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1 Introduction

Most real systems consist of several interacting bodies, and so many-body
physics is an essential ingredient in any realistic description of the physical
world. Quantum many-body theory concerns the fundamental properties of
systems where the quantum nature of the constituents plays an important
role. These include both small systems like nucleons, nuclei, atoms and small
molecules, and large-scale systems as electrons in matter and nuclear matter
in neutron stars. The problems encountered are notoriously complex and
hard to solve, and many strategies exists to cope with different systems. The
fundamental challenge common to all such problems is that describing the
motion of all particles involved amounts to keeping track of far too much
information for any straight-forward course of attack. Methods developed to
handle this complex situation and transform it into something tractable are
therefore mostly quite general and can be applied to a number of different
systems, each providing different testing grounds for the general methods.

The physical systems chosen as subject for study in this thesis are low-
energy nuclear systems, that is, nuclei and nuclear matter on an energy scale
where the appropriate building blocks are the nucleons, the protons and neu-
trons. The range of possible combinations of nucleons spans from the single
proton in a hydrogen nucleus to the couple of hundreds found in the the heav-
iest nuclei, and then on to the (essentially) infinite number of particles in
a neutron star. Nuclear systems are very challenging quantum many-body
problems due both to the complexity of the strong force and to the number of
particles involved, most nuclei being in the difficult mesoscopic range of too
many particles to handle each separately and too few for statistical treatments.

The aim of ab initio methods in nuclear structure calculations is to de-
scribe the nucleus and nuclear matter from first principles only, with as little
use of phenomenological determination as possible, ultimately building a co-
herent framework enabling calculations of low-energy nuclear structure and
reaction ratios starting from the field theories of sub-nuclear particle physics
and the standard model of Quantum Chromo Dynamic (QCD). If successful,
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2 CHAPTER 1. INTRODUCTION

not only will we gain the satisfaction of being able to study nuclei and nuclear
reactions from fundamental principles, but also the possibility of predicting
key properties of short-lived nuclei present in stellar interiors and generated
during supernova explosions, furthering our understanding of the ratios of dif-
ferent nuclei found in our part of the universe. On a more practical level,
numerical computations across the range of exotic nuclei opens up for far eas-
ier determination of isotopes with specific characteristics that can be used
in medicinal diagnostic and therapeutic treatments. Accurate computations
could also be an ingredient in fine-tuning nuclear reactor designs to increase
safety and efficiency.

The complexity of the computations increases very rapidly with increasing
particle number. A layered approach is necessary, where only the relevant
degrees of freedom for a given system are taken into account. Starting from
QCD, the first step is to generate a theory where only nucleons exist, and
all effects of the underlying strong force is taken into account by the effective
force between the nucleons. This effective force acts between two nucleons
in vacuum, and is called the bare interaction. Then we can start to put the
nucleons together to form nuclei. Nuclei are quantum systems, and as such,
there exists several general approaches which can be applied to these systems.
One of the major obstacles is that the interaction between pairs of nucleons
changes dramatically in the presence of other nucleons. The complexity of
the computations increases and makes approaches to nuclear structure calcu-
lations based on the bare two-body interaction directly very impractical for
heavier nuclei. A popular simplification is to generate a new effective interac-
tion which takes the presence of the surrounding nucleons into account. This
thesis concerns one possible framework, the summation of Parquet diagrams
within Green’s function theory, to obtain an effective interaction and use it to
calculate properties of interest for finite nuclei.

The Green’s functions (propagator) method is one of the standard the-
oretical descriptions of quantum mechanics, underlying the huge family of
Feynman diagram methods employed in most high-energy physics. In the
many-body context, two features of many-body systems provides the basis
for applying propagator techniques. Firstly, almost all quantum systems of
strongly interacting particles (where two particles exchange large amounts
of energy each time they interact) can be described as a weakly interacting
system of quasi particles (where the quasi particles exchange much smaller
amounts of energy when they interact), given the right choice of definition of
the quasi particles. Secondly, to find most of the important physical proper-
ties of a system, it is not necessary to know the behaviour of each particle
exactly, rather it is enough to know the average behaviour of one or two typ-
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ical particles. The quantities describing this average behaviour are the one-
and two-body propagators. Once these are known, most physical properties
of the system can be derived. The mathematical transparency, the generality
and the close connection between the fundamental definitions and the physical
observables makes Green’s function based theories ideal for studies of general
properties of many-body theories and the relations between different methods.

Within the field of nuclear structure calculations, this framework has long
been widely used as a theoretical aid, but as most applications to realistic
physical systems require self-consistent calculations, solutions in the form of
closed expressions usually do not exist. The last 20 years, advances on cal-
culating spectral functions and self-energies have been made [1, 2, 3, 4, 5, 6].
Several fundamental problems have still to be overcome, especially in connec-
tion with calculations on nuclei, as the structure of most interesting quantities
to be calculated involves complex poles which are numerically difficult to han-
dle and require large computational resources. On the other hand, the exact
single particle propagator contains in principle all information on the state of
the system, so the effort can be worthwhile [7].

For systems with many fermions, the antisymmetry of the wave function
forces the particles to have different quantum numbers, that is, in the ground
state (the state with lowest possible total energy), the available states will
be filled with particles, starting from the states with lowest energy, up to
a certain energy level called the Fermi level. A significant reduction of the
complexity occurs if we assume only small excitations from the ground state.
Thus most of the particles having low energies will never gain energy enough
to jump above the Fermi level, and thus they need not be included in the
calculation. For the cases where this is a good approximation, which include
all nuclei except the lightest ones, we define the ground state as the so-called
Fermi vacuum state, and record only the changes from this. The states with
energy lower than the Fermi level are called holes, and removing particles from
the ground state is then equivalent to creating holes.

Goeppert-Mayer [8] found that the remarkable regularities of the nuclear
properties as a function of the proton and neutron numbers can be explained
by assuming that each nucleon moves independently in a potential well set up
by the mean interaction with all the other nucleons in the nucleus. The energy
states of the Hamiltonian of this system are usually called orbitals. For some
nuclei, called closed-shell nuclei, the single-particle picture is found to give an
especially good description, with the neutrons or protons filling up all orbitals
up to the Fermi level. The shell closures occur at the so-called magic numbers
of neutrons or protons, and nuclei where both proton and neutron number are
magic, are called doubly-closed or doubly-magic nuclei. The experimentally
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available spectroscopic factors give a measure of what fraction of the full wave
function can be factorized into a correlated state and an independent particle
state.

The doubly-closed nuclei are especially suited for ab initio calculations,
as their spherical symmetry can be exploited to reduce the number of nec-
essary basis states. Recently, practically convergent results on the ground
state of medium-mass closed nuclei like 40Ca, 48Ni and 48Ca have been cal-
culated by the coupled-cluster method [9, 10, 11]. This approach can be
extended to a wider range of medium-mass nuclei by applying the so-called
equation-of-motion method to the results of the closed-core result. Other
methods commonly regarded as having potential possibility for extension to
larger systems include the large-scale diagonalization methods (no-core shell
model approaches)[12, 13], the unitary-model-approach [14], and (only ap-
plicable to doubly-closed nuclei) perturbative expansions [15, 16, 17]. The
Parquet method is an alternative to these approaches, and it has been the
aim of this thesis to investigate the practical possibilities and limitations of a
numerical implementation.

For heavier nuclei, the shell structure provides the physical justification
for introducing the simplification which makes calculations possible, namely
that most of the nucleons are thought of as being inert in the closed core, and
the active particles and holes are the distributed among a select few valence
orbitals on top of this core. By far the most used method is simply to set
up the Hamiltonian for the valence orbitals, and perform a diagonalization of
the resulting matrix, which in modern applications can contain of the order of
109−1010 matrix elements [18]. Such a large-scale diagonalization calculation
is commonly called a Shell Model calculation, and this has long been the
standard solution method possible for calculations based on the assumption
of a closed core. Another possibility is the so-called Shell Model Monte Carlo
approach [19, 20].

The diagonalization Shell Model calculation needs an effective interaction
which can incorporate the effect of the interaction between the active particles
and the inert core as input. The Parquet method can, when extended to larger
systems, provide a supplement to the traditional Lee-Suzuki transformation
and Q̂-box methods [21, 22, 23], and this possibility has given additional
motivation for the work presented in this thesis.

The strong potential for ab initio calculations of medium-mass nuclei within
the self-consistent Green’s functions approach has been asserted by Barbieri
et al. [6, 24], having recently calculated properties for selected nuclei up to
56Ni [25]. The Parquet method has a number of interesting features. It is
possible to obtain better accuracy with a smaller numerical effort when com-
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pared to large-scale diagonalization approaches, and the self-consistency re-
quirement provides a path to ensure the conservation of basic macroscopic
quantities. The main advantage, however, is the close connection with ex-
perimentally available data sets through the elementary basic blocks of the
theory, namely the many-body propagators. These contain information on
the energies of excitation processes and the amount of correlation in the sys-
tem. The single-particle spectral function (and spectroscopic factor) can be
experimentally extracted, for example in (e, e′) knock-out reactions [26, 27],
see also Refs. [28, 29, 30]. Extracting the spectroscopic factors from e.g. the
coupled-cluster approach requires considerably more effort. Compared to the
Faddeev random phase approach of Barbieri et al., the Parquet method in-
cludes more particle-particle-hole-hole (pphh) correlations and is much easier
to improve systematically.

The Parquet method of summing diagrams has been known for more
than 50 years, having first been developed by Diatlov, Sudhakov and Ter-
Martirosian [31] as an aid to describe meson-meson scattering in particle
physics. These equations have since been used somewhat, most notably in
one- and two-dimensional electron gas calculations [32, 33]. They have also
been used for some critical-phenomena calculation [34, 35]. The most ex-
haustive theoretical investigations were carried out by Jackson, Landé and
Smith [36, 37, 38, 39]. More recently, Yasuda has used the Parquet diagram
method to construct approximations to the reduced density matrix of general
quantum systems [40].

The effective interactions generated by this method include a large class
of diagrams, and require no initial assumptions on the underlying interaction
with respect to range and strength, as opposed to ladder type or ring type
(standard random-phase approximation) interactions. The interaction is sym-
metric, that is, the particle-particle part of the interaction and the particle-
hole part are treated on an equal footing, thus ensuring that all diagrams
critical to a reasonable description of the many-body system are included.
It is therefore applicable to systems where easier approaches fail, for exam-
ple systems where it seems that both particle-particle type (calculated by
ladder/G-matrix approximations) and particle-hole type (usually handled by
random-phase approximation (RPA) methods) diagrams are equally impor-
tant. Systems undergoing a phase transition is one such example, and there
is clear evidence that both these parts of the interactions play a crucial role
in nuclear systems [41]. By making a self-consistent calculation, the included
diagram classes are summed to all orders. Only linked diagrams are included
in the sum, which ensures that the method is size extensive, meaning that
the total energy scales correctly with the number of particles [11]. Baym and
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Kadanoff [42, 43] showed that the self-consistency requirement ensures the
conservation of basic quantities like number, energy, momentum and angular
momentum.

Furthermore, it is well established that at least three-body, possibly higher-
body interactions are needed to obtain agreement between calculations and
experiment for several quantities in nuclei, for example binding energies and
spectra of light nuclei [44, 45], to solve the so-called Ay puzzle [46] and the
binding energy in nuclear matter [47]. The formalism of the Parquet method
can naturally be extended to include such higher-body terms [39].

The remainder of this thesis is sectioned into six more chapters. Chapter 2
provides general background material and motivation, and also some basic no-
tation and concepts. A short introduction to the Green’s function approach to
many-body theory is given in chapter 3, before we present the Parquet sum-
mation method in chapter 4. In chapter 5 we discuss the results of applying
the Parquet method to a simple model with a constant interaction, and in
chapter 6 we move on to the more realistic system 4He. A short conclusion
and plans for further work are given in chapter 7.



2 Ab initio methods for nuclear
structure calculations

The aim of ab initio methods in nuclear structure calculations is to describe
the nucleus and nuclear matter from first principles. Ideally, one would start
with the particles which feel the strong interactions directly, i.e. quarks and
gluons, and then use the rules of Quantum Chromo Dynamics (QCD). Due
to the non-perturbative nature of the strong force, we do not know how to
compute anything at the low energy scales involved in real, cold nuclei. Only
if the nuclei are heated or compressed, as in a collider machine, is it possible
to use perturbative expansions. Thus other approaches are necessary for cal-
culations on nuclear structure and reactions. Based on observation, we know
that the nucleonic degree of freedom, treating protons and neutrons as sta-
ble, unstructured particles is a good starting point, at least up to an energy
of ∼140 MeV (the pion production threshold). However, then we run into
the problem of determining the interaction between the nucleons, as this is
a residual force originating from the interactions between the quarks which
make up each particle. Furthermore, even if the interaction between free nu-
cleons could be well determined, putting several nucleons together creates a
strongly interacting system which is too complex to handle without further
simplifications.

There are several methods that have been applied to nuclear structure
problems, many of which are mostly or purely phenomenological, and we will
not discuss these. Broadly speaking, the ab initio efforts fall into two classes,
wave-function based methods and the propagator methods. The Green’s func-
tions method falls into this latter class. Approaches suited for calculations
including all nucleons in the nucleus are presently restricted to light and in
certain cases, medium-mass nuclei, while a closed-core approach in which sev-
eral nucleons are regarded as inert works best for medium to heavy nuclei. For
large nuclei, there is an ongoing effort to extend the range of ab initio calcu-
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lations by applying Density Functional Theory based on an ab initio-derived
density functional for nuclei. We will discuss certain aspects of these topics,
with emphasis of the possible application of the Green’s functions method
within each subject.

This chapter is organized as follows. First, we introduce some necessary
fundamental many-body notation in section 2.1. A short description of the
various approaches for constructing the nucleon-nucleon force (the so-called
bare NN interaction), being the common input to all the ab initio calcula-
tions, is provided in section 2.2. The repulsive short-range part of the bare
interaction requires special attention, and the implications of this is discussed
in the section on effective low-energy interaction is in section 2.3. Then we
move on to describing the challenges and strategies of ab initio calculations
of light and medium-mass nuclei in section 2.4. In section 2.5 the role of the
effective interaction needed as input to standard Shell Model calculations is
discussed.

2.1 Many-body formalism and quasi particles

In this section we introduce some fundamental concepts and notation of many-
body theory. This provides the common, necessary background material for
the discussion on different many-body approaches, and for the presentation of
our chosen method, the Green’s functions approach given in chapter 3.

2.1.1 Basic concepts and notation

Single-particle states are the basic building blocks of many-body nuclear the-
ory. Nucleons are fermions, and each particle needs its own set of unique
quantum numbers, both for infinite and finite cases. In the infinite case, the
basis states are plane waves, and a single-particle state |α〉 has momentum kα,
spin projection sα and isospin projection τα. In the finite case, the quantum
numbers of α will depend on the chosen basis states. A set of basis states is
assumed normalized and orthogonal.

The fermion wave function must be antisymmetric, that is, exchanging
two particles must change the sign of the state. To ensure this, the two-body
state is constructed as:

|αβ〉≡ 1√
2
(|α〉|β〉 − |β〉|α〉). (2.1)

This state has the correct symmetry, and vanishes if α = β, thus incorpo-
rating the Pauli principle. Only states where α≤β should be counted in the
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completeness relation for the basis states, as exchanging the two states gives
the same physical state.

For larger systems, the same antisymmetry considerations has to be made.
To create an antisymmetrized N -particle state, we define the anti-symmetrizing
operator

A =
1

N !

∑
P

(−1)pP, (2.2)

where P is a permutation operator for N particles, the sum is over all N ! pos-
sible permutations and the sign depends on whether the permutation is even
or odd. Acting with the anti-symmetrizing operator upon the simple prod-
uct state |α1〉. . .|αN 〉 generates wave functions that can be written as a single
Slater determinant in the case of a system of non-interacting particles, and as
a linear combination of such determinants in the case of interacting particles.
To describe many-particle systems, we use an extension of the Hilbert space
called a Fock space. Formally, this is defined as the Hilbert space made from
the direct sum of tensor products of single-particle Hilbert spaces, so that the
total space contains the vacuum state |0〉, the complete set of single-particle
states {|α〉}, the complete set of antisymmetric two-particle states {|α1α2〉}
and so on for all particle numbers to infinity. This enables us to define oper-
ators between states with different particle numbers.

The concept of second-quantization makes the construction of many-body
states easier. This is a compact way of keeping track of whether a single-
particle state in the basis is occupied or not, by writing the state as

|ΨN 〉 = |n1, n2, . . . , nN 〉, (2.3)

each ni being either 0 or 1 depending on whether single particle state |α〉 is

occupied or not. We define the creation and annihilation operators c†α and cα

as operators that add or remove one particle with quantum numbers α from
a many-particle state, i.e.

c†α|ΨN 〉 = |ΨN+1〉 = A(|α〉|ΨN 〉), (2.4)

and

cα|ΨN 〉 = cαA(|α〉|ΨN−1〉) = |ΨN−1〉. (2.5)

Operating with c†α on a state already containing a state with quantum numbers
α produces zero, as does trying to operate with cα on a state which does not
contain the state |α〉. The vacuum state |Ψ0〉 is the state with no particles,
and cα|Ψ0〉 = cα|0, . . . , 0〉 = 0. In the Heisenberg picture the creator and
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annihilator operators carries the time dependency, and are given as

c†α(t) = eiĤtc†e−iĤt, (2.6)

and
cα(t) = eiĤtce−iĤt. (2.7)

Here H is the Hamilton operator. Within the second-quantization scheme, a
generic Hamilton operator composed of a one-body term Ĥ0 and an interaction
term V̂ can be written as:

Ĥ = Ĥ0 + V̂ =
∑
αβ

〈α|H0|α〉c†αcβ +
1

2

∑
αβγδ

〈αβ|V |γδ〉c†αc†βcδcγ . (2.8)

In the following, we will use the notation that |ΨN
0 〉 is the N-particle ground

state of a set of eigenstates |ΨN
m〉 such that HN |ΨN

m〉 = EN
m |ΨN

m〉 forms a
complete orthonormal basis set with completeness relation∑

m

|ΨN
m〉〈ΨN

m| = 1. (2.9)

2.1.2 Harmonic oscillator basis

The nuclear system is self-bound, that is, there is no externally imposed po-
tential that keeps the nucleons together. The observed shell structure of the
energy levels in the nucleus suggests that the action of all the nucleon-nucleon
interactions adds up to a potential that can be modelled by a central field.
A suitable physical model for this is the Woods-Saxon potential [48], but as
the eigenfunctions cannot be given in closed form, the most used basis for
calculations of finite nuclei is the harmonic oscillator basis. This basis has
nice analytic properties while hopefully not requiring an unmanageable num-
ber of basis states to build up the true wave function, having incorporated the
centrally bound structure into the basis.

The three-dimensional harmonic oscillator states are primarily character-
ized by the radial quantum number n and the angular momentum l. The
energy of a given state is

εN = �Ω(N +
3

2
), (2.10)

where N = 2n + l and Ω is the oscillator frequency determining the spacing
between the energy levels. Ideally, all results should be independent of this
parameter. In coordinate space, the eigenfunctions are Hermite polynomials.
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Nucleons are particles with intrinsic spin s = 1
2 , which couples to the or-

bital momentum l. It is convenient to introduce the total angular momentum
j with projection quantum number m to characterize the eigenstates. In ad-
dition, the isospin quantum number tz is used to distinguish between the two
species of nucleons, protons having tz = −1

2 and neutrons tz = 1
2 (as we use

isospin-dependent nuclear forces, we do not employ the full isospin formalism).
Thus, the generic eigenstate |α〉 is an abbreviation for

|α〉 = |njmlstz〉 =
∑

mlms

〈lmlsms|jm〉|ntz〉|lml〉 ⊗ |sms〉, (2.11)

where the 〈lmlsms|jm〉 are Clebsh-Gordan coefficients.
Ideally, one would use a full (infinite) basis set in calculations of finite

many-body systems, but implementations must necessarily be finite, and trun-
cations have to be made. This introduces the concept of a model space, the set
of basis states for the full Hilbert space chosen as basis set in the calculations.
To find the best basis set and truncation for a given problem, combined with
a method to include the effect of the excluded basis states is a difficult task.
Numerous strategies has been tried for various systems, including the whole
machinery of effective field theory in nuclear physics.

2.2 The bare nucleon-nucleon (NN) interaction

It is necessary to determine the interaction between the nucleons which is to be
used as input to the nuclear structure calculations. The traditional first step is
to first determine the force between two nucleons in free space, since this is an
experimentally relatively accessible quantity. The force between nucleons is a
residual force, created by the long-range leftovers from the strong interaction
between the three quarks inside each nucleon. There are two main branches of
methods for obtaining the so-called bare nucleon-nucleon interaction (i.e. in
free space, not in a medium). The oldest is based on generating an interaction
with a number of free parameters (typically around 40) and then fit these to
experimental data, usually the phase shifts from nucleon-nucleon scattering
experiments. The second approach was initiated by Weinberg [49], and is
based on effective field theory, starting from a Lagrangian consistent with the
symmetries of QCD.

2.2.1 Phase-shift fitted potentials

There are several modern nucleon-nucleon potentials based on fitting param-
eters to phase shifts, most notably the NijmI and NijmII,[50] the Argonne
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V18 [51]and the CD-Bonn [52] potentials. These potentials have a number of
parameters which are fitted to scattering data analyzed by the Nijmegen group
in the early 1990’s, performing a multienergy partial-wave analysis for all NN
scattering data below 350 MeV laboratory energy resulting in a database which
by 1999 consisted of massive amounts of data for pp and np scattering [53, 52].
All the above potentials fit this database with χ2/datum values very close to
1 (less than 1.1 for all).

The Nijmegen potentials are based on one-boson-exchange (OBE) theory
and parametrize each partial wave separately, with a total of 41 (NijmI) and
47 (NijmII) parameters. The NijmII is a local potential, while NijmI contains
momentum-dependent terms which give rise to non-localities in the central
force component. Both are soft-core potentials, that is, they regularize the
strong repulsion between nucleons at short distances by the use of exponen-
tial form factors. The CD-Bonn potential is a charge-dependent OBE based
potential which includes the effects of π, ρ and ω mesons plus two effective
scalar-isoscalar σ bosons, having in total 43 free parameters. The Argonne V18

model is purely phenomenological, consisting of a sum of 18 operator terms,

Vij =
18∑

p=1

Vp(rij)O
p
ij , (2.12)

where the operators Op are different combinations of the operators L,S, σ, τ, r
and their components. As the Nijmegen potentials, it is regularized by ex-
ponential form factors at very short distances. The total numbers of free
parameters is 40.

The differences between the above potentials at low energies are very small,
the main difference being the D-state deuteron probability which differs be-
tween 4.85% and 5.76%. At higher energies and in the off-shell matrix el-
ements, where they are no longer constrained by the scattering data, the
differences becomes much larger, as seen for example in the calculation of the
binding energy of nuclear matter [54, 55].

Recently, a new and somewhat different potential has been developed,
the so-called JISP6 (J-matrix inverse scattering potential) [56, 57]. In this
approach, a potential matrix is found for each partial wave separately. Very
few a priori constraints are placed on the matrix elements, except for making
the phenomenologically based assumption that the potential matrix in the
uncoupled partial waves is tridiagonal. The off-shell matrix elements are then
constrained by bound and resonant states in nuclei with A ≤ 6.
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2.2.2 Chiral potentials

The chiral potentials are derived from more fundamental principles than the
above meson-exchange based potentials. For a review of the subject, see for
example Ref. [58] and references therein. The main idea is to write down the
most general Lagrangian for low-energy pions and nucleons consistent with the
symmetries of QCD, of which the most important feature is the spontaneously
broken chiral symmetry. This broken symmetry generates Nambu-Goldstone
bosons, identified with the pions. The higher-energy degrees of freedom are
taken into account in the coefficients of various terms in the pion-nucleon La-
grangian. This makes it possible to derive an NN interaction perturbatively,
expanding in powers of the small parameter Q/Λχ, where Q is a generic low-
momentum parameter and Λχ ≈ 1 GeV is the chiral symmetry breaking scale.
Thus the potentials derived from this type of approach can be improved sys-
tematically, and contains controllable derivations of three- and higher-body
terms. The current highest-order potentials are N3LO (next-to-next-to-next
to leading order) potentials [59], which include some three-body diagrams,
making treatment of the three-body terms necessary for any correct applica-
tion of these potentials. Currently, there are several variants of chiral poten-
tials, having between 25 and 30 free parameters and giving χ2/datum values
comparable to, albeit a little higher than, the phase-shift potentials discussed
in the previous section.

2.3 Effective interactions in finite model spaces

The bare NN interaction is very repulsive at short distances, colloquially
known as being a hard core potential. Even if this is softer than a hard
sphere approximation, it still causes significant convergence problems for all
many-body theories using any of the variants of the bare interactions as in-
put. The short-distance structure will be highly model-dependent since the
short-range part of the NN interaction is determined by processes occurring
at higher energies than the energy scale of the data used as basis for the
phase-shift fitted potentials. Thus it is very desirable to reduce the effects of
the short-range details of the interaction as much as possible, constructing an
effective interaction which keeps the long-range behaviour of the bare interac-
tion, but smooths out all higher-energy details. This new interaction will be
applicable in a truncated space (model space) with less resolution in energy.
The traditional approach for doing this is the energy-dependent Brueckner
G-matrix [60, 61], while a more recent renormalization group (RG) derived
interaction is the cutoff-dependent Vlowk potential [62, 63].
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2.3.1 G-matrix

The original motivation for the G-matrix approach was to obtain a two-body
interaction suitable for a perturbation expansion of the ground-state energy of
nuclear matter. This also provided some theoretical foundation for the shell
model. The central idea of the theory is that when two nucleons interact, we
allow for any number of interactions to occur before the particles go on to meet
other particles. This amounts to summing all diagrams with two particles as
intermediate states, commonly called the ladder type diagrams, and use this
sum in place of the interaction. The sum, called the G-matrix, is defined by
the integral equation

G(ω) = V + V
Q2p

ω − H0
G(ω), (2.13)

where ω is an energy variable known as the starting energy, and Q2p is an
operator projecting onto two-particle states. This projection operator becomes
rather complicated when the G-matrix is generated to be used in perturbation
expansions in finite nuclei, as the two-particle state must have at least one
particle outside the chosen model space, which in turn depends on the nucleus
in question. A two-partition scheme for solving for the G-matrix depending
on choice of model space exists, see e.g. [13]. If the G-matrix is to be used
as an input to a coupled-cluster or Parquet type of calculation, the objective
is merely to sum the really high-energy contributions, and a ’free’ G-matrix
defined in a large model space will suffice.

