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General introduction 

 

Atherosclerosis 

Atherosclerosis is a chronic inflammatory disease of the arterial system that is influenced 

by genetical and environmental factors (reviewed in 1, 2). Among these are genetic 

makeup, diet, smoking, sex, age and several other factors - and it is the primary cause of 

stroke and coronary artery disease (CAD). CAD is the leading cause of death in 

industrialized countries 3-5.  

 

Atherosclerosis is characterized by the accumulation of lipids and fibrous elements, 

called atherosclerotic lesions, in the large arteries 6. These lesions are called the fatty 

streak, the intermediate fibrous cap or advanced complicated lesions 3 after how 

advanced the development is. Even though advanced lesions can grow large enough to 

block blood flow, the most important complication takes place when a thrombus or blood 

clot is formed as a result of a rupture or erosion of the lesion 2. The rupturing of the 

plaques leads to thrombosis (reviewed in 7), which is an acute clinical event that can lead 

to death or permanent damage by myocardial infarction or stroke.  

 

Atherosclerosis and CAD are usually considered to be a result of an unhealthy lifestyle, 

but genetical makeup predisposes many people that live relatively healthy lives. 

Inflammation is recognized as playing a key role in atherosclerosis 8 and considered the 

primary risk factor. Only about half of the patients with atherosclerosis actually manifest 

hyperlipidemia, the major secondary risk factor that is usually targeted for intervention 9, 

10. 

 

Cholesterol is a well known risk factor for CAD, even among the general public. High 

plasma levels of cholesterol (>160 mg/dl 11) increases the risk for complications of 

atherosclerosis. Although a simple preventative step against CAD would be to keep 
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plasma cholesterol levels reduced to below 150 mg/dl, this is unlikely to be achieved in 

the near future 12. 

 

Cholesterol is an essential component of cell membranes, providing stability and 

allowing for transmembrane transport. Cholesterol is also the precursor of multiple 

metabolic pathways (adrenal steroids, sex hormones, vitamins and bile acids) 13, 14 and a 

major component of lipoproteins, but is not actually an essential part of the diet as it is 

synthesized from acetyl coenzyme A 15. 

 

Because lipids are sparingly soluble in aqueous solutions they are transported as 

components of lipoproteins. Cholesterol is mainly transported in the blood in the form of 

cholesteryl esters (CE) associated with lipoproteins. Lipoproteins are globular, micelle-

like particles that consist of a nonpolar core of triacylglycerols (TGs) and CE surrounded 

by an amphiphilic coating of protein, phospholipids and cholesterol 15. Lipoproteins are 

classified in five broad categories depending on their functional and physical properties; 

chylomicrons, very low density lipoproteins (VLDL), intermediate density lipoproteins 

(IDL), low density lipoproteins (LDL)  and high density lipoproteins (HDL). 

Chylomicrons transports dietary TG and cholesterol from the intestines to the tissues. 

VLDL, LDL and IDL transport endogenous TG and cholesterol from the liver to the 

tissues. HDL transports endogenous cholesterol from the tissues to the liver 15, and has 

several important antiatherogenic properties described later. The apolipoproteins (apos) 

have a high helix content, which increases when they are incorporated in lipoproteins 16. 

 

The excess cholesterol must be eliminated. Although the sterol core is not degradable in 

the body, cholesterol is a precursor for bile acids, which are small water soluble 

molecules with detergent-like properties 15. The only quantitatively significant sink for 

excess cholesterol is the liver 17, owing to its unique ability to synthesize bile acids. The 

transport of cholesterol from extrahepatic tissues to the liver is termed reverse cholesterol 

transport (RCT) 18, 19 and will be discussed in more detail later. Both the input and output 

cholesterol pathways are regulated coordinately by nuclear receptors (NRs) to achieve 

homeostasis (reviewed in 20). 
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Cellular and molecular interactions in atherosclerosis 

Several factors that contribute to vascular damage have been identified. Hyperlipidemia, 

raised levels of homocysteine, cigarette smoking, viral infections and oxidized lipids and 

proteins (in particular oxidized LDL (ox-LDL)) 21 are some of these. Cells of the arterial 

wall secrete themselves oxidants that may oxidize LDL 11.  

 

It is a known fact that high levels of low-density lipoprotein cholesterol (LDL-C) and low 

levels of high density lipoprotein cholesterol (HDL-C) are major contributing factors in 

the development of atherosclerosis 22-24. On the other hand, several studies have shown 

that high levels of HDL-C are inversely associated with CAD risk 23, 25. LDL in itself 

does not promote atherosclerosis, but with high levels of LDL in plasma LDL 

metabolism in monocytes and endothelial cells (EC) will deplete the antioxidant pool, 

resulting in mild oxidation of LDL 26. LDL may also be oxidized through other means 

such as transition metals and cellular enzymes 27. 

 

EC play an important role in the inflammatory process. Dysfunction and/or damage to the 

endothelium initiate a number of events that promote atherosclerosis, including increased 

endothelial permeability, platelet aggregation, leukocyte adhesion and generation of 

cytokines 28. Cells in regions of arterial branching or curvature show increased 

permeability to macromolecules such as LDL and are the preferential sites for lesion 

formation. This is because fluid shear stress is among the important physical forces acting 

on EC, and arterial branching or curvature disturbs the flow 6. Risk factors for 

atherosclerosis include typical markers such as C-reactive protein (CRP) 29 which also 

has a proinflammatory effect 30. 

 

Injury or disease to the endothelium induces expression of cell adhesion molecules 

(CAMs), such as vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion 

molecule (ICAM), E-selectin and P-selectin 31, 32. These act as chemoattractants for 
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monocytes and other leukocytes to adhere to the endothelium and then transmigrate into 

the intima (attracted by monocyte chemoattractant protein-1 (MCP-1) 33). The 

inflammatory properties of lipoproteins stem from the fact that they may induce the 

activation of EC and expression of cell surface adhesion molecules; among these VCAM-

1 and ICAM 34. Circulating monocytes and T-lymphocytes bind tightly to these cell 

surface adhesion molecules and will then migrate into the artery wall 35. Nitric oxide 

(NO) released from the endothelium normally suppresses expression of these adhesion 

molecules 36, but reduced NO levels are observed during endothelial dysfunction and 

inflammation. Decreased production of NO increases the oxidative modification of LDL, 

which is one of the major mechanisms of atherosclerosis 37. Impaired activity or 

production of NO also leads to other events that promote atherosclerosis, as 

vasoconstriction, platelet aggregation, proliferation and migration of smooth muscle cells 

(SMC), leukocyte adhesion and oxidative stress 38. 

