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Abstract 

A reporter gene was constructed of the Chlamydomonas reinhardtii rbcL 5’ region from 
position -70 to +47, relative to the transcription start point (+1), followed by the E. coli 
uidA (GUS) gene and the Chlamydomonas psaB 3’ region downstream of it.  

Two constructs were made in order to examine the importance of the sequence of a 
predicted stem-loop structure between positions +1 and +41 of the C. reinhardtii rbcL 5‘ 
region. The first construct tested consisted of a reversed nucleotide sequence between 
positions +5 and +37, while the second construct examined consisted of a complete 
change of sequence between positions +6 and +36 of the region, in which the nucleotides 
were changed so that each purine is replaced by another purine (A→G; G→A), and each 
pyrimidine by another pyrimidine (C→T; T→C). 

The constructs were inserted into the chloroplast genome downstream of the atpB gene. 
Transcript accumulation of the reporter gene was determined by Northern blot. Both 
constructs did not exhibit a change in accumulation of GUS transcripts in comparison to 
the original reporter gene construct, proving that the altered nucleotides are not 
significant in stabilizing the rbcL transcript in the C. reinhardtii chloroplast. 
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1.  INTRODUCTION 
 

 

1.1  The Chloroplast 

 

The chloroplast is a specialized organelle found in photosynthetic organisms. The name 

of the organelle arises from the prominent pigment it contains, chlorophyll. Light excites 

the pigment molecules and their structure allows energy transfer to proteins that lie in 

complex with them. This energy is used for the process of photosynthesis, in which 

carbon dioxide (CO2) and water are converted into carbohydrates and other compounds. 

The chloroplast is organized with two membranes surrounding an inner space called 

stroma, which contains stacked membranes called thylakoids (fig 1.1). The thylakoid 

membranes contain unique protein complexes – photosystems I and II (pigment 

containing), cytochromes b and f, and ATP synthase. These protein complexes cooperate 

to produce the energy needed in the process of carbon fixation. 

Chloroplasts belong to a large organelle group called plastids, and are the most prominent 

of this group. All plastids are semi-autonomous organelles, they contain their own DNA 

and replicate by division.  
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Fig 1.1 The chloroplast 

A schematic look and an electron micrograph showing chloroplast organization. 
(http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/C/Chloroplasts.html) 
  
 

 

Chloroplasts are semi-autonomous organelles. This means that they contain genes 

necessary for the processes taking place in the organelle, as well as a system for the 

expression of these genes, but are not independent of nuclear gene products for their 

biogenesis and their function. Perhaps the most obvious example for this interdependency 

is the two RNA polymerases active in chloroplast transcription, one of them a 

chloroplast-encoded RNA polymerase (PEP) and the other a nuclear-encoded RNA 

polymerase (NEP). 
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A widely accepted explanation for this interdependency is the endosymbiot theory, which 

claims that chloroplasts originated from an ancestor of cyanobacteria. The theory 

suggests chloroplasts arose through a process in which a photosynthetic organism was 

engulfed by a non-photosynthetic organism, which then gained the photosynthetic ability. 

This theory relies on genetic similarities between chloroplasts and cyanobacteria. Plant 

chloroplast genomes are substantially smaller than cyanobacterial genomes. This is 

assumed to be the result of gene loss or gene transfer from the chloroplast to other 

organelles throughout evolution (Maul et al. 2002).  

However, the fact remains that chloroplasts haven’t fully transferred their genes to the 

nucleus throughout evolution. It is suggested that the potential toxicity of the ATP-

generating electron transfer in the chloroplast is the selective pressure that retained the 

chloroplasts as separate organelles in the cell (Race et al.1999).    

  

There is great variation between photosynthetic organisms in the number of chloroplasts 

per cell. Chloroplasts are polyploid and the number of chloroplast genome copies per 

organelle also varies a lot between different species. Up to date 45 chloroplast genomes 

have been sequenced (http://megasun.bch.umontreal.ca/ogmp/projects/other/cp_list.html), 

which represent a variety of taxonomical groups.  

Structure and content of chloroplast genomes are uniform. In angiosperms and most 

algae, the genome is arranged with two inverted repeats (IRs) separating two single copy 

regions. Gene content is also highly conserved, but gene order varies. 

Chloroplast genes generally show uniparental inheritance patterns, but examples are 

known of both paternal and maternal inheritance, so that no single mechanism is known 

for this phenomenon (Birky 1995). 
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1.2   Chlamydomonas as a model organism 

 

Chlamydomonas is a unicellular alga found in a large variety of environments. 

The genus Chlamydomonas was first described in the 19th century based on its main 

morphological features as seen by light microscopy – two flagella, a single large basal 

chloroplast containing one or more pyrenoids (the site of CO2 fixation and the light-

independent reactions of photosynthesis) and a cell wall (fig.1.2) (Harris 2001). The 

different species of Chlamydomonas were defined by variations of these morphological 

features. 

 

 

   

Fig 1.2 Chlamydomonas structure  

A C. reinhardtii scheme showing the central nucleus (N) with the nucleolus (Nu), the two 
isoform flagellae (F), the cup-shaped chloroplast (C) with the eyespot (E) and the starch 
containing pyrenoid (P) and the mitochondria (M). The golgi vesicle (G), starch grains 
(S), and the vacuoles (V). (Nickelsen & Kűck 2000)   
B Electron micrograph (http://library.thinkquest.org/3564/Cells/cell92-1.gif)  
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Chlamydomonas proved to be very suitable for genetic research (reviewed by Rochaix 

1995; Lefebvre 1999; Harris 2001) and gained the name ‘the green yeast’. The organism 

is easy and quick to grow, using simple medium. Its life cycle (fig 1.3) can be controlled 

by nitrogen and light. Nitrogen starvation triggers sexual propagation and light/dark 

cycles synchronize cell divisions. Chlamydomonas also provides simple follow-up 

possibilities, such as tetrad analysis, in which all four products of meiosis can be tracked, 

which was first discovered in 1918 by Pascher in this organism (Harris 1989). In 

addition, its growth in colonies on agar plates assists in follow up and isolation of cells 

with particular traits/genes. 

An additional interesting trait of Chlamydomonas is that it is a facultative heterotroph. It 

is able to live either photosynthetically, or on a carbon source. This makes it ideal for 

photosynthesis research, since non-photosynthetic mutants are viable when grown in the 

presence of a carbon source other than CO2. 

 

Chlamydomonas contains three separate genetic systems – the nucleus, chloroplast, and 

mitochondria – which interact (reviewed by Rochaix 1995). The nucleus and organelles 

have different inheritance patterns. The nucleus displays mendelian inheritance, while the 

organelles display uniparental inheritance.  

The organism is unique in that techniques have been found for the transformation of all 

three genomes, allowing extensive research on them (reviewed by Lefebvre 1999) and is 

widely used in the research of organelle biogenesis, photosynthesis, phototaxis, motility 

and more. It also provides additional insight on eukaryote cells in addition to the 

traditionally used model organism, the yeast.  
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Fig 1.3 Chlamydomonas life cycle (http://tidepool.st.usm.edu/crswr/chlamydomonaslc.html) 
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1.2.1  Chlamydomonas reinhardtii 

 

The most dominant Chlamydomonas species used in research today is C. reinhardtii, a 

strain was developed as a model organism in the 1940s and 1950s by Ralph A. Lewin and 

Ruth Sager. This strain can grow photosynthetically on simple salt medium, or grow in 

the dark if provided with acetate as a carbon source.  