There are some disadvantages to this approach, the main shortcomings
being the energy dependence and, for direct applications to finite nuclei, the
model space dependence introduced in the Q2p operator. In addition, this is a
one-step procedure which is difficult to improve on systematically to generate
higher-body interactions, and there is no clear and direct connection back to
the original potential.

2.3.2 Vlowk

A method for generating a well-behaved, energy-independent effective inter-
action is the so-called similarity renormalization group theory (SRG) ap-
proach [64]. The oldest and most tried variant is the Vlowk approach with a
sharp momentum-cutoff [62, 63], equivalent to the Lee-Suzuki similarity trans-
formation method [22]. Most published applications of the Vlowk-potential
have used the latter algorithm, being more numerically stable. The concep-
tual framework, however, is simpler for the SRG-based method. Its origins
lies in the central idea of effective field theory, namely that the physics at the
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infrared region should be insensitive to the details of the short-range, high-
energy details. The fact that as all the different bare NN interaction have
a common low-energy long-range part which is unambiguously determined
from data illustrate this point. Thus, rather than starting from a chiral La-
grangian, the initial interaction is an NN potential, which is then evolved
through successive iterations into a potential where the effects of the model-
dependent high-energy momentum modes are integrated out, and the common
long-range tail is kept essentially unchanged. As expected, when such a calcu-
lation is performed, the differences between the bare NN interaction variants
are largely removed, and all of them evolve into essentially the same Vlowk

potential [63].
The calculation of Vlowk is based on the T -matrix equivalence relations

defining a low-momentum scattering T -matrix Tlowk by

Tlowk(p
′, p, p2) = Vlowk(p

′, p) + P
∫ Λ

0
q2dqVlowk(p

′, q)
1

p2 − q2
Tlowk(q, p, p2),

(2.14)
where (p′, p) ≤ Λ and P denotes the principal value integration. The low-
momentum scattering matrix Tlowk must fulfil the condition

T (p′, p, p2) = Tlowk(p
′, p, p2), (p′, p) ≤ Λ, (2.15)

with T (p′, p, p2) being the standard scattering T -matrix defined for all mo-
menta p′ and p. The above equations ensure that Tlowk preserves the low-
momentum half-on-shell full T -matrix.

The Lee-Suzuki algorithm employed to calculate Vlowk was developed as
a method for summing up the folded-diagram series in order to obtain an
effective Shell Model interaction, as briefly discussed above. It is based on
finding a similarity transformation operator X defined in the whole Hilbert
space such that the transformed (effective) interaction

H ≡ X−1HX, (2.16)

satisfies the decoupling condition

QHP = 0. (2.17)

Here P and Q are the usual model space projectors, projecting into or out of
the model space, respectively. The most common choice of similarity trans-
formation operator is

X = eΩ, (2.18)
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where the wave operator Ω satisfies the conditions

Ω = QΩP, (2.19)

PΩP = QΩQ = PΩQ. (2.20)

The result of this is to construct an effective Hamiltonian defined in the smaller
model space P , such that the eigenvalues of Heff are the same as the eigenvalues
of the original Hamiltonian within P .

The sharp cutoff introduced in this derivation has some disadvantages, as
it can cause convergence problems at low energies. Recently, an algorithm
for generating a Vlowk potential with a smooth cutoff regulator has been pro-
posed [65]. The first successful attempts to evolve the bare interaction using
a SRG-based approach within a harmonic oscillator basis (generating three-
body contributions in a controlled manner) has recently been reported [66].

2.3.3 Effective interactions and three-body forces

Recently, three-body forces have received quite a lot of attention. An in-
creasing number of calculations show that such forces must be included to
reproduce both properties of light nuclei and of nuclear matter [44, 67, 68, 69,
46, 70, 45, 66, 71, 72]. Higher-body interactions are a product of the truncation
process when an effective interaction is generated as the high-energy degrees
of freedom are assimilated into an effective interaction at lower energies. The
standard example in nuclear physics is the Δ-isobar resonance, in which two
nucleons interact, one is excited into a Δ, which subsequently interacts with a
third nucleon and becomes a nucleon once more. Thus, with only nucleons as
allowed degrees of freedom, the result of this event is an (attractive) effective
force between three nucleons.

In the standard truncation schemes outlined above, higher-body effective
interactions will appear in two layers, first when generating the bare NN inter-
action from QCD or phase shifts (including the effect of the Δ resonance) and
then again when performing either a G-matrix or an Vlowk truncation. For
the bare NN case, the existing attempts to generate three-body forces at the
more phenomenological level of the phase-shift potential, the most commonly
used three-body potentials are the Urbana/Illinois potentials [73, 74], which
have two to five free parameters usually fitted to the triton binding energy.

The chiral potential method generate higher-body terms straightforwardly
as more terms in the perturbation expansion are included, the first contribut-
ing three-body terms appearing at the NNLO level (thus being present in the
current N3LO potential). The construction of the full class of contributing
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three-body class is an ongoing project [75]. Recent efforts to ascertain the
effects of missing many-body physics stemming from the truncations of the
chiral interactions have shown that the neutron-rich oxygen isotopes are very
sensitive to the strength of the three-body forces [71, 72].

Any theory which intends to use the best available bare interaction needs
the capability to handle at least three-body forces.

2.4 Ab Initio approaches for light and

medium-mass nuclei

For light nuclei, the degrees of freedom are moderate and several methods
have been applied to these systems. For the lightest nuclei, there are methods
which employ the bare NN interaction directly without relying on any ad-
ditional truncation to handle the short-range correlations, the most versatile
probably being the Green’s function Monte Carlo methods [76, 19, 77] which
can currently handle up to A≤12. Others in this group include Faddeev-
Yakubovsky-methods for A=3-4 [67], the correlated hyperspherical harmon-
ics [78] and variational approaches [79, 80]. The rapid growth of the computa-
tional complexity of these methods make extensions to heavier nuclei in prac-
tice unattainable. Methods operating within the second quantization scheme
rather than in coordinate space have the possibility of incorporating the effects
of the short-range correlations into an effective interaction via a G-matrix or
Vlowk scheme as described in section 2.3. Then smaller computational spaces
are necessary, and methods which can employ such an effective interaction
have better possibilities for extensions to larger systems. An added bonus
is that as the computational resources increase, the large spaces needed for
calculations with only the bare NN interaction become feasible, thus enabling
a study of the effect of the truncation schemes. The topic of this dissertation,
the Parquet method, fall into this class of methods, and we will give a short
overview of some other approaches as natural candidates for comparison.

2.4.1 Large-scale diagonalization techniques

The family of approaches that rely on large-scale diagonalization techniques
are commonly termed No-Core Shell Model (NCSM) or No-Core Full Config-
uration Interaction method. For a recent review, see for example [18]. The
basic idea of these methods is simple, namely to chose a set of basis states and
an interaction as input, and then solve the eigenvalue equation to obtain the
eigenvalues and eigenstates. In the limit of an infinite basis, an exact solution
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would be obtained, but real calculations necessitate cutoffs and truncation
schemes. The difference between these methods and a common Shell Model
calculation is that no inert core is assumed and all nucleons participate.

The common choice of basis is the harmonic oscillator basis, but several
different choices of input interactions have been used. No-core shell model
calculations have been performed with G-matrix input [81], with Vlowk in-
put [70, 45], and with both sharp- and smooth-cutoff variants of free-space
SRG-evolved potential [82]. The authors of Ref. [83] have performed calcula-
tions employing the bare NN interaction JISP6 as input, naming the approach
No-Core Full Configuration Interaction method as no extra step to generate
an effective interaction is taken in this case. The JISP6 results show quite
good convergence, but the same calculations employing the bare N3LO as
input give less stable results.

All of these methods have dependencies on the harmonic oscillator energy
�Ω and the size Nmax of the chosen space, which lessens with increasing Nmax

as expected. The Vlowk and SRG results have an additional cutoff dependence.

2.4.2 Perturbation expansion

Ground-state energies of doubly-closed nuclei can be obtained by the well-
known Goldstone perturbative expansion (see for example Refs. [84, 85]). The
authors of Refs. [15, 16, 17] have solved the Hartree-Fock equations for doubly-
closed nuclei on top of a Vlowk renormalization procedure to obtain an auxiliary
potential and a new basis. This HF basis is then used in the summation of
the Goldstone expansion to fourth order in the interaction. Although rather
restricted as a many-body method, the Goldstone expansion is one of the
cornerstones of many-body ground state energy calculations, and serves as a
common point of reference for comparison between different methods.

2.4.3 Coupled cluster method

The coupled-cluster (CC) method was first developed within the field of nu-
clear structure calculations [86], but became almost exclusively used in compu-
tational chemistry until recently, when several successful calculations of light
and closed-shell medium nuclei has been reported [9, 10]. For a review on the
method in general and its application in quantum chemistry, see [11]. The
central idea is to express the full correlated wave function |Ψ〉 as a correlation
operator T acting on a reference Slater determinant |Φ0〉:

|Ψ〉 = eT |Φ0〉. (2.21)
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The correlation operator is given by a sum of n-particle n-hole excitations
for all n ∈ 1, N :

T = T1 + T2 + T3 + · · · + TN (2.22)

The Ti operators are expressed by creation and annihilation operators as

T1 =
∑
i,a

tai c
†
aci, (2.23)

T2 =
1

4

∑
ij,ab

tab
ij c†ac

†
bcjci, (2.24)

and so on. By convention, indices a, b, . . . denotes single-particle orbitals
and i, j, . . . denote single-hole orbitals. Including only T1 gives a so-called
singles CC calculation (CCS), including T1 and T2 gives a singles-and-doubles
CC calculation (CCSD) and including T1, T2 and T3 is called a singles-doubles-
and triples CC calculation (CCSDT). Usually, only a CCSD or an approximate
CCSDT calculation (with acronym CCSD(T)) is performed in current nuclear
structure calculations. By virtue of the exponential expansion used in calcu-
lation of the correlated wave function, also disconnected excitations like two
separate single excitations are included to all possible orders.

The equations for the amplitudes tab...
ij... are found by left projection into a

sufficient number of excitations:

〈Φab...
ij... |e−T HeT |Φ0〉 = 0, (2.25)

This gives rise to a set of non-linear, coupled equations which is solved
self-consistently by iteration. The ground state energy is found from the
Schrödinger equation:

E = 〈Φ0|e−T HeT |Φ0〉. (2.26)

The main advantages of the coupled-cluster theory is the nice properties
with respect to the computational effort as the system size increase compared
to the diagonalization methods and that it scales correctly with increasing
particle number (size extensive). The so-called equation-of-motion method is
used to calculate excited states of closed-shell nuclei, and furthermore, the
properties for nuclei in the vicinity of closed shell nuclei can be found by ap-
plying the so-called one-particle-attached and two-particle-attached schemes.



20 CHAPTER 2. AB INITIO METHODS

2.5 Effective interactions in the shell model

In the Shell Model, the underlying idea is that the nucleons outside the core
(the valence nucleons) determine most of the properties of the nucleus. Thus
the model space is restricted to include only the degrees of freedom relevant for
the valence nucleons, and the solution is found by a large-scale diagonalization
within this model space.

Even if most of the nucleons are considered as bound firmly in the core,
their presence will modify the interactions between the valence nucleons out-
side. So, if a restricted space (model space) is to be used, the effects of the
configurations left out of the model space has to be included in an effective
interaction, which is then different from the ”bare” interaction as measured
between free nucleons. This effective interaction should also account for the
Pauli exclusion principle, which forbids two interacting nucleons to scatter into
already occupied orbitals. Furthermore, as the nucleus is a self-bound system,
it makes sense to choose a basis with bound single-particle states, implying
that a large part of the bare NN interaction is accounted for as an average
field creating the bound system. Thus two other issues are closely related to
the question on how to determine an effective residual interaction between the
valence nucleons outside the core, namely the choice of basis and determining
the energies of the valence orbitals. There are numerous approaches to these
topics, and we will not go into any details here. For some recent reviews, see
for example [87].

In the spirit of ab initio calculations, one may start from a realistic ’bare’
force and use many-body techniques to construct an effective interaction for
the given system, removing all dependencies on phenomenological input. Sev-
eral steps are needed to obtain this. The input is the bare interaction and a
basis. The common choice here is the harmonic oscillator basis, other options
are a Hartree-Fock basis [88] or a Gamow basis [89, 90, 91, 10], the latter being
a natural choice for weakly bound systems. Because of the strong repulsive
short-range part of the nuclear interaction, it is often necessary to perform a
preliminary step neutralizing the effects of this, in the form of generating a
G-matrix or Vlowk interaction in a large space, as discussed in section 2.3.2.

The G-matrix approach is the oldest and most studied. The class of di-
agrams which is summed to all orders in this renormalized interactions are
diagrams of the particle-particle type only, and the effects of other types
of diagrams like the core-polarization diagram must be included by other
means afterwards. As the Parquet summation method is a method to sum
a much larger class of diagrams to all orders, of particle-particle, hole-hole
and particle-hole types of diagrams, this method can be used to generate an
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effective interaction for use in the Shell Model calculations.

2.6 Nuclear density functional theory

The heavier nuclei are regarded as having too many degrees of freedom to be
handled by Shell-Model type calculations, and there is currently much effort
directed towards generating a density functional for nuclei and nuclear mat-
ter [92]. To develop such a Density Functional Theory (DFT) is the logical
approach to obtain ab initio-based calculations of heavy nuclei, as phenomeno-
logical descriptions of mean-field nature works well in this mass region. A nu-
clear DFT would have the possibility of systematic improvement, which the
current phenomenological approaches lack. The Green’s functions formalism
could possibly be used a basis for such a functional.





3 Many-Body theory and
Green’s functions

In this chapter we set up the basic Green’s function formalism describing
a system of many non-relativistic nucleons interacting by means of a two-
body interaction V̂ . We follow the standard convention of setting � = c =
1. This chapter gives a short introduction to the main concepts we need in
order to present the Parquet formalism in chapter 4. The Green’s functions
formalism is a standard framework within many-body quantum theory, and
fuller accounts are found in most textbooks on the subject, see for example
Refs. [84, 93, 94]. A comparatively recent presentation is given by the book
of Dickhoff and Van Neck from 2004 [7], and a quite amusing account is given
in Mattuck’s book [85].

Here we shall be content with a short discussion of the one-body propa-
gator in section 3.1, and the four-points Green’s function and the interaction
operator in section 3.2. Then we introduce the self energy and the Dyson equa-
tion in section 3.3, and finally, an account of the matrix inversion method for
finding the one-body propagator is given in section 3.4.

3.1 The one-particle propagator

The one-particle Green’s function is defined as:

gαβ(τ) = gαβ(t − t′) = −i〈ΨN
0 |T {cα(t)c†β(t′)}|ΨN

0 〉

=

{
−i〈ΨN

0 |cα(t)c†β(t′)|ΨN
0 〉 t > t′

i〈ΨN
0 |c†β(t′)cα(t)|ΨN

0 〉 t ≤ t′.

(3.1)

Here c(t) and c†(t) are the annihilation and creation operator in the Heisenberg
representation as described in section 2.1.1, |ΨN

0 〉 is the N-particle ground state
and T is the time ordering operator. If we add a particle in state β at a given

23
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time t′, the one-body propagator for t > t′ gives the probability that we find
the system still in its ground state if we remove a particle in state α at time t.
Similarly, for t≤t′ the one-body propagator gives the probability for recovering
the ground state when a hole is created (a particle removed) at a time t and
then annihilated at t′. Fourier transforming to obtain the so-called Lehmann
representation, we see that the denominator is zero at energies corresponding
to the excitation energies of the (N + 1) and the (N − 1) states with respect
to the ground state |ΨN

0 〉 [1]:

gαβ(ω) =
1

2π

∫ ∞

−∞

dτeiωτgαβ(τ)

=
∑

n

〈ΨN
0 |cα|ΨN+1

n 〉〈ΨN+1
n |c†β |ΨN

0 〉
ω − (EN+1

n − EN
0 ) + iη

+
∑

k

〈ΨN
0 |c†β |ΨN−1

k 〉〈ΨN−1
k |cα|ΨN

0 〉
ω − (EN

0 − EN−1
k ) − iη

≡
∑

n

zn+
αβ

ω − ε+
n + iη

+
∑

k

zk−
αβ

ω − ε−k − iη
,

(3.2)

where the last equation introduces the notation zn+
αβ as abbreviation for

〈ΨN
0 |cα|ΨN+1

n 〉〈ΨN+1
n |c†β |ΨN

0 〉 and so on. The energies ε+
n and ε−k are the energy

differences EN+1
n − EN

0 and EN
0 − EN−1

k respectively.
The unperturbed (non-interacting, or free) one-particle propagator is given

by:

g0
αβ(ω) = δα,β

( θ(α − F )

ω − e0
α + iη

+
θ(F − α)

ω − e0
α − iη

)
, (3.3)

where F is the highest occupied state (at the Fermi level) in the system and eα

is the unperturbed energy of the state |α〉. In this case the energy differences
between the energy of the state with N particles and the states with N ± 1
particles is just the energy of the single-particle state added or removed.

3.1.0.1 The spectral function

To study the effects of interactions between the single-particle states, the fol-
lowing representation of the diagonal elements of the single-particle propagator
is useful:

gαα(ω) =

∫ ∞

−∞

dω′

2π

S(α, ω′)

ω′ − ω
. (3.4)

Here S(α, ω) is the spectral function, given by

S(α, ω) = −i lim
η→0+

[gαα(ω + iη) − gαα(ω − iη)]. (3.5)
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The hole part of this is valid for energies ω less than the lower Fermi energy
ε−F = EN

0 − EN−1
0 , and is given by

Sh(α, ω) =
1

π
Imgαα(ω)

=
∑
n

|〈ΨN−1
n |cα|ΨN

0 〉|2δ(ω − (EN
0 − EN−1

n )).
(3.6)

This quantity gives the probability at a given energy ω of removing a particle
(creating a hole) with quantum numbers α while leaving the remaining N − 1
particle system at an energy EN−1

n = EN
0 − ω. Similarly, the particle part

Sp(α, ω) is valid for energies ω > ε+
F = EN+1

0 − EN
0 . It is given by

Sp(α, ω) = − 1

π
Imgαα(ω)

=
∑
m

|〈ΨN+1
m |c†α|ΨN

0 〉|2δ(ω − (EN+1
m − EN

0 )),
(3.7)

and is the probability for adding a particle with quantum numbers α to an
N -particle system with energy ω, resulting in an N + 1-system with energy
EN+1

n = EN
0 + ω.

For a given single-particle state, we can define the occupation number n(α)
and the depletion number d(α) as

n(α) = 〈ΨN
0 |c†αcα|ΨN

0 〉 =

∫ ε−F

−∞

dω Sh(α, ω), (3.8)

and

d(α) = 〈ΨN
0 |cαc†α|ΨN

0 〉 =

∫ ∞

ε+F

dω Sp(α, ω), (3.9)

respectively. It can be shown that n(α) + d(α) = 1.
In a non-interacting system, choosing the set |α〉 determined by the single-

particle Hamiltonian H0 as the basis gives the hole and particle spectral func-
tions a particularly simple form, being delta functions with height 1 at the
energies corresponding to the eigenvalues of the single-particle Hamiltonian.

In interacting systems, the spectral functions become smeared out. In
principle, the number of poles in the propagator is infinite, giving a continuous
distribution of probabilities for the energies of the N ± 1 particle systems. As
long as the independent-particle picture remains relatively correct (that is, if
the interactions between the particles are weak), the spectral functions will
have sharp peaks at clearly defined energies, which we then identify as single-
particle states.



26 CHAPTER 3. MANY-BODY THEORY AND GREEN’S FUNCTIONS

The hole spectral function is relatively easy to compare to experimental
data extracted from knock-out (e, e′p) reactions in nuclei [26, 27]. In these
experiments, an incident fast electron transfers a large amount of energy to
a single proton inside the nucleus, sufficient to eject the proton, and the mo-
mentum profiles of this proton and the scattered electron are then measured.
The most commonly extracted quantity is the so-called spectroscopic factor,
defined as

Sα =

∫
dp|〈ΨN−1

n |ap|ΨN
0 〉|2, (3.10)

where ap is a momentum state annihilation operator. In an independent-
particle system the spectroscopic factor is either 0 (unoccupied state) or 1
(occupied state). When the spectroscopic factor is less than 1, it can be
thought of as measuring the amount of correlation present in the N -particle
system, being the difference between the independent-particle spectroscopic
factor of 1 and the measured value.

In our formalism, the spectroscopic factor is given by the height of the
spectral function at the energy of the |ΨN−1

n 〉 state (this follows from the
orthogonality of the basis α).

3.2 The four-point Green’s function

From applying the equation of motion for a Heisenberg operator, dcα(t)/dt =
−i[cα(t), Ĥ ] to equation (3.1), one obtains the first step in the Martin-Schwinger
hierarchy [95], relating the N+1-particle propagator to the N-particle propaga-
tor. Thus, relating the two-particle propagator to the one-particle propagator
[94]:

i
∂

∂t
gαβ(t − t′) =

∂

∂t
〈ΨN

0 |T [aαH
(t)a†βH

(t′)]|ΨN
0 〉

= δ(t − t′)δα,β + εαgαβ(t − t′)

+
−i

2

∑
ηγσ

〈αη|V |γσ〉〈ΨN
0 |T {c†η(t)cσ(t)cγ(t)c†β(t′)}|ΨN

0 〉.
(3.11)

This generates a term containing the 4-point Green’s function, defined by

Kαβ,γδ(tα, tβ; tγ , tδ) = −i〈ΨN
0 |T {cβ(tβ)cα(tα)c†γ(tγ)c†δ(tδ)}|ΨN

0 〉
≡ 〈αβ|K(tα, tβ ; tγ , tδ)|γδ〉.

(3.12)
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Since the 4-point Green’s function is antisymmetric under exchange of indices,

Kαβ,γδ(tα, tβ; tγ , tδ) = −Kβα,γδ(tβ , tα; tγ , tδ) =

− Kαβ,δγ(tα, tβ; tδ, tγ) = Kβα,δγ(tβ, tα; tδ, tγ) (3.13)

it is possible to define matrix elements of K between antisymmetric two-
particle states as shown in the last equivalence in equation (3.12), provided
the time arguments are exchanged at the same time.

Depending on the ordering of the time arguments, the 4-point Green’s
function describes the propagation of either two-particle (pp), two-hole (hh)
or particle-hole (ph) excitations.

The Fourier transform of K is defined as

〈αβ|K(ωα, ωβ, ωγ , ωδ)|γδ〉 =∫ +∞

−∞

dtαdtβdtγdtδe
iωαtα+iω2t2−iωγtγ−iωδtδ 〈αβ|K(tα, tβ; tγ , tδ)|γδ〉 (3.14)

and the inverse relation as

〈αβ|K(tα, tβ ; tγ , tδ)|γδ〉 =

1

(2π)4

∫ +i∞

−i∞

dωαdωβdωγdωδe
−iωαtα−iωβtβ+iωγtγ+iωδtδ〈αβ|K(ωα, ωβ, ωγ , ωδ)|γδ〉,

(3.15)

When the Hamiltonian Ĥ is time-independent, K does not depend on the sum
of the time variables, i.e. it is independent of the variable t = 1

4(tα+tβ+tγ+tδ).

3.2.1 Feynman diagrams

A very convenient way of expressing the equations of many-body theory is
to use graphical representations of the various components, creating diagram
equations. The exact rules for translating between diagram and algebraic ex-
pression varies somewhat depending on the underlying theory, but most have
a number of essential elements in common. We will give a short summary of
the rules employed in this thesis. The basic building blocks are interactions,
represented by a horizontal line (dotted, wavy or thick-lined) connected by
vertical particle/hole lines, as in the example diagrams shown in figure 3.1.
The translation of the interaction lines are as matrix elements, the conven-
tion for numbering the incoming and outgoing states always being as shown
in figure 3.2. Lines are associated with the full propagator, so the parti-
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(a) (b)

(c)

(d) (e)

Figure 3.1: The basic ladder diagram (a) (which includes both propagation of two
particles and of two holes) the basic ring diagram (b), an example diagram to eighth
order in the interaction (c), a composite interaction (d) and a propagator (e), the
arrows signifying which states are incoming and which are outgoing in the matrix
element of the propagator .

3

1 2

4

12|V|34     =

Figure 3.2: The convention for numbering the legs of an interaction.

cle/hole lines can be translated as either particle or hole propagators, each
diagram giving rise to two Goldstone diagrams. A diagram with two parallel
lines corresponds to two (skeleton) Goldstone diagrams, one with two particles
and one with two holes propagating. A ring-like structure translates into a
particle-hole pair. When combined, one of the two-particle/two-hole parallel
lines might sometimes be part of a larger particle-hole bubble, and for aes-
thetic reasons no longer straight. No ambiguity should arise form this. Matrix
elements of more complex operators than a simple interaction are represented
as either rectangles (composite interactions) or circles (propagators), all con-
forming to the same numbering convention as the interaction matrix elements
(figure 3.2). In some diagrams we will use arrows on the internal lines. These
are intended as a graphical means of showing which states are incoming and



3.2. THE FOUR-POINT GREEN’S FUNCTION 29

which are outgoing in the matrix elements of each operator, and thus have no
separate physical translation.

3.2.2 The interaction operator

Using standard many-body perturbation techniques [93], we can obtain a dia-
grammatic expansion for the four-point propagator in equation (3.12). We see
that there are two classes of contributions, one unconnected class in which two
different particle lines propagate without any interaction between each other,
and a second group where the particle lines are connected by interaction lines.
In figure 3.3 we sketch in a schematic way the two classes.

The four-point interaction vertex Γ4-pt is called the interaction operator,
defined as all two-line irreducible diagrams with fully renormalized propaga-
tors. To lowest order, Γ4-pt is identical to the two-body interaction V . To
make the expressions a little more readable, we will henceforth use roman
numerals on the incoming and outgoing states, and Greek letters for interme-
diate states. We can then express the diagram for K given in figure 3.3 in
terms of the four-point interaction vertex Γ4-pt as:

〈12|K(t1, t2; t3, t4)|34〉 = i[g13(t1 − t3)g24(t2 − t4) − g14(t1 − t4)g23(t2 − t3)]

−
∫

dtα

∫
dtβ

∫
dtγ

∫
dtγ

∑
αβγδ

g1α(t1 − tα)g2β(t2 − tβ)

× 〈αβ|Γ4-pt(tα, tβ; tγ , tδ)|γδ〉gγ3(tγ − t3)gδ4(tδ − t4). (3.16)

We define the Fourier transform of the interaction operator as

〈αβ|Γ4-pt(ωα, ωβ, ωγ , ωδ|γδ〉 ≡∫
dtα

∫
dtβ

∫
dtγ

∫
dtδe

iωαtαeiωβtβe−iωγtγ e−iωδtδ〈αβ|Γ4-pt(tα, tβ, tγ , tδ)|γδ〉.
(3.17)

If the bare interaction is time-independent, it does not depend on the energy,
and consequently the interaction operator conserves energy and depends only
on the incoming energies.

