequences. If both genes were incorporated into the vector, this analysis would give two bands 

on the 1% agarose gel, whereas if the insert was missing, only one band would appear on the 

gel. 

2.1.10 Control: Sequencing 

To further confirm that the tg(fshb:RFP) construct contained both the rfp and the fshb 

sequence, the 3’ and 5’ ends of fshb and rfp were sequenced. Nuclease-free water (Ambion) 

was mixed with 1 l plasmid DNA (400 – 600 ng/l) and 3.5 l of forward primer pUC/M13 

(Promega, 10 g/ml) or 2 l of fshb forward primer (5M) to a final volume of 10 l was 

used in the sequencing reaction. The pUC/M13 primer (Promega) started upstream of the fshb 
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sequence and the forward primer for fshb started in the 5`end of the fshb sequence. The 

samples were sequenced at the ABI-lab at the University of Oslo. 

2.2 Generation of a stable tg(fshb:RFP) medaka line 

2.2.1 Animal handling 

Japanese medaka (Oryzias latipes, d-rR strain) were kept in the aquarium facilities at the 

Department of Molecular Biosciences, University of Oslo. The fish were maintained in water 

recirculating systems equipped with particle and charcoal filters, a UV-lamp and a biofilter to 

maintain water quality (Marine Biotech, FL, USA). To promote spawning, the photoperiod 

was adjusted to a 14-hour light 10-hour dark cycle, and the water temperature kept at 27 C. 

System water was produced from pre-filtered tap water (20 and 5 m particle filters, charcoal 

filter) followed by reverse osmosis. The purified water was added the following salts per 100 

l: marine salt (20 g, Seachem, Madison, GA, USA), CaCl2 (1.5 g) and NaCO3 (5 g), resulting 

in a system water conductivity of 380 – 420 S and pH of 7.3 – 7.8. The water in the racks 

displayed conductivity of 440 – 490 S and pH of 6.8 – 7.5. About 20% of the water in the 

fish racks was renewed with fresh system water daily. The fish were fed two to five times per 

day with newly hatched brine shrimp nauplii (Artemia salina) (Argent Chemical Laboratories, 

Redmond, WA USA) and dry feed (Scientific fish food, Special Diets Services, Essex, UK). 

2.2.2 Microinjection of the construct 

The needles used for microinjection were made from borosilicate GD-1 glass capillaries 

(Narishige, Tokyo, Japan) which had an outer diameter of 1.0 mm. Glass needles were made 

using a vertical needle puller Model PC-10 (Narishige). To optimize the tip of the needle for 

injection, Micro Grinder EG-400 (Narishige) was used. To bevel the tip, the needle and the 

grinder formed a 30-degree angle then the tip of the needle was carefully lowered to the 

grinder by using a micromanipulator (Narishige). To control the width of the opening, air 

pressure was applied when the tip was under water and the width estimated from the size of 

the air bubbles.  

Eggs were collected just after the lights were turned on in the morning. Light initiates 

spawning, so the majority of eggs are at one cell stage at this time. Females carry their eggs 
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after spawning, and the eggs were collected directly from the abdomen of the fish then 

immediately placed in E3 medium (5 mM NaCl, 0.17 mM KCl, 0.33 mM CaCl2, 0.33 mM 

MgSO4 and methylene blue) on ice, until visual inspection under a dissecting microscope. 

The low temperature arrests the development of the embryo. We were only interested in eggs 

that had progressed to one cell stage to avoid mosaic distribution of the construct. One cell 

stage is reached 0-1 hours post fertilization (hpf) at 27 °C. Eggs that had progressed beyond 

one cell stage were discarded. 

 

Figure 10 Materials used for microinjection. Dissecting microscope, micromanipulator, syringe, fine tweezers 

and petri dish with wells. 

To stabilize the eggs during the microinjection, a petri dish containing a glass plate with wells 

of 1 mm was used. The petri dish was filled with 1x phosphate buffered saline (PBS: 137 mM 

NaCl, 2.7 mM KCl, 4.3 mM Na2HPO4, 1.47 mM KH2PO4, pH 7.4) and the eggs placed in the 

wells. A fine tweezer was used to manipulate the eggs. Microinjection was performed under a 

stereomicroscope and the needle insertion controlled by a micromanipulator (GJ-1 magnetic 

base, Tritech research, CA, USA). The needle was also coupled to a disposable syringe 

through a silicone tube such that when pressure was applied, the content was released (figure 

10). The appropriate injection volume should be about the same size as the oil droplets in the 

yolk sac, about 0.5 – 1 nl (figure 11). 
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Figure 11 Microinjection of tg(fshb:RFP) construct. The volume injected should be similar to the largest oil 

droplets in the egg. 

The two different tg(fshb:RFP) constructs were injected with a concentration of 2 – 3 ng/l. A 

high concentration that does not induce high mortality was used to ensure an enhanced 

success rate. To determine if the concentration of the construct was suitable, the death rate 

had to be controlled and should not exceed 50 %. The construct was diluted in 1 x PBS and 

1:20 phenol red added to the mix for visualization of the injection volume. Injected DNA 

persists as long extra-chromosomal concatamers transiently transcribed during early 

embryogenesis. Mosaic expression is when the transgene is only seen in some of the somatic 

cells, which is often the situation in the F0 generation due to an uneven distribution of this 

episomal DNA (Thermes et al., 2002). 

Both constructs were also injected after treatment with the meganuclease I-SceI. The 

transgene of interest (rfp-fshb) was flanked by I-SceI meganuclease recognition sites and 

when pretreated with this enzyme, a 30 % higher transgenesis frequency was expected 

(Thermes et al., 2002). The meganuclease I-SceI will statistically cleave randomly only once 

in 7 x 10
10

 bp (Thermes et al., 2002), and will therefore not cut the host genome randomly. 

The meganuclease will cut the transgene out of the vector and thereby mediate efficient 

integration. To 27 l of the preferred concentration of construct, 1.5 l of I-SceI enzyme and 

1.5 l NE Buffer 1 was added, followed by incubation at room temperature for 1 hour. After 

incubation, the construct could be kept on ice for 3 hours while the injection was performed. 

As a control for egg quality, 10 eggs were collected from the same batch as the microinjected 

eggs and the death rate was registered. 
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2.2.3 Screening 

The microinjected eggs were screened every day from 2 days post fertilization (dpf), until 5 

dpf. The screening process began at 2 dpf because a pilot quantitative PCR (qPCR) 

experiment with fshb primers indicated that the fshb gene expression starts around 48 hours 

post fertilization (hpf). 

2.2.4 Breeding and raising a homozygous tg(fshb:RFP) medaka line 

The microinjected eggs were incubated at 27 C until hatching and grown to sexual maturity 

(expected January 2012) in regular fish tanks. The fish injected with different constructs were 

kept separated. When the fish become sexually mature, they will be crossed with each other to 

identify the founder fish for the tg(fshb:RFP) construct. All the microinjected eggs will be 

crossed even though they did not show any fluorescence in the first screening process. This is 

because the mosaic expression can make it hard to detect the fshb expressing cells in the F0 

generation. 

2.3 Generation of the tg(lhb:GFP) construct 

The tg(lhb:GFP) and tg(fshb:RFP) (described in section 2.1) constructs were generated using 

different transgene technologies. The BAC homologous recombination technology 

(Nakamura et al., 2008) applied by other members of our group to generate the tg(lhb:GFP) 

construct, successfully produced a stable transgenic line (submitted, Hildahl et. al. 2011). 

Thus, I also tested the BAC method to produce a tg(fshb:GFP) line without success. By 

performing an in silico search (http://medaka.utgenome.org/) a BAC clone containing the 

gene of interest (lhb), BAC golwb_108_H20, which contains approximately 25 kb 5’-flanking 

region and approximately 78 kb 3’ flanking region of the lhb gene, was found to be best 

suited. A humanized renilla GFP (hrGFPII)-Km cassette containing kanamycin resistant gene 

and the gfp sequence (with start codon and kozak sequence), a stop signal and a polyA tail, 

was used as a template in a PCR reaction, where two primers were designed with the purpose 

of adding lhb gene-specifc arm sequences to the hrGFPII-Km cassette. A linear fragment 

DNA cassette containing hrGFPII with sequences homologous to lhb on both sides was 

generated by this PCR amplification. The PCR product was then incorporated into the BAC 

just upstream of the translation initiation site (ATG) of the lhb gene by homologous 

http://medaka.utgenome.org/
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recombination. The obtained construct then had the gfp coding sequence followed by a polyA 

signal that disrupted the lhb-coding region in the BAC (figure 12). 

 

Figure 12 Schematic figure of the region in the BAC that contains the lhb sequence and the hrGFPII 

cassette. 

