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Summary

The present work was set to study materials, and in particular thermoelectric materials based
on first–principle calculations. Density functional theory was used to calculate the electronic
structure of skutterudites, Zintl compounds and black phosphorus. Transport properties can be
obtained experimentally, but routines for calculating these from first–principles have not been
fully developed. Thus, much effort was put into the development, implementation and testing
of routines that calculate transport properties based on the electronic structure. Electron transfer
analyses were also performed for selected skutterudites and Zintl compounds to explicitly inves-
tigate their bonds. The combination of experimental and theoretical studies is mutually beneficial
and wherever possible experimental data have been included to verify or further investigate the
electronic structure and transport properties.
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Preface
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The title of the thesis is “Density functional studies of the electronic structure and trans-
port properties of thermoelectric materials”, a title that mainly describes its contents. However,
even though this work is biased towards theory, focus incorporating experiments has been im-
portant for the published work. The author is a strong believer of the importance of an increased
collaboration between experiment and theory.

Several visits to the VASP group in Vienna were done, where we worked out and investi-
gated different ways of calculating the transport properties based on the VASP density functional
engine.
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Chapter 1

Introduction

Conflicts related both directly and indirectly to energy demands are escalating all over the world.
A primary concern for developing nations is to obtain long–term sustainable energy resources
with as little investment as possible. On the other hand, OECD nations are constantly seeking
continuity and increased harvest of established energy resources. Naturally, due to the shared
resources, this leads, and will lead to local and global conflicts. Environmental concerns are also
becoming more important due to increased emissions from fossil fuels, nuclear waste and local
havoc of natural habitats of animals and plants.

Today’s global energy consumption is estimated to be close to 500 quadrillion BTU (British
Thermal Unit) (see Fig. 1.1). Extrapolation surveys from Energy Information Administration
(EIA) [1] show that the world’s total energy demands are expected to soar by 44% by 2030 (see
Fig. 1.1), much due to economic growth in the developing nations. The OECD nations account
for the largest share of today’s energy consumption. However, as Fig. 1.1 indicates, this is about
to change due to the rapid growth of energy demand in the developing nations, in particular
China.

The dominating energy resource is still expected to be liquid (fossil fuels and bio fuels) and
it is increasing steadily each year. Coal and renewable energy resources increase the most. These
surveys are based on a relatively high fuel cost and thus any unforeseen change would likely yield
a different distribution among the energy resources. Even though the transport sector is highly
dependent on liquid fuels, we see from Fig. 1.2 that the future increase of energy consumption
is mostly due to demand for electricity, where the largest contributors are the Asian nations. It
is also interesting to note the projected distribution among the renewable energy resources in
Fig. 1.2, where the hydroelectricity now dominates, surpassed in 2030 by the rapid increase of
wind energy. The share of the other renewable energy resources are almost an order of magnitude
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Figure 1.1: The world’s energy consumption from 1980 to 2030. Top figure shows OECD and
non–OECD energy consumption. The total energy consumption is split into different energy
resources in the middle figure, while the lower figure shows a more detailed comparison of the
nations’ energy consumption. Data from International Energy Outlook 2009, EIA [1].
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Figure 1.2: The world’s net electricity generation from 1980 to 2030. Top figure compares
OECD, non–OECD electricity generation and the total energy consumption to the total electricity
generation. Middle figure splits the electricity generation into different continents, while the
lower figure gives estimates of the OECD Europe nations’ renewable electricity generation. Data
from International Energy Outlook 2009, EIA [1]
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Figure 1.3: United States electricity generation, transmission and energy loss. Figure from
Lawrence Livermore National Laboratory [2].

smaller.
Extensive research efforts have been put into traditional energy fields like nuclear, thermal

and water energy. In parallel there has been inclining interest in alternative resources, such
as solar, wind and ocean wave energy. Most of these energy fields are based on first stage
energy exploitation, where the base energy is available in nature. However, second stage energy
exploitation is also possible by collecting waste heat from a primary process and then convert
this to a given form of distributable energy. The energy loss of different processes is illustrated
in Fig. 1.3, where it is clear that over 50% of the total energy harvest potential is lost to waste
heat. The potential to exploit heat from factories, power plants, cars, tumble driers, electronic
circuits and so forth is thus astonishingly large.

Thermoelectricity is a particular interesting solid–state alternative for converting heat to elec-
tricity. Although it can be used on a primary energy source, it is thought to be even more useful
in a secondary stage to collect waste heat. Without the need of moving parts, the longevity and
adaptability are expected to be excellent. An additional benefit is flexibility, due to the dual na-
ture of the thermoelectric device, which by reversing the voltage can operate both as a heater
and a cooler. Simultaneously, waste heat conversion can be exploited in the same device. Unfor-
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tunately, the thermoelectric materials used in an assembled thermoelectric device are currently
too inefficient to compete with traditional heat conversion cycles. However, comprehensive im-
provements are expected once a more complete understanding of the physics and chemistry of
these materials is achieved.

Motivated by this, we in this work, try to develop a more solid footing for first–principle
calculations of materials and in particular, thermoelectric materials. We have tried to keep this
work consistent and in close collaboration with experiments and believe this is crucial to ob-
tain breakthroughs in this field. Readers are encouraged to consult the bibliography for more
extensive background information.
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Chapter 2

Thermoelectricity

Simply put, thermoelectricity relates thermal gradients and electrical currents in materials. Through
this relation it is possible to convert heat to electricity or use electricity for heating or cooling.

The basic principles of thermoelectricity was discovered two centuries ago, however, due to
the lack of understanding of the physical properties of materials it was not until later that sig-
nificant progress was done. During the 60’s and 70’s considerable theoretical and experimental
work was performed, but it was not before the energy debate was brought to the public during
the 90’s that the field experienced a rapid expansion of research activities.

Even though basic thermoelectric devices have been operating for decades, serving remote
lighthouses, unmanned spacecraft and local cooling, their current efficiency is too mediocre to
be a viable alternative for large scale heat conversion applications. For example, current state of
the art bulk materials have a figure–of–merit, the factor that determines their efficiency, that is
three to four times too low to compete with traditional refrigerator solutions [1]. However it is
believed that there is a large potential for optimization.

The main reason for thermoelectric research is due to its unique range of applicability, but in
addition, there is a wealth of exciting general physical phenomena governing these devices and
in particular the materials that are not yet fully understood. Hence, they also serve as excellent
platforms for solid–state research.

In this chapter we briefly cover the history, the basics and the future of thermoelectricity.
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2.1 Basic principles

2.1.1 Seebeck effect

What we today call the Seebeck effect was discovered in 1823 by Thomas Johann Seebeck.
He placed a compass needle close to two dissimilar metals in contact. While heating one of
the conductors the compass needle deflected and Seebeck correctly thought this was caused by
magnetic fields generated by the temperature difference. However, he quickly discovered through
Ampere’s law that it was a current that generated the magnetic field. He concluded that this
current was generated by the temperature difference between the two conductors. The Seebeck
coefficient α was then defined as the ratio between the induced voltage V and the temperature
difference ΔT ;

α =
V

ΔT
. (2.1)

2.1.2 Peltier effect

Based on the discoveries of Seebeck, the watchmaker Jean Charles Athanase Peltier detected a
complementary effect 12 years later. During an experiment he observed local heating when a
current was passed between two different conductors. He failed to explain the nature of this,
but used Seebeck’s discoveries to try to explain the phenomenon. It was not until 1838 that
Lenz discovered that heating and cooling in the junction between the two dissimilar metals was
dependent on the current direction. Similar to the Seebeck coefficient, the Peltier coefficient Π

was defined as the ratio between power generated at the metal junction Q and the passing current
I sent through the circuit;

Π =
Q

I
. (2.2)

2.1.3 Thomson effect

Additional insight was given when William Thomson (Lord Kelvin) discovered a relation be-
tween the Peltier and the Seebeck effect. He deduced that

Π = αT, (2.3)

where T is the temperature. In light of this he predicted a third thermoelectric effect, the Thom-
son effect, which relates the heating and cooling of a conductor in the presence of a temperature
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gradient.

2.1.4 Figure of merit

The figure–of–merit is considered the “goodness” factor of a thermoelectric material and its
dimensionless definition is

zT =
α2σ

κ
T, (2.4)

where σ and κ are the thermal and electrical conductivity, respectively. From this relation it
is apparent that to obtain a large zT value, we would need a large Seebeck coefficient, large
electrical conductivity and at the same time a low thermal conductivity. Beside mechanical
properties and other manufacturing aspects, the most important property of a thermoelectric
material is this zT value. It is common nomenclature to use a large Z for the device and a
small z for the material. Due to the importance of zT we will in Sec. 3.4 further discuss its
components in light of different electronic structures.

2.2 Thermoelectric device

To put thermoelectricity to practice a thermoelectric device is needed. Such device consists
of small thermocouples made of thermoelectric materials, preferably materials with the highest
possible zT in the operational temperature range. In addition, there are other factors limiting the
choice of materials, like durability and mechanical issues. For historical reasons these devices
are often called “Peltier elements”. The device is usually constructed of alternating n– and p–
type materials, electrically connected in series, while thermally in parallel. In Fig. 2.1 a sketch
of a simple one layer thermoelectric device is shown. These devices work on an external load
and generate electricity if a thermal gradient normal to the surface is present. The reverse effect
is possible if a current is passed through the device, thus generating a thermal gradient. This
gradient can then be utilized for heating or cooling.

2.3 Current and future status

2.3.1 Typical materials

To fabricate an efficient thermoelectric device, efficient thermoelectric materials is a prerequi-
site. Such materials are not strictly metallic, semiconducting or insulating. As a rule of thumb,
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Figure 2.1: A typical (and simple) construction of alternating n– and p–type thermoelectric ma-
terials to make a thermoelectric device. The individual parts are connected electrically in series
and thermally in parallel. Electrical connectors are soldered at the ends. Picture is made by
Michael Böttger, Basic and Applied Thermoelectric Initiative (BATE) [2], 2009.

highly doped semiconductors are preferred based on an acceptable balance between the Seebeck
coefficient and the electrical conductivity [3]. In Fig. 2.2 a simplified picture of the competing
Seebeck coefficient and the electrical and thermal conductivity are shown. However, it needs
to be stressed that this picture is based on simplified models [3]. We will later in this thesis,
in Sec. 3.4 discuss band structure properties that give a high zT value (or more specifically its
numerator). A comparison of the best bulk materials available today is given in Fig. 2.3, but we
would like to emphasize that other promising bulk materials exist as well, such as the AZn2Sb2

compounds (A is rare earth, see Paper IV), the β–Zn4Sb3 [4] compound and the La3Te4 [5]
compound to mention a few.