The three genomes of C. reinhardtii are sequenced and together with the available 

transformation techniques have made this organism ideal for detailed experiments. 

 

1.2.1.1  The C. reinhardtii chloroplast 

   

C. reinhardtii cells have a single chloroplast, which contains 50-80 copies of the genome.  

Like most chloroplast genomes, the chloroplast of C. reinhardtii contains two inverted 

repeats separating two single copy regions, but is unique in that its single copy regions 

are similar in size (Harris, 1989). It is generally accepted that the genome exists as a 

double stranded circular molecule, but experiments suggest that it may also exist in the 

form of dimers and in linear form (Maul et al. 2002).  

 

The complete C. reinhardtii chloroplast genome sequence (fig 1.4) is now available 

(Maul et al. 2002). The genome is 203kb in size, distinctively larger than what is known 

for higher-plants model organisms such as spinach and tobacco, which are 150kb and 

155kb in size, respectively (Maul et al. 2002). Its large size is the result of many changes 

it has accumulated and especially its many short repeats and introns (Boudreaux et al. 

1994). 
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The genome codes for a complete set of tRNAs and has its own gene expression system 

(Maul et al. 2002). Interestingly, while chloroplasts are known to contain a nuclear-

encoded RNA polymerase (NEP), such an enzyme has not been identified in C. 

reinhardtii, nor were the genes coding for it found in its nuclear genome (reviewed by 

Smith & Purton, 2002). However, promoters for both NEP and PEP are found in the 

chloroplast genome. 

The chloroplast genes are organized in operon-like structures, but while this organization 

is conserved in land plants, gene placement in the algal genomes differs except in the IR 

regions, which as in higher plants, contain genes coding for ribosomal RNA (Rochaix, 

1997).  

 

 Inheritance of the Chlamydomonas chloroplast genome is uniparental-maternal (mt+), 

though biparental inheritance is sometimes exhibited for some generations (Birky, 1995). 

The paternal chloroplast genome is degraded some time after zygote formation, but 

recombination between the maternal and paternal chloroplast genome can occur before 

degradation (Harris, 1989). 
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Fig 1.4  C. reinhardtii chloroplast map (Maul et al. 2002) 
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1.3  Chloroplast RNA processing & stability  

In the chloroplast, just as in the nucleus, the process of gene expression is a cascade in 

which each phase is of importance and is regulated. RNA longevity is of major 

importance for gene expression. Transcription rate and the transcript stability are both 

involved in determining availability of transcripts for the translation machinery.  

Chloroplasts have a rather constant pattern of relative transcription rates, and while it is 

regulated by environmental and developmental signals, it retains its relative transcription 

rates. This pattern is maintained despite transcription rate changes in response to 

environmental and developmental signals (Mayfield et al. 1995). The search for 

differential regulation of gene expression leads therefore further down the gene 

expression cascade to RNA stability and translatability, which have been shown to be 

determined by elements in the RNA molecules themselves. 

RNA sequence and structure are crucial for its function since they interact with other 

elements active in the gene expression process. Messenger RNAs consist of a coding 

region surrounded by non-coding sequences called untranslated regions (UTRs). The 

5’UTR and the 3’UTR play a major role in RNA stability, translatability and degradation. 

The structure of the untranslated regions depends largely on the maturation process of the 

RNA molecule. This section aims to present the maturation process of RNA in the 

chloroplast and its significance for gene expression in the chloroplast, as well as examine 

the final product, mature RNA, what defines its fate and how this affects gene expression. 
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1.3.1  RNA processing 

 

Plastid RNA may undergo several types of processing before reaching its mature form, 

including RNA editing, RNA splicing, intercistronic-endonucleolytic cleavage, 5’-end 

maturation and 3’-end maturation. The results of this processing affect the stability, 

translatability and degradation of mature RNA. In many cases, specific nuclear loci are 

found that are involved in chloroplast RNA processing, suggesting potential differential 

regulation of chloroplast gene expression.  

 

1.3.1.1  RNA editing 

 

RNA editing is a process in which individual nucleotides in the sequence of a transcript 

are changed and no longer coincide with the genomic sequence from which they were 

transcribed. This process was found in the chloroplast mRNA of land plants (Smith et al. 

1997), but not of cyanobacteria and algae (Bock 2000).  

The most common editing event in chloroplasts is the conversion of a genomic-encoded 

C residue into a U residue, though examples for the opposite conversion (U→C), also 

called ‘reverse editing’, have also been found (Yoshinaga et al. 1996). While some 

editing events are silent ones, many are known to have functional significance. Editing 

sites have been found to create initiation (ACG→AUG) and termination (CGA→UGA) 

codons and are also involved in restoring conserved amino-acids in proteins and 

conserved elements in untranslated regions of RNAs (Hoch et al. 1991; Yoshinaga et al. 

1996; Maier et al. 1992; Kudla & Bock, 1999; Maier et al. 1995). 

The mechanism in which editing occurs in the chloroplast appears to be a base 

conversion mechanism that involves both cis-acting elements flanking the editing sites 

and site-specific trans-acting factors (Bock 2000). No consensus in sequence or 

secondary structure is known for the cis-acting elements, and none of the trans-acting 

factors involved in this conversion have been identified, but some chloroplast-encoded 
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site-specific RNA-binding proteins have been found to interact with the cis-elements 

(Hirose & Sugiura 2001; Miyamoto et al. 2002). 

 

Editing appears to occur early in RNA processing, prior to other RNA processing events 

like splicing and intercistronic cleavage (Freyer et al. 1993; Ruf et al. 1994). At the same 

time, evidence for the dependence of editing on translation is varying. While many 

editing sites show complete independence from translation (Zeltz et al. 1993), others 

exhibit complete or partial dependence of editing efficiency on translation (Karcher et al. 

1998). This, however, is likely to be the result of a possible effect of ribosome-binding on 

secondary structures that may be obscuring editing sites from trans-acting factors, and 

does not contradict the early occurrence of editing in the processing of mRNA. 

 

As with other stages in chloroplast gene expression, RNA editing and also responds to 

environmental and developmental signals and changes in editing efficiency in response to 

such signals have been observed (Bock et al. 1993; Ruf & Kössel 1997; Karcher 1998; 

Hirose & Sugiara 1997; Karcher & bock 2002).  

In light of its role in transcript translatability, and the evidence of non-functional proteins 

and mutant phenotype resulting from translation of unedited transcripts (Bock et al. 1994; 

Zito et al. 1997, Sasaki et al. 1997), it can be assumed that editing has a functional role in 

the regulation of gene expression in the chloroplast. However, differential editing in 

response to various cues has not been proven. Recent evidence shows that other 

parameters, such as transcript abundance, play a more significant role than editing in 

adapting gene expression in the chloroplast according to developmental signals. This 

points towards a mutation-correction role for editing, rather than a role in regulating gene 

expression (Peeters & Hanson 2002).  
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1.3.1.2  Intron splicing 

 

A number of chloroplast genes, including rRNA-, tRNA- and mRNA-coding genes, 

contain introns, which must be spliced during the maturation process of the RNA 

molecule.  

Splicing can connect between different exons in the same transcript (‘cis-splicing’), or 

between exons on different transcripts (‘trans-splicing’). 

Plastid introns are divided into three major classes known as Groups I, II and III, based 

on their structural elements and splicing fashion. Organelle introns differ from nuclear 

introns in structure and function, although similarities are found between group II plastid 

introns and nuclear introns. It is suggested that organelle introns may have been the 

origin of nuclear introns (Saldanha et al. 1993). At least some introns of groups I and II 

exhibit self-splicing in vitro. However, it is likely that even self-splicing introns require 

trans-acting factors for their splicing in vivo (Lambowitz & Perlman 1990). 