 

High levels of LDL and modified LDL are well known risk factors for atherosclerosis 22, 

24. LDL becomes trapped in a three-dimensional cage work of fibers and fibrils secreted 

by the cells in the artery wall after crossing the endothelium 39. Interactions between 

apoB and matrix proteoglycans are thought to trap LDL, making apolipoproteins 

containing apoB atherogenic (LDL, VLDL and IDL) 6, 40. Accumulation of LDL 

increases with increased circulating LDL levels, and LDL must be extensively modified 

to be taken up by macrophages. The extensively modified LDL is recognized by 

scavenger receptors such as the scavenger receptor B antigen (CD36) and scavenger 

receptor A (SR-A) 6. Ox-LDL stimulates EC to secrete factors, like MCP-1 and monocyte 

colony stimulating factor (M-CSF) that promote differientation of monocytes to 

macrophages 27. Macrophages are thought to contribute to atherogenesis though their 

production of inflammatory mediators and their interactions with modified lipoproteins in 

the arterial intima 41. The macrophages modify LDL which may lead to a shift in receptor 

recognition away from the native LDL receptor to scavenger receptors localized at the 

macrophage surface 42-44. Lipid loading activates peroxisome proliferator-activated 

receptor γ (PPARγ), which in turn up-regulates CD36 expression 41 and further uptake of 

Ox-LDL into the macrophages 45. An Ox-LDL binding extracellular matrix is secreted 
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and engulfed  by the macrophages, allowing further lipid accumulation and foam cell 

transformation 42.  

 

 
Fig. 1: Early steps in atherosclerosis. Lipoprotein, macrophage intrusion and retention in the endothelium, 

taken from 46 

 

In the intima, the monocytes proliferate and differentiate into macrophages that take up 

the lipoproteins to become foam cells. Activated foam cells produce growth factors and 

cytokines that influence atherosclerosis development, like the induction of proteases that 

may weaken the fibrous cap and lead to thrombosis 46, 47. Antigens presented to T-cells by 

macrophages and dendritic cells trigger their activation, leading to further inflammatory 

reactions (cytokine production that activates macrophages and vascular cells) 46. With 

time, these foam cells die and their lipid-filled contents contribute to the necrotic core of 

the lesion (reviewed in 2).  

 

Accumulation of foam cells leads to monocyte infiltration and smooth muscle cell 

migration and proliferation 48, 49. Foam cells in atherosclerotic lesions accumulate free 
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cholesterol (FC) and CE, and have an increased rate of phospholipid biosynthesis. They 

accumulate intracellular phospholipids (PL) containing membrane structures called 

whorls 50. These accumulated lipids generate extracellular cholesterol crystals within the 

intermediate fibrous cap lesions when the foam cells die by necrosis 51. 

 

The formation of fatty streaks is due to lipoprotein transport into the artery wall 52 and 

accumulation of foam cells. The fatty streak is characterized by layers of foam cells and 

lipid droplets within intimal SMC 53. The fatty streaks are prevalent in young people, 

never cause symptoms, and may progress or eventually disappear 46. 

 

Simultaneously with the accumulation of foam cells and lipoprotein transport into the 

arterial wall, SMC proliferate and generate a fibrous layer of smooth muscle cell-secreted 

connective tissue that covers the fatty streak, in time forming a more complex lesion 

called the intermediate fibrous cap 54. 

 

The last stage in atherosclerosis is called the advanced complicated lesions, and is 

characterized by calcification and hemorrhage into the plaque which may lead to 

complications 55, 56. 

 

 

HDL and reverse cholesterol transport 

HDL 

Numerous studies have found an inverse association between HDL-C and CAD 23, 25, 57. 

Several studies have shown that HDL particles, and HDL-associated proteins and lipids, 

may exert several potential anti-atherogenic effects 58. Therefore, HDL is considered the 

“good” lipoprotein. The development of atherosclerotic lesions could be inhibited or even 

reversed in several genetic animal studies by an elevation of HDL-C concentrations 58. 

 

HDLs are a structurally and functionally heterogeneous class of lipoproteins of high 

density (1.063 to 1.21 g/mL) and small diameter (5 to 17nm) 32. HDL particles are multi-
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shaped molecules with varying density, fluidity, charge and anti-genicity 59, 60. Most of 

them contain apoA-I as the quantitatively most important protein constituent. Other 

associated proteins are apoA-II, apoC, apoE, lecithin:cholesterol acyltransferase (LCAT), 

paraoxonase (PON) and platelet-activating factor acetylhydrolase (PAF-AH)32. The water 

soluble surface of HDL is formed by apoA-I, and possibly other amphipathic apos (which 

exert biological actions such as receptor binding and enzyme activation/inactivation 61), 

together with PL and unesterified cholesterol 58. The bulk of HDL is formed by spherical 

particles that contain a core of water-insoluble CE and to a lesser degree, TG 61.  

 

 
Fig. 2: General structure of a lipoprotein. The CE and TG are located in the hydrophobic core of the 

macromolecule, surrounded by phospholipids and apoproteins.  Taken from an electronic resource page 

for the book 62 (http://connection.lww.com/Products/porth7e/documents/Ch24/jpg/24_002.jpg ). 

 

Two important functions are proposed to be carried out by HDL in the circulation; to 

serve as a reservoir of apolipoproteins necessary for the metabolism of TG-rich 

lipoproteins and to mediate cholesterol efflux from extrahepatic tissues to the liver (while 

apoB containing lipoproteins like VLDL and LDL transport cholesterol from the liver to 

the tissues) in a process termed reverse cholesterol transport (RCT) 19. HDL has several 

other antiatherogenic properties in addition to its key role in RCT. 
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A critical process in response to injury is regeneration of the endothelium through the 

proliferation and migration of EC. HDL has been shown to enhanced bovine aortic EC 

proliferation in culture in a concentration-dependent, specific manner 63 and to stimulate 

the proliferation of human 64 and bovine 65, 66 vascular EC. HDL inhibits apoptosis of 

vascular EC, which is suggested to be one of the causes of endothelial injury contributing 

to various inflammatory disorders and cardiovascular dysfunction 67, 68, such as 

permeability of the endothelium, blood cell adhesion, proliferation of SMC and increased 

coagulation. HDL has been shown to protect against apoptosis stimulated by deprivation 

of growth factors 69 or cytokines 70 (reviewed in 68). 

 

HDL inhibits expression of E-selectin, P-selectin, ICAM-1 and VCAM-1 stimulated by 

cytokines (tumor necrosis factor α ((TNF-α), interleukin-1 (IL-1)) 71, Ox-LDL or CRP 30, 

32. HDL inhibits agonist-induced platelet-activating factor (PAF) expression 72. PAF is a 

very bioactive protein, which stimulates vascular permeability, cell adhesion, aggregation 

and smooth muscle contraction 32. HDL associated proteins like PAF-AH, LCAT and 

PON inactivates PAF (reviewed in 32) which results in reduced macrophage homing to 

endothelium and reduced oxidative stress 73. HDL and its associated lipids and enzymes 

inhibit oxidation of LDL. As mentioned, oxidation of LDL is one of the important 

pathogenic steps in atherosclerosis. PAF-AH 74 and gluthatione selenoperoxidase 75 are 

two enzymes in HDL that prevent the formation or degrade bioactive LDL oxidation 

products 76. PON and apoA-I have antioxidant properties when associated with HDL 77, 

78. 

 

HDL increases endothelial NO synthase (eNOS) expression 79, thereby inducing 

formation of NO. HDL stabilizes prostacyclin (PGI2), a platelet inhibitor and vasodilator 
80. Both NO and PGI2 are antithrombotic because they inhibit platelet aggregation by 

increasing cGMP and cAMP, respectively 32. Von Willebrand factor (vWF) is expressed 

by ECs and has an essential role in platelet adhesion and aggregration 32. Circulating 

vWF levels are inversely correlated with plasma HDL 81 so it seems as HDL may inhibit 

vWF production 32. 