2.3.2 Current fields of application

The efficiency of existing materials is unfortunately too low for widespread applications. Com-
pression units (refrigerators, steam engines etc.) are more efficient and it is necessary to sig-
nificantly improve the zT value of the materials to make them a viable alternative for large
scale applications. In general it is believed that a zT greater than three (currently, the best bulk
materials have zT ∼ 1, see Fig. 2.3) would be enough to compete with current refrigerator appli-
cations [1]. However, even though today’s efficiency is low, there are areas of applications where
thermoelectric devices are (and have been) favourable. This is due to the longevity, ruggedness
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Figure 2.2: Simple overview of the competing processes that need to be overcome to obtain a
large figure–of–merit. Figure from Ref. [3]. Here, zT is the figure–of–merit, α is the Seebeck
coefficient, σ the electrical conductivity and κ the total thermal conductivity.

and low noise of the thermoelectric devices that are considered to be unsurpassed compared to
the traditional solutions. Below we give three examples of areas where thermoelectric devices
are currently used.

Radioisotope Thermoelectric Generator

The radioisotope thermoelectric generator (RTG) has been the best option for power generation
in outer space devices, such as the Apollo missions, Viking Mars landers, Pioneer 10 and 11,
and the Cassini spacecrafts to mention a few. The operational principle is simple, consisting of
a radioactive core (usually made of Pu238) encapsulated in a grid of thermoelectric devices. Due
to the low temperature in outer space, a temperature gradient is easily maintained between the
radioactive core and space. The simple construction quickly paid back in long–term reliability
in hostile deep space environments.

The use of radioactive components demands extremely robust and high temperature capable
thermoelectric materials, which unfortunately limits the choice of efficient materials. Lead tel-
luride (PbTe), telluride antimonide germanium and silver (TAGS) and silicon germanium (SiGe)
have been used on space missions [6]. A radioactive heater is illustrated in Fig. 2.4 which would
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(a) n–type (b) p–type

Figure 2.3: Material figure–of–merit, zT as a function of temperature for the best n– and p–type
bulk materials available today. Figures from Ref. [3].

be covered by thermoelectric modules and placed inside a space craft. Latest generations of SiGe
based RTGs show 8% efficiency with a power–to–weight ratio of 5.1 W/kg [6].

In addition to outer space applications, such devices are also used to power remote light
beacons and weather stations.

Temperature controlled seat elements

Increased demand for comfort in vehicles quickly introduced resistive heated seating into mod-
ern cars. This design is simple, but lacks the possibility of cooling in hot environments. To
provide comfort to the occupants, the automotive industry implemented heat ventilation and air
conditioning (HVAC) units. Such units control the air temperature of the whole volume of the
vehicle and is thus rather inefficient, and occupants seat and back area are still not cooled to
comfort temperatures. In addition, the cool–down or warm–up time for the HVAC systems is
often tens of minutes, failing to give immediate comfort temperatures. Some automotive com-
panies invented seating that circulated air from the HVAC system through the seating and back
area, helping the comfort problem, but not the efficiency problem. To help remedy the efficiency
problem, automotive companies started to investigate whether seat temperatures could be con-
trolled by a thermoelectric device. Amerigon was the first company to introduce such seats back
in 1999. Today, these seats (see Fig. 2.5) are standard equipment in many high–end vehicles.
The operational principle is still based on air circulating through a perforated seating and back
area, but the air is forced through an air–to–air thermoelectric cooler/heater, giving the occupants
better individual control of temperature and comfort. In addition, by controlling the seat tem-
perature, the HVAC can be downsized and a potential improvement in fuel economy is possible.
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Figure 2.4: Glowing radioisotope thermoelectric generator core. The core is then encapsulated
with thermoelectric devices and placed in the space craft. Picture from Jet Propulsion Labs (JPL),
NASA, USA.

Other applications of thermoelectric devices

In addition to the previous examples, niche applications of thermoelectric devices are widespread,
from simple portable coolers and localized electrical circuit cooling to sophisticated sensor tem-
perature control. However, due to the low efficiency these solutions are not implemented on a
large scale.

2.3.3 Future applications

If we manage to improve the efficiency and in addition reduce material cost and toxicity the
potential field of application for thermoelectric devices is extremely large. We will now briefly
list a few of the potential applications.

Combustion engine exhaust

The idea of retrieving some of the waste heat in the transport sector is relatively new. However,
the potential is enormous, with a few tens of kilowatts of expelled heat from small vehicles [6].
The main idea is to use the thermogenerated electricity to replace the alternator and thus decrease
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Figure 2.5: Climate controlled seating (CCS) from Amerigon. These seats use thermoelectric
elements to heat or cool the air that is circulated through perforated leather areas in the cushion
and seat back. Picture from Amerigon, USA.

the motor load to improve fuel economy. General Motors, BMW and Fiat have official programs
running. Prototypes from General Motors have shown that it is possible to decrease the total
fuel consumption by five percent [7]. Even though this number seems relatively small, there is
room for improvements both on the device engineering and the type of materials used. One of
the first prototypes made for a Chevrolet Suburban is shown in Fig. 2.6. Today they claim 750W
of output power [7] during highway driving.

Other potential applications

Due to the current lack of efficiency, application studies of thermoelectric devices have been
limited and their potential applications are only briefly mentioned in survey studies. Here we
list some applications that might benefit from thermoelectric devices once their efficiency is
improved;

• Three stage solar units. This idea is based on a three stage sandwich design made of
solar cells followed by thermoelectric elements and then a cooling stage with circulating
water. In this way, electricity is generated from both the solar cells and the thermoelectric
elements, while the facility is heated by the heated circulated water.

• Refrigerator and air conditioner. Thermoelectric elements would increase longevity and
reduce noise. Additional benefits are more compact design and better possibilities to tailor
designs to specific needs.
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Figure 2.6: A ten–year old exhaust thermoelectric prototype from General Motors. Picture from
General Motors, USA.

• Embedded heating and cooling. Localized cooling and heating are becoming increasingly
important for the semi–conductor industry. Embedded designs would increase stability
and operational temperature range. Electricity could potentially be harvested from local
temperature gradients.

• Large scale generation of electricity from industrial waste heat.

• Small scale generation of heat and heat conversion in housings.

• Blanket shields for fission (and maybe in the future fusion) plants using thermoelectric
devices to generate electricity from the expelled heat.

• Direct conversion of heat to electricity from furnaces operating a diverse selection of fuels.
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Chapter 3

Density functional theory studies of
thermoelectric materials

The core of this thesis is based on density functional theory studies of materials, in particular the
thermoelectric branch. Such studies are beneficial since perfect structures can be investigated.
This is of great importance due to the complexity of the thermoelectric materials. In addition,
once the computational resources permit, large scale simulations can be performed to assist in the
search for new and promising materials. However, at the same time, density functional studies
are burden by numerous accuracy, performance and general implementation problems.

We will thus devote the first two sections of this chapter to explain the idea and basic prin-
ciples behind density functional theory. At the same time we will touch important aspects that
lead to common density functional failures. Then we will move on to a section that covers elec-
tron transfer analysis and its use to investigate bonding. Finally, in the last two sections we first
develop a way to calculate the transport properties based on the semi–classical Boltzmann equa-
tion, and then investigate different band structures and their thermoelectric properties to highlight
band structure requirements for good thermoelectric performance.

3.1 Ab–initio solutions of the Schrödinger equation

Basically all non–relativistic quantum mechanical problems boil down to the solution of the
Schrödinger equation

H|Ψ〉 = E|Ψ〉, (3.1)
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where H, |Ψ〉 and E are the Hamiltonian operator, the eigenvectors (or wavefunctions) and the
eigenvalues (or energy levels), respectively. See Ref. [1] (Sec. 6.4) for Dirac notation. The
complexity of this equation is well hidden. It can be solved in numerous ways depending on the
wanted accuracy and possible ways of formulating the problem.

The exact (to numerical precision) diagonalization is the most direct (read brute force)
method to solve Eq. (3.1). However, as we shall see, such a formalism is not feasible for ma-
terials (or extended systems in general). These limitations are connected to the accuracy and
available computational resources. Nevertheless, it is important to understand its basics. We will
now briefly go through the brute force way of solving the Schrödinger equation. From Eq. (3.1)
we expand |Ψ〉 in the space set up by the basis vectors |β〉, such that

|Ψ〉 =
∑

β

〈β|Ψ〉|β〉. (3.2)

The eigenvectors |β〉, with quantum numbers β form a basis in the Hilbert space, see for example
Ref. [1] (Sec. 6.4) for details. In the Hilbert space they are orthonormal, thus

〈β′|β〉 = δβ′β. (3.3)

Inserting Eq. (3.2) into Eq. (3.1) gives

∑
β

H|β〉〈β|Ψ〉 =
∑

β

E|β〉〈β|Ψ〉, (3.4)

and multiplying from the left with 〈β′| yields

∑
β

〈β′|H|β〉〈β|Ψ〉 =
∑

β

Eδβ′β〈β|Ψ〉. (3.5)

Defining the coefficient Ψβ = 〈β|Ψ〉 gives

∑
β

〈β′|H|β〉Ψβ = EΨβ′ , (3.6)

which can be written as
H̃�Ψ = E�Ψ, (3.7)

where H̃ = 〈β′|H|β〉. To find the eigenvalues, we need to diagonalize the matrix H̃. In princi-
ple, the Hilbert space is infinite, so we should expand all vectors to infinity. Fortunately one can
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introduce a cutoff of the expansion. Such cutoffs are a crucial convergence parameter for exact
diagonalization methods. The diagonalization is usually done by the use of orthogonal transfor-
mations. Common procedures for this are the QR algorithm with implicit shifts, Householder
reduction and Lanczos algorithm. They are among the most effective methods for solving eigen-
problems. The derivation of these methods is outlined in Ref. [2] (Sec. 11.3) and [3] (Sec. 1.1 for
a short introduction). To solve the Schrödinger equation, a proper basis and Hamiltonian opera-
tor are needed. For many–particle interactions these are not trivial to formulate due to efficiency
and accuracy difficulties. Even though most of these difficulties can be controlled, there is an
additional fundamental problem with the exact diagonalization approach; the eigenvectors from
Eq. (3.1) contain all degrees of freedom. Hence, for a n particle system

〈x1x2 . . . xn|Ψ〉 = Ψ(x1, x2, . . . , xn), (3.8)

where xi = {�ri, �si}, the spatial coordinate vector �ri and spin vector �si for particle i. Such
eigenstates would require a huge parameter space. For the spatial part, the parameter space
scales as 3n. It is not uncommon in (even not very complex) materials to handle several hundred
particles. Hence, such a parameter space is unsolvable (regardless of method). We have to
introduce approximations.