Nuclear loci, chloroplasts RNAs and chloroplast proteins are known to be involved in 

intron splicing in the chloroplast (Jenkins et al. 1997; Hubschmann et al. 1996; Hess et al. 

1994). 

There is evidence for the regulation of splicing by developmental and environmental 

cues. Some group II introns in land plants exhibit tissue-specific differences in their 

splicing (Barkan 1989), and the splicing of several group I introns in C. reinhardtii is 

stimulated by light, via photosynthetic electron transport (Deshpande et al. 1997).  

In addition, functional significance of splicing has been found, as in the case of the 

Chlamydomonas psbA transcripts, in which splicing efficiency is linked to the organism’s 

ability to grow photosynthetically (Lee & Herrin 2003). It therefore seems that intron 

splicing is of importance in chloroplast gene expression. 

 

 

 

 



                                                                                                                Introduction  14, 

 

1.3.1.3  Intercistronic processing 

 

Many plastid genes are organized in operons and transcribed as polycistronic RNAs, 

which are then cleaved into monocistronic transcripts. Intercistronic cleavage is of 

importance for gene expression in chloroplasts, since its absence can prevent the 

translation of proteins encoded by the polycistronic transcript.  

 

Several known examples show different ways in which intercistronic processing can 

affect chloroplast gene expression.  

The translation of psaC and ndhD in tobacco depends on the cleavage of the dicistronic 

psaC-ndhD transcript because in its dicistronic form, a base pairing between an element 

in the coding region of psaC and an element in the 5’UTR of ndhD forms a structure that 

inhibits ribosome access to the initiation codons of both psaC and ndhD (Hirose & 

Sugiura 1997). A similar structural barrier occurs in the dicistronic transcript of petD and 

petB in maize, but in this case a site-specific nuclear-encoded factor, crp1, allows the 

cleavage and translation of the transcripts (Barkan et al. 1994). The involvement of 

nuclear gene products in intercistronic cleavage opens up a possibility for differential 

regulation of gene expression through this type pf processing.  

Examples for intercistronic cleavage of rRNA (Barkan 1993; Holloway & Herrin 1998) 

show how this type of RNA processing can control the availability of the translation 

machinery. In these examples nuclear loci are responsible for this processing, which 

allows ribosome assembly. 

In addition, intercistronic processing can affect chloroplast gene expression is through its 

role in the maturation of the 3’UTR and 5’UTR (sections 1.3.1.4, 1.3.1.5), which contain 

stability and instability elements (section 1.3.2). 
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1.3.1.4  5’end maturation 

 

The maturation of chloroplast transcripts requires in some cases 5’end processing. Two 

types of processing are known – endoribonuclease cleavage and 5’→3’ exonuclease 

trimming.  

Ribonucleolytic cleavage is often observed by the finding of two transcript populations 

for the same gene, one with a 5’end corresponding to transcription initiation site and the 

other shorter and with a 5’end corresponding to a processing site. Studies show a 

correlation between transcript processing and translation. In Chlamydomonas, the 

processed transcript was found to be the only translatable transcript form (Nickelsen et al. 

1999; Bruick & Mayfield 1998; Vaistij et al. 2000). 

Ribonucleolytic cleavage may be followed by 5’→3’ exonuclease trimming (Drager et al. 

1998). Exonuclease trimming may also follow intercistronic cleavage, which makes the 

5’end of a transcript available for it. 

Nuclear-encoded factors are involved in the 5’end processing of transcripts and are 

important for the translatability of the transcripts (Vaistij et al. 2000; Nickelsen et al. 

1999). It has also been established that 5’end maturation responds to environmental 

signals (Shapira et al. 1997; Reinbothe et al. 1993). 

 

1.3.1.5  3’end maturation  

 

The 3’UTRs of chloroplast mRNAs usually contain inverted repeats (IRs) that can form 

stem-loop structures, which stabilize the transcript (Stern & Gruissem 1987; Stern et al. 

1989). These IRs protect from transcript degradation by preventing exonuclease progress, 

or by binding proteins that protect from degradation (Stern & Gruissem 1987; Stern et al. 

1989).  
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Transcription of chloroplast genes is not efficiently terminated by the 3’UTR (Rott et al. 

1996). The process of 3’end maturation is made of endonucleolytic cleavage downstream 

of the IRs, followed by 3’→5’ exonuclease trimming until the first encountered IR stem 

(Stern & Kindle, 1993; Hayes et al. 1996). However, it seems that the endonucleolytic 

cleavage site is not always necessary for 3’end maturation (Rott et al. 1999; Stern et al. 

1991) and that alternative maturation pathways may exist, as in the case of 3’ends 

generated through the cleavage of polycistronic transcripts. 

A number of proteins, mostly nuclear-encoded, are involved in 3’end processing 

(reviewed by Monde et al. 2000).  

As with 5’end maturation, 3’end maturation appears to modulate translatability of 

chloroplast mRNAs and promote polysome association (Rott et al. 1998). 

 

 

1.3.2  RNA stability 

 

As mentioned before, RNA is characterized by both sequence and secondary structure. 

Intrinsic elements of both sequence and secondary structure have been found that affect 

transcript stability. 

 

1.3.2.1  5’UTR mRNA stability elements 

 

RNA stability elements have been found in the chloroplasts of higher plants (Shiina et al. 

1998) and of algae (Higgs et al. 1999; Anthonisen et al. 2001). 

Extensive research on the role of 5’UTR in chloroplast mRNA has been done in 

Chlamydomonas. 5’UTR stability elements have been well defined in the rbcL and atpB 

genes of Chlamydomonas (Anthonisen et al. 2001). In addition, examples of nuclear 

mutations have been found that affect mRNA stability through the interaction of the 

nuclear gene products with the 5’UTRs of chloroplast mRNAs (Vaistij et al. 2000; 

Nickelsen et al. 1994; Drager et al. 1998; Esposito et al. 2001).  
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Interestingly, the 5’UTRs of different genes provide different degrees of stability to 

transcripts (Eibl et al. 1999). Transcript stability has been shown to compensate for 

changes in transcription rate in response to environmental stimuli (Shiina et al. 1998; 

Salvador et al. 1993) and transcripts coding for products with different roles may need to 

be stabilized to a different degree under different conditions. 

 

1.3.2.2  5’UTR mRNA instability elements 

 

While in most cases elements in the 5’UTRs are found to confer transcript stability, some 

examples of the opposite effect have been found. Such examples are the AU-motif of 

cyanobacterial psbA2 5’UTR, which confers instability in the dark (Agrawal et al. 2001) 

and the +21 to +41 sequence of Chlamydomonas rbcL 5’UTR, which is required for 

photo-accelerated degradation (Singh et al. 2001).  

 

1.3.2.3  3’UTR mRNA stability elements 

 

As mentioned above (section 1.3.1.5), most chloroplast 3’UTRs contain inverted repeats 

(IRs) that fold into stem-loops. The IRs are known in some cases to be transcript-

stabilizing (Stern et al. 1987, 1989,1991; Lee et al. 1996; Monde et al. 2000; Rott et al. 

1998). The IRs function as a protection from 3’→5’ exoribonuclease (Drager et al. 1996).  

Some examples of orientation-dependent IR function (Rott et al. 1998; Blowers et al. 