2.4 Quantification of mRNA expression using qPCR 

assay 

The qPCR assay for quantification of mRNA expression was performed using a LightCycler 

480 Real-Time PCR system (Roche Diagnostics GmbH, Mannheim, Germany), using the 

LightCycler 480 Master with SYBR green I non-specific detection. SYBR Green I detection 

dye binds to all double stranded DNA, including the amplified PCR product. Because of this 

non-specific detection of DNA, the qPCR assays had to be carefully evaluated by performing 

a melting curve analysis. Melting curve analysis was performed immediately after the qPCR, 

within the same LightCycler 480 machine without breaking the seal over the samples. This 

removes the risk of contamination and pipetting errors. To avoid detection of potential traces 

of gDNA, the primers or the amplicon was designed to span exon-exon boundaries based on 

in silico analysis of the medaka genome. A standard dilution curve was run in triplicate for 

each primer pair to determine the primer pair with the best PCR reaction efficiency. 

2.4.1 Preparations of the samples 

Eggs were collected just after initiation of light in the morning and were immediately placed 

in E3 medium on ice until visual inspection under a dissecting microscope. After 

synchronization the eggs were confirmed to be 0 hpf and were put in an incubator at 28C. 

For gene expression analysis, developing embryos and larva were pooled and transferred to 

RNA later (Ambion, TX, USA) at specific time points (table 2). The samples were stored at -

20C before RNA was extracted. 
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Table 2 Number of eggs from each stage used for gene expression analysis and the mean amount of RNA 

extracted from each stage. 

Sample 
Eggs per 

pool 

Mean RNA 

amount (pr 

pool) 

Mean RNA 

amount (pr 

embryo) 

1 hpf 40 137 ng/µl 3.43 ng/µl 

18 hpf 30 135 ng/µl 4.5 ng/µl 

24 hpf 20 99 ng/µl 4.95 ng/µl 

30 hpf 20 130 ng/µl 6.5 ng/µl 

36 hpf 20 135 ng/µl 6.75 ng/µl 

48 hpf 20 279 ng/µl 13.95 ng/µl 

72 hpf 15 340 ng/µl 22.67 ng/µl 

96 hpf 15 467 ng/µl 31.13 ng/µl 

120 hpf 10 441 ng/µl 44.1 ng/µl 

8 dpf 2 129 ng/µl 64.5 ng/µl 

11 dpf 2 125 ng/µl 62.5 ng/µl 

14 dpf 2 107 ng/µl 53.5 ng/µl 

 

RNA extraction and purification were performed following the protocol for RNeasy Lipid 

Tissue Mini Kit (Qiagen, Hilden, Germany) with on-column DNase treatment (Qiagen). The 

eggs were transferred from RNA later (Ambion) to tubes containing lysing Matrix D (MP 

Biomedicals, Solon, OH, USA) and 1 ml Qiazol (Qiagen). A FastPrep -24 Tissue and Cell 

Homogenizer (MP Biomedicals, Solon, OH, USA) was used to homogenize the samples. The 

FastPrep instrument ran for 40 s with speed 4 m/s. The tubes were then put on ice for 2 min to 

avoid over-heating and degradation then homogenized once more with the same settings, 

before another 2 min of cooling. The homogenized tissue was incubated for 10 min at room 

temperature to promote the dissociation of nucleoprotein complexes. Next, 200 µl of 

chloroform was added, before the tubes were vigorously shaken for 15 s and the homogenate 

was placed at room temperature for 2-3 min. The samples were centrifuged at 12,000 g for 15 

min at 4 C. During centrifugation, the samples were separated in three phases; an upper 

colorless phase containing RNA, a white interphase and a pink organic phase in the bottom of 

the tube. The upper aqueous phase was transferred to a new tube, before addition of 1 volume 

of 70 % ethanol then vortexed. The sample was transferred to an RNeasy Mini spin column, 

centrifuged at room temperature for 1 min at 8000 g and put at room temperature for 1 min. 

The flow through was discarded. DNase treatment was performed by washing the membrane 

with Buffer RW1 followed by centrifugation and addition of 10 µl of DNase I stock solution 
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mixed with 70 µl Buffer RDD to the RNeasy spin column membrane and incubation at room 

temperature for 15 min. The membrane was washed once more with Buffer RW1 and 

centrifuged. The membrane of the RNeasy spin column was washed with washing buffers 

Buffer RW1 and Buffer RPE. To elute RNA 30 µl RNase-free water was added directly onto 

the membrane of the column and centrifuged. NanoDrop (Thermo Fisher scientific, USA) and 

Bioanalyzer 2100 (Agilent technologies, Santa Clara, USA) were used to control the amount 

and quality, respectively, of the RNA. RNA quality is estimated with a RNA integrity number 

(RIN) value that ranges from 10 (intact) to 1 (totally degraded). 

SuperScript III reverse transcriptase (Invitrogen, Carlsbad, CA, USA) and Oligo(dT) 

(Invitrogen) were used to prepare cDNA from 1 µg total RNA according to standard protocol. 

Molecular grade water was mixed with 1 µl of Oligo(dT) primers (50 µM), 1 µl of dNTP mix 

(10 mM) and 1 µg RNA to a final volume of 13 µl and incubated at 65 C for 5 min, followed 

by incubation on ice for 1 min. After incubation, 4 µl of 5X First-Strand Buffer, 1 µl 0.1 M 

DTT (0.1 M), 1 µl RNase OUT recombinant RNase inhibitor (40 U/µl, Invitrogen) and 1 µl 

SuperScript III Reverse transcriptase (200 U/µl) was added. The reaction was mixed and 

incubated at 50 C for 60 min followed by inactivation at 70 C for 15 min. 

2.4.2 qPCR assay 

qPCR was performed with primers for lhb, which was the gene of interest,and s ribosomal 

RNA (16s rRNA) used as a reference gene to normalize the expression of the target gene. 

rRNAs, which constitute 85 – 90% of total cellular RNA, are useful internal controls, as the 

various rRNA transcripts are generated by a distinct polymerase (for review, see Paule and 

White, 2000) and their levels are less likely to vary under conditions that affect the expression 

of mRNAs (Barbu and Dautry, 1989). Each sample was analyzed in duplicate reactions each 

consisting of 5 µl SYBR Green I master mix (Roche), 2 µl of forward and reverse primer mix 

(5 µM each) and 3 µl of 10x diluted cDNA sample in a total volume of 10 µl. A non-template 

control (NTC), which contained nuclease-free water (Ambion) instead of cDNA, was 

included in duplicate for every primer pair on every plate. After the initial Taq activation at 95 

C for 10 min, LightCycler PCR was performed using 42 cycles consisting of 10 s at 95 C, 5 

s at 60 C and elongation at 72 C for 4 or 5 s (for lhb and 16s, with amplicon lengths of 100 

bp and 120 bp, respectively). The fluorescence was measured at the end of each cycle. A 

melting curve analysis was performed directly following the qPCR to evaluate whether only 
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one specific product had been amplified. The melting curve analysis were performed by 

continuously reading the fluorescence while slowly increasing the temperature from 65 C to 

95 C. NTC controlled for non-specific contamination and melting curve analysis was run to 

verify that a single specific product was measured in each run. A calibrator (a mix of all the 

cDNA used in the experiment) was added to each plate to control for interassay variations. A 

sub-sample (n=5) of no-rt (reverse transcriptase) controls was run to confirm the lack of 

gDNA amplification. 

The relationship between increasingly diluted cDNA and the corresponding Cq 

(quantification cycle) value was used to produce dilution curves. After running a qPCR with 

the dilution series, the Cq values were plotted against the logarithm of the relative cDNA 

concentration. The qPCR efficiency (E) was calculated using the slope of the regression line 

(Equation 2). A slope of -3.32 gives an efficiency of the qPCR equal to 2 (100%), which 

means that there is a doubling of product for each PCR cycle. 

Equation 2 

slope/110Efficiency   

The cDNA used for gene expression analysis had a 1:10 dilution. An efficiency adjusted 

quantification method (equation 3) (Fleige et al., 2006; Weltzien et al., 2005) was used to 

calculate the relative expression change of the lhb gene relative to the 16s reference gene 

expression. 

Equation 3 

sampleCq

target

sampleCq

ref

)E(

)E(
R   

2.4.3 Statistical analysis of qPCR data 

qPCR data were first tested for homogenous variance and then analyzed by one-way analysis 

of variance (ANOVA), to calculate whether there was a significant difference between the 

expression of lhb mRNA transcripts in the different stages investigated during medaka 

embryogenesis. A Turkey-Kramer HSD post-hoc analysis were performed to determine which 

groups that were significantly different (p<0.05).   
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2.5 Co-localization of lhb and Gfp expression in 

medaka embryos 

Our group had earlier demonstrated co-localization of Gfp and lhb in the pituitary of adult 

medaka and I wanted to determine if the same co-localization existed in embryos, thus 

whether the Gfp expression observed in the larvae represented the lhb expression of our 

interest. Multiple attempts of whole mount in situ hybridization (ISH) of lhb in medaka larvae 

were performed, but there was no transcripts detected. A co-localization experiment where 

Gfp positive cells were dissected out of the larvae and RT-PCR reactions with primers for lhb 

and gfp was therefore performed. The pituitary gene marker lhx3 was also tested on the Gfp 

positive cells to investigate if the cells were located in the developing pituitary. 