3.2 Density functional theory

The idea behind density functional theory (DFT) is to reduce the parameter space. This is done
by posing the problem as a function of the particle density, not the spatial and spin coordinates.
Instead of handling a spatial 3n parameter space, we now have a three dimensional parameter
space (or six with spin degrees of freedom), which in principle is computationally constant in n.
In this section we will briefly cover the basics of DFT and touch a few topics that are important
for its practical applications.

3.2.1 Basics

The era of DFT started in 1964 when Hohenberg and Kohn published a paper about a possible
way of solving the interacting electron gas system [4]. We will in this section partly follow
this and the additional paper by Kohn and Sham [5]. Hohenberg and Kohn considered a set of
enclosed particles moving in an average background potential Vext(�r) and posed the following
two theorems
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Theorem 1. The external potential Vext(�r) is (to within a constant) a unique functional of the
electron density n(�r); since, in turn, Vext(�r) fixes the Hamiltonian H the many–particle ground
state Ψ is a functional of n(�r).

Proof. If we introduce a potential V ′
ext(�r) with ground state Ψ′ and assume this also yields the

electron density n(�r) an inconsistency appears. This is based on the fact that Ψ and Ψ′ should
solve the same Schrödinger equation as long as the system is non–degenerate. Define H

′, E ′ to
be associated with Ψ′ such that H′ − H = V

′ − V. We then have

E ′ = 〈Ψ′|H′|Ψ′〉 < 〈Ψ|H′|Ψ〉,
< E + 〈Ψ|V′ − V|Ψ〉, (3.9)

where
V

′ =

∫
V ′

ext(�r)Ψ
†(�r)Ψ(�r)d�r. (3.10)

Similarly

E = 〈Ψ|H|Ψ〉 < 〈Ψ′|H|Ψ′〉,
< E ′ + 〈Ψ′|V − V

′|Ψ′〉. (3.11)

If we now add Eq. (3.9) and Eq. (3.11) we get

E ′ + E < E′ + E, (3.12)

an obvious inconsistency.

Theorem 2. Given an electron density n′(�r) for a closed system of electrons where there is a
well defined minimum

E0 ≤ E[n′(�r)]. (3.13)

Only if n′(�r) equals the ground state electron density n(�r) is E0 = E valid.

Proof. See Ref. [4] and [5] for proof.

Now, since the ground state depends on n(�r) it is possible to express an energy functional as

E[n(�r)] = F [n(�r)] + Vext[n(�r)], (3.14)

where F and Vext are the internal energy and external potential energy functionals (of the electron
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density), respectively. The external potential energy depends on the system, while the functional
F should in principle be independent of the system and handle all internal interactions. The
determination of F and Vext is not trivial due to their inherent many–particle properties.

One year later, in 1965, Kohn and Sham continued the work of Hohenberg and Kohn and
came up with a solution to determine F and Vext that is still commonly used today. Their ap-
proach is the Kohn–Sham equations which we will briefly discuss below.

To bring the many–particle formulation to a one particle form we first start by writing the F

functional as
F [n(�r)] = T [n(�r)] + EH[n(�r)] + Exc[n(�r)], (3.15)

where T and EH are the kinetic and Hartree energy functionals, respectively. The exchange–
correlation energy functional Exc contains Fock terms (exchange) excluded from the Hartree
energy functional and in addition correlation effects. To determine n(�r) we need to minimize
Eq. (3.14). This can be done by the use of a Lagrange multiplier λ under the restriction

δ

δn

(∫
n(�r)d�r

)
= 0. (3.16)

This restriction is valid since our system is in a stationary state. Using the Hartree term

EH[n(�r)] =

∫ ∫
n(�r)n′(�r ′)

|�r − �r ′| d�rd�r ′, (3.17)

the external potential

Vext[n(�r)] =

∫
vext(�r)n(�r)d�r, (3.18)

and the expression for F in Eq. (3.15), we can now minimize Eq. (3.14) by using

δ

δn

(
E[n(�r)] − λ

∫
n(�r)d�r

)
= 0, (3.19)

which gives by substitution

δT [n(�r)]

δn(�r)
+

δExc[n(�r)]

δn(�r)
+ vext(�r) +

∫
n′(�r ′)

|�r − �r ′|d�r
′ = 0. (3.20)

Let us now look at the similar functionals for a system of non–interacting single particles moving
in a potential v(�r)

Es[n(�r)] = Ts[n(�r)] + Vs[n(�r)], (3.21)
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where
Vs[n(�r)] =

∫
v(�r)n(�r)d�r, (3.22)

and Ts is the kinetic energy functional. Minimizing Eq. (3.21) yields

δTs[n(�r)]

δn(�r)
+ v(�r) = 0, (3.23)

for which the Schrödinger equation Hsφi = εiφi, with Hamiltonian Hs and eigenvalues εi is well
known. The similarities between Eq. (3.20) and Eq. (3.23) are obvious if we take T = Ts such
that

T [n(�r)] = −
∫

φ†
i (�r)∇2φi(�r)d�r (3.24)

and
v(�r) = vext(�r) +

∫
n(�r ′)

|�r − �r ′|d�r
′ +

δExc[n(�r)]

δn(�r)
, (3.25)

and

n(�r) =
N∑
i

fi|φi(�r)|2, (3.26)

for N particles, where fi is the occupancy of the single particle orbital φi. Hence, to solve
Eq. (3.20) (that is to find the electron density n0(�r) that minimizes it), we only need to solve the
single particle Schrödinger equation

(
−1

2
∇2 + v(�r)

)
φi(�r) = εiφi(�r) (3.27)

The total energy E0 for the minimized electron density n0(�r) can now be found by expressing
Vext(�r) in terms of v(�r) through Eq. (3.18) and Eq. (3.25), such that

Vext[�r] = Vs[n0(�r)] − 2VH[n0(�r)] − δExc[n(�r)]

δn(�r)
. (3.28)

By substituting this back into Eq. (3.14), using Eq. (3.15) we get

E0 = Ts[n0(�r)] + Vs[n0(�r)] + VH[n0(�r)] − δExc[n0(�r)]

δn0(�r)
− Exc[n0(�r)]. (3.29)

The first two terms are the energy functionals for the single particle Schrödinger equation, such
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that
E0 =

∑
i

εi + VH[n(�r)] − δExc[n0(�r)]

δn0(�r)
− Exc[n0(�r)], (3.30)

Due to the fact that the change in energy with respect to the electron density is precisely the
chemical potential μ, it is customary to define

δExc[n0(�r)]

δn0(�r)
≡ μxc (3.31)

The electron density n(�r) needs to be solved self–consistently as illustrated in Fig. 3.1. There
are several ways to stop the self–consistency cycle. A common way is to check the total energy
calculation after each iteration and stop the cycle when the difference is below a supplied cutoff.
Another possibility that is also widely used is to compare the newly generated electron density
with the previous and enforce a similar supplied cutoff comparison.

From Eq. (3.30) it is clear that the sum of single particle energies εi is not equal to the
total energy E0. The single particle energy was introduced as a variable and they represent
the eigenvalues of an equation that gives the electron density that minimizes Eq. (3.14). As
a consequence it is difficult to associate the eigenvalues calculated with this approach to an
experimental energy spectrum. The term pseudoparticle was introduced to avoid confusing the
readers. However, during the last 50 years, this nomenclature has been lost due to the fact that
the calculated energy spectra yield acceptable experimental agreements in an astonishing wide
area of systems.

One obvious limitation of the Kohn-Sham equations is that they require closed expressions
or other ways of calculating vext(�r) and Exc[n(�r)]. Unfortunately, this is difficult and the search
for new and optimized functionals has been an important cornerstone for the modern success
of density functional theory. Some like to think of functional generation as an art, and one
should not be mistaken believing that all available functionals are equally good for a diverse
span of extended systems. In most cases only a few functionals are able to produce acceptable
agreement with experiments for benchmark systems. It is tempting to claim that it is the choice
of the functional that is the art, and not its generation. We will briefly discuss the properties
of exchange–correlation functionals in general. But, before doing so, we will address an issue
which extends far beyond density functional theory. In fact it is a general requirement for any
matrix equation solver. The choice of the basis set.



34 Chapter 3. Density functional theory studies of thermoelectric materials

�
�

�
�START �

Initial density ng(�r),
set Exc and veff(�r)

�

�
Calculate
δExc[ng(�r)]

δng(�r)∫ ng(�r′)

|�r−�r′|
d�r

�

Solve Eq. (3.27)

�

Obtain new density
nn(�r) from Eq. (3.26)

��
�

�
�

�

�
�

�
�

�

�
�

�
�

�

�
�

�
�

�

|Eg − En|
< Ec

No

Yes
��

�
�
�STOP

�Density mixer, mix ng(�r)

and nn(�r) to generete new ng(�r)
�

Figure 3.1: Flow chart of a typical Kohn–Sham based density functional calculation where a
tolerance in the total energy Ec is used as a cutoff to terminate the density functional calculations
when the absolute difference between the old Eg and the new En total energy is less than Ec.

3.2.2 Choice of basis set

To expand the eigenvectors |Ψ〉 it is necessary to choose a basis set that is representative for the
system. There exists a wealth of different basis sets, some more general than others. In this
section we will briefly cover the basics of the most common basis sets.

Slater determinants

The simplest form of an N electron eigenvector is the product of one electron eigenvectors φi

Ψ(�x1, �x2 . . . �xN) = φ1(�x1)φ2(�x2) · · ·φN(�xN), (3.32)
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usually referred to as a Hartree product. To obey the antisymmetry of the Pauli exclusion prin-
ciple [6], the eigenvectors need to be expanded as Slater determinants of the one electron eigen-
vectors. The simplest two particle Slater determinant is expanded as

Ψ(�x1, �x2) =
1√
2

(φ1(�x1)φ2(�x2) − φ1(�x2)φ2(�x1)) . (3.33)

Now, for the many–particle case, this gets far more complicated

Ψ(�x1, �x2 . . . �xN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣

φ1(�x1) φ2(�x1) . . . φN(�x1)

φ1(�x2) φ2(�x2) . . . φN(�x2)
...

