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Abstract 

Chlamydomonas reinhardtii is a widely used model organism to study chloroplast gene 

expression and photosynthetic processes. In this project we worked to identify a novel trans-

acting factor that is thought to contribute to the stability of rbcL mRNA. These types of 

factors are thought to bind to specific cis-sequence elements and protect the transcript from 

nuclease degradation. 

Experimental studies have proven that the 5‟untranslated region of Chlamydomonas rbcL 

mRNA plays a key role in the regulation of rbcL transcript stability. Changing nucleotides in 

the 5‟UTR renders rbcL transcripts unstable, and it is thought that sequence elements within 

the transcripts recruit and bind proteins that functions as trans-acting factors. 

In this project we cloned a protein (RB60) that is thought to have RNA-binding capabilities to 

Chlamydomonas rbcL 5‟UTR. The protein was cloned into a transformation vector and 

introduced into E.coli.  

UV cross-linking experiments showed that there is no conclusive evidence that RB60 can 

bind to Chlamydomonas rbcL 5‟UTR. High concentration of RB60 protein yielded low 

affinity binding to rbcL 5‟UTR sequences in vitro. Control experiments with E.coli extract 

without RB60 construct identified a bacterial protein that has high affinity for 5‟UTR 

sequences in vitro. 
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1 Introduction 

1.1 Chlamydomonas reinhardtii 

1.1.1 Chlamydomonas reinhardtii as a model organism 

Chlamydomonas reinhardtii is a species of eukaryotic unicellular green alga taxonomically 

located under the genus of Chlamydomonas. They are characterised by their two anterior 

flagella they use for motility as well as having a chloroplast that encompasses the 

photosynthetic apparatus. Chlamydomonas cells have in addition an “eyespot” that senses 

light and contributes to phototaxis (Figure 1-1). The presence of a pyrenoid as a centre for 

carbon dioxide fixation is essential for photosynthetic activity. The algae averages about 

10µm in diameter and are frequently found in fresh water and damp soil. The laboratory 

strains of Chlamydomonas reinhardtii used for research (from now on Chlamydomonas) are 

isolates from 1945 that have been collected near Amerst, Massachusetts [1].  

There are several advantages to using Chlamydomonas as a model organism. It has the ability 

to make its photosynthetic function dispensable by growing in the dark on organic carbon 

sources (i.e. acetate). It can grow photoautotrophically (light with CO
2

as carbon source), 

mixotrophically (light with acetate) or heterotrophically (dark with acetate) [2]. Mutants that 

are blocked in photosynthesis are viable if acetate is provided making them ideal candidates 

to study the photosynthetic machinery [1].  In addition there is the possibility to synchronize 

cell division cycles by subjecting the cells to alternate light and dark cycles. Like other 

photosynthetic eukaryotes, Chlamydomonas contains three autonomous genomes: nucleus, 

chloroplast and mitochondria. Mutations in each of these genomes can be readily 

distinguished in crosses. Haploid cells exist either as mating-type (+) or mating-type (-), while 

vegetative cells develop into gametes upon starvation and blue-light illumination (Figure 1-2) 

[2]. In addition there is the possibility to control the sexual life cycle through nitrogen 

starvation. The mating types of the Chlamydomonas cells are determined by genes that are 

expressed by the MT-locus that is initiated when nitrogen levels drop in the environment. The 

fertilization process produces a binucleate zygote that expresses zygote-specific genes that 

create a specific cell wall that makes the zygote more resistant to adverse conditions. An 

improved condition initiates the dormant zygote to undergo meiosis and release four haploid 



vegetative cells [3] .  Nuclear genes segregate according to Mendelian rules, while chloroplast 

and mitochondrial genes are subjugated to uniparental inheritance to progeny from mating-

type (+) and mating-type (-) parent, respectively [4].  

Several other important factors contribute to Chlamydomonas as a model organism is that it is 

easy to maintain and propagate under laboratory conditions requiring a simple medium of 

inorganic salts to grow. It has a well-defined genetics having its three genomes sequenced and 

so far being the only organism in which transformation techniques have been developed for 

all three genomes (nucleus, chloroplast and mitochondria) [5]. It has a short generation time 

(approx.7- 8 hours) and can grow on a petri dish making it easy to isolate mutants. 

Transformation of the nucleus and chloroplast are easily performed allowing for site-directed 

mutagenesis to both genomes [6]. Chlamydomonas has also several information rich 

databases dedicated to its genomic and organism delineation. There is an ongoing process in 

integrating these databases together to provide robust data retrieval and holistic information 

channel for the benefit of research communities dedicated to using Chlamydomonas as a 

research model organism [7, 8].  

  

Figure 1-1: A schematic drawing of a Chlamydomonas cell. The chloroplast takes up almost half of the cell. 

The anterior flagella are rooted to the basal body of the cell (Merchant et al, 2007, ref nr. 9). 
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Evolutionary significance 

Chlamydomonas as part of the Chlorophyta division that diverged from land plants over a 

billion years ago and together they constitute the green plant lineage. Many of the 

Chlamydomonas genes can be traced to an ancestral green plant and they share many genes 

with the angiosperms, especially those included in photosynthesis [9]. Molecular phylogeny 

studies of Chlamydomonas reinhardtii indicate that it shared a common ancestor with 

V.carteri, a multicellular green flagellate, rather than the hundreds of other Chlamydomonas 

species. This provides a unique insight into the development of multicellular eukaryotes, 

leaving scientist to hypothesize a twelve-step evolutionary program for the transition from 

unicellular to multicellular organisms [10].  

1.1.2 Life Cycle of Chlamydomonas 

 

Figure 1-2: Life cycle of Chlamydomonas reinhardtii. Haploid vegetative (V) cells of two mating types (mt+ 

and mt−) divide mitotically. When exogenous nitrogen becomes limiting, they differentiate into gametes (G+ and 

G−), expressing mating type-specific gametic traits. In the laboratory, zygotes subjected to 5 days of dormancy 

in the dark and returned to light in N-containing media undergo meiosis to release four haploid meiotic products 

that resume vegetative growth. Occasional QFCs forego the meiotic pathway and instead resume vegetative 

growth as +/− vegetative diploids (VD) (Goodenough et al, 2007, ref nr. 3). 

 

Chlamydomonas has provided important information on flagella function, cell-cell 

recognition, photosynthesis and secretion. Many of the genes identified have proven to have 

homologs in land plant as well as animals, enabling a greater understanding of fundamental 

biological processes [11]. 



1.2 The Chloroplast 

1.2.1 The chloroplast – structure and function 

Chloroplasts along with mitochondria are essential organelles that are a part of the eukaryotic 

cell. The former belong to the organelle group called plastids and are found in land plants, 

algae and some protists. Chloroplasts are specialized plastids that are responsible for 

photosynthesis. They are observed as flat discs that range from 2 - 10µm in diameter, 

contained by an inner and outer membrane. The outer membrane is permeable to molecules, 

while the inner membrane contains many integral membrane proteins that regulate the 

passage of small molecules in and out of the chloroplast. The material inside the chloroplast is 

called the stroma and contains one or more chloroplast DNA molecules. It also has grana 

(singular: granum) which are stacks of thylakoids. Photosynthesis occurs within the 

membrane of these sub-organelles (Figure 1-3).  

Plastids of green alga evolved from a single primary endosymbiotic event where a free-living 

cyanobacteria was engulfed by a larger eukaryotic host. In four billion years this evolutionary 

event has only happened six times – highlighting its importance in evolutionary context [12]. 

The double membrane of these plastids can be viewed as evolutionary traces as they are 

derived from their ancestral prokaryote. Most of the organelle genes have been lost or 

transferred to the nucleus, and most of the chloroplast proteins are now encoded by the 

nucleus and exported into the chloroplast. Thus they contain much less DNA than their 

closest prokaryotic relatives. This loss of DNA can be attributed to the redistribution of 

genetic material between the nucleus, mitochondria and chloroplast [13]. The transfer of 

genetic material coincided with the development of the cells ability to return gene products to 

the organelles. Genes that are encoded by the nucleus that are destined to the plastids are 

tagged with an n-terminal signal that is recognized by receptors that are in the cytosol or 

bound to the outer membrane of the plastids. After recognition, the proteins are translocated 

across the plastid bi-layer through a translocation machinery before it is released [14]. 

The chloroplast is a semi-autonomous organelle that has the capacity to replicate and 

transcribe its own genome as well as to carry out protein synthesis. A core set of proteins 

present in all chloroplast (and mitochondria) have remained in the organelle, a common 

feature among these genes are that they code for hydrophobic proteins that are involved in 
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energy generating processes. Some genes are thus retained in the chloroplast due to their 

hydrophobicity or they must be retained to control the regulation of their expression [13]. 

 

Figure 1-3: Structure of plant cell chloroplast.  Photosynthesis occurs within the thylakoids membrane. 

Illustration taken from http://micro.magnet.fsu.edu 

 

1.2.2 The chloroplast genome of Chlamydomonas  reinhardtii 

Chlamydomonas contains a single cup-shaped chloroplast DNA molecule that takes up nearly 

half of the cell volume. There are approx. 80 copies of the circular chloroplast DNA 

molecules in the chloroplast and they are organized into 5-10 DNA-protein complexes called 

nucleoids [2]. The complete sequencing of the Chlamydomonas chloroplast genome was done 

in August 2001. It revealed a circular genome of 203,395bp possessing two copies of inverted 

repeat sequences (IR) that are separated by two almost equally sized regions of ~81 kb and 

~78 kb (Figure 1-4). The plastome (chloroplast genome) contains 99 genes, including 5 rRNA 

genes, 17 ribosomal protein genes, 30 tRNA genes and 5 genes encoding the catalytic core of 

a RNA polymerase [15].   

http://micro.magnet.fsu.edu/


 

Figure 1-4: Chlamydomonas reinhardtii chloroplast genome. Genes that have been disrupted are highlighted 

(Grossman et al. 2003, ref nr. 7).  
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The Chlamydomonas chloroplast genome shows some interesting and unique features 

compared to chloroplast genomes of land plant. High frequencies of short dispersed repeats 

(SDR) are located throughout the genome separated by the location of the genes. An 

estimated 19,500 SDRs are present in C.reinhardtii plastome which constitutes about 5% of 

the plastome. The function of the SDRs are largely unknown, but studies have shown that 

they play a role in the formation of stem loop structures in 3‟end mRNA transcripts, adding a 

layer of flexibility in determining mRNA termini [16]. In addition there is an atypical 

organization of the genes encoding for RNA polymerase. An unusual gene tscA encodes an 

RNA that is involved in the trans-splicing process of psaA mRNA [17]. Experimental data 

shows that Chlamydomonas chloroplast genome exists both as circular and linear molecules 

[7].  