The Fourier transform of the four-point Green’s function can be written
as

〈12|K(ω1, ωβ, ω3, ω4)|34〉 = 2πiδ(ω1 + ω2 − ω3 − ω4)

×
[
2πδ(ω1 − ω3)g13(ω1)g24(ω2) − 2πδ(ω1 − ω4)g14(ω1)g23(ω2)

]
−

∑
αβγδ

g1α(ω1)g2β(ω2)〈αβ|Γ4-pt(ωα, ωβ, ωγ , ωδ)|γδ〉gγ3(ω3)gδ4(ω4). (3.18)
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K

1 2

3 4

1 2

3 4

K0

1 2

3 4

K0

1 2

3 4

gg + gg

1 2

3 4

=

=

+ 4−pt
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Γ

Figure 3.3: The four-point Green’s function K, separated into a set of unconnected
diagrams K0 and a set of connected diagrams. The unconnected diagrams can be
summarized as consisting of two unconnected fully renormalized propagators and
their exchange contributions, as shown in the lower equation. As stated in the rules
described in section 3.2.1, a line indicates the result of a Wick contraction, depending
on the time ordering this could be either a particle or a hole. The arrows on the lines
are meant to clarify the relationship between the matrix elements and the pictorial
description, and does not distinguish particles from holes, any of the lines could be
of either type.

We call the first part of the four-point propagator (the first term in equa-
tion (3.16)) for the non-interacting or free four-point propagator. It consists
of a product of two one-particle propagators. From the above expression we
see that the Fourier transform of the non-interacting four-point propagator
K0 is given by:

〈12|K0(ω1, ω2, ω3, ω4)|34〉 = 2πiδ(ω1 + ω2 − ω3 − ω4)

×
[
2πδ(ω1 − ω3)g13(ω1)g24(ω2) − 2πδ(ω1 − ω4)g14(ω1)g23(ω2)

]
. (3.19)

3.3 Self energy

To find an expression for the one-particle propagator, we once again use stan-
dard many-body perturbation techniques [7, 84, 93]. This gives the Dyson
equation, giving a decomposition of the propagator in terms of the irreducible
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self energy Σ (also called the proper self energy or the mass operator):

gαβ(ω) = g0
αβ(ω) +

∑
γδ

g0
αγ(ω)Σ(γ, δ;ω)gδβ (ω). (3.20)

The self energy is the one-line irreducible diagrammatic insertions to the one-
particle propagator, as shown in the diagrammatic representation of the Dyson
equation in figure 3.4. By iterating on this we generate the exact one-particle
propagator, provided the exact irreducible self-energy can be found. This is
unfortunately in general not possible.

A small selection of the self energy diagrams is shown in figure 3.5. In
terms of diagrams, a one-particle propagator including self-energy insertions
is called a dressed propagator, often drawn as a double line. In the case
of our Parquet diagrams, however, all propagators are dressed, and for the
sake of simplicity, we have chosen to draw them as single lines nonetheless.
Exceptions, as in the case of the self energy diagrams just referred to, are
noted in the figure captions. We can find a useful relation between the self

= + Σ

Figure 3.4: The diagrammatic representation of the Dyson equation. The single line
represent the unperturbed propagator, the double line represents the full (dressed)
propagator.

energy and the interaction operator Γ4-pt from the equation of motion of the
one-particle propagator given in equation (3.11). Inserting the expression in
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Figure 3.5: A few of the infinitely many self energy diagrams. The propagators are
here the non-interacting propagators.

equation (3.16) for the 4-point propagator, we obtain:

i
∂

∂t
g12(t−t′) = δ(t−t′)δ12+ε1g12(t−t′)−i

∑
αβγ

〈1α|V |βγ〉gβα(t−t+)gγ2(t−t′)

+
1

2

∑
αβγ

∑
δξμν

∫
dtδ

∫
dtξ

∫
dtμ

∫
dtνgγδ(t − tδ)gβξ(t − tξ)gνα(tν − t)

× 〈δξ|Γ4-pt(tδ, tξ, tμ, tν)|μγ〉gμ2(tμ − t′).

(3.21)

Taking the Fourier transform of the above expression and performing some
algebra, see Ref. [7], we arrive at an expression for the one-particle propagator
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which is identical to the Dyson equation, provided we make the identification

Σ(1, 2;ω) = −i

∫
C↑

dω1

2π

∑
αβ

〈1α|V |2β〉gαβ(ω1)

+
1

2

∫
dω1

2π

∫
dω2

2π

∑
αβγδμν

〈1α|V |βγ〉gβδ(ω1)gγμ(ω2)

× 〈δμ|Γ4-pt(ω1, ω2, ω, ω1 + ω2 − ω)|2ν〉gνα(ω1 + ω2 − ω). (3.22)

Here the integral in the first expression is a contour integral along the real axis
to be closed in the upper half plane, as indicated by the C ↑ subscript. The
expression for Σ is shown diagrammatically in figure 3.6. Equations (3.18) and

=Σ +

Γ 4−pt

Figure 3.6: The self energy Σ expressed by the interaction operator Γ4-pt. The
propagators are dressed propagators.

(3.22) together with the Dyson equation (3.20) give the exact description of
the one-particle propagator if the single particle propagators in the interaction
operator are dressed, that is, the self energy insertions are included. This gives
a set of non-linear equations, and any solution procedure needs to include some
sort of self-consistency scheme, as will be further discussed in sections 4.3 and
4.4.

3.3.1 The Hartree-Fock approximation

The easiest approximation possible is to ignore the interaction operator Γ4-pt

altogether, and perform a self-consistent computation using only the first term
in equation (3.22). This is the mean-field or Hartree-Fock (HF) approxima-
tion. At this level of approximation, the concept of quasi-particles is well-
defined, that is, solving the Hartree-Fock equations for a given nucleus yields
a spectrum of states each with specific energy and angular momentum. In
more detail, the HF self energy is defined as

ΣHF (α, β) = −i

∫
C↑

dω

2π

∑
γδ

〈αγ|V |βδ〉gγ,δ(ω). (3.23)
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This is an energy-independent self-energy correction, which makes the Dyson
equation a simple linear eigenvalue equation, equivalent to an independent-
particle problem. The HF energies of the system is determined by solving the
Dyson equation self-consistently (self-consistent since the one-body density
matrix for each particle depends on the HF energies of the system). The
Hartree-Fock approximation is discussed in all standard many-body textbooks,
see for example the sources mentions in the beginning of this chapter for
further information.

3.4 The eigenvalue equation method

We can write the Dyson equation, see again equation (3.20), as a matrix
equation using the notation [g] as shorthand for the matrix with gαβ with
indices α, β. Assuming the unperturbed propagator to be diagonal, with the
inverse given as [g0]−1 = ω−[e], the Dyson equation can be generically written
as

[g(ω)] = [ω · 1 − ([e] + [Σ(ω)])]−1, (3.24)

where eα represents the energies of the unperturbed Hamiltonian, [e] being a
diagonal matrix with eα at the diagonal entries. From this we see that the
poles of the propagator are the roots ωλ of the equation

([e] + [Σ(ωλ)])|λ〉 = ωλ|λ〉. (3.25)

Recalling the Lehmann representation of the propagator, see equation (3.2),
we can identify these roots as the energies of the N ± 1 systems. The residue
matrix [Sλ] of the propagator at the pole ωλ is given by [7]:

[Sλ] = lim
ω→ωλ

(ω − ωλ)[g(ω)] =
1

1 − 〈λ̃|[Σ′(ωλ)]|λ〉
|λ〉〈λ̃| = sλ|λ〉〈λ̃|. (3.26)

The eigenstate 〈λ̃| is the corresponding left eigenstate of the operator in equa-
tion (3.25). The left and right eigenstates are assumed to be normalized
according to

〈λ̃|λ〉 = 1. (3.27)

We assume that the propagator has only simple poles, the expression for the
degenerate case is somewhat more involved. Now we can write the propagator
as

[g(ω)] =
∑

λ

[Sλ]

ω − ωλ

. (3.28)
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The eigenvalue equation (3.25) is more complicated than an ordinary eigen-
value equation, as Σ depends on the energy and has to be calculated at the
unknown eigenvalue. There is no longer only one solution, but a set of dif-
ferent ωλ which can be quite large (depending on the number of poles in Σ).
Physically, this means that adding or removing one particle from the ground
state no longer leaves the system in one definite state, rather there are sev-
eral possible states, each with its own amplitude. The sum over these are
still unity. The independent-particle model is no longer appropriate, however,
calculations show that at least for nuclear system, much of the single-particle
strength is still concentrated in a single state for states close to the Fermi
energy. States further away, either deep down in the nuclear well or high
up, closer to the continuum, get smeared out and cannot properly be called
single-particle states any more.

From the one-body propagator it is possible to find the energy of the
ground state by using the so-called Migdal-Galitski-Koltun sum rule [7]:

EA
0 = 〈ΨA

0 |Ĥ|ΨA
0 〉

=
1

2

∑
αβ

〈α|T |β〉
∑

λ<λF

sλ〈α|λ〉〈λ̃|β〉 +
1

2

∑
αβ

∑
λ<λF

sλ〈α|λ〉〈λ̃|β〉ωλ.
(3.29)

In an infinite system this takes the form:

EA
0 =

1

2

∫ ε−F

−∞

dω
∑
αβ

(〈α|T |β〉 + ωδαβ)
1

π
Imgβα(ω). (3.30)





4 Parquet summation of
diagrams

The formalism presented in the previous chapter requires calculations of sev-
eral infinite sums, and thus we need some procedure to handle these. The Par-
quet method offers an approximation to the interaction operator Γ4-pt which
includes a large, infinite subset of the full set of diagrams.

To proceed further, we observe that there are different possibilities for re-
ducing this four-time operator down to a two-time operator. Depending on
the physical system in question, reductions to a ladder-type or a ring-type
operator has been used to include either pphh or ph correlations respectively.
However, as argued by Jackson and Wettig, [37], neither of these approaches
meet some basic requirements of a many-body theory to be certain of conver-
gence. These authors have further argued that a necessary (but perhaps not
sufficient) condition for any many-body summation of diagram to converge, is
that both pp ladders and ph chains be summed to all orders.

A Green’s function based approach like the Faddeev random-phase ap-
proximation of Barbieri and co-workers, see for example [1, 6], couples ladder
diagrams and ring diagrams to all orders for the self-energy. The Parquet
method offers a method of doing this in a fairly straightforward manner and
includes more complicated pphh correlations.

In this chapter we first discuss the principle behind the Parquet theory,
namely the different channels in which iterative expressions for the interaction
operator can be found (section 4.1). Then we discuss the possible two-time
reductions of the four-point propagators in section 4.2. In section 4.3 the
Parquet equations are given in a form suitable for numerical implementations,
discussed in section 4.4.

37
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4.1 Channels: Equivalent ways of building the

interaction operator

We can obtain iterative expressions for the interaction operator defined in
section 3.2.2 by examining it order by order. To first order, it is just the
bare interaction. Next order consists of two bare interactions connected by
the non-interacting propagator K0, third order is found by connecting a third
interaction by another K0, and so on. There are three equivalent ways of
connecting the legs of the interactions, as shown in figure 4.3. We name the
different possibilities according to the numbering discussed in section 3.2.1, for
easy reference we repeat the figure 3.2 in figure 4.1. Thus, if we connect legs 1
and 2 we are in the [12] channel or particle-particle channel, while connecting
legs 1 and 3 or legs 1 and 4 give the [13] channel or the [14] channel, respec-
tively. These two latter channels are called the particle-hole channels. The
[12], [13] and [14] channels are the equivalents of the Mandelstam variables
s, t and u from relativistic quantum mechanics [93]. A diagram contributing

3

1 2

4

Figure 4.1: Convention for numbering the legs of an interaction.

to the interaction operator Γ4-pt either can or cannot be split into two dis-
connected parts, one containing the legs 1 and 2 and the other the legs 3 and
4 by cutting two internal lines. If this splitting is impossible, the diagram is
said to be simple in the [12] channel, if it is possible, the diagram is called
non-simple. The particle-particle interaction V12 is defined as the sum over
all the [12]-simple diagrams. It is easily seen that the full interaction operator
Γ4-pt is obtained by iterating over V12, as shown in the first line of figure 4.3,
where the dash-dot line represents an [12]-simple interaction. The equation
for the vertex translates into the well-known Bethe-Salpeter equation:

〈12|Γ4-pt(ω1, ωβ, ω3, ω4)|34〉 = 〈12|V12(ω1, ω2, ω3, ω4)|34〉

+
1

2

∫
dωα

2π

∫
dωβ

2π

∫
dωγ

2π

∫
dωδ

2π

∑
αβγδ

〈12|V12(ω1, ω2, ωα, ωβ)|αβ〉

× 〈αβ|K0(ωα, ωβ, ωγ , ωδ)|γδ〉〈γδ|Γ4-pt(ωγ , ωδ, ω3, ω4)|34〉. (4.1)

The factor 1
2 stems from the symmetry of the interaction with respect to the

exchange of indices.
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Figure 4.2: Example diagram broken down into components. The original diagram is
non-simple in the [12] channel and can be split into two parts by cutting two internal
lines in such a manner that one part contains legs 1 and 2 and the other legs 3 and 4.
The results are both simple in the [12] channel. The upper part is non-simple in the
[13] channel, and can be split into two parts, one containing legs 1 and 3′, the other
2 and 4′. Both these are simple in the [12] channel. The final composite diagram is
non-simple in the [12] channel.

Similarly, we define the particle-hole interaction V13 as the sum over all
diagrams which are simple in the [13] channel, that is, all diagrams that cannot
be split into one part containing the external lines 1 and 3, and another
containing the lines 2 and 4. The particle-hole interaction V14 is defined as
the sum over all [14]-simple diagrams (diagrams which cannot be split into
one part containing the external lines 1 and 4, and another containing the
lines 2 and 3). An example diagram and the splitting of different components
is shown in figure 4.2.

Each of these will give the full interaction operator if we iterate as shown
in figure 4.3, where the dash-dot-dot (large dot) line represents an [13]-simple
([14]-simple) interaction. The Bethe-Salpeter equations corresponding to these
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Figure 4.3: Iterative expressions for Γ4-pt in the [12]-channel, the [13]-channel and
the [14]-channel. The internal arrows determine which states are incoming and which
are outgoing in the matrix elements of each operator.

diagrams are

〈12|Γ4-pt(ω1, ω2, ω3, ω4)|34〉 = 〈12|V13(ω1, ω2, ω3, ω4)|34〉

+

∫
dωα

2π

∫
dωβ

2π

∫
dωγ

2π

∫
dωδ

2π

∑
αβγδ

〈1β|V13(ω1, ωβ, ω3, ωα)|3α〉

× 〈δα|K0(ωδ, ωα, ωγ , ωβ)|γβ〉〈γ2|Γ4-pt(ωγ , ω2, ωδ, ω4)|δ4〉. (4.2)

and

〈12|Γ4-pt(ω1, ωβ, ω3, ω4)|34〉 = 〈12|V14(ω1, ω2, ω3, ω4)|34〉

+

∫
dωα

2π

∫
dωβ

2π

∫
dωγ

2π

∫
dωδ

2π

∑
αβγδ

〈1β|V14(ω1, ωβ, ωα, ω4)|α4〉

× 〈αδ|K0(ωα, ωδ, ωγ , ωβ)|γβ〉〈γ2|Γ4-pt(ωγ , ω2, ω3, ωδ)|3δ〉. (4.3)

Combining the information in these three equations, we see that the diagrams
of Γ4-pt fall into four classes. One class of diagrams consists of diagrams that
are simple in any of the three channels, that is, these diagrams cannot be cut
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into two separate pieces by cutting any two lines. The lowest-order member
of this class is the bare interaction, and the next is of fifth order in the bare
interaction, shown in figure 4.4. We call this class I. In our calculations we
will only include the first term in this series, that is, I = V .

Then there is the class of diagrams which are simple in the [12] channel,
generated by repeated iterations of the type shown in equation (4.1). We call
this class the L diagrams. The conventional ladder diagrams is a subset of
this class. In terms of the V12 interaction, we have that

〈12|L(ω1, ωβ, ω3, ω4)|34〉 =∫
dωα

2π

∫
dωβ

2π

∫
dωγ

2π

∫
dωδ

2π

∑
αβγδ

〈12|V12(ω1, ω2, ωα, ωβ)|αβ〉

× 〈αβ|K0(ωα, ωβ, ωγ , ωδ)|γδ〉〈γδ|Γ4-pt(ωγ , ωδ, ω3, ω4)|34〉. (4.4)

Then there are the classes which are made from iterations of the types in

I = + +       ...

Figure 4.4: The diagram class I, class of diagrams simple in all three channels. The
first diagram other than the bare interaction is of fifth order in the interaction. We
have included only the first contribution (the bare interaction) in our calculations.

equations (4.2) and (4.3). It is fairly easy to show that each of the diagrams
in the [14] channel class have an exchange counterpart in the [13] channel
class. Working with antisymmetrized matrix elements in either channel will
thus include all diagrams, and only one of the channels need be included in
the calculation. We have chosen to work with the [13] channel class, and call
this the R class. The diagrams summed in a standard RPA calculation result
in a subset of this class. Expressing R in terms of V13 gives

〈12|R(ω1, ωβ, ω3, ω4)|34〉 =∫
dωα

2π

∫
dωβ

2π

∫
dωγ

2π

∫
dωδ

2π

∑
αβγδ

〈1α|V13(ω1, ω2, ωα, ωβ)|3β〉

× 〈δα|K0(ωδ, ωα, ωγ , ωβ)|γβ〉〈γ2|Γ4-pt(ωγ , ω2, ωδ, ω4)|δ4〉. (4.5)
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With these definitions we see that the [12]-simple interaction V12 can be writ-
ten as the sum I +R and that the [13]-simple interaction V13 is the sum I +L.
The total interaction operator can be written as the sum of all three diagram
classes:

〈12|Γ4-pt(ω1, ω2, ω3, ω4)|34〉 = 〈12|I(ω1, ω2, ω3, ω4)|34〉
+ 〈12|L(ω1, ω2, ω3, ω4)|34〉 + 〈12|R(ω1, ω2, ω3, ω4)|34〉

≡ 〈12|(I + L + R)(ω1, ω2, ω3, ω4)|34〉. (4.6)

Rewriting Eqs. (4.5) and (4.6) in terms of I, L and R we obtain

〈12|L(ω1, ω2, ω3, ω4)|34〉 =∫
dωα

2π

∫
dωβ

2π

∫
dωγ

2π

∫
dωδ

2π

∑
αβγδ

〈12|(I + R)(ω1, ω2, ωα, ωβ)|αβ〉

× 〈αβ|K0(ωα, ωβ, ωγ , ωδ)|γδ〉(〈γδ|(I + L + R)(ωγ , ωδ, ω3, ω4)|34〉. (4.7)

and

〈12|R(ω1, ω2, ω3, ω4)|34〉 =∫
dωα

2π

∫
dωβ

2π

∫
dωγ

2π

∫
dωδ

2π

∑
αβγδ

〈1α|(I + L)(ω1, ω2, ωα, ωβ)|3β〉

× 〈βγ|K0(ωα, ωβ, ωγ , ωδ)|αδ〉〈δ2|(I + L + R)(ωγ , ωδ, ω3, ω4)|γ4〉. (4.8)

The three equations (4.6), (4.7) and (4.8) together constitute the Parquet
equations. In addition to these, some scheme for treating the self energy
consistently has to be made. This is discussed in section 4.3. Furthermore,
some simplifications with respect to the energy dependence is needed, as will
be discussed below. However, before doing that, we need to introduce some
additional notation.

4.1.1 Angular momentum recoupling

To reduce the basis space, it is convenient to introduce an angular-momentum
coupled basis, that is, a basis where two single particle states are coupled
to total angular momentum J . Each channel naturally give rise to its own
coupling scheme. When necessary we indicate the coupling in the matrix

elements as 〈12|V |34〉J to signify coupling between states 1 and 2 to total
angular momentum J and M and so forth. In our harmonic oscillator single-
particle basis, the two-particle basis states are independent of M , giving a huge
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reduction in computational complexity. The conventional coupling order in
the particle-hole channels is to couple incoming state to outgoing state. This
is the same notation as in Ref. [96], see this work for an extensive discussion
and examples.

The [12] coupling scheme is the standard coupling scheme. The antisym-
metrized two-particle J[12]-coupled state is given by

|12〉 = |(n1j1l1s1tz1)(n2j2l2s2tz2)JM〉 =

1√
2
(1 − (−1))j1+j2−J

∑
m1m2

∑
ml1ml2

∑
ms1ms2

〈j1m1j2m2|JM〉〈l1ml1s1ms1|j1m1〉

〈l2ml2s2ms2|j2m2〉 |n1j1m1l1s1tz1〉 ⊗ |n2j2m2l2s2tz2〉, (4.9)

where the 〈l1ml1s1ms1|j1m1〉 are Clebsch-Gordan coefficients.
Angular momentum algebra gives the following relations between matrix

elements with different coupling schemes. [96]:

〈12|V |34〉J =
∑
J ′

(−)j1+j4+J+J ′

Ĵ ′
2
{

j3 j1 J
j2 j4 J ′

}
〈12|V |34〉J ′ (4.10)

and

〈12|V |34〉J =
∑
J ′

(−)j1+j4+J+J ′

Ĵ ′
2
{

j3 j1 J
j2 j4 J ′

}
〈12|V |34〉J ′ , (4.11)

where Ĵ =
√

2J + 1. Similar relations hold between the [14] channel and the
other two channels.

We have also found it useful to employ a matrix notation in the [13] channel
that allows us to formulate the Parquet equations as matrix equations. We
define the J[13]-coupled matrix element as

〈1̂3|V |2̂4〉J ≡ 〈12|V |34〉J (4.12)

Employing the J[13]-coupled matrix elements, the equations in the [13]-channel
can be rewritten to a form close to matrix equations. The equation for R, see
equation (4.8) becomes

〈12|R(ω1, ω2, ω3, ω4)|34〉 = 〈1̂3|R(ω1, ω2, ω3, ω4)|2̂4〉 =∫
dωα

2π

∫
dωβ

2π

∫
dωγ

2π

∫
dωδ

2π

∑
αβγδ

(〈1̂3|(I + L)(ω1, ω2, ωα, ωβ)|β̂α〉

× 〈δ̂γ|K0(ωδ, ωα, ωγ , ωβ)|α̂β〉〈γ̂δ|(I + L + R)(ωγ , ω2, ωδ, ω4)|2̂4〉. (4.13)
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This expression is easily transformed into a matrix equation by a suitable
transformation of the K0 matrix. The expressions in the [12]-channel lend
themselves to such a formulation immediately with J[12]-coupled matrix ele-
ments.

4.2 Two-time propagators

The four-time four-point Green’s function can be reduced to a two-time op-
erator by either requiring the “upper” and “lower” times of the diagram be
pairwise equal (t3 = t4 and t1 = t2), or by setting the “left-hand” times and
the “right-hand” times of the diagram equal, that is, t3 = t1 and t4 = t2. The
first choice gives rise to the ladder reduction, while the second is the basis for
the RPA approach, and we call it the ring (or chain) reduction.

The reduction from the four-point Green’s function to different two-time
operators corresponds to the reductions of the Bethe-Salpeter equation for
relativistic spinors to different non-relativistic equations as the Lippmann-
Schwinger-equation [97] or the Blankenbecler-Sugar equation [98].

4.2.1 The ladder propagator

The ladder two-time reduction of the four-point Green’s function is defined
by

〈12|Gpphh(t − t′)|34〉≡ lim
t2→t

lim
t4→t′

〈12|K(t, t2, t
′, t4)|34〉

= lim
t2→t

lim
t4→t′

−i〈ΨN
0 |T [c2H

(t2)c1H
(t)c†3H

(t′)c†4H
(t4)]|ΨN

0 〉

= i[g13(t − t′)g24(t − t′) − g14(t − t′)g23(t − t′)]

−
∑
αβγδ

∫
dtα

∫
dtβ

∫
dtγ

∫
dtδg1α(t − tα)g2β(t − tβ)

× 〈αβ|Γ4-pt(tα, tβ , tγ , tδ)|γδ〉gγ3(tγ − t′)gδ4(tδ − t′). (4.14)

The two-time reductions imply the propagation of either two particles (if t > t′,
giving an intermediate state ΨN+2), or two holes (if t < t′, the intermediate
state then being ΨN−2). For the moment we concentrate on the free part
of the propagator, that is, the propagation of two non-interacting particles
(as seen from the equations (4.6), (4.7) and (4.8), only this is needed to cal-
culate the Parquet equations). we Fourier transform the first terms of this

expression to obtain the free ladder propagator Gpphh
0 . It can be found by
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inserting the inverse of the Fourier transform of the four-point Green’s func-
tion (equation (3.18)) into the expression for the Fourier transform and taking

the appropriate limit. Since Gpphh
0 is a function of one time difference only,

we expect the Fourier transform to be a function of one energy only. As we
will see below, the relevant total energy is the sum of the energy of state 1
and state 2, making coupling in the [12] channel the natural choice for this
operator.

〈12|Gpphh
0 (Ω)|34〉 =

∫
d(t1 − t3)e

iΩ(t1−t3)〈12|Gpphh
0 (t1 − t3)|34〉 =

=

∫
d(t1 − t3)e

iΩ(t1−t3) lim
t2→t1

lim
t4→t3

〈12|K0(t1, t2, t3, t4)|34〉

=

∫
d(t1 − t3)e

iΩ(t1−t3)e−i(ω1+ω2)t1ei(ω3+ω4)t3

∫
dω1

2π

∫
dω2

2π

∫
dω3

2π

∫
dω4

2π

2πδ(ω1+ω2−ω3−ω4)(i)
[
2πδ(ω1−ω3)g13(ω1)g24(ω2)−2πδ(ω1−ω4)g14(ω1)g23(ω2)

]
.