... . . . ...
φ1(�xN) φ2(�xN) . . . φN(�xN)

∣∣∣∣∣∣∣∣∣∣
. (3.34)

Such many–particle Slater determinants are very demanding to calculate and only a single Slater
determinant is usually implemented in Kohn-Sham DFT (and Hartree–Fock) procedures. But
it is important to emphasize that there exist generalized Kohn-Sham schemes that include a
combination of several Slater determinants to calculate exchange kernels and correlation effects
on a perturbative level. More accurate many–particle Configuration Interaction (CI) or Multi–
Configurational Self–Consistent Field (MCSCF) calculations also require a multi–term Slater
determinant. For simple molecules it is feasible to use the full Slater approach, but for extended
systems this is not an option due to the unfavourable scaling of the calculation of the determinant.
To use the Slater approach or not, knowledge about the single particle eigenvectors φi is neces-
sary. The most basic type of eigenvectors are hydrogen like orbitals, e.g. Slater–Type Orbitals
(STO) [7].

Linear combination of atomic orbitals

Linear combination of atomic orbitals (LCAO) is based on single atomic orbitals (e.g. STOs). To
set up the basis, the atomic orbitals are expanded up to a given cutoff. To increase flexibility and
speed Gaussian–Type Orbitals (GTO) [8] are often used instead of STOs. A single GTO does not
reproduce a hydrogen like orbital, but the operator integrals are faster to calculate (they have an
explicit form). The atomic orbitals can be efficiently calculated and are still extensively used in
molecular calculations. Such basis sets are however prune to failure if the states are delocalized
with respect to the atom sites and are thus not optimal for many materials.
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Pseudo–potentials

For calculations beyond simple molecules additional approximations of the basis set are neces-
sary to improve performance. One of the first and simplest approaches was the use of pseudo–
potentials. The main idea is to separate the core and valence electrons and exclude the core states
from the self–consistent calculation. The core states are predetermined for all atoms, based on
atomic calculations. The contributions from the core states are included in the Kohn-Sham equa-
tions through the external potential. The pseudo–potential approach simplifies the choice of
basis set due to the exclusion of a great number of electrons. However, a proper basis set is still
needed for the valence electrons and at the same time this basis set should be compatible with
the pseudo–potentials such that there is acceptable overlap.

Plane wave based basis functions

Plane wave basis sets exploit the periodicity of structures [9] (Chap. 2 and App. F). Basically
plane waves are waves expanded based on the Brillouin zone reciprocal vectors. The plane waves
need a large amount of coefficients to describe a localized state, but combined with the pseudo–
potential approach they are very efficient and have some advantages over the orbital basis sets
(mainly non–local expansions). Plane wave basis sets yield a simple form of the Kohn-Sham
equations and are thus easy to implement. Due to the generality of the plane waves the same
basis set can be utilized for all atom species.

Linearized Augmented plane waves (LAPW) [10] (Sec. 4.2) incorporate atomic–like states in
the atomic region, while envelope functions are used to expand the interstitial (or bonding) states.
The envelope functions are determined by plane wave expansions. Similarly, Linear Muffin–Tin–
Orbitals (LMTO) [11] are obtained if the envelope functions are expanded by Hankel functions
(solutions of the Laplace equation). The main difference between LAPW and LMTO lies in the
interstitial region, where the energy dependence is excluded in the LMTO approach. This makes
LMTO more feasible for closed packed structures.

A generalization of the LAPW and pseudo–potential method is called the Projected Aug-
mented Wave (PAW) [12] method. It is more efficient while retaining the accuracy of the LAPW
approach. As a consequence it is praised as one of the best basis sets for first–principle calcula-
tions [13, 14] of materials.
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3.2.3 Exchange–correlation functionals

Before addressing the exchange–correlation functionals we will briefly consider an important
aspect known as the derivative discontinuity of the exchange–correlation functionals. Unfortu-
nately we will see that this is an inherent feature of the Kohn-Sham equations. This section
closely follows the work published by Perdew et al. [15, 16].

Let us start with a system containing N = N ′ + ω electrons, where N ′ is a positive integer
and 0 ≤ ω ≤ 1. The introduction of fractional electron numbers is unphysical, but a time
averaged mixing of N ′ and N ′ + 1 is possible [16]. The parameter ω controls the mixing of the
ΨN ′ and ΨN ′+1 states such that

N = N ′ + ω, (3.35)

= (1 − ω)N ′ + ω(N ′ + 1), (3.36)

since
N =

∫
nN(�r)d�r, (3.37)

nN(�r) = (1 − ω)nN ′(�r) + ωnN ′+1(�r). (3.38)

From Eq. (3.30) we know that E0 is a functional of n(�r). Hence E0 can be written as

E0[nN(�r)] = (1 − ω)E0[nN ′(�r)] + ωE0[nN ′+1(�r)], (3.39)

which are continuous lines as a function of N ′ [16, 17]. Thus, ∂E0/∂N should be ill–defined for
each integer number of particles in the system.

The ionization potential I for an atom X with N electrons is defined as the process

X → X+ + e−, (3.40)

with
I(N) = E0(N − 1) − E0(N), (3.41)

where the outermost and weakest bonded electron is removed to infinity, such that there is no
interaction between the ion and the electron. Similarly the electron affinity A is defined as

X− → X + e−, (3.42)
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with
A(N) = E0(N) − E0(N + 1). (3.43)

We can relate I and A to a change in n(�r) such that

I(N) = − δE0

δnN(�r)

∣∣∣∣
N ′−1

, (3.44)

and
A(N) = − δE0

δnN(�r)

∣∣∣∣
N ′+1

. (3.45)

Looking back at Eq. (3.29) we see that the density functional derivative of the external potential
Vs and electrostatic potential VH is inherently continuous, which leaves the kinetic energy Ts and
exchange–correlation energy Exc to obey the fundamental discontinuity property. The kinetic
energy derivative and its discontinuity is trivial due to the direct evaluation of the pseudo particle
orbitals. Hence, it is the exchange–correlation functional that ought to reproduce the discontinu-
ities. The difference between the ionization potential and electron affinity is usually defined as
I − A, which, if the system is charge neutral, determines the fundamental band gap Eg,

Eg(N) = I(N) − A(N), (3.46)

=
δT

δn(�r)

∣∣∣∣
N+1

− δT

δn(�r)

∣∣∣∣
N−1

+
δExc

δn(�r)

∣∣∣∣
N+1

− δExc

δn(�r)

∣∣∣∣
N−1

, (3.47)

= ΔKS + Δxc, (3.48)

where ΔKS and Δxc are the kinetic and exchange–correlation derivative differences, respectively.
For all systems, except the simplest non–interacting ones, Δxc 
= 0 [15]. This is a paradox,
since, by construction, Exc should be continuously differentiable and independent of the energy.
Unfortunately there is no easy way to escape this problem, except going past the Kohn-Sham
scheme to a more generalized Kohn-Sham scheme (gKS) that incorporates energy dependent
functionals based on e.g. Fock terms (through the orbital dependence). We will now present two
common ways of expanding the exchange–correlation functionals and introduce a relatively new
hybrid approach including exact exchange (Fock) terms in the gKS formalism. The subsequent
functionals all have spin–polarized versions, but to simplify notation they are not discussed.
These and other failures of modern implementations of density functional theory are frequently
discussed in the literature [18, 19, 20] and readers interested in the subject should consult the
referred papers.
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Local density approximation

One of the first approximations of the exchange–correlation energy was based on the local density
approximation (LDA) [4, 5]

ELDA
xc =

∫
εhom
xc (n(�r))d�r, (3.49)

where εhom
xc (n(�r)) = εhom

x (n(�r)) + εhom
c (n(�r)) is the energy from the homogeneous free electron

gas. The exchange contribution εhom
x (n(�r)) is known exactly as

εhom
x (n(�r)) = −3e2

4

(
3

π

)1/3

n(�r)4/3, (3.50)

where e is the electron charge. See Ref. [21] (contribution by V. Sahni, page 217). The correla-
tion contribution εhom

c (n(�r)) however, has to be parametrized. Most implementations today use
a parameterization based on Quantum Monte Carlo (QMC) simulations done by Ceperley and
Alder [22]. At first it came as a surprise that LDA gave reasonable agreement with experiments,
even for systems well beyond the free electron gas. It was later discovered that this was due to er-
ror cancellation in the evaluation of the over–compensated exchange and the under–compensated
correlation [23, 24] functionals.

Generalized gradient approximation

There is no doubt that the local form of the local density approximation will produce inaccu-
rate results for systems deviating from the free electron gas regime. Therefore a more general
approach was introduced, called the generalized gradient approximation (GGA) [25],

EGGA
xc (n(�r)) =

∫
f(n(�r),∇n(�r))d�r, (3.51)

where f(n(�r),∇n(�r)) is a general functional of the density and its gradient. The difference
between semi–local GGA functionals depends on the choice of f(n(�r),∇n(�r)) and they can
thus differ substantially from each other. A discussion of the wide range of GGA functionals is
not the intention of this thesis, so readers are referred to the literature and Ref. [26] for a quick
overview (primarily Sec. 1.6). However, it should be emphasized that the GGA approach is still
local, but corrected by the gradient ∇n(�r) such that it is ultimately semi–local.



40 Chapter 3. Density functional theory studies of thermoelectric materials

Hybrid LDA/GGA

One major concern with the general LDA and GGA functionals used today is the lack of delo-
calization correction [19], which tends to spread the electron charge. This correction is inherent
to the exact exchange (Fock terms) [27] and is excluded for the aforementioned approaches due
to the implicit energy (through the orbitals) dependence, and thus the performance penalties that
follow.