1.2.3 Uniparental inheritance 

The uniparental inheritance of the Chlamydomonas chloroplast genome from mt+ gamete was 

first described more than 50 years ago (Sager 1954). The first molecular evidence of reduction 

of mt- chloroplast DNA was done in 1980 [18]. The discovery of selective degradation of mt- 

chloroplast DNA provided evidence that this was an active process and has led to the 

stipulation of a „destroyer-protector model‟ for the digestion of mt- chloroplast DNA. There 

are two distinct events to this model that explain the uniparental inheritance phenomenon. 

First is the „protection‟ of mt+ chloroplast DNA and a „destruction‟ of mt- chloroplast DNA 

during zygote development[19, 20]. This is supported by the detection of a nuclease that is 

imported into mt- gametes and degrades the chloroplast DNA [21]. Active digestion of male 

organelle DNA is observed in many species also animals, indicating that this is a universal 

mechanism among eukaryotes [22].  

  



1.2.4 Photosynthesis and RuBisCO 

Photosynthesis is the biological process in which carbon dioxide is transformed into chemical 

energy in the form of usable carbohydrates by using light energy and water. This biological 

reaction is the source of the O2 we breathe and the carbohydrates all living organism depend 

on, thus making it the most important biological reaction on earth. Photosynthesis can be 

divided into two parts. 

The Light reaction (light-dependent reaction) occurs within the chlorophyll where proteins 

that are organized in photosynthetic reaction centers get excited by light energy. There are 

two major photosynthetic reaction centers that contribute to the excitation of electrons – 

photosystem I and photosystem II. The excited electrons (e


) are used in the electron 

transport chain to provide e


 to electron acceptors; this contributes to the reduction of 

NADP+ to NADPH, as well as converting ADP to ATP (Figure 1-4). 

The dark reaction (also called Calvin Cycle or light-independent reaction) is where the 

carbon dioxide is converted to sugar, first in the form of 3-phosphoglycerate. The first step in 

photosynthetic carbon dioxide fixation is done by the enzyme RuBisCO (ribulose 1, 5-

biphosphate carboxylase oxygenase) by capturing carbon dioxide from the atmosphere. 

RuBisCO is the most abundant protein in the world. It consists of eight large subunits that are 

encoded by the chloroplast genome, while the eight small subunits are encoded by nuclear rbc 

S-genes and are synthesized in the cytoplasm before they are imported into the stroma where 

they form complexes. The assembly of  the holoenzyme is facilitated by the chloroplast 

chaperones cpn60 and cpn10 [23, 24].   
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Figure 1-5: Light reactions and Calvin Cycle of photosynthesis. ATP and NADPH produced in the light 

reactions are used in the Calvin Cycle. Water and carbon dioxide are used as substrates, while carbohydrate 

and oxygen are released as products. Illustration taken from: http://bglarochelle.pbworks.com/photosynthesis 

 

The catalytic limitation of Rubisco limits the efficiency of photosynthesis; research has been 

dedicated to increasing its activity for agricultural benefits [25]. There is also a growing 

interest in Rubisco as a tool to increase uptake of atmospheric carbon dioxide to combat 

climate change, as well as providing emission-free energy by using Chlamydomonas as 

biofuel producers [26].  

  

http://bglarochelle.pbworks.com/photosynthesis


1.3 Chloroplast gene expression 

Due to the semi-autonomous nature of the chloroplast, most plastid proteins are encoded by 

the nuclear genome. The chloroplast proteins are first encoded as precursor proteins 

containing an N-terminal signal. The proteins are then imported into the chloroplast where 

they are cleaved and together with chloroplast-encoded proteins they form functional  

multiprotein complexes that govern and control the chloroplast gene expression [27]. 

Retrograde signaling („plastid signals‟) from the chloroplast to the nucleus also plays a key 

role in the gene expression of nuclear-encoded plastid proteins. This bilateral communication 

between the chloroplast and the nucleus is important for optimizing chloroplast gene 

expression to changing environmental and metabolic states [28]. 

1.3.1 Chloroplast transcription 

Chloroplast transcription is facilitated by two distinct RNA polymerases that are responsible 

for the transcription of chloroplast genes. They are called NEP (nuclear-encoded plastid RNA 

polymerase) and PEP (plastid-encoded plastid RNA polymerase). They recognize different set 

of promoters. 

NEP is a single-peptide RNA polymerase that resembles the polymerase of the T3/T7 

bacteriophage. Transcriptional activity has been detected in plants lacking PEP as well as in 

plants treated with PEP-specific inhibitors. The 10-nucleotide consensus sequence located 

upstream of transcription initiation sites are similar to T3/T7 phage-type promoters. NEP 

primarily transcribe plastid housekeeping genes [29, 30]. NEP has so far not been found in 

Chlamydomonas, suggesting that it only exists in higher plants. Experiments with addition of 

rimfampicin (which is an inhibitor for PEP through binding its β subunit) has shown that 

almost all transcription is terminated [31]. PEP is thus far the only RNA polymerase detected 

to be active in Chlamydomonas chloroplast genome. 

PEP is a multi-subunit RNA polymerase complex that is encoded in the chloroplast by four 

genes rpoA,rpoB,rpoC1 and rpoC2, they code respectively for the peptide subunits (α,β,β
'
and 

β
''
) making up the catalytic core of the enzyme. Homologs are found among the eubacterial 

RNA polymerase genes (rpoA,rpoB,rpoC) which make up the core of the PEP RNA 

polymerase similar in composition to the RNA polymerase of eubacteria. The latter gene 

rpoC is spliced into two separate genes in photosynthetic plants and algae [32]. In 
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Chlamydomonas the rpoC1 gene is split in two parts. Experiments demonstrating the lack of a 

single transcript as well as evidence of two linked coding regions confirmed this. These genes 

have thus been assigned rpoC1a and rpoC1b [15].  

a) Plastid promoters 

The nuclear encoded  polymerase (NEP) recognizes promoters that share similarities with 

mitochondrial promoters in that they include a sequence motif 5´-YRTA-3´ near the 

transcription start site [30]. While the plastid encoded polymerase (PEP) initiates transcription 

from promoters resembling bacterial σ
70

promoters, consisting of -35 (TTGACA) and -10 

(TATAAT) consensus elements upstream the transcription start sites that resembles bacterial 

consensus sequences [29, 33].  

b) Sigma factors 

The RNA polymerase in bacteria is dependent on the nuclear-encoded promoter specificity 

factor sigma which is part of the RNA holoenzyme, for increase in promoter selectivity, 

specificity and the ability to initiate accurate transcription initiation. The sequence-specific 

binding of the holoenzyme occurs through contact between conserved amino acids in the 

sigma factor and specific nucleotides in the promoter sequence [34]. Based on this bacterial 

model, there has been extensive search for similar sigma-like factors (SLFs) in chloroplasts 

and several have been found in plants and algae. Higher plants express multiple SLFs and 

there is growing evidence supporting that this is in response to tissue-specific, light dependent 

and developmental signals. Providing an avenue for the nucleus to control expression of 

plastid genes under changing conditions [32].  

 In the case of Chlamydomonas there has only been discovered a single SLF. Two related 

studies provided evidence that Chlamydomonas contains a nuclear gene named RpoD, which 

encodes for an 80 KD protein. The protein has the conserved motifs of bacterial sigma-70 

factors, as well as an N-terminal signal sequence [35]. Studies have confirmed that 

Chlamydomonas RpoD transcription exhibits circadian regulation, meaning that mRNA levels 

of RpoD levels fluctuates in light-dark cycling cells [36]. Being the sole sigma factor in 

Chlamydomonas, there is strong an indication that RpoD is the principal PEP transcription 

factor in Chlamydomonas chloroplast [36]. 



 

Figure 1-6:  Motifs of the Chlamydomonas RpoD sigma factor protein. (Carter et al. 2004, ref nr. 35) 

Transcriptional regulation through the circadian clock 

Circadian rhythms are biological rhythms that occur with a period of 24 h under constant 

conditions of light and temperature [37]. Several studies have identified a correlated link 

between chloroplast and nuclear encoded gene‟s mRNA abundance over a circadian cycle. 

Numerous circadian rhythms of chloroplast-related mRNAs have been described in 

Chlamydomonas [38]. One group of genes called ROC (rhythm of chloroplast), encode 

several transcriptional regulators. One of them, ROC86 (XRN1) codes for a 5‟-3‟ RNA 

exonuclease, suggesting a circadian role on the level of RNA turnover [39]. 

The RNA binding protein CHLAMY 1 recognizes specific UG-repeats that are present in 3‟-

untranslated regions (UTRs) of several mRNAs and its binding activity is regulated by the 

circadian clock. Experiments with introduction of UG-repeats within 3-UTRs of reporter 

genes have triggered circadian rhythms [37]. CHLAMY 1 has strong affinity to two proteins 

that are involved in metabolism of CO
2

, one of them being the small subunit of rubisco 

(rbcs) [38].  

1.3.2 Post-transcriptional processing 

The accumulation of plastid mRNA transcripts changes during chloroplast development and 

differentiation while the relative transcription rate is stable. The independence of transcription 

activity and mRNA accumulation suggests that mechanisms exist that can fluctuate the 

stability of mRNA transcripts. Transcriptional regulation plays a minor role in modulation of 

plastid gene expression indicating that this is mostly controlled at the post-transcriptional 

level [40]. Experiments with light-induced chloroplast development in different plant species 
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revealed that transcription activity and RNA accumulation act independently for most of the 

genes studied. Providing support for the hypothesis that post-transcriptional control of plastid 

gene expression is the main mechanism by which differential accumulation of most mRNA 

transcript occur [41]. Post-transcriptional mechanisms consist of RNA editing, intercistronic 

processing, intron splicing, RNA processing of terminal ends (5‟ and 3‟end) and RNA 

stability. Nucleus-encoded factors participate in all steps of chloroplast gene expression, 

including in post-transcriptional processes. The expression of small subunits of chloroplast 

genes as well as functioning as regulatory factors that modulate chloroplast gene expression 

are needed in response to environmental and developmental signals [42]. 