2.5.1 RT-PCR on dissected Gfp positive cells 

To investigate this co-localization, RT-PCR reactions with primers for gfp, lhb and lhx3 were 

performed on Gfp positive cells. To only detect endogenous lhb, the lhb primers were 

designed to span the gfp sequence, which disrupts the lhb gene in the BAC. When the primers 

are localized on each side of the gfp sequence, the amplicon will be too long to be amplified 

within the given elongation time, and the lhb gene from the BAC will not be amplified in the 

PCR reaction. Three days old transgenic embryos (n = 10) were placed in petri dishes filled 

with 1x PBS under a fluorescent dissecting microscope. The Gfp positive cells were dissected 

out using fine tweezers. The egg was first de-chorionated by punching a hole in the chorion 

with one tweezer and using the other to rip open the chorion, then the head and tail region of 

the embryo was cut off. The remaining Gfp negative tissue was removed piece by piece by 

holding the tissue with both tweezers and pulling them slowly apart. The Gfp positive cells 

were collected, and put directly in 0.2 ml PCR tubes containing 10 l Cells Direct 

(Invitrogen). 

The samples in Cells Direct (Invitrogen) were incubated in a thermal cycler (Mastercycler 

gradient, Eppendorf) at 75 C for 10 min to lyse the cells. After incubation, DNase treatment 

with TURBO
 
DNase-free kit (Ambion, TX, USA) was performed to eliminate any potential 

gDNA remaining in the extracted RNA. The DNase treatment was performed according to the 

manufacturer’s protocol, adding 0.1 volume 10X TURBO DNase buffer and 1 μl TURBO 

DNase to the RNA. The tube was incubated at 37 C for 20 – 30 min. After the incubation, 

0.1 volume of DNase inactivation reagent was added and mixed well. The tube was incubated 
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at room temperature for 5 min with occasional mixing followed by centrifugation at 10,000 g 

for 1.5 min. The supernatant containing RNA (10 l) was transferred to a new Eppendorf 

tube. The quantity of DNase treated RNA was measured using the NanoDrop 

spectrophotometer (NanoDrop, Thermo Fisher scientific). 

For first-strand cDNA synthesis, 8 µl RNA, 1 µl dNTP and 1 µl Oligo d(T) was incubated at 

65 C for 5 min. After 1 min incubation on ice, 2 µl 10x buffer RT, 4 µl 25 mM MgCl2, 2 µl 

0.1 M DTT, 1 µl RNase OUT and 1 µl Superscript III was added. The reaction samples were 

incubated at 50 C for 50 min, before being inactivated at 85 C for 5 min. 

Platinum Taq DNA polymerase (Invitrogen) was used to perform a PCR with primer pairs for 

lhb, gfp and lhx3, the latter being a genetic marker specific to the pituitary that was included 

to evaluate whether the dissected tissue included cells from the developing pituitary. The 

primers for the pituitary genetic marker would thus determine if there was any pituitary tissue 

in our samples. To control the quantity of cDNA, a PCR with primers for the reference gene 

bactin was performed on all the samples. The reactions were run on a thermal cycler 

(Mastercycler gradient, Eppendorf) with the same parameters as in section 2.1.1, except from 

the elongation step which was run at 72 C for 1 min, 15 sec. This was followed by 10 min of 

elongation at 72 C. A gradient was used because the lhx3 primers have a melting temperature 

of 50 C, and the primer pairs for lhb, gfp and bactin have melting temperatures of 55 C. The 

PCR products were run on a 2% agarose gel, to analyze the products from the different PCR 

reactions. 

2.5.2 Sequencing of lhb PCR product 

The gel band representing the lhb PCR product was extracted from the gel, purified, and 

sequenced at the ABI-lab at the University of Oslo. 
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2.6 Imaging and qualitative analysis of Gfp 

expression 

2.6.1 Larval handling for qualitative analysis 

According to the description in section 2.2.2, eggs for imaging were collected right after 

fertilization and synchronized at the one cell stage. After synchronization eggs were incubated 

at 28 °C. 

When the larvae used for confocal microscopy reached the right stage, they were transferred 

from medium to 1 x PBS to wash the eggs and remove the medium completely. The medium 

contains methyl blue, and the eggs would have a blue color after fixation if the medium was 

not removed. After washing, the eggs were fixed in 4 % paraformaldehyde (PFA) at 4 °C for 

6 – 12 hours. When fixed, the larvae were de-chorionated (described in section 2.5.1) by using 

fine tweezers and a dissecting microscope. To get a good visualization of the larvae in the 

microscope the yolk sac should be removed. This was done by holding the yolk sac with both 

tweezers and then pulling the tweezers apart. This destroyed the yolk sac and it could be 

removed piece by piece. After dissection each larvae was placed in a droplet of 1% agarose to 

stabilize it in the desired angle for imaging. 

2.6.2 Confocal microscopy 

Confocal microscopy gives a better resolution compared to fluorescence microscopy because 

it uses point-illumination and a spatial pinhole. The result of this technique is that it 

eliminates out-of-focus light in specimens that are thicker than the focal plane (Claxton et al., 

2006). Because of this, the picture comes from a thin section of the sample. By scanning 

many thin sections, these can be put together and made into a three-dimensional image of the 

sample.  

An Olympus FluoView 1000 upright BX61WI confocal laser scanning microscope (Olympus, 

Center Valley, PA, USA) was used for this part of the qualitative analyses of larval 

development. Pictures were taken in planes, separated by z-axis steps varying between 0.4 

and 1 µm. Picture size were set to 1024 x 1024 pixels, 4 µs/pixel. Fluorochromes were excited 

with a 488 nm Argon laser to detect Gfp expression. 
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Three-dimensional representations of the Gfp positive cells in medaka were produced using 

Imaris (6.3.0 v., Bitplane AG, Zürich, Switzerland), a 3D image processing and analysis 

software, based on picture information from the confocal microscope.  The processing done 

with Imaris included studying the Gfp expression with and without the transmission picture or 

as a 3D-representation, analysis of individual optical sections and to adjust the fluorescence to 

get a representative image. 

2.6.3 In vivo qualitative analysis 

The embryos were synchronized to one cell stage when collected and observed in an Olympus 

IX81-fluorescent microscope (Olympus, Tokyo, Japan). After initial observations, we 

estimated that the observation of Gfp expression should be performed every 30 min from 24 

hpf and onwards to see when the Gfp expression first started. The developmental expression 

analysis was performed on larvae from 48 hpf to 14 dpf and the larvae were studied every 12 

– 24 hours. The eggs were placed in individual wells, covered by E3 medium during 

observation. This ensured that the embryos were stable during the expression analysis and 

made it easy to separate the different eggs from each other. Because the embryonic 

development is affected by temperature, room temperature was kept constant at 27 C during 

the observations. Hatched larvae were anaesthetized with benzocaine (0.2-0.5 mg/ml) (Sigma-

Aldrich, USA) before the observations. 

2.7 In situ hybridization 

ISH is a type of hybridization that uses a labeled complementary DNA or RNA strand to 

localize a specific DNA or RNA sequence in a portion or section of tissue. For ISH analysis 

of larvae, histological sections were prepared by fixation of the specimen in a mixture of 80 % 

HistoChoice (Sigma-Aldrich, St Louis, MO, USA), 2% PFA, 1% sucrose, 1% CaCl2 and 

0.05% glutaraldehyde. Larvae were initially fixed for 5 hours, dissected out of their chorion 

and then fixed for an additional four hours. Hatched juvenile medaka were anesthetized on ice 

and placed directly in the fixation medium overnight at 4 C. Fixed specimen were then 

dehydrated in serial methanol washes (70%, 80%, 95%, 100%) for 20 min x2 each and kept in 

100% ethanol at -20 C for a minimum of 18 hours. Fixed and dehydrated specimen were 

then cleared in chloroform 30 min x4 at room temperature and infiltrated with paraffin wax 

for 30 min x4. Paraffin blocks were made for the embedded medaka and kept at 4 C until 
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sectioning. Three to six µm sections were prepared using a horizontal microtome (Thermo 

Scientific, Waltham, MA, USA), dried at 37 C and stored at 4 C.  

Digoxigenin (DIG) labeled riboprobes were generated by in vitro transcription according to 

the manufacturer’s protocol (Roche) of cloned sense and antisense sequences to detect the 

tissue distribution of lhb, fshb, pit1, and lhx3 by whole mount and tissue section ISH. Because 

DIG is a protein only found in plants, the risk of cross-reactivity in the samples is eliminated. 

Antibodies which react with and binds to DIG express a signal (anti-DIG signal) which show 

where the genes are located. 