Most hybrid functionals include a quarter portion of exact exchange and evaluate the remain-
der exchange from the base functional. The concept of the quarter mixing ratio is based on work
done by Ernzerhof and coworkers [28, 29, 30]. One of the most common hybrid functionals use
the PBE functional as a base and is therefore called PBE0 [31]. It is defined as

EPBE0 =
1

4
EHF

x +
3

4
EPBE

x + EPBE
c , (3.52)

where the subscripts (x) and (c) term the exchange and correlation parts, respectively. The super-
script signalizes how to evaluate the given energy, where HF is the Hartree energy and the exact
exchange (this is thus the well known Hartree–Fock [27] contribution). The PBE superscript tells
us that the exchange and correlation should be evaluated from the PBE functionals. Similarly
one can define range separated hybrid functionals, like the HSEx [32], defined as

EHSEx =
1

4
EHF,sr

x +
3

4
EPBE,sr

x + EPBE,lr
x + EPBE

c , (3.53)

where (sr) and (lr) describe the short and long range parts of the exchange energy. This range
separation is defined by separating the Coulomb kernel such that

1

r
=

erfc(μr)

r
+

erf(μr)

r
, (3.54)

where μ determines the range separation. For the HSE03 [32] functional this is defined as μ =

0.3 Å−1. The range separation is motivated for two reasons: first, it allows the calculation of
the exact exchange on a coarser grid, thus improving convergence [33]; second, one has the
possibility to investigate the range extension of the exact exchange energy. Recent reviews of
the hybrid functionals reveal a very good compromise between accuracy and performance for
a wide range of benchmark systems [33, 34, 35]. Although, depending on implementation, an
order of magnitude increase in computational time has to be expected over the traditional LDA
and GGA functionals. Memory requirements also increase due to the calculation and storage of
the orbitals. There are still some questions as to whether the quarter portion of exact exchange
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can be used for all systems (metallic systems in particular do not show much improvement [33])
or if there should be a headroom for tuning this portion. Future studies will reveal the necessary
answers to these questions.

3.3 Electronic structure and bonding

To analyze the electronic structure and bonding of materials it is common to consider the density
of states and band structure. They reveal hybridization, chemical shifts and bonding proper-
ties indirectly. We like to term such analysis state–resolved. Quantitative experimental veri-
fications can be done by X–ray photoemission spectroscopy (XPS), ultra–violet photoemission
spectroscopy (UPS), a diverse selection of band gap measurements and electron energy loss spec-
troscopy (EELS). However, these techniques usually contain a wealth of effects not present in
the calculation of the ground state density of states (e.g. excitations, resonances and secondary
effects). Thus, a direct verification of the validity of the calculation can sometimes be difficult.

However, and especially so for density functional calculations, all properties are calculated
from the electron density. This density is thus also available for direct analysis and contrary
to the state–resolved analysis one can perform spatial–resolved analysis of electron transfer in
the system. These transfers are associated with the electron rearrangement to set up the bonds
between the ions in the system. Experimental verifications can be done directly by obtaining the
structure factors from X–ray and electron diffraction. These structure factors can be transformed
to the real space by a Fourier transformation [36] (Sec. 6.5) and are then directly comparable to
the electron density. Although such approach is uncommon today, we believe such analysis will
be more important in the future.

3.3.1 Electron density analysis

Electron transfer

The electron density contains all necessary information to compute observables within DFT.
Since the bonds are inherently determined by electron transfer it also serves as a perfect base for
bond analysis and an alternative or complement to the state–resolved density of states analysis
that is common practice these days [37] (Chap. 5). The electron transfer ρb can be determined
by

ρb(�r) = ρc(�r) − ρr(�r), (3.55)
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where ρc and ρr are the crystal and reference electron density, respectively. The crystal electron
density is obtained directly from calculations, but ρr still needs to be determined.

From a theoretical point of view we can use the procrystal [38] electron density ρp as a
reference ρr. Generated from a superposition of free atomic electron densities embedded in the
crystal unit cell, this reference should be free of bonding features.

Different experimental methods exist to determine the electron density and/or electron trans-
fer. One approach is to compare spectroscopic data with an elemental reference ρm [39, 40, 41,
42], and the relative intensity difference can be converted to occupancy numbers [43]. However,
this approach is burdened by differences in the reference bonds and could yield unreliable results
if two elements with different bonding characteristics are used.

A more direct approach is to perform diffraction experiments and refine the structure factors
by starting from overlapping atomic orbitals [38, 44, 45]. This reference is in principle equivalent
to the previously discussed procrystal. The structure–factor refinement is stopped when sufficient
agreement with experimental diffraction intensities is reached.

The procrystal represents a consistent reference in electron transfer analysis, but may to-
day be difficult to use as a reference experimentally due to the lack of established and efficient
experimental procedures to obtain a large number of structure factors.

3.3.2 A few examples

To demonstrate the spatially resolved electron transfer bond analysis and its strengths, we here
give three standard examples; the covalently bonded silicon, the ionic sodium chloride and the
metallic aluminium. In addition we give a more complicated example of the filled phospho-
rus skutterudite LaFe4P12. All calculations were done on a dense augmented grid where the
all–electron density was regenerated [13] to get rid of the problematic compensator charges in-
herent to most of the density functional implementations using plane waves. In all examples the
respective procrystal has been used as the electron density reference.

Covalent silicon

Elemental silicon, Si, was chosen as it is well known from the literature to contain exclusively
covalent bonds. It is also relatively simple due to the high symmetry and small primitive cell. In
Fig. 3.2 we show the electron accumulation and depletion arising from the positive and negative
ρb, respectively. The electron accumulation in Fig. 3.2(a) clearly illustrates the covalent character
of silicon. The covalent bonds are set up by rearranging the electron density around Si, moving
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(a) Electron accumulation (b) Electron depletion

Figure 3.2: (a) Electron accumulation (positive ρb) and (b) depletion using the respective pro-
crystal as a reference for Si. Isosurfaces are drawn at 0.008/bohr3.

electron density from non–directional to the directional Si–Si parts of the crystal (see Fig. 3.2(b)).

(a) Electron accumulation (b) Electron depletion

Figure 3.3: (a) Electron accumulation (positive ρb) and (b) depletion using the respective pro-
crystal as a reference for NaCl. Na in gray and Cl in black. Isosurfaces are drawn at 0.005/bohr3.

Ionic sodium chloride

Elemental sodium–chloride, NaCl, serves as a prototype example of ionic bonding and is usually
used as a textbook example, making the structure and bonding properties well known. Similar
to silicon we illustrate the electron accumulation and depletion in Fig. 3.3. From this figure, the
ionic character, with local depletion (Na+) on the Na and local accumulation (Cl−) on the Cl
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sites are reproduced.

Metallic aluminium

To represent metallic bonding, elemental aluminium, Al, was chosen. Similarly to Si and NaCl
its structure and bonding properties are well known from the literature and from Fig. 3.4 we see
that the metallic character is reproduced. Electron density is depleted close to the Al site and
redistributed between the Al sites in a non–directional manner.

(a) Electron accumulation (b) Electron depletion

Figure 3.4: (a) Electron accumulation (positive ρb) and (b) depletion using the respective pro-
crystal as a reference for Al. Isosurfaces are drawn at 0.004/bohr3.

Phosphorus filled skutterudite LaFe4P12

As a final example we include the lanthanum filled iron phosphorus skutterudite LaFe4P12 (see
Paper I for structure information). The reason for this is that electron transfer analysis of this
compound reveals what seems to be a unique electron arrangement around the lanthanum ions.
This could explain why the filled skutterudite structure so successfully reduces the thermal con-
ductivity. In addition, the skutterudite structure contains covalent bonds. In Fig. 3.5 the electron
accumulation and depletion are given for the FeP6 octahedral arrangement. The biased (towards
P) covalent bond between Fe and P can be explained from the difference in electronegativity.
Similarly in Fig. 3.6, the electron transfers between the P ions in the P4 ring are covalent and due
to the rectangular shape, one bond is stronger, which is nicely reproduced by this analysis.

Finally in Fig. 3.7 the electron transfer around the La ion is shown. The electron accumu-
lations (only partially shown due to the cutout of the unit cell) responsible for the La–P bonds
can be seen on the border in the La plane. Close to the La ion, elongated electron accumulation
is aligned towards the P ions. These electron accumulations could set up restrictions of the La
motion during vibrational perturbations and thus contribute to the significant reduction in the
lattice thermal conductivity [46, 47].
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(a) Electron accumulation (b) Electron depletion

Figure 3.5: (a) Electron accumulation (positive ρb) and (b) depletion between the grey Fe and
green P in the octahedra using the respective procrystal as a reference. Isosurfaces are drawn at
0.024/bohr3.

(a) Electron accumulation (b) Electron depletion

Figure 3.6: (a) Electron accumulation (positive ρb) and (b) depletion between the green P ions
using the respective procrystal as a reference. Isosurfaces are drawn at 0.017/bohr3.
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(a) Electron accumulation (b) Electron depletion

Figure 3.7: (a) Electron accumulation (positive ρb) and (b) depletion around the black La using
the respective procrystal as a reference. The Fe ions are shown in grey. Isosurfaces are drawn at
0.0025/bohr3.
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3.4 Transport properties

The performance of thermoelectric materials is determined by the figure–of–merit zT as pre-
viously discussed. To determine zT extensive knowledge about the system is required. More
specifically we need to determine the electrical and thermal conductivity, and the Seebeck coef-
ficient, all preferably at different temperatures. Calculations of these properties are not trivial,
due to several intricate problems with the first–principle calculations that serve as a baseline
for the transport calculations. It should also be mentioned that the experimental determination
of these properties is difficult. In this chapter we will introduce a semi–classical procedure to
calculate the electrical conductivity σ and the Seebeck coefficient α, which together determine
the power factor α2σ. In addition we calculate the electrical thermal conductivity such that the
figure–of–merit can be determined for a given lattice thermal conductivity.

We now develop a general approach by discussing the strengths, pitfalls and implementation
of the semi–classical Boltzmann transport equations. Most of the derivation of the distribution
function and the Boltzmann transport equation is based on the textbook of Ashcroft and Mer-
min [9] (Chap. 12, 13 and 16). Before the explicit Boltzmann equation is derived, we briefly
discuss electron transport in solids in general. We then dedicate a section of prediction based on
simple band engineering and propose band structure characteristics that give the largest power
factor and figure–of–merit. Readers of this section should be aware that where applicable the
position and wave vector are dependent on time. The time dependence is shown explicitly where
needed. However, for some variables with an implicit time dependence through the position and
wave vector (e.g. equilibrium distribution function), explicit time dependence is still shown. This
notation is not strictly valid, but has been chosen for simplicity.