RNA editing 

RNA editing is found in all major groups of land plants and consist of nucleotide conversion 

of cytosine (C) to uracil (U) and to a lesser extent from U to C [43]. RNA editing events are 

essential for expressing functional proteins through modifying the amino acid sequence, or 

creating a translational start codon and stop codon. In tobacco, the functional psbL mRNA 

coding for a subunit of photosystem II is created by editing an ACG codon to create an AUG 

translational initiation codon. The most variable editing sites are usually in the third-codon 

position where editing does not alter the corresponding amino acid [44]. RNA editing is 

required for correct gene expression, proteins translated from edited transcripts are different 

from the ones that are deduced from the gene sequences [45]. RNA editing does not occur in 

Chlamydomonas. This was demonstrated by introducing an altered codon in Chlamydomonas 

that is edited in maize and tobacco, following transformation no editing was observed and the 

alga became non-photosyntethic  [46]. There has also been suggested that RNA editing plays 

a partial role in transcriptional regulation of PEP polymerase through editing of a key residue 

in rpoA  [47]. 

No consensus sequence has been identified near nucleotides destined for editing. However, 

certain proximal cis-elements are required for editing.  In the case of psbL mRNA it was 

discovered that editing occurred within a 22 nucleotide fragment around the edited cytosine 

both upstream and downstream (-16 to +5) [48]. While studies on ndhb transcripts showed 

that vital sequences were located -12 and -2 positions from editing site [49]. In tobacco there 

are 34 nucleotides that undergo editing to U. Even though there is no common consensus 



region for the editing sites, there is a possibility to cluster the recognition regions into groups 

that share common short sequences [50].  

The cis-elements are binding sites for nuclear encoded trans-factor proteins. The first 

chloroplast-editing trans-factor to be identified was found in Arabidopsis mutants defective in 

NAD(P)H dehydrogenase [51]. These site-specific factors appear to be in limiting quantities, 

because high-level expression of transcripts carrying editing sites result in reduced editing of 

the endogenous gene that carries the same editing targets [52]. 

Intercistronic processing 

Chloroplast genes are often organized into operons in higher plants and subsequently 

transcribed into polycistronic primary transcripts that contain the information for several 

proteins. They are often processed into monocistronic transcript units (mRNA) that code for a 

single protein. The enzymes that are involved are considered to be both endo- and 

exonucleases [53]. An example is the psbB operon of spinach which is transcribed as a 

polycistronic unit and is translated to more than a dozen different proteins [54].  

In Chlamydomonas very few chloroplast genes are organized into operons, one of them is the 

petA-petD operon that is transcribed to a dicistronic mRNA or a petD monocistronic mRNA. 

Studies with deletions of the 5‟ region in petD identified a sequence that is essential in 

determining whether petD is transcribed as a monocistronic unit or with a petA-petD 

dicistronic unit [55]. Mutants with defective intercistronic processing machinery often lead to 

translational blockage [53]. 

Intron splicing 

Chloroplast genes are interrupted by noncoding intervening sequences called introns. The 

chloroplast introns of plants and algae are divided into two main subclasses, group І and 

group II, which are defined by their characteristic secondary structures and splicing 

mechanisms [56]. The first chloroplast gene containing introns was described in 

Chlamydomonas (Rochaix and Maloe, 1978). Following the complete sequencing of the 

Chlamydomonas chloroplast genome, five group I introns have been identified in 

Chlamydomonas chloroplasts. One is located within the rrnL gene that codes for the 

chloroplast 23S rRNA, while the other four are located within the psbA gene that codes for an 
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essential protein (D1) of photosystem II. Splicing of psbA increases when cells are transferred 

from dark to light, indicating a regulatory mechanism of psbA splicing [57]. 

 All of the group I introns in Chlamydomonas self-splice in vitro, meaning that the precursor 

RNAs are also ribozymes [58].  

Chlamydomonas also contains two group II introns, these are located within the psaA gene 

and are spliced in trans, meaning that the mature psaA transcripts consists of exons joined 

together from three different precursor mRNA transcripts [58]. The process of compiling a 

mature psaA mRNA requires at least 14 nuclear encoded factors as well as one chloroplast-

encoded co-factor (tscA RNA) [56]. This highlights the role nuclear-encoded splicing factors 

play in complex splicing mechanisms in chloroplasts. Several of these nuclear genes have 

been identified [59]. 

Processing of mRNA terminal ends (5’ end and 3’ end)   

RNA processing is a general term to describe modifications of a synthesized RNA molecule. 

The transcriptome in chloroplasts contains primary and processed transcripts. In plants and 

Chlamydomonas, the longer transcripts are primary, while the shorter transcripts are cleavage 

products of the former. There are no current examples of primary transcripts in 

Chlamydomonas chloroplasts, indicating that most transcripts undergo processing in this 

species [60]. The latter go through forms of processing to form mature 5´ and 3´ends. 

Ribonucleases are the enzymes that carry out RNA maturation and degradation. These 

processes are mostly carried out by two types of ribonucleases, exoribonucleases that remove 

nucleotides either from 5‟ends or 3‟ends, and endoribonucleases that cleave transcripts 

internally. Endonuclease cleavage products are sometimes substrates for exonucleases [61]. 

There are two possible mechanisms that may lead to the formation of mature 5‟ends as a 

result of RNA processing. A 5´  3´ exonucleolytic pathway or a site-specific cleavage by an 

endoribonuclease [60]. 5‟end processing of psbA mRNA includes removal of nucleotides and 

a stem loop structure indicating that this has a role in ribosome association and subsequent 

translation [62].  

Chloroplast mRNAs undergo 3´end processing because transcription termination is inefficient 

and typically continues beyond the 3´end of the gene. Chloroplast genes are like bacterial 

genes flanked at their 3´end by inverted repeats (IR) that can form stem loop structures. The 



3´end are located downstream of the inverted repeats. In the case of atpB mRNA 3´end 

formation involves a two-step process, an endonucleolytic cleavage followed by a 

exonuclease trimming [63]. Experiments indicate that stem-loop structures do not serve as 

terminators, but play a role in RNA 3´end processing [64]. Disruption of IR in vivo leads to 

unstable transcripts, due to exposing them to exonuclease activity [16].  

1.3.3 mRNA degradation and stability 

The abundance of RNA at any given time is determined by its synthesis and degradation. 

RNA stability is expressed in units of half-life, meaning the amount of time (hours or 

minutes) that is required for half of the initial amount of the RNA being measured to 

disappear [53]. A distinct feature of chloroplasts compared to prokaryotes is their long RNA 

half-lives, which can range from 30 minutes to several days. 

A general hypothesis describes chloroplast RNA degradation as a three step process: 

1. Endonucleolytic cleavage producing two RNA molecules, a distal and proximal 

fragment with the latter having removed the protective 3´ IR. This produces structures 

for the second step by eliminating secondary structures and RNA-binding proteins. 

2. The proximal fragment is efficiently polyadenylated, adding a tail of several hundred 

nucleotides. The distal fragments are subjected to further rounds of endonucleolytic 

cleavage, creating additional fragments that would undergo polyadenylation. 

3. Polyadenylated RNA fragments are rapidly degraded by polynucleotide 

phosphorylase (PNPase) which has a high affinity for poly(A) sequences or other 

exonucleases [65]. 

In vitro studies of RNAs with stem loop structure were found to be poorly polyadenylated, so 

an alternative mechanism for the degradation of the distal fragment can be through 5´ 3´ 

exonuclease activity [53]. Depletion of PNPase in Chlamydomonas left few transcripts with 

poly(A) tails in chloroplast transcripts, indicating that PNPase is the major enzyme 

responsible for synthesis of A-rich tails for this species [66]. Experiments where chloroplasts 

were treated with the polyadenylation inhibitor cordycepin, showed that exonucleatic 

degradation was inhibited. Leading to accumulation of endonucleolytic cleaved products, 
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demonstrating that polyadenylation is an important post-transcriptional process in targeting 

transcripts for degradation [67]. 

Studies on chloroplast mutants have revealed that both 5´-untranslated and 3´-untranslated 

regions (UTRs) of chloroplast mRNAs contain elements required for the stability of the 

transcripts [53].  

The role of 3´- untranslated regions     

Deletion of stem-loop structures located within the 3´ UTRs of atpB and psaB mRNAs lead to 

significant reduction in the accumulation of these transcripts [68, 69]. Deletion of these 

structures in atpB mRNA lead to significant reduced levels compared to wild-type levels 

without affecting the transcription rate of the gene. Indicating that the inverted repeats in 

proximity to the 3´end play a key role in the stability of atpB mRNA [69]. However, the 3´-

unstranslated region of rbcL and psaB and their associated inverted repeats showed that their 

removal does not affect RNA decay and therefore play no major role in RNA stabilization 

[70]. Recent studies of the two inverted repeats close to the 3´end of rbcL showed that 

deletion of either IR showed no change in their accumulation rate, but deletion of both 

resulted in loss of rbcL mRNA [71]. This indicates that the distinct features of the 3´end of 

each chloroplast transcript and their formation determine their significance in the stability of 

the transcript. Functional substitutions of different RNA elements have the capability to 

protect RNA regions from 3´5´ exonucleolytic attack in Chlamydomonas chloroplasts [72].  

The role of 5´- untranslated regions 

The 5´ ends of transcripts do not generally feature stem-loops, but are rather protected by 

specific proteins. The 5´ UTRs of several chloroplast mRNAs have been shown to contain 

RNA cis-elements that are required for translation. In Chlamydomonas, the protein MCA1 

protects petA mRNA by binding its 5´ end and protecting it from 5´ 3´ degradation. The 

abundance of the protein seems to play a function in regulating the accumulation of petA 

mRNA [73]. Experiments with chimeric chloroplast genes containing different 5´ and 3´ 

UTRs indicate that the accumulation of chimeric mRNA was largely independent of the 3´-

UTR, suggesting that mRNA accumulation of many Chlamydomonas chloroplast transcripts 

is mainly determined by the promoter and 5´ UTR [74]. Stability determinants for mRNAs of 

psbB, psbD and petD have been examined, and for these three chloroplast genes there have 



been found nuclear-encoded proteins that promotes mRNA stability by binding to cis-

elements in proximity to the 5´UTR. This has been confirmed for psbD, where deletions or 

changes of a few nucleotides at the gene‟s 5´ UTR can destabilize the transcript. The same 

was identified for petD where mutations of two to nine nucleotides downstream of the 5´ end 

caused RNA instability (Figure 1-7) [75, 76].  