1993) suggest that the orientation may determine the formation of 3’ends or the binding 

of proteins, which prevent ribonuclease degradation (Rott et al. 1998). Site-specific 

RNA-binding proteins that bind to 3’UTRs have been identified (Memon et al. 1996; 

Levy et al. 1999). 
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At the same time, there is also evidence of IRs being unnecessary for mRNA stabilization 

(Blowers et al. 1993). Moreover, the IR sequence itself does not appear to be required for 

mRNA stabilizing (Drager et al. 1996). The 3’IRs sequences of the rbcL gene of non-

flowering land plants and algae have not been found to be conserved (Calie & Manhart 

1994). 

 

1.3.2.4  mRNA stability/instability elements in the coding region 

 

Stability determinants have been found also inside the coding region of mRNAs 

(Kulkarni & Golden 1997; Singh et al. 2001; Drapier et al. 2002). These were found to 

function in different ways, such as stalling ribosomes (Kulkarni & Golden 1997) and 

interacting with determinants in the 5’UTR, possibly blocking endonuclease attack 

(Singh et al. 2001).  

Instability determinants have been found in the coding region of spinach psbA mRNA, 

where degradation that is initiated by endonucleolytic cleavage in the coding region is 

probably directed by structural sequences at the cleavage sites (Klaff 1995). The cleavage 

of these sites is regulated by magnesium ions, which block the site and stabilize the 

mRNA (Horlitz & Klaff 2000). 
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1.3.3  Regulation of mRNA stability 

 

1.3.3.1  Developmental and environmental signals 

 

Transcription rate fluctuations do not account for differential changes in mRNA levels 

(Mayfield et al. 1995).  Experiments with transcription inhibitors point out RNA stability 

as a differential regulator of RNA levels, responding to developmental and environmental 

conditions ( Klaff & Gruissem 1991; Kim et al. 1993).  

Interestingly, in Chlamydomonas, increased mRNA stability has been found to 

compensate for decreased transcription rates in the dark, keeping RNA levels steady 

(Salvador et al. 1993). Similar examples for such compensation have also been reported 

in tobacco and barley (Shiina et al. 1996; Kim et al. 1993).  

Evidence from Chlamydomonas points out redox-carriers in the chloroplast as potential 

transmitters of light stimuli to the stabilization apparatus of chloroplast transcripts 

(Salvador & Klein, 1999). 

The interaction of nuclear gene products with stability elements (sections 1.3.2.1 and 

1.3.2.3) is likely to be a transmission pathway of developmental signals to the 

chloroplast. 

 
 
1.3.3.2  Trans-regulatory factors 

 

RNA-binding proteins are abundant in the chloroplast stroma (Nakamura et al. 1999) and 

are found associated to most ribosome-free stromal mRNAs (Nakamura et al. 2001). It is 

proposed that proteins bind to mRNAs immediately after transcription and both stabilize 

the transcript by reducing ribonuclease access, as well as promote RNA maturation 

processes (Nakamura et al. 2001).  
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Association to RNAs may be regulated by phosphorylation and redox potential in 

response to light stimuli (Danon & Mayfield, 1994; Kim & Mayfield 1997; Liere & Link 

1997; Lisitsky & Schuster 1995). 

Non-proteinaceous trans-acting factors have also been found to regulate RNA stability. 

Magnesium ions affect chloroplast RNA stability in both Chlamydomonas and plants 

(Klaff, 1995; Nickelsen et al., 1994). In spinach, different RNAs obtain stability at 

different magnesium concentrations (Klaff, 1995). It is also observed that the 

concentration of free magnesium ions rises during chloroplast development to a level that 

can mediate RNA stabilization (Horlitz & Klaff, 2000). It is suggested that magnesium 

ions may prevent RNA degradation through protecting endonucleolytic cleavage sites and 

through influencing protein binding to the mRNA UTRs. 

Other non-protein trans-acting factors may very well exist. Phosphate is such a candidate 

for the regulation of chloroplast mRNA stability, but its involvement has not yet been 

proved (Bollenbach et al. 2004). 

 

1.3.3.3  Ribosome association 

 

While some examples in higher plants show ribosome association to transcripts to be 

destabilizing for mRNAs (Klaff & Gruissem 1991), other examples, in maize (Barkan 

1993) and Chlamydomonas (Yohn et al. 1996; Bruick & Mayfield 1998), show the 

opposite effect of ribosome binding. 
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1.3.4  RNA degradation  

 

Chloroplast RNA longevity varies a lot between different transcripts. The degradation 

mechanism of chloroplast mRNA consists of endonucleolytic cleavage followed by 

pholyadenylation and 3’→5’ endonuclease or 5’→3’ exonuclease degradation (reviewed by 

Hayes et al. 1999; Schuster et al. 1999; Bollenbach et al. 2004). 

As mentioned in above, chloroplast RNA degradation may be affected by factors 

regulating cleavage sites accessibility, such as magnesium ions, RNA-binding proteins 

and ribosome association. Chloroplast RNA degradation may also be affected by the 

length and composition (Guanosine content) of the polyadenylated tail (Monde et al. 

2000). 

 

 

1.4  Chloroplast transformation 

 

A revolutionary method for plant cells transformation was reported in 1987 (Klein et al. 

1987). Using microprojectiles shot at high velocity (fig. 1.5) nucleic acids could be 

delivered into living cells. In 1988, it was reported that the method, also referred to as 

‘biolistics’, could be used to transform organelles (Boynton et al. 1988). Due to a 

homologous recombination mechanism in the organelles, stable transformation was 

accomplished when using DNA with sequences homologous to organelle genome 

sequences. Foreign DNA could also be incorporated into an organelle genome if flanked 

by homologous sequences (Blowers et al. 1989).  

Mutation complementation is commonly used for transformant screening. In 

Chlamydomonas, a working method was developed for the selection of transformants 

using a non-photosynthetic mutant Chlamydomonas strain for the transformation and 

complementing its mutation with the inserted DNA, using restored photosynthetic-ability 

as a selection marker for transformants (Blowers et al. 1989). 
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Fig. 1.5 Illustration of a particle gun. Helium 
pressure is released into the reaction chamber 
via a syringe filter (F) carrying the DNA 
coated microprojectiles. Helium release is 
controlled by a timer relay-driven solenoid (S), 
which opens the valve for 50 ms. The 
accelerated particles hit the algal cells, which 
are spread on the surface of a petri dish (D) on 
the bottom of the reaction chamber (Nickelsen 
& Kűck 2000). 
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1.5 The scope of this study 

 

The rbcL gene is a chloroplast gene that codes for the large subunit of ribulose-1.5-

biphosphate carboxylase/oxygenase (RUBISCO). This enzyme is a part of the 

photosynthesis apparatus and is responsible for CO2 fixation.  

RNA secondary structure is of importance for RNA stability (section 1.3). The 

Chlamydomonas rbcL 5’UTR has been extensively studied for its role in rbcL transcript 

stability. The location of a restriction enzyme site that allows cutting the transcribed 

sequence from the DNA exactly at +1 (transcription start site) position makes this gene 

particularly ideal for 5’UTR research. 

The secondary structure of the Chlamydomonas rbcL 5’UTR (fig 4.1, discussion) has 

been deduced and is predicted to consist of a large stem-loop (nucleotides +1 to +41) 

followed by a smaller stem-loop (nucleotides +49 to +63) downstream of it (Anthonisen 

et al. 2001, Singh et al. 2001).  

 

In this work, the importance of the sequence of the large stem-loop is examined by 

introducing two different changes to it. Work on the rbcL 5’UTR was done with 

constructs made of the changed rbcL 5’UTR, followed by the E. coli uidA gene and 

Chlamydomonas psaB 3’region downstream of it. The constructs were incorporated into 

the chloroplast genome between the atpB gene and the IR (fig 2.1, materials and 

methods). 