(4.15)

Changing variables in equation 4.15 to Ω = ω1 + ω2, ω = ω1 − ω1+ω2

2 , ω′ =
ω3 − ω1+ω2

2 , we obtain

〈12|Gpphh
0 (Ω)|34〉 =

i

∫
dω

2π
[g13(Ω/2 + ω)g24(Ω/2 − ω) − g14(Ω/2 − ω)g23(ω/2 − ω)]. (4.16)

To proceed, we insert the expression in equation (3.2) for the one-particle
propagator. To ease readability, we use the abbreviation zn+

αβ for the overlaps

〈ΨN
0 |cα|ΨN+1

n 〉〈ΨN+1
n |c†β |ΨN

0 〉 and so on. The integrals are simple contour inte-
grals. Of the four terms, two have poles on the same side of the imaginary axis,
and we close these on the opposite half plane so that they do not contribute
to the integral, leaving two contributions evaluated by using the Residue the-
orem. Thus we obtain the following expression for the free ladder propagator
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Gpphh
0 (Ω):

〈12|Gpphh
0 (Ω)|34〉 = i

∫
dω

2π[[(∑
n

zn+
13

Ω/2 + ω − ε+
n + iη

+
∑

k

zk−
13

Ω/2 + ω − ε−k − iη

)
×

(∑
m

zm+
24

Ω/2 − ω − ε+
m + iη

+
∑

l

zl−
24

Ω/2 − ω − ε−l − iη

)]
−

[(∑
n

zn+
14

Ω/2 + ω − ε+
n + iη

+
∑

k

zk−
14

Ω/2 + ω − ε−k − iη

)
×

(∑
m

zm+
23

Ω/2 − ω − ε+
m + iη

+
∑

l

zl−
23

Ω/2 − ω − ε−l − iη

)]]

=
∑
nm

zn+
13 zm+

24

Ω − ε+
n − ε+

m + iη′
−

∑
kl

zk−
13 zl−

24

Ω − ε−k − ε−l − iη′

+
∑
nm

zn+
14 zm+

23

Ω − ε+
n − ε+

m + iη′
−

∑
kl

zk−
14 zl−

23

Ω − ε−k − ε−l − iη′
. (4.17)

This is a rather involved expression due to the complexity of the single-particle
propagator. If we assume that the single-particle propagator only has one pole,
that is, it has the structure of the unperturbed propagator in equation (3.3),
we obtain a much simpler expression

〈12|Gpphh
0 (Ω)|34〉 =

δ13δ24θ(1 − F )θ(2 − F )

Ω − ε1 − ε2 + iη′
− δ13δ24θ(F − 1)θ(F − 2)

Ω − ε1 − ε2 − iη′

+
δ14δ23θ(1 − F )θ(2 − F )

Ω − ε1 − ε2 + iη′
− δ14δ23θ(F − 1)θ(F − 2)

Ω − ε1 − ε2 − iη′
, (4.18)

where F is the Fermi level. When this approximation is done, the effect is
to force the system to retain the input single-particle basis structure, that
is, no fragmentation occurs. The single-particle energies, however, are not
necessarily the same as the energies of the unperturbed Hamiltonian.



4.2. TWO-TIME PROPAGATORS 47

4.2.2 The ring propagator

We define the particle-hole ring propagator 〈12|Gph(t−t′)|34〉 as the reduction

〈12|Gph(t − t′)|34〉≡ lim
t4→t

lim
t3→t′

[
〈12|K(t, t′; t3, t4)|34〉

− 〈ΨN
0 |c†4(t4)c1(t)|ΨN

0 〉〈ΨN
0 |c†3(t3)c2(t

′)|ΨN
0 〉

]
= lim

t4→t
lim

t3→t′

[
−i〈ΨN

0 |T [c2H
(t′)c1H

(t)c†3H
(t′)c†4H

(t)]|ΨN
0 〉

− 〈ΨN
0 |c†4(t)c1(t)|ΨN

0 〉〈ΨN
0 |c†3(t′)c2(t

′)|ΨN
0 〉

]
. (4.19)

The incoming and outgoing states could in principle be any states, as the
operator sequence in the propagator ensures that only state combinations of
a hole-particle or particle-hole type give a non-zero expectation value. This is
perhaps easier seen in a notation closer to the particle-hole formulation. Let
α signify the time-reversed state of α, that is,

|pα,ms〉 ≡ Ttime-reversal|pα,ms〉 = (−1)
1
2
+ms | − pα,−ms〉. (4.20)

The phase convention shown is that of Bohr and Mottelson [99] for a particle
with momentum pα and spin projection ms. The operator sequence in the
particle-hole propagator can be written as

〈ΨN
0 |T [c†

2H
(t2)c1H

(t)c†3H
(t′)c4H

(t4)]|ΨN
0 〉, (4.21)

and from this it is easy to find the expression for Gph in the particle-hole
formalism.

The last term in equation (4.19) results from the fact that the exchange
part of the propagator closes the diagrams into unconnected ground state
energy diagrams, involving the one-body density matrix elements. We do not
want to include these in the interaction operator, hence the definition (which
in the literature often is called the polarization propagator). The proper
exchanges of the interaction operator diagrams are generated automatically
when antisymmetrized matrix elements are employed.

If we insert equation (3.16) into the expression for Gph in equation (4.19),
we obtain Gph in terms of the interaction operator Γ4-pt:

〈12|Gph(t − t′)|34〉 = i[g13(t − t′)g24(t − t′) − g14(t − t′)g23(t − t′)]

−
∑
αβγδ

∫
dtα

∫
dtβ

∫
dtγ

∫
dtδg1α(t − tα)g2β(t − tβ)

× 〈αβ|Γ4-pt(tα, tβ, tγ , tδ)|γδ〉gγ3(tγ − t′)gδ4(tδ − t′). (4.22)
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Looking at the free part of the propagator for the moment, we find the ex-
pression for Gph

0 as a function of energy in a similar manner as for the ladder
propagator. This time we define Ω = ω1−ω3, ω = ω1− ω1−ω3

2 , ω′ = ω2+ ω1−ω3

2 .
Then

〈12|Gph
0 (Ω)|34〉 = i

∫
dω

2π
[g13(ω + Ω/2)g24(ω − Ω/2)]. (4.23)

We then insert the expression for the single particle propagators from equa-
tion (3.2) into the above expression, with the same notation for the overlaps
as for the Gpphh calculation. Due to the sign of the energy variable, this time
we obtain that the two particle-hole terms survive:

〈12|Gph
0 (Ω)|34〉 = −i

∫
dω

2π

[
(
∑

n

zn+
13

ω + Ω/2 − ε+
n + iη

+
∑

k

zk−
13

ω + Ω/2 − ε−k − iη
)

× (
∑
m

zm+
24

ω − Ω/2 − ε+
m + iη

+
∑

l

zl−
24

ω − Ω/2 − ε−l − iη
)
]

=
∑
km

zk−
13 zm+

24

Ω − ε−k + ε+
m + iη′

−
∑
nl

zn+
13 zl−

24

Ω + ε−l − ε+
n + iη′

. (4.24)

Note the difference in the definition of Ω between this expression and the
expression for Gpphh(Ω).

Making the approximation that the single-particle propagator has the same
structure as the unperturbed propagator in equation (3.3) in the expression
for the ring propagator yields

〈12|Gph
0 (Ω)|34〉 =

δ13δ24θ(F − 1)θ(2 − F )

Ω + ε2 − ε1 + iη′
− δ13δ24θ(1 − F )θ(F − 2)

Ω + ε2 − ε1 − iη′
. (4.25)

4.3 Self-consistent Parquet equations

We are now ready to write down the Parquet equations in a formulation
suitable for implementations, in our case a formulation which depends only
on one energy. In doing this, we make the approximation that the total energy
Ω is the same in the case of the ladder and ring propagators. The energy-
dependence of the interaction can be seen as representing an average incoming
energy.

Writing the equation for R in the [13]-coupled notation given in Equa-
tion (4.12), we see that the Parquet equation can be rewritten in a compact
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matrix formulation as[
Γ(Ω)

]
=

[
I(Ω)

]
+

[
L(Ω)

]
+

[
R(Ω)

]
,[

L(Ω)
]

=
[
(I + R)(Ω)

][
Gpphh

0 (Ω)
][

(I + R + L)(Ω)
]
, (4.26)[

R(Ω)
]

=
[
(I + L)(Ω)

][
Gph

0 (Ω)
][

(I + L + R)(Ω)
]
.

The equation for the self energy, given in equation (3.22), connects the self
energy with the interaction operator:

Σ(1, 2;ω) = −i

∫
C↑

dω1

2π

∑
αβ

〈1α|V |2β〉gαβ(ω1)

+
1

2

∫
dω1

2π

∫
dω2

2π

∑
αβγδμν

〈1α|V |βγ〉gβδ(ω1)gγμ(ω2)

× 〈δμ|Γ4-pt(ω1, ω2, ω, ω1 + ω2 − ω)|2ν〉gνα(ω1 + ω2 − ω). (4.27)

When we approximate the full interaction operator Γ4-pt in this equation by
the Parquet interaction operator Γ = I + L + R given in equation (4.26), we
need to check whether we do any double-counting or not. When I consists
of only the bare interaction, Jackson et al. [36] have shown that only contri-
butions having the bare interaction V as a top rung of a ladder term can be
included. The other terms lead to double-counting either because they are
simply equal to an already included term, or because the diagram is equal to
an included term with some self-energy insertion, and therefore must be ex-
cluded. Thus the correct propagator is the Gpphh

0 propagator and the correct
coupling order is the [12] coupling, resulting in the following equation for the
self energy:

Σ(1, 2;ω) = −i

∫
C↑

dω′

2π

∑
αβ

〈1α|V |2β〉gα,β(ω′)

+
1

2

∫
dω′

2π

∑
αβγδμν

〈1α|V |βγ〉〈βγ|Gpphh
0 (ω + ω′)|δμ〉〈δμ|Γ(ω + ω′)|2ν〉gνα(ω′).

(4.28)

The single-particle propagator is expressed by the self energy via the Dyson
equation (3.20), repeated here for easy reference:

gαβ(ω) = g0
αβ(ω) +

∑
γδ

g0
αγ(ω)Σ(γ, δ;ω)gδβ (ω). (4.29)
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The propagators Gpphh
0 and Gph

0 in the Parquet equations 4.26 are expressed by
the amplitudes zαβ and excitation energies ε in the single-particle propagator
found from solving the Dyson equation, creating complex dependencies which
have to be solved iteratively.

4.3.1 Diagrams to fourth order

Diagrammatically, all fourth order diagrams of the Parquet contributions to
the self energy are shown in figure. 4.5. All diagrams to fourth order for the
ladder term are shown in figure 4.6, and for the ring term in Fig. 4.7. The prop-
agators are fully dressed propagators. Iteration by iteration, the diagrams
are not generated order by order in the interaction, but rather staggered, all
diagrams to fourth order being generated after three iterations.

We can compare the self energy diagrams to fourth order shown in fig-
ure 4.5 with the corresponding Goldstone diagrams by closing the diagram
by a hole line. Then we find that all Goldstone diagrams to fourth order are
generated, in addition to several higher-order contributions as well (we remind
the reader that the propagators are dressed, that is, all self energy insertions
are included). Thus the Parquet method include ground state energy dia-
grams to the same level of precision as a coupled-cluster calculation including
excitation operators to the fourth order, a CCSDTQ calculation [108].
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Σ += +    ...
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+    ... +    ...+

+ +    ... + +    ...

Figure 4.5: The self energy diagrams generated by the Parquet method. All con-
tributions to the fourth order are explicitly drawn. The propagators are dressed
propagators.
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= + + +
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+ ...

L

Figure 4.6: The ladder diagrams generated by the Parquet method. All contributions
to fourth order are explicitly drawn. The propagators are dressed propagators.
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Figure 4.7: The ring diagrams generated by the Parquet method. All contributions
to fourth order are explicitly drawn. The propagators are dressed propagators.
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4.3.2 Matrix inversion method

The equations as described above have been implemented, but we have found
severe limitations concerning the stability of the numerical solution, which
will be discussed in detail in later chapters. These problems are mainly due to
the poles of the propagators, which in turn generate poles in the interaction
Γ. The interpolation to the correct input energies in the self energy equa-
tions sometimes becomes highly unreliable. To minimize the impact of these
poles, we have investigated the following formulation of the Parquet equations
employing approximate full propagators rather than the free propagators.

The two-particle propagators can be found by a matrix inversion procedure
similar to the method used for the one-particle propagator described in section
3.4. Writing equations (4.14) and (4.22) in matrix form and inserting the
resulting expression in equation (4.1) or equation (4.2) for the interaction
operator we obtain a Dyson-like equation

[G] = [G0] + [G0][Γ][G0] = [G0] + [G0]([V] + [V][G0][Γ])[G0] = [G0] + [G0][V][G].
(4.30)

The interaction V is here a generic abbreviation for either the V12 or the
V13 interactions, simple in the given channel. Similarly, G (G0) is an abbrevi-

ation for either Gpphh or Gph (Gpphh
0 or Gph

0 ). Following the same procedure as
for the one-particle case, we find an eigenvalue equation of the form:

([E] + [V (ΩΛ)])|Λ〉 = ΩΛ|Λ〉. (4.31)

To be able to obtain this eigenvalue equation, we have to assume that the
free propagator G0 is diagonal. The eigenvalues are seen from the Lehmann
representations to be either the excitation energies of the N ± 1 system (ph
case) or of the N ± 2 system (pphh case). Assuming simple poles, we can
write the residue matrix as

[SΛ] = lim
Ω→ΩΛ

(Ω − ΩΛ)[G(Ω)] =
1

1 − 〈Λ̃|[V ′(ΩΛ)]|Λ〉
|Λ〉〈Λ̃|, (4.32)

and the propagator as

[G(Ω)] =
∑
Λ

1

1 − 〈Λ̃|[V ′(ΩΛ)]|Λ〉
|Λ〉〈Λ̃|

Ω − ΩΛ ± iη
. (4.33)

In the implementation we make the approximation that the matrix elements of
the interactions V12 and V13 vary slowly with the energy, so that the derivative
in equation (4.32) is set to zero. This is not the case close to a pole, but as
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the matrix elements have poles for different energies, the overall effects are
hopefully not too large.

We also make an approximation to the eigenvalue equation similar to the
single particle case, namely using a fixed energy to find the eigenvalues of
equation (4.31), rather than solving the full problem. In the present imple-
mentation, this energy is fixed as the energy at which the propagator is to
be calculated, the Ω defined in equation (4.33). Combining the information
in equation (4.30) with the Parquet equations in (4.26), we obtain a new
formulation of the latter:[

Γ(Ω)
]

=
[
I(Ω)

]
+

[
L(Ω)

]
+

[
R(Ω)

]
,[

L(Ω)
]

=
[
(I + R)(Ω))

][
Gpphh(Ω)

][
(I + R)(Ω))

]
, (4.34)[

R(Ω)
]

=
[
(I + L)(Ω))

][
Gph(Ω)

[
(I + L)(Ω))

]
.

The main limitation on this approach is the underlying assumption on the free
propagator G0. The free two-particle propagators are not necessarily diagonal
in the correct solution.
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4.4 Approximate solution to the Dyson equation

The equation set (4.26) and (4.28) together with the Dyson equation (3.20)
gives a solution to the one-body propagator if solved self-consistently. To
find a viable implementation, we have to make some further simplifications,
especially in the treatment of the energy variables.

As discussed above, in the exact solution, the standard Hartree-Fock quasi-
particles and quasi-holes are no longer stable single-particle states. The energy
of a single-particle state gets smeared out over a broad range of possible en-
ergies. While it is possible to find such multiple solution sets, see for example
Ref. [100, 101, 102, 103], the ensuing complexity makes computations within
our scheme far too demanding at present. We have therefore opted for an
approximation where we keep only the solution closest to the first order en-
ergy εf.o.. The first order energies are determined from the energy-independent
first order contribution to Σ (which is the same as the Hartree-Fock self energy
defined in equation 3.23):

Σf.o.(α, β) = −i

∫
C↑

dω

2π

∑
γδ

〈αγ|V |βδ〉gγ,δ(ω), (4.35)

εf.o.
αβ = e0

αβ + Σf.o.(αβ). (4.36)

The energy of a given single-particle state is calculated from equation (3.25)
with Σ calculated at the first order energy, that is, the energies are the eigen-
values of the equation

([e] + [Σ(εf.o.)])|λ〉 = ωλ|λ〉, (4.37)

which is now a simple, linear eigenvalue problem. The number of eigenvalues
is then limited to N , the number of orbitals in the basis. As a consequence,
the hole spectral function reduces to a series of at most N peaks, one for
each energy state. Each energy has only one contribution, from a single, well-
defined state, removing the need for the summation over states to obtain the
spectroscopic factor for a given energy. The sum rule that the occupation and
depletion numbers of a single basis state must sum to 1 reduces to the condition
that the sum of the hole amplitude and particle amplitude for a given energy
sums to 1, giving exactly complementary hole and particle spectral functions.

The integral over the energy of the single-particle propagator in equa-
tion (4.28) is solved by the Residue theorem. In the first order term the
interaction is energy-independent, and so no complications occur. To per-
form the integration in the second term, we make the assumption that the
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residues at the poles of the ladder propagator Gpphh
0 and the interaction Γ are

small compared to the residue at the pole of the single-particle propagator.
These residues will quickly be quenched by the denominator of the single-
particle propagator as long as they are at other energies than the energies
of the single-particle orbitals. Due to the approximate solution of the Dyson
equation, the sums over n+ and k− in the expression for the single particle
propagator reduce to restricting the summations over orbitals to either over
or under the Fermi level. Thus our expression for the self energy becomes

Σ(1, 2;ω) = −
∑
αβ

〈1α|V |2β〉
∑

k

zk−
αβ

+
1

2

∑
n+

∑
αβγδμν

〈1α|V |βγ〉〈βγ|Gpphh
0 (ω + εn+

να )|δμ〉〈δμ|Γ(ω + εn+
να )|2ν〉zn+

να

+
1

2

∑
k−

∑
αβγδμν

〈1α|V |βγ〉〈βγ|Gpphh
0 (ω + εk−

να )|δμ〉〈δμ|Γ(ω + εk−
να )|2ν〉zk−

να

= −
∑

αβ<F

〈1α|V |2β〉zαβ

+
1

2

∑
αν>F

∑
βγδμ

〈1α|V |βγ〉〈βγ|Gpphh
0 (ω + εf.o.

να )|δμ〉〈δμ|Γ(ω + εf.o.
να )|2ν〉zνα

+
1

2

∑
αν<F

∑
βγδμ

〈1α|V |βγ〉〈βγ|Gpphh
0 (ω + εf.o.

να )|δμ〉〈δμ|Γ(ω + εf.o.
να )|2ν〉zνα.

(4.38)

Here zνα is the amplitude of the single-particle propagator at the first-order
energy εf.o.

να . We have chosen this solution method to incorporate the effect of
the changes in the spectral function into the self energy while still conserving
the total number of particles.
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4.5 Summary of the different approximations

We have employed a number of approximations to the complete Parquet so-
lution. The first is to truncate the infinite sum of diagrams in the class I
of diagrams which are non-simple in all channels after the first term, keeping
only the bare interaction. The effect of missing the corrections stemming from
the missing diagrams of fifth order or higher is small compared to the effects
of some of our other approximations.

We have also made an approximation on the energy dependence of our
interaction Γ, namely that the energy parameter Ω is the same in the calcu-
lation of L and R, even though it is defined differently relative to the energies
of the incoming states in the two cases. The Ω parameter thus represents an
average incoming energy.

The most influential approximation is our approximate method for solving
the Dyson equation described in section 4.4. Thus even our most complete
solution is an approximation, and we have termed this the fixed-energy Dyson
equation approximation (FED) in the discussion of our results. We have also
employed an even cruder approximation termed the unperturbed propagator
structure approximation (UPS). To facilitate later reference, we give a short
summary of the ingredients and consequences of each approximation scheme
below.

The small imaginary part iη in the propagator equations (4.18) and (4.25)
is a mathematical necessity to ensure that the correct poles of the propagator
is included when integrating over ω, and the real physics occur in the limit of
η→0. Ideally, this should be done before a numerical implementation, but we
have found that the poles of the propagator give rise to serious convergence
problems, and so the iη factor must be present also in the numerical imple-
mentation. The physical limit is then found as an extrapolation of results for
different values of η. The effect of η is to move the poles away from the real
axis. This reduces the severity of the poles and smooth the energy dependence
of the real matrix elements in exchange for larger imaginary parts. Thus the
overall effect is to reduce the effects of the interaction between the particles,
making the results closer to a mean field result. This need for an extrapolation
introduces an additional uncertainty to our results.

Our method for handling the poles and the Dyson equation is different from
the implementation of the Green’s functions approach employed by Barbieri
et.al. [104, 6, 24]. They solve the Dyson equation numerically, and then use a
small number of solutions close to the Fermi level, typically two or three. The
remaining solutions are accounted for in an average manner. This simplifies
the calculation considerably. In their approach, the interaction Γ is handled
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in the Faddeev random phase approximation.

4.5.1 The unperturbed propagator structure approximation -
UPS

The unperturbed propagator structure approximation (UPS) employ the un-
perturbed structure of the propagator, as given in equation (3.3), repeated
here for easy reference:

g0
αβ(ω) = δα,β

( θ(α − F )

ω − e0
α + iη

+
θ(F − α)

ω − e0
α − iη

)
, (4.39)

This gives the expression for the two-time propagators given in equation (4.18)
for Gpphh and equation (4.25) for Gph. The total effect of performing this
simplification in addition to the approximate Dyson equation solution method
is that only the energies of the single particle states are changed during the
self-consistency procedure. The single-particle energies are calculated self-
consistently to ensure summation of the interaction diagrams to all orders.
The spectral functions are just spikes with height 1 at the energy of the state,
and 0 elsewhere. This approximation also ensures that the matrix inversion
method described in section 4.3.2 can be applied to our case, as the non-
interacting propagators then become diagonal. The energy sum rule (3.29)
becomes particularly simple in this approximation, being a sum over the hole
orbitals.

4.5.2 The fixed-energy Dyson equation approximation - FED

The fixed-energy Dyson equation approximation employs the structure in
equation (3.2) for the single-particle propagator. To ease the comparison to
the UPS approximation, we state the main equation here as well:

gαβ(ω) =
∑
n

zn+
αβ

ω − ε+
n + iη

+
∑

k

zk−
αβ

ω − ε−k − iη
, (4.40)

where zn+
αβ is an abbreviation for 〈ΨN

0 |cα|ΨN+1
n 〉〈ΨN+1

n |c†β|ΨN
0 〉 and so on. Thus

the two-time propagators have the forms given in equations (4.17) and (4.24).
The approximated solution to the Dyson equation is still employed, ensuring
that the total number of eigenstates is the same as the number of orbitals N .
The number of possible terms in the sums over amplitudes in the expressions
for the propagators is then limited to N . The definition of the hole spectral
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function in equation (3.6), will, in our current notation be given by

Sh(α, ω) =
∑

k

|zk−
αα |2δ(ω − ε−k ). (4.41)

The sum over k in this equation is limited to the number of orbitals, and the
energies ε−k are the orbital energies in the FED approximation. The spectro-
scopic factors in this approximation will be smaller than 1, as the coupling
between states with different orbital numbers n will give hole spectral func-
tions which have some probability of having a higher energy. As each energy
can be identified with a definite orbital, the height of the spike at that energy
gives the spectroscopic factor of that orbital.

The implication of this approximation is that while we loosen the restric-
tion that the input basis states are ’good’ states and allow the single-particles
to become linear combinations of the chosen basis set, we still assume that
the single-particle picture is valid, that is, the system can be described as a
set of (quasi-)particles with a discrete energy spectrum.

4.5.3 Energy-dependence

In addition to the two different treatments of the single-particle propagator,
we have also tried two different schemes for handling the energy dependence
of the Parquet equations, giving a total of four possible schemes.

In the energy-independent scheme, a fixed starting energy Ein is chosen
and used as the input Ω in the equations for the two-time propagators. Typi-
cally, Ein has to have a value well removed from the poles of the propagators
to obtain converged results. The generated interaction Γ(Ein) is analogous to
the interaction from a conventional G-matrix calculation, with some impor-
tant differences. The ladder terms includes both particle-particle and hole-hole
ladders, whereas the G-matrix only contains the particle-particle part. The
starting energy could correspond to the energy of the incoming particles or to
the energy difference between a particle-hole pair, depending on context. Like
a conventional G-matrix, eventual use of the generated interaction would be
hampered by the need to extrapolate for starting energies for which the poles
of the propagator destabilize the solution (i.e. where the incoming particle
energies correspond to a pole in the propagator). The inclusion of hole-hole
terms imply that also negative starting energies will give this effect. In our
approach this destabilization can be handled by increasing the iη parameter
significantly, thus generating an interaction applicable to all energies.

In the energy-independent scheme, the are no differences between using
the approximated full propagator as described in section 4.3.2 and the more
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correct free propagator approach described in section 4.3, as expected from the
fact that the approximation in the former approach concerns the derivative
of the interaction with respect to the energy, which in the case of an energy-
independent interaction is exactly 0.

In the energy-dependent scheme, a (real) energy grid is set up and the
propagators and interactions are calculated at each value of the grid. The
values of Γ(Ω) used in the calculation of the self energy (equation 4.38) are then

interpolated to the energy Ω = ω+ εf.o.
να . This scheme includes the poles in the

generated interaction in a more correct manner than the energy-independent
scheme, but the added number of poles gives additional convergence problems.
In this scheme, the approximated full propagator as described in section 4.3.2
gives different results than the free propagator approach described in section
4.3.

4.5.4 Schematic structure of the calculation

We provide a schematic overview of the structure of our implementation in
figure 4.8. The self-consistency loop is continued unto convergence, that is,
the single-particle energies and single-particle propagator do not change during
the cycle.
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Initializing

Calculate first order self energy diagram

Solve Dyson equation, new single−particle energies and single−particle propagator

Calculate L

Recouple L to [13]−channel

Calculate R

Calculate self energy diagrams

Recouple R to [12]−channel

Figure 4.8: Schematic overview of the program structure. The loop is continued
until the single-particle energies and single-particle propagator do not change during
the cycle.



5 A simple model

As a first step, we discuss the performance of the Parquet method in a simple
model, which capture some of the essential features of the interaction in nuclei.
The structures seen in more realistic cases are here much simpler to analyze,
making it possible to discern the origins of the observed features of the self
energy and the spectral functions to a greater extent, including the relative
effects of the pair-correlation and the particle-hole terms in the interaction.
Thus the insights gained in this chapter are of relevance to the discussion of the
more realistic case investigated in chapter In the first section, we describe the
model as built around a three-term Hamiltonian. In section 5.2 we present the
results of applying the Parquet method to the simplest version of the model in
which only a pair-conserving part of the Hamiltonian is included. In section
5.3, we discuss the results of including a pair-breaking term. We give a brief
summary of the main findings in section 5.5.