 12   



   

 

 
Fig. 3: Multiple biological actions of HDL on vascular endothelium. Functional EC are in dark blue; 

dysfunctional EC are in light blue. Taken from 32. 

 
Due to these mentioned effects HDL is considered anti-inflammatory. However, HDL 

loses its anti-inflammatory properties (to the point of becoming pro-inflammatory) during 

the acute phase response and chronic inflammation 75, 82. 

 

Reverse cholesterol transport 

The fact that the sterol core is not degradable means that the body must maintain 

cholesterol homeostasis by cholesterol efflux. The cholesterol content of most cells is 

tightly regulated, but macrophages can accumulate large amounts of cholesterol by 

uncontrolled scavenger receptor uptake of modified lipoproteins and phagocytosis 61. 

Efflux is the only mechanism by which macrophages can limit or reverse the cellular 

cholesterol accumulation, which results in foam cell formation if not held in check.  

 

Cholesterol efflux is a complex process and multiple mechanisms may function 

depending on cell type, metabolic state, membrane cholesterol pools and the nature of 

acceptor particles 83. There are three described mechanisms for cholesterol efflux; simple 
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(aqueous) diffusion, scavenger receptor BI (SR-BI) mediated (reviewed in 84) and ATP-

binding cassette (ABC) transporter - mediated efflux. 

 

The simplest mechanism is diffusion, where cholesterol passively diffuses through the 

aqueous phase between plasma membrane to cholesterol acceptor molecules such as 

serum albumin 85 and HDL 86. 

 

The transport of cholesterol can also be facilitated by SR-BI, which binds HDL with high 

affinity. It is most highly expressed in liver and steroidogenic tissue 87, 88. It is suggested 

that SR-BI tethers HDL at the cell surface 89 and mediates the cellular uptake of CE 90, 91 

or promotes HDL mediated cellular cholesterol efflux 89 depending on the gradient. The 

lipoprotein particle is subsequently released as a lipid-poor particle.  Several ligands 

other than HDL have been shown to bind to SR-BI, among them Ac-LDL and Ox-LDL 
92, 93.  

 

The last mechanism, ABC transporter mediated cholesterol efflux, involves the release of 

cholesterol to lipid-free (mediated by ABCA1 94, 95) or lipid-poor (mediated by ABCG1 

and ABCG 4 96) apolipoproteins, in particular apoA-I. Efflux to circulating apoA-I by 

ABCA1 generates nascent HDL and is the first stage in HDL biogenesis 97, 98. LCAT and 

its cofactor apoA-I promote esterification of cholesterol 99-101 which then migrates into 

the hydrophobic core, leading to a larger HDL particle called HDL2. Cholesterol efflux 

by ABCG1 and ABCG4 96 further matures HDL. The CE in the core of HDL may be 

delivered to hepatocytes and steroidgenic tissues by several mechanisms 99, 100, among 

them SR-BI mediated uptake 90, 102, 103. 

 

Bile acid production from cholesterol and the solubilization of cholesterol by bile acids in 

the liver are the final steps in RCT, facilitating cholesterol excretion from the body 104.  
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Fig. 4: HDL mediated reverse cholesterol pathway. ABCA1 is involved in transfer of FC and phospholipids 

(PL) from macrophages to apoA-I. LCAT converts FC to CE. Cholesteryl ester transfer protein (CETP) 

and phospholipid transfer protein (PLTP) modify HDL by transferring CE and PL between HDL and TG-

rich lipoproteins. HDL delivers cholesterol to liver via SR-BI–mediated selective uptake of the lipids. 

Taken from 105.  
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Tangier disease 

Genetic disorders of HDL metabolism are rare in the general population. Mutations in 

genes coding for important components or enzymes that are critical for the formation or 

maturation of HDL, like apoA-I 106, ABCA1107-110, LCAT111 or CETP112, are usually 

involved. Of course, it is also possible that mutations in these genes might even be 

beneficial and confer a protective effect. One such disorder is known as Tangier disease 

(TD) 113. It was discovered in 1960 and is named after Tangier Island, where the index 

cases (a couple of siblings) lived 114. 

 

TD is a rare autosomal genetic disorder, a HDL deficiency syndrome. It is characterized 

by severe HDL and apoA1 deficiency, sterol deposition in tissue macrophages and other 

reticuloendothelial cells (tonsils, thymus, lymph nodes, bone marrow, spleen, liver etc), 

and prevalent atherosclerosis 114. Studies have revealed that a rapid degradation of apoA-I 

causes severe HDL deficiency. ApoA-I structure and synthesis is normal, but even HDL 

particles from normal patients are degraded at high rates when infused into TD patients 
114. Homozygotes have a higher incidence of CAD (4 to 6 fold higher, depending on the 

age group) than normolipidemic subjects 115, but it is not as high as one would expect 

from a virtual absence of HDL, and it may be that their below normal LDL levels protect 

them from atherosclerosis 114. Studies showed that defective removal of cellular 

cholesterol and phospholipids by lipid-poor apoA-I led to the TD phenotype 116. Several 

groups independently identified mutations in ABCA1 (then known as ABC1) as the cause 

of TD 107-110 in 1999, which led to a breakthrough in our understanding of HDL formation 

(specifically, the role ABCA1 played in the maturation of HDL).  

 

ABCA1 mutations will not significantly affect the cholesterol levels of most cells, as 

cholesterol delivery and synthesis are tightly regulated by feedback mechanisms 117, 118. 

Macrophages, however, ingest lipoproteins and membrane debris by phagocytic and 

endocytotic processes that are not repressed by excess cholesterol 119 and rely on efflux 

mechanisms to prevent massive accumulation of intracellular sterol 120 and development 

into foam cells. 
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ABC proteins and ABCA1 

ABC proteins 

ATP-binding cassette (ABC) transporters are one of the largest protein families and have 

been found in each kind of organism examined so far 121. The ABC family has seven 

subfamilies, grouped by phylogenetic analysis, from ABCA to ABCG 122. There are 

about 50 different ABC transporters in homo sapiens. ABCs are integral membrane 

proteins that use ATP as energy to transport various substrates across cell or organelle 

membranes 121. The specific mechanism of action for ABCA1 is still unclear. The 

different ABC transporters have different ligands and functions, from drug resistance to 

cholesterol efflux, and several mutations in ABC transporters are associated with genetic 

diseases, some of the more famous being cystic fibrosis and TD 123. 

 

ABC proteins are defined by the ABC unit, a nucleotide binding domain (NBD) that 

interacts with ATP 121. The NBD harbors two conserved motifs known as Walker A and 

Walker B that are involved in ATP binding and are present in many other ATP binding 

proteins 124. A third conserved sequence called “ABC signature” which defines the family 

and is located between the two Walker domains 121. ABCs are integrated into the 

membrane via transmembrane domains (TMDs) composed of six transmembrane helices. 

The minimum requirement for a functioning ABC seems to be two ABC units and two 

TMDs 120, 121. ABC genes are organized as full transporters (two TMD and two NBD) or 

as half transporters containing one TMD and one NBD 125. 

 

Substrate specificity for each transporter is determined by the amino acid sequence in the 

TMD. Even if sequence similarity is noted, substrate similarity is not implied 123  
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ABCA1  
 

 
Fig. 5: Topological model of ABCA1, based on studies by 126, 127. Y marks glycosylation sites; S-S marks a 

predicted disulfide bond. Taken from 128.  