The first change tested reverses the nucleotide sequence in positions +5 to +37, while the 

second change examined is a complete change of sequence, in which nucleotides +6 to 

+36 are changed so that each purine is replaced by another purine (A→G; G→A), and 

each pyrimidine by another pyrimidine (C→T; T→C) (fig 4.3, discussion). Both of these 

introduced changes affect only the sequence of the predicted large stem-loop, but not its 

structure. 

 



                                                                                                    Materials and Methods  24 

 

2.  MATERIALS AND METHODS 
 

 
2.1  Strains and Media 

 

2.1.1  Escherichia coli 

Recombination deficient strain TB1 was used for cloning. 

Cultures were grown overnight at 37°C, either in LB medium using a shaker/rotator, or 

on LA petri dishes (LB medium + 15g agar per liter). 

Long-term storage of cells was done in a 15% glycerol solution at -80°C. 

 

2.1.1.1  Preparation of competent cells for transformation 

Cells were CaCl2-treated (Sambrook and Russell 2001). 

 

2.1.1.2  Transformation  

Heat-shock treatment was used (Sambrook and Russell 2001). 

Transformants (ampicillin-resistant) were selected using ampicillin-containing LA petri 

dishes. 

 

2.1.1.3  Plasmid isolation  

Selected transformants were grown overnight on a rotating wheel in LB medium 

containing ampicillin (50µg/ml). 

For further use in cloning, a small-scale plasmid isolation (miniprep) was used 

(Sambrook and Russell 2001).  

For transformation of Chlamydomonas, DNA was isolated by large-scale plasmid 

isolation (maxi-prep) (Sambrook and Russell 2001).  
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2.1.2  Chlamydomonas reinhardtii 

 

2.1.2.1  Strains 

The mutant strain CC-373 (ac-u-c-2-21) was obtained from the Chlamydomonas Genetics 

Center at Duke University, North Carolina. The strain is light-sensitive due to a deletion 

of part of its atpB gene (fig 2.1), which codes for a part of the chloroplast ATP 

synthetase. It is heterotrophic, and can be grown in the dark using acetate as its only 

carbon source. 

The strain is used for transformation, using restored photosynthetic capability as a means 

of selection (Blowers et al. 1989). 

 

MU7 (Salvador et al. 1993a) contains an unmodified version of the rbcL-GUS construct 

(fig 2.1) and was used for comparison of RNA abundance with the CGstem and 5’reverse 

transformants tested in this work. 

 

2.1.2.2 Growth conditions 

 

CC-373   

HSHA medium – a high salt (HS) medium (Sueoka 1960) enriched with potassium 

acetate (2.5 g/l).   

Grown in the dark at room temperature. 

 

MU7 and transformed CC-373 

HS medium (Sueoka 1960). 

Growth in water bath at ~30°C, under continuous mixing by air and 2% CO2, either in 

constant light, or in 12 hours light/12 hours dark cycles. 
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2.1.2.3  Preparation of cells for transformation 

CC-373 cells were grown for several days, supplied with fresh medium daily. Cells were 

grown in the dark, at room temperature, on a shaker. Cells were ready for transformation 

when reaching growth log phase. 

 

2.1.2.4  Transformation 

The biolistic particle delivery system (PDS-1000/He; BioRad) was used according to 

BioRad’s operation protocol (http://www.bio-rad.com/LifeScience/pdf/Bulletin_9075.pdf, 

section 4) with 0.6 µm gold particles as microcarriers. The system’s parameters were 

adjusted and the cells were prepared as described by Boynton et al. (1988).  

 

2.1.2.5  DNA isolation 

As described by Dellaporta et al. (1983). 

 

2.1.2.6  RNA isolation 

RNA was isolated from cultures grown in light/dark cycles after 11 hours in the dark and 

after 1 hour in the light, using the SDS/phenol method (Merchant and Bogorad 1986).  
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2.2  Plasmids 

 

p+157SK+ (Anthonisen et al. 2001): 

A ~5kb plasmid, based on pBluescript SK+ (Stratagene) with a ~2.2kb fragment cloned 

between its XhoI and XbaI sites of its polylinker. The 2.2kb fragment contains 227bp that 

originate from positions –70 to +157 (transcription start site being +1) of the 

C.reinhardtii rbcL gene. These 227bp contain the rbcL promoter, its 5’UTR and some of 

the rbcL coding sequence. The 2.2kb fragment (fig 2.1) is made of these 227bp fused  5’ 

of the coding region of the E. coli uidA gene coding for β-glucuronidase (GUS). The 

plasmid contains an ampicillin resistance gene for selection in transformed bacteria. 

 

 

pCrc32 (Blowers et al. 1993): An ~11kb plasmid, used for Chlamydomonas 

transformation. It contains an ampicillin resistance gene for selection in transformed E. 

coli, as well as sequences homologous to C. reinhardtii chloroplast DNA (cpDNA), 

which promotes homologous recombination with the cpDNA during transformation. 

These sequences complement the atpB-IR deletion found in the Chlamydomonas strain 

CC-373 (fig 2.1). 
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Fig 2.1  A The 2.5kb deleted region in cc-373. B The transformation vector with 
homologous sequences complementing the deletion in cc-373 and carrying the 2.2kb 
construct made of rbcL 5’UTR, uidA (GUS) and psaB  3’ region. 
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2.3  DNA manipulation methods  

 

2.3.1  Oligonucleotide annealing 

 

Synthetic oligonucleotides, phosphorylated at their 5’-end, were obtained from MWG 

Biotech AG (fig 3.1, results).  

The annealing was done by mixing equal amounts of the oligonucleotides and heating the 

mixture to 100°C for two minutes, followed by cooling down to room temperature for 

about 15 minutes (Sambrook and Russell 2001). 

Concentration of the resulting dsDNA fragments was determined by calculation from the 

oligonucleotide data, supplied by MWG Biotech AG. 

 

2.3.2  Restriction enzymes 

 

Restriction enzymes from New England Biolabs and Promega were used according to 

producer instructions.  

 

2.3.3  Gel electrophoresis 

 

A 1% agarose gel containing ethidium bromide was used in TAE buffer. Gel loading 

buffer was added to samples (2% of total sample volume). 

A 1Kb plus ladder (Invitrogen) (fig 2.2) was used to estimate the size of DNA fragments. 
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2.3.4  Isolation of DNA fragments by gel electrophoresis 

 

DNA fragments were separated on an agarose gel and isolated from it for further use in 

cloning. The agarose gel was prepared for the isolation by cutting a “well” in it, right 

below the DNA band and inserting a dialysis-membrane into it to seal it (fig 2.3). 

The gel was then put back into the electrophoresis chamber, this time with enough TAE 

buffer to cover its sides, but not flow over the upper surface of the gel. The well that was 

made was filled with TAE buffer and electrophoresis was resumed until the DNA band 

reached the TAE buffer that filled the well. The TAE buffer in the well was collected 

using a pipette and the DNA was purified by phenol extraction and ethanol precipitation. 

 

2.3.5  Ligation 

 

T4 DNA ligase was used according to the protocol (Sambrook and Russell 2001). 

For optimized ligation, total ligation mixture volume was 10µl and vector-insert ratio was 

determined as follows: 

- The amount of vector used was determined by its size: ~ 66.5ng per 1kb. 

