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Abstract 
The myogenic regulatory factors (MRFs) are a group of muscle specific transcription factors 

important during determination and differentiation of muscle fibers. In adult muscle two of the 

members, MyoD and myogenin, are expressed preferentially in fast and slow muscles, respectively, 

and have been suggested to play a role in fiber type specific gene regulation. Overexpression of 

MyoD in the slow soleus muscle has been shown to cause a shift towards a faster phenotype, while 

overexpression of myogenin in the fast extensor digitorum longus (EDL) causes an increase in 

oxidative capacity. Less is known about the two last members of this family, MRF4 and Myf-5. In 

adult muscle MRF4 is expressed at very high levels and Myf-5 at very low levels, but their function is 

unknown.  

The expression of MRF4 has only been investigated at the transcript level, so we wanted to map the 

normal expression of MRF4 protein. In order to investigate whether MRF4 and Myf-5 play a role in 

regulation of fiber type specific genes, we wanted to knock down the expression of MRF4 and to 

overexpress Myf-5 in muscles of adult rats.  

Mapping of MRF4 protein expression showed that there was a significantly higher expression level in 

the slow soleus compared to the faster muscles. For the knockdown study, six siRNA was tested in 

cell culture, but since none of them gave a measurable knockdown, further studies in vivo were 

abolished. Overexpression of Myf-5 in the fast EDL resulted in an increase of 2b fibers, indicating that 

Myf-5 activates expression of MyHC 2b. 
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Abbreviations 
bHLH Basic helix-loop-helix 
BSA Bovine serum albumin 
cDNA Complementary DNA  
cAMP Cyclic adenosine monophosphate 
CMV Cytomegalovirus 
DMEM Dulbecco’s Modified Eagle Medium 
E Embryonic day 
EDL Extensor digitorum longus 
EDTA Ethylenediaminetetraacetic acid 
EGTA Ethylene glycol tetraacetic acid 
Gastroc. Gastrocnemius 
GL Gastrocnemius Lateralis 
GM Gastrocnemius Medialis 
HEK-cells Human embryonic kidney cells 
MEF Myocyte enhancer factor 
MRF Myogenic regulatory factor 
MRF4 Myogenic regulatory factor 4 
Myf-5 Myogenic factor 5  
MyHC Myosin heavy chain 
PBS Phosphate buffered saline 
RSV Rous sarcoma virus 
SDS-PAGE Sodium dodecyl sulphate polyacrylamide gel electrophoresis 
siRNA Small interfering RNA 
SV40 Simian virus 40 / Simian vacuolating virus 40 
TA Tibialis anterior 
TBS Tris-buffered saline 
TBS-T Tris-buffered saline with Tween 
X-gal 5-bromo-4-chloro-3-indolyl-ß-D-galactoside 
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1. Introduction 
Skeletal musculature is made up of long, cylindrical cells with multiple nuclei, called muscle fibers or 

myofibers. The main internal structure of muscle fibers is myofibrils composed mainly of actin and 

myosin organized into sarcomeres. These sarcomeres are responsible for a process called the cross-

bridge cycle. Excitation is mediated by motor neurons and leads to activation of the cross-bridge 

cycle, causing the muscle to contract. In absence of electrical stimuli, the muscle relaxes. 

Skeletal muscle fibers are classified based on their speed of contraction and their resistance to 

fatigue with repeated stimulation. These properties are determined by the expression of proteins 

involved in the excitation-contraction-relaxation cycle.  

1.1 Fiber types 
In the 19th century muscles were categorized as ”red” and ”white” (Ranvier, 1874), the former with 

slow muscle contraction and the latter with fast muscle contraction. Later, muscle fibers were 

classified as type 1, type 2a and type 2b according to their ATPase activity and pH liability (Brooke 

and Kaiser, 1970). Myosin ATPase (mATPase) hydrolyzes ATP in the crossbridge cycle. The variation of 

mATPase activity was shown to correlate with variation in contraction speed and expression of 

myosin heavy chain (MyHC) isoforms in different fiber types (Reiser et al., 1985). 

MyHC is a part of the contractile apparatus, and four different isoforms are expressed in adult rodent 

muscle. With help of immunohistochemistry using antibodies against the MyHC isoforms (Schiaffino 

et al., 1989), they are now classified as MyHC 1, MyHC 2a, MyHC 2x (also called MyHC 2d) and MyHC 

2b. Muscle fibers expressing MyHC 1 have the slowest speed of contraction and are therefore called 

slow type 1 fibers. These have high oxidative capacity, primarily relying on oxidative phosphorylation 

for production of ATP. The MyHC 2a, 2x and 2b are expressed in type 2a, 2x and 2b fibers, 

respectively. In the listed order these have increasing speed of contraction, decreasing oxidative 

capacity, and increasing glycolytic capacity. Glycolytic fibers rely primarily on anaerobic glycolysis to 

produce ATP. The properties of the different fiber types are listed in table 1.1. The expression of the 

different isoforms of MyHC is now often used to identify the different fiber types (Spangenburg and 

Booth, 2003). 
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Table 1.1. An overview of fiber types in skeletal muscle of rodents defined by MyHC isoform and physiological properties. 

Fiber type MyHC Speed of contraction Metabolic profile Endurance 
1 MyHC 1 Slow Oxidative Good 

2a MyHC 2a Fast Oxidative-glycolytic Good-medium 
2x MyHC 2x Faster Glycolytic-oxidative Medium-poor 
2b MyHC 2b Fastest Glycolytic Poor 

 

The fiber type composition of a muscle determines the muscle’s properties. The fast glycolytic 

extensor digitorum longus (EDL) muscle is composed primarily of type 2 fibers, while the slow 

oxidative soleus muscle is composed primarily of type 1 fibers.  Due to their extreme phenotype they 

are often used to study transcription factors and what properties they determine. Normal 

distribution of the different fiber types in soleus and EDL, as well as three other hind limb muscles; 

plantaris, tibialis anterior (TA) and gastrocnemius (gastroc.), are listed in table 1.2. The gastroc. 

consists of a medial (GM) and a lateral part (GL). While most of gastroc. is mixed with respect to fiber 

type, there is also a deep red portion in GL and a superficial white portion in GM (Armstrong and 

Phelps, 1984) into which the muscle often is separated when studied.  

Table 1.2. Fiber type frequency (%) in hind limb muscles of adult rats.  

Fiber type 1 1/2a 2a 2a/2x 2x 2x/2b 2b Reference 
Soleus 87 1 12 0 0 0 0 (Ekmark et al., 2007) 
 82 9 9 0 0 0 0 (Staron et al., 1999) 
EDL 3 - 23 - 29 - 45 (Windisch et al., 1998) 
 4 2 16 7 36 5 30 (Staron et al., 1999) 
Plantaris 2 - 13 - 37 - 48 (Caiozzo et al., 1996) 
 6 - 14 - 33 - 47 (Delp and Duan, 1996) 
TA 3 - 9 - 16 - 72 (Caiozzo et al., 1996) 
 2 0.5 12 5 27 4.5 49 (Staron et al., 1999) 
Gastroc. 21-25 * * * * 75-79 * (Voytik et al., 1993) 
-Red 51 - 35 - 13 - 1 (Delp and Duan, 1996) 
-White 0 - 0 - 8 - 92  
-Mixed 3 - 6  - 34 - 57  
Note that different strains of rats were used, and that fiber types were classified by three different methods. Delp and Duan 
(1996) did classification based on the activity of mATPase and metabolic properties. Staron et al. (1999) did fiber typing 
according to the mATPase activity. Caiozzo et al. (1996) determined fiber type by doing immunoblotting with MyHC specific 
antibodies, while both Windisch et al.(1998) and Ekmark et al. (2007) did immunohistochemistry with MyHC specific 
antibodies. *Voytik et al. (1993) classified fibers as type 1 or 2 with immunohistochemistry with an antibody specific for 
MyHC 2. They could therefore not make distinctions between the different isoforms and hybrids of MyHC 2, only determine 
that 75-79 % of all fibers expressed MyHC 2.  - = not measured.  

1.2 Fiber type transitions 
Muscle fibers have the capacity to alter their physical and functional properties, a feature often 

referred to as muscle plasticity. During such transition states, hybrid fibers expressing two or more 

MyHC isoforms are common (Pette and Staron, 1990). It should also be noted that 11-67 % of the 
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fibers from various limb muscles express more than one MyHC isoform even under steady state 

activity conditions (reviewed by Stephenson, 2001). The role of such hybrid fibers are not known, but 

the prevailing view is that they have intermediate properties so that the muscle can fine-tune its 

output to the physiological demands (Bottinelli et al., 1994, Staron et al., 1999, Pette and Staron, 

2000).  

Transitions in expression of MyHC isoforms occurs in a sequential and reversible order (Windisch et 

al., 1998, Pette and Staron, 2000):  

1 ↔ 1/2a ↔ 2a ↔ 2a/2x ↔2x ↔ 2x/2b ↔ 2b 

The transitions can be induced by changes in electrical stimulation, mechanical loading and 

unloading, hormones and aging. Cell lineage does however to some extent seem to limit the changes 

(Hoh and Hughes, 1991, Rosenblatt et al., 1996).  