3.4.1 Electronic transport in solids

According to Bloch theory [9] (Chap. 12), electrons do not scatter if the lattice is periodic and
perfect. Such lattices do not exist in reality and scattering events are usually classified in three
main categories;

• Scattering from thermal vibrations in the lattice. Due to vibrations in the lattice each
ion will deviate from the equilibrium position and generate imperfections in the crystal.
Electrons scatter locally from these imperfections. One further separates these vibrations
into acoustical and optical vibrations, based on the vibrational character. Lattice vibrations
primarily arise due to thermal energy and are thus strongly temperature dependent.
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• Scattering from deviations from the atom positions in the perfect crystal (e.g. impurities
and vacancies) and/or periodic lattice (e.g. boundary effects). Usually the two are related
and imperfections can in general be local or extended, depending on type.

• Scattering based on strong electron–electron interactions. These types of scattering events
arise due to exact exchange (Hartree–Fock) and screening interactions. Typical relaxation
times (the time between each collision) for these scattering events are about 102-106 [9]
(Chap. 17) times larger than vibrational scattering and scattering from imperfections and
can in most cases be safely discarded. We would have to go to very low temperature to
remove any thermal vibration for electron–electron scattering to be an observable effect in
samples free of imperfections.

The electronic transport depends on the distribution of electrons. This distribution generally
differs from the equilibrium Fermi distribution and we will term its function g in the following.
The distribution function will depend on both the position vector �r, the wave vector �k and time t.
We will however suppress the �r dependence until we discuss the Boltzmann equation in the next
section. Before exploring this distribution function, let us first discuss the scattering process.
We will disregard spin effects in the derivation, but emphasize that most of these equations are
equally valid for bosons and fermions. Let us define a scattering probability Γ�k,�k′,n,n′ , where �k

and �k′ are the initial and final wave vectors, and similar for the band index n. The scattering rate
can now be defined as

1

τ out
n (�k, t)

=

∫
d�k′dn′

Ω

(
1 − gn′(�k′, t)

)
Γ�k,�k′,n,n′ , (3.56)

where Γ�k,�k′,n,n′d�k′/Ω is the probability per unit time that a scattering event from �k and n to d�k′dn′

within�k′ and n′ takes place. The unoccupied distribution function 1−gn′(�k′, t) is needed since the
occupied (and thus no scattering) states are determined by gn′(�k′, t). By integrating all possible
�k′, n′ and normalizing using the �k-space volume Ω (taken to be (2π)3 or 4π3, depending on
whether to account for spin degeneracy) the total rate is obtained. Notice that the relaxation time
τn(�k) is not explicitly a function of �k (although we still persist on this notation for simplicity),
but depends on �k through Γ�k,�k′,n,n′ and gn′(�k′, t).

The change in gn(�k, t) for an infinitesimal time interval dt is the probability for scattering
out of �k times the distribution function gn(�k, t), that is

(
dgn(�k, t)

dt

)out

= −gn(�k, t)

τ out
n (�k)

. (3.57)
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The out scattering reduces the states in �k, hence the minus.
In Eq. (3.56) and Eq. (3.57) scattering out of �k was defined. However, we simultaneously

need to account for the inbound scattering processes. To obtain this we use Eq. (3.56) and
substitute 1 − gn′(�k′, t) by gn′(�k′, t) and Γ�k,�k′,n,n′ by Γ�k′,�k,n′,n (now termed 1/τ in

n (�k, t)). To get
the inbound scattering change in gn(�k, t) we multiply this by the unoccupied distribution function
1 − gn(�k, t), such that (

dgn(�k, t)

dt

)in

=
1 − gn(�k, t)

τ in
n (�k)

. (3.58)

Adding the outbound and inbound terms yields the total change in gn(�k) as

(
dgn(�k, t)

dt

)total

=

(
dgn(�k, t)

dt

)out

+

(
dgn(�k, t)

dt

)in

, (3.59)

= −gn(�k, t)

∫
d�k′dn′

Ω

(
1 − gn′(�k′, t)

)
Γ�k,�k′,n,n′

+
(
1 − gn(�k, t)

) ∫
d�k′dn′

Ω

(
gn′(�k′, t)

)
Γ�k′,�k,n′,n. (3.60)

The scattering probability Γ can in general be very complex. For simple impurity scattering
one can for example develop an expression for Γ based on the “Golden rule” of Fermi. See for
example Ref. [48] (Sec. 3.2) and [1] (Sec. 8.3). For vibrational scattering an entirely different
process needs to be developed to also include the electron–phonon interaction. It should be clear
to the reader that the general scattering problem is comprehensive. Even many–body problems
free of scattering are problematic to solve and it should not come as a surprise that we need to
introduce approximations.

We will now assume that a scattering event is not determined by the initial distribution func-
tion gn(�k), and that the scattering events maintain the thermodynamic equilibrium. Furthermore,
we assume that the relaxation time τn(�k, t) is only dependent on the band index n and the wave
vector �k. Hence, no implicit dependence through gn(�k, t) or Γ is allowed. Now, the in scatter-
ing is g0

n(�k, t) times the probability dt/τn(�k) of a scattering event in the time interval dt. More
specifically (

dgn(�k, t)

dt

)total

RTA

=
g0

n(�k, t) − gn(�k, t)

τn(�k, t)
, (3.61)

where g0
n(�k) is the equilibrium distribution function. All approximations that led to Eq. (3.61)

and hence the equation itself are usually called the relaxation time approximation (RTA). This
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approximation is very common and used in almost all transport calculations today. The in and
out scattering terms can be identified as

(
dgn(�k, t)

dt

)in

RTA

=
g0

n(�k, t)

τn(�k, t)
, (3.62)

(
dgn(�k, t)

dt

)out

RTA

= −gn(�k, t)

τn(�k, t)
. (3.63)

We will see later, that further approximations need to be introduced to make the transport calcu-
lations tractable for extended systems.

3.4.2 The Boltzmann equation

In this section the Boltzmann equation is derived from the semi–classical equations of motion [9]
(Chap. 12) by considering a change in gn(�r,�k, t). The change of a position vector is known as

d�r

dt
= �v(�r,�k, t), (3.64)

where �v(�r,�k, t) is the quantum mechanical velocity average of the velocity operator. Similarly,
the change in wave vector from external forces is

d�k

dt
=

1

h̄
�F (�r,�k, t) (3.65)

= − e

h̄

(
�E(�r,�k, t) − 1

c
�v(�r,�k, t) × �H(�r,�k, t)

)
, (3.66)

where �F (�r,�k, t) is the external field that contains both the electric �E(�r,�k, t) and magnetic
�H(�r,�k, t) fields, while c is the speed of light. A change of gn(�r,�k, t) in the time interval dt

can now be determined by the modified equations of motion, such that

gn(�r,�k, t)d�rd�k = gn

(
�r − �v(�r,�k, t)dt,�k −

�F (�r,�k, t)

h̄
dt, t − dt

)

× d�r(t − dt)d�k(t − dt). (3.67)

Through Liouville’s theorem [9] (Chap. 12) the �r�k phase space is conserved during a dt change.
Thus, the infinitesimal terms on both sides can be cancelled. It should be clear that Eq. (3.67)
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does not account for scattering events. These terms need to be added and we get

gn(�r,�k, t)

dt
=

gn

(
�r − �v(�r,�k, t)dt,�k − �F (�r,�k,t)

h̄
dt, t − dt

)
dt

+

(
dgn(�r,�k, t)

dt

)total

. (3.68)

Expanding to linear order in dt and taking the limit dt → 0 reveals the famous Boltzmann
equation

dgn(�r,�k, t)

dt
+ �v(�r,�k, t) · ∂gn(�r,�k, t)

∂�r
+

1

h̄

∂gn(�r,�k)

∂�k
· �F (�r,�k, t) =

(
dgn(�r,�k, t)

dt

)total

. (3.69)

The expressions on the left hand side control the total change in gn(�r,�k, t), the change from
diffusion and the change from applied fields, respectively. On the right hand side we have the
scattering contributions.

3.4.3 Non–equilibrium distribution function

We need knowledge about the non–equilibrium distribution function to be able to utilize the
Boltzmann equation and will now go through derivations that lead it to a tractable form. The
derivations follow closely the textbook of Ashcroft and Mermin [9] (Chap. 12, 13 and 16).

Assume that the infinitesimal phase space d�rd�k contains dN electrons such that

dN = gn(�r,�k, t)
d�rd�k

4π3
. (3.70)

The distribution function gn(�r,�k, t) can now be determined from the time relaxation approxima-
tion if we assume that all previous scattering in the volume d�r ′d�k′ from t′ are scattered into the
volume d�rd�k at t. This is a reasonable assumption as the particles will follow the semi–classical
equations of motion from t′ to t. From Liouville’s theorem [9] (Chap. 12), d�r ′d�k′ = d�rd�k. The
in scattered part of the relaxation time approximation (Eq. (3.62)) can be integrated over t′ in
infinitesimal dt′ parts from −∞ to t, such that the distribution function now becomes

∫ t

−∞

g0
n(�r,�k, t′)

τn(�r,�k, t′)
dt′, (3.71)
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which need to be modified, since there can be scattering events between t′ and t. We need the
probability Pn(�r,�k, t, t′) of no further scattering after t′, but before t, to be multiplied into the
integrand. Hence,

gn(�r,�k, t) =

∫ t

−∞

g0
n(�r,�k, t′)Pn(�r,�k, t, t′)

τn(�r,�k, t′)
dt′. (3.72)

Substituting this back into Eq. (3.70) yields

dN =
d�rd�k

4π3

∫ t

−∞

g0
n(�r,�k, t′)Pn(�r,�k, t, t′)

τn(�r,�k, t′)
dt′. (3.73)

We now need to determine the probability Pn(�r,�k, t, t′). This can be done by noting that

Pn(�r,�k, t, t′) = Pn(�r,�k, t, t′ + dt′)

(
1 − dt′

τn(�r,�k, t′)

)
, (3.74)

since the number of particles that undergo no scattering between t′ and t is less than between
t′ + dt′ and t by the ratio 1 − dt′/τn(�r,�k, t′). Taking the limit dt′ → 0 we get a differential
equation

∂Pn(�r,�k, t, t′)

∂t′
=

Pn(�r,�k, t, t′)

τn(�r,�k, t′)
, (3.75)

with solution

Pn(�r,�k, t, t′) = exp

(
−

∫ t

t′

dt′′

τn(�r,�k, t′′)

)
, (3.76)

subject to the boundary condition Pn(�r,�k, t, t) = 1. We can now substitute Eq. (3.75) into
Eq. (3.72) and obtain

gn(�r,�k, t) =

∫ t

−∞

g0
n(�r,�k, t′)

(
∂

∂t′
Pn(�r,�k, t, t′)

)
dt′. (3.77)

Integrating by parts yields

gn(�r,�k, t) = g0
n(�r,�k, t) −

∫ t

−∞

Pn(�r,�k, t, t′)

(
d

dt′
g0

n(�r,�k, t′)

)
dt′, (3.78)

if we also set the condition Pn(�r,�k, 0,−∞) = 0, that is, that no particles can reach t without ex-
periencing scattering events. Next, is the time derivative of the equilibrium distribution function.
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Expanding the derivative as

dg0
n(�r,�k, t′)

dt′
=

∂g0
n(�r,�k, t′)

∂εn(�k, t′)

∂εn(�k, t′)

∂�k
· d�k

dt′
+

∂g0
n(�r,�k, t′)

∂T (�r, t′)

∂T (�r, t′)

∂�r
· d�r

dt′

+
∂g0

n(�r,�k, t′)

∂μ(�r, t′)

∂μ(�r, t′)

∂�r
· d�r

dt′
, (3.79)

and applying the semi–classical equations of motion from Eq. (3.64) and Eq. (3.66) yields,

gn(�r,�k, t) = g0
n(�r,�k, t) (3.80)

−
∫ t

−∞

Pn(�r,�k, t, t′)

[
∂g0

n(�r,�k, t′)

∂εn(�k, t′)
�vn(�k, t′)

×
(
−e �E(�r,�k, t) −∇μ(�r, t′) −

(
εn(�k, t′) − μ(�r, t′)

T (�r, t′)

)
∇T (�r, t′)

)]
dt′.