 

Figure 1-7: Example of sequences in 5´UTRs of transcripts of Chlamydomonas chloroplast genes that have been 

identified to be important for mRNA stability (I.L. Anthonisen et al, 2001 ref nr.92) 

 

The three regulatory sequences in the 5´ UTR of chloroplast petD mRNA seems to be 

conserved among the different Chlamydomonas species, even if the overall petD 5´UTR are 

quite different. Indicating that orthologs to regulatory sequences in the 5´UTR along with 

their trans-acting factors are highly specific among the Chlamydomonas species [77]. 

1.4 RNA-binding proteins as trans-acting factors 

Several RNA binding proteins (RBPs) play an essential role in chloroplast gene expression. 

The interaction between RNA binding proteins and the corresponding RNA elements found 

within mRNA have been shown to be an essential part of mRNA stability and translational 

regulation [78]. The majority of RNA binding proteins analysed to date contain β sheets and α 

helices that together form RNA recognition motifs (RRM) that bind to target RNA [78]. The 

5´ UTR of PsbA mRNA binds four nuclear-encoded proteins. In vivo experiments reveal that 

the 5´ UTR contains specific RNA sequences, including a stem-loop that function as binding 

sites for the proteins. Three nuclear-encoded genes have been cloned from Chlamydomonas 

that encode proteins mediating their function through chloroplast 5´ UTRs. They have been 

found in high-molecular weight complexes also containing RNA [79, 80]. RNA affinity 
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experiments of the psbA gene expression in Chlamydomonas revealed that the psbA 5´ UTR 

was interacting with a protein complex consisting of four subunits (RB47, RB60, RB55 and 

RB38). Through UV cross-linking assays it was identified that only the RB47 had direct 

contact with the psbA mRNA. The genes were cloned for the RB47 and RB60, revealing that 

they encode for a poly(A)-binding protein and a protein disulfide isomerase, respectively [81]. 

In vitro studies indicate that phosphorylation and redox reactions modulate the protein-

binding to the psbA 5´UTR through RB47 and/or RB60 [82, 83]. A similar mechanism has 

been reported in Arabidopsis [84]. Comprehensive experiments were also performed on the 

chloroplast gene psbD, revealing several cis-acting elements required for stabilization or 

translation of the psbD mRNA. Deletion mutations on the psbD 5´ UTR resulted in the 

inability of a 40kD protein (RB40) to bind in vitro [75]. 

Nucleus-encoded proteins can also bind to 3‟-untranslated regions as trans-acting factors and 

several studies have confirmed this in Chlamydomonas. The nucleus-encoded protein MCD4 

participates in the degradation of nucleotides in proximity to a cleaved pre-mRNA, possibly 

by facilitating the endonucleolytic cleavage step in 3´end maturation of atpB mRNA [85]. 

The pentatricopeptide repeat proteins (PPR) are known as sequence-specific RNA-interacting 

protein, participating in many RNA processes, including RNA stabilization and modification 

[86]. They contain consensus sequences of tandem repeats consisting of conserved 31-36 

amino-acid motif that is related to the tetratricopeptide repeats (TPR). This consensus 

sequence occurs in tandem repeats 2-26 motifs per polypeptide. Their structural variation 

coincide with their function in RNA binding, even though the details of the protein-RNA 

binding remain vague [87]. In Chlamydomonas the PPR family consists so far of a dozen 

members, one of them being required for chloroplast mRNA stability [73]. Nac2 and Mbb1 

are nucleus-encoded TPR-like proteins contributing to the protection, protein recruitment and 

stability of their target mRNAs [80, 88].  

 

 

 

 



1.5 The 5’end of the Chlamydomonas rbcL gene 

The first indications of the role of chloroplast RNA 5´ regions were obtained through studies 

of Chlamydomonas rbcL gene [89]. In tobacco, 5´ UTR-controlled regulation of rbcL 

turnover has been reported, where lower rates of transcription is compensated by greater 

mRNA stability [90]. The rbcL 5´ UTR of Chlamydomonas is compromised of 92 nucleotides 

and is predicted to fold into two stem-loop structures. The first stem-loop closest to the 5´end 

consists of 41 nucleotides, while the other is smaller at 21 nucleotides (Figure 1-7). The 

promoter of the rbcL gene consists of a canonical -10nt sequence (TATAATAT), in addition 

a transcription-enhancing element downstream is able to increase transcription of the rbcL 

gene about 10-fold [91]. 

 In vivo studies have shown that rbcL 3´ UTR does not contribute when it comes to the 

stability of rbcL transcripts, but rather functions as RNA processing or transcription 

termination site. The degradation process of chimeric genes have shown to be independent of 

their respective rbcL 3´ UTR [70]. The stability of Chlamydomonas rbcL mRNA has been 

shown to be mainly attributed to sequences at the 5´UTR [89].   

 

Figure 1-8: Predicted RNA secondary structure of the first 69 nucleotides of the Chlamydomonas rbcL 

mRNA. Nucleotides that comprise the cis-acting stability element (+38 to +47) are boxed. (Suay et al.2005, ref 

nr. 94) 

Studies with reporter gene constructs with rbcL 5´ regions of Chlamydomonas identified a 10-

nt sequence (5´-AUUUCCGGAC-3´) located +38 to +47 relative to transcription start site, 

that is crucial for transcript longevity. The -10nt RNA stabilizing sequence element 
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participates in the short single-stranded region between the two stem-loops and extends by a 

few nucleotides on each side into the bottom of both stem structures. Replacement of single 

nucleotides within this sequence led to a reduction of transcripts abundance of more than 95% 

[92]. Chimeric rbcL:GUS (β-glucoronidase) transcripts containing changes in the beginning 

of the 5´UTR that affect RNA secondary structure are estimated to enhance transcript 

degradation 50-fold [93].  

Chloroplast transcript containing a stable 5´ stem-loop can be degraded rapidly, implying that 

a 5´ terminal stem-loop does not provide a structural hindrance for mRNA ribonucleases. 

Recent studies have shown that the role for the rbcL 5´- terminal stem-loop is to provide a 

stable RNA secondary structure, placing the crucial 10nt RNA stabilizing element in a 

specific conformation, consisting of a helical and single-stranded portion. The specific 

sequence and structure for the stability of rbcL transcripts suggests the involvement of a trans-

factor to this element [94]. 

The lack of sequence and structural consensus for cis-acting stabilizing elements of 

chloroplast mRNA indicate that the diversity of these elements function as target site for 

different trans-acting factors functioning in multi-protein complexes, the 5´UTR of psbA is an 

example of this [81].  

A recent study detected a novel PPR protein that binds to rbcL 5‟UTR in Chlamydomonas 

and Arabidopsis. MRL1 is a conserved nuclear-encoded pentatricopeptide repeat (PPR) 

protein that is required for the stabilization of rbcL mRNA in Chlamydomonas and 

Arabidopsis. A mutation of this gene does not affect rbcL transcription, but mrl mutants lack 

rbcL mRNA in Chlamydomonas indicating that its primary role is to stabilize rbcL mRNA 

through binding its 5´ UTR. MRL1 is predominantly located in a high molecular mass 

complex [95].   

Preliminary studies have identified a protein disulfide isomerase of 60kD that binds to 

Chlamydomonas psbA 5‟UTR. The psbA mRNA is thought to be regulated by redox signals, 

and there is evidence that RB60 functions as a redox-sensor subunit. In vitro experiments 

show that RB60 is imported into the Chlamydomonas chloroplast [96]. Biochemical studies 

have shown that RB60 is associated with another protein (RB47), contributing to the 

formation of disulfide bridges between cysteins [97].       



1.6 Aim of this study 

The aim of this project was to determine whether the protein RB60 binds to the 5´-

untranslated region of rbcL transcripts of Chlamydomonas. RB60 has been detected in multi-

protein complex that binds to the 5´ UTR psbA complexes as a disulfide isomerase. 

 First objective was to amplify the RB60 gene through PCR from and a different 

construct received from California, USA. 

  Second objective was to clone the RB60 PCR product into a vector containing an N-

terminal his-tag.  

 Third objective was to express the gene in E.coli, isolate the RB60 protein and purify 

it. 

 Fourth objective was to test the sensitivity of binding of anti-RB38 and anti-RB60 

received from GenScript by western blotting. To use them co-immunoprecipitation 

experiments. 

 Fifth objective was to test in vitro binding of isolated RB60 protein to rbcL 5´UTR 

sequences. 
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2 Material and methods 

2.1 Working with bacterial cells 

In order to minimize contamination when working with bacteria, instruments and solutions 

were sterilized by autoclaving for 20 min at 120 °C. 

The bacteria used in this work were competent bacteria cells of Escherichia coli (E.coli) TB1 

strain. E.coli has a long history as an experimental model because it can be easily manipulated 

and grown in laboratory settings. 

2.1.1 Preparation of competent bacterial cells and growth plates 

E.coli cells were made competent through CaCl 2 treatment [98]. 

Frozen competent cells were melted on ice prior to adding DNA. Exposure to heat shock 

(42°C, 90 seconds) followed by immediate cooling on ice was used for transformation 

procedure. Transformed cells were selected from ampicillin-containing LB plates. 

The bacteria were grown in Luria/Bertani (LB) medium (10g/L tryptone, 5 g/L yeast extract, 

10 g/L NaCl) and incubated with rotation or shaking at 37°C. E.coli cells were plated onto 

agar plates to obtain single colonies. Growth medium for LB plates consist of LB medium 

with 1.5% agar (15g). 

2.1.2 Preservation and growth of bacteria 

For long-storage of bacteria cultures, approx. 1.5ml of bacteria culture was stored in 1.5ml 

eppendorf tubes at -80 °C.  

Bacteria from a culture were grown on agar plates by streaking on agar surface with a sterile 

glass pin. Cells usually grow very much after overnight incubation (O.N) at 37°C and reach a 

stationary phase. Bacteria colonies from an agar plate were harvested by scraping with a 

sterile pipette tip on the surface of agar plates. The pipette tip was inoculated with 3 ml LB-

medium containing ampicillin in a 15mL sterile plastic tube. Cells were grown O.N. at 37°C 

with rotation. 