The nerve and electrical activity has an important influence on muscle contraction and fiber type 

composition (reviewed by Gundersen, 1998). Cross-innervating a slow motor neuron to a fast muscle 

and a fast motor neuron to a slow muscle change the muscles according to the nerve activity (Buller 

et al., 1960). The fast muscle gain properties typical of slow muscles and the slow muscle gain 

properties typical of fast muscles. The same results are obtained when soleus is denervated and 

subsequently stimulated with an electrical pattern normal for fast muscle (Lømo et al., 1974). When 

the fast EDL is stimulated with electrical patterns typical for a slow muscle, it become more like a 

slow muscle (Eken and Gundersen, 1988). Total loss of electrical stimulation, for example by 

denervation, makes slow muscles become faster and fast muscles becoming slower (Huey and 

Bodine, 1998, Windisch et al., 1998, Loughna and Morgan, 1999). 

It has been discussed whether the influence of the nerve is caused by release of neurotrophic 

substances secreted from the nerve terminal. But since stimulation by electrodes give the same 

results as cross-innervating nerves, it seems likely that it is the electrical activity per se that 

influences the muscles (Gundersen, 1998). 

Endurance training induces changes in the fast-to-slow direction, both in fiber type (Green et al., 

1984) and oxidative metabolism (Baldwin et al., 1972). Stretch overload causes the same transition 

(Pattullo et al., 1992). Aging (Larsson and Ansved, 1995) and reduced levels of thyroid hormones 

(Ianuzzo et al., 1977) have also been shown to induce fast-to-slow conversion in muscle fiber type. 

Immobilization (Jänkälä et al., 1997), unloading and hyperthyroidism (Pette and Staron, 2000) on the 

other hand, causes slow-to-fast transitions. 
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Several molecules have been studied in order to understand how skeletal muscle fiber types are 

regulated. The myogenic regulatory factors are some of the implicated factors in the regulation of 

fiber type specific genes. 

1.3 Myogenic regulatory factors 
The four myogenic regulatory factors (MRFs) MyoD (Davis et al., 1987), myogenin (Edmondson and 

Olson, 1989, Wright et al., 1989) MRF4 (myogenic regulatory factor 4), also called Myf-6 and herculin 

(Rhodes and Konieczny, 1989, Braun et al., 1990a, Miner and Wold, 1990) and Myf-5 (myogenic 

factor 5; Braun et al., 1989) are members of  the superfamily of basic helix-loop-helix (bHLH) 

transcription factors. They are specific for skeletal muscle and are expressed at distinct times during 

myogenesis. Each of the factors can, when expressed in non-muscle cells like fibroblasts, convert 

these cells to differentiated muscle fibers that express muscle specific genes (reviewed by 

Buckingham, 1992). 

The bHLH domain consists of a helix-loop-helix (HLH) motif and a basic DNA binding region (Puri and 

Sartorelli, 2000). The bHLH motif is required for heterodimerization of the MRFs with E-proteins, 

another class of bHLH proteins. These heterodimers bind to DNA in a sequence specific manner at 

sites known as E-boxes with a consensus sequence of CANNTG. E-boxes are found in both promoter 

and enhancer areas of muscle specific genes (Olson, 1990). The myocyte enhancer factor (MEF)-2 

family is a second group of transcription factors which are important in myogenesis. They belong to 

the MADS box family and bind to a consensus A/T-rich sequence found in the promoters of many 

muscle specific genes. Interactions mediated by the basic region of MRFs and the MADS domain of 

MEF-2 stimulate MRF-driven transcription (Black and Olson, 1998). 

The basic region is required for binding to DNA, but additional sequences are required for 

transcriptional activation. Each of the four factors has slightly different activational domains. Myf-5 

contains an activation domain in the carboxyl region (Braun et al., 1990b), while both MyoD 

(Weintraub et al., 1991) and MRF4 (Mak et al., 1992) have an activation domain located in the amino 

terminus. MyoD and MRF4 can therefore to some extent substitute for each other, though they also 

have some activational specificity (Mak et al., 1992). Myogenin on the other hand contains two 

transcription activation domains, one in the amino terminal and one in the carboxyl terminal of the 

bHLH region, which act in conjunction with the DNA binding domain to activate muscle-specific 

transcription (Schwarz et al., 1992). Common to all the MRF activation domains is an overall negative 

charge positioned on the hydrophobic face of the peptides (Mak et al., 1992). They all inhabit the 
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ability to positively autoregulate their own expression and to cross-activate each other (Braun et al., 

1989, Thayer et al., 1989, Miner and Wold, 1990). 

All the MRFs contain a conserved threonine (T) which is subject to phosphorylation. In MyoD it 

corresponds to T115, in myogenin T87, in MRF4 T99 and in Myf-5 T89, and phosphorylation of this 

threonine reduces their activity by inhibiting their ability to interact with DNA (Li et al., 1992b, Hardy 

et al., 1993, Liu et al., 1998). The serines (S) in MRFs can also be phosphorylated. The cAMP 

dependent protein kinase (PKA) and casein kinase II (CKII) can phosphorylate serines in MRFs, 

although these phosphorylations does not seem to influence their transcriptional activity (Li et al., 

1992a, Johnson et al., 1996). The proto-onco gene Mos, on the other hand, can activate MyoD by 

phosphorylating its S237 (Pelpel et al., 2000). MRFs can also be modified by acetylation and 

ubiquitination (Puri and Sartorelli, 2000). 

1.4 The roles of MRFs during myogenesis 
Myogenesis is the differentiation of somite progenitor cells into skeletal muscle fibers. During 

myogenesis the four MRFs are expressed at distinct time points. Myf-5 is the first member of the 

family to be expressed in mouse and is detected at embryonic day 8 (E8) (Ott et al., 1991). Expression 

of myogenin and MyoD are observed at E8.5 and E10.0, respectively (Sassoon et al., 1989). MRF4 is 

expressed transiently between E9.0 and E11.5 and is then down-regulated until it is later expressed 

in differentiated muscle fibers (Bober et al., 1991, Hinterberger et al., 1991). 

Several studies on inactivation of the myogenic regulatory factors have been conducted to 

investigate their role in myogenesis. Mice lacking a functional MyoD gene are viable and fertile, and 

exhibit no morphological or physiological abnormalities in skeletal muscle (Rudnicki et al., 1992). 

MRF4 null-mice are viable and have normal muscle phenotype, but show defects in rib development 

(Zhang et al., 1995). Myf-5 mutants have normal muscles, but die immediately after birth due to 

severe rib defects (Braun et al., 1992). Myogenin null-mice show severe reduction of skeletal muscle, 

abnormalities in spine and ribs, and die immediately after birth (Hasty et al., 1993). It should be kept 

in mind that there might be some compensating mechanisms in transgenic animals since the protein 

then is absent right from the beginning. 

Double mutants of MyoD and Myf-5 have shown that these two are essential determination factors 

in muscle development (Rudnicki et al., 1993). However, a study by Kassar-Duchossoy et al. (2004) 

indicates that also MRF4 may have a role in determination. MRF4, MyoD and myogenin acts as 

differentiation factors during myogenesis (Buckingham et al., 2006).   
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1.5 MRFs and fiber type specificity 
MyoD and myogenin are found to be differentially expressed in fast and slow muscles. It has 

therefore been proposed that MyoD and myogenin are possible links between electrical activity and 

phenotypic gene expression of fast and slow genes, respectively (Hughes et al., 1993, Voytik et al., 

1993). 

Cross-innervation of a fast nerve to soleus reduces myogenin expression and elevates MyoD 

expression in areas responding to the activity change by formation of fast fibers at the expense of 

slow fibers (Hughes et al., 1993). Ekmark et al. (2007) showed that both mRNA and protein levels of 

myogenin increases when the fast EDL is stimulated with a pattern mimicking the activity in slow 

motor units. The level of myogenin is also found to be elevated in response to endurance training 

(Siu et al., 2004). 

Overexpression of myogenin in transgenic mice show a 2-3 fold elevation of oxidative mitochondrial 

enzymes and a reduced level of glycolytic enzymes in fast muscles. This reveals a myogenin-induced 

shift in enzyme activity from glycolytic to oxidative metabolism (Hughes et al., 1999). Overexpression 

of myogenin in pre-existing adult fibers in the fast EDL muscle, show an increase in oxidative enzyme 

levels and a reduction in the fiber cross sectional area, without changes in the major MyHC 

composition (Ekmark et al., 2003).  

Overexpression of MyoD in denervated soleus causes a change in MyHC gene expression towards a 

faster fiber type, while overexpression in innervated soleus show small or no effect (Ekmark et al., 

2007). Phosphorylation of the conserved threonine, T115, is shown to prevent MyoD from binding to 

DNA and thereby abolish its function (Liu et al., 1998).  Overexpression of MyoD mutated at T115 

induces fast fiber types in innervated soleus (Ekmark et al., 2007). These results indicate that 

electrical activity regulates phosphorylation and hence activity of MyoD and that MyoD influences 

the expression of fast MyHC isoforms. 

1.6 A role of MRF4 and Myf-5 in determination of fiber type? 
Extensive research on MyoD and myogenin in relation to fiber type specificity has been done, but 

less is known about the role of MRF4 and Myf-5 in adult muscle. These two factors exhibit 

characteristic expression levels; MRF4 has the highest expression level of the MRFs, while Myf-5 has 

a very low expression level. Yet there has been little evidence implicating their role in the regulation 

of adult muscle phenotype. 
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Transcripts of MRF4 start to accumulate between E15 and the first postnatal week, a period that 

coincides with nerve innervation. During the same period, the transcript levels of the other MRFs 

decline (Buonanno et al., 1992). This, and the fact that MRF4 is the MRF with highest expression level 

in adult muscles (Rhodes and Konieczny, 1989, Hughes et al., 1993, Voytik et al., 1993), suggests that 

MRF4 has an important role in adult skeletal muscle. 