For whole mount ISH, 48 hpf and 72 hpf larvae were fixed and dissected as described above 

using 4 % PFA. ISH was carried out according to established protocol (unpublished results, 

Hildahl et al 2011). Anti-DIG staining was observed using an Olympus IX81-fluorescent 

microscope (Olympus). Bright field imaging of the anti-DIG staining was compared with Gfp 

fluorescence detection. 
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3 Results 

3.1 Generation of the tg(fshb:RFP) construct 

The results from experiments performed throughout the process of generating the 

tg(fshb:RFP) construct are shown in section 3.1.1 to 3.1.3 below. 

3.1.1 Confirmation of tg(fshb:RFP) construct 

PCR of the fshb promotor 

The PCR reactions with gDNA from medaka as a template and fshb primers gave two specific 

bands with the correct sizes of 4000 bp and 2500 bp, respectively (figure 13). The same 

reverse primer and different forward primers for fshb were used in the PCR reaction to get 

two different insert lengths of the fshb promotor. These PCR reactions were performed to 

amplify and isolate the two inserts for the tg(fshb:RFP) construct by gel extraction. 

 

Figure 13 PCR of the fshb promotor. Lane 1: 4000 bp fshb promotor. Lane L: 1 kb ladder (Promega). Lane 2: 

2500 bp fshb promotor. 
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Restriction enzyme digestion with BamHI, EcoRI and NcoI 

The pGEM-T Easy vector containing the fshb insert and the pBluescript II SK vector with rfp 

sequence both contained restriction sites for EcoRI and BamHI. The vector and insert were 

required to contain the same restriction sites to generate sticky ends and thus enable the 

incorporation of insert into vector. In the pBluescript II SK vector with rfp insert, these 

cutting sites were located adjacent to each other and close together (figure 9) upstream of the 

rfp coding sequence. The product of this restriction enzyme digestion would thus appear as 

one single band on the gel. Figure 14A shows one single clear band with the expected size 

about 3700 bp, which was the size of the pBluescript II SK vector with rfp insert (3711 bp).  

The cut site distribution in the pGEM-T Easy vector leads to separation of the vector and fshb 

insert following the restriction enzyme digestion. The expected band lengths were 4000 bp 

(fshb) and 3000 bp (plasmid) in the construct with the long fshb insert, and 2500 bp (fshb) and 

3000 bp (plasmid) for the construct with the short fshb insert. The results (shown in figure 

14B) correlate well with the expected band lengths. 

 

Figure 14 Restrisction enzyme digestion. A) rfp construct cut with BamHI and EcoRI. Line L: 1 kb ladder 

(Promega). Line 2: rfp construct cut with BamHI and EcoRI. B) Restriction enzyme digestion (BamHI, EcoRI) 

of two replicates of pGEM-T Easy vector containing fshb promotor insert. Line L: 1 kb ladder (Promega). Lines 

1 and 2: 4000 bp fshb promotor cut out of pGEM-T Easy vector (3000 bp bands). Lines 3 and 4: 2500 bp fshb 

promotor cut out of pGEM-T Easy vector (3000 bp bands). 

Following integration of the fshb sequence into the pBluescript II SK vector, successful 

ligation was confirmed by restriction enzyme digestion with NcoI. NcoI had two restriction 
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sites in the construct; one inside the rfp sequence and another inside the fshb sequence. The 

results of this digestion would confirm the presence of both rfp and fshb. The pBluescript II 

SK vector (3000 bp) with rfp insert (711 bp) resulted in a vector of 3711 bp. Depending on 

the fshb insert the complete size of the construct was either 6211 bp or 7700 bp. Both 

restriction enzyme digestions should give a band of approximately 2250 bp, and depending on 

the size of fshb, a second band of approximately 3960 bp or 5450 bp. As shown in figure 15, 

both the rfp and the two different fshb sequences were present in the vectors. 

 

Figure 15 Restriction enzyme digestion performed with NcoI on the rfp vector with fshb insert. Line L: 1 

kb ladder (Promega). Line 1: rfp vector with 4000 bp fshb insert cut with NcoI. Line 2: rfp vector with 2500 bp 

fshb insert cut with NcoI. 

Sequencing of the tg(fshb:RFP) construct 

Only one primer was needed for sequencing reactions. We chose to include two primers for 

confirmation of the fshb sequence and the rfp sequence. The pUC/M13 primer (Promega), 

which had a complementary sequence located immediately upstream from the start of the fshb 

sequence in the pBluescript II SK vector, was used as a forward sequencing primer. The 

resulting sequences showed around 900 bp of the correct fshb sequence for both constructs 

(figure 16). The fshb forward primer (fshbF3) annealed in the 3´end of both the short and long 

fshb sequence. Since the distance between the fshb and rfp sequences was short (the fshb 

sequence was cloned into the vector approximately 20 bp upstream of the rfp sequence), the 

sequencing results showed approximately 200 bp of the correct fshb sequence, the short linker 

region, and the whole (711 bp) rfp sequence. 
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Figure 16 The tg(fshb:RFP) construct. 2.5 or 4.0 kb of the fshb promotor (3394 or 2008 bp) and the start of the 

sequence of fshb (545 bp) was inserted into the vector between the restriction sites EcoRI and BamHI. A start 

codon and the rfp sequence were localized downstream of the fshb promotor region. Cut sites for NcoI, that were 

used in the restriction enzyme digestion control of the construct, and primers used for the sequencing control are 

shown in the figure. 

3.1.2 Microinjection and screening 

When the construct had been prepared, the next step was to incorporate this transgene into the 

medaka genome. The construct was delivered into the cell by microinjection at one cell stage, 

thus enabling incorporation of the construct into the genome. Table 3 shows a survey of eggs 

microinjected with the two different constructs. 

Table 3 Microinjection of tg(fshb:RFP). The table shows concentration of the construct, number of eggs 

injected, and death rate. 

Construct Concentration of 

construct 

Number of 

injected eggs 

Number of eggs 

that died 

Positive 

F0 

tg(fshb:RFP) 

short (2500 bp) 

2.9 ng/µl 531 135 (25%) 0 

tg(fshb:RFP) long 

(4000 bp) 

2.2 ng/µl 405 154 (38%) 1 

 

About 100 eggs were injected per day. Of all eggs screened for fluorescence, one egg with 

Rfp expression was found. The expression was found in a restricted area in the tail region 

(figure 17). There are two endocrine tissues in the caudal region in fishes, the gonads and the 

urophysis (Evans and Claiborne, 2006). The fshb could be expressed in the gonads at this 
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stage of development, however, because we have only seen fshb expression in one individual, 

these are preliminary results and have to be investigated more closely at a later stage. The 

microinjected eggs that did not survive died at regular intervals, a few eggs each day until 4 

dpf. The surviving larvae are at present growing to sexual maturity (expected January 2012), 

at which time they will be crossed with each other and the eggs will be screened for the 

presence of the transgene. This will not be discussed further as it is outside the scope of this 

master thesis. 

 

Figure 17 tg(fshb:RFP) positive embryo (48 hpf). A) The Rfp expression in the tail region was specific. The 

expression in the headregion was determined to be exogenous (outside the larva) because closer examination 

showed that the expression was located outside the chorion and disappeared the next day. B) The Rfp positive 

embryo viewed with GFP filter to confirm that the expression seen in A is not autofluorescence. 

Table 4 shows a survey of eggs microinjected with constructs pre-treated with the 

meganuclease I-SceI. This restriction enzyme will cut the transgene out of the vector, and has 

been shown to increase the integration rate of the transgene into the host genome (Thermes et 

al., 2002). At the present time, no positive insertions were detected by screening. 

Table 4 Microinjection of tg(fshb:RFP) construct pre-treated with I-SceI. The table shows concentration of 

the construct, amount of eggs injected, and death rate. 

Construct Concentration of 

construct 

Number of 

injected eggs 

Number of eggs 

that died 

Positive 

F0 

tg(fshb:RFP) 

short (2500 bp) 

2.9 ng/µl 352 163 (46%) 0 

tg(fshb:RFP) 

long (4000 bp) 

2.2 ng/µl 525 272 (51 %) 0 
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The death rate was higher in the experiment where I-SceI was microinjected together with the 

construct.  

3.2 Quantitative analysis of lhb expression in 

embryonic medaka 

qPCR was used to quantify the lhb mRNA expression in embryonic medaka. Eggs were 

collected in pooled samples at different developmental stages, the RNA was isolated and 

DNase treated, and cDNA synthesis performed. qPCR assays for lhb gene and 16s reference 

gene were developed and validated by first performing melting curve analysis and checking 

the specificity of the primer pairs chosen. Melting curves that showed one specific peak 

indicated that the PCR only had amplified one product. The efficiency of the SYBR green I 

assay was evaluated using cDNA template dilution curves. The efficiency was calculated as 

described in section 2.3.2. The chosen primer pairs had efficiencies of 2.07 and 2.05 for lhb 

and 16s, respectively. The Cq values ranged from 23-27 and 15-19 for lhb and 16s, 

respectively.   

lhb was clearly detected in all stages investigated. The lhb gene was maternally expressed 

during early embryogenesis, with increased transcription levels observed following initiation 

of zygotic expression at mid-blastula stage (18 hpf, see figure 18). Transcript levels increased 

up to the four-somite stage (36 hpf) followed by a decrease, reaching significantly lower 

levels by 120 hpf and remaining low in hatched larvae. 
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Figure 18 Quantitative analysis of lhb mRNA expression. Relative lhb gene expression in pooled medaka 

through embryonic development to post-hatch larvae. lhb gene expression was normalized to 16s gene 

expression using an efficiency adjusted relative quantification method. Data are represented as mean relative 

expression + standard error of the mean (SEM), n = 4. Data were analyzed by 1-way ANOVA and differences 

were considered significant at p<0.05. The number of individuals per pool is given in table 2. 