This is a very general function. At first sight it might seem that Eq. (3.80) is independent of a
magnetic field. This is not the case as it enters implicitly by modifying �r and �k. We can induce
additional approximations to simplify Eq. (3.80) further. If we assume a spatial uniform electric
field and temperature gradient, the �r dependence drops out of �E and ∇T . The same assumption
can also be made for the relaxation time and the chemical potential (depends on space through
T ) such that the �r dependence drops out of the integrand. The equilibrium distribution function
g0

n(�r,�k, t) is dependent on �r through T and on �k through εn(�k, t) and is also under the previous
assumptions independent on �r. In this thesis, we will only work with electrons, so we now
abbreviate

g0
n(�r,�k, t) = f(�k, t), (3.81)

where f(�k, t) is the equilibrium Fermi distribution function.
Even though we developed an expression for gn(�r,�k, t), we have yet to give a more specific

form of Pn(�r,�k, t, t′), except for the one in Eq. (3.76). If we now assume a relaxation time that
depends on energy only, the probability becomes trivial from Eq. (3.76), such that

Pn(�k, t, t′) = e−(t−t′)/τn(�k), (3.82)

where the �k dependence in τn(�k) enters implicitly through εn(�k, t). By applying all these ap-
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proximation to Eq. (3.80), we obtain

gn(�k, t) = g0
n(�k, t) (3.83)

−
∫ t

−∞

e−(t−t′)/τn(�k)

[
∂f(�k, t′)

∂εn(�k, t′)
�vn(�k, t′)

×
(
−e �E(t′) −∇μ(t′) −

(
εn(�k, t′) − μ(t′)

T (t′)

)
∇T (t′)

)]
dt′.

Still, the time integral of Eq. (3.83) is non–trivial. Based on an expansion of Eq. (3.66) we can
approximate a change in wave vector �k(t) from modifications due to �E(t) as

�k(t) ≈ �k(0) − e �E(t)t

h̄
. (3.84)

The main contribution to the integrand in Eq. (3.83) appears at t ≈ τ . Based on the fact that
τ ∝ 10 fs [9] (Chap. 1) the modifications to �k(0) is thus rather small. Similarly one can argue that
perturbation of the temperature within the same time slit is small. Hence, the time integral can
be taken at a constant electric field and temperature gradient. Unfortunately, it is not possible to
generate a linear approximation for the perturbation of magnetic fields. However, in the absence
of magnetic field, the time dependence of �k disappears and the time integral is trivial, such that

∫ t

−∞

e−(t−t′)/τn(�k)dt′ = τn(�k), (3.85)

since t always is positive. The combination of Eq. (3.83) and Eq. (3.85) under the given approxi-
mations serve as a base to obtain tractable equations for the transport coefficients. It is important
to emphasize that Eq. (3.83) satisfy the Boltzmann equation in Eq. (3.69) and is this a valid
solution of the electron transport.

3.4.4 The Boltzmann transport equations

Based on the above derivation of the Boltzmann equation and distribution function we will now
develop the specific Boltzmann transport equations. The electrical current density can be defined
as

�J = nq�v, (3.86)

where n is the number of charge carriers per volume unit, q is the elementary charge and �v is
the carrier drift velocity. Now, n is determined by the distribution function integrated, while for
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electrons, q = −e. Since multiple bands can contribute, we need to sum each band index n. This
gives

�J = − e

Ω

∑
n

∫
gn(�k)�vn(�k)d�k, (3.87)

where Ω is the volume of the �k–space. At this time it is important to notify the reader; one should
not be easy minded and believe that Eq. (3.87) is of a general form (e.g. only �k dependence in
the integrand). A significant number of approximations was introduced to reduce the dimension
of the distribution function. Generally, it will also depend on �r and t. The electrical current can
also be expressed as

�J = σ �E − χ∇T, (3.88)

and similarly for the thermal current

�JQ = Tχ�E − κ0∇T, (3.89)

where σ is known as the electrical conductivity, χ and κ0 are thermal constants in front of the
thermal gradients for the electrical and thermal current, respectively. As usual �E is the applied
electric field and T is the temperature. In general σ, χ and κ0 are tensors. The Seebeck coefficient
α is defined as the ratio between the applied electrical field and the temperature gradient at zero
electrical current. More specifically

α =
�E

∇T
, (3.90)

which for zero current gives
α = σ−1χ, (3.91)

from Eq. (3.88). We will now derive expressions for σ and χ. Let us continue to use the sim-
plified distribution function gn(�k, t) developed in the last section. By substituting Eq. (3.83)
into Eq. (3.87) using Eq. (3.85) and assuming constant (in time) electrical field and temperature
gradient we get

�J =
e

Ω

∑
n

∫
τn(�k)

(
−∂fn(�k)

∂ε(�k)

)
�vn(�k)

(
�vn(�k) ·

[
e �E + ∇μ +

ε(�k) − μ

T
∇T

])
d�k. (3.92)

Comparing Eq. (3.88) and Eq. (3.92) reveal that the electrical conductivity can be written as

σ =
e2

Ω

∑
n

∫
τn(�k)

(
−∂fn(�k)

∂ε(�k)

)
�vn(�k)�vn(�k)d�k. (3.93)
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We determine χ in the same way, looking at the component in front of the temperature gradient
in Eq. (3.92). This gives

χ =
e

TΩ

∑
n

∫
τn(�k)(ε(�k) − μ)

(
−∂fn(�k)

∂ε(�k)

)
�vn(�k)�vn(�k)d�k. (3.94)

The electronic part of the thermal conductivity, κe, relates the thermal current and the thermal
gradient when no electrical current is flowing, thus

�JQ = −κe∇T. (3.95)

Under these conditions we see from Eq. (3.88) that

�E = σ−1χ∇T, (3.96)

substituting this into Eq. (3.89) yields

κe = κ0 − Tχσ−1χ. (3.97)

In general σ, χ and κ0 are tensors. This complicates the transport coefficients because the product
of the velocities cannot be calculated as a direct vector product. If we now index σ and χ we get

σij =
e2

Ω

∑
n

∫
τn(�k)

(
−∂fn(�k)

∂ε(�k)

)
vn

i vn
j d�k, (3.98)

and

χij =
e

TΩ

∑
n

∫
τn(�k)(ε(�k) − μ(T ))

(
−∂fn(�k)

∂ε(�k)

)
vn

i vn
j d�k, (3.99)

where vn
i = vn(ki). We can now use Eq. (3.91), which with indexing becomes

αkl = (σ−1)kiχil. (3.100)

We can also obtain a similar expression for κ0, see [9] (Chap. 13), such that

κ0
ij =

1

e2TΩ

∑
n

∫
τn(�k)(ε(�k) − μ(T ))2

(
−∂fn(�k)

∂ε(�k)

)
vn

i vn
j d�k. (3.101)
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The electron part of the thermal conductivity can also be indexed as

κe
pl = κ0

pl − Tχpkαkl. (3.102)

By including a magnetic field (the complete Lorentz force, instead of just �E) we obtain the Hall
coefficient. The derivation is not worked out here as it is vastly similar to the derivation for the
electrical conductivity, except for additional complications due to the cross product between the
velocity and the magnetic field. For a short derivation, see Ref. [49] (Sec. 52.2). On a tensor
form it can be written as

σijp =
e3

Ω

∑
n

∫
τn(�k)2ξpqr

(
−∂fn(�k)

∂ε(�k)

)
vn

i vn
r M−1

jq d�k, (3.103)

where ξ represents the Levi–Civita symbol and M−1 the inverse effective mass tensor defined as

(Mn)−1
ij = vn

i vn
j . (3.104)

Using this, the Hall coefficient can be calculated using

Rklm = (σ−1)ilσijm(σ−1)kj. (3.105)

3.4.5 Implementation

To calculate Eq. (3.98), (3.99), (3.101) and (3.103) we need to determine the band structure
ε(n,�k) and the velocities �v(n,�k). The band structure can be obtained through any reliable band
structure code. For this work we choose the density functional theory code Vienna Ab–initio
Simulation Package (VASP) [50, 51, 52, 53, 13] due to its excellent efficiency and frequent
updates published by the developers. Additional calculations have to be made to determine the
velocities. We will now develop a closed expression for the electron velocity.