Several researchers have found that the level of MRF4 mRNA is the same throughout every muscle of 

the leg (Rhodes and Konieczny, 1989, Hughes et al., 1993, Voytik et al., 1993). On the other hand, 

Walters et al. (2000a) found that the transcript level of MRF4 was higher in soleus than in EDL. In 

another study (Walters et al., 2000b) they found that the transcript level was higher in slow fibers 

than in fast fibers in the gastroc. muscle, though no differences were evident between fiber types in 

soleus. This may indicate that MRF4 has a fiber type specific expression pattern. 

Overexpression of MRF4 in adult EDL (Sjåland, 2005) do not have any effect on fiber type, oxidative 

capacity or cross sectional area. If the transcript level of MRF4 is equally high in all adult muscles, 

overexpression may not make much of a difference in the overall level of MRF4. A reduced level of 

MRF4 would perhaps be more effective in order to reveal a possible role in fiber type specific gene 

regulation. 

Myf-5 mRNA is expressed at equally low levels in all adult muscles (Hughes et al., 1993, Voytik et al., 

1993). The expression is restricted to satellite cells and muscle spindles (Beauchamp et al., 2000, 

Zammit et al., 2004), but denervation causes reactivation in myonuclei (Zammit et al., 2004). 

However, Sakuma et al. (1999) find that Myf-5 at the protein level is preferentially expressed in fast 

muscles. They also show that denervation causes a decrease in MyoD and Myf-5 protein levels in the 

fast plantaris and the mixed gastroc. muscles, while they are not detected either in normal or 

denervated soleus. This suggests a role for Myf-5 in regulation of the fast gene program. 

Myf-5 and MyoD have high sequence similarity (Braun et al., 1989), and during determination in 

myogenesis they also have a similar role (Braun and Arnold, 1996). MyoD has been shown to 

influence the expression of the fast MyHC isoforms (Ekmark et al., 2007), and it is possible that Myf-5 

could have a similar role in fiber type determination. 

Since the transcript level of Myf-5 in adult muscles is so low, an overexpression of this MRF would be 

interesting in order to determine a possible effect on fiber type. 
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1.7 Aims of the study 
The expression of MRF mRNA has been mapped, but the results regarding MRF4 are conflicting 

(Rhodes and Konieczny, 1989, Voytik et al., 1993, Walters et al., 2000a, Walters et al., 2000b). No one 

has so far mapped the normal expression of MRF4 protein, and doing this would help us come closer 

to find the function of this transcription factor.  

Our group has earlier overexpressed MRF4 without seeing any effect on either fiber type, oxidative 

metabolism or cross sectional area (Sjåland, 2005). Since MRF4 is the MRF with the highest 

transcription level in adult muscle, it would be interesting to investigate whether a knockdown of 

MRF4 has any effect on fiber type and oxidative capacity.   

Since Myf-5 and MyoD are so similar both regarding sequence (Braun et al., 1989) and role during 

myogenesis (Braun and Arnold, 1996), we wanted to investigate if Myf-5 also has a similar role as 

MyoD in adult muscles. The expression level of Myf-5 is very low in adult muscle, so we wanted to 

overexpress it in order to investigate possible effects on fiber type. 

The aims of this study were therefore: 

• Map normal expression of MRF4 protein in hind limb muscles of adult rats 

• Investigate possible effects of siRNA knockdown of MRF4 

• Investigate possible effects of overexpression of Myf-5 in the fast EDL and the slow soleus 

muscles of adult rats 
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2. Materials and methods 
The material and methods used to attain the three aims of the study are discussed in three different 

sections; the mapping of MRF4 in 2.1, siRNA knockdown in 2.2 and overexpression of Myf-5 in 2.3.   

All animal experiments were approved by the Norwegian Animal Research Authority, and conducted 

in accordance to the Norwegian Animal Welfare Act of December 20th, 1974, no.37, chapter VI, 

sections 20-22, and the Regulation of Animal Experimentation of January 15th 1996. 

The animal experiments were performed on male Wistar rats (200-400 g), delivered by Harlan 

Laboratories BV (Netherlands), and kept in the animal facilities at the University of Oslo. The animals 

were kept in cages in rooms with a regulated temperature of 22 °C and with air humidity at 50-60 %. 

Food and water were given ad libitum. 

2.1 Mapping of MRF4 expression 

2.1.1 Isolation of muscle proteins  
For mapping MRF4 protein expression, hind limb muscles of adult rats were taken out. These 

included soleus, EDL, plantaris, TA, and gastroc. For characterization regarding the fiber type 

composition of the muscles, see table 1.2. 

The animals were anesthetized with an intraperitoneal injection of Equithesin (704845, Ullevål 

Sykehusapotek, Norway), 5 µl/g body weight. Muscles were surgically removed, snap frozen in liquid 

nitrogen and stored at -80 °C until homogenization and further analysis. Gastroc. was cut in two; 

lateral and medial part, before freezing.  

The muscles were first crushed using a steel mortar, and then homogenized using an electrical 

homogenizer (IKA Labortechnik T25 basic, Tamro lab AS). The muscles were then fractioned into 

cytoplasmic and nuclear fractions according to a compartmental protein extraction kit (2145, 

Chemicon). Only the nuclear fraction was analyzed as MRF4 is a transcription factor and therefore is 

located in the nucleus.  

2.1.2 DNA constructs 
Before mapping MRF4 expression in muscles, the specificity of the MRF4 antibody was tested against 

lysates from tissue culture (HEK 293) transfected with MRF4, MyoD, myogenin or Myf-5 expression 

vectors. The MRF4 expression vector, pAP-MRF4, was made by cutting the pAP-lacZ vector (see 

section 2.3.1) at the BamHI and HindIII restriction sites, thereby cutting out the lacZ gene, and 
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ligating the cDNA sequence of rat MRF4 into the same site. The expression is driven by a Rous 

sarcoma virus (RSV) promoter. The MyoD expression vector, pCMS-EGFP-MyoD, was made by ligating 

mouse MyoD cDNA sequence into the multiple cloning site of the pCMS-EGFP vector from Clontech. 

The expression of MyoD is driven by the Cytomegalovirus (CMV) promoter. Likewise, the myogenin 

expression vector, pCMS-EGFP-Mg, contains the rat myogenin cDNA driven by the CMV promoter. 

The Myf-5 expression vector, pEMSV-Myf5, is described in section 2.3.1.  

2.1.3 Transfection in tissue culture 
The expression vectors for the four MRFs were transfected into human embryonic kidney cells (HEK 

293). The HEK-cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM; see appendix 5.2.1) 

at 37 °C and an atmosphere of 5 % CO2. Every 4th day they were split with trypsin EDTA 1:6 or 1:8, 

dependent on the confluency. Transfection was carried out in six well plates in accordance with the 

Lipofectamine 2000 kit (11668, Invitrogen).  

48 h after transfection, the medium was removed and the cells put on ice before being washed twice 

in 1 ml ice cold PBS (70011-044, GIBCO). The cells were then lysed in 500 µl lysis buffer (see appendix 

5.2.2), the lysate was further centrifuged at 13 000 rpm for 20 min at 4 °C, and the supernatant 

stored at -80 °C until further analysis. 

2.1.4 Protein measurement 
Protein concentration of cell lysates and muscle fractions were measured according to the Bio-Rad 

Protein Assay Protocol (500-0006, Bio-Rad) and read at 595 nm by a microplate reader (Wallac 

Victor2 1420, Perkin Elmer).  

2.1.5 SDS-PAGE and Western blotting 
Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) was performed according to 

the NuPAGE Technical Guide (IM-1001, Invitrogen Instruction Manual (2003)). Electrophoresis was 

run with 40 µg protein samples on NuPAGE® Novex 4-12 % Bis-Tris Gels (NP0321, Invitrogen) at 

200 V. Muscle fractions were run with MES running buffer for 40 min, while cell lysates were run with 

MOPS running buffer for 1 h. Weights of protein bands were determined using SeeBlue Plus2 Pre-

Stained Standard (LC5925, Invitrogen). 

Western blotting was performed according to the Trans-Blot Electrophoretic Transfer Cell Instruction 

Manual (170-3939, Bio-Rad). The gels were blotted onto PVDF membranes for 2 h at 1000 mA/140 V. 

Membranes other than those with muscle fractions were blocked in 5 % dry milk (7352F, Acumedia) 

in TBS-T (see appendix 5.3.2) for 1 h at room temperature. Membranes with muscle fractions were 

blocked in 7.5 % milk solution. Primary and secondary antibodies were diluted in 5 % milk solution, 

and applied over night at 4 °C and for 1 h at room temperature, respectively. After incubation with 
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primary and secondary antibodies, the membranes were washed three times 10 min in TBS-T. An 

additional 10 min wash step was included for membranes with muscle fractions. 

To verify the specificity of the MRF4 antibody, lysates from cells transfected with expression vectors 

for MRF4, Myf-5, MyoD or myogenin were run on a gel and immunostained with rabbit monoclonal 

anti-MRF4 (see table 2.1 for concentrations and supplier). This was followed by an anti-rabbit IgG 

horseradish peroxidase (HRP)-linked whole antibody (NA934V, Amersham). Immunostaining was 

followed by visualization on film (28906837, Amersham) using the ECL Western Blotting Analysis 

System (RPN2109, Amersham). The membrane was later stripped (according to Thermo Scientific 

Restore Western Blotting Stripping Buffer (#21059) protocol) and immunostained with antibodies for 

Myf-5, MyoD and myogenin (see table 2.1). After verifying the specificity of the MRF4 antibody, 

detection of endogenous MRF4 in muscle fractions could be done. 