3.3 Co-localization of lhb and gfp 

Since ISH proved ineffective to determine the co-localization of Gfp and lhb (no lhb was 

detected by this technique in larvae), RT-PCR reactions with primers for bactin, lhb, gfp and 

lhx3 were performed using cDNA from micro-dissected Gfp-positive cells as template to 

confirm that Gfp and lhb was expressed in the same cells, and whether these cells were found 

in tissue outside the pituitary. To only amplify the endogenous lhb in the PCR reaction, the 

primers or the amplicon were designed to span exon-exon boundaries. As a control to confirm 

the absence of developing pituitary tissue contamination in the dissected samples, analysis of 

a pituitary marker gene, lhx3, was performed. The expected size of the PCR products for 

bactin, gfp and lhb was 89 bp, 233 bp and 319 bp, respectively. These sizes correlate well 

with the bands on the gel shown in figure 19. The PCR reaction for lhx3 gave no specific 

product (expected size, 1176 bp). From these results one can conclude that gfp and lhb were 

expressed in the same cells, and that these cells are not located in the pituitary. 
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Figure 19 Co-localization gel. The PCR products visualized on a 2 % agarose gel. Lane 1: PCR sample with 

specific primers for the reference gene bactin containing a 89 bp product. Lane 2: PCR sample with specific 

primers for lhx3 (1171 bp product), a gene marker specific to the pituitary. Lane 3: PCR sample with specific 

primers for gfp containing a 233 bp product. Lane 4: PCR sample with specific primers for lhb containing a 319 

bp product. Lane 5: 1 kb  ladder (Promega). 

3.4 Imaging and qualitative analysis of tg(lhb:GFP) 

expression 

Observation and analysis of the larvae started from 24 hpf and continued until hatching (7-9 

dpf). The hatched larvae were examined around 12-14 dpf (about one week after hatching). 

The embryos were mostly examined in a fluorescent microscope but some selected 

developmental stages were studied in detail in a confocal microscope.  

At least 10 individuals were examined for each stage investigated. Initially, the embryos were 

investigated every day (from 1-7 dpf), followed by a closer examination of the stages where 

most variation in the Gfp expression was found. 

3.4.1 In vivo qualitative analysis – first expression 

Special interest was directed to when and where the Gfp-lhb expression first occurred. The 

expression was closely followed the first seven hours after initial detection, at which time the 

expression underwent a rapid change (figure 20). 
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Figure 20 First expression of lhb in medaka embryos. A) Light image of a medaka embryo at 30 hpf. B-H) 

Fluorescent images of medaka embryos. Gfp expression was first observed after 32 – 33 hpf as paired lateral 

clusters located at the anterior margin of the otic vesicles (B). After 2 hours the expression extended to the 

midline (E) and more caudally (35-39 hpf, E-H). 

There was no specific Gfp expression before 30 hpf. As seen in figure 20B, the first Gfp 

protein expression was detected in the four-somite stage (32-33 hpf, approximately 

developmental stage 20). Gfp expression started as paired lateral clusters posterior of the eyes 

and at the anterior margin of the otic vesicles. After only a few hours, the Gfp positive cells 

increased in number, extending to the midline (figure 20D) and posteriorly (figure 20E-H) as 

a continuous group of cells. By the nine-somite stage (stage 22, 38 hpf) the cells started to 

approach the area where the expression would dominate from 48-120 hpf (figure 21). 
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3.4.2 Developmental expression 

When observing Gfp-lhb during embryonic development each day from 48 hpf until hatching, 

we found that there was few changes in the main expression pattern during this period, 

however, there was some alterations in the more dispersed Gfp positive cells.  

 

Figure 21 Gfp expression in the tg(lhb:GFP) medaka embryo at different developmental stages.  A-F) 

Larvae at 48 hpf, pictures taken with confocal microscope (A, D) fluorescent microscope (B, E) and light 

microscope (C, F). The Gfp expression is at 48 hpf centered at the midline between the otic vesicles (OV) with a 

few dispersed cells located anterior of the otic vesicles. These cells are marked with arrows in B and E. All 

expression ended before the mesencephalon-metencephalon (Mes-Met) border. The basic Gfp expression pattern 

is largely established by 48 hpf, with Gfp distribution expanding only slightly as development progresses. Light 

microscopic images (C, F) show the orientation and anatomy of 48 hpf larvae. Larvae are orientated with the 

head to the right. 
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Figure 21A-F shows pictures of larvae at 48 hpf (the 16-somite stage). At this time the Gfp 

expression was centered at the midline (as seen in figure 21A ventral view, and B dorsal 

view) and positioned ventral in the larvae (as seen in figure 21D and E, lateral view).  The 

Gfp expression started posterior of the developing otoliths (OV; otic vesicle, marked in figure 

21D) and extended the whole length of these structures. Anterior of the otic vesicle, the Gfp 

expression are more dispersed and only a few cells were visible. The most anterior expression 

was difficult to see because of auto-fluorescence (yellow color) produced by pigment cells 

covering this area. The Gfp expression stopped before the mesencephalon-metencephalon 

(mes-met) border of the developing hindbrain (shown in figure 21A). The Gfp expression 

expanded only slightly relative to the growth of the larvae. By 96 hpf, there were fewer 

dispersed Gfp producing cells which extended to the mes-met boundary and a few distinct 

cells were located at the posterior margin of the eye (figure 21G-H, marked with arrows). 

 

Figure 22 Embryonic tissue-specific distribution. Tissue specific Gfp expression was analyzed by confocal 

microscopy (B-C)) and fluorescent microscopy (D-E) and hematoxylin/eosin staining (F) of histological 

sections. Three dimensional rendering of confocal image analysis shows these cells are arranged in a tubular-like 

structure (A). Optical sections obtained by confocal microscopy display changing cell morphology in distal (B) 

and medial (C) planes. In transverse sections of 5 dpf larvae, Gfp is expressed in the gut tube in the ventral 

margin of the fish (D). Arrows identify Gfp expressing cells. Tissues are labeled as brain (b), gut tube (gt), 

notochord (nt) and otic vesicle (ot). 
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The picture-editing program Imaris was used to process the images of Gfp expressing cells 

into a 3D model (figure 22A). Figure 22A shows a tubular structure of the Gfp expression 

when the 3D model was rotated and observed as in a transverse section. Confocal images 

were taken as optical sections, a z-stack, through a section of tissue, such that individual 

planes of the image can be analyzed separately. When studying the different layers of the 

larvae, the Gfp positive cells were sectioned at different angles because of their tubular 

orientation. The section of Gfp positive cells in the dorsal and ventral part of the larvae 

showed a round shape (figure 22B) as the cells were sectioned in a dorso-ventral orientation. 

When the Gfp positive cells were sectioned in a distal-medial orientation, medially in the 

larvae, the shape was elongated and columnar (figure 22C). These data indicate that the Gfp 

positive cells have a columnar shape and are organized in a tubular arrangement. The 

anatomical organization of Gfp positive cells was supported by fluorescent and histological 

imaging of sections. Gfp positive cells were detected as a tubular structure in the ventral 

abdomen of 5 dpf larvae (figure 22D-E), which was identified as the developing gut by 

histological hematoxylin/eosin staining. This staining technique simplifies the process of 

recognizing different tissues or organelles in a specimen. Hematoxylin stains the nuclei of the 

cells blue and eosin is used as a counterstain, staining all eosinophilic structures in various 

shades of red, pink and orange (figure 22F). Gfp was expressed throughout the radial axis of 

the developing gut tube, which formed a singular radial layer of cells. By 5 dpf the lumen of 

the gut tube was clearly seen (figure 22F). After hatching the intestinal epithelium thickened 

and became more convoluted (figure 23D-F). Some residual yolk was present for 3-4 days 

after hatching (figure 23 F-G). Gfp expression was more limited post-hatch and were 

positioned anterior of the remaining yolk sac (figure 23A-B). The Gfp expression was 

detected as isolated cells in the intestinal wall up to 11 dpf (figure 23E) when the yolk was 

almost completely absorbed. Individual cells were also identified just posterior to the eye 

(figure 23B), however, these cells were determined to be localized to the dorsal and posterior 

surface of the first gill arch by histological sections (figure 23H-I). 