 

The ABCA subfamily is characterized by the presence of a stretch of hydrophobic amino 

acids thoughts to span the membrane within the putative regulatory domain 123 and has 

the classical arrangement (TMD/NBD/TMD/NBD) 129, 130. The ABCA and ABCG 

subclasses are implicated in cellular homeostasis of cholesterol and phospholipids 129. 

Overexpression of ABCA1 has been shown to increase apoA-I binding and cholesterol 

efflux 131, 132. The loss of function in ABCA1 leads to TD, as described above.  

 

ABCA1 is a 2261 amino acid integral membrane protein 107, 120, 133 containing 50 exons 

and spanning 149 kb 134. ABCA1 is found as an oligomeric complex (dimers, tetramers 

and possibly higher order oligomerization) 135. ABCA1 transports cellular cholesterol and 

PL, mostly phosphatidylcholine, to cell surface bound apolipoproteins 114, 136. It is the 

first and rate-controlling step in the RCT pathway 108. 

 

ABCA1 is expressed in most tissues (including macrophages) with the highest levels 

measured in placenta, liver, adrenal glands and fetal tissues 110, which all are critical 
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tissues in the cholesterol metabolism. ABCA1 is localized in the plasma membrane 108, in 

intracellular endocytic compartments 126, 132, 137 and in the Golgi 138. It functions in the 

basolateral surface of hepatocytes 139. ABCA1 is not restricted to the cell surface, but 

shuttles between the cell surface and early and late endosomes 140.  

 

Interactions between lipid-poor apoA-I and ABCA1 lead to the efflux of PL and FC from 

many cells (among them macrophages and hepatocytes) and the subsequent formation of 

nascent discoial HDL particles 61, 108, 109, 138, 139, 141, 142. They become mature, lipid-rich 

and spherical by esterification of cholesterol through the action of the enzyme LCAT, and 

increase in size through the acquisition of additional PL and unesterified cholesterol 61.  

 

The underlying mechanism of action is not yet elucidated but it has been shown that 

ABCA1 and apoA-I recycles from the cell membrane to late endocytic compartments 140, 

143 which appears to be critical in the movement of intracellular cholesterol to the cell 

surface for efflux. The first hydrophobic domain of ABCA1 contains an N-terminal 

signal anchor sequence that translocates the protein's first hydrophilic domain to the 

exoplasmic space 126. It has been shown that ABCA1 has floppase activity which may 

enrich the exofacial leaflet of the bilayer with phosphatidylserine 85, 137, 144, but 

phosphatidylcholine is the predominating PL class in apoA-I 145. Cross-linking 

experiments have shown direct interaction between ABCA1 and apoA-I 108, 146, but later 

studies suggest that there is not necessarily a direct binding but that the ABCA1 

modification of lipid distribution by the phosphatidylserine exofloppase activity 

generates a biophysical microenviroment necessary for apoA-I binding to the cell surface 
147. An active ATPase is also necessary for apoA-I binding to cell surface 147, 148.  

 

Both the view of direct binding and modification of membrane lipid composition may be 

correct, and a hybrid model of some sort is probably correct. 149 

 

Studies by Fitzgerald et al. 150 of five naturally occurring missense mutations in the 

extracellular loops of ABCA1 showed that four of these resulted in a marked decline in 

cross-binding to apoA-I, while the last showed cross-binding, but did not result in 
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cholesterol efflux 150. These results suggest that apoA-I stimulated cholesterol efflux 

cannot occur without a direct interaction between the apolipoprotein and critical residues 

in the two extracellular loops of ABCA1, and that although binding may be necessary, it 

is not sufficient for stimulation of cholesterol efflux 150. 

 

The fact that several apolipoproteins can bind to ABCA1 without a common ABCA1 

binding sequence implies that the interaction is not highly specific 132. Mechanisms other 

than direct binding have been proposed by Burgess et al. 151 and Panagotopulos et al 152. 

Burgess et al. suggest that PL in the extracellular matrix of macrophages act as an initial 

tether for apoA-I, bringing it close to ABCA1 (which supplies the PL through its floppase 

activity 151). Panagotopulos et al suggest that helix 10 of apoA-I may function to tether 

lipid-free apoA-I to the ABCA1 generated lipid domain of the cell membrane in close 

proximity to ABCA1. Tethered apoA-I could then diffuse within the plane of the 

membrane to ABCA1 where a protein/protein interaction could lead to the lipidation of 

apoA-I which would be released from the membrane possibly because of conformational 

changes 152. Although speculative, the hybrid models seem to fit better than the straight 

protein/protein of lipid interaction hypotheses 152. 

 

ABCA1 is tightly regulated by the cholesterol status of the cell. Cholesterol loading of 

macrophages increases ABCA1 mRNA and protein levels 108, 153. In addition, several 

other compounds have a regulatory effect on ABCA1. 

 

Unsaturated fatty acids and cholesterol can increase ABCA1 degradation, while saturated 

fatty acids have no effect on ABCA1 mRNA or protein levels 154. On the other hand, 

binding of apoA-I stabilizes ABCA1 by inhibiting calpain-mediated degradation 155. The 

direct mechanism of sterol stimulation of gene transcription is by transactivation of the 

ABCA1 promoter by liver X receptor (LXR) and retinoid X receptor (RXR) 156-158 which 

are activated by oxysterols and retinoid ligands, respectively. One LXR ligand 

(oxysterol) is intracellular cholesterol, which leads to LXR activation and ultimately 

increased cholesterol efflux. Cyclic AMP analogs activate ABCA1 transcription through 

other, distinct pathways/mechanisms 141, 146, 159, 160. The promoter contains no obvious 
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cAMP response elements that can account for the stimulatory effect of cholesterol efflux 

by cAMP, suggesting that there could be more remote enhancers 161 or maybe that 

ABCA1 is activated by cAMP dependent protein kinases 162. 

 

 

Nuclear receptors  

The nuclear receptor (NR) superfamily is believed to be derived from a common ancestor 

and is divided into six subfamilies: RXR-heterodimer receptors, dimeric orphan 

receptors, steroid receptors, half receptors, monomeric orphan receptors and orphans 

lacking DNA binding domain (DBD) 163. It consists of about 48 known receptors (and 

some not yet verified that would bring the number closer to fifty) 164, that modulate gene 

expression in response to lipophilic ligands 165, 166. They play important roles in cell 

growth, differentiation and general metabolism 167: Francis, 2003 #225.  

 

NRs are organized into regions called A/B, C, D and E. Some have also a F region at the 

C terminal of unknown function. C and E regions are highly conserved (with only a few 

exceptions) in the family 163. 

 

 
Fig. 6: Nuclear receptor domains. Taken from 168 

 

The A/B region, which is in the N-terminal, contains a powerful ligand-independent 

transactivation domain called activation function 1 (AF1) 169. The C region is the highly 

conserved DBD and has two zinc finger modules that interacts/binds with DNA 163. Each 
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zinc finger contains four conserved cysteines that coordinate binding of a zinc2+ ion 15 

followed by a linker or hinge domain (the D region) that harbors nuclear localization 

signals in many cases and also gives it flexibility for simultaneous binding of DNA and 

dimerization 168. The length of the hinge varies between NRs and may contribute to the 

specific receptor-DNA interaction and dimerization through minor groove interaction 170. 