To ensure even loading on the gels, staining with a mouse monoclonal anti-Vinculin antibody or a 

mouse monoclonal anti-β-actin antibody, followed by ECL Peroxidase labeled anti-mouse antibody 

(NA931VS, Amersham) was performed. 

Table 2.1. List of primary and secondary antibodies with concentrations used in western blotting. 

Protein Primary antibody Concentration Secondary antibody Concentration 
MRF4 sc-301, Santa Cruz 

Biotechnology 
1:250/1:500* NA934V, Amersham 

(anti-rabbit) 
1:2500/1:2000* 

Myf-5 sc-302, Santa Cruz 
Biotechnology 

1:500 NA934V, Amersham 
(anti-rabbit) 

1:2000 

MyoD sc-304, Santa Cruz 
Biotechnology 

1:1000 NA934V, Amersham 
(anti-rabbit) 

1:2000 

Myogenin sc-12732, Santa Cruz 
Biotechnology 

1:500 NA931VS, Amersham 
(anti-mouse) 

1:2000 

Vinculin V9131, Sigma-Aldrich 1:80 000 NA931VS, Amersham 
(anti-mouse) 

1:2000 

β-actin  A00702, GenScript 1:2000 NA931VS, Amersham 
(anti-mouse) 

1:2000 

* 1:250 and 1:2500 was used on muscle fractions, 1:500 and 1:2000 on cell lysates 

2.1.6 Statistical Methods 
The films of the western blots were scanned, and the band intensities measured with ImageJ 1.43 

(NIH). For statistical comparison of relative protein expression (i.e. band intensities), a Kruskal-Wallis 

test with Dunn’s Multiple Comparison test as a post test (figure 3.2 B) or a Mann-Whitney test (figure 

3.3) was performed. The level of significance was set to 0.05. For relative protein levels, the MRF4 

level in protein extracts of plantaris was set to 1. These measurements were without variance and 

were therefore left out of the statistical analysis. Statistical analysis was carried out in GraphPad 

Prism 5. 
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2.2 siRNA knockdown 

2.2.1 Principle of siRNA technology 
Small interfering RNAs (siRNAs) are short RNA molecules with length of 19 to 22 nucleotides. They 

are generated by cleavage of double stranded RNA templates by a ribonuclease called Dicer.  An RNA 

induced silencing complex (RISC) then binds the siRNA and separates it into single strands. The single 

stranded siRNA guides the RISC-complex to the target mRNA for destruction, causing RNA 

interference (Pratt and MacRae, 2009). Expression of the target gene can either be completely 

blocked or measurably suppressed. The mechanism of siRNAs is shown in figure 2.1. 

 

 

 

 

When the siRNA coding DNA is cloned into an expression vector it will cause sustained expression of 

the siRNA, and is therefore well suited to study the long-term effects of a protein knockdown. 

2.2.2 siRNA expression vectors 
The commercial company GenScript designs siRNAs from submitted cDNA sequences by using a 

machine learning algorithm. Optimal thermodynamic properties and GC content are taken into 

account, and low complexity regions and single-nucleotide polymorphisms (SNPs) are avoided. A 

BLAST/SmithWaterman search within the target organism is performed to exclude any siRNA that 

has a sequence overlap of 16 bp or more with another transcript. By submitting the rat MRF4 cDNA 

sequence (GI: 205522), siRNAs which were predicted to knock down the expression of MRF4 in rats 

were designed. 

The siRNA sequences are contained in a pRNA-CMV3.1-Neo vector. The CMV promoter drives the 

expression of siRNA, and a Simian virus 40 (SV40) promoter drives an ampicillin resistance gene. 

Figure 2.1. Mechanism of siRNAs. An expression vector 
containing the coding sequence of the siRNA is transfected 
into the cell. The siRNA is expressed and forms a hairpin 
structure which in the cytoplasm is cleaved by an enzyme 
called Dicer. The siRNA is then bound and separated into 
two strands by an RNA induced silencing complex (RISC). 
The RISC is guided to the target mRNA by the single 
stranded siRNA which base-pairs with the target mRNA. 
The target mRNA is then degraded by RISC causing 
“silencing” or knockdown of the gene of interest. 
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siRNAs are inserted into the vector between BamHI and HindIII sites. The coding sequences of the six 

siRNAs used in this study are listed in table 2.2. 

Table 2.2. List of siRNA coding sequences tested in this study. 

 Coding sequence 
siRNA 1 TCAGCGCCTTTCTTCCATCGT 
siRNA 2 TTGAGGCCTTGAAGCGTAGAA 
siRNA 3 TTCAGCGCCTTTCTTCCATCG 
siRNA 4 TCTTCAGCGCCTTTCTTCCAT 
siRNA 5 TTTGAAACTGGCTCCTATTTC 
siRNA 6 TCTGAGAAGTGCCATCAACTA 
 

2.2.3 Testing of siRNAs 
To test if the siRNAs knocked down the expression of MRF4, both the siRNA vectors and the 

pAP-MRF4 vector were transfected into HEK-cells. These cells do not normally express MRF4 which is 

a muscle specific transcription factor. 

To ensure that the amount of MRF4 was the same in every transfection well, an empty sham plasmid 

(pRNA-CMV3.1-Neo, GenScript) was co-transfected with pAP-MRF4 in the positive control well, while 

the same amount of pAP-MRF4 was co-transfected with every siRNA vector. Non-transfected cells 

were used as negative control. 

Lysates of tissue culture were run on western blots in order to investigate the knockdown effect of 

the siRNAs. Methods for transfection and western blotting have been described earlier (section 2.1.3 

trough 2.1.5). 

2.3 Overexpression of Myf-5 

2.3.1 Animal experiments 
The animals were anesthetized with 1.5-2.5 % v/v of Isoflurane gas (506949, Forene, Abbot) with 

airflow of 1000 cc/min when electroporation was performed. When the experiments were terminal, 

the animals were anesthetized with an intraperitoneal injection of Equithesin (704845, Ullevål 

Sykehusapotek, Norway), 5 µl/g body weight. The effect of anesthesia was tested by pinching the 

metatarsal region of the foot to check for absence of withdrawal reflex. Further anesthetics were 

administered if necessary. Hair on the legs was removed by an electric shaver followed by application 

of hair removal cream (Veet). A 2 cm opening was made in the skin with a scalpel, and the muscles 

were exposed surgically.  
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2.3.2 DNA constructs 
The EDL and soleus in the right leg of the rats were transfected with a DNA solution containing a mix 

of pEMSV-Myf5 and pAP-lacZ, while the muscles in the left leg, the sham muscles, were transfected 

with a mix of pEMSVscribe and pAP-lacZ (for concentrations see appendix 5.1). The use of pAP-lacZ 

ensured easy identification of transfected fibers. Studies have shown that two plasmids which are co-

transfected most often will be co-expressed after electroporation (Rana et al., 2004).  

The pAP-lacZ plasmid, which was a gift from Professor N. Gautam, contains the Escherichia coli β-

galactosidase coding sequence between a BamHI and a HindIII restriction site. The gene is driven by 

the RSV promoter, and the origin of replication is driven by a SV40 promoter.  

The pEMSV-Myf5 vector was made by Braun (1989) by ligating the human Myf-5 cDNA into the 

unique EcoRI site of pEMSVscribe. The unique EcoRI cloning site of pEMSVscribe (Davis et al., 1987) is 

driven by the Maloney sarcoma virus (MSV) long term repeat (LTR), and has a SV40 PolyA signal. 

Transfection with this vector served as a sham control to exclude effects on the muscle from the 

transfection itself.   

To verify desired expression from pEMSV-Myf5 and pEMSVscribe, they were transfected into HEK-

cells and the lysates run on a western blot (as described above). 

2.3.3 In vivo electroporation 
In vivo transfection of DNA was performed by electroporation as described by Mathiesen (1999). The 

soleus and EDL muscles were surgically exposed and 50 µl 0.5 µg/µl DNA solution (see appendix 5.1) 

was injected into the belly of the muscle with a syringe. Immediately after DNA injection, an 

electrical field was applied to the muscle using a pulse generator (Pulsar 6bp-a/s, Fredrick Haer & 

Co). Two silver electrodes (1 cm long and 1 mm thick) placed 2-3 mm apart were moved along the 

muscle while five trains of 1000 symmetrical bipolar pulses (200 µs in each direction), with amplitude 

of 100 V were conducted on the muscle. The electrical charge was registered using an analogue 

oscilloscope (OS245A, Gould Advance). Wounds were closed by suturing. 

The transfected muscles were surgically removed after 14 days. They were slightly stretched, pinned 

out on a thin wax plate and then submerged in isopentane cooled to its freezing point. The muscles 

were stored at -80 °C, and later used for cryosectioning and histochemistry.  

2.3.4 Histochemistry 
10 µm sections from the middle towards the ends of the muscles were made on a cryostat (HM560M 

Microme), mounted on microscope slides and stored at -80 °C. 
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Staining for β-galactosidase activity 
As previously mentioned, a vector with a lacZ-gene was co-transfected together with the 

experimental plasmid or the sham plasmid so that transfected fibers easily could be identified. LacZ 

encodes the enzyme β-galactosidase which breaks down β-galactosides. One such compound is X-gal 

(5-bromo-4-chloro-3-indolyl-ß-D-galactoside) which is broken down to indoxyl and galactose. Two 

indoxyl monomers dimerize and form an insoluble blue compound, and when applying X-gal to 

sections, transfected fibers will therefore appear blue. 