52 

 

 

Figure 23 Gfp-lhb expression post hatching. When the larvae are post-hatch, the Gfp expression is greatly 

reduced relative to the whole larvae with isolated clusters at the dorso-anterior margin of the yolk-sac (A) and 

posterior margin of the eyes (B). Saggital histological sections show that Gfp is first detected in the pituitary 

after 14 dpf (C) and is expressed in the intestine at hatch (E). Hematoxylin/eosin staining shows anatomical 

structures of histological sections (D, F-G). The brain, gill arches and intestine are shown in figure D, the 

intestine and part of the yolk in figure F and figure G shows the brain, gill arches and the eye. Arrows identify 

individual cells or isolated cell clusters near the eyes (H-I), in the gut (E) and in the pituitary (C). Tissues are 

labeled as brain (b), gill (g), intestine (i) and yolk (y). 

Pituitary Gfp expression was first detected at 14 dpf in a few isolated cells (figure 23C). The 

yolk was fully absorbed at this time, with no Gfp detected in the gut or in other extra-pituitary 

tissue. 
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3.5 In situ hybridization 

Cells of the developing pituitary were localized by performing ISH using riboprobes specific 

for the pituitary marker genes pit1 and lhx3. This experiment would determine if the Gfp-lhb 

producing cells were localized in the pituitary. ISH of pituitary marker genes showed that Lh 

producing cells were initially localized outside the primordial pituitary. Both pit1 and lhx3 

were expressed in the midline ventral to the eye at 48 hpf and 72 hpf (figure 24 A and C). 

However, Gfp was detected posterior to the anti-DIG signal (fig 24 B and D). The otic 

vesicles were located at the ventral margin of the brain (figure 24 E), and Gfp was detected 

ventral to the otic vesicles on the basal surface of the larvae (figure 24 F). During embryonic 

development, thus, Gfp was primarily detected outside the central nervous system and 

pituitary. 
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Figure 24 lhb expression outside the CNS. ISH with two pituitary marker genes, pit1 (A), and lhx3 (C), show 

the developing pituitary at the midline of the head and ventral to the eye (main expression identified with errors). 

Gfp expression starts around the anterior margin of the otic vesicle along the dorsal surface of the larva (B, D, 

F). The base of the larval brain is at the midpoint of the otic vesicle (E), and Gfp is clearly detected ventral to 

this boundary (F). Gfp is not detected in the pituitary before 14 dpf. Larvae are situated with the head to the left. 

Identified tissues are b, brain; ot, otic vesicle (identified by arrow and hatched line) and y, yolk. 
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4 Discussion of results 

When designing this project, the main aim was to find out when lhb started to be expressed in 

the pituitary. During the observations it was clear that lhb first appeared in the gut instead of 

the pituitary as first expected. The data concerning lhb expression presented in this thesis 

suggests a novel function of Lh during embryogenesis in medaka. 

The co-localization experiments on medaka embryos confirmed the transgene specificity of 

the tg(lhb:GFP) line during development. The co-localization of Gfp and lhb in adult medaka 

had been confirmed earlier (Hildahl et al., Submitted). Thus, a sensitive method has been 

established for tracing the development of Lhb producing cells using in vivo and in situ 

fluorescent imaging of Gfp. By this means, a novel expression of the lhb gene during early 

larval development has been revealed, suggesting a developmental function for Lh 

independently of the BPG axis.  

A transgenic construct where Rfp expression is under the control of the fshb promotor was 

also generated. This is currently being used to establish a transgenic line where the expression 

and functions of the second pituitary gonadotropic hormone gene, fshb, can be further 

investigated. 

4.1 lhb expression in medaka embryos  

4.1.1 lhb expression outside the pituitary during early development 

Few studies have looked at the expression of lhb outside the pituitary and to my knowledge 

this is the first study investigating this expression during early development. In medaka, the 

pituitary is located at the ventral margin of the eyes at 48 hpf as indicated by lhx3 and pit1 

expression (figure 24 A and C), similar to zebrafish (figure 5) (Nica et al., 2006; Pogoda et 

al., 2006). However, the experiments presented here show that Gfp is clearly not co-localized 

with the pituitary marker genes, and Lh does not appear to be present in the pituitary of 

medaka until after hatching. Rather, Lh is expressed in the developing gut tube, a tissue of 

endoderm origin and this suggests a novel function for Lh during development. In medaka, 

the gut tube formation starts at 38 hpf (stage 22) in the rostral portion (excluding the 

esophagous and the pharynx) of the gut and extends caudally, reaching the cloaca by 54 hpf 

(stage 26) (Kobayashi et al., 2006). In my experiments, Gfp was detected prior to 38 hpf 
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(stage 22), as two lateral clusters of cells that migrated towards the midline and then 

posteriorly in the larvae. Interestingly, Koyabashi (2006) reports that gut tube formation also 

start in the rostral part of the gut tube by migration of the rostral endodermal cells to the 

midline, before further development starts more caudally in the intestine. The quantitative 

characterization of lhb mRNA expression reveals that lhb mRNA reached maximum levels 

during gut tube formation, and this supports the notion that Lh is important for the 

development of the gut tube. When the gut tube structure is fully established, Gfp is clearly 

expressed in the rostral portion as a cylindrical tube like structure. The significant decrease in 

lhb expression seen in the quantitative analysis at 120 hpf supports the notion that Lh is 

important for the development of the gut tube. The limited expression of Gfp in the caudal 

portion of the gut may reflect that this region of the gut gives rise to other structures such as 

liver buds and swim bladder (Kobayashi et al., 2006).  

The molecular structures of fshb and lhb are well conserved from teleosts to mammals, 

however, some studies report differences in their regulatory mechanisms of gene expression 

(Kanda et al., 2011). Little data is available to assess the novel expression and putative 

function of Lh in the gut during development. A hypothesis was presented that a lack of 

conserved synteny among vertebrates nearby the lhb gene could explain that teleosts have two 

different cell types secreting Lh and Fsh, while tetrapods have only one cell secreting both 

gonadotropins (Kanda et al., 2011). Further, the teleost lhb locus has no shared synteny to 

either tetrapod lhb or teleost fshb. This fact suggests that drastic changes occurred in the 

genomic environment of the lhb gene early in teleost evolution (Kanda et al., 2011). 

Moreover, this lack of conserved synteny could possibly explain the divergent extra-pituitary 

developmental expression of lhb in the gut of medaka.  

4.1.2 Possible functions of lhb in the gut tube 

The recently discovered and evolutionary related glycoproteins, Gpa2 and Gpb5, have been 

identified in both vertebrates and invertebrates (Dos Santos et al., 2009). The presence of 

these proteins in invertebrates suggests that they could be an ancestral form of the pituitary 

glycoprotein hormones, Fsh, Lh and Tsh. The endogenous physiological function of Gpa2 and 

Gpb5 remains to be elucidated, however, these hormones are suggested to have various 

functions in the gut in D. melanogaster (Sellami et al., 2011) and C. elegans (Oishi et al., 

2009). It is interesting to note that these glycoprotein hormones, evolutionary related to Lh, 

are suggested to function in the gut of other organisms since this is the same tissue lhb 
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expression was found in medaka embryos. Moreover, the gonadotropic hormone receptors 

(fshr and lhr) are not as specific in fish as they are in humans (Braun et al., 1991; Tilly et al., 

1992). In several teleost species, Fsh only bind to the Fshr, however, Lh can bind to both the 

Fshr and Lhr (Miwa et al., 1994; So et al., 2005; Yan et al., 1992). It has therefore been 

suggested that Lh has taken over some of the functions that were performed by Fsh in fish 

(Evans and Claiborne, 2006). Hence, one may speculate that ancestral glycoproteins have had 

a function in the gut, and that Lh could bind to the Gpb receptor, which could be present in 

the gut, similar to how it promiscuously binds to the Fsh receptor. However, functional 

studies are needed to test this hypothesis. 