- The amount of insert was determined as followed  – 1.3 times the amount of the 

vector (in moles) for inserts of 0.5-3kb, and 5 times the amount of the vector (in 

moles) for inserts smaller than 100bp. 
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Fig 2.2  1Kb+ ladder, Invitrogen 

 

 
 

Fig 2.3 Isolation of DNA fragments by gel electrophoresis 
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2.4  DNA Sequencing 

 

Cloning results were verified by sequencing the region of the resulting plasmid that 

should contain the new insert. Automatic sequencing was performed with a Megabace 

machine (GE Healthcare) based on the chain termination method (Sanger et al. 1977) 

using a GUS primer. 

 

 

2.5  DNA/RNA quantification 

 

Estimation of DNA concentrations was done by dot spot analysis (Sambrook and Russell 

2001).  

More accurate measurements of DNA and RNA concentrations were used when 

analyzing Chlamydomonas transformants and were performed by spectrophotometer at 

260nm (Sambrook and Russell 2001). 

 

 

2.6  Hybridization analysis methods 

 

2.6.1  Probes 

 

Probes used for hybridization analyses were labelled with α-32P-dCTP by random primer 

labeling using the Klenow fragment of E. coli DNA polymerase I (Sambrook and 

Russell, 2001). 

GUS (~1.9kb) and atpB (~700bp) templates for random primer labeling were obtained 

from plasmid pBI221 (Jefferson 1987) by digestion with BamHI and SacI and from 

plasmid pCrcatpB (Blowers et al. 1990) by digestion with BamHI, respectively. 
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2.6.2  DNA slot/dot blot  

 

1µg genomic DNA samples were denatured with NaOH, applied to the assembled slot 

blot apparatus (PR600, Hoefer Scientific Instruments) and transferred to a ZetaProbe 

membrane (BioRad) (Sambrook & Russel 2001). Further fixation of the DNA to the 

membrane was done using UV crosslinking (254nm, 3 minutes). 

The membrane was hybridized with the radiolabeled GUS probe (section 2.6.1). 

Hybridization and washing were done according to the BioRad protocol (http://www.bio-

rad.com/cmc_upload/Literature/12643/LIT234C.pdf , section 4).  

Kodak Biomax MS film was exposed to the membrane at -80°C. Exposure time 

depended on the radioactivity level of the probe (- the lower the radioactivity level, the 

longer exposure time). The film was developed using Kodak film developer. 

 

2.6.3  Southern blot 

 

1.5µg genomic DNA was digested with HindIII and KpnI and run on a 1% agarose gel. 

The DNA was transferred from the gel to a ZetaProbe membrane (BioRad) by alkaline 

capillary transfer according to the ZetaProbe protocol (http://www.bio-

rad.com/cmc_upload/Literature/12643/LIT234C.pdf , section 2.1) and UV crosslinked as described in 

section 2.6.2. 

The membrane was hybridized to the atpB probe (section 2.6.1). Hybridization, washing 

and exposure to film as described in section 2.6.2. 
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2.6.4  Northern blot 

 

RNA samples were denatured by dissolving in formamide/formaldehyde solution and 

heating for 15 minutes at 65°C. 4µg RNA of each prepared sample was applied to and 

separated on a 1.3% agarose/formaldehyde gel (Sambrook and Russell 2001). RNA was 

transferred to a ZetaProbe membrane (BioRad) by alkaline capillary transfer according to 

the ZetaProbe protocol (http://www.bio-rad.com/cmc_upload/Literature/12643/LIT234C.pdf, section 

2.2).  

The membrane was hybridized to the GUS probe (section 2.6.1). Hybridization, washing 

and exposure to film as described in section 2.6.2. 
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3.  RESULTS 
 

 

3.1  The CGstem construct 

 

3.1.1  CG-Stem construct cloning 

 

3.1.1.1 Cloning CGstem into the pBluescript SK+ plasmid 

 

Single-stranded oligonucleotides (fig 3.1) were hybridized to form a double-stranded 

DNA insert. The DNA insert formed had one blunt end and one sticky end that 

complement the 5’ end formed by SwaI restriction and the 3’ overhang formed from 

BspEI restriction, respectively (fig 3.1).   

 

 

 
 

Fig. 3.1  The CGstem oligonucleotides and the double-stranded insert formed after 
annealing. The insert’s ends match those formed by cleavage with BspEI and SwaI. 
Nucleotides marked in gray show the completing parts of the BspEI and SwaI restriction 
site sequences, but are not part of the ligated DNA insert. 
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The plasmid p+157SK+ was cut with SwaI and BspEI and agarose gel electrophoresis 

was used to separate the resulting fragments and isolate the larger one (~5kb) gel (fig 

3.2). Concentration of the isolated plasmid fragment was determined by dot spot analysis. 

 

 

Fig 3.2  p+157SK+ cutting 
1) 1Kb+ ladder. 
2) p+157SK+ cut with SwaI and BspEI. 

No control for the efficiency of this double digestion was possible at 
this stage, since the released fragment was too small to be visible 
on the gel (41bp). 

 

The isolated plasmid fragment and the insert (the hybridized oligonucleotides) were 

ligated. It was expected that if the p+157SK+ plasmid was successfully double cut, 

religation of the plasmid will not occur in the absence of the insert. A parallel ligation 

was therefore done in the absence of the insert, in which the insert was replaced with 

water to maintain equal reaction volume.  If the plasmid relegated in the absence of the 

insert it would then be visible when attempting transformation of competent E.coli cells 

with these ligation mixes, since the transformation is only possible with intact circular 

DNA.  
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Transformation was done with the two ligation mixes as well as with the original 

p+SK+157, which served as control for transformation efficiency. The cells were spread 

on LB-ampicillin agar plates for transformant selection. 

The transformation with p+157SK+ resulted in many colonies, proving the 

transformation procedure was successful and the cells were competent. 

Only three colonies resulted from the transformation with the ligation mix that lacked the 

insert, while about 150 colonies arose from the standard ligation mix. This proved that 

most of the p+157SK+ was successfully double-cut and not just religated without 

incorporating the new insert.  

A miniprep on transformant colonies assumed to carry the cloned plasmid (fig 3.3) 

showed a plasmid of expected size (~5kb) present in transformants colonies that were 

randomly picked, reassuring no false-positives from naturally ampicillin-resistant E.coli 

colonies. 

A maxi-prep was performed on two of the selected transformants and used for 

sequencing. The sequencing was successful (97% overall quality) and verified the 

incorporation of the insert into the plasmid.  

 

 

Fig 3.3  p+157SK+CGstem miniprep  
1) 1Kb+ ladder. 
2) Uncut plasmid isolated from transformant 

bacteria. 
3) Plasmid isolated from transformant bacteria 

and cut with BspEI. 
4) Plasmid isolated from transformant bacteria 

and cut with BspEI. 
 

 

    

 

 

 



                                                                                                                           Results  38 

 

3.1.1.2  Cloning CGstem into the chloroplast transformation vector 

 

 

The plasmid obtained in the maxiprep from the first cloning stage (p+157SK+CGstem) 

was precipitated and cut with XhoI and XbaI. Two fragments were expected – one of 

about 3 kb and the other about 2kb). The 2kb fragment that contained the new insert (fig 

2.2, materials and methods) was isolated by gel electrophoresis (fig 3.4) and its 

concentration was determined by dot spot analysis. In order to ensure isolation of the 2kb 

fragment alone (fig 3.4, lane 2), the 3kb fragment above it was cut out from the gel before 

the isolation of the 2kb fragment. 