 

Staining for myosin heavy chain isoforms 
To determine the muscle fiber types, monoclonal antibodies against the four main MyHC isoforms 

were used on neighboring sections. Antibodies against MyHC 1, 2a and 2b were kindly provided by 

Stefano Schiaffino’s lab, and the antibody against the 2x MyHC isoform was a gift from Joseph 

F.Y.Hoh. To determine whether the electroporation had caused damage in the muscles, staining for 

embryonic MyHC was also performed as this is the first MyHC to be expressed in regenerating fibers. 

This antibody was grown in our lab in BF-45 hybridoma cells (ATCC). All antibodies are listed in table 

2.3. For concentrations and staining protocol, see appendix 5.4.3.  

Table 2.3. Primary and secondary antibodies for detection of MyHC isoforms. 

MyHC: Primary 
antibody: 

Secondary antibody: 

1 BA-D5 Rabbit Anti-mouse IgG, FITC conjugated (F-9137, SIGMA) 
2a SC-71 Rabbit Anti-mouse IgG, FITC conjugated (F-9137, SIGMA) 
2x 6H1 Goat Anti-mouse IgM FITC conjugated (F-9259, Sigma)/ Goat anti-mouse 

IgM, Cy3 (J115-165-020, Jackson Immuno Research Laboratories) 
2b BF-F3 Goat Anti-mouse IgM FITC conjugated (F-9259, Sigma)/ Goat anti-mouse 

IgM, Cy3 (J115-165-020, Jackson Immuno Research Laboratories) 
Embryonic BF-45 Rabbit Anti-mouse IgG, FITC-conjugated (F-9137, SIGMA) 
 

After staining and imaging, transfected fibers were identified and numbered on each section. For 

every transfected fiber, two non-transfected normal fibers from the same muscle were numbered 

and analyzed. When it was possible the two fibers to the left of the transfected one were chosen, if 

not, the two fibers below were chosen. Finally, fiber type was determined for each fiber by 

registration of which MyHC isoform it stained positive (figure 2.2). 
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Figure 2.2. A-E Example of serial sections of an EDL muscle stained for β-galactosidase activity and myosin heavy chain 
(MyHC) isoforms. Serial cross sections stained for β-galactosidase activity (A), MyHC 1 (B), MyHC 2a (C), MyHC 2x (D) and 
MyHC 2b (E). A. Fibers positively stained for β-galactosidase appear blue (numbered 1-13 in yellow), while non-transfected 
normal fibers for control appear bright (numbered N1-N16).  B-E. Positively stained fibers for the respective MyHC isoforms 
appear bright green or red, while negative fibers appear dark. Note that the system for numbering normal fibers described 
in the text does not apply to this figure, as all fibers have been given new numbers for illustrating purposes. 

 

2.3.5 Imaging 
 
Bright-field imaging 
Images of muscle sections stained for β-galactosidase activity were taken with water immersion at 

10X magnification with a ColorView camera connected to an Olympus BX50WI microscope. The 

microscope has an automatic stage controlled by the Olympus CellB software, which automatically 

takes a series of images of the whole section and aligns them. Further processing was carried out in 

Adobe Photoshop CS4. 

 

Fluorescence imaging 
Images of muscle sections stained with Cy-3 or FITC conjugated antibodies were photographed in a 

dark room with the same microscope setup as with bright-field imaging (see above). A green filter 

(XF37) was used to illuminate sections with the Cy-3 conjugated secondary antibody, while a blue-
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green filter (WF22) was used to illuminate sections with FITC conjugated secondary antibodies. 

Further processing was performed as with bright-field imaging. 

2.3.6 Statistical methods 
For statistical comparison of fiber type distribution between the Myf-5 transfected, sham transfected 

and normal control fibers, a Chi-square test was performed. The level of significance was set to 0.05. 

The statistical analyses were performed in GraphPad Prism 5. 
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3. Results 

3.1 Expression of MRF4 protein 

3.1.1 Testing of the MRF4 antibody 
Since all the MRFs show strong sequence similarities (Braun et al., 1989, Wright et al., 1989, Miner 

and Wold, 1990) the MRF4 antibody (sc-301) was tested for cross reactivity with MyoD, myogenin 

and Myf-5 (figure 3.1).  The MRF4 antibody did not bind to any of the other MRFs, and neither did 

the MyoD and the myogenin antibody. 

  

 

 

 

The Myf-5 antibody showed strong cross-reactivity with MyoD (not shown), but since these two 

factors have different molecular weight (34 and 42 kDa, respectively) it was possible to tell them 

apart. A reason for this cross-reaction may be the sequence similarity between these two factors.  

The Myf-5 antibody (sc-302) is a polyclonal antibody raised against the carboxyl terminal (aa 236-

255; Sakuma et al., 1999) of the human Myf-5 protein. A pairwise alignment (EMBOSS Pairwise 

Alignment Algorithm) show a sequence identity of 36 % and similarity of 52 % between Myf-5 and 

MyoD in this region.  

3.1.2 MRF4 expression patterns 
Mapping of MRF4 protein expression was done in hind limb muscles of adult rats. These included the 

slow soleus, the fast EDL, plantaris and TA, and the more mixed gastroc. which were separated in GM 

and GL. 

Figure 3.1. Western blot showing specificity of the MRF4 
antibody. Protein extracts from HEK-cells transfected 
with expression vectors for Myf-5, MyoD, myogenin or 
MRF4 were run on the same gel and immunostained with 
anti-MRF4 (sc-301) to test for specificity of this antibody. 
No cross reactivity with the other MRFs was observed. 
Immunostaining with anti-myogenin, anti-MyoD and 
anti-Myf-5 were also performed to verify presence of 
these proteins. Non-transfected cells were used as a 
negative control. Staining with anti-Vinculin served as 
loading control. 



25 
 

Muscles from 4 untreated rats were taken out. From two of the rats, muscles of both left and right 

leg were used, while from the two other, only muscles of the right leg were used. The muscles were 

homogenized and fractioned, and the nuclear fractions run on western blot. Six blots (one per leg) 

were treated as independent observations and used in the measurements of MRF4 expression. A 

representative blot is presented in figure 3.2 A. Lysates from MRF4 and non-transfected HEK-cells 

were included in the blots as positive and negative controls, respectively. The positive control is 

shown in lane 8, and MRF4 band intensities were measured in a horizontal line from this band. In 

every blot, band intensities were standardized to the intensity of the band in the plantaris lane on 

the same blot. This means that the band intensity of plantaris was always 1. These measurements 

therefore showed no variance, and were left out of the statistical analysis.  

Relative amounts of MRF4 protein are plotted in figure 3.2 B. Soleus showed the highest relative 

expression level, while the other muscles showed approximately the same expression level as 

plantaris. EDL had a slightly higher level, but this was largely due to one outlier in the measurements. 

It may seem that the overall expression level was higher in the soleus compared to the other muscles 

of the study. However, when comparing all the muscles, there were no significant differences in the 

relative protein levels, probably due to large spread in the measurements of individual blots.  

 

  

 
 

 

  

A 

B 

Figure 3.2. Expression level of MRF4 
protein in the hind limb muscles of rat. 
A. Representative western blot showing 
endogenous MRF4 protein in the 
nuclear fraction of extensor digitorum 
longus (EDL), soleus, plantaris, tibialis 
anterior (TA) and gastrocnemius, medial 
(GM) and lateral (GL) part. Cell extracts 
from non-transfected and MRF4 
transfected HEK-cells were used as a 
negative and positive control, 
respectively. B. A quantitative 
assessment showing the relative 
amount of MRF4 protein. n=6. Mean ± 
SEM. Band intensities were compared to 
the band in the plantaris-lane in the 
same blot. Band intensity of plantaris 
was therefore always 1. 
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As seen in table 1.2, soleus is the muscle with the slowest phenotype of the muscles included in this 

study, while the other muscles have a much faster phenotype. The expression level of MRF4 in soleus 

seems to be different than in these faster muscles, and the fast muscles were therefore pooled and 

their relative expression level compared with that of the slow soleus (figure 3.3). The difference was 

significant (p = 0.021). 

 

 

 

To see if there was any correlation between MRF4 expression and the muscles’ fiber type 

composition, mean values of the relative MRF4 level from each muscle were plotted against the 

muscles’ frequency of slow type 1 fibers (figure 3.4). Approximate type 1 fiber frequencies of GM and 

GL were calculated using measurements of muscle mass and type 1 fiber frequency of red, white and 

mixed gastroc. from Delp and Duan (1996).  

Figure 3.4. Correlation between 
MRF4 expression and frequency of 
type 1 fibers. Mean values of the 
relative MRF4 levels of each muscle 
are plotted against the muscles’ 
frequency (%) of type 1 fibers. 
Frequencies of fiber types are listed 
in table 1.2. Frequencies of GM and 
GL were calculated using Delp and 
Duans (1996) measurements of 
muscle mass and fiber type 
frequencies of red, white and 
mixed gastroc. 