5.1 Description of the model

The model has N doubly-degenerate and equally spaced single-particle levels
labelled by n = 0, . . . , Nmax and spin σ = ±1. The Fermi level defines the
boundary of the “closed core”, as shown in the first column of figure 5.1. We
define a Hamiltonian of the system with three contributions, a one-body part
H0 and a two-body interaction V consisting of two terms, as follows:

H = H0 + V =∑
kσ

kc†kσckσ +
1

2
g

∑
kj

c†k+c†k−cj−cj+ +
1

2
f

∑
jkl

(c†k+c†k−cj−cl+ + c†j+c†l−ck−ck+)

(5.1)

The energy of the first level is set to 0, and the energy increases by a fixed
amount for each level. We set this fixed level spacing to 1, and the coupling

63
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constants g and f give the relative strengths between the level spacing and
the interaction. The first term of the interaction has a pair structure, and
can only excite two particles at a time, as shown in the second column of
figure 5.1. The vacant positions are holes and are drawn as open circles. The
second term in the interaction is a pair-breaking term, as it acts between pairs
of opposite spin, creating excitations of the type shown in the third column
of figure 5.1. This system can be solved exactly by diagonalization, enabling

(1) (2) (3)

10

9

8

7

6

5

4

3

2

1

Level
Fermi

N

Figure 5.1: Sketch of the N = 10, p = 4 model in the ground state (1), an example
pair excitation, the only type to occur when g = 0, f = 0 (2), and an example
pair-breaking excitation which can occur when f = 0 (3).

us to study the accuracy of the Parquet summation method. We pay espe-
cial attention to the effects of the relative strength between the level spacing
and the interaction, and to the effects of increasing number of orbitals and
particles. As our implementation of the Parquet method so far only includes
two-body interactions, we can gain insights into the influence of many-body
correlations beyond the two-body level. In nuclei, the pairing component of
the interaction is known to be strong, as seen by the success of the seniority
scheme models [105], and thus the pairing-only model is of interest in this con-
text. We know that closed-core nuclei commonly have an interaction strength
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of ∼ 20 − 30% of the level spacing [106, 107], so we will concentrate on the
span [−1, 1] of interaction strengths.

We employ dimensionless variables in the discussion of this model.

5.2 Results for the pairing-only model

As a first step, we study the Parquet method applied to the simple pair-
ing model, in which the particle-hole coupling constant is zero, i.e. f = 0.
This implies that the self energy becomes diagonal, and thus the unperturbed
propagator structure as given in equation (4.39) is conserved, and there is no
difference between the two approximation schemes FED and UPS described
in section 4.5.

5.2.1 Convergence with respect to η

Since our method is based on an iterative procedure, we need to investigate
the stability of the solution and see if the results converge as the number of
iterations increase. The η parameter in the two-time propagators (4.17) and
(4.24) regulates the influence of the pole terms, determining the stability of
the iterative procedure. Increasing values of η give calculations in which the
effect of the poles are increasingly removed, increasing the imaginary parts of
the results.

For the simplest case of N = 2 and p = 2, the parameter η can be set to 0 in
most cases for energy-independent calculations. The graphs in figure 5.2 show
the difference in ground state energies between iteration n and the previous
iteration, En −En−1, in a log-scale plot as a function of number of iterations.
We show results for energy-independent calculations at different starting ener-
gies Ein. Most starting energies give convergence to machine precision within
10-15 iterations. The exception to this is starting energies exactly at the poles
in the Gpphh

0 and Gph
0 propagators used in the calculation of L and R, respec-

tively. The starting energy Ein = 2.01 is such an exception, as can be seen
from the divergent patterns for this starting energy in figure 5.2. These poles
lie around 0 in this system, with a larger number of poles at positive energies
than negative. Negative values of Ein less than ∼ −2 always converge.

Comparing the graphs for different values of the interaction strength g, we
see that the convergence properties for the η = 0 calculations are less stable
when the pairing constant |g| increases. Only for starting energies well away
from zero can convergence be obtained. By setting η > 0 all starting energies
can be made to converge at all |g| values. At small values of |g|, η values as
small as 5 × 10−2 give convergence when Ein is equal to one of the poles of
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Figure 5.2: The difference En − En−1 between successive iterations as a func-
tion of the number of iterations for the simple N = 2, p = 2 pairing model with
g = −1,−0.5,−0.1, 0.1, 0.5 and 1.0. The results shown are from energy-independent
calculations for different starting energies. The legend indicates the values of the
pair Ein,g for each graph. The graphs show that the convergence is best for small
|g| values, and that the starting energy Ein = 2.01 gives divergent calculations. All
quantities are dimensionless.

Γ. The most problematic starting energies require quite large η values (up to
15-20) when |g| is large.

Energy-dependent calculations have roughly the same convergence proper-
ties as the energy-independent case. Except for some unhappy cases where an
exact pole in Γ is encountered, the results for all g values converge for η = 0.
Setting η > 0 gives faster convergence, as can be seen in figure 5.3, where we
show results for calculations with an energy grid with 20 points for several
g values both at η = 0 and η = 1. The η > 0 convergence pattern is not
as regular as the η = 0 case. Increasing the energy grid size (i.e. employing
a more fine-grained grid) often gives less possibility for convergence, as the
probability of hitting a pole in Γ increases. A more dense grid requires larger
η values to obtain convergence.

Increasing the system size changes the convergence properties, as the num-
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Figure 5.3: The difference En − En−1 between successive iterations as a function
of the number of iterations for the simple N = 2, p = 2 pairing model with g =
−1,−0.5,−0.1, 0.1, 0.5 and 1.0. We show results for energy-dependent calculations
for η = 0 and η = 1. The legend consists of pairs of η,g values. All results are
converged, also for larger |g| values. The convergence pattern is faster but more
irregular when η = 1.

ber of poles increases. For the N = 10, p = 4 system energy-independent
calculations converge to machine precision within 25 iterations for a starting
energy of Ein = −20, but the energy-dependent calculations exhibit a slower
convergence pattern compared with the N = 2 case. This is seen in figure 5.4,
where we see that for large values of |g| the η = 0 calculations diverge. The
η = 1 calculations show slowly decreasing small oscillatory behaviour at these
|g| values. The trend continues at least beyond 100 iterations, so it seems
reasonable to conclude that the η = 1 calculations eventually converge to
machine precision. Smaller |g| values gives slow, exponential convergence for
η = 0, and a much faster, more irregular convergence pattern for the η = 1
calculations. Increasing the number of particles to 6 does not change the con-
vergence properties substantially, implying that the number of levels is the
factor with largest influence on the convergence properties of the calculations
within the pair-conserving model.
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Figure 5.4: The difference En − En−1 between successive iterations as a function
of the number of iterations for energy-dependent calculations in the N = 10 p = 4
pairing model with g = −1,−0.5,−0.1, 0.1, 0.5. In the upper panel we show results
for η = 0, and in the lower panel η = 1. Only small values of |g| give convergent
results in the η = 0 case, while all values show convergent behaviour at η = 1.
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5.2.2 Self energy

The pair model is ideal for studying the pole structure of the self energy, as
it is easy to discern the effects of changing different parameters. The energy
dependence of the self energy Σ can be investigated both for the energy inde-
pendent and energy dependent cases. The first order term in equation (4.38)
is energy-independent, giving the energies at which the self energy is calcu-
lated at each iteration. The energy-dependent term has poles stemming both
from poles in the Gpphh

0 propagator and from the interaction Γ, giving a rich
structure in an exact calculation. The pair-conserving interaction gives a di-
agonal self energy, and thus the energies of the single-particle orbitals are
given by adding the self energy contribution at the first-order energy to the
unperturbed energies directly.
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Figure 5.5: The energy dependence of the self energy for the two diagonal elements
〈1|Σ|1〉 and 〈2|Σ|2〉 of an N = 2, p = 2 calculation for an interaction strength g =
−0.5. The first-order contributions are shown as straight lines, and we see that
these determine the average values. The second-order terms contribute to the pole
structure.

In the N = 2, p = 2 system however, the pole structure is considerably
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Figure 5.6: The energy dependence of the self energy for the two states of an N = 2,
p = 2 calculation for interaction strengths g = −0.5,−0.1 and 0.5. The numbers 1 and
2 in the legend are abbreviations for 〈1|Σ|1〉 and 〈2|Σ|2〉, respectively. The poles are
much less pronounced for the g = −0.1 case. The attractive g = −0.1 and g = −0.5
interactions pushes the lowest energy level down relative to the non-interacting level
value at 0. In the repulsive g = 0.5 case, the lowest level increase in energy relative
to the non-interacting case.

simpler. The level scheme given in figure 5.1 reduces to two levels with energy
0 and 1, respectively. Thus the self energy has two matrix elements, 〈1|Σ|1〉
and 〈2|Σ|2〉, the numbering of the states being according to the level number
as shown in figure 5.1.

From analytical calculations on the two-level problem we would expect the
two-hole-two-particle propagator Gpphh based on first order energies as input
to have poles at the first-order energies (see equation (4.36)) of two-hole-
one-particle and two-particle-one-hole excitations. Choosing g = −0.5, the
first-order energies of the two levels are -0.25 and 1.0, giving self energy poles
occurring at the energies −1.5 (two-hole-one-particle) and 2.25 (two-particle-
one-hole). The poles of the self energy in our calculations will occur at the
energies found from solving the Dyson equation (by solving equation (4.37))
for the two particles (two holes) and at the first order energy of the hole
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Figure 5.7: The differences between 1 and 10 iterations of an energy-independent
calculation with Ein = −10, and between an energy-independent and an energy-
dependent calculation in the N = 2, p = 2 system. The numbers 1 and 2 in the
legend are abbreviations for 〈1|Σ|1〉 and 〈2|Σ|2〉, respectively. Only energies close to
the poles are affected in both cases.

(particle). At the energy scales involved and with our approximate solution
of the Dyson equation, we do not expect the full energies to be very different
from the first-order energies, and this is confirmed when we look at the poles of
the self energy as shown in figure 5.5. This graph shows the diagonal elements
〈1|Σ|1〉 and 〈2|Σ|2〉 (the off-diagonal elements being zero in the pair model)
as a function of energy. We have also included the first-order energies for
reference. The self energy matrix elements shown are the result after the first
iteration of a calculation without interactions, that is, L = R = 0. The poles
have shifted from 2.25 to almost 2.3, and from -1.5 to -1.55. For reference, we
also show the energy-independent first order contributions, and we see that
the average value of the self energy is determined by the first-order term, the
second-order term mainly contributing close to the poles. We also note that
each matrix element of the self energy in the pair-conserving model only has
contributions from either the pp or the hh part of Gpphh

0 , thus having only one
pole each.
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Reducing the absolute value of the interaction strength parameter g re-
duces the impact of the poles drastically, as seen from the set of graphs for
g = −0.1 in figure 5.6, explaining the very good convergence properties at
the values of g close to 0. Furthermore, from comparing the g = −0.5 with
the input energies of the two levels, the main effect of an attractive force is
to lower the average energy of the lowest-lying level and increasing the gap
between the two levels. This lowers the ground state energy, as expected. The
repulsive force reduces the gap by pushing the lowest level upwards in energy,
as exemplified in the graphs for g = 0.5 in figure 5.6.
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Figure 5.8: The energy dependence of the self energy for the two states of an N = 2,
p = 2 system for a full Parquet energy-dependent calculation with η = 0 and η =
1. The numbers 1 and 2 in the legend are abbreviations for 〈1|Σ|1〉 and 〈2|Σ|2〉,
respectively. The pole structure is almost completely quenched in the η = 1 case.

Inclusion of an energy-independent Γ will give pole positions which depend
on the starting energy, as the poles in the two-time propagators also have this
dependence. The position of the poles in the self energy is further adjusted
by the self-consistency procedure, but due to our approximate solution to the
Dyson equation, the number of poles remain unchanged.

The dependence on the starting energy for the energy-independent cal-
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culation is also minimal, although slightly increasing for increasing g values.
The weak dependence reflects that the propagator in the Γ interaction has
relatively little influence compared to the effect of the poles in the Gpphh

0 prop-
agator when calculating the self energy.
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Figure 5.9: The energy dependence of the self energy for the 10 states of an N = 10,
p = 4 system for an L = R = 0 calculation. The numbers 1,2,. . . ,10 in the legend
are abbreviations for 〈1|Σ|1〉 and so on. The number of poles reflect the number
of possible two-hole-one-particle and two-particle-one-hole excitations, giving eighth
poles in the self energy matrix elements corresponding to hole states and two in each
of the self energy matrix elements corresponding to particle states.

The self-consistency procedure does not change the self energies notably,
except at the poles, as can be seen from the graph in figure 5.7, where we
have shown the difference between the self energy after 1 iteration and after 10
iterations for an energy-independent calculation at starting energy Ein = 10.
This is representative for all calculations on this system, illustrating that the
initial solution is already close to the self-consistent solution. The differences
between the energy-independent and the energy-dependent calculations in this
system are somewhat larger, as shown by the second graph in figure 5.7. Only
energies close to the poles are affected in both cases.
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Adding the imaginary component by setting η > 0 in our calculations
gives the expected smoothing out of the poles, as shown in figure 5.8, where
we compare the self energy diagonal elements 〈1|Σ|1〉 and 〈2|Σ|2〉 for energy-
dependent calculations with η = 0 and η = 1. Thus setting a large η value
results in an almost energy-independent self energy, that is, the calculation
becomes similar to a mean-field calculations.

Increasing the number of particles and levels increase the number of possi-
ble two-hole-one-particle and two-particle-one-hole excitations, increasing the
number of poles in the self energy. Thus we see eighth poles in each of the two
self energy matrix elements corresponding to hole states and two poles each
in the eighth self energy matrix elements corresponding to particle states for
a calculation with N = 10 and p = 4, shown in figure 5.9.
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5.2.3 Comparison with exact diagonalization

We have compared the different approximation schemes discussed in sec-
tion 4.5 with the exact ground state energies obtained from diagonalization.
We compare the ground state energies as a function of the ratio of interaction
strength g to the level spacing as the number of levels increase and as more
particles are added.

For convergent starting energies in an energy-independent calculation, the
different starting energies yield minimal differences. We have chosen to work
mostly with a starting energy of -20, as this is convergent for all values of g
we have studied. All convergent results for other starting energies have less
than 3% deviation from the results shown.

In the upper panel of figure 5.10 we show results for the simplest case, with
N = 2 and p = 2, as a function of coupling strength. We compare the ground
state energy found from an exact solution, a calculation where L = R = 0, an
energy-independent calculation at different starting energies and extrapolated
energy-dependent values. In the L = R = 0 calculations we have performed
a self-consistent calculation of the single-particle energies and binding energy
based on the input interaction V alone.

We see that the agreement between our results and the exact is very good
for small values of the coupling strength |g|, where the independent-particle
properties are dominant. For stronger negative coupling relative to the level
spacing, the Parquet calculations underbind, probably due to the error intro-
duced in our approximate solution of the Dyson equation. The differences
between full Parquet and the results for L = R = 0 are very small, indicating
that contributions to the ground state energy are provided by the first- and
second-order self energy diagrams in the Parquet solution of this simple model.
The results for the starting energies Ein = −10,−5, 5 and 10 demonstrate that
in the pair-conserving model the dependence on Ein is very small.

The energy-dependent results agree very well with the energy-independent
data in the range of g values where the calculations converge. To improve the
convergent range, η has to have a non-zero value, giving the graph in the
upper panel of figure 5.10. A calculation based on several values of η and
linearly interpolated to η = 0 performs slightly better at large g values. The
tendency to underbind at more negative g values persists, showing that the
energy dependence alone is probably not enough to recover all of the missing
binding.
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Figure 5.10: Comparison between the exact solution and the different Parquet solu-
tions in the N = 2, p = 2 model (upper panel) and in the N = 10, p = 2 model (lower
panel). The differences between the exact solution and the various Parquet solutions
are much larger in the N = 10 case. The energy-dependent results are slightly closer
to the exact solution than the energy-independent results.
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Figure 5.11: Comparison between the exact solution and the different Parquet so-
lutions in the N = 10, p = 4 model (upper panel) and in the N = 10, p = 6 model
(lower panel).
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When we increase the number of levels to 10, while keeping the number of
particles constant at two, we obtain the graphs in the lower panel of figure 5.10.
We see increasing differences between the exact values and the Parquet calcu-
lated values at stronger negative coupling. The extrapolated values are still
better than the energy-independent values which in turn are slightly better
than the L = R = 0 results. The dependence on Ein is still negligible, which
is why only the Ein = −20 graph is shown. Increasing the particle number to
four (upper panel of figure 5.11) and then to six (lower panel of figure 5.11),
we see the same behaviour.
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Figure 5.12: The relative difference in energy ε = |EParquet − EExact|/|EExact| for
p = 2, p = 4 and p = 6.

To study the effects of increasing particle number, we show in figure 5.12
the absolute difference

ε =
|EParquet − EExact|

|EExact|
between our energy-dependent results and the results from the exact diago-
nalization for the N = 10 model with two, four and six particles. The odd
data point at f = −1 in the p = 4 graph has a value close to 7. This rapid
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increase is mainly due to the fact that the exact value at this point is close to
0, amplifying the difference at this point. We see that in general, the relative
errors of our results reduce as the number of particles increase.

We have also investigated the changes in correlation energy as the number
of particles change. We show in figure 5.13 a comparison between the energy-
dependent results and exact diagonalization results. The two latter graphs
are adjusted such that the ground state energies at g = 0 are equal. Thus the
graphs for p = 4 and p = 6 show the correlation energy EC in the system due
to the increased number of particles. As the number of particles increase, the
correlation energy changes more rapidly with increasing interaction strength,
as could be expected.

In the lower panel we show the relative difference in correlation energy

εC =
|EParquet

C − EExact
C |

|EExact
C |

for the p = 4 and p = 6 cases relative to the p = 2. The errors have two dis-
tinct sources, namely the systematic errors introduced by the approximations
employed in the solution, and the errors stemming from missing many-body
correlations. If the error |EParquet

C −EExact
C | scales as the exact correlation en-

ergy with respect to the number of particles, the relative difference would be
independent of particle number for four and six particles. In the lower panel
of figure 5.13 we have plotted the relative difference. The graphs for four and
six particles coincide in the range −0.7 < f < 0. The f > 0 values show that
the Parquet solution is very close to the exact, and the different behaviour
might originate from the uncertainties in the extrapolation to η→0.
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5.3 Pair-breaking interaction

Setting f = 0 changes the interaction from a purely pair-conserving to a pair-
breaking interaction. For simplicity, we set g = 0 when discussing the impact
of pair-breaking. This amounts to having a pair-breaking contribution equal
in size to the pair-conserving contribution. The pair-breaking term introduces
some new, interesting features to the model, most notably in the fact that the
self-energy is no longer diagonal. Thus we can study the differences between
the unperturbed-structure (UPS) approximation and the fixed-energy Dyson
equation (FED) approximation discussed in section 4.5 in detail.

5.3.1 Convergence with respect to η

The convergence properties of the energy-independent UPS approximation
for the f = 0 interaction in the N = 2, p = 2 system are not quite as good
as for the pairing only case, but generally similar. Most starting energies
give convergence for f values close to zero, but only starting energies well
away from zero give convergence for larger absolute values of f . None of
the calculations converge at the value f = 1, where the first-order energies
for the states 1 and 2 become equal. The results become unstable when
this happens. In the upper panel of figure 5.14 we show the difference En −
En−1 between successive iterations for an energy-independent calculation with
starting energy Ein = −20 and Ein = −2 for several f values for a N =
2, p = 2 system. All convergent points converge exponentially to machine
precision within 60 iterations, most within 10 iterations. The most unstable
combinations are small starting energies and large |f | values, reflected in the
patterns seen for the combinations Ein = −20, f = −1 and Ein = −20, f = 1.

For the energy-dependent unperturbed-structure (UPS) approximation cal-
culations, convergence is good for energy mesh grids with 10-30 points. In-
creasing the number of points beyond that destabilizes the solution for some
values of f , as then some of the mesh points hits the poles in Γ due to the
two-time propagators. Increasing η remedies this, then an almost exact match
between all grid sizes above 10 is observed. The exception is for f values close
to 1, the breakdown point. The lower panel of figure 5.14 shows the conver-
gence for different f values in an energy-dependent calculation for η = 0 and
η = 1. All points are convergent, although the oscillatory pattern for the
f = 0.99 case continues for at least 100 iterations. We observe that adding
the imaginary component gives a more irregular convergence pattern, as in
the pairing-only model.
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Figure 5.14: The difference En − En−1 between successive iterations as a function
of the number of iterations for the particle-hole N = 2, p = 2 model for several f
values. The results in the upper panel are for energy-independent UPS calculations
for starting energies Ein = −20 and Ein = −2, as indicated in the pairs Ein, f
values in the legends. In the lower panel we show results for energy-dependent UPS
calculations for η = 0 and η = 1, the legend being pairs of η, f values.
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Figure 5.15: The difference En−En−1 between successive iterations as a function of
the number of iterations in the N = 10, p = 4 system. The calculations are energy-
independent UPS calculations with Ein = −20 for several f values with η = 0 (upper
panel) and η = 1 (lower panel). Only small |f | values give convergent results for
η = 0.
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Extending to larger N and p values, obtaining convergent results for larger
|f | values is increasingly hard, requiring η > 0 even in the energy-independent
case. In figure 5.15 we show the difference En − En−1 between successive
iterations for an energy-independent calculation with Ein = −20 for several
f values for a system with N = 10 levels and p = 4 particles. The upper
panel shows results for η = 0 and the lower panel for η = 1. Introducing η
solves the convergence problems for large positive f values. The calculations
for f = −1 do not converge, but generally the convergence properties in this
larger systems are better for smaller values of η than in the pair-conserving
case, scaling better with increasing number of levels and particles.
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Figure 5.16: The difference En − En−1 between successive iterations as a function
of the number of iterations for energy-independent FED calculations with Ein = −20
for several f values with η = 1 in the N = 2, p = 2 model.

The off-diagonal elements of the self energy give off-diagonal elements of
the single-particle propagator and consequently, the fixed-energy Dyson equa-
tion (FED) approximation employing the structure of equation (3.2) for the
single-particle propagator gives different results from the UPS results.

For the energy-independent FED approximation, no convergent solutions
can be found in the N = 2, p = 2 system for values of f > 0 when η = 0.
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Setting η > 0 remedies this for values of f � 0.6, as illustrated in figure 5.16.
Here we have shown the difference En−En−1 for a calculation with η = 1. As
seen from this figure, the slope of the graph for f = 0.5 is rather moderate,
and the f = 1 graph oscillates without any decrease in amplitude.

Above f ∼ 0.6 the solutions start to oscillate for all η. Looking closer
at the f values above 0.6, we see that there occurs a gradual transition from
convergent to oscillatory behaviour. Fixing η = 10, the graphs in figure 5.17
shows that at f = 0.5, the convergence behaves nicely, while at f = 0.6 oscil-
lations starts to appear. A closer look confirms that the amplitudes diminish
as the number of iterations increases. At f = 0.65, the maximum amplitude
is not damped, and at f = 0.75, the solution oscillates between two values of
the ground state energy.
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Figure 5.17: The ground state energy as a function of the number of iterations for
FED calculations in the N = 2, p = 2 model with η = 10 for f = 0.5, 0.6, 0.65 and
0.75

The energy-dependent FED scheme performs in a similar manner as the
UPS scheme with respect to number of mesh points in the energy grid, requir-
ing larger η values for convergence for larger mesh sizes. The η = 0 calculations
do not converge, but the convergence is good for η > 0 when f < 0.5, as in
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the energy-independent case. For larger f values, the instabilities leads to
in general poor convergence properties also in this approach. Increasing the
number of levels to 10, negative values of f (attractive interaction) become
unstable in the range values of f ∼ −0.4 to f ∼ −0.6. An η value as large
as 5 is needed before convergence is achieved. In figure 5.18 we show energy-
independent calculations of the N = 10, p = 2 system for η = 1 (upper panel)
and η = 5 (lower panel). On the other hand, the instability seen in the N = 2
system at f > 0 is not present any longer, that is, with higher η values we see
convergent results for all positive f values up to 1.

The N = 10, p = 4 shows similar, but slightly less convergent patterns for
positive f values, and there is no instability around f ∼ −0.5. All negative f
values are convergent at η = 1.

The energy-dependent calculations are more unstable in this approxima-
tion. For the N = 10, p = 2 system, convergence could not be obtained for
any value of η when f ≤ −0.7, and for the N = 10, p = 4 system, the limit
for obtaining convergent results is f ≤ −0.5.

Generally, the number of particles seems to have a larger impact on the
convergence properties within the FED approximation scheme than within the
UPS scheme.
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Figure 5.18: The difference En − En−1 between successive iterations as a function
of the number of iterations for energy-independent FED calculations with Ein = −20
for several f values. with η = 1 (upper panel) and η = 5 (lower panel) in the N = 10,
p = 2 model.
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5.3.2 Self energy
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Figure 5.19: The energy dependence of the self energy for the states of an N = 2,
p = 2 system with f = −0.5 for an L = R = 0 calculation with unperturbed
propagator structure. The first-order contributions are also indicated by straight
lines. The numbering of the states in the matrix elements is according to the level
number as shown in figure 5.1.

The self energy exhibits some new features compared to the pairing-only
model. The pair-breaking part of the interaction generates off-diagonal contri-
butions to the first-order self energy, that is, 〈1|Σ|2〉, 〈2|Σ|1〉 = 0 in the N = 2,
p = 2 model. This is illustrated in figure 5.19 showing the self energy matrix
elements obtained by an energy-independent UPS calculation with L = R = 0
and f = −0.5. The numbering of the states in the matrix elements is according
to the level number as shown in figure 5.1.

Thus the solution to the Dyson equation gives single-particle energies that
may differ considerably from the first-order energies εf.o. = e0 + Σf.o. (see
equation (4.36) and the discussion in section 4.4). Looking at the self energy
obtained by an energy-independent UPS calculation with L = R = 0 and f =
−0.5 given in figure 5.19, due to the pair-breaking elements in the interaction,
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Figure 5.20: Comparison between the UPS self energy of the state 〈1|Σ|1〉 for f =
−0.5,−0.1 and 0.5. The first-order energies are also shown as straight lines. The
severity of the poles is considerably reduced for the f = −0.1 case.

now each matrix element of Σ gets contributions from both the pp and the
hh part of Gpphh, resulting in each having two poles. This explains why the
convergence properties of the N = 2, p = 2 calculations are generally worse
than in the pairing-only model.