For large-scale growth, 1ml of cell culture was inoculated in a 100ml LB medium flask 

containing 100µl ampicillin (final concentration: 16mg/ml) and put on shaker for 2 hours. 

Absorbance was checked until an OD of around 0.5 could be measured by a 

spectrophotometer. Isopropyl β-D-1-thiogalactopyranoside (IPTG) was then added to induce 

protein expression. LB flask was then put back on shaker for another 6 hours. Cells were then 

harvested with two tubes and centrifuged for 5min, 5000rpm (Beckman Coulter, Avanti J-25). 

Supernatant was discarded, while pellet was resuspended completely with buffer A (see 

appendix II). Cells were centrifuged again and spun down. Supernatant discarded again and 

pellet was resuspended again in 1ml buffer A. Cell solution was transferred to two 1.5ml 

eppendorf tubes before frozen and stored at -80°C. 

2.1.3 Plasmid isolation from E.coli 

Miniprep  

Small scale plasmid isolation of DNA from E.coli cells was performed according to protocol 

[98]. Transformed E.coli cells were grown overnight in ampicillin-containing (60µg/ml) LB 

medium prior to isolation. Plasmid isolation from 1.5ml cell culture yields approx. 1 - 3µg 

DNA. 

Maxiprep 

For large-scale plasmid isolation of DNA, maxi-prep procedure was used. A CsCl density 

gradient centrifugation was performed according to protocol [98]. Transformed E.coli cells 

were grown overnight in ampicillin-containing (60µg/ml) LB medium prior to isolation. 

Plasmid isolation from 100ml cell culture yields approx. 150 – 400 µg DNA. 

2.1.4 Cell disruption by ultrasound 

Frozen cell cultures were melted on ice (4°C) prior to ultra-sonication (Ultrasonic VCX). The 

homogenization of the cells is done through high frequency waves from the probe that 

disrupts the cells and releases the intracellular components. The probe should be submerged 

in the solution, but not be in contact with the tube wall. 5 seconds of high frequency burst is 

accompanied by a 10 sec break for a total of 1 min. Fractionation of the cells is done through 
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cold centrifugation (4°C) for 10 min at 13.2 rpm (Beckman Coulter, Avanti J-25). 

Supernatants are transferred to new tubes. 

2.2 DNA methods 

2.2.1 Agarose gel electrophoresis 

This method is used to separate DNA molecules according to their size
1
. A gel of 0.7% or 1% 

containing ethidium bromide in TAE buffer was used to give a good separation of DNA 

molecules between 0.5 and 10 kb. A 1kb standard ladder was used to estimate the size of the 

DNA fragments.  

2.2.2 Isolation of DNA fragments by gel electrophoresis 

DNA fragments from gel electrophoresis (see section 2.2.1) were extracted by cutting out a 

piece of the gel right below the DNA fragments. A dialysis-membrane was inserted into the 

well and filled with TAE buffer. This ensured that a barrier was created for the movement of 

DNA fragments. Electrophoresis was resumed and the DNA fragments moved into the well 

and were stopped by the dialysis-membrane, creating a sharp DNA band that can be 

visualized under mild UV-light. The DNA fragments in the TAE buffer can be collected by a 

pipette and purified through phenol-chloroform extraction and precipitated by ethanol. 

2.2.3 PCR amplification of RB60 gene 

Polymerase chain reaction (PCR) is a technique used to amplify a specific region of a DNA 

strand. The method provides an opportunity to scale up miniscule amounts of starting 

material. 

The procedure consists of three main  steps: 

1. The denaturation step that is performed at a high temperature (~94°C) allows for the 

separation of complimentary DNA strands. 

                                                 
1
 From: http://www.methodbook.net/dna/agarogel.html 



2. The annealing step requires lowering of the temperature to 55-62°C, which gives the 

primers the opportunity to anneal to their complimentary sequences. The primers are 

designed to bracket the DNA region to be amplified. 

3. Primer extension is usually performed at 68-72°C, according to optimal temperature 

range for the polymerase. Extension time varies according to the length of PCR 

product of interest. 

We decided to use a construct (pET-RB60) containing our gene of interest (RB60) that had 

already been made in the lab as a template DNA for PCR amplification. This construct 

contained an incorrect RB60 gene inserted that was too large (containing additional 

nucleotides). The correct RB60 gene is approx. 1600bp
2
. 

Following primers (obtained from MWG Biotech AG) were used: 

Forward primer:  5´-CTAGGAGTACGTTTACGCCATGAAC-3´ 

Reverse primer: 5´-CGGATCACGCGCTGCCGGTGCT-3´ 

 

The forward primer contained an NcoI restriction site, while the reverse primer contained a 

HindIII restriction site.  The primers were 100% complementary with the RB60 sequence 

located within the vector. 

PCR product was checked on an agarose gel to verify if our RB60 gene had been amplified. 

10µl Sodium acetate and 200µl 96% EtOH was added to the PCR sample and precipitated 

ON.  

2.2.4 Restriction digestion of PCR product and vector 

The restriction enzymes NcoI and HindIII (New England Biolabs) were used for restriction 

cutting of PCR product and pEcoli-Cterm 6xHN expression vector (Clontech) prior to 

ligation. Restriction digestion is performed according to New England Biolab guidelines. 

                                                 
2
 Data obtained from PubMed, updated 18/9-10: 

http://www.ncbi.nlm.nih.gov/pubmed?Db=gene&term=%28rb60[gene]%29%20AND%20%28Chlamydomonas

%20reinhardtii[orgn]%29%20AND%20alive[prop]%20NOT%20newentry[gene]&sort=weight 
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After restriction digestion, both PCR product and vector are identified and collected by gel 

electrophoresis (see section 2.2.2). 

pEcoli expression vector is 5.7kb (see appendix I), while PCR product (RB60) is 1.6kb.  

2.2.5 Ligation reaction 

Approx. 1:3 ratio between vector and insert (PCR product) is needed to get the correct amount 

of DNA molecules in relation to each other. Following reagents were added in an eppendorf 

tube: 

Vector (pEcoli) 1.5µl (200ng) 

Insert (RB60) 2µl (120ng) 

Buffer 10X 1µl 

T4 DNA ligase 0.5µl 

PEG 2µl 

dH 2 0 3µl 

Total 10µl 

Prior to ligation, DNA fragments were heated to 45°C to facilitate melting of hydrogen bonds, 

avoiding that fragments ligate to themselves (re-ligation). Ligation reaction was set at 16°C 

for 3 hours, before being moved to room temperature for 30min.   

2.2.6 DNA quantification 

Dot spot method was used to estimate DNA concentrations [98].  

2.2.7 DNA sequencing  

Sequencing of RB60 gene cloned into the pEcoli-Cterm 6xHN expression vector was done by 

Sanger dideoxy method (MWG Biotech, Martinsried, Germany) to verify whether the gene 

was cloned correctly into the vector. 



2.3 Protein methods  

The construct (pEcoli-Cterm 6xHN_RB60) encodes the RB60 protein along with a histidine 

tag (6xHN). Immobilized metal ion chromatography (IMAC) exploits the interaction between 

side-chains of certain amino acids (in particular histidine) on proteins and chelated transition 

metal ions (i.e. Ni 2 ). Ni 2  is the preferred metal ion for purification of histidine-tagged 

proteins. The IMAC medium Ni Sepharose consists of beads of highly cross-linked agarose 

that have been charged with nickel (Ni 2 ) ions (GE Healthcare).         

2.3.1 Preparation of Ni-Sepharose column 

1. Gently shake the bottle containing Ni-Sepharose until medium is homogenous. 

2. Take out 400µl of slurry into an eppendorf tube. 

3. Centrifuge tube for 5min, 0.5 rpm. 

4. Discard supernatant carefully and add 1ml of distilled water (dH 2 0). 

5. Gently shake the tube to mix the solution well for approx. 3min. 

6. Repeat step 3 – 6 using buffer A instead, 1ml. 

7. Pipette out buffer (clear liquid) and add 200µl of buffer A again, mix well. 

8. Pour slurry into column. Let slurry solution get into column well (30min). 

9. Wash column with 1ml buffer A. 

10. After preparing Ni Sepharose column, cell solution after centrifugation (see section 

2.1.5.) was poured into the column. Prior to this 60µl was taken out to a new tube 

(„crude extract‟). 30µl SDS gel loading buffer was added. 

11. Load the rest of the cell solution to the Ni sepharose column. 

12. Let first few drops drip through (mainly buffer A). Collect 60µl of flow through 

(~3drops) in a new tube („flow through‟), add 30µl SDS gel loading buffer. 
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13. After flow through of supernatant is finished, add 3ml of buffer A into the column. 

Collect fractions in eppendorf tubes. Add another 3ml of buffer A and collect again. 

Take out 60µl from the last tube and transfer to a new tube („wash‟), add 30µl SDS gel 

loading buffer. 

14. Elute the column with 3ml of buffer B (appendix II) and collect fractions in separate 

tubes (~800µl pr. tube). Take out 60µl from each fraction and transfer to new tubes 

(„purified RB60‟). Add 30µl SDS gel loading buffer. 

15. Denature all tubes containing SDS gel loading buffer by heating the samples at 95°C 

for 5min. Freeze samples at -20°C. 

16. Store samples of purified proteins in cold environment (4°C). 

2.3.2  Filtration 

Protein samples were concentrated through filtration. This was done by applying the protein 

solutions to tubes containing columns with filters that have a molecular cut off points of 30 

kD (Millipore), thus excluding proteins larger than this.  This was done by brief (5 min) 

centrifugation (5000rpm) of the tubes to let buffer and proteins less than 30 kD run through 

the filter. Volumes of the samples were reduced from 2.5ml to ~300µl.  

2.3.3 Determining protein concentration 

The concentration of RB60 protein was determined by following a standard procedure. (Bio-

RAD protein assay protocol). Different concentrations of bovine serum albumin (BSA) were 

used as standard. Absorbance was measured at 595nm. 

 

 

 

 

 



2.3.4 SDS-PAGE 

In sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), proteins are 

separated according to their molecular mass under denaturing conditions. Treatment with the 

anionic detergent SDS in heating environment (95°C) destabilizes secondary and tertiary 

structures, thus denaturing proteins and applies a uniform net negative charge to the proteins. 

Ensuring that movement of proteins through the gel depends solely on their size. 

 

Figure 2-1: Equipment of the Mini-PROTEAN 3 electrophoresis system.  