 

 

Again it is clear that soleus is different than the other muscles both regarding relative level of MRF4 

and frequency of slow type 1 fibers. This might be an indication of a correlation between fiber type 

and MRF4 expression. Unfortunately, no muscles with intermediate type 1 fiber frequency were 

included, but either way the results indicate that MRF4 is enriched in slow muscle fibers. However, 

Figure 3.3. Relative level of MRF4 in soleus compared to the other, 
faster muscles of the study. The relative MRF4 protein levels of EDL, TA, 
GM and GL were pooled together and tested against the relative MRF4 
protein level of soleus. Measurements of plantaris were left out as they 
were always 1. n = 6 for soleus, n = 24 (6x4) for the other group. Mean ± 
SEM. * = p<0.05. 
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since there was large spread in the western blot measurements, more experiments are needed 

before any conclusions about expression of MRF4 protein can be drawn.  

3.2 Testing of siRNAs 
A total of six different siRNA vectors were tested in tissue culture of HEK-cells. These cells do not 

normally express MRF4, so a MRF4 expression vector was co-transfected together with the siRNA 

vectors. Figure 3.5 shows a western blot of the three first siRNA tested. None of them seemed to give 

a knockdown of MRF4. In fact, the bands in the siRNA lanes had an intensity that was somewhat 

higher than the MRF4 control band. 

 

Three more siRNAs were tested in HEK-cells. Western blot of protein extracts are shown in figure 3.6. 

Neither of these siRNAs gave a knockdown of MRF4, and also here the bands in siRNA lanes were 

somewhat stronger than the band in the MRF4 control lane. 

Since none of the tested siRNAs seemed to give a knockdown of MRF4, the MRF4 in vivo knockdown 

study was abandoned for the time being. 

Figure 3.5. Testing of siRNAs 1, 2 and 3. Western 
blot with lysates of siRNA transfected HEK-cells. Co-
transfection with an expression vector for MRF4 
was necessary because HEK-cells do not normally 
express MRF4. Cells transfected with a sham 
plasmid and the MRF4 expression vector served as 
a positive control. Non-transfected cells were used 
as a negative control. Staining with anti-Vinculin 
served as loading control. 

Figure 3.6. Testing of siRNAs 4, 5 and 6. Western 
blot with lysates of siRNA transfected HEK-cells. 
Because HEK-cells do not normally express MRF4, 
co-transfection with an expression vector for MRF4 
was necessary.  Transfection with a sham plasmid 
and the MRF4 expression vector was used as a 
positive control. Negative control was non-
transfected cells. Staining with anti-Vinculin served 
as loading control. 
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3.3 Effects of Myf-5 overexpression on fiber type distribution 

3.3.1 Verification of pEMSV-Myf5 expression vector 
The Myf-5 expression vector (pEMSV-Myf5) and the sham plasmid (pEMSVscribe) used in this 

experiment were transfected in tissue culture (HEK-cells) to verify desired expression. Lysates of the 

transfected cells were run on a western blot and immunostained with a Myf-5 antibody (figure 3.7). 

A band around 34 kDa (according to the ladder used) was seen in the lane of Myf-5 transfected cells, 

but not in the lane of sham transfected cells. The band corresponds to the molecular weight of Myf-5 

(32 kDa), and we concluded that pEMSV-Myf5 but not pEMSVscribe gives expression of Myf-5. In vivo 

overexpression of Myf-5 could therefore be conducted using this expression vector. 

 

 

 

 

 

 

 

3.3.2 Fiber type distribution in EDL 
A total number of 374 Myf-5 transfected fibers, 455 sham transfected fibers and 2153 normal fibers 

were analyzed (table 3.1/figure 3.8). There were significant differences between all three groups. 

Table 3.1. Fiber type distribution (%) in EDL. 

Fiber type 1 1/2a 2a 2a/2x 2x 2x/2b 2b Total fibers 
Normal 2.4 1.7 15.8 5.9 29.1 17.2 27.8 2153 
Sham 4.4 1.3 19.3 4.2 20.0 18.2 32.5 455 
Myf-5 1.9 1.6 9.6 6.4 18.7 17.7 44.1 374 
 

 

 

 

 

 

 

 

Figure 3.7. Expression of Myf-5 in tissue culture. 
Western blot of protein extracts from HEK-cells 
transfected with the sham plasmid pEMSVscribe 
or the Myf-5 expression vector pEMSV-Myf5. 
Staining with anti-Vinculin served as a loading 
control. 
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Figure 3.8. Fiber type distribution in EDL. Fiber type distribution after Myf-5 or sham transfection, and in normal controls. 
Total n is 2982 fibers from 8 different animals. For further information regarding fiber type distribution see table 3.1 and 
appendix 5.5.1. Significant differences compared to normal fibers are indicated by *, while significant differences compared 
to the sham transfected fibers are indicated by # (*/#=p<0.05, **/##=p<0.01, ***/###=p<0.001). The level of significance 
was set to 0.05. 

 

When comparing Myf-5 transfected fibers with the normal fibers, the amount of 2a fibers have 

decreased from 15.8 % to 9.6 % (p=0.0016), the amount of 2x fibers decreased from 29.1 % to 18.7 % 

(p<0.0001), and the amount of 2b fibers increased from 27.8 % to 44.1 % (p<0.0001). 

When comparing sham transfected fibers with the normal fibers the amount of 2x fibers have 

decreased from 29.1 % to 20.0 % (p=0.0001) and the amount of 2b fibers increased from 27.8 % to 

32.5 % (p=0.0423). 

Compared to sham transfected fibers, Myf-5 transfected fibers have a decrease from 19.3 % to 9.6 % 

(p<0.0001) in 2a fibers, and an increase from 32.5 % to 44.1 % (p=0.002) in 2b fibers. 

As described, there was an expansion in the pool of 2b fibers at the expense of 2x and 2a fibers when 

comparing Myf-5 transfected fibers to normal fibers. The expansion of 2b fibers was also evident 

when comparing Myf-5 to sham transfected fibers, although the change was smaller, and was only 

accompanied by decrease in 2a fibers and not 2x fibers. 

However, the results should be interpreted with caution as there was large animal to animal 

variation with regard to transfection efficiency and fiber type composition. This is not accounted for 

in the statistical analysis as the fibers of the same experimental group from all rats were pooled 

before the analysis. 
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3.3.3 Fiber type distribution in soleus 
A total of 835 Myf-5 transfected fibers, 746 sham transfected fibers and 3974 normal fibers were 

analyzed (table 3.2/figure 3.9). Significant differences were observed between all three groups. 

Table 3.2. Fiber type distribution (%) in soleus. 

Fiber type 1 1/2a 2a Total fibers 
Normal 92.5 2.8 4.7 3974 
Sham 87.0 7.0 6.0 746 
Myf-5 93.8 4.0 2.3 835 
There was no staining for type 2x or 2b MyHC so these are excluded from the table. 

 

Figure 3.9. Fiber type distribution in soleus. Fiber type distribution after Myf-5 or sham transfection, and in normal 
controls. Total n is 5555 fibers from 10 different animals. For further information regarding fiber type distribution see table 
3.2 and appendix 5.5.2. Significant differences compared to normal fibers are indicated by *, while significant differences 
compared to the sham transfected fibers are indicated by # (**/##=p<0.01, ***/###=p<0.001, ¤=*** and ###). The level of 
significance was set to 0.05.  

 

When comparing Myf-5 transfected fibers with normal fibers, a decrease in 2a fibers from 4.7 % to 

2.3 % (p=0.002) is seen. Compared to normal fibers, sham transfected fibers showed an increase 

from 2.8 % to 7.0 % (p<0.0001) in 1/2a fibers, and a decrease from 92.5 % to 87.0 % (p<0.0001) in 

type 1 fibers. 

Between Myf-5 and sham transfected fibers there were significant differences in all fiber types. A 

decrease in both 2a (from 6.0 % to 2.3 %, p=0.0002) and 1/2a (7.0 % to 4.0 %, p=0.0099), as well as 

an increase from 87.0 % to 93.8 % (p<0.0001) in type 1 in Myf-5 transfected fibers was seen. 

Overall, there seems to be differences between all the experimental groups. Sham transfected fibers 

show a shift towards a faster fiber type than normal fibers, and Myf-5 transfected fibers show a 

slower fiber type than both sham transfected and normal fibers. 
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As mentioned above, caution should be shown when interpreting these results as there was large 

animal to animal variation in transfection efficiency and fiber type composition. 

No staining of embryonic MyHC was observed in any of the fibers analyzed in this study, and little or 

no such staining was evident in the muscles at all. In cases where it was observed, it was only in very 

small fibers in the fringe of the muscle. 
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4. Discussion 
To our knowledge, this study is the first to map the expression of MRF4 protein in normal, adult 

muscle. The lack of publications on this topic could be related to difficulties with the available 

antibodies. In the present study we saw that the level of MRF4 was significantly higher in the slow 

soleus when compared to fast muscles. 

We were not able to detect any knockdown effect from the six different siRNAs tested, as shown in 

western blot figures 3.5 and 3.6. Although the siRNAs are designed to specifically knock down their 

targets, failing frequently occur. Because of the cost of the siRNA vectors and the limited time 

remaining in my master’s degree, further work with this project was put on hold. 

Results from overexpression of Myf-5 in EDL indicate that Myf-5 stimulates expression of MyHC 2b, 

as the Myf-5 transfected fibers showed a somewhat higher percentage of 2b fibers than sham 

transfected and normal fibers. 