As for the pairing only case, the differences when changing the starting
energy, or including the full Γ, or changing the energy dependence scheme, or
performing iterations are minimal.

Changing the interaction strength f produces similar reductions of the
poles and shifts in the energy of the lowest level as varying g. Looking at the
form of the interaction, we see that the matrix elements relevant for calculating
the first-order energies are twice as large when f have the same numerical value
as g. Comparing figure 5.20, where we have shown the lowest-lying state for
f = −0.5, f = −0.1 and f = 0.5, with the corresponding graph for g in
figure 5.6, we find that the shift in either direction are doubled, as expected.
This is why the instability due to the crossing of the first-order energies occur
already at f = 1, while g = 1 is fine.
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Figure 5.21: 〈1|Σ|1〉 for η = 0 after the first iteration and for η = 0.5 after the first
iteration and after fifteen iterations in the N = 10, p = 6 system in a UPS energy-
independent calculation. The number of poles in the η = 0 case are smoothed to a
continuous average for η = 0.5.

Increasing the number of particles give the expected increase in the number
of poles, as seen in figure 5.21, where we have shown the self energy element
〈1|Σ|1〉 for a system with N = 10 and p = 6 at f = −0.5. The different
graphs are for an η = 0 calculation, an η = 0.5 calculation after the first
iteration and an η = 0.5 calculation after 15 iterations. That the η = 0
calculation does not converge comes as no surprise, given the number of poles
to be handled. The density of poles is so high that the smoothening effect of η
is to blur the pole structure for positive energies (due to two-particle-one-hole
excitations) into resembling an average, while the pole structure at negative
energies (due to two-hole-one-particle excitations) still can be discerned. The
iterative procedure does not change the general features, but we observe that
the remaining pole structure seems to shift somewhat to lower energies.

In figure 5.22 all diagonal matrix elements of Σ in the calculation with η =
0.5 after 15 iterations are shown. The off-diagonal element 〈1|Σ|2〉 and 〈2|Σ|1〉
are representative for all the off-diagonal elements. They have values slightly
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Figure 5.22: The diagonal matrix elements of Σ after fifteen iterations in the N = 10,
p = 6 system in a UPS energy-independent calculation for η = 0.5 at f = −0.5. In
the legend, the number 1 is an abbreviation for the matrix element 〈1|Σ|1〉, and so
forth up to 10. The number 12 is an abbreviation for the off-diagonal element 〈1|Σ|2〉
and the number 21 an abbreviation for the element 〈2|Σ|1〉. Only the hole states have
remnants of the pole structure stemming from two-particle-one-hole propagation.

below 0, and the remnants of pole structure is most prominent at negative
energies. Note that the two elements are equal, that is, the self energy matrix
is symmetric. The diagonal elements have averages around the non-interacting
level energies. Only the diagonal elements corresponding to hole states have
a distinct shape stemming from two-particle-one-hole propagation. The pole
structures of the hole diagonal elements and particle diagonal elements for
the η = 0 calculation have different averages (although both types show the
characteristic two groups of poles seen in the η = 0 graph of figure 5.21), and
this is reflected in the different shapes of the η = 0.5 graphs.
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Figure 5.23: The difference between the matrix element 〈1|Σ|1〉 of the self energy of
an energy-independent and an energy-dependent UPS calculation after 1 iteration in
the N = 10, p = 4 system with η = 0 in the upper panel and with η = 1 in the lower
panel.
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Figure 5.24: The matrix elements of the self energy after 10 iterations in the N = 10,
p = 4 system in a UPS energy-dependent calculation with η = 30. The large η
dampens all structure, making the self energy effectively energy-independent.

The 〈1|Σ|1〉 element in an energy-independent and an energy-dependent
UPS calculation with η = 0 is given in the upper panel of figure 5.23. The
influence of the poles of the L and R contributions to Γ makes the energy-
dependent self energy more irregular and the poles more prominent for positive
energies than in the energy-independent case. We observe that the poles at
negative energies are shifted to the left. In the lower panel we have shown
the same two matrix elements after the first iteration when η = 1 in both
calculations. The simpler structure and generally smaller amplitudes in the
energy-independent η = 0 case give a faster damping with η than the in
the energy-dependent case, at least partly explaining the better convergence
properties. The main contribution stemming from two-particle-one-hole prop-
agation is shifted towards higher energies.

For very large η, the self energies become almost energy-independent, as
seen from figure 5.24, where we have shown the self energies found after 10
iterations of an energy-dependent calculation in the N = 10, p = 4 system.
The solution found is thus of a mean-field type, and increasing η further
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changes very little. The solution is different from the first-order solution,
however, as the self energies are complex, and there are a larger number of non-
zero off-diagonal matrix elements. The self energy changes considerably when
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Figure 5.25: FED energy-independent Σ as a function of energy calculated for
f = −0.5 in the N = 2, p = 2 system. The legends shows the indices of Σ, that
is,〈1|Σ|1〉 and so forth. The number of poles have increased compared to the self
energy calculated in the UPS scheme of figure 5.19.

the FED approximation is employed. In figure 5.25 we show the self energy
for a f = −0.5 energy-independent calculation. Compared to the UPS self
energy in figure 5.19, there are several more poles. The Gpphh propagator has
eight poles in this approximation (the Dyson equation solution gives only two
energies in each sum in equation (3.2)), but some will probably be quenched
by the small removal/addition amplitudes. The region around f = 0.5 −
0.7 warrants closer inspection, as the convergence studies indicate that no
convergent results can be found in the N = 2, p = 2 system. We see that as
f increase the poles of the self energy based on first-order energies broaden
significantly. At f = 1 they merge, as shown in the graphs in the upper panel
of figure 5.26. The second-order self energy contributions used in solving the
Dyson equation in the first iteration are calculated from this self energy, and
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the result of the broadening is seen in that the poles coming from the hole-hole-
particle propagation moves fast towards larger energies as f increases. This
is seen in the lower panel in figure 5.26, where the self energy after the first
iteration for the different values of f is shown. The iterative self-consistency
procedure is barely able to regain stability for f = 0.4 at η = 0. When η
becomes large, all structure is lost, and the solution found is a mean-field
solution. The convergence failure at large f indicates that no such solution
can be found within our scheme. Increasing N and p, we know that it is
necessary to have η > 0 to obtain convergence. As the number of poles in
the larger systems quickly becomes quite large, the effect of η is to dampen
the pole structure of the self energy to resemble an average self energy, in the
same manner as in the UPS case. In the upper panel of figure 5.27 we have
shown the matrix element 〈1|Σ|1〉 in the N = 10, p = 4 for calculations with
η = 0 and with η = 1. The self energy matrix elements in the η = 0 case show
the characteristic separation between the two groups of poles.

We have shown diagonal matrix elements 〈1|Σ|1〉 and 〈3|Σ|3〉 of the η = 1
calculation in the lower panel of figure 5.27. These are representative for the
self energy corresponding to holes (〈1|Σ|1〉) and particles (〈3|Σ|3〉). The gen-
eral trends for all matrix elements are similar to the corresponding graphs for
the UPS case given in figure 5.22. The average energies of the diagonal ele-
ments are determined by the input energy level, and the structure at negative
energies shifting to the left with increasing level number.

The interesting feature to notice in the lower panel of figure 5.27 is the
fact that the off-diagonal matrix elements are unequal, due to the off-diagonal
elements of the single-particle propagator. Thus the self energy matrix in the
Dyson equation is a non-symmetric matrix in the FED approximation.
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Figure 5.26: In the FED approximation scheme, we show 〈1|Σ|1〉 as calculated
from the first order energies only for f = 0.1, 0.5 and 1 in the upper panel, 〈1|Σ|1〉
calculated from energies including second-order contributions after the first iteration
for f = 0.5, 0.6 and 0.65 in the lower panel. We see how the merging of the poles
occurring as f increase at the first-order level gives rise to ’runaway’ poles in the full
calculation.
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Figure 5.27: The upper panel shows the 〈1|Σ|1〉 matrix element in the N = 10,
p = 4 system at f = −0.5 for η = 0 and for η = 1 after the first iteration. The lower
panel shows the diagonal matrix elements 〈1|Σ|1〉 (labelled 1) and 〈3|Σ|3〉 (labelled
3), and the off-diagonal elements 〈1|Σ|2〉 (labelled 12) and 〈2|Σ|1〉 (labelled 21). The
off-diagonal elements are not equal.



98 CHAPTER 5. A SIMPLE MODEL

5.3.3 Spectral functions

The spectral functions discussed in section 3.1 are not particularly interesting
in the UPS approximation, as the form of the single-particle propagator forces
all amplitudes to be exactly 1. In the FED approximation the single particle
propagator has non-diagonal amplitudes, resulting in a discrete spectral func-
tion. As discussed in section 4.5.2, the coupling between states with different
orbital numbers will give hole spectral functions which have some probability
of having an higher energy. As each energy can be identified with a definite
orbital, the height of the spike at that energy gives the spectroscopic factor of
that orbital. When the interaction is 0, the particles are independent, and the
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Figure 5.28: Spectral function in the N = 10, p = 4 system with f = −0.1, after
1 and after 15 iterations. The numbers above each bar is the level associated with
that energy (due to the approximation of the Dyson equation, such a correspondence
can be made), according to the numbers of figure 5.1. The duplicate numbers 3i and
3 and so forth indicate the spectral function after 1 iteration and after 15 iterations,
respectively. Only a small amount of the hole strength is distributed to the particle
states at this small |f | value.

spectral function will have one spike of height 1 at the energy of each basis
state. The hole spectral function has thus 1 at the levels chosen to be holes,
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and 0 at the levels chosen to be particles. The effect of changing the inter-
action strength f is to reduce the height of the most dominant spikes, giving
small amplitudes also at the energies of the other basis states, as shown in
figure 5.28 for a N = 10, p = 4 system with f = −0.1. The state numbers are
according to the level scheme in figure 5.1 Only a small amount of the hole
strength is distributed to the particle states at this small |f | value. In the
same figure we have also shown the hole spectral function obtained after 15
iterations, confirming that the process of self-consistency does not influence
much on this function when the interaction strength is small. As explained in
section 4.5.2 on the FED approximation scheme, the particle spectral function
exactly mirrors the hole function.

Increasing the interaction strength to f = −0.5 gives unstable results for
η = 0. In the upper panel of figure 5.29 we compare the results for the hole
spectral function in the N = 10, p = 4 system at η = 0.5 after the first iteration
and after 15 iterations. The two lowest-energy (hole) states starts out having
a height close to 1, and there is very little strength on any of the higher-
lying states. During the iteration procedure, the energy of the lowest state is
considerably lowered, but the strength remains almost the same. The second
hole state remains at almost the same energy, but the strength is reduced
by around 30%, and the strength of the higher states increased accordingly.
Especially the third state obtains a significant enhancement relative to the
initial height, and also a reduction in energy. The energy shifts become smaller
for the higher states, reflecting that the probability of excitations and the
influence of the interaction is minimal at these energy scales. The effect of
increasing η is illustrated in the lower panel of figure 5.29, where we have
shown results after 15 iterations of calculations with η = 0.5, 1 and 7 in the
N = 10, p = 4 system with f = −0.5. The η = 7 results have a closer
resemblance to a calculation with weaker interaction strength (lower absolute
value of |f |). THe energy levels are more evenly spaced and more of the
strength is conserved in the lowest levels, illustrating the general effect of η as
a parameter which lessens the effect of the interaction and forces the solution
closer to a mean-field pattern.
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Figure 5.29: Spectral function in the N = 10, p = 4 system with f = −0.5. In the
upper panel the differences between 1 and after 15 iterations is shown. The lower
panel shows several η values after 15 iterations. The state numbers are according to
the level scheme in figure 5.1. The duplicate numbers 1i and 1 and so forth indicate
the spectral function after 1 iteration and after 15 iterations, respectively.
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5.3.4 Comparison with exact diagonalization

The differences between different starting energies are minimal in the energy-
independent UPS f = 0 calculations, and thus we show results only for
Ein = −50. However, based on the convergence results, we have done cal-
culations for η = 1, 2, 3, 5 and 10, and used these results as a basis for a linear
extrapolation to obtain the graphs in figure 5.30 and 5.31. For the energy-
dependent calculations, only the N = 2, p = 2 model has convergent results
for small enough η values to make an extrapolation meaningful. Higher η
values remove all pole structure from the self energy, creating an effectively
energy-independent solution, and the differences between different η values are
small. For the larger systems shown in figure 5.31 we show the results from
calculations at η = 5 (the lowest convergent value), 30 and 60, to show the
relatively minimal differences. In figure 5.30 we display results for the N = 2,
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Figure 5.30: Ground state energy of UPS calculations compared with exact solution
for the N = 2, p = 2 model.

p = 2 system. We see how the differences between the energy-independent
and energy-dependent calculations are small compared with the deviations
from the exact solution for f < 0. The differences increase as |f | increase.
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For f > 0, the energy-independent calculation does better that the energy-
dependent version for the region where convergent results could be obtained.

The tendency for the energy-independent calculations to be closer to the
exact results is seen also when the system size and particle number increase
as in figure 5.31. The energy-independent calculations are able to follow the
general curvature of the exact solution to a much higher degree than the
energy-dependent results. This is mainly due to the poor convergence prop-
erties of the energy-dependent calculations. Closer inspection of the N = 10,
p = 4 results in the lower panel shows that the η = 5 curve (in the range of f
values where convergent results could be obtained) has points more in keep-
ing with the energy-independent results than the points from the calculations
with larger η values.

The FED calculations for the simple N = 2, p = 2 system have a much
closer correspondence to the exact calculation for f < 0 values, as shown
in figure 5.32. The differences between different starting energies are rather
small in this approach as well. The upper panel of the figure shows graphs for
Ein = −5 and an extrapolation based on extrapolation from calculations with
η = 1, 5 and 10. For f > 0 the results destabilize around f = 0.3, as expected
from the discussion on the convergence. The extrapolated results are not able
to do any better than the η = 0 results, and overbinds at f < 0 in the same
manner as the L = R = 0 results. Energy-dependent calculations, as shown
in the lower panel of figure 5.32, show in general the same behaviour as the
energy-independent calculations. Results extrapolated from calculations with
η = 1, 2, 3, 5 and 10 manage to agree nicely with the exact solution up to
f = 0.5 before becoming too unstable.
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Figure 5.31: Ground state energy of UPS calculations compared with exact solution
for the N = 10, p = 2 model (upper panel) and N = 10, p = 4 (lower panel).
In general, the energy-independent calculations show best agreement with the exact
solution, but the differences are large for f < −0.3
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Figure 5.32: Ground state energy of FED calculations compared with exact solution
for the N = 2, p = 2 model. The results in the upper panel are for energy-independent
calculations, while the lower panel shows energy-dependent results. For negative
values of f , the agreement between the FED calculations and the exact solution is
very good. The calculations become increasingly unstable for positive values of f .
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Figure 5.33: Ground state energy of FED calculations compared with exact solution
for the N = 10, p = 2 model (upper panel) and N = 10, p = 4 (lower panel). The
results shown are convergent, but unconverged results for lower η values indicate that
the extrapolations probably do not reflect the correct η→0 limit.
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As stated in the section 5.3.1 on the convergence, all calculations become
unstable at f = 1. It is possible to find convergent solutions for values of
f > 1, but they are very far from the exact value. The exact ground state
energy decreases, while the Parquet solutions increase. The failure is due to
the reversal of the lowest-lying levels, violating our assumption that the input
basis should not differ too radically from the expected solution.

The results for N = 10, p = 2 and N = 10, p = 4 are shown in figure 5.33,
where we compare L = R = 0, energy-independent and energy-dependent
calculation for calculations with the exact solution for both the N = 10, p = 2
model (upper panel) and N = 10, p = 4 (lower panel).

In the N = 10, p = 2 model we see that the instability around f = −0.5
seems to indicate a breakdown, as both the L = R = 0 and the energy-
independent calculations give far too negative ground state energies when
f < −0.5. In the N = 10, p = 4 model the energy-independent calculations
and the energy-dependent calculations are rather close, and slightly closer to
the exact solution than the L = R = 0 calculations.

All values shown in figure 5.33 are converged, but the unconverged results
at smaller η values show oscillations between a state with larger and a state
with a much lower ground state energy than the exact value. The N = 10, p =
2 results shown are consistent with the lowest energy, while the N = 10, p = 4
results is more in line with the highest energy in these (large) fluctuations.
This might indicate that the extrapolated results shown does not represent
the ground state energy at η = 0 properly in either system.

It must be remembered that all values are extrapolated and carry an uncer-
tainty which roughly estimated is larger than the observed differences between
the three approaches, and thus it is more prudent to look at the general trends
rather than analyze the finer points in any great detail.

5.4 Selected combinations of g and f

So far we have investigated the two extremes of only pair-conserving inter-
action and a pair-breaking term the size of the pair-conserving term. We
know that the typical situation in a nucleus is to have a comparatively strong
attractive pairing component in the interaction, being averagely about 0.5
in strength relative to the level spacing close to the Fermi gap in closed
shells. The particle-hole part is considerably less, having 10%-20% of the pair
strength. In our model the particle-hole interaction is modelled by the pair-
breaking term. To get the most realistic approximation to a real nucleus within
our model, we have therefore chosen to set g = −0.5 and investigated the effect
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of adding three different f values: f = −0.025 = 0.05g, f = −0.005 = 0.1g
and f = −0.25 = 0.5g.

We have investigated both the UPS and FED energy-independent approx-
imations within a system with N = 10 levels with 2,4,and 6 particles at
E = −50. The convergence properties are generally good, for the UPS results
only the combination of 6 particles and f = −0.25 needs extrapolation, the
other values converge at η = 0. The FED approximation results are unstable
at f = −0.25 for all particle numbers. All the extrapolated values shown use
results for η = 1.0, 2.0, 3.0 and 5.0 as basis. The results show that both ap-
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Figure 5.34: Ground state energy of UPS and FED calculations compared with
exact solution in the N = 10, p = 2, 4 and 6 model for g = −0.5 and f = −0.025 =
0.05g, f = −0.005 = 0.1g and f = −0.25 = 0.5g.

proximation types underbinds as f increase, as could be expected. The FED
approximation does consistently better, especially in the two-particle system.
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5.5 Summary

We have found that the Parquet method performs generally well with the
pair-conserving interaction. In this model there is no difference between the
UPS and the FED approximations, as the system is diagonal in the self energy.
The stability of our solutions depend on the parameter η, which regulates the
influence of the pole structures in the propagators. The convergence properties
with respect to η are normally quite good, with some notable exceptions when
a pole in the generated interaction Γ is encountered. At small system sizes,
the number of poles is sufficiently small so that no η is needed, but as the
number of levels increases, a finite, but small η is needed. The number of
particles have little impact on the convergence properties.

The energy-dependent scheme was found to perform slightly better than
the energy-independent scheme when compared with the exact results. Over
a range of interaction strengths between -0.5 and 0.5 of the level spacing both
schemes show good agreement with the exact solution, also as the number of
levels and particles in the model is increased. At larger interaction strengths,
our solutions underbind the systems. In the pair-conserving model, the effect
of increasing the number of available levels is rather large. It is difficult to
ascertain the relative importance of the systematic errors stemming from the
limitations imposed by our approximations when implementing the Parquet
method versus the effect of missing many-body correlations. The study of the
correlation energy with increasing particle number indicate that our solution
method scale well with increasing particle number.

Introducing a pair-breaking force destabilizes the solutions in the region
of strong repulsion (f � 0.5) in the smallest system with two levels and
two particles, with a complete breakdown of the method when the first-order
energies of the lowest levels become equal. Increasing the number of levels in
the model gives larger differences between the exact solution and the Parquet
solutions as the absolute value of the interaction strength increase. Increasing
the number of particles gives increasingly larger discrepancies.

The energy-dependent calculation method is closer to the exact solution
in the pair-conserving systems, but to obtain convergence in the pair-breaking
systems, η has to be increased to such large values that the solution becomes a
mean-field-type solution with an almost energy-independent self energy. The
differences between results for different η values are small. Most of the corre-
lations have been lost, and the energy-dependent results are rather far away
from the exact solution.

The energy-independent calculation method gives results closer to the ex-
act solution than the energy-dependent scheme. Within this simple model,
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there is almost no dependence on the starting energy Ein, as long as this is
chosen at values where the generated interaction Γ does not have any poles.

The general conclusion is that for the larger pair-breaking systems, the
Parquet method as implemented is only in agreement with the exact solution
for −0.3 � f � 0.2. The FED approximation performs better than the UPS
approximation for f < 0, but is more unstable.

This model has many factors in common with realistic systems and many
of the general conclusions and insights gained in this chapter can be carried
over to the discussion of a real nucleus given in the next chapter.





6 Results for 4He

In this chapter we present the results of applying our implementation of the
Parquet method to a real system, namely the 4He nucleus. This is the smallest
doubly-closed nucleus. The 4He nucleus is well-studied, and there have been
published numerous numerical studies with different approaches applied to
this system. It is well-known that a correct treatment has to include three-
body forces, but also that they are a correction to the two-body contribution.
As a first test case it is therefore instructive to apply also our two-body based
approach, and for this system we do not expect that too large model spaces
are necessary to obtain meaningful results.

All results have been generated using a Vlowk potential (see section 2.3.2)
with cutoff 2.2 fm−1 based on the Argonne V18 (see section 2.2.1) potential as
input interaction (we have no further terms in the expansion for I included,
see section 4.5). The choice of the Argonne V18 input interaction is motivated
by the number of other applications using this potential, most notably the
benchmark result for 4He by the coupled-cluster method [9]. Our purpose is
mainly to test the performance of the method, not the differences between
the underlying interactions. Employing a Vlowk intermediate step ensures a
faster convergence, thus reducing the model space needed. The calculations
were performed in a harmonic oscillator basis, in model spaces including up to
eight major harmonic oscillator shells. Most calculations are done in smaller
spaces, due to huge memory costs.

We discuss results for 4He in the unperturbed-structure (UPS) approxi-
mation in section 6.1. After investigating the convergence in section 6.1.1,
we discuss the self energy and the energy-dependence of the matrix elements
of L and R within this scheme in sections 6.1.3 and 6.1.4. Then we present
results for the ground state energy in the energy-independent scheme in sec-
tion 6.1.5. Results for energy-dependent calculations are given in section 6.1.5,
both within the standard scheme and within the matrix-inversion scheme for
the two-time propagators as presented in section 4.3.2.

Results for 4He in the fixed-energy Dyson equation (FED) approximation

111



112 CHAPTER 6. RESULTS FOR 4HE

are presented in section 6.2. Based on the findings of chapter 5 and section 6.1,
we focus on the energy-independent scheme. We discuss the convergence prop-
erties in section 6.2.1, the self energy in section 6.2.2 and the spectral functions
in section 6.2.3. Finally, we present results for the ground state energy in sec-
tion 6.2.4, followed by a short summary of the main findings of the chapter in
section 6.3.

6.1 Results for unperturbed propagator structure

(UPS) approximation

In this section we present results for the 4He ground state energy employing the
unperturbed propagator structure (UPS approximation) described in section
4.5.1. In this approximation, we employ the unperturbed structure of the
single-particle propagator (4.39). The harmonic oscillator orbitals are assumed
to be a good basis set and only the energies are adjusted self-consistently.
The propagators Gpphh and Gph are solved by equations (4.18) and (4.25).
For comparison, we present calculations for both the full Parquet and some
for Parquet with only ladder terms included, i.e. R is set to zero in the
calculations. This choice is a natural extension of the conventional G-matrix
approaches, as only the ladder terms are summed to all orders.

We have chosen to discuss both the energy-independent and the energy-
dependent solution schemes. In the energy-independent approximation we
have removed the energy-dependence by choosing a fixed starting energy Ein

in the calculation of the propagators in (4.18) and (4.25). In the energy-
dependent scheme, an energy grid is set up and the propagators and interac-
tions are calculated at each value of the grid. The interaction Γ(Ω) is then
interpolated in the calculation of the self energy. We saw in the previous
chapter that in the case of a pairing-only interaction the energy-dependent
scheme performed best, while the opposite was the case for the pair-breaking
interaction.

6.1.1 Convergence properties

The stability of the UPS approximation results is generally good. We have
investigated the convergence properties of the energy-independent approxima-
tion for different η and different starting energies Ein, as shown in figure 6.1.

The upper panel shows the difference En−En−1 between the ground state
energy of successive iterations for an energy-independent calculation at �Ω =
26 MeV at η = 5 for different starting energies. The smallest starting energies
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Ein < −100 MeV follows the same general pattern. For Ein = −90 MeV, the
calculation still has a convergent behavior, while the outcome of the Ein =
−75 MeV calculation is more uncertain. The Ein = −50 MeV calculation
diverges, as do all higher starting energies at this η value.

In the lower panel figure 6.1, we show results for an energy-independent
calculation at �Ω = 26 MeV with a starting energy of -200 MeV. The differ-
ences En −En−1 between the ground state energy of successive iterations are
plotted in a log-scale plot as a function of number of iterations for different
values of η. All the shown η values give converged results fast. This reflects
that the impact of the poles are rather limited as long as the starting energy
is well away from any poles of the propagator.

The energy-dependence is introduced by introducing a fixed energy grid
and calculating the ladder and ring contributions for these energies and then
interpolating to get the value at the energy in the self energy calculation.
The poles of the propagators therefore play a larger role than in the energy-
independent case. The rather poor convergence patterns with respect to η for
the free propagator calculations are shown in the upper panel of figure 6.2 for
calculations within six major harmonic oscillator shells. Only for η >≈ 65 are
the results converged, which makes any extrapolation rather uncertain. The
convergence becomes slower with increasing �Ω, and even divergent for η=60
at �Ω = 30 MeV. The calculation shown has 30 points in the energy mesh, and
increasing this number further does not improve on the convergence (in accord
with the same observation seen in the simple model discussed in chapter 5).

To improve the convergence with respect to η we have tried the matrix
inversion approach for calculating the two-particle propagators, as described
in section 4.3.2. The main approximation relative to the free propagator
approach is to assume that the derivative of the interaction in equation (4.32)
is zero, an assumption that should be quite justifiable far from the poles,
where the interaction changes little, but violated close to the poles. We also
do not solve the eigenvalue equation (4.31) at the correct energy, but rather
have chosen to use the value of V at the input Ω, to eliminate the need for an
interpolation which would entail further uncertainties.