Illustration from: http://www.proteomicsnijmegen.nl/FTMS_pages/Documents/protean3.pdf 

Preparation of SDS-PAGE 

A 10% polyacrylamide solution was prepared in a 15ml plastic tubes. Solution A, B and B’ 

(appendix II) are the main components of the polyacrylamide gel: 

Seperating gel Stacking gel 

Distilled water (dH 2 0) 3.4ml Distilled water (dH 2 0) 3.61ml 

Solution A 2.75ml Solution A 800µl 

Solution B 2.06ml Solution B‟ 1.5ml 

Ammonium persulfate 

(10%) 

33µl Ammonium persulfate 

(10%) 

60µl 
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Ammonium persulfate polymerizes the solutions and is thus added last. The separating gel is 

added between the assembled plates and layered with ~1ml distilled water in order to even out 

the upper surface. The separating gel polymerizes completely after 30 – 40min. The water 

layer is removed before adding the stacking gel solution. A plastic comb is placed between 

the assembled plates to create wells.    

Protein samples were denatured for 5 min at 95°C in a heat block and cooled down on ice. 

15µl of sample was loaded into the wells along with 8µl protein standard ladder (Bio-Rad).  

Electrophoresis was performed according the Mini-PROTEAN 3 instruction manual 
3
 (Bio-

Rad).   

After electrophoresis the gel was floated of the glass plate and into a staining solution 

containing coomassie blue for about 5 – 10 min on a rotating shaker. After staining, the 

staining solution was poured off and the gel washed with distilled water. The gel was then 

transferred to a de-staining solution for 15 – 30 min to remove excess coomassie blue. 

2.3.5 Western blotting 

Western blotting is an analytical method used to detect specific proteins of interest. Proteins 

from bacteria cells were first separated by SDS-PAGE. Proteins were then subsequently 

transferred from the polyacrylamide gel to an immobilized membrane through electrophoresis 

[99].  

A primary antibody was added and bound with high specificity to the protein of interest 

immobilized on the membrane. A secondary antibody, an enzyme-conjugated antibody 

binding the primary antibody is used to visualize and detect the protein of interest through 

chemiluminescence.   

The western blotting was done with the use of nitrocellulose membrane using the Mini-Trans-

Blot ®  Electrophoretic Transfer Cell (BIO-RAD).  

 

 

                                                 
3
 Manual can be found at: http://www.proteomicsnijmegen.nl/FTMS_pages/Documents/protean3.pdf 



The following steps were taken: 

1. Preparation of 1L western transfer buffer (appendix II). 

2. Nitrocellulose membrane (BIO-RAD) was cut according to the size of the gel.  

3. Fiber pads, membrane and filter papers were soaked in transfer buffer. 

4. Assemble of the gel sandwich with gel and membrane sandwiched between fiber 

pads and filter papers (see figure 2-2). Close gel sandwich properly. 

5. Gently insert the gel sandwich into the electrode module and put into buffer tank 

filled with transfer buffer. Include a cooling unit in the buffer tank to keep the 

environment cold during electrophoresis. Also a small stir bar is added to help 

maintain even buffer temperature and ion distribution.  

6.   Electrophoresis was run at 100V for 10 min and 20 min at 60V. 

 

 

     Figure 2-2: Assembly of gel sandwich containing gel, membrane, filter papers and fiber pads.  

Illustration from bio-rad instruction manual (http://mcdonald.ucdavis.edu/Manual/MiniTransblotCell.pdf). 
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7. After electrophoresis the membrane was removed from the gel sandwich and non-

specific binding sites were blocked by immersing the membrane with blocking 

buffer containing TBS, Tween (0.05%) and non-fat dry milk (5%) (Appendix II) for 

1 – 2 hours on a rotating shaker at 4°C.  

8. After blocking, the membrane was rinsed with distilled water before incubation with 

the primary antibody (appendix III) O.N. at 4°C. 

9. The membrane was washed with washing buffer (appendix II) in between incubation 

with primary and secondary antibodies (appendix III). 

10. Incubation with secondary antibody (appendix III) for 1.5 – 2 hours, before final 

washing of membrane. 

11. Membrane was developed with a chemiluminescence solution (appendix II) that 

reacts enzymatic with the secondary antibody to produce visible bands.      

 

2.4 RNA-binding experiments 

2.4.1 Plasmids 

The starting vector for construction of plasmids SP64-UTR and SP64-+54, were used for in 

vitro transcription of complete and short (+1 to +54) versions of the rbcL 5‟ UTR sequence, 

respectively, was the pSP64 poly(A) vector (Promega, appendix I). The vector sequence was 

altered (QuickChange Site-directed Mutagenesis kit, Stratagene) to create plasmid pSP64-

SwaI (G-G  A-A in positions 3019-3020 of the SP6 promoter sequence) containing a SwaI 

site that allowed easy oligonucleotide cloning of the rbcL 5‟ UTR sequence in frame with the 

SP6 promoter sequence. The complementary oligonucleotides SP64-1F and SP64-1R 

(appendix III), containing the rbcL 5‟ UTR sequence from +1 to +54, were annealed and 

cloned into SwaI/SacI-digested pSP64-SwaI to create plasmid pSP64-+54. The 

complementary oligonucleotides SP64-2F and SP64-2R (appendix III) were annealed and 

cloned into BspEI/SacI-digested pSP64+54 to create plasmid pSP64-UTR. Transcripts from 

plasmids pSP64-UTR and pSP64-+54 have a 4 nucleotide GAAT extension at their 5‟ 



terminus which does not affect folding of the rbcL 5‟ UTR nucleotide sequence into its 

predicted native conformation. The extension provided the G nucleotide in position +1, 

required by SP6 RNA polymerase for efficient initiation of transcription. 

2.4.2 In vitro transcription 

Labeled transcripts of the rbcL 5‟ UTR and of the UTR sequence from position +1 to +54 

were synthesized using the MAXI script kit (Ambion) with SP6 RNA polymerase and 

Ecl136II-digested plasmids pSP64-UTR and pSP64-+54. 

2.4.3 Electrophoretic mobility shift  

The gel electrophoretic mobility shift assay (EMSA) is used to detect protein complexes with 

nucleic acids. The technique is premised on the knowledge that electrophoretic mobility of 

protein-nucleic acid complexes is less than the corresponding free nucleic acids [100]. 

The standard mobility shift assay contained 100 - 500ng recombinant RB60 protein and ≈ 0.2 

pmol radiolabeled 5‟ UTR sequences (≈ 70 counts sec
-1

) in 15 µl of 15 mM Tris, pH 7.5, 66 

mM potassium acetate, 0.13 mM EDTA, 1.6 mM MgCl2, 66 ng yeast tRNA, 13% glycerol. 

After mixing, the samples were incubated for 30 min on ice. At the end of the incubation 

period 1 µl of RNA gel loading buffer (0.25% bromphenol blue, 0.25% xylene cyanole FF, 1 

mM EDTA, 50% glycerol) was added and samples were fractionated in a 10% 

polyacrylamide/10% glycerol gel at 100 V. The gel was briefly (5 min) fixed in 20% 

methanol/5% acetic acid, dried, and exposed to x-ray film (Kodak Biomax MS) for 10-30 

min. 

2.4.4  UV cross-linking assays 

UV irradiation of protein-nucleic acid complexes causes the formation of covalent bonds 

between proteins and nucleic acids. This technique can be used to identify protein-nucleic 

acid binding sites and quantify the weight of proteins involved [101].  

For UV cross-linking the 15 µl samples were pipetted, after the 30 min incubation period, 

onto parafilm on ice and irradiated for 3 min with UV light (254 nm) at 180 mJ cm
-2

 (CL-

1000 UV crosslinker, UVP, Inc., Upland, CA, USA). Following digestion with 1 µg RNase A 
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for 1 h at 37 °C, samples were mixed with 0.5 volumes of 3X SDS gel loading buffer (0.2 M 

Tris, 0.6 M 2-mercaptoethanol, 6% SDS, 30% glycerol, 0.08 g bromphenol blue) and proteins 

separated by SDS polyacrylamide (10%) gel electrophoresis. The gel was briefly (5 min) 

fixed in 20% methanol/5% acetic acid, dried, and exposed to x-ray film (Kodak Biomax MS) 

overnight. 



 



3 Results 

3.1 Molecular cloning of RB60 

3.1.1 Amplification, restriction digestion and ligation of RB60 

The first objective was to amplify a gene for RB60 (1600bp) from a construct (pET-RB60). 

Amplification was done through PCR with primers specifying the boundaries for the RB60 

gene, as well as introducing restriction sites for HindIII and NcoI restriction enzymes (as 

described in section 2.2.3).  

The PCR product (RB60) was subsequently restriction digested and ligated into a HindIII/ 

NcoI digested pEcoli-Cterm 6xHN expression vector (section 2.2.4 and 2.2.5). 

Transformation was performed and the constructs were introduced into competent E.coli 

cells, transformants were selected on the basis of ampicillin resistance (section 2.1.2).     

3.1.2  Verifying the ligation 

Transformed E.coli cells were selected and grown in 3ml liquid cultures. Plasmids were 

isolated by miniprep procedure (section 2.1.4).  Verification of the constructs was checked by 

cutting with specific restriction enzymes (section 2.2.4) and run on agarose gel (2.2.1). 

The restriction enzymes HindIII and NcoI were used to cut the pEcoli-Cterm 6xHN_RB60 

construct. This would release the insert (RB60) and vector (pEcoli) to give recognizable DNA 

fragments. 

As seen in the photo of the agarose gel (figure 3-1) the expression vector was used as a 

control (nr.2), confirming its size of being above 5000bp. The vector containing the insert 

(nr.3) was cut with HindIII to release a linear DNA fragment considerably larger than the 

vector, indicating that the RB60 insert had been cloned into the vector. 

The mini-prep isolate containing the construct cut with HindIII and NcoI (nr.4) released two 

distinct DNA fragments. The lower fragments being the RB60 insert of 1600bp, while the 

upper band being of identical size as the vector (nr.2) of 5.7kb.    
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Figure 3-1:  Mini-prep DNA isolation and restriction enzyme digestion to verify the cloning of PCR 

amplified RB60 into expression vector pEcoli-Cterm 6xHN. Checking the size of vector and construct 

digested with the restriction enzymes HindIII and NcoI.   

3.1.3 Sequencing 

The samples were sent for sequencing after verification of transformants was done by 

restriction cutting (2.2.7).   