The large carboxyl-terminal domain (the E region) contains the ligand-binding domain 
171, 172, dimerization domain 173 and a ligand-dependent activation function (AF-2) 174. 

The AF-2 domain in the E region is necessary for transactivation and interaction with 

corepressors and coactivators 175-177. The F region is at the extreme carboxyl end and is 

not well characterized 168. 

 

NRs interact with the regulatory domains of their target genes through their DNA-binding 

domain. They recognize sequences called response elements. Most often these are present 

in two copies (as most NRs bind as dimers) in the promoter region of their target genes 
168. Different types of NR recognize different response elements. Most NRs bind these as 

homodimers or heterodimers with RXR, although there are some that form other 

heterodimers or work as monomers 163, 168, 178. 

 

These response elements can be palindromes, direct repeats or inverted palindromes 179, 

180, spaced 1 to 5 nucleotides apart 165. The response elements are written after how they 

are repeated (direct repeat (DR), inverted repeat (IR) and everted repeat (ER)) followed 

by the number of spacer nucleotides. For example, the two repeats of a direct repeat 

response element spaced 4 nucleotides apart are written as DR-4. The spacing and 

adjacent sequences to the response elements confer specificity 181.   

 

The metabolic NR act as regulators of diverse processes such as energy, lipoprotein, fatty 

acid and TG metabolism by the PPARs, reverse cholesterol transport and cholesterol 

absorption by the LXRs, bile acid metabolism through the farnesoid X receptor (FXR) 

and LXRs and defence against xeno- and endobiotics by pregnane X receptor (PXR) 182 

which form obligate heterodimers with RXR 182. Ligand binding to one or the other 

stabilizes the dimer 165.  
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NRs are usually in complex with corepressors. Binding of ligand and/or phosphorylation 

induces a conformational change that cause dissociation of repressors and facilitates the 

recruitment of coactivator complexes 174 which facilitates transcription 182, 183. This 

conformational change is necessary for DNA-binding, making the NR more compact and 

active 184-188.  

 

In addition, cofactors that are associated with DNA-bound transcription factors determine 

whether a target gene is induced or repressed 189. Coactivators work by remodeling 

chromatin and exposing binding sites for the general transcription complex 168 while 

repressors work by compacting the nucleosomal structure, making it less available for 

binding of transcription factors 190.  

 

RXR 

There are three RXR isotypes; α, β and γ 165, 178, 191. These are encoded by separate genes 

and give rise to numerous alternatively spliced variants 192. RXR binds as heterodimer to 

direct repeats (DRs) 193, 194 spaced 0 to 5 nucleotides apart, depending on the dimerization 

partner 165. RXR also binds to IR-0 elements as a homodimer, but it is uncertain whether 

separable RXR responses exist or RXR only serves as a partner for other NRs 192. RXR 

works as a dimerization partner 165 for most of the adopted orphan receptors. Among 

these are the PPARs, LXRs, FXR and PXR. Other dimerization partners include thyroid 

hormone, retinoic acid, vitamin D and ecdysone receptors 174. The RXR heterodimers 

serve as regulators of several pathways involved in lipid homeostasis, embryogenesis 195, 

cell growth and differentiation 196.  

 

LXR 

LXR seems to be central in the regulation of lipid metabolism. LXR exists in to forms: 

LXRα and LXRβ. LXRβ is ubiquitously expressed 197 while LXRα is expressed in tissues 

involved with lipid metabolism such as the liver, macrophages, kidney, lung, intestine, 

adrenals and adipose tissue 198. 
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The natural ligands of LXRs are oxysterols, mostly metabolic derivates of cholesterol 199-

201. LXR acts as a cholesterol “sensor”, responding to elevated cholesterol (oxysterol) 

levels. The constitutive activation of LXR is dependent on endogenous lipid synthesis (in 

particular, mevalonate biosynthesis products such as cholesterol and oxysterols) 202.  

 

LXRα and LXRβ form heterodimers with RXR 198. The result is transactivation by LXR 

of several genes which have roles in transport, storage, absorption, catabolism, 

elimination of cholesterol (reviewed in 198) and in fatty acid metabolism 203, 204. ABCA1 

has two promoters that both contain LXR binding elements 205 that bind both LXRα and 

LXRβ and mediate transcriptional activation by LXR and PXR 156-158. Other LXR target 

genes are apoE 206, SR-BI 207, CETP 208, sterol regulatory element binding protein-1c 

(SREBP-1c) 203,  cholesterol 7α-hydroxylase (CYP7A1) 209 (CYP7A1 is the rate limiting 

enzyme in the neutral bile acid biosynthetic pathway 210-212, one of the principle means of 

eliminating cholesterol), ABCG1 213, ABCG5 and ABCG8 214, which are all up-

regulated. The de novo synthesis of cholesterol is reduced 215, 216. 

 

Sterol absorption in the gut is regulated by LXR 104 by upregulating ABCA1, ABCG5 

and ABCG8 expression 217, 218. To conclude, LXR works as a regulator of cholesterol 

metabolism. 

 

FXR 

The biological ligands for the FXR are bile acids and their conjugated metabolites 219-221. 

FXR is highly expressed in liver, gut, kidney, adrenals and testis 222, 223. FXR forms 

dimers with RXR 223 and preferentially binds to response elements in the IR-1 

configuration 223, 224. FXR becomes activated by bile acids and is involved in the negative 

feedback regulation of bile acid synthesis in hepatocytes. FXR/RXR represses 

transcription of CYP7A1 225 which is the rate limiting enzyme in bile acid synthesis 210-

212. The FXR/RXR dimer stimulates expression of Ileal bile acid binding protein 226, 227, 

bile acid export pump (BSEP, ABCB11) 228, 229, phospholipid transfer protein (PLTP)224, 
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230 and multi-drug resistance protein 2 (MDR2, ABCC2)231. Both ABC transporters are 

involved in transport of bile acids into the bile canaliculus, while ileal bile acid binding 

protein promotes uptake of bile acids 221, 226, 227. 

 

PPAR 

PPARs are NRs that work as heterodimer partners with RXR and function as ligand-

activated transcription regulators of lipid and glucose metabolism 232, 233. There are three 

PPAR members: α, γ and δ 234-237. These receptors are activated by polyunsaturated (and 

saturated) fatty acids, eicosanoids and some synthetic ligands 238. Fatty acid binding 

proteins seem to act together with PPARs, presenting fatty acids to the NR 239. Each 

PPAR has a distinct expression pattern and a specific function in fatty acid metabolism 
158. PPARα is a global regulator of fatty acid catabolism 240. PPARγ is a regulator of 

metabolism, differientation and cell growth (reviewed in 241) and is activated by fatty 

acids 41, 240, 242. PPARγ induces ABCA1 in macrophages through the LXR pathway 158, 

243. 