The convergence is as expected better in this approximation, as shown
in the lower panel of figure 6.2, which show a calculation within six major
harmonic oscillator shells. Compared to the results in figure 6.1 for the free
propagator, we see that convergence occurs for values of η >≈ 30, half of the
η value necessary for convergence in the free propagator calculations.
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Figure 6.1: The differences En −En−1 between successive iterations as a function of
the number of iterations for energy-independent calculation within six major oscillator
shells for �Ω = 26 MeV at different starting energies at η = 5 in the upper panel and
at Ein = −200 MeV with different values of η in the lower panel. Calculations with
values of Ein higher than ∼ 75 MeV diverges, as do calculations with η < 5.
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Figure 6.2: The differences En −En−1 between successive iterations as a function of
the number of iterations for energy-dependent calculation within six major oscillator
shells for �Ω = 22 MeV. In the upper panel we show results for free propagator
scheme, and in the lower we have used the matrix inversion scheme described in
section 4.3.2. The convergence is much improved by the inversion scheme.
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6.1.2 Single-particle states in the first five major oscillator
shells

In the following we will discuss several matrix quantities: the interaction
matrix elements, the self energy and the spectral function, which all have the
single particle basis as indices. For easy reference we give a table of the 30
orbitals included in the first five major oscillator shells in table 6.1. We have
chosen to work with this model space when calculating the different matrix
quantities in this presentation.
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Number |nlj〉 n l 2j tz 2n + l

1 p |0s1
2〉 0 0 1 -1 0

2 n |0s1
2〉 0 0 1 1 0

3 p |0p3
2〉 0 1 3 -1 1

4 n |0p3
2〉 0 1 3 1 1

5 p |0p1
2〉 0 1 1 -1 1

6 n |0p1
2〉 0 1 1 1 1

7 p |0d5
2 〉 0 2 5 -1 2

8 n |0d5
2 〉 0 2 5 1 2

9 p |0d3
2 〉 0 2 3 -1 2

10 n |0d3
2 〉 0 2 3 1 2

11 p |1s1
2〉 1 0 1 -1 2

12 n |1s1
2〉 1 0 1 1 2

13 p |0f 7
2〉 0 3 7 -1 3

14 n |0f 7
2〉 0 3 7 1 3

15 p |0f 5
2〉 0 3 5 -1 3

16 n |0f 5
2〉 0 3 5 1 3

17 p |1p3
2〉 1 1 3 -1 3

18 n |1p3
2〉 1 1 3 1 3

19 p |1p1
2〉 1 1 1 -1 3

20 n |1p1
2〉 1 1 1 1 3

21 p |0g 9
2〉 0 4 9 -1 4

22 n |0g 9
2〉 0 4 9 1 4

23 p |0g 7
2〉 0 4 7 -1 4

24 n |0g 7
2〉 0 4 7 1 4

25 p |1d5
2 〉 1 2 5 -1 4

26 n |1d5
2 〉 1 2 5 1 4

27 p |1d3
2 〉 1 2 3 -1 4

28 n |1d3
2 〉 1 2 3 1 4

29 p |2s1
2〉 2 0 1 -1 4

30 n |2s1
2〉 2 0 1 1 4

Table 6.1: The quantum numbers of the 30 orbitals included in the first five major
oscillator shells. In the state labels, p stands for proton and n for neutron.
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6.1.3 L and R matrix elements

We have looked at some selected L and R matrix elements as function of
energy for the energy-dependent calculations. We expect that the effect of
increasing the parameter η is to quench the energy dependence, and making
the poles less severe. This is also what we observe, as shown in figure 6.3.
As representative cases, we have shown the real and imaginary terms of the

proton matrix elements 〈0s1
2 0s1

2 |L|0s1
2 1s1

2 〉0 and 〈0p3
2 0p3

2 |L|0p3
2 0p3

2 〉0 gen-
erated by a free propagator calculation within five major oscillator shells at
�Ω = 24.0 MeV. The basis states are numbered according to table 6.1. We
show calculations with η = 5.0 and η = 70.0 after the first iteration, and again
for η = 70.0 after 10 iterations (the η = 5.0 calculation diverges after the first

iteration). The same is shown for the R matrix elements 〈0s1
2 0s1

2 |r|0s1
2 1s1

2〉0
and 〈0p3

2 0p3
2 |R|0p3

2 0p3
2〉0 in figure 6.4. We see that for the values of η where

we obtain convergence, very little of the structure of the interaction remains,
especially for the R matrix elements, which exhibit strong variation with en-
ergy for the η = 5.0 case.

We observe that the values at which the matrix elements start to deviate
significantly from 0 is about −100 MeV, consistent with the result observed in
section 6.1.1 for the value at which the energy-independent calculations starts
to diverge for small values of η. We also see that the effects of iterating to
self-consistency are not very large, the matrix elements remain almost energy-
independent.

Interaction matrix elements obtained by calculating the two-particle prop-
agators using the matrix inversion approximation exhibit more interesting
structures, as shown in figures 6.5 and 6.6 for the same L and R elements as
above. This time they are calculated at η = 5.0 and η = 30.0 after the first
iteration, and for η = 30.0 after 10 iterations. We see that far more of the
small-η structure is conserved in the first iteration. After 10 iterations in the
η = 30.0 calculation, the structure is more complex and somewhat reminis-
cent of the structure at η = 5.0. As for the free propagator calculation, the
damping is largest for the R matrix elements.
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Figure 6.3: Real and imaginary parts of the matrix elements 〈0s 1
2

0s 1
2
|L|0s 1

2
1s 1

2
〉0

and 〈0p 3
2

0p 3
2
|L|0p 3

2
0p 3

2
〉0 generated by a free propagator calculation within five ma-

jor oscillator shells at �Ω = 24.0 MeV for the values η = 5.0 and η = 70.0, after 1
and 10 iterations. The energy-dependence is severely reduced at η = 70.0.
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Figure 6.4: Real and imaginary parts of the matrix elements 〈0s 1
2

0s 1
2
|r|0s 1

2
1s 1

2
〉0

and 〈0p 3
2

0p 3
2
|R|0p 3

2
0p 3

2
〉0 generated by a free propagator calculation within five ma-

jor oscillator shells at �Ω = 24.0 MeV for the values η = 5.0 and η = 70.0, after 1 and
10 iterations. The structures are quenched dramatically at η = 70.0, leaving almost
energy-independent interaction matrix elements.
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Figure 6.5: Real and imaginary parts of the matrix elements 〈0s 1
2

0s 1
2
|L|0s 1

2
1s 1

2
〉0

and 〈0p 3
2

0p 3
2
|L|0p 3

2
0p 3

2
〉0 generated by a matrix inversion approximation propagator

calculation within five major oscillator shells at �Ω = 24.0 MeV for the values η = 5.0
and η = 30.0, after 1 and 10 iterations. The matrix inversion scheme retains far more
of the energy-dependence than the free propagator scheme.
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Figure 6.6: Real and imaginary parts of the matrix elements 〈0s 1
2

0s 1
2
|r|0s 1

2
1s 1

2
〉0

and 〈0p 3
2

0p 3
2
|R|0p 3

2
0p 3

2
〉0 generated by a matrix inversion approximation propagator

calculation within five major oscillator shells at �Ω = 24.0 MeV for the values η = 5.0
and η = 30.0, after 1 and 10 iterations. The iterative procedure generates additional
structure to the matrix elements.
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6.1.4 Self energy

The pole structure of the self energy is considerably more complex in this
realistic case compared to the self energies of the simple model of the previous
chapter. We have chosen to mainly focus on the proton element 〈0s1

2 |Σ|0s1
2〉.

This is a hole state, and corresponds to a proton within the 4He nucleus.
In figure 6.7 we show 〈0s1

2 |Σ|0s1
2 〉 after the first iteration of an energy-

independent calculation within five major oscillator shells with the orbitals as
numbered in table 6.1. The calculation shown is for η = 0.0 at input energy
-200 MeV with �Ω = 14 MeV. The pole structure in this energy-independent
case is exclusively given by the pole structure of the Gpphh

0 propagator in the
second-order self energy, with the poles at negative energies stemming from the
propagation of two holes and those at positive energies being the propagation
of two particles. For reference, we have also shown the first order constant
contribution as a straight line.
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Figure 6.7: 〈0s 1
2
|Σ|0s 1

2
〉 of an energy-independent calculation within five major

oscillator shells and �Ω = 14 MeV at input energy -200 MeV for η = 0.0 after the
first iteration and for η = 5.0 after 1 and 10 iterations. The inset shows has a narrower
y range, to show the structure of the η = 5.0 calculation in more detail.
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In this figure we have also included the effects of adding the imaginary
component η in an energy-independent calculation, still after just one iter-
ation. The quenching effect is rather large already at η = 5.0, the lowest
values at which an energy-independent calculation converges. The last graph
in figure 6.7 shows the result after 10 iterations of a full Parquet calculation.
We see that additional structure has emerged, especially for negative energies.
Further iterations do not change the graph perceptively on this scale.
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Figure 6.8: 〈0s 1
2
|Σ|0s 1

2
〉 of an energy-independent calculation within five major

oscillator shells at input energy -200 MeV for η = 0.0 after the first iteration and
for η = 5.0 after 1 and 10 iterations. This closeup shows how additional structure
emerges during the iterative process.

A closeup on the energy region between -75 MeV and -25 MeV is shown
in figure 6.8. The structure after 10 iterations more closely resembles the
η = 0.0 case than after one iteration only. This emergent structure indicates
that the self-consistency procedure alleviates some of the effects of introducing
the unphysical imaginary components. As shown in figure 6.9, the value of
the imaginary part of Σ is of the same order as the real part. The deviations
from zero are largest at the energies where the real part show signs of having
poles, as expected.



6.1. UPS APPROXIMATION 125

-30

-20

-10

0

10

20

30

-100 -50 0 50 100

S
el

f
E

n
er

gy
Σ

[M
eV

]

Energy [MeV]

Re Σ
Im Σ

Figure 6.9: Real and imaginary components of 〈0s 1
2
|Σ|0s 1

2
〉 of an energy-independent

calculation within five major oscillator shells at input energy -200 MeV for for η = 5.0
after 10 iterations. The imaginary part mirrors the structure of the real part.

Selected matrix elements of Σ are shown in figure 6.10, for an energy-
independent calculation with η = 5.0 within five major oscillator shells at
input energy Ein = −200 MeV after 10 iterations. The first-order contri-
butions are also shown. We see that the general structure of all the matrix
elements are the same. This reflects that in the energy-independent scheme
the poles are exclusively determined by the poles of the propagator. The
overall position of the different elements is mainly determined by the first-
order contribution. The off-diagonal elements 〈0s1

2 |Σ|1s1
2〉 and 〈1s1

2 |Σ|0s1
2 〉

(〈1|Σ|11〉 and 〈11|Σ|1〉 in the figure) are equal.
The differences between the graphs for different starting energies are min-

imal. In figure 6.11 we show the results from energy-independent calculations
with η = 5.0,and �Ω = 24 MeV within five major oscillator shells at starting
energies Ein = −250 MeV , −200 MeV and −150 MeV after 10 iterations.
Comparing these graphs with the corresponding calculation at a starting en-
ergy −200 MeV at �Ω = 14 MeV in figure 6.7, we can also see the effect of
varying the oscillator frequency �Ω. Larger frequency means larger spacing
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Figure 6.10: Several matrix elements of an energy-independent calculation within
five major oscillator shells with the orbitals as numbered in table 6.1 at input energy
-200 MeV for η = 5.0 after 10 iterations. The first order contributions are drawn as
straight lines. The overall position of the different elements are determined by the
first order energies.

between the energy levels, and this moves the poles of two propagating holes
or two propagating particles (and hence also the poles of Σ) further away from
each other.

The results for the energy-dependent calculations show that most of the
structure of the self energy is unfortunately lost at the values of η necessary
to achieve convergence. Figure 6.12 shows the results of energy-dependent
calculations using free two-particle propagator after the first iteration for η =
5.0, 30.0 and 65.0. Comparing the η = 5.0 calculation with the corresponding
energy-independent calculation given in figure 6.7, we see that including pole
terms stemming from the interaction Γ in addition to the existing structure
changes the energy dependence of the self energy substantially, as could be
expected. This is confirmed when looking at the first iteration of calculations
for lower η (for which neither approximation converges, and thus no iterative
results are available).

The two groups of structures stemming from the two-hole-one-particle and
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Figure 6.11: 〈0s 1
2
|Σ|0s 1

2
〉 for calculations with starting energies -250 MeV, -200 MeV

and -150 MeV, within five major oscillator shells at �Ω = 24 MeV after 10 iterations.
Note the different placement of the poles relative to the graph in figure 6.7.

two-particle-one-hole propagation are not seen very clearly. The observed
energy dependence is reminiscent of the energy-dependent structure seen in the
simple model discussed in chapter 5, figure 5.23. We observe that for η = 65.0,
the value at which good converged results can be obtained for the free two-
particle propagator case, there are no traces left of the pole structure. The
graph is very smooth, and in the limit of very large η values, Σ(Ω) approaches
the energy-independent, first-order value as expected.

The matrix inversion approximation two-particle propagator calculations
converge at about η = 30.0, and thus a comparison of the performance of the
free two-particle propagator after the first iteration and the matrix inversion
approximation two-particle propagator after 1 and 10 iterations at this value
of η is provided in figure 6.13. The differences are not very large, showing the
same smooth energy dependence with very little influence of the pole structure
of either propagators or interaction.
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Figure 6.12: 〈0s 1
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|Σ|0s 1

2
〉 of an energy-dependent free propagator structure calcu-

lation within five major oscillator shells for η = 5.0, 30.0 and 65.0 after the first
iteration. At η = 65, where convergence is achieved, almost all structure is lost.
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Figure 6.13: 〈0s 1
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〉 of an energy-dependent calculation within five major os-

cillator shells for η =30.0 for a free two-particle propagator calculation after the first
iteration and for the matrix inversion approximation two-particle propagator calcu-
lations after 1 and 10 iterations. The differences are not substantial.
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6.1.5 Ground state energy from energy-independent
calculations

As discussed in the section on the two energy schemes, there are no difference
between the free propagator approach and the matrix inversion scheme in the
energy-independent calculations. All result shown in this section are generated
according to the free propagator scheme.

In figure 6.14 we show both imaginary and real components for different η
values as a function of oscillator frequency �Ω for a calculation within six ma-
jor oscillator shells. As a result of introducing η, the ground state energy also
has an (unphysical) imaginary component. Within the energy-independent
scheme, the η dependence of the real part of the ground state energy is almost
linear. The imaginary parts all have almost the same size, regardless of the η
value. The variation with �Ω is not very large, with a minimal value around
�Ω = 22 MeV for all η values.

The dependence on the starting energy is shown in figure 6.15, for a cal-
culation within six major harmonic oscillator shells, for η=5.0 and η = 70.0.
For starting energies above ∼-75 MeV, the results are unreliable for the lowest
value of η. As seen, a lower starting energy lowers the ground state energy.
This can be understood if we compare with an L = R = 0 calculation (no
Parquet is performed), which has even lower energy. Starting energies further
away from the real range of starting energies (the energy of two holes propa-
gating would typically lie about −20 MeV to −30 MeV) show less impact of
including the full interaction Γ.

For starting energies above ∼-75 MeV, the value of η has to be increased
to about 70-80 to get converged results. In the lower panel of figure 6.15 we
see that the average position of the graphs decrease for Ein > −100 MeV .
The positive starting energies have rather low ground state energies. Thus it
is not unlikely that the graph at realistic starting energies will lie somewhere
in the middle between the two sets of graphs. Even if that is the case for
η = 70, the situation might change in the physical limit η→0. Assuming a
linear η-dependence, it is possible to extrapolate to η = 0.0 in each case, but
as these η-values are large there is no guarantee that the assumed dependence
is correct.
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Figure 6.14: Real (upper panel) and imaginary (lower panel) parts of the energy
for different η for a calculation within six major oscillator shells at starting energy of
−200 MeV. The η dependence is almost linear.
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calculation, while the ground state energy increases as the starting energy increases.
In the lower panel, the negative starting energies give less ground state energy than
the graphs for the positive starting energies.
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We have also investigated the convergence of this approximation scheme
with respect to the model space, as shown in figure 6.16. We have plotted
extrapolated values within 5 − 8 major oscillator shells for calculations with
Ein = −200 MeV. The results show reasonable convergence, although there is
still some dependence on the model space. There is also a certain dependence
on �Ω, with a minimum which seems to be shifted towards smaller �Ω as the
model space increases. The ground state energy found in this approximation
scheme is probably lower than the experimental value of −28.3 MeV, but
larger model spaces are needed to ascertain any reliable value.
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Figure 6.16: Results within 5,6,7 and 8 major oscillator shells at η = 5 and Ein =
−200 MeV. There is still some dependence on the model space.

The differences between full Parquet calculations and Parquet with only
ladder terms in this approach are small. The convergence properties of the
ladder only approximation is somewhat better than the full Parquet, probably
due to the reduced number of poles in Γ. The binding energy is somewhat
smaller.



6.1. UPS APPROXIMATION 133

6.1.6 Ground state energy from energy-dependent
calculations

Free propagator results

The convergence properties of the free propagator calculations were rather
poor, as only calculations with values of η > 60 converge. In figure 6.17 we
show the real and imaginary parts of the ground state energy for a calculation
within six major oscillator shells as a function of �Ω for several values of η
above 70. The η dependence is generally as in the energy-independent case,
reducing η gives a lower ground state energy. However, at larger �Ω, the
graphs come very close. This indicates that the solutions found for the higher
�Ω becomes increasingly closer to a mean-field type solution with energy-
independent Σ due to the reduced resolution of the basis states when the
spacing between levels is larger.

The imaginary part of the ground state energy in these calculations seems
to be to a large extent independent of η and showing stronger dependence on
the harmonic oscillator frequency than the energy-independent calculations.
The imaginary part is shown in the lower panel of figure 6.17. We also see
that the imaginary parts increase with increasing �Ω, consistent with the
observation that the higher �Ω are more unstable and needs more iterations
for convergence.

In the inset of the upper panel of figure 6.17 we compare the energy-
dependent graph for η = 70 with the corresponding graph from an energy-
independent calculation with Ein = −200 MeV. The differences are not very
substantial, but the energy-dependent graph has a more pronounced curvature
and the minimum lies at a slightly smaller �Ω value. The energy-independent
graph is calculated at the standard starting energy Ein = −200 MeV. Com-
paring with the graphs in the lower panel of figure 6.15, we see that the values
for the ground state energy as found by the energy-dependent scheme falls
well within the range of possible values found by the energy-independent cal-
culations.

In figure 6.18 we show the ground state energy for calculations within 5-7
major oscillator shells as a function of the oscillator frequency �Ω for a fixed
value of η=70. The results has the same features as in the energy-independent
case, with the graphs for six and seven major shells very close and having a
minimum at �Ω about 22 MeV. A calculation at eight major shells is needed
to ascertain whether the differences between seven and eight shells are present
also in this case.
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Figure 6.17: The real (upper panel) and imaginary (lower panel) parts of the ground
state energy as function of �Ω for an energy-dependent calculation within six major
shells following the free propagator scheme. The inset is a comparison between the
energy-dependent and a corresponding energy-independent calculation.
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Based on the evidence of figure 6.17, we can hardly assume a linear η
dependence (at least not for large �Ω), and it is difficult to perform an ex-
trapolation with physical relevance based on the data sets. Based on the
discussion on the performance of the UPS approximation in the simple model
of chapter 5, we know that we probably cannot use the solutions found at
large η to obtain meaningful results in the η→0 limit.
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Figure 6.18: Calculation within five, six and seven major oscillator shells as a func-
tion of �Ω for η = 70. The differences between six and seven major shells are small.

Results for ladder calculations indicate that this approximation reduces
the binding energy. In figure 6.19 we show results for a calculation within six
major shells as a function of �Ω for several values of η above 60. Comparing
with figure 6.17, the binding energy is reduced. Also, the minimum seems
to be shifted slightly towards smaller �Ω. The convergence properties with
respect to η are somewhat better, as could be expected since there are fewer
poles involved.
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Figure 6.19: Calculation with only ladder terms included performed within six major
shells for different values of η. The real part is shown in the upper panel and the
imaginary in the lower panel. The differences between different η values are rather
small. The ground state energy shows smaller binding energy than the corresponding
full Parquet calculations given in figure 6.17.
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The imaginary part of the ground state energy has a behaviour more simi-
lar to the energy-independent case, as shown in the lower panel of figure 6.19.
Generally, the imaginary component increase for increasing values of η, but at
larger �Ω this pattern is broken. The numerical values are of the same order
as for the full Parquet calculations.

6.1.6.1 Result for Propagator found by Matrix Inversion

Approximation

The results on the convergence properties, interaction matrix elements and the
self energy found by applying the matrix inversion procedure indicates that
this approach gives better convergence and better resolution with respect to
the energy for the interaction matrix elements and the self energy. Unfortu-
nately, this approximation gives severe overbinding. In figure 6.20 calculations
for η = 30 within 5,6 and 7 major oscillator shells are shown. The ground
state energy in a fully converged model space and at η = 0 would certainly lie
below −33 MeV.
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Figure 6.20: Results within five, six and seven major oscillator shells with propagator
calculated according to the matrix inversion scheme, for calculations with η = 30. The
binding energy found in this approximation scheme is too large.
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6.2 Results for fixed-energy Dyson equation

(FED) approximation

In this section we present results for the fixed-energy Dyson equation (FED)
approximation discussed in section 4.5.2. This approximation assumes the
form of the single-particle propagator given in equation (4.40). Thus the ex-
pressions for the free two-particle propagators are given by equation (4.17)

for the particle-particle-hole-hole propagator Gpphh
0 and by equation (4.24) for

the particle-hole propagator Gph
0 . We still keep the approximation of solv-

ing the Dyson equation with a self-energy Σ calculated at a fixed energy,
however, ensuring that the number of eigenvalues is the same as the total
number of orbitals. First, we show results for the first-order approximation
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Figure 6.21: Standard Hartree-Fock calculation for increasing model spaces, from
six to nine major oscillator shells. The convergence is very good, and with decreasing
dependence on �Ω as the model space increases.

in figure 6.21. The self-consistency is performed using only the first-order,
energy-independent term, as described in section 3.3.1. The self energy has
the form

Σ(1, 2)HF = −
∑

αβ<F

〈1α|V |2β〉zαβ . (6.1)
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Here zαβ is the amplitude of the single-particle propagator at the first-order

energy εf.o.
αβ . This is the conventional Hartree-Fock approximation, and the

results agree with similar calculations performed within a variational scheme.
The convergence is very good with respect to the model space, and as it
is a first-order approximation without any two-time propagators, η is not
needed. The ground state energy is calculated from the sum rule given in
equation (3.29).

The FED calculations include an energy-dependent term to the self energy
in addition to the above, giving the expression for the self energy given in
equation 4.38, repeated here for easy reference:

Σ(1, 2;ω) = −
∑

αβ<F

〈1α|V |2β〉zα,β

+
1

2

∑
αν>F

∑
βγδμ

〈1α|V |βγ〉〈βγ|Gpphh
0 (ω + εf.o.

να )|δμ〉〈δμ|Γ(ω + εf.o.
να )|2ν〉zνα

+
1

2

∑
αν<F

∑
βγδμ

〈1α|V |βγ〉〈βγ|Gpphh
0 (ω + εf.o.

να )|δμ〉〈δμ|Γ(ω + εf.o.
να )|2ν〉zνα.

(6.2)

Based on the conclusions from the analysis of the simple model in chapter
5 and the unperturbed propagator structure (UPS) results above, we have
concentrated on the energy-independent scheme for the FED results, as we
expect this scheme to perform as least as good as or better than the more
resource-consuming energy-dependent scheme.
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6.2.1 Convergence with respect to η

For energy-independent calculations with fixed starting energy Ein, the FED
approximation generally need smaller η values than the UPS approximation.
Calculations within five major oscillator shells converge (very slowly) for η-
values as small as 0.5 for �Ω values around 20-24 MeV. The calculations
including six major shells converges for η values above 2, while η > 3 − 4 is
needed when seven major shells are included. All convergent solutions oscillate
with decreasing amplitudes, and the convergence is faster for larger η. This
is illustrated for the inclusion of six major shells case in figure 6.22, where
the difference En−En−1 between successive iterations is plotted in a log-scale
plot as a function of number of iterations.
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Figure 6.22: The difference En−En−1 between successive iterations as a function of
the number of iterations for an energy-independent calculation within six major shells
for �Ω = 20 MeV at Ein = −200 MeV with different values of η. The convergence
becomes gradually faster as η increases.
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6.2.2 Self energy

In this section, we refer the reader to the state scheme of table 6.1 for an
explanation of the state numbers.

From the discussion of the self energy in the simple model in chapter 5,
we expect the self energy to have more poles in the FED approximation than
in the UPS approximation. This is indeed the case, the pole structure of the
〈0s1

2 |Σ|0s1
2 〉 element in the η = 0 calculation shown in figure 6.23 have a very

complex structure. Adding the η-factor quickly dampens the poles, as in the
η = 1 graph in figure 6.23. This is the reason why the FED results require
smaller η values than the UPS results to converge.
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Figure 6.23: The matrix element 〈0s 1
2
|Σ|0s 1

2
〉 after the first iteration for energy-

independent calculations with η = 0 and η = 1 within six major shells for �Ω =
22 MeV at Ein = −200 MeV. The complex pole structure of the η = 0 graph is
quenched substantially by adding the imaginary component.

The effect of the self-consistency procedure is seen as a further quenching
of most of the structure. However, the development patterns are not similar
for all values of η, as can be seen in figure 6.25, where the upper panel show
the self energy after 1 iteration, the lower after 30 iterations, in both cases for
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Figure 6.24: The imaginary component of the matrix element 〈0s 1
2
|Σ|0s 1

2
〉 for

energy-independent calculations with η = 1, 3 and 5 within six major shells for
�Ω = 22 MeV at Ein = −200 MeV after 30 iterations. The pole structure for
the η = 3 graph is clearly seen. The η = 1 and η = 5 graphs have reversed signs.