3.1.4  Growth of transformed E.coli cells 

Ampicillin-resistant bacteria colonies were selected for growth and protein expression of 

RB60 gene was induced (section 2.1.3).   

       

 

 

 

 

 

1: 1 kb DNA plus ladder 

2: pEcoli-Cterm 6xHN expression 

vector 

3: Construct (pEcoli_RB60) cut 

with HindIII. 

4. Construct (pEcoli_RB60) cut 

with HindIII and NcoI. 

5000bp 

1650bp 

100bp 



3.2 Protein isolation 

Frozen bacterial cells containing expressed RB60 were melted on ice prior to sonication and 

centrifugation (2.1.5). Supernatants from the E.coli cells were processed through immobilized 

metal ion affinity chromatography (IMAC) to isolate our specific protein of interest (RB60) 

through a Ni-Sepharose column (2.3.1). Different fractions were isolated through the column 

and run on a SDS polyacrylamide gel (2.3.4).   

 

 

 

 

 

Figure 3-2: Different fractions of RB60 isolated from protein expressing E.coli cells through IMAC and 

run on SDS-PAGE gel.        

   

The gel picture (figure 3-2) shows that the protein of interest was isolated with a relatively 

high specificity, indicating that the IMAC procedure exclusively binds amino-acids (histidine) 

that interact with the Ni 2 -ions in the column. The „wash‟ fraction underlines this, as there is 

no protein binding here of RB60. 

The isolated protein from the purified fractions was identified to have a size of 60 kD, with 

the highest levels of protein accumulation in fraction 1 and a steady reduction of protein 
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levels in the subsequent fractions (2-4). Some visible contamination is left in the purified 

fractions, with the highest contamination levels in the first purified fraction.    

3.2.1 Protein purification 

The purified fractions of RB60 were transferred to a single eppendorf tube. Further 

purification was conducted through gel filtration, enabling the reduction of contamination 

levels and increasing the protein concentration of RB60 in the samples (2.3.2).      

 

Figure 3-3: Purification of isolated RB60 protein sample. Contamination levels decreased through gel 

filtration.  

Three identical samples with the purified RB60 were run on SDS-PAGE. The gel picture 

(figure 3-3) shows there was a reduction in the contamination levels after gel filtration, 

though some contamination is still detectable as a smear. The volumes of protein samples for 

the purified RB60 were significantly reduced from 2.5ml to 300µl. 

3.2.2 Protein concentration  

The concentration of purified RB60 protein samples were determined (2.3.3). Concentration 

levels of the samples ranged from 0.5 – 0.9 mg/ml.  

  

RB60 
75 kD 

50 kD 

25 kD 



3.3 Antibody-binding assays 

Antibody binding assays were performed for RB38 and RB60. This was done in preparation 

for possible co-immunoprecipitation experiments with these two proteins in identifying novel 

proteins that bind to Chlamydomonas rbcL 5‟UTR. 

3.3.1 Antibody binding assay for RB38 

RB38 has been identified in protein complexes that bind to Chlamydomonas psbA 5’UTR (see 

section 1.4). Later studies identified RB38 also to bind to the 5‟UTR of psbD mRNA and 

contribute to the initiation of D2 protein synthesis [102].  

The sensitivity of anti-RB38 primary antibody (GenScript) was assayed by western blotting. 

To investigate the antibody sensitivity, several dilutions of RB38 were made to determine the 

sensitivity levels of anti-RB38.  

Dilutions: 

Tube nr. 1 

 

2 3 4 5 6 7 8 

RB38 Protein 

standard 

ladder 

5µg 2.5µg 1.25µg 625ng 312.5ng 156.25ng 78.1ng 

Table 3.4: Dilutions prepared of RB38 protein samples for detection of antibody sensitivity. 

Distilled water (dH 02 ) and SDS were added to tubes containing RB38 protein prior to SDS-

PAGE (2.3.4) and subsequent western blotting (2.3.5).   
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Figure 3-5: Antibody-sensitivity assay of RB38. Dilutions of RB38 containing different concentration were 

tested for sensitivity. 

Clear detection is visible down to 1.25µg of RB38 (4), a weaker signal is detectable at 625ng 

of RB38 (5). Significant contamination is visible as well, in particular a protein of approx.75 

kD is seen to have specificity for the antibodies used (figure 3-5).       

3.3.2 Antibody binding assay for RB60 

Several experiments were performed with an oligopeptide primary antibody anti-RB60 

(GenScript) containing a peptide sequence that should in theory have specificity for the RB60 

protein. However, no detection was recorded using this antibody. Instead the use of a 

complete anti-RB60 antibody isolated from rabbit serum was used to provide visible detection 

of RB60. The sensitivity of this complete anti-RB60 from rabbit serum was tested by western 

blotting (2.3.5). 

Dilutions were made from isolated RB60 protein sample after determining the concentration 

(2.3.3). Distilled water (dH 02 ) and SDS were added to tubes containing RB60 protein prior 

to SDS-PAGE (2.3.4) and subsequent western blotting (2.3.5).  

 

 

37 kD 

75 kD 

RB38 
25 kD 



Dilutions: 

Tube nr. 1 

 

2 3 4 5 6 

RB60 Protein standard ladder 3µg 1.5µg 750ng 375ng Control (no RB60) 

Table 3.6: Dilutions prepared from isolated RB60 protein sample after determining concentration levels. 

 

Figure 3-7: Antibody-sensitivity assay of RB60. Dilutions of RB60 containing different concentration were 

tested for sensitivity. Contamination is detected in all the samples. 

The expressed RB60 protein is detected in all dilutions (figure 3-7). The control (6) with no 

RB60 protein does not provide a signal. The strongest signal is detected with the highest 

concentration (3µg) of RB60 (2), while the lowest concentration of 375ng (5) is detected as 

well. 

The contamination level is quite visible in the samples, this decreases as the samples are 

diluted. This indicates that the antibodies used have specificity to other proteins besides 

RB60, and that the purification of RB60 was not sufficient to clear the sample of 

contaminants.  

 

 50kD 

75 kD 

37 kD 

25 kD 
RB60 
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3.4 Gel electrophoretic mobility shift assay 

Two plasmid constructs (SP64-UTR and SP64-+54) were used to synthesize labeled 

transcripts to verify whether RB60 contains binding capacity to rbcL 5‟UTR. The synthesized 

transcripts contain nucleotides +1 to +54, which constitute the first stem loop and the cis-

acting stability element (+38 to +48) of rbcL 5‟UTR, as well as the complete 5‟UTR sequence 

(2.4.2). 

 

Figure 3-8: Autoradiogram of gel mobility shift assay of RB60 binding to rbcL 5’UTR sequences. 

Radiolabeled 5‟ UTR sequences were added with RB60. UTR sequences with absent RB60 proteins were used 

as control (1, 4).       

 

Lanes Content in autoradiogram 

1 Complete transcribed rbcL 5‟UTR.  Control (no RB60). 

2 Complete transcribed rbcL 5‟UTR with RB60 (C-term his-tag) 

expressed from E.coli cells.   

3 Complete transcribed rbcL 5‟UTR with RB60 (N-term his-tag and 

fewer amino acids) expressed from E.coli cells. 

4 Transcribed rbcL 5‟UTR sequence from +1 to +54. Control (no 

RB60). 



5 Transcribed rbcL 5‟UTR sequence from +1 to +54 with RB60 (C-

term his-tag) expressed from E.coli cells.  

6 Transcribed rbcL 5‟UTR sequence from +1 to +54 with RB60 (N-

term his-tag and fewer amino acids) expressed from E.coli cells.  

 

The autoradiogram (figure 3.8) illustrates that no band shift occurred in our control samples 

were RB60 is absent (1, 4). A band shift can be detected with the samples containing the 

shorter rbcL 5‟UTR sequences (+1 to +54) containing isolated RB60 expressed from E.coli 

cells containing either old or new constructs (5,6). The samples with the complete rbcL 

5‟UTR bound with RB60 (2, 3) also created a band shift, indicating specificity for RB60 to 

these UTR sequences. These band shifts were of similar size indicating no major difference 

between the isolated RB60 proteins expressed with an N-terminal or C-terminal His-tag, or 

that specificity was altered due to differences in the length of the transcribed rbcL 5‟UTR 

sequences.    

 

3.5 UV cross-linking assay 

The samples with transcribed rbcL 5‟UTR and isolated RB60 were UV cross-linked and 

subsequently treated with endonuclease RNase A (2.4.4). The UTR sequences that covalently 

bind RB60 will be protected from degradation by the RB60 proteins, while unbound UTR 

sequences will be subject to degradation by the endonuclease.   
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Figure 3-9: Autoradiogram of UV cross-linking of rbcL 5’UTR sequences with RB60. Isolation of RB60 

proteins was done from E.coli cells containing old or new constructs.  Circled areas indicate location of RB60 

protein from SDS-PAGE gel. Signal from E.coli protein is highlighted. 

 

The autoradiogram indicates that there is an RNA-binding protein of approx. 60kD that 

covalently binds to complete and short (+54) 5‟ UTR rbcL sequences. No difference is 

detected whether the RB60 proteins were isolated from cells containing old or new constructs. 

A SDS-PAGE with only RB60 was performed to verify whether the proteins that crosslinked 

to the 5‟UTR sequences were correct in size. Comparing the SDS-PAGE gel to the 

autoradiogram (figure 3-9), showed that the protein providing the signal from the UV cross-

linked assay were of a smaller size than 60kD. The RB60 protein from the SDS-PAGE was 

situated slightly higher than anticipated (circled area).  

The RB60 protein binds with a low affinity to the 5‟UTR sequences. Another protein 

expressed in E.coli that binds to the 5‟UTR transcripts with a much higher affinity than the 

isolated RB60. This high affinity binding of a different protein to 5‟UTR sequences prevents 

any insight to whether RB60 binds to 5‟UTR sequences due to the interference of the protein 

from E.coli. 

Signal from E.coli protein 



Conclusion 

Gel mobility shift assay and UV cross-linking experiments indicate that isolated recombinant 

RB60 proteins expressed in E.coli cells do not bind in vitro to 5‟untranslated regions of 

Chlamydomonas rbcL mRNA. This was established through an SDS-PAGE experiment with 

RB60 proteins that noted that the binding site was different for this protein compared to the 

signals detected from the UV cross-linking experiment. The protein providing the signal in 

the UV cross-linking assay was of a different size than the 60 kD predicted. This protein is 

most likely expressed in E.coli cells and has a very high affinity for the in vitro transcribed 

rbcL 5‟UTR sequences. 