During this project it became clear that the Gfp-lhb expression was widespread in the gut area 

during early developmental phases, however, the expression ceased soon after hatching, 

coinciding with complete absorption of the yolk.  This suggests that Lh could be important for 

survival in the chorionated micro-environment. The main function of Lh in the BPG axis is to 

control steroidogenesis. Thus, one of the possible functions that could be assigned to Lh in the 

gut during development is steroidogenesis. Conversion of cholesterol to pregnenolone has 

been shown to be critical for embryogenesis in zebrafish, since pregnenolone preserves 

microtubule abundance and promotes embryonic cell movement (Hsu et al., 2006). The 

enzyme responsible for conversion of cholesterol to pregnenolone, cyp11a1 a member of the 

P450-cytochrome family (P450scc), is expressed in the yolk syncytial layer (ysl) of zebrafish, 

thus identifying an important steroidogenic tissue during development (Hsu et al., 2006). Lh 

drives steroidogenesis in the gonad by stimulating the uptake of cholesterol into theca 

(female) or leydig (male) cells and into the mitochondrion by stimulating lipoprotein 

receptors and steroidogenic acute regulatory protein (StAR), respectively. Subsequently, Lh 

stimulates the production of androgens in these cells by also stimulating gene expression of 

cyp17 (P450c17-I), another member of the P450-cytochrome family (Zhou et al., 2007). The 

gut tube during early development is located immediately adjacent to the ysl (Koyabashi et 

al., 2006), which is responsible for initial yolk absorption. Indeed, synthesis of pregnenolone 

in the intestine of the green frog (Rana esculenta) was stimulated following incubation with 

cholesterol (Belvedere et al., 2001) and Lh receptors are present in the intestine of human 

fetuses (Abdallah et al., 2004), suggesting that the intestine could be sensitive to LH during 

development and act as a steroidogenic tissue. Lh could, thus, stimulate steroidogenesis in the 

larval gut by stimulating cholesterol uptake and cyp17 expression, which is an important 

enzyme in the steroidogenic pathway. Indeed other members of my group have found that 
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cyp17 gene expression has an increasing trend at 36 hpf (unpublished data) when lhb gene 

expression is significantly upregulated in the developing medaka.  

A few dispersed Gfp positive cells were found posterior of the eyes between 3 and 4 dpf and 

were still observed at 9 dpf. Histological sections showed these cells to be closely associated 

with the developing gill arches, with Gfp positive cells being located at dorsal and posterior 

surfaces of the first gill arch. Osmoregulation is another primary function of the gut during 

fish larval development. For example, Na/K-ATPase activity was localized to the anterior gut 

in the time around hatching (48-72 hpf) in zebrafish (Wallace et al., 2005). The gills can first 

be identified in medaka at 82 hpf (stage 31) at which point the dispersed anterior Gfp positive 

cells have reached the posterior margin of the eyes. The close association of the digestive tract 

and the gill arches suggests that the Gfp expressing cells are part of the pharyngeal tissue as 

no Gfp is detected in the operculum cavity. The presence of lhb in the anterior gut tube and in 

close association with the gill arches suggests that Lhb could be involved in larval 

osmoregulation.  

Whether Lh is involved in steroidogenesis, osmoregulation, general development of the gut 

tube or have another function during development, is unknown. Future studies, for example 

knock down experiments of Lh and the Lh receptor, will give more answers to what kind of 

functional role Lh plays during development.  

4.1.3 First detection of lhb in the pituitary 

During qualitative analysis of the Gfp expression, by in vivo observation, co-localization 

experiments and ISH experiments, it became clear that lhb is not expressed in the pituitary of 

medaka until approximately 14 dpf. At this stage of development the yolk is completely 

absorbed and the larvae have started exogenous feeding. gnrh1 and gnrh3 are expressed by 2 

dpf in medaka, and developmental tracing in transgenic medaka reveals that Gnrh neurons 

extend ventrally into the pituitary from between 10 – 20 dpf (Okubo et al., 2006). This is 

around the time that Gfp-lhb is first detected in the pituitary. These data suggests that lhb is 

expressed relatively late in pituitary development, when the gross morphology of the brain 

has been established and the hypothalamic neurons innervate the pituitary. Thus, Lh 

gonadotropes could require hypothalamic inputs for final gonadotrope activation, similar to 

the situation in sheep (Brooks et al., 1992; Szarek et al., 2008) and in rat (Aubert et al., 1985) 

gonadotrope maturation. This is further supported by the observation that gonadotropin 
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expression starts later than other anterior pituitary hormones in multiple fish and mammalian 

species (Asa et al., 1988; Japon et al., 1994; Laiz-Carrion et al., 2003; Saga et al., 1993; Saga 

et al., 1999). However, zebrafish, the fish species with the best-characterized anterior pituitary 

development, provides partially conflicting results. In transiently transfected zebrafish, the lhb 

promotor drives Gfp expression in the area of the pituitary by 48 hpf (Chen and Chiou, 2010), 

although this signal was not confirmed by co-localization with the endogenous lhb gene or 

generation of a transgenic line. Similarly, downregulation of lhb in mutant zebrafish suggests 

that lhb is being produced by gonadotropes by 72 hpf although cell specific expression could 

not be confirmed by ISH (Nica et al., 2006). This is likely due to the lower sensitivity of ISH 

relative to PCR. Likewise, in our experiments, lhb was detected by qPCR in whole larvae but 

could not be detected by ISH. The zebrafish pituitary gonadotropes are determined to 

differentiate early in development by 32 hpf (Pogoda and Hammerschmidt, 2009). However, 

Podoga and Hammerschmidt (2009) characterize first detection of gonadotropes in the 

pituitary as the presence of the common α subunit (gpa) and the absence of tsh β-subunit 

(tshb). Therefore, it is unknown at what point these primordial gonadotropes mature and 

express lhb and fshb. For example, in mammals gpa expression precedes lhb and fshb 

expression in gonadotropes. In mouse (Japon et al., 1994) gpa is expressed 2 days before lhb 

and 3 days before fshb. gpa is also seen prior to lhb and fshb in human gonadotropes (Pope et 

al., 2006). This may explain the inability to detect lhb transcripts in the pituitary of zebrafish 

when gpa could be detected. 

The BPG axis gain full activity when the organism reaches puberty. However, the completion 

of the structure and components of the BPG axis mature earlier. In mammals, The BPG axis 

matures in the middle of the prenatal stage (Huhtaniemi, I, 1995). The BPG axis is in this 

stage important for brain and gonad development. Whether the situation is similar in teleosts 

is unknown, however, this could suggest an important role for Lh in the pituitary at an early 

stage. 
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5 Discussion of methods 

Some of the methods used in this study were established and optimized for this thesis and will 

therefore be discussed in this section.  

5.1 Generation of tg(fshb:RFP) line of medaka 

A tg(fshb:GFP) construct was successfully generated using the BAC method, but there were 

no positive fish in the F0 or the F1 generation after microinjection of the construct and 

screening 500 fish. 

Because the BAC method proved unsuccessful, a plasmid-based tg(fshb:RFP) construct with 

meganuclease sites was generated to see if we could increase the efficiency of transgene 

incorporation. After microinjection of 1000 embryos with the tg(fshb:RFP) construct one 

fish was Rfp positive in the F0 generation. The tg(lhb:GFP) medaka line already established in 

our group is the result of  microinjecting 1000 embryos. The incorporation rate for that 

experiment was similar to our results with two positive founder fish in the F1 generation. The 

microinjected fish in the tg(fshb:RFP) F0 generation are now growing and will be crossed with 

each other when sexually mature to identify F1 founders of tg(fshb:RFP). Hence, there is good 

probability of more positive fish in the F1 generation. 

If provided more time, several steps in the generation of the tg(fshb:RFP) medaka line could 

have been optimized. The concentration that gave the best result for the tg(lhb:GFP) line was 

1 ng/l. For the tg(fshb:RFP) line, the concentration was between 2 – 3 ng/l because a high 

concentration is favorable for integration into the genome as long as the death rate do not 

exceed 50%. In future experiments, a titration curve of the concentration of construct should 

be made, to assess the optimal injection concentration. Information about amount of deformed 

larvae and if the larvae have a normal developmental timeline should be recorded and 

evaluated. During this project it became clear that after microinjection the larvae in the same 

batch had different developmental rates. A reason for this could be that the injected volume of 

construct varied, and that a larger volume could have an adverse effect on embryonic 

development. To avoid this problem, future studies should optimize the injection volume. The 

injection volume was estimated by comparing it with the oil droplets in the yolk. There are 

more precise methods to measure the injection volume, for example by using a drop of oil on 

a stage micrometer to measure the diameter of the injection solution.  
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5.2 Qualitative analysis of lhb in medaka embryos 

Co-localization of Gfp and lhb were confirmed in adult medaka pituitaries. However, because 

the Gfp positive cells were found outside the pituitary in embryos I wanted to control that lhb 

and Gfp were expressed in the same tissue also during embryogenesis. To confirm the co-

localization of lhb and Gfp in transgenic larvae, the most important step was the optimization 

of the dissection and the RNA isolation procedures. The dissection had to be quick to prevent 

any RNA degradation during the procedure, and carefully performed so that only Gfp positive 

cells were selected. The Gfp positive cells were clearly gathered in a tubular structure separate 

from the Gfp negative tissue. This made it possible to isolate only the Gfp positive cells using 

fine tweezers. To ensure no contamination of tissue from the developing pituitary in the 

dissected samples, RT-PCR reactions with the pituitary marker lhx3 were performed. Several 

procedures were tested before the optimal procedure for collecting tissue was established. The 

RNA isolation procedure was performed by either placing the tissue directly in Trizol and 

homogenizing the sample before RNA isolation or collecting tissue in 10 l PBS and snap 

freezing in liquid nitrogen before Trizol homogenization. Both of these methods were 

unsuccessful as they resulted in low RNA yields and variable PCR results. The procedure 

used in the subsequent experiments was placing the tissue directly in Cells Direct on ice after 

dissection. This procedure provides a quick, easy, reproducible and sensitive method for RNA 

extraction from small samples. Another method applied to determine the co-localization of 

Gfp and lhb was ISH. This is routinely performed in our lab, but the ISH method was not 

sensitive enough to detect the lhb in the medaka embryos. This problem was also reported 

from Nica et al (2006), who could neither detect lhb by whole mount ISH during embryonic 

development of zebrafish.  