η = 1, 3 and 5. We see that around η = 3 the self energy of the lowest states
has a pole structure for energies below −35 MeV, while the graph for higher
energies is smooth and not very different from the graphs of other η values.
The imaginary part of the self energies shown in figure 6.24 reflect the pole
structure seen in the real part of the matrix elements. The η = 1 and η = 5
graphs have reversed signs, and have wider, lower peaks than the η = 3 graph.
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Figure 6.25: The matrix element 〈0s 1
2
|Σ|0s 1

2
〉 for energy-independent calculations

with η = 1, 3 and 5 within six major shells for �Ω = 22 MeV at Ein = −200 MeV.
The upper panel shows the self energies after the first iteration and the lower shows
the self energies after 30 iterations. In the case of η = 3, a pole structure has emerged,
but this is only weakly pronounced in the other two calculations.
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Number |nlj〉 η = 1 η = 2 η = 3 η = 5

1 p |0s1
2 〉 (-23.27,-1.684) (-23.21,-1.640) (-23.14,-1.600) (-23.01,-1.529)

2 n |0s1
2 〉 (-24.14,-1.682) (-24.08,-1.640) (-24.02,-1.600) (-23.89,-1.532)

3 p |0p3
2 〉 (2.027,-2.5422) (2.077,-2.5041) (2.132,-2.459) (2.245,-2.369)

4 n |0p3
2 〉 (0.991,-2.5794) (1.037,-2.5382) (1.089,-2.490) (1.197,-2.396)

5 p |0p1
2 〉 (5.280,-2.6070) (5.333,-2.5298) (5.390,-2.457) (5.507,-2.333)

6 n |0p1
2 〉 (4.455,-2.6417) (4.516,-3.8210) (4.657,-3.695) (4.870,-3.461)

7 p |0d5
2 〉 (7.904,-7.2897) (8.208,-7.1628) (8.489,-6.971) (8.956,-6.517)

8 n |0d5
2 〉 (7.052,-7.4349) (7.343,-7.2963) (7.619,-7.095) (8.088,-6.625)

9 p |0d3
2 〉 (11.06,-6.4667) (11.18,-6.3308) (11.33,-6.178) (11.63,-5.871)

10 n |0d3
2 〉 (9.652,-8.4767) (9.944,-8.0868) (10.17,-7.697) (10.49,-6.989)

11 p |1s1
2 〉 (4.349,-3.9416) (4.514,-2.5636) (4.575,-2.489) (4.697,-2.361)

12 n |1s1
2 〉 (3.491,-3.8204) (3.643,-3.7078) (3.771,-3.589) (3.967,-3.366)

13 p |0f 7
2〉 (16.22,-8.2392) (16.33,-7.9549) (16.44,-7.687) (16.66,-7.217)

14 n |0f 7
2〉 (14.50,-11.406) (14.81,-11.076) (15.07,-10.74) (15.51,-10.12)

15 p |0f 5
2〉 (21.23,-7.3497) (21.22,-7.2405) (21.22,-7.102) (21.26,-6.805)

16 n |0f 5
2〉 (17.66,-7.8416) (17.72,-7.6343) (17.80,-7.434) (18.00,-7.077)

17 p |1p3
2 〉 (10.17,-6.4793) (10.29,-6.3229) (10.43,-6.156) (10.72,-5.831)

18 n |1p3
2 〉 (8.910,-8.5187) (9.197,-8.1255) (9.420,-7.731) (9.728,-7.012)

19 p |1p1
2 〉 (15.53,-8.3050) (15.62,-8.0211) (15.72,-7.751) (15.93,-7.273)

20 n |1p1
2 〉 (13.57,-11.365) (13.87,-11.048) (14.13,-10.72) (14.55,-10.11)

21 p |0g 9
2 〉 (24.74,-5.0822) (24.80,-4.9318) (24.87,-4.772) (25.01,-4.464)

22 n |0g 9
2 〉 (23.98,-5.1644) (24.05,-5.0134) (24.12,-4.853) (24.26,-4.543)

23 p |0g 7
2 〉 (26.98,-5.7629) (27.05,-5.6003) (27.10,-5.422) (27.21,-5.071)

24 n |0g 7
2 〉 (26.82,-9.2926) (26.86,-9.1360) (26.91,-8.963) (27.05,-8.613)

25 p |1d5
2 〉 (22.18,-7.3909) (22.18,-7.2723) (22.19,-7.127) (22.24,-6.821)

26 n |1d5
2 〉 (21.53,-6.4465) (21.56,-6.2831) (21.60,-6.109) (21.71,-5.779)

27 p |1d3
2 〉 (26.18,-5.8580) (26.24,-5.6929) (26.30,-5.512) (26.41,-5.155)

28 n |1d3
2 〉 (25.75,-9.2668) (25.80,-9.1190) (25.86,-8.954) (26.00,-8.618)

29 p |2s1
2 〉 (20.57,-6.4353) (20.58,-6.2791) (20.62,-6.111) (20.72,-5.787)

30 n |2s1
2 〉 (16.90,-7.8899) (16.95,-7.6807) (17.02,-7.478) (17.20,-7.116)

Table 6.2: The energies of the 30 orbitals given in table 6.1 in energy-independent
calculations within six major shells for �Ω = 22 MeV at Ein = −200 MeV for
four different values of η. All numbers are in units of MeV. The labels p and n are
abbreviations for proton and neutron, respectively. The differences are not very large.
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Number |nlj〉 5 shells 6 shells 7 shells

1 p |0s1
2 〉 (-23.01,-1.529) (-26.05,-1.278) (-26.21,-0.778)

2 n |0s1
2 〉 (-23.89,-1.532) (-26.93,-1.281) (-27.09,-0.780)

3 p |0p3
2 〉 (2.245,-2.369) (0.272,-2.750) (-0.1778,-2.20)

4 n |0p3
2 〉 (1.197,-2.396) (-0.894,-2.698) (-1.332,-2.157)

5 p |0p1
2 〉 (5.507,-2.333) (4.811,-5.407) (3.537,-7.747)

6 n |0p1
2 〉 (4.870,-3.461) (3.774,-5.224) (2.976,-4.229)

7 p |0d5
2 〉 (8.956,-6.517) (9.667,-13.50) (8.944,-14.64)

8 n |0d5
2 〉 (8.088,-6.625) (8.498,-13.63) (7.805,-14.89)

9 p |0d3
2 〉 (11.63,-5.871) (15.24,-12.82) (14.10,-12.11)

10 n |0d3
2 〉 (10.49,-6.989) (14.41,-12.76) (13.35,-12.01)

Table 6.3: The energies of the 10 first orbitals given in table 6.1 in energy-
independent calculations within five six, and seven major shells for �Ω = 22 MeV
at Ein = −200 MeV for η = 5. All numbers are in units of MeV.

Poles in the self energy primarily stem from poles in the Gpphh
0 propagator,

and the poles of this propagator are determined by the energies of the single
particle states. Looking at the orbital energies in the different calculations
given in table 6.2, we see that the imaginary part is non-negligible and changes
little as η increase. Thus the poles in the Gpphh

0 propagator do not lie on the
real axis in our solutions, but have an imaginary component. The hole states
have imaginary components around -1.6 MeV. These would give a pole for the
two-hole-one-particle propagator with an imaginary part of around 3.2 MeV
(due to the approximation in the Dyson equation solution, the particle energy
in this calculation of the propagator is chosen to be the first order energy,
which is purely real). The imaginary component of the pole energy may be
surmised to be the reason why the η = 3 calculations have the pole structure
shown.

The pole structure at η = 3 has little impact on the self-consistency pro-
cedure or the ground state energy, as the first-order energy of the lowest state
at which Σ is calculated lies around -13 MeV. Such pronounced pole struc-
tures for higher η are unlikely as they must occur in the two-particle-one-hole
regime of the self energy where the sum over possible states in the propaga-
tor is much larger. The development of the ten first orbitals with increasing
model space is given in table 6.3. Generally, the orbital lower-energy orbital
energies decrease with increasing model space. The higher-lying states like
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the 0d3
2 orbitals in the table show more fluctuations and less clear trends.

The relevant experimental values for the lowest orbitals are the proton and
neutron separation energies, the higher cannot be expected to correspond to
definite physical states. From the Table of Isotopes we find that the proton
separation energy for 4He is 19.81 MeV, corresponding to an orbital energy of
−19.81 MeV. Compared with the ∼ −26 MeV from our table 6.3, our method
gives too strong binding. This overbinding trend is general for all lower or-
bitals. For example is the neutron 0p3

2 orbital in 5He unbound (this nucleus is
unstable), while we find a negative energy for this orbital, indicating a bound
state.
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Figure 6.26: All 59 non-zero matrix elements of the self energy found after 30
iterations for an energy-independent calculation with η = 1 within six major shells
for �Ω = 22 MeV at Ein = −200 MeV. The two lowest self energy matrix elements
correspond to the diagonal elements of the proton and neutron hole states 0s 1

2
. These

are well separated from the rest of the matrix elements.

To give an impression of the general structure of all the matrix elements
of the self energy, we have shown all 59 non-zero elements in figure 6.26.
This is the self energy found after 30 iterations in an energy-independent
calculation with η = 1 within six major shells for �Ω = 22 MeV at Ein =
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−200 MeV. The two lowest self energy matrix elements correspond to the
diagonal elements of the proton and neutron hole states 0s1

2 . These are well
separated from the rest of the matrix elements. The matrix elements with low
self-energy values (corresponding to hole states and low-lying particle states)
mainly show structure at negative energies, while the elements with higher self
energy values are mostly featureless. All elements change in the range of 0-50
MeV input energy, most of them increase. The self energy matrix elements
with values around 0 are the off-diagonal elements, while the elements at
higher values are mostly diagonal elements. Some selected individual elements
are displayed in figure 6.27, for an energy-independent calculation at η = 2
within six major shells for �Ω = 22 MeV at Ein = −200 MeV. With this
value of η, the pole structure is easily seen, but it does not dominate too
much to obscure the details. Elements that couple to the lowest states, even
those with comparatively high energy, as the proton state 2s1

2 (number 29 in
the figure), shows the influence of the pole, as does lower-energy states with
positive parity that do not couple directly, like the state 0d3

2 (number 9 in the
figure). Higher-lying states with positive parity and all negative-parity states,
like the proton states 0g 7

2 (number 23 in the figure) and 0p3
2 (number 3 in the

figure) show no traces of the poles. In the upper panel we see that the self
energy matrix is not symmetric, the element 〈0s1

2 |Σ|1s1
2〉 is not equal to the

element 〈1s1
2 |Σ|0s1

2 〉. We can also see that the pole is well-defined from the
fact that the influence is clearly seen in the proton 〈0s1

2 |Σ|0s1
2 〉 orbital, but is

less prominent in the corresponding neutron 〈1s1
2 |Σ|0s1

2〉 element.
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Figure 6.27: Some selected matrix elements for an energy-independent calculation at
η = 2 within six major shells for �Ω = 22 MeV at Ein = −200 MeV. The state labels
are the orbital numbers according to table 6.2. The influence of the pole structure is
only seen for states that couple directly to the hole states and positive parity states
with comparatively low energy.
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6.2.3 Spectral functions

The spectral functions in the FED approach results from the change of basis
associated with solving the Dyson equation in our approximate manner. This
shifts strength away from the pure single-particle orbitals and gives some
strength to the states coupling to the hole orbitals. The equation for the hole
spectral function was given in equation (4.41), repeated here for convenience:

Sh(α, ω) =
∑

k

|zk−
αα |2δ(ω − ε−k ). (6.3)

The sum over k is, due to our approximation, limited to the number of orbitals.
The energies ε−k are then the orbital energies. Furthermore, only states coupled
to hole states affects the hole spectral function. For calculations within five
major oscillator shells, there are two such coupling states for each hole state.
Thus we get a hole spectral function with three spikes, as in figure 6.28. This
is generated from an energy-independent calculation with η = 1 within five
major shells for �Ω = 22 MeV at Ein = −200 MeV. As expected, most of the
strength is still conserved in the hole states, even after 30 iterations, which
shows a depletion of about 0.1. The energies of the states are shifted towards
lower energies. This is an effect stemming from the tendency of the self-
consistency procedure to enhances the interaction matrix elements coupling
to the hole states. The effect makes the system more tightly bound and is
well-known from standard Hartree-Fock calculations.

In the lower panel we show the four higher-lying orbitals in closer detail,
and we see how the self-consistency procedure increase the energy and enhance
the strength. This is also in accord with the expected damping of interaction
matrix elements coupling to particle states.
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Figure 6.28: Spectral function for a calculation with η = 1 after the first and after
30 iterations within five major oscillator shells. The lower panel shows a close-up on
the higher-energy states. The numbers are according to table 6.2, with 1, 11 and 29
denoting proton 0s 1

2
,1s 1

2
and 2s 1

2
orbitals, respectively. The numbers 2,12 and 30

are the corresponding neutron orbitals. The depletion of the hole states is about 0.1.
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6.2.4 Ground state energy

The spread in values between different η values are much less than for the un-
perturbed propagator structure approximation. This is seen from figure 6.29,
where we show real and imaginary components of the ground state energy
for a calculation within six major oscillator shells with a starting energy of
-200 MeV. Compared to the results for the unperturbed propagator structure
(UPS) approximation, the curve as a function of �Ω is somewhat flatter, and
the calculation gives considerably less binding energies, with a minimum at
about �Ω = 18 − 20 MeV.

The results are very close near the minimum of �Ω = 18 − 22 MeV for
small values of η. At �Ω = 20 MeV the data points for η = 5 and η = 7 have
exchanged their usual order, η = 7 has a lower value than η = 5. Both points
are well converged, as can be seen from the convergence graphs in figure 6.22.
This closeness and occasional reversion of graphs for different η values is also
seen for the calculations within seven major oscillator shells.

The imaginary parts of the ground state energy show a a quite different
behaviour than in the UPS approximation, not increasing regularly with η,
and being larger at smaller �Ω values. Around �Ω = 20 MeV we see that the
imaginary part have a similar value for all η values. The dependence on the
starting energy is shown in figure 6.30, and for comparison we include also
the result of a calculation with L = R = 0. The general trends are the same
as in the unperturbed approximation propagator scheme, with lower ground
state energy for lower values of the starting energy, with the L = R = 0 case
as the limiting case. The same trend as for the UPS dependence is seen for
positive Ein: η has to be substantially increased (to about 60 in the case of a
calculation within five major shells), and the ground state energy found then
is lower than the graphs for large negative values of Ein. The development
as the model space increases from 5 to 7 major oscillator shells is shown in
figure 6.31. The graph for 7 major shells contains some slightly unconverged
values at �Ω = 14 MeV and �Ω = 16 MeV, but the remaining oscillations
have amplitudes of less than 0.5 MeV. When 7 major shells are included, we
see that the minimum is further shifted towards smaller �Ω. The graphs are
not as close as for the UPS case, and we cannot conclude with any certainty
that the calculations have converged with respect to model space.
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Figure 6.29: Real and imaginary parts of the energy for different η for a calculation
within six major shells at starting energy -200 MeV. The graphs for different η are
very close.
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Figure 6.30: Calculations for different starting energies in a calculation with η = 5
including six major oscillator shells. Results for L = R = 0 are shown for comparison.
The ground state energies becomes less as Ein increases.
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Figure 6.31: Calculations for 5,6 and 7 major oscillator shells with η = 5 at starting
energy -200 MeV. The ground state energy has not convincingly converged as the
model space increases within the model spaces given here.
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6.3 Summary of the 4He results

Based on the results from the previous chapter, we investigated both the
energy-independent and the energy-dependent scheme within the UPS ap-
proximation. We knew that the pairing component of the interaction in nuclei
generally dominates, favouring the energy-dependent scheme, but also that the
pair-breaking component is important. The results of section 6.1 clearly show
that the number of poles generated by the 4He interaction is large enough
to destabilize the energy-dependent scheme. Generally, η values as large as
70-80 are needed for convergence. The self energy in these calculations has
lost almost all structure, as the graphs in figure 6.12 show.

We then tried to improve the convergence properties with respect to η by
employing the matrix inversion scheme described in section 4.3.2. This was
a success insofar as the convergence and the details of the self energy and
interaction matrix element structure were concerned, but the ground state
energy became far too low.

Thus we conclude that the most applicable scheme is the energy-independent
scheme. This converges for calculations with η values small enough to preserve
important parts of the self energy structure. The drawbacks of the scheme are
primarily the dependence on the starting energy Ein and the knowledge that
we loose the energy-dependence of the generated interaction Γ. The effect of
missing the pole structure in Γ will certainly influence the final result, but any
quantitative assessment is difficult.

The FED approximation scheme results are exclusively generated within
the energy-independent scheme. The larger number of poles generated by this
approach leads to a larger quenching of the pole structures for a given η, re-
flected in the fact that smaller η values are needed to obtain convergence than
in the UPS scheme. The η dependence is less straight-forward. Rather than
the almost linear dependence in the UPS case, the FED results for different η
values yield very small differences in ground state energy at �Ω values close
to the observed minimum. Also the self energies, the single-particle energies
and the spectral functions generated for different η values show little variance
with η. The reason for this behaviour is not entirely certain, but it might
indicate that the solution we find is a stable minimum in the space of possible
solutions to the iterative procedure. The closeness of this solution to the real
solution is difficult to determine.

This solution has two well-defined hole states with complex energies. The
effect is clearly seen in the self energy graphs, where a pole structure develops
for negative energies around −35 MeV for η values around 3, corresponding
to the propagation of a two-hole-one-particle state. The spectral function for
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these hole states has a strength around 0.9.
The self energy matrix elements found after the first iterations in calcula-

tions with η = 0 vary fast with energy. This poses numerical difficulties for
solving the Dyson equation, but the much more well-behaved self energy ma-
trix elements obtained with η > 0 ought to improve the stability and reliability
considerably.





7 Conclusions and future work

The main motivation for the work presented in this thesis has been to inves-
tigate the stability and reliability of an actual implementation of the Parquet
summation method and to establish the potential usefulness of this method as
an ab initio method for nuclear structure calculations. The results so far are
encouraging, albeit with some drawbacks concerning the limitations imposed
by the numerical instabilities associated with the poles in the propagators.

The pole instabilities are handled by introducing an imaginary parameter
iη into the calculation, which dampens out the divergences in the two-time
propagators in exchange for an imaginary component of the calculated entities.
To obtain physical results, it is necessary to extrapolate to η = 0. One of our
main foci has been to study the impact of this η parameter on the ground
state energy, the self energy and the spectral function, and to investigate into
the stability of our solution as η is varied.

We have implemented four schemes of the Parquet self-consistency scheme,
as summarized in section 4.5, with varying degrees of approximations. The
largest impact is made by our approximate solution of the Dyson equation,
which we have simplified from a non-linear eigenvalue equation to a normal
linear eigenvalue equation by choosing the first-order energies as basis for
the energy at which the self energy is calculated, rather than at the energy
eigenvalue. The consequence is that the single-particle propagator has a fixed
number of poles (equal to the number of orbitals).

The energy-dependence of the interaction operator Γ has been handled
in two ways, one in which we choose a given so-called starting energy Ein,
thereby introducing an extra energy dependence in our results, and one in
which we have calculated Γ on a fixed, real grid of energies and interpolated
in the calculation of the self energy.

We have investigated the differences between choosing an approximate
single-particle propagator having the structure of the unperturbed propaga-
tor, giving what we have termed the unperturbed propagator structure (UPS)
approximation, and the correct expression. However, as we still retain our ap-
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proximate method of solving the Dyson equation, we have termed the scheme
employing the correct expression the fixed-energy Dyson equation (FED) ap-
proximation.

The first part of our results, given in chapter 5, concerns a simplified model
of the nucleus, a model with a constant spacing between single-particle levels
and particles interacting via a constant interaction. We have looked at two
schemes of the interaction, one in which only pair-excitations are allowed, and
one with a pair-breaking term the same size as the pair-conserving term. In
both cases we have investigated the stability with respect to η when varying
different parameters, and compared the different approximation schemes to
the exact solution found by matrix diagonalization.

The main conclusion of our study of the Parquet method applied to our
simple model is that it is only applicable when the interaction strength rather
small compared to the level spacing. The fixed-energy Dyson equation (FED)
approximation does consistently better compared with the UPS approxima-
tion, but both methods fail to find solutions close to the exact solution as
the number of levels and particles increase. The energy-dependent scheme is
closer to the exact solution for small systems where the number of poles are
limited, but as the number of poles in both self energy and generated inter-
action Γ increase when the system size increase, this solution scheme needs
large values of η to converge. Then too many details of the pole structure
are lost, and the solutions found by this scheme are further removed from the
exact solution than the energy-independent solution.

In chapter 6 we investigated the performance of our schemes of the Parquet
self-consistency scheme in the more realistic case of the 4He nucleus. All results
have been generated using a Vlowk potential with cutoff 2.2 fm−1 based on the
Argonne V18 potential. The results confirm the findings from the simple model,
establishing the energy-independent FED scheme as the currently overall best
scheme. This retains the pole structure of the self energy to a larger degree
than the other schemes, and have altogether best convergence properties with
respect to η.

The ground state energy results are within a reasonable range of the ex-
perimental value of 28.3 MeV, but there are several reasons why a definite
value as ’the’ ground state energy can not be produced at present. Firstly,
the calculations have not been performed in large enough model spaces to be
certain of proper convergence. Secondly, the limit η→0 must be found by
extrapolation, which is difficult because the exact dependence on this param-
eter is unknown. Finally, the energy-independent approach has a dependence
on the starting energy Ein, and as this does not correspond to a well-defined
physical quantity there is no a priori natural choice of value for this energy.
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However, the main conclusion is that the Parquet method can be imple-
mented and give reasonable results which seems on the right track to becoming
useful as an ab initio nuclear structure calculation method. It is easy to gener-
ate graphs for the self energy as a function of energy, and these can be used to
determine the degree to which the solution incorporates correlations beyond
a mean-field type solution. The spectral functions are easy to extract, as are
spectroscopic factors. The FED solutions for small η values have very stable
configurations changing little with η, perhaps an indication that the solutions
are close to a stable minimum is the solution space, which may or may not be
close to the solution when η→0. The numerical values for the ground state
energy are in the vicinity of the experimental results. However, we are not yet
at the level of precision needed to meet the current benchmark standard for
ab initio calculations of 4He ground state energy. For a Vlowk potential with
cutoff 1.9 fm−1 based on the Argonne V18 potential, a coupled-cluster calcula-
tion within 16 major oscillator shells gives a binding energy −29.18 MeV for
4He, while a Fadeev-Yakubovsky calculation gives −29.19(5) MeV [9].

The Parquet method certainly has the possibility for attaining a high level
of accuracy. The angular-momentum coupling schemes allow for huge re-
ductions in the model space, giving the possibility to perform much larger
calculations. All Goldstone ground state energy diagrams to fourth order
are included, a feat which in the coupled-cluster approach require inclusion
of excitation operators to the fourth order (implying a CCSDTQ calcula-
tion) [108]. Recently, converged results for the ground state energy of 4He [109]
within the self-consistent Green’s function framework employed by Barbieri
et.al.[104, 6, 24] have been presented. These results show that the required
level of precision to meet the current standard is possible within implemen-
tations of Green’s function based methods. The approach of Barbieri and co-
workers does not include as many pphh correlations as the Parquet method,
and is not as easy to improve systematically.

There are two primary directions for the immediate future work on the
Parquet method. Firstly, the implementation needs to be made parallel and
optimized to allow for larger model spaces. Due to the matrix multiplication
scheme, large matrices have to be stored, and thus a memory distribution
scheme must be developed. In addition, the FED approximation scheme re-
quires a large number of sums which, when parallellized, can substantially
reduce the computation time of each calculation. When these improvements
have been implemented, we expect to be able to not only ascertain the con-
vergence with respect to model space for the 4He case, but also to obtain
converged results for larger nuclei like 16O and 40Ca. Our study of the simple
model indicate that the errors of our results scale well with increasing particle
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number. It should also be possible to perform calculations on smaller systems
which are not doubly-magic.

The other concern is to solve the Dyson equation correctly. To do so on
the basis of the self energy at η = 0 is a numerically hazardous enterprise,
given the number of poles. The η parameter quickly dampens the structure,
giving a more well-behaved self energy, and the possibility of obtaining useful
solutions to the Dyson equation increases. If we are able to obtain stable
solutions, we will be able to find realistic spectral functions. Then we can
study the fragmentation of single-particle strength observed in nuclei and ex-
tract spectroscopic factors to be compared both to experiment and to results
obtained by other methods as e.g. the coupled-cluster method.

It is desirable to obtain a better precision level for the energy-dependent
calculations, as the inclusion of the poles in the interaction Γ certainly will
affect the results. In this respect, to implement a more correct approximation
to the equation for the energy-dependent part of the self energy might serve as
a starting point for a more thorough treatment of the poles in the interaction.

On a wider timescale, we want to develop the Parquet summation method
to include higher-body corrections in a consistent, controllable manner. The
basic framework for extending the Parquet equations to take three- and four-
body correlations into account exists [39], but there still remains work, espe-
cially on the anti-symmetry conditions for fermions, before this set of equations
are formulated in a way suited for implementation. However, there seems not
at the present to be any fundamentally new problems to be overcome relative
to the two-body case.

Ab initio approaches are in principle applicable to the whole nuclear chart,
although calculations of unstable nuclei pose interesting problems, as both
bound states, resonances and continuum states have important effects and
very large basis sets are necessary to describe the combined effects of all three
types. We want to study the performance of the Parquet method when applied
to weakly bound systems, both comparing to available data and predicting new
results where possible. Current phenomenological approaches are unreliable
with respect to predictive power away from the nuclei they are tuned to re-
produce, and comparing the relative merits of the different approaches will be
interesting.

Another interesting extension of the Parquet method is to investigate its
performance in nuclear matter calculations. Microscopic calculations in this
field have traditionally included ladder-type interactions, and comparing these
to calculations which also include particle-hole type of diagrams on an equal
footing could yield useful information on the reliability and accuracy of such
approaches. In a further perspective, the influence of medium effects on pair-
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ing characteristics in microscopic superfluidity calculations constitutes an ex-
tremely difficult problem.

To obtain better theoretical foundations for calculations of heavier nuclei,
it is crucial to develop an Ab initio-based Density Functional Theory. We
would like to investigate the possibility of using Parquet and Green’s func-
tions formalism as a basis for such a functional, to attain a systematically im-
provable DFT theory, obtaining a self-consistent framework that goes beyond
conventional mean-field approaches. Developing an energy density functional
for use in nuclear matter in parallel to one applicable to finite nuclei seems
instructional, as less symmetries are broken in infinite matter. This will be a
natural extension of the work on nuclear matter, and is made easier by the
similarities of nuclear matter and the electron gas, for which the DFT method
was first developed.
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[66] E. D. Jurgenson, P. Navrátil, and R. J. Furnstahl. Evolution of nuclear many-
body forces with the similarity renormalization group. Physical Review Letters,
103:082501, 2009.
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