4.1 Is MRF4 enriched in slow fibers? 
The results indicated a correlation between the muscles’ relative MRF4 expression and their 

frequency of slow type 1 fibers. Soleus, the slowest muscle included, shows the highest expression 

level of MRF4. The difference in MRF4 level of soleus compared to all the other faster muscles 

pooled together was significant. This finding is in agreement with Walters et al. (2000a), who found 

that the transcript level of MRF4 in normal muscles was higher in soleus than in the fast EDL.  

Since there seems to be a correlation between MRF4 expression and fiber type composition, a 

natural question to ask is whether MRF4 influences fiber type. Overexpression of MRF4 in EDL do not 

alter the expression of MyHC isoforms, the oxidative enzyme SDH (succinate dehydrogenase), or 

change the fibers’ cross sectional area (Sjåland, 2005). If the mRNA level of MRF4 is the same 

throughout every muscle as found by Rhodes and Konieczny (1989), it is possible that MRF4 is 

subject to fiber type specific post-transcriptional regulation since the results of the present study 

showed that the protein expression differs between muscles. It is also possible that its translation is 

regulated by the electrical activity of the muscle, leading to different protein levels in fast and slow 

muscles. If the mRNA levels differ between fiber types and muscles like Walters et al. have suggested 

(2000a, 2000b), the overexpression results of Sjåland (2005) indicate that MRF4 does not participate 

in the regulation of MyHC isoforms or SDH. It may never the less be involved in regulation of other 
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fiber type specific proteins, for example in regulation of other metabolic enzymes, regulation of 

proteins involved in twitch duration or calcium flux.  

With the antibodies available, western blotting does not seem to be the optimal method for 

detection of MRF4 protein in muscle extracts, as there was high background staining and many 

unspecific bands. No such problems were experienced with lysates from tissue culture, probably due 

to a much higher protein content and diversity in muscles. For detection of endogenous MRF4 in 

muscle, an alternative approach could be to perform two-dimensional gel electrophoresis, where 

proteins are separated both according to size and isoelectric point. This means that the proteins are 

separated to a greater extent which might make it easier to identify the MRF4 band. Preliminary 

studies with this method with one of our collaborators have shown promising results for MRF4 

expression in soleus and EDL. By doing mass spectrometry on the bands stained with anti-MRF4, 

verification of the correct protein and identification of possible post-translational modifications can 

be done. 

4.2 Does Myf-5 have an effect on skeletal muscle fiber type? 

4.2.1 The “sham-effect” 
Myf-5 transfected fibers of EDL showed a significantly higher number of type 2b MyHC fibers than 

both sham transfected and normal fibers. But there were also a significantly higher number of type 

2b expressing fibers among the sham transfected fibers when compared to normal fibers. This is 

probably due to the “sham-effect” which has been observed in some previous studies in our group 

(Grönevik 2000, Sjåland 2005, Hansen 2009, Staurseth 2009).  

The sham-effect is a phenomenon where more fast fibers are found among the sham transfected 

fibers than the normal control fibers. The transfection of the sham plasmid should not have any 

effect on fiber type distribution, so in theory sham transfected and normal fibers should have an 

equal distribution of fiber types. This “sham- effect” is believed to be caused by selective transfection 

of large fibers. A fiber’s conductance is proportional to its circumference (Katz, 1948) so that large 

fibers have greater conductance (and smaller resistance) than small fibers, and therefore will 

transfect more easily. 2b fibers have the largest circumference of all the different fiber types and 

selective transfection of these may therefore cause a “sham-effect”. 

In soleus there were large variations between all experimental groups, and it is difficult to say if some 

of the variation can be due to selective transfection. The cross sectional area of different fibers in 

soleus is more homogenous than in EDL, where the variation is rather large (Delp and Duan, 1996), 

thus making it more likely to achieve a non-selective transfection in soleus. 
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4.2.2 Does Myf-5 induce a fast phenotype? 
Myf-5 transfected fibers of EDL have a higher percentage of 2b fibers than both sham transfected 

and normal fibers. This may indicate a transformation in the fast direction in fibers overexpressing 

Myf-5.  

Overexpression of any of the MRFs in cultured myotubes greatly increases 2b promoter activity 

(Takeda et al., 1995), but not 2a or 2x promoter activity (Allen et al., 2001). Overexpression of MyoD 

in vivo has been shown to increase the expression of fast fiber type MyHC, but only 2a and 2x 

(Ekmark et al., 2007). In vivo overexpression of myogenin (Ekmark et al., 2003) or MRF4 (Sjåland, 

2005) does not have any effect on MyHC expression. The results of the present study suggest that 

overexpression of Myf-5 in EDL has the ability to increase expression of MyHC 2b in vivo.  

The transcription level of Myf-5 is found to be very low in adult muscle, and no differences are seen 

between different muscles (Hughes et al., 1993, Voytik et al., 1993). On the other hand, Sakuma et al. 

(1999) find that Myf-5 protein expression is higher in fast muscles, and this supports the hypothesis 

that Myf-5 is an activator of MyHC 2b expression. It is however possible that activation of the MyHC 

2b promoter only is a pharmacological effect. The expression level of MyoD is highest in fast muscles 

(Hughes et al., 1993, Voytik et al., 1993), and MyoD induces expression of fast MyHC isoforms 

(Ekmark et al., 2007). Myf-5 has great sequence similarity with MyoD, and it may be that Myf-5 

shares many properties with MyoD. 

4.2.3 Animal-to-animal variation may influence fiber type distribution 
Although the rats used in this study were of the same strain and batch, there was variation in fiber 

type composition between the individual animals. Since all sections were stained for a given MyHC 

isoform at the same time with the same antibody solution, this variation is not likely to be due to 

deviations during the staining procedure. The fiber type composition of muscles has been shown to 

vary along the proximo-distal axis (Wang and Kernell, 2000), and this may influence the analysis of 

the muscles. No marking of proximal and distal ends of the muscles were done before freezing, and 

some of the animal to animal variation may therefore be caused by differences in where in the 

muscle the analyzed sections are taken from. 

Good transfection efficiency is dependent on many variables. The volume of DNA solution injected, 

where it is injected and how the solution is distributed within the muscle, the voltage of the current 

applied and the positioning of the electrodes during the electroporation are all factors that will 

influence the transfection.  
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The transfection efficiency varied between the Myf-5 and sham transfected muscles within the 

individual rats (see appendix 5.5). In some rats the number of transfected fibers were approximately 

the same for Myf-5 and sham muscles, but often the number of Myf-5 transfected fibers were higher 

than the number of sham transfected fibers, or vice versa. When there are large variations in fiber 

type composition between the rats, uneven transfection efficiency can lead to apparent differences 

between the experimental groups, when there in reality is none. For example, when one of the rats 

with particularly large difference in the number of Myf-5 and sham transfected fibers was left out, 

there were no significant differences between the Myf-5 and sham groups of soleus.  

In soleus, the fiber type change in Myf-5 transfected fibers was in the slow direction compared to 

sham transfected and normal fibers. The sham transfected fibers showed a faster phenotype than 

the normal and Myf-5 transfected fibers. It is possible that much of the differences between the 

experimental groups are caused by variation in fiber type composition and variable transfection 

efficiency between rats. In EDL, the variable transfection efficiency resulted in that most of the fibers 

analyzed came from 3 rats (see appendix 5.5.1). Animal-to-animal variation might therefore have 

influenced the results. 

4.3 Future experiments 
Future studies of MRF4 expression should include two-dimensional gel electrophoresis to allow 

better separation of proteins and easier identification of the correct band. Possible modifications of 

the protein can be identified with mass spectrometry. It would also be interesting to investigate the 

level of mRNA expression by real time PCR, as there are discrepancies in the studies regarding MRF4 

mRNA expression (Rhodes and Konieczny, 1989, Voytik et al., 1993, Walters et al., 2000a, Walters et 

al., 2000b). In order to further confirm a correlation between MRF4 expression and slow fiber type 

frequency, more muscles with intermediate type 1 fiber content should be investigated (se figure 

3.4). 

The six siRNAs tested in this study did not give a detectable knockdown of MRF4. In order to 

investigate knockdown effects, more siRNAs should be tested. 

Since the material in the study of Myf-5 in EDL was small due to variable transfection efficiency, 

future studies should focus on increasing the sample size. More material is also needed before any 

conclusions can be made about the effects of overexpression in soleus. It would also be interesting to 

investigate whether Myf-5 has any effect on the oxidative or glycolytic metabolism, and also cross 

sectional area of the fibers. 
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4.4 Conclusions 
• The level of MRF4 was significantly higher in the slow soleus compared to fast muscles 

• Fibers overexpressing Myf-5 in EDL showed a higher percentage of 2b fibers than sham 

transfected and normal fibers 
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5. Appendices 

5.1 DNA electroporation solutions 

5.1.1 pEMSV-Myf5 and pAP-lacZ solution (200 µl) 
Solution: Amount: 
pEMSV-Myf5 in TE buffer (2 µg/µl) 25 µl 
pAP-lacZ (2 µg/µl) 25 µl 
4 M NaCl 8 µl 
dH2O 142 µl 
 

5.1.2 pEMSVscribe and pAP-lacZ solution (200 µl) 
Solution: Amount: 
pEMSVscribe in TE buffer (2 µg/µl) 25 µl 
pAP-lacZ (2 µg/µl) 25 µl 
4 M NaCl 8 µl 
dH2O 142 µl 
 

5.2 Cell culture 

5.2.1 DMEM (555 ml) 
Solution: Amount: 
DMEM (GIBCO) 500 ml 
Fetal calf serum (Bio Whittaker) 50 ml 
Penicillin/Streptomycin (Bio Whittaker) 5 ml 
 

5.2.2 Cell lysis buffer 2 l 
Solution: Amount: 
50 mM Trisacetate pH 7 12 g 
0,27 M Sucrose 184.4 g 
1 mM EDTA 0.75 g 
1 mM EGTA 0.76 g 
1 mM Sodium Orthovanadate 20 ml stock 
10 mM B-glycerophosphate 6.3 g 
50 mM Sodium Fluoride 4.2 g 
5 mM Sodium Pyrophosphate 4.46 g 
1 % Triton X-100 20 ml 
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• Make up to 2.0 l with distilled water. Before use, 50 µl each (per 50 ml buffer) of protease 

inhibitor phenylmethanesulphonylfluoride (PMSF), 4mM Benzamidine and β-mercapto-

ethanol must be added. 