 

The plasmid pCrc32 was cut with XhoI and XbaI, resulting in two fragments of about 2kb 

and 9kb. The 9kb fragment was isolated by gel electrophoresis (fig 3.4) and its 

concentration was determined by dot spot analysis. The gel’s resolution did not ensure 

that the 9kb fragment of pCrc32 did not contain any uncut of linearized (cut only with 

one enzyme) plasmid. This was therefore controlled in the same manner as the cutting of 

p+157SK+ (section 3.1.1.1) by checking transformation efficiencies of a ligation mix 

containing only the isolated 9kb band. Results showed little chance for religation without 

insert, proving most of pCrc32 was successfully double cut. 

 

 

 

Fig 3.4  pCrc32 and p+157SK+CGstem cutting  
1) 1Kb+ ladder. 
2) p+157SK+CGstem cut with XhoI and XbaI. 
3) pCrc32 was cut with XhoI and XbaI. 
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Randomly picked colonies of cells transformed with the ligated 9kb and 2kb fragments 

were used for miniprep (fig 3.5).  

 

 

 

Fig 3.5  pCrc32CGstem miniprep  
1) 1Kb+ ladder 
2) The original pCrc32+157, uncut. 
3) Plasmid obtained from transformant colony 1, 

uncut. 
4) Plasmid from transformant colony 2, cut with 

XhoI. The linearized plasmid seems smaller than 
the large plasmid fragment in lane 5. This 
suggests that the obtained plasmid from this 
transformant colony has religated without 
incorporating the insert. 

5) Plasmid from transformant colony 3, cut with 
XbaI and XhoI. The released insert verifies the 
plasmid had successfully incorporated the 
CGstem insert. 

No confirmation of correct insert orientation in the 
plasmid was needed, since the XhoI and XbaI leave 
distinctively different ends at their restriction sites and 
therefore allow only one insert orientation. 
 

 

 

A maxiprep was done on transformant colony 3 from the miniprep, which tested positive 

for the CGstem insert, and was used for sequencing. The sequencing was successful 

(90% overall quality) and verified the incorporation of the insert into the plasmid. 
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3.1.2  CGstem analysis 

 

Using the biolistics method,  the transformation vector obtained from the maxiprep was 

used to transform the photosynthesis-deficient Chlamydomonas strain CC-373. 

As mentioned before (section 1.2.1.1), the chloroplast of C. reinhardtii contains 50-80 

genome copies. During transformation, insertion of DNA can occur in more than one of 

these copies. The selective pressure of exposure to light makes sure that surviving algae 

have incorporated the DNA complement to the cpDNA deletion found in this strain (fig 

2.1, materials and methods), but due to the possibility of several homologous 

recombinations occurring, it does not guarantee the incorporation of the chimeric gene 

construct (rbcL5’UTR: GUS: psaB 3’region) that lies between the inverted repeat and the 

atpB gene in the transformation vector (fig 3.7).  

In order to check for the presence and amount of the chimeric gene in transformants, the 

cultures’ DNA was probed with a GUS probe using the slot blot method (fig 3.6). Three 

transformant cultures tested positive for GUS presence in their cpDNA. The signal from 

the GUS probe was relatively strong, suggesting the chimeric gene was incorporated into 

many copies of the chloroplast genome of these transformants. 

 

 

 

Fig 3.6 CGstem slot blot  
1) MU7 DNA hybridized to GUS probe (control). 
2) Transformant algae 1 DNA hybridized to GUS 

probe. 
3) Transformant algae 2 DNA hybridized to GUS 

probe. 
4) Transformant algae 3 not containing GUS. 
5) Transformant algae 4 not containing GUS. 
6) Transformant algae 5 not containing GUS. 
7) Transformant algae 6 not containing GUS. 
8) Transformant algae 7 DNA hybridized to GUS 

probe. 
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DNA from the cultures showing GUS was used in a southern blot, this time with a probe 

for the atpB gene (fig 3.8). The DNA was cut with the enzymes KpnI and HindIII before 

it was run on the gel. Expected fragments containing atpB would be about 5kb and 3kb in 

size. The 5kb fragment represents chloroplast genome copies that have incorporated the 

chimeric gene construct, while the 3kb fragment represents chloroplast genome copies 

containing the deleted genes of CC-373, which are needed for photosynthesis, but not the 

chimeric gene tested (fig 3.7).  

 

 

Fig 3.7  The two possible atpB-containing  fragments resulting  

from transformant DNA cutting with HindIII and KpnI. 

 

 

Of all three cultures tested, one culture showed only the 5kb fragment, which meant it 

was homoplasmic and all of its chloroplast genome copies contained the full chimeric 

gene construct (fig 3.8, lane 2). 
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Fig 3.8  CGstem Southern blot  
1) 1Kb+ ladder. The 1.6kb fragment of the 

ladder hybridizes with the atpB probe. 
2) Transformant algae 1 DNA treated with KpnI 

and HindIII and hybridized to the atpB 
probe. 

3) Transformant algae 2 DNA treated with KpnI 
and HindIII and hybridized to the atpB 
probe. 

4) Transformant algae 7 DNA treated with KpnI 
and HindIII and hybridized to the atpB 
probe. 

 

 

 

After proving the presence of the chimeric gene in the transformants’ DNA, the effect of 

the introduced change in the rbcL 5’UTR part of the chimeric gene could be tested. The 

homoplasmic transformant strain was the one tested in order to get the most accurate 

result. RNA was isolated as described in section 2.1.2.6. Chimeric gene transcript levels 

resulting from the chimeric transcript of transformant algae culture 1 were compared with 

those from the chimeric construct of MU7 transformant algae using a GUS (uidA 

transcript) probe. 

Under both light and dark conditions, somewhat higher chimeric transcript levels were 

detected for transformant algae 1 in comparison to MU7 algae (fig 3.9).  

 

 
Fig 3.9  CGstem Northern blot  

1) MU7 uidA transcript level in the dark. 
2) MU7 uidA transcript level in the light. 
3) Transformant algae 1 uidA transcript level in 

the dark. 
4) Transformant algae 1 uidA transcript level in 

the light. 
 

 



                                                                                                                              Results  43 

 

3.2  5’reverse construct analysis 

 

The 5’reverse construct was cloned in a similar manner to the cloning procedure 

described for the CGstem construct, at the University of Valencia in Spain and analyzed 

for the second time in this work in order to verify previous results. 

 

The transformation vector containing the construct was used to transform C. reinhardtii 

cells as described for the CGstem construct, resulting in light-tolerant (photosynthetic) 

transformants.  

 

In a slot blot analysis, out of four cultures tested, one showed GUS presence in its DNA. 

The signal from the GUS probe was relatively strong suggesting high amounts of the 

chimeric gene incorporated into the chloroplast genome of this transformant strain 

(fig3.10). 

 

 

 

Fig3.10  5’reverse slot blot  

1) MU7 DNA hybridized with GUS. 
2) Transformant 1 DNA hybridized with GUS. 
3) Transformant 2 shows no GUS hybridization. 
4) Transformant 3 shows no GUS hybridization. 
5) Transformant 4 shows no GUS hybridization. 

 

 

 

 

 

 

 

 

 



                                                                                                                              Results  44 

 

DNA from the culture showing GUS was used in a Southern blot. The results showed 

only the 5kb fragment, proving homoplasmicity for the chimeric contruct (fig 3.11). 

 

 

Fig 3.11  5’reverse Southern blot  
1) 1Kb+ ladder. The 1.6kb fragment of the ladder hybridizes 

with atpB probe. 
2) Transformant algae 1 cpDNA treated with KpnI and HindIII 

and hybridized to the atpB probe. 
 