 

PXR 

The pregnane X receptor (PXR), also known as steroid and xenobiotic receptor (SXR) in 

humans, responds to many drugs, contaminants, steroids and toxic bile acids (mainly 

xenobiotics and steroids) 244. PXR is highly expressed in liver, small intestine and colon 
245, 246. Among the chemicals that activate PXR is the antibiotic rifampicin (a human 

agonist), the glucocortioid dexamethasone (DEX) and the antiglucocorticoid 

pregnenolone 16α-carbonitrile (PCN, a murine agonist) 247. The secondary bile acid 

lithocholic acid (LCA), which is toxic in high concentrations, is also a PXR agonist 248, 

249. PXR has a large spherical ligand-binding cavity which is believed to account for its 

precise but promiscuous ligand-binding properties 244. PXR works to protect the body by 

regulating the detoxification and elimination of xenobiotics and toxic endogenous lipids 
174, like bile acids. PXR upregulates CYP enzymes 250, 251 and other genes like ABCA1 
252, multidrug resistance-associated protein 2 (MRP2) 231 and organic anion-transporting 

polypeptide (OATP2) (which both transport bile acids) 246. PXR-RXR heterodimer 
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response elements in target genes include DR-3, DR-4, ER-6, ER-8 and IR-0 

configurations 253 

 

  

The aim of the present study 

ABCA1 is a transporter that has a central role in HDL formation and cholesterol efflux 

from cells. As such, the mechanisms for underlying its regulation are important to study. 

We wanted to investigate the regulation of ABCA1 in hepatocytes by the nuclear receptor 

PXR. 
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Abstract 

Nuclear receptors that work as heterodimers with RXR control several aspects of lipid 

metabolism. One such nuclear receptor, pregnane X receptor (PXR) is the molecular 

target for a wide variety of endogenous and xenobiotic compounds. PXR regulates the 

expression of genes central to the detoxification and excretion of potentially harmful 

compounds. Accumulation of intracellular cholesterol will lead to foam cell formation 

and necrosis if left unchecked. ATP-binding cassette transporter A1 (ABCA1) mediates 

the efflux of cholesterol from cells to apoA-I to produce HDL, which transports 

cholesterol to the liver for excretion. The aim of the present investigation was to 

determine the role of PXR in regulation of hepatic ABCA1 expression. Expression 

analyses were performed using Western blotting and quantitative real time RT-PCR. 

Luciferase reporter gene assays were used to measure promoter activities. Total 

cholesterol was measured enzymatically after lipid extraction (Folch’s method). The 

expression of ABCA1 was inhibited by the PXR activators rifampicin in HepG2 cells and 

pregnenolone 16α-carbonitrile (PCN) in primary rat hepatocytes and Hepa1c1c-7 cells. 

Thus, PXR appears to be a regulator of hepatic cholesterol transport.  

Keywords: ABCA1; PXR; Cholesterol; Liver  
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Introduction 

ATP-binding cassette transporter A1 (ABCA1) is a protein with well documented 

protective effects on atherosclerosis development 1, 2. ABCA1 was discovered as the 

mutated protein giving rise to the Tangier disease (TD) phenotype 3-6. TD is, among other 

characteristics, characterized by high density lipoprotein (HDL) deficiency and prevalent 

atherosclerosis 7, 8.  The human ABCA1, cloned in 2000 9, is expressed in most tissues 

(including macrophages) with the highest levels measured in placenta, liver, adrenal 

glands and fetal tissues 6 which all are critical tissues in the cholesterol metabolism.  

 

Atherosclerotic risk is inversely proportional with HDL levels 10. HDL plays a key role in 

cholesterol homeostasis by transporting excess peripheral cholesterol to the liver 11. The 

protective effect of ABCA1 comes from its role in HDL formation and cholesterol efflux. 

ABCA1 mediates the efflux of cholesterol and phospholipids from cells to poorly 

lipidated apoA-I to form nascent HDL particles 12, the first and rate-limiting step in HDL 

formation 13 and is also believed to be the rate-limiting step of the reverse cholesterol 

transport pathway 14. For this reason, ABCA1 is called the gatekeeper of the reverse 

cholesterol transport pathway 3, 12, 15. ABCA1 has been shown to be regulated by nuclear 

receptors 16, 17 of the steroid hormone receptor superfamily, which are ligand activated 

transcription factors 18.  

 

The retinoid X receptor (RXR) works as a common heterodimerization partner for 

adopted orphan receptors 19, and many nuclear receptors which are involved in control of 

fat, cholesterol, glucose, bile acid and xenobiotic metabolism (liver X receptor (LXR), 

farnesoid X receptor (FXR), peroxisome proliferator-activated receptors (PPARs), 

pregnane X receptor (PXR)) form obligate heterodimers with RXR 20. The LXR-RXR 

heterodimer is a known activator of ABCA1 21. PXR is thought to work as a xenobiotic 

sensor 20, 22 that protects the body from accumulation of toxic substances. PXR is 

expressed primarily in the liver and intestine 23 and is activated by a variety of drugs, 

contaminants, steroids and toxic bile acids 22. The PXR-RXR heterodimer prefers direct 

repeat-4 (DR-4) response elements 24-26 but has also been shown to bind to DR-3, everted 

repeat-6 (ER-6), ER-8 and inverted repeat-0 (IR-0) configurations 27. 
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We have studied the effects of rifampicin and PCN, two well-known PXR agonists on 

ABCA1 expression in hepatoma cells and hepatocytes. The metabolism of bile acids, 

cholesterol and fatty acids are generally coordinately regulated by RXR and its 

heterodimerization partners 20; therefore it is conceivable that PXR is involved in 

regulation of ABCA1.  

 

Materials and methods 

Plasmids and constructs 

Expression plasmids for human RXRα (RXRα-pCMV) and β-galactosidase-pSV were 

kindly provided by Dr. H. Nebb (Department of Nutrition, Institute of Basic Medical 

Sciences, University of Oslo, Oslo, Norway). Human PXR-pSG5 was a kind gift from 

Dr. B. Goodwin (Nuclear Receptor Discovery Research, GlaxoSmithKline, Five Moore 

Drive, Research Triangle Park, NC 27709, USA). The human ABCA1 (−928 

bp/+101 bp)  promoter-luciferase reporter construct was a kind gift from Dr. P. Costet 

(INSERM U 539, Centre de Recherche en Nutrition Humaine de Nantes, France). 

Deletion promoter constructs were made by restriction enzyme digestion (New England 

Biolabs). The full length (-928 bp/+101 bp) human ABCA1 promoter pGL3 reporter 

construct was deleted to -604 bp/+101 bp and -264 bp/+101 bp by BstXI-cutting and 

SacII-cutting, respectively. The ABCA1-pGL3 reporter constructs were sequenced to 

verify DNA sequence fidelity by GATC Biotech AG (Germany).  

Isolation and culturing of rat primary liver cells 

Rats used in the experiments were treated according to established guidelines for the use 

of experimental animals. Primary rat hepatocytes were isolated from adult Wistar rats as 

described elsewhere 28. After isolation, cells were grown in Dulbecco`s modified Eagle`s 

medium (DMEM) supplemented with 2 mM L-glutamine, 100 U penicillin, 100 µg/ml 

streptomycin (Bio Whittaker, Europe), and 3% fetal bovine serum (Sigma) at 37 °C. 

After 3-4 hours cells were stimulated with the given concentrations of pregnenolone-16α-

carbonitrile (PCN) (Sigma) or vehicle (ethanol) in their respective media containing 0.5% 
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charcoal-treated fetal bovine serum. Lipoprotein-depleted serum was prepared as 

described 29.  