5.3 Western blotting 

5.3.1 10X transferbuffer 
Solution: Amount: 
Glycine 288 g 
Tris-(hydroxymetyl)aminomethane 60 g 

 

• Dissolve Glycine and Tris in some dH2O before adjusting volume to 2.0 l 

• To make 1X transferbuffer to use, take 100 ml 10X transferbuffer, 100 ml methanol and 

800 ml dH2O 

5.3.2 10X TBS (tris-buffered saline) and TBS-T 
Solution: Amount: 
NaCl 292.2 g 
Tris-(hydroxymetyl)aminomethane 24.25 g 

 

• Dissolve NaCl and Tris in some dH2O before adjusting volume to 1.0 l 

• To make TBS-T, take 100 ml of TBS and 900 ml dH2O, add 1 ml Tween20 (P1379, Sigma-

Aldrich), mix well 

5.4 Histochemistry 

5.4.1 10X PBS solution 
Solution: Amount: 
NaCl 80 g 
KCl 2.0 g 
Na2HPO4 x 2H2O 14.4 g 
KH2PO4 2.0 g 

 

• Dissolve all the chemicals in 800 ml of dH2O 

• Adjust the pH to 6.8 / 6.5, and the volume to 1 l 

• For making 1X PBS with pH 7.4 / 7.1, take 100 ml 1X solution and 900 ml dH2O 
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5.4.2 Staining for β-galactosidase activity 
• Thaw sections and encircle the sections with a hydrophobic pen (H-400, Vector) 

• Make fix-solution: 

Solution: Amount: 
(Para)Formaldehyde 2 g 
Glutaraldehyde 400 µl 
10 X PBS (pH ) 10.0 ml 
dH2O 69.2 ml 

 

• Dissolve the formaldehyde in dH2O (60 °C); adjust volume to 100 ml and pH to 7.1 

• Fix the sections at 4 °C for 20 min 

• Wash the sections 3 x 5 min in PBS (pH 7.1) 

• Make staining solution: 

Solution: Amount: 
10 X PBS (pH 7.1) 150 µl 
0.2 M Potassium ferrocyanide 30 µl 
0.2 M Potassium ferricyanide 30 µl 
1 M Magnesium chloride 3 µl 
dH2O 1260 µl 
X-gal in DMSO (50 mg/ml) 30 µl 

 

• Stain over night at 37 °C in a moist chamber 

• Wash sections 3 x 5 min in PBS (pH 7.1) 

• Mount sections in glycerin gel: 

Solution: Amount: 
Gelatin  15 g 
Glycerol  100 ml 
dH2O 100 ml 
 

5.4.3 Staining for MyHC isoforms 
• Thaw sections and encircle the sections with a hydrophobic pen (H-400, Vector) 

• Apply antibodies for the different MyHC isoforms: 

MyHC: Primary 
antibody: 

Concentration: Incubation: 

1 BA-D5 1:80 in 1 % BSA in PBS 30 min at RT 
2a SC-71 1:100 in 1 % BSA in PBS 30 min at RT 
2x 6H1 100 % O.N at 4 °C 
2b BF-F3 1:7 in 0.5 % BSA in PBS 45 min at 37 °C in moist chamber 
Embryonic BF-45 100 % 30 min at RT 
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• Wash sections 3 x 5 min in PBS (pH 7.4) 

• Use secondary antibody Rabbit anti-mouse IgG FITC conjugated (F-9137, Sigma) on primary 

antibodies BA-D5, SC-71 and BF-45 in a 1:200 dilution in 0.5 % BSA in PBS, and incubate for 

30 min at 37 °C in a moist chamber 

• On primary antibodies 6H1 and BF-F3, use secondary antibody Goat anti-mouse IgM, Cy-3 

(J115-165-020, Jackson ImmunoResearch Lab) or Goat Anti-mouse IgM FITC conjugated (F-

9259 SIGMA), in a 1:300 or 1:80 dilution in 0.5 % BSA in PBS, respectively. Incubate for 

80-120 min for MyHC 2x staining, 45 min for MyHC 2b staining, both at 37 °C in a moist 

chamber 

• Wash sections 3 x 5 min in PBS (pH 7.4) 
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5.5 Fiber type frequencies of individual rats 

5.5.1 Fiber type frequencies (%) in EDL of individual rats 
  1 1/2a 2a 2a/2x 2x 2x/2b 2b Total fibers 
R1 Myf-5 1.6 2.7 9.2 2.7 19.0 12.5 52.2 184 
 Sham 3.2 0 9.7 6.5 25.8 16.1 38.7 31 
 Normal 1.7 2.3 16.9 5.2 31.6 9.6 32.7 706 
R2 Myf-5 - - - - - - - 0 
 Sham 0 0 0 0 0 66.7 33.3 3 
 Normal 0 0 20.0 20.0 40.0 20.0 0 5 
R4 Myf-5 0 0 0 0 0 50.0 50.0 2 
 Sham 3.8 0 0 0 15.4 23.1 57.7 26 
 Normal 6.7 0 14.6 2.2 31.5 16.9 28.1 89 
R6 Myf-5 0 0 0 0 25.0 50.0 25.0 4 
 Sham - - - - - - - 0 
 Normal 0 0 0 0 62.5 12.5 25.0 8 
R7 Myf-5 0 0 5.6 11.1 33.3 27.8 22.2 18 
 Sham 0 0 0 0 0 0 100.0 1 
 Normal 1.3 0 2.7 10.7 26.7 17.3 41.3 75 
R8 Myf-5 0 0 0 5.9 5.9 29.4 58.8 17 
 Sham 0 1.0 1.9 1.9 13.3 6.7 75.2 105 
 Normal 2.3 1.4 7.6 6.2 30.2 13.8 38.4 354 
R9 Myf-5 3.5 0 8.0 8.8 21.2 18.6 39.8 113 
 Sham 6.9 1.2 31.4 5.7 24.9 20.4 9.4 245 
 Normal 2.7 1.5 21.4 6.4 28.5 21.9 17.8 754 
R10 Myf-5 0 2.8 25.0 16.7 8.3 25.0 22.2 36 
 Sham 2.3 4.5 13.6 2.3 9.1 29.5 38.6 44 
 Normal 3.1 2.5 11.1 5.6 16.7 36.4 24.7 162 
Total Myf-5 1.9 1.6 9.6 6.4 18.7 17.7 44.1 374 
 Sham 4.4 1.3 19.3 4.2 20.0 18.2 32.5 455 
 Normal 2.4 1.7 15.8 5.9 29.1 17.2 27.8 2153 
Fiber type distribution within the experimental groups in EDL of different individuals. Myf-5 transfected EDL in rat 2, and 
sham transfected EDL in rat 6 did not have any transfected fibers. EDL muscles from rat 3 and 5 did not have any 
transfected fibers, and are therefore left out. 
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5.5.2 Fiber type frequencies (%) in soleus of individual rats 
  1 1/2a 2a Total fibers 
R1 Myf-5 97.7 1.1 1.1 87 
 Sham 89.1 10.9 0 55 
 Normal 95.9 2.6 1.4 345 
R2 Myf-5 91.4 2.9 5.7 70 
 Sham 98.1 1.9 0 108 
 Normal 94.9 2.5 2.5 356 
R3 Myf-5 - - - 0 
 Sham 76.9 23.1 0 13 
 Normal 96.2 3.8 0 26 
R4 Myf-5 67.6 23.5 8.8 34 
 Sham 100.0 0 0 1 
 Normal 91.3 3.2 5.6 126 
R5 Myf-5 100.0 0 0 117 
 Sham 100.0 0 0 12 
 Normal 99.6 0 0.4 258 
R6 Myf-5 100.0 0 0 2 
 Sham 76.9 9.2 13.9 295 
 Normal 84.3 4.3 11.4 1 191 
R7 Myf-5 90.9 4.5 4.5 22 
 Sham 96.4 3.6 0 28 
 Normal 98.0 1.0 1.0 100 
R8 Myf-5 100.0 0 0 173 
 Sham - - - 0 
 Normal 99.7 0.3 0 346 
R9 Myf-5 96.2 3.8 0 132 
 Sham 97.1 2.9 0 139 
 Normal 96.7 3.3 0 540 
R10 Myf-5 86.9 8.1 5.1 198 
 Sham 86.3 9.5 4.2 95 
 Normal 93.4 2.3 4.2 686 
Total Myf-5 93.8 4.0 2.3 835 
 Sham 87.0 7.0 6.0 746 
 Normal 92.5 2.8 4.7 3974 
Fiber type distribution within the experimental groups in soleus of individual rats.  
Myf-5 transfected soleus in rat 3, and sham transfected soleus in rat 8 did not have  
any transfected fibers. 
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