 

 
 
 
A northern blot done on RNA isolated from transformant algae 1 (fig 3.12) showed 

similar, though slightly higher, uidA transcript levels in comparison to those found in 

MU7, which contained the unchanged rbcL 5’UTR, under both light and dark growth. 

 
 

 

 

Fig 3.12  5’reverse Northern blot  
1) MU7 uidA transcript level in the dark. 
2) MU7 uidA transcript level in the light. 
3) Transformant algae 1 uidA transcript level in the 

dark. 
4) Transformant algae 1 uidA transcript level in the 

light. 
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4. DISCUSSION 
 

The constructs tested in this work contain changes in the 5’UTR of the Chlamydomonas 

rbcL gene. 5’UTRs are known to contain determinants important for transcript stability 

and translatability (Drager et al. 1999; Higgs et al. 1999; Nickelsen et al. 1999; 

Anthonisen et al. 2001; Salvador et al. 2004).  

The C. reinhardtii rbcL 5’UTR contains a stabilizing sequence element made of 

nucleotides +38 to +47 (+1 being transcription start point) (Anthonisen et al. 2001). This 

element lies within a predicted secondary structure consisting of a large stem-loop 

followed by a smaller stem-loop downstream of it (Anthonisen et al. 2001) (fig 4.1).  

 

 

Fig 4.1 The predicted structure of nucleotides +1 to 
+63 of the C. reihardtii rbcL 5’UTR (Anthonisen et 
al.  2001). Stability element (+38 to +47) marked. 
 

 

It has been previously observed that chimeric transcripts containing only the 5’UTR part 

of the C.reinhardtii rbcL gene are substantially less stable in light than they are in the 

dark. It was also established that the first 252 nucleotides of the C. reinhardtii rbcL-

coding region stabilize the transcript in the light (Salvador et al. 1993). A conserved 

element that stabilizes the transcript in the light was identified later on between 
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nucleotides +329 to +334 (fig 4.2) (Singh et al. 2001). Mutations in the preserved +38 to 

+47 stability element of the rbcL 5’UTR destabilize the chimeric transcript. However, in 

chimeric transcripts that do not contain the rbcL coding region, which includes the +329 

to +334 element, these mutations in the 5’UTR stability element do not affect the 

difference seen in transcript stability under dark and light conditions (Anthonisen et al. 

2001). Therefore, two chloroplast RNA degradation pathways exist, one light-dependent 

(photo-accelerated) degradation, from which the +329 to +334 element protects, and the 

other light-independent, in which the +38 and +47 element plays a role.  

 

 

Fig 4.2 Prediction of the 

structure of nucleotides 

+1 to +350 of the 

C.reinhardtii rbcL gene. 

The +327 loop contains 

the +329 to +334 

stability element. (Singh 

et al. 2001) 

 

 

In C. reinhardtii rbcL, in vivo studies revealed a compensation mechanism, balancing 

increased transcription rate in the light with lower transcript stability, and decreased 

transcription rate in the dark with higher transcript stability, the overall result being a  
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steady state in transcript abundance (Salvador et al. 1993).  This pattern of chloroplast 

transcript stability and transcription rate that differ in dark and light conditions is also  

found in the chloroplasts of higher model organisms (Shiina et al. 1998). It is likely that 

the environmental signal of light is carried to the RNA degradation mechanism by redox  

carriers, since studies in C. reinhardtii show photosynthetic non-cyclic electron transport 

to be crucial for light-dependent RNA degradation (Salvador et al. 1999). 

The constructs tested in this work were planned so that the exact structure of the stem-

loop is maintained, while its entire sequence is changed (section 1.5) (fig 4.3). Both 

constructs did not cause a change in the dark/light stability ratio of the chimeric gene 

transcript. They did, however, show slightly higher stability than the chimeric gene  

transcript of the MU7 transformant, which contains the unchanged rbcL 5’UTR. This is 

the result of a transcription enhancer that is present in the tested transformation constructs 

but not in the MU7 construct. 

The CGstem construct has an increased number of hydrogen bonds in comparison to the 

original stem-loop sequence. This could potentially give a biased result when it comes to 

transcript stability by providing a more stable stem-loop, but since the 5’reverse construct 

with its unchanged number of hydrogen bonds in the stem-loop gives similar results, it 

can be concluded that this is not a major factor in the chimeric transcript’s stability.  

It is established that mutations in this region of the stem-loop do not affect the 

transcription rate (Salvador et al. 2004), which implies that the results of this work reflect 

changes in transcript stability alone. 

It can therefore be concluded that the nucleotide sequence at position +5 to +37 of large 

stem-loop in the C.reinhardtii rbcL does not contain significant elements for transcript 

stability. Nucleotides +38 to +41 and +1 to +4 were not changed in the tested constructs 

in order to preserve the sequence and structure of the +38 to +47 stability element. These 

results do not allow conclusion regarding the predicted role of the stem-loop structure in 

transcript stability, but other constructs testing this region of the rbcL 5’UTR confirm the 

importance of this structure (Salvador et al. 2004).  
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Fig 4.3  The changes made in the C. reinhardtii rbcL 5’UTR 
A and B Showing the structural change made in the large 5’UTR stem-loop in the 
5’reverse and CGstem constructs, respectively, as predicted by mfold (Zuker et al. 1999). 
C The structure of the original large stem-loop of the rbcL 5’UTR, as predicted by mfold 
(Zuker et al. 1999). 
D  The sequences (nucleotides +1 to +46) of the original rbcL 5’UTR and the two 
constructs.  
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The large stem-loop of the C. reinhardtii rbcL 5’UTR has been previously claimed to 

participate in light-dependent degradation through a nuclease target in nucleotides +27 to 

+41 and possibly also through an indirect interaction of the nucleotides at the top of the 

stem-loop with the coding-region stem-loop containing the +329 to +334 sequence 

element, preventing access to the postulated nuclease target (Singh et al. 2001). The 

results of this work do not support these suggestions. The nucleotides at the top of the 

large stem-loop in the 5’UTR are not conserved and are therefore not likely to serve as a 

target for a protein that could interact with other RNA-binding proteins and change the 

tertiary structure of the molecule. The possibility of the +27 to +41 nucleotides serving as 

a nuclease target or a target for indirect interaction with another stem-loop structure is 

unlikely since the sequence of nucleotides +5 to +37 is insignificant for transcript 

stability, and since nucleotides +38 to +41 belong to a stabilizing element and mutations 

in them destabilize transcripts, rather than stabilize them. However, the fact that the 

5‘UTR stem-loop structure is of importance for transcript stability (Salvador et al. 2004) 

and the location of the +38 to +41 of the stability sequence element as part of the stem-

loop, may imply that some significant indirect interactions with other regions in the 

C.reinhardtii rbcL transcript do occur via RNA-binding proteins. This seems also likely 

in light of the fact that the endogenous rbcL transcripts have half-lives that are 

substantially longer than those of the chimeric reporter genes studied, even when the first 

252 nucleotides of the gene’s coding region are included in the constructs (Salvador et al. 

1993; Nickelsen et al. 1994).     

 

 

Although several crucial elements for the regulation of the rbcL are well defined, it is 

likely that other elements active in the regulation of this gene’s function still remain 

unknown. In addition to the study of gene structure, the thorough study of the sequence 

and structure of this gene’s and other chloroplast genes’ transcripts, provides an 

opportunity to gain insight in the evolutionary development of protein and RNA 

interactions as well as the development of organelle communication. 
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