Cell cultures 

Murine hepatoma cells (Hepa1c1c-7) were grown in DMEM supplemented with 2 mM L-

glutamine, 100 U penicillin, 100µg/ml streptomycin (BioWhittaker, Europe) and 5% fetal 

bovine serum (Sigma) (medium A) and human hepatoma cells (HepG2) were grown in 

medium A containing non-essential amino acids (Bio Whittaker, Europe) at 37 °C. After 

reaching 70% confluence, cells were stimulated with the given concentrations of 

rifampicin (HepG2 cells) or PCN (Hepa1c1c-7 cells) (Sigma) or vehicle (methanol or 

ethanol, respectively) in their respective medium containing 0.5% charcoal-treated fetal 

bovine serum (medium B). 

Western blot 

HepG2 cells and primary rat hepatocytes were grown in their respective media and 

incubated with vehicle (methanol or ethanol, respectively) or the indicated concentrations 

of rifampicin (Sigma) or PCN (Sigma), respectively. The cells were washed twice in 

phosphate-buffered saline (PBS) prior to being harvested in non-reducing SDS lysis 

buffer (20nM Hepes, 300 mM NaCl, 0.2mM EDTA, 1.5mM MgCl2, 2% SDS and 1% 

Triton X-100) containing 2% phenylmethylsulforylfluoride. Protein concentrations were 

determined using BCA protein assay (Pierce). 25 µg of cell lysates were reduced with 5% 

2-mercaptoethanol and heated at 50 °C for 10 min prior to SDS-polyacrylamid gel 

electrophoresis on 7.5% polyacrylamide gels. Proteins were transferred onto 

nitrocellulose membranes (Millipore, USA) and pre-incubated with blocking buffer 

(0.5xPBS-1% Tween20 containing 5% skim milk) to prevent unspecific binding. 

Monoclonal rat anti-ABCA1, kindly provided by Dr. K. Ueda (Lab. Cell. Biochem., Div. 

Applied Life Science; Kyoto, Japan), was diluted (1:400) in blocking buffer and 

interacting anti-rat HRP-IgG (Sigma) was detected by chemiluminescence ECL blot 

detection system (Amersham Biosciences). The blots were stripped (0.8% 2-

mercaptoethanol in 0.5xPBS-1% Tween20 at 50 °C for 30 min) and re-hybridized with 

monoclonal mouse anti-β-actin (clone AC-74, Sigma) and detected with anti-mouse 
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HRP-IgG (Amersham Biosciences). Immunoreactive ABCA1 bands were quantified 

using a Gel Doc 1000 scanner (Bio-Rad) and normalized to the intensity of the 

immunoreactive β-actin bands. 

Real time RT-PCR 

Total RNA was isolated from Hepa1c1c-7 cells using TRIzol Reagent (Invitrogen) 

according to the manufacturer’s instructions. Four micrograms of total RNA were reverse 

transcribed using SuperScript II RNase H- Reverse Transcriptase (Invitrogen) and oligo 

dT(15) primers (DNA Technology A/S, Denmark). The cDNA was used as template for 

qualitative real time RT-PCR on a LightCycler (Roche) using SYBR Green I technology 

(Roche). The primers used were amplified in the same PCR conditions using 60 °C as the 

annealing temperature. The primers used were designed such that they do not amplify 

from genomic DNA. This was tested by using RNA samples reversed transcribed without 

the enzyme which was more than 10 Cp-values different than RNA samples reversed 

transcribed using the enzyme. The primers were designed by the Primer 3 Output 

program (http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi) and are listed in 

table I.  

Transient transfection 

300,000 HepG2 cells were cultured in 6-wells plates with medium A the day prior to 

transfection. The cells were transiently transfected with 0.3 µg ABCA1 promoter-pGL3 

reporter constructs using FuGENE 6 Transfection Reagent according to the manufacturer 

(Roche). Transfection efficiency was assessed measuring the activity of co-expressed β-

galactosidase (0.5µg). In some experiments, 0.3 µg human PXR-pSG5 and 0.3 µg RXRα-

pCMV were cotransfected. The amount of DNA was adjusted with carrier DNA 

(pcDNA3.1, Stratagene) to a total of 1.4 µg. Sixteen hours after transfection, medium A 

was replaced with medium B containing the given concentrations of PCN or vehicle 

(ethanol) for 24 hours. The cells were washed twice with PBS and lysed with Reporter 

Lysis Buffer (Promega). Luciferase activities and β-galactosidase activities were 

measured according to the manufacturer’s instructions (Promega). Luciferase activities 
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were normalized to β-galactosidase activities to account for variations in transfection 

efficiency.  

Cholesterol Efflux 

A lipid soluble fraction was isolated from HepG2 cells and primary rat hepatocytes using 

a modified version of Folchs method 30 using the procedures described in 31. Total and 

free cholesterol components were assayed using the commercial kit Cholèsterol RTU kit 

based on the cholesterol oxidase method 32 according to the manufacturer`s instructions 

(Kits BioMérieux, Marcy l’Etoile, France). 

Densitometry and statistics 

Semi-quantitative results of ABCA1 protein expression were obtained using a Gel Doc 

1000 scanner (BIO RAD). Statistical significance of the data was evaluated by Student’s t 

test. Probability values p < 0.05 was considered statistically significant.  

 

Table I 

Primers for quantitative real time RT-PCR analysis 
Gene GeneBank 

accession 

Forward primer Reverse primer Amplicon 

size 
 

ABCA1a   

AACAGTTTGTGGCCCTTTTG 

 

AGTTCCAGGCTGGGGTACTT 

 

157 

 

mGADPH 

 

BC023196 

 

ACCCAGAAGACTGTGGATGG 

 

CACATTGGGGGTAGGAACAC 

 

171 
a Primer sequence based on an alignment of human (AF285167), rat (NM178096), and mouse (NM013454) 

ABCA1 mRNA 

Results 

PXR agonists reduce ABCA1 expression 

A common activator of human PXR (rifampicin) or murine PXR (PCN) was added to 

HepG2 cells or primary rat hepatocytes, respectively, to test their ability to influence 

ABCA1 protein expression. As indicated in Figure 1A human ABCA1 protein expression 

decreased by 30% and 34% in response to 1 μM and 10 µM rifampicin, respectively. In 
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primary rat hepatocytes, a significant reduction (37%) in ABCA1 protein expression 

could only be observed after the addition of 10 µM PCN (Fig. 1B). Furthermore, 

quantitative real time RT-PCR revealed that PCN decreases the ABCA1 mRNA 

expression in Hepa1c1c-7 cells. As indicated in Figure 2 the ABCA1 mRNA expression 

was significantly reduced by 57% after PCN-treatment.  