Due to the high concentration levels of isolated recombinant RB60 and the absent of binding 

capacity to the 5‟UTR sequences in vitro, suggest that RB60 proteins do not bind to the 

5‟UTR of Chlamydomonas rbcL mRNA in vitro. 
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4 Discussion  

The stability of Chlamydomonas chloroplast mRNA have been shown to be determined by 

secondary structures that functions as binding sites for trans-acting factors. Experimental 

studies have identified several RNA-binding proteins that play a key role in regulating RNA 

transcript stability through binding of 5‟UTR sequences [75, 76].  

The stability of Chlamydomonas rbcL mRNA has been shown to be mainly attributed to 

sequences at the 5´UTR [89]. Studies have shown that modifications in the nucleotide 

sequence of rbcL 5‟UTR destabilize chimeric rbcL-GUS transcripts and reduce the 

accumulation of rbcL mRNA [103]. 

 A recent study detected a novel protein that binds to Chlamydomonas and Arabidopsis the 

5‟UTR of rbcL mRNA. MRL1 is a conserved nuclear-encoded protein that is required for the 

stabilization of rbcL mRNA in Chlamydomonas and Arabidopsis [95].    

The aim of this project was to determine whether a 60 kD protein identified as containing 

RNA-binding capabilities can specifically bind in vitro to 5‟UTR sequences of 

Chlamydomonas rbcL mRNA. A novel construct containing the protein of interest (RB60) 

was made containing an N-terminal histidine-tag for immobilized metal ion affinity 

chromatography (IMAC) isolation. Isolated proteins binding capacity to rbcL 5‟UTR 

sequences of different lengths were tested through in vitro experiments (electrophoretic 

mobility shift assay and UV cross-linking). 

4.1 Methodological considerations 

The purification procedure of the RB60 protein through filtration was not efficient, leading to 

visible contamination in downstream experiments. In addition E.coli expresses a high affinity 

protein that binds to in vitro transcribed sequences of the rbcL 5‟UTR, interestingly this 

bacterial protein is of similar size to our protein of interest (see section 3.5). In vitro 

experiments with RNA-binding proteins expressed in bacteria can be problematic, since 

bacteria codes for thousands of proteins. Inevitably a few might have specificity for RNA 

sequences of interest, as was the case in the UV cross-linking and electrophoretic mobility 

shift assay experiment (fig.3-8 and fig. 3-9). 



An alternative purification procedure that could be of interest is the TAG affinity purification 

(TAP) method. This is a method that allows rapid purification of protein or protein complexes 

under native conditions, even when expressed at their natural level. This method involves a 

fusion of a TAP tag to the protein of interest, and subsequent introduction into host cell or 

organism. A key feature to this technique is that the TAP tag consists of two IgG binding 

domains of Staphylococcus aureus separated by a TEV protease cleavage site, which gives 

two specific affinity purification steps. Experimental studies have shown that the two affinity 

tag chosen for this method are highly efficient in their recovery of proteins present at low 

concentration, which is often the case inside cells [104, 105].  

4.1.1 Electrophoretic mobility shift assay (EMSA) 

EMSA is a rapid and sensitive method to detect protein-nucleic interactions. This technique 

has several advantages, among this is that it is simple to perform and is highly sensitive. This 

makes it possible to use small amounts of protein and nucleic acids concentrations. However, 

there are several limitations to consider when using this method and analyzing the results. A 

crucial aspect to consider is that rapid dissociation during electrophoresis can prevent the 

detection of complexes. In addition, many complexes are more stable in the gel than what is 

the case in their native condition [100].     

4.1.2 UV cross-linking assay 

UV cross-linking is a standard method used to detect RNA-binding proteins. The UV 

irradiation triggers the formation of covalent bonds between the RNA and proteins in the 

vicinity that interact with the sequence. Subsequent treatment with an RNase is to degrade 

sequences that have no protection that bound proteins will offer, producing short 

oligoribonucleotides. In general, UV cross-linking is relatively inefficient, in particular if the 

interaction of protein and RNA sequence is weak. This requires extensive UV- irradiation, the 

short wavelength UV light that is needed can be damaging to the protein [106].   
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4.1.3 Alternative method 

An alternative method that can be used instead of in vitro experiments for identification of 

RNA-binding proteins might be to use in vivo methods. This will enable us to directly use 

Chlamydomonas cells and not fear contamination from bacterial expressed proteins that might 

bind to our RNA transcripts of interest.  

A novel technique called Photoactivatable-Ribonucleoside-Enhanced Cross-linking and 

Immunoprecipitation (PAR-Clip) is a method that provides the option to combine UV cross-

linking with immunoprecipitation of the investigated RNA-binding proteins and recover the 

cross-linked RNA. These RNA sequences can then be converted to a cDNA library for deep 

sequencing, thus providing information on a transcriptome-wide basis the binding sites for the 

RNA-binding proteins and their respective RNA recognition elements [107, 108].  

 

Figure 4-1: Illustration of PAR-CLIP method. (M. Haftner et al. 2010)  

An important feature of this method is that it enables us to differentiates between crosslinked 

and non- crosslinked RNA sequences, the latter being more readily reverse transcribed [108]. 

 



Future perspective 

Future studies of Chlamydomonas rbcL mRNA stability might elucidate other proteins that 

contribute to the increased half-lives of Chlamydomonas mRNA. Co-immunoprecipitation 

experiments with crosslinked RB38 which has been documented to bind 5‟UTR of rbcL 

mRNA might identify additional factors that bind to 5‟UTR cis-elements of rbcL mRNA. 

In vivo experiments with Chlamydomonas cells might prove to be a more fruitful approach in 

identifying novel trans-acting factors that contribute to the increased half-lives of 

Chlamydomonas transcripts. 

In addition there is an increasing interest in Chlamydomonas as a model organism for 

biohydrogen production as well as a system for vaccine production. 

 Rubisco research has in recent years focused on the rate-limiting step of CO 2  fixation of this 

enzyme. Strategies to improve crop yield potential and uptake of excess atmospheric CO 2 for 

agricultural processes and combating climate change, underlines the potential of Rubisco 

research to provide important answers through basic scientific research.     
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Appendices 



Appendix I – Plasmid maps 

 

pEcoli-Cterm 6xHN Linear Vector Information 

 

 



65 

 

pSP64 Poly(A) plasmid vector 

 

 



Appendix II – Composition of buffers 

TAE buffer (50X) 

 Tris base (242g) 

Cons. Acetic acid (57ml)  

0.5M EDTA (100ml) 

Adjust with dH 02  to a final volume of 1L 

Store: room temperature 

 

Electrophoresis buffer (10X) 

Tris base 30g 

Glycine 146g 

Sodium dodecyl sulfate (SDS) 10g 

Dissolve in 1L dH 02  

 

Dialysis buffer 

0.1M Tris base (12.11g) 

0.5M   k-acetate (49.1g) 

0.001M EDTA (0.37g) 

Add 800ml dH 02 and adjust PH to 7.5 

Add 200ml dH 02  to a final volume of 1L. 

 

Buffer A (binding buffer) 

20mM Sodium phosphate (1.78g) 

1M Sodium chloride (29.22g) 

20mM Imidazole (0.68g) 

Adjust PH to 7.4 with HCl 

 

 

 

 

 

TBS (10X) 

Tris base 121,1g 

NaCl 90g 

Dissolve in 800ml dH 02 . 

Adjust PH to 7.5 with HCl 

Add remaining 200ml dH 02  to a final volume of 

1L. 

 

Western transfer buffer 

Tris base 5.8g 

Glycine 29.9g 

Sodium dodecyl sulfate (SDS) 0.37g 

200ml methanol 

Solve in 800ml dH 02  to a total volume of 1L 

Store: room temperature 

 

Solution A (acrylamide 30%) 

Acrylamide 29.2g 

N‟,N-bis-methylene-acrylamide 0.8g 

Dissolve with 100ml dH 02  

Store: 4°C in the dark 
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Buffer B (elution buffer) 

20mM Sodium phosphate (1.78g) 

1M Sodium chloride (29.22g) 

0.5M Imidazole (17.2g) 

Adjust PH to 7.4 with HCl 

 

 

Western developing buffer 

Tris base 6.05g 

1M MgCl 2  3ml 

Dissolve in 1L dH 02 . 

 

Western developing solution 

9ml developing buffer 

1ml NBT 

100µl BCIP 

 

NBT: 2mg in 2ml 96% EtOH 

BCIP: 10mg in 2ml DMF (dimethylformamide) 

Solution B (1.5M Tris-HCl, PH 8.8)  

1.5M Tris (18.15g) 

Adjust PH to 8.8 with HCl 

 Add 4ml SDS and 200µl TEMED 

Dissolve in 100ml dH 02  

Store: room temperature 

Solution B’ (0.5M Tris-HCl, PH 6.8)  

Tris 6.17g 

Dissolve in 60ml dH 02  

 Adjust PH to 6.8 with HCl 

Add 4ml SDS and 800µl TEMED 

Dissolve in 100ml dH 02  

Store: room temperature 

 



Appendix III – Primers and antibodies 

 

Oligonucleotides 

SP6

4-

1F 

5‟-AGGTGACACTATAGAATAAATGTATTTAAAATTTTTCAACAATTTTTAAA

TTATATTTCCGGACAGATTATGAGCT-3‟ 

SP6

4-

1R 

5‟-ATAATCTGTCCGGAAATATAATTTAAAAATTGTTGAAAAATTTTAAATAC 

ATTTATTCTATAGTGTCACCT-3‟ 

 

SP6

4-

2F 

5‟-CCGGACAGATTATTTTAGGATCGTCAAAAGAAGTTACATTTATTTATATA

AGAGCT-3‟ 

 

SP6

4-

2R 

5‟-CTTATATAAATAAATGTAACTTCTTTTGACGATCCTAAAATAATCTGT-3‟ 

 

Antibodies 

Primary 

antibody 

Peptide sequence Dilutions Secondary 

antibody 

Dilutions 

Anti-RB38 QRDSESGDERGGRGC 1:10000  Anti-rabbit IgG 

alkaline 

phosphatase 

1:10000 

Anti-RB60 CLPKKGSDGDEGTSD 1:10000  

 