For imaging and qualitative analyses of the embryonic expression of Gfp-lhb in medaka 

embryos, several methods were tested to find the best protocol. For inspection of larvae with 

fluorescent microscope the method that was most effective and gave the best results was in 

vivo observation. The in vivo inspection of larvae was performed by placing the larvae in 

agarose wells, still in the E3 medium. The wells made it easy to stabilize the larvae and to 

orient them in a good position for imaging. Larvae were also anesthetized with benzocaine 

and dissected out of the chorion, however, this was ineffective since the larvae died shortly 

after dissection and were often harmed during the dissection procedure. When investigating 

the first expression of Gfp-lhb there were complications with controlling the temperature. As 
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medaka is a poikilotherm animal, where the internal temperature varies according to the 

surrounding temperature, the development of the larvae is affected by this variable. Therefore, 

the temperature needed to be kept constant at 27 C. There was no incubator or heat plate 

available for the microscope, and therefore the room temperature was kept stable at 27 C.  

Fixation and dissection of the larvae out of the chorion was proven successful in the confocal 

microscope analysis and ISH analysis. Confocal imaging is time consuming and because of 

the movement of the larvae, in vivo observation could not be used during this experiment. To 

control that Gfp expression was not influenced by the fixation process, the larvae was 

observed before and after fixation. For confocal analysis, the fixed and dissected larvae were 

placed in a drop of agarose in a Petri dish. This was done under a dissecting microscope to 

control that the orientation of the larvae was optimal for analysis of the Gfp-expression and 

imaging. It would have been advantageous to use confocal microscopy for more advanced 

analysis, for example time-lapse experiments. Ideally, an experiment with time-lapse imaging 

of the developing larvae should have been performed, however, there was no equipment 

available for the upright confocal microscope to control the temperature during the time-lapse 

experiment, and the room temperature could not be controlled either. There was an incubator 

available for the inverted confocal microscope, however, a new training period was required 

and the optimization for inverted observation would have been too time-consuming within the 

scope of this master thesis. Several methods are available for improving the confocal images, 

for example analysis of the pictures using the Imaris program. Some of the confocal images 

had an insufficient resolution and restricted the analysis done with Imaris. More focus should 

be put to this subject in future experiments.  

5.3 Quantitative analysis of lhb in medaka embryos 

The first attempts to quantify the expression of lhb mRNA in medaka embryos were not 

successful. RNA quality is important when working with qPCR, and especially when working 

with low transcript levels. The RNA was analyzed for purity and degradation using the 

Bioanalyzer, and the RNA integrity number (RIN) values, an estimate of RNA integrity, were 

above eight, which indicates that most of the RNA in the sample was intact and the RNA was 

of good quality. This suggested that the reverse transcription step or the PCR assay needed to 

be optimized.  
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When performing a reverse transcription reaction, different primers can be used. We tested 

both random hexamers and Oligo(dT) primers, which binds to different parts of the RNA and 

can give different results. Random hexamers were initially used and when performing the 

qPCR experiment after a reverse transcription reaction using random hexamers, the reference 

gene, bactin, gave accurate melting curves with one specific peak and a satisfying 

quantification cycle (Cq) value. This confirms that the cDNA were of good quality. The lhb 

gene, however, gave very high Cq values (above 37) and the melting curves were only 

specific for about 50% of the samples. Random hexamers are primers that bind randomly to 

all RNA in the sample, including ribosomal RNA. mRNA constitutes about 10 – 20 % of the 

RNA in a tissue sample, and because random hexamers bind to all RNA, this can lead to a 

dilution effect of mRNA transcripts, especially for low abundant transcripts. The use of 

Oligo(dT) instead of random hexamers gave much better results. Oligo(dT) primers bind only 

to mRNA by annealing to the polyA tail of transcripts in the sample. The disadvantage with 

using Oligo(dT) primers is that if a degradation of the mRNA occurs, the primers in 

subsequent qPCR experiments may not detect the transcripts, as the complementary sequence 

for the primers may not be reverse transcribed. In addition, some transcripts do not have a 

polyA tail, and these transcripts will not be detected using Oligo(dT).  

When working with reverse transcriptase enzymes, one should note that the sensitivity of 

these enzymes varies between manufacturers. The first attempts to quantify the lhb mRNA 

levels in embryonic medaka were performed using the Omniscript reverse transcriptase kit 

which has been shown to work well with medaka embryo RNA (K. Okubo, personal 

communication). Since our results in the first experiments were of poor quality, we switched 

to the Superscript III enzyme kit. This resulted in good quality melting curves and Cq values 

for both the reference gene and lhb. Factors that could have affected the quality of the cDNA 

generated with the Omniscript kit are that the enzyme could have been old or of bad quality, 

or the Superscript III enzyme could be more sensitive compared to the Omniscript enzyme.  

To eliminate the risk of gDNA contamination, the RNA was DNase treated. The gDNA could 

bind to primers in subsequent qPCR assays and give inaccurate results. There are few 

methods of testing if the DNase treatment was successful, however, if you include a no-rt (no 

reverse transcriptase) in your assay, this sample will mostly include single stranded mRNA 

and some double stranded gDNA. Since only double stranded DNA is detected by qPCR, this 

will give you an indication whether the primers bind to gDNA. By performing this control, 



64 

 

we found that the primers used could bind gDNA and therefore DNase treatment was 

necessary. The DNase treatment initially used (Ambion TURBO DNase free kit, Austin, TX, 

USA) had an inactivation reagent that could have caused problems in our qPCR experiment. 

This uncertainty was solved by using Qiagen on-column DNase treatment.  

Quantifying mRNA via cDNA levels as in a qPCR assay hinges on the chosen reference gene. 

The criteria for a good reference gene is that it should be expressed in all cells, have a 

constant copy number in all cells and ideally have a similar copy number as the gene of 

interest. bactin was initially used as reference gene, but it was determined to be an 

inappropriate reference gene since its expression varied during the developmental stages 

investigated. Several reference genes were tested, and 16s was determined to be the best 

suited and most stably expressed. 

When using Oligo(dT) instead of random hexamers, changing the reverse transcription kit 

from Omniscript to Superscript III and alter the reference gene for the assay performed, the 

qPCR experiment was successful for both the reference gene and lhb with a single specific 

melting peak and Cq values under 30.  
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6 Conclusion 

During my study of the spatial and temporal expression of lhb in medaka embryos using the 

tg(lhb:GFP) medaka line, lhb expression was discovered in the developing gut tube. This 

suggests a novel function of lhb during embryonic development in medaka. However, the 

function of Lh in the intestine is still unknown and remains to be elucidated. To our 

knowledge, this is the first study investigating lhb expression during early development.  

lhb is first seen in the pituitary at approximately 14 dpf, around the same time as Gnrh 

neurons innervate the pituitary. This suggests that Lh is expressed relatively late in 

development, when most of the brain morphology is established. This could mean that Lh 

gonadotrope cells need a final activation from the hypothalamic neurons to be activated, 

similar to the situation in some mammals. When lhb is first expressed in the pituitary, there is 

no expression in the gut and the yolk is completely absorbed. 

The generation of a tg(fshb:RFP) medaka line was not completed during this master thesis. 

However, the tg(fshb:RFP) construct was successfully generated and microinjected into 

medaka embryos. One positive egg was discovered in the F0 generation and this fish is now 

grown to sexual maturity (expected January 2012) and will be crossed with each other to 

identify founder fish for the transgene in the F1 generation. 
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7 Future perspectives 

The generation of a stable tg(fshb:RFP) medaka line is of great interest to the Weltzien-Haug 

group as a powerful tool to characterize the differential regulation of gonadotropes. The 

developmental studies of lhb expression performed in this thesis generated novel finding of 

great interest for developmental endocrinology. Further developmental studies of fshb 

expression in developing larvae will, therefore, also be performed to see if this hormone also 

has novel developmental expression and function.   

When both of the transgenic lines are established, our group is planning to cross the 

tg(lhb:GFP) and the tg(fshb:RFP) line to generate a double tg(lhb:GFP,fshb:RFP) line of 

medaka. This will enable simultaneous detection and investigation of the two gonadotrope 

cell types. This will be a great advantage in electrophysiological experiments, Ca
2+

 imaging 

experiments and gene expression studies. 

Subsequent studies should include elucidating the function of Lhb during development by for 

example knock down experiments of lhb and its receptor. Preliminary qPCR results from our 

group indicate that there is a functional ligand-receptor system for lhb developed already at 

30-40 hpf, thus supporting the data presented in this thesis, that Lh have a function in early 

development.  
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