 

 

 
Fig. 1: PXR activators reduce hepatic ABCA1 protein expression. HepG2 cells (A) or primary rat 

hepatocytes (B) were incubated with the indicated concentrations of rifampicin or PCN, respectively, in 

lipid-deficient medium for 24 h. Immunoreactive ABCA1 protein levels after rifampicin-treatment (A) or 

PCN-treatment (B) were measured by densitometer scanning, normalized to the intensity of the 

immunoreactive β-actin bands, and expressed relative to the vehicle-treated controls (±S.D). The results 

represent three separate experiments. *p < 0.05 indicates significant difference from control. 
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Fig. 2: The PXR-activator PCN inhibits ABCA1 mRNA expression. Hepa1c1c-7 cells were incubated 

with vehicle or 10 μM PCN in lipid-deficient medium for 24 h. ABCA1 mRNA levels were examined by real 

time RT-PCR. The results were normalized to GADPH expression and expressed relative to the vehicle-

treated controls (±S.D). The experiment was performed at least three times, in triplicates. *p < 0.05 

indicates significant difference from control. 

 

 

PXR/RXR represses ABCA1 promoter activity in HepG2 cells 

HepG2 cells were transiently transfected with a vector expressing the reporter gene 

luciferase under the control of the human ABCA1 promoter. In Figure 3 the experimental 

data show that the addition of 10 μM rifampicin alone does not significantly affect 

ABCA1 promoter activity. Co-transfection with the expression plasmids for RXR and 

PXR, however, decreased the promoter activity by 53% with a further decrease (73%) in 

the presence of 10 μM rifampicin. Furthermore, deletion analysis of the human ABCA1 

promoter showed that none of the constructs generated lost their ability to be regulated by 

rifampicin-activated PXR/RXR (Fig. 4) making it plausible that the binding site is 

located downstream from -264 bp. However, no putative PXR response element could be 

identified in the region spanning from -264 bp to +101 bp.  
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Fig. 3: PXR/RXR reduces ABCA1 promoter activity in HepG2 cells.  300,000 cells were transiently 

transfected with ABCA1 promoter/luciferase reporter construct (0.3 µg) together with an expression 

plasmid for β-galactosidase (0.5 μg) with or without the expression plasmids for PXR (0.3 μg) and RXR 

(0.3 μg). β-galactosidase was used as an internal control to account for any variation in transfection 

efficiency. Sixteen hours after transfection, the cells were treated with 10 μM rifampicin or vehicle 

(methanol) for additional 24 h. The luciferase activity was normalized to the β-galactosidase activity. The 

relative change in promoter activity (RLU) is related to vehicle-treated controls (±S.D). The results 

represent experiments performed in triplicates and repeated at least three times. *p < 0.05 indicates 

significant difference from control. 

 

 

Intracellular cholesterol levels are maintained after PXR agonist treatment 

Intracellular cholesterol levels were measured in HepG2 cells or primary rat hepatocytes 

after rifampicin- or PCN-treatment, respectively. No significant change in cholesterol 

levels was observed in rifampicin-treated HepG2 cells (Fig. 5A) or PCN-treated primary 

rat hepatocytes (Fig. 5B) compared to vehicle-treated cells.   
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Fig. 4: No PXR/RXR response element could be identified within the region spanning from -928 bp to -

264 bp of the human ABCA1 promoter. 300,000 cells were transiently transfected with ABCA1 promoter/ 

luciferase reporter constructs (0.3 µg) together with an expression plasmid for β-galactosidase (0.5 μg) 

with or without the expression plasmids for PXR (0.3 μg) and RXR (0.3 μg). β-galactosidase was used as an 

internal control to account for any variation in transfection efficiency. Sixteen hours after transfection, the 

cells were treated with 10 μM rifampicin or vehicle (methanol) for additional 24 h. The luciferase activity 

was normalized to the β-galactosidase activity. The relative change in promoter activity (RLU) is related to 

vehicle-treated controls (±S.D). The results represent experiments performed in triplicates and repeated at 

least three times. *p < 0.05 indicates significant difference from control. 

 

 

 

Discussion 

The present data show that hepatic ABCA1 expression is repressed by PXR agonists. 

Promoter activity studies in HepG2 cells demonstrated that the inhibitory effects 

observed by PXR-agonists are dependent on PXR/RXR co-expression in order to repress 

human ABCA1 promoter activity. In order to map potential response elements, the 

promoter was fragmented into shorter deletion reporter constructs and transiently 

transfected into HepG2 cells. The data obtained show that none of the generated 
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constructs lost the ability to respond to agonist-activated PXR/RXR suggesting that the 

response element is located in the region spanning from -264 bp to +101. By use of  

 
Fig. 5:  Intracellular cholesterol levels are not changed by PXR agonists. HepG2 cells (A) or primary rat 

hepatocytes (B) were incubated with 10 µM agonist in lipid-deficient medium for 24 h, followed by cell-

lipid extraction and enzymatic measurement of cholesterol content. The results are presented as relative to 

the vehicle-treated controls (±S.D). The experiments were performed at least three times, in triplicates. 
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clustalW multiple sequence alignment program we were not able to locate any putative 

PXR response elements, but cannot rule out the possibility that the PXR/RXR 

heterodimer may bind to a yet non-identified response elements in this region since PXR 

has been shown to bind a wide range of response elements. One cannot, however, 

exclude the possibility that ligand-activated PXR/RXR regulates the human ABCA1 

promoter through indirect mechanisms. Other nuclear receptors such as PPARα and 

PPARγ have been shown to regulate ABCA1 through the LXR pathway (since LXRα is a 

PPAR target gene) 33, 34 but the detailed mechanisms are at the time unknown. 

 

PXR is a master regulator of genes involved in the detoxification and excretion of 

potentially harmful substances. Among these target genes are other ABC transporters like 

multidrug resistance-associated protein-2 (MRP2/ABCC2), MRP3/ABCC3 (bile acid and 

drug transporter) 35-37, and ABCG5/G8 38 (which mediates the efflux of cholesterol to the 

bile 39, 40). Bile acids, which are toxic in high concentrations, have been demonstrated to 

activate the PXR-pathway 41-43, and activated PXR has been shown to negatively regulate 

the production of bile acids by inhibiting the expression and activity of the first and rate-

limiting enzyme in the production of bile acids, namely CYP7A1 42, 44-47. Furthermore, 

PXR agonists have been demonstrated to increase plasma HDL cholesterol as well as 

hepatic apoA-I expression 48 and increase biliary cholesterol output 49 in rodents. We 

have in our study identified another ABC transporter, ABCA1, as a target gene for PXR 

thus assigning PXR as an important regulator of cholesterol trafficking in hepatocytes. 

Based on the observations that PXR-activation stimulates apical cholesterol efflux (in a 

ABCG5/G8-dependent manner) 38, 49 reduces endogenous cholesterol synthesis (by 

decreasing HMG-CoA reductase expression), and reduces ABCA1 expression, we 

measured intracellular cholesterol levels. The data obtained shows that the intracellular 

cholesterol levels are unchanged suggesting that the down-regulation of ABCA1 is part 

of a mechanism the hepatocytes possesses in order to maintain cholesterol levels. 

 

In conclusion, the present work demonstrates that PXR negatively regulates hepatic 

ABCA1 expression which can be supported by the observation made in FXR/PXR 

knockout mice displaying enhanced hepatic ABCA1 mRNA levels 50. In addition to 
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being a master regulator of the defence against endo- and exogenous toxicity 51, data 

obtained this far point to a role of PXR as being antiatherogenic (by increasing HDL and 

apoA-I levels 48, 52) and anti-cholestatic (by being a bile acid sensor and negative 

regulator), but further studies will be needed in order to settle its role in atherosclerosis 

development. 
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