Electron velocity

The change of the Hamiltonian operator of an electron in a periodic crystal upon a change in
crystal momentum �k, for Bloch states ψn = ei�k·�run,�k(�r), can be written as

H�k+�q = H�k +
h̄2

m
�q ·

(
1

i
∇ + �k

)
+

h̄2

2m
q2, (3.106)
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where H�k = h̄2

2m
∇2 and �q is the momentum change. If we now do second order perturbation

theory and take H�k as the base and the rest as H�q we get

εn(�k + �q) = ε0
n(�k) + 〈ψn|H�q|ψn〉 +

∑
n′ �=n

|〈ψn′|H�q|ψn〉|2
ε0
n(�k) − ε0

n′(�k)
+ . . . (3.107)

A small change �q can be Taylor expanded as

εn(�k + �q) = εn(�k) +
∑

i

∂εn(�k)

∂ki

qi +
1

2

∑
ij

∂2εn(�k)

∂kikj

qiqj + O(q3) (3.108)

By substituting Eq. (3.106) into Eq. (3.107), keeping only linear order �q terms we get

εn(�k) = ε0
n(�k) +

h̄2

m

∑
i

〈un,�k(�r)|
(

1

i
∇ + �k

)
|un,�k(�r)〉qi + O(q2) (3.109)

If we now compare Eq. (3.108) and Eq. (3.109) we see that

∑
i

∂εn(�k)

∂ki

qi =
h̄2

m

∑
i

〈un,�k(�r)|
(

1

i
∇ + �k

)
|un,�k(�r)〉qi, (3.110)

going back to |ψn〉 this gives
∂εn(�k)

∂�k
=

h̄2

im
〈ψn|∇|ψn〉. (3.111)

Now, since �v = d�r/dt we know that

d�r

dt
=

1

ih̄
[�r, H], (3.112)

=
�p

m
, (3.113)

=
h̄

im
∇, (3.114)

hence

�vn(�k) =
1

h̄

∂εn(�k)

∂�k
, (3.115)

thus taking the derivative with respect to the �k–points of the band structure. To obtain this
derivative, there are three approaches; the first is based on a brute force numerical derivative, the
second utilizes a Fourier transform. These approaches do however need a very dense and well
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converged band structure. In addition they are semi–classical in nature. The third alternative is to
calculate the velocity directly from Eq. (3.111). This however requires knowledge of the single
particle wave functions.

The latter procedure include quantum effects and even though they are calculated on a per-
turbative level, the advantage over the semi–classical approach is evident. Unfortunately such
implementation also yield a strong �k–point dependence similar to the one seen in the implemen-
tation of the calculation of the optical properties. In fact, Eq. (3.111) is usually implemented to
calculate optical properties, and thus, it should have the same convergence character. To calculate
Eq. (3.111), ∇|ψn〉 must be evaluated. The implementation of this is quite cumbersome for plane
wave codes, but is explained in great detail in the literature [54]. We chose to use this method
as it has the potential of being more accurate and as a bonus it was already implemented in
VASP5.X. The only additional implementation needed in VASP, was the extraction and printout
of these velocities.

Two approaches to the Boltzmann transport integrals and sums

Unfortunately, implementing Eq. (3.98), (3.99), (3.101) and (3.103) is still not straightforward.
We will now dedicate a few paragraphs to discuss this and highlight the major problems.

Imagine a single discretely sampled band. To calculate the electrical conductivity we sum
over each sampled �k–point leading to a divergence (if the band is completely flat) in the con-
ductivity when the �k–points approach the continuous limit. Now, imagine a band formed as a
delta function in �k–space. This band would at most attribute one �k–point for a given energy slit.
A combination of such bands at a given constant sampling, will yield a non–conserved �k–point
counting, and will thus without normalization yield a band behaviour that is unphysical. Obvi-
ously, neither of these examples are physical but they illustrate the need of a normalization, or
weighted mean of the sampled �k–points. Even though Eq. (3.87) is expressed as a integral over
�k–space and a sum over n, it is thus more practical in a band structure approach to define it as an
energy integral with a weighted mean of the counted energy points in each energy slit.

�J = − e

Ω

∫
�J(ε)dε, (3.116)

where
�J(ε) =

1

nk

∑
n,�k

g(�k)�vn(�k)
δ(ε − εn(�k))

dε
, (3.117)

where nk is the number of sampled �k–points. This approach obtain the average �J(ε) for each
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energy slit and have the advantage of being intuitive. In addition, some closed expressions of
electron scattering are energy dependent [48] (Sec. 3.1, specifically Tab. 3.2), making them rela-
tively easy to implement in such an approach due to the explicit energy dependence.

At first, the implementation of Eq. (3.116) seems trivial. But counting the sampled points is
not easy to accomplish due to the smeared out Fermi function, especially important at elevated
temperatures. A suitable cutoff would be able to partly solve this, but the process is still relatively
slow. This is of particular importance when we need to include many �k–points and bands in the
calculation.

However, for the purpose of calculating the Seebeck and Hall coefficient, Eq. (3.87) can be
used on a complete summation form (sum over both n and �k) since the resolution normalization
is inherent. Such implementation is a straight forward calculation of the sums and the ratio of σ

and χ (on tensor form) and we will not discuss the practical aspects of it here.
In Fig. 3.8 we show the velocity tensor in one spatial direction as a function of band depth

(chemical potential) for two different slit sizes. The velocity tensor have been generated from
a single parabolic band with m∗ = me (free electron) with band maximum at μ = 0. For the
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Figure 3.8: (a) h̄2vxx = ∂2εn(�k)/∂k2
x for different �k–point samplings nk for 22 energy slits. (b)

Same, but for 110 energy slits (every other point is removed for clarity).

largest slit size (see Fig. 3.8(a)), some points are dropped for nk = 50, while this improves for
nk = 100 and nk = 150. In addition, wiggles are observed, originating from slit boundary
effects. For the densest �k–point grid the results are acceptable, and approach the linear limit.
The same situation is illustrated for the smaller slit size (see Fig. 3.8(b)), but as expected more
points are skipped since the �k–point sampling is the same. Again, the dropped points decrease
with increasing �k–point grid size. If we now were to include different bands with different
curvatures (and hence velocities) an inconsistency appears. Hence, it is important to choose the
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right compromise between slit size and �k–point sampling, or to introduce additional routines
to fill in the missing points. For the band engineering section (Sec. 3.5) later we manually
matched the band curvatures and the slit and �k–point resolution to avoid any significant problems
of wiggles or lack of point pickup. For the articles where the Seebeck coefficient have been
calculated we used the direct sum approach due to its simpleness and lack of these problems.

Based on random point interpolations routines such as Kriging (see for example the book by
A. G. Journel and Ch. J. Huijbregts[55] for a discussion of this technique) or modified Shep-
ard [56] it is possible to adapt this code to utilize on the go interpolations in each slit, thus
significantly increasing the flexibility and redundancy by removing the aforementioned prob-
lems.

Calculation of the chemical potential

We also want to calculate the temperature dependence of the transport coefficients, but this is not
straight forward due to the temperature dependence of the chemical potential. However, we can
circumvent the problem by assuming that we have a closed system with a constant number of
electrons N and utilize the Fermi function such that

N =
1

Ω

∑
n

∫
2fn(�k)d�k,

=
1

Ω

∑
n

∫
2

e(ε(�k)−μ(T ))/kbT + 1
d�k. (3.118)

At a given temperature this equation can be solved for the chemical potential by a least square
approach, or similarly for a given temperature and particle number. We choose the Newton–
Raphson method [2] (Sec. 9.4) as it is simple and sufficiently fast and accurate for our purpose.

The important �k–point convergence

The energy slit method needs interpolation routines to be stable and tractable for a wide range
of systems. We shall see that the calculation of the transport properties by utilizing the Boltz-
mann equations is burdened by additional severe �k–point convergence problems related to the
calculation of the band structure and the velocities. To illustrate these problems we will use
the band structure and velocities for the SrZn2Sb2 compound. The band structure and veloc-
ities are extracted from density functional calculations in VASP based on a PBE+U [57, 58]
approach (see paper IV for calculation details). Even though this fails to produce the correct
overall band structure (see paper V), the point of this section is to show problems related to
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the �k–point convergence. We only present data for the Seebeck coefficient, but the convergence
problems are similar for the separate σ and χ tensors. The tensor trace of the Seebeck coeffi-
cient (αxx + αyy + αzz)/3 is used for the convergence tests. All post–interpolation of the band
structure and velocities have been performed by the modified Sheppard interpolation [56]. This
interpolation technique has the ability of extracting random points and was chosen with the future
possibilities of such randomness in mind (e.g. interpolation along paths and scattered domains).
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Figure 3.9: Convergence tests of the Seebeck coefficient as a function of carrier concentration
for SrZn2Sb2 at 300 K. In (a), (b) and (c) the convergence as a function of input �k–point grid
(see legend) is given for three different interpolation schemes. (a) fills none, (b) four and (c)
eight points between the original points in the input grid. The 28×28×14 input �k–point grid is
interpolated (see legend for final grid density) and compared in (c).

The severeness of the �k–point convergence is evident from Fig. 3.9, where the Seebeck
coefficient versus carrier concentration is investigated for different �k–point grid densities. All
transport calculations were done at a fixed temperature of 300 K. In Fig. 3.9(a) no interpolation
is performed and, as the input grid becomes increasingly dense, there is trace of a slow conver-
gence. Post-interpolating the output band structure grids by four intermediate points between
the originals (Fig. 3.9(b)) immediately improves the convergence. Doubling the point filling in
Fig. 3.9(c) yield very similar results and thus indicate a clear convergence. The same behaviour
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Table 3.1: SrZn2Sb2
�k–points used for the Seebeck coefficient convergence tests. Input grid

points in the Brillouin zone (BZ) and the irreducible Brillouin zone (IBZ) are also listed.

Original Interpolated (intermediate points)
Grid IBZ BZ 2 4 6 8
12×12×6 100 864 34×34×16 56×56×26 78×78×36 100×100×46
16×16×8 213 2048 46×46×22 76×76×36 106×106×50 136×136×64
20×20×10 396 4000 58×58×28 96×96×46 134×134×64 172×172×82
24×24×12 667 6912 70×70×34 116×116×56 162×162×78 208×208×100
28×28×14 1030 10976 82×82×40 136×136×66 190×190×92 244×244×118

is seen in Fig. 3.9(d), where a 28×28×14 band structure grid is interpolated with no, two, four,
six and then eight intermediate points. The difference between the first two is substantial, but
then the results start to converge, suggesting four intermediate points as an acceptable compro-
mise. It is worth pointing out from Table 3.1 that, to obtain such convergence a fairly aggressive
scheme is needed. More precisely, even though we already fill the Brillouin zone with 10976 �k–
points, we need to post–interpolate this to 1.2 million �k–points, or roughly an order of magnitude
increase of points in one direction to observe convergence. For the most aggressive interpolation
scheme a convergence within 1–2 μV/K is obtained.

Reasonable convergence was possible for the Seebeck coefficient as a function of the carrier
concentration. But, one should not instantly think that this convergence is universal for e.g. the
temperature dependence of the Seebeck coefficient for the same band structure grids and inter-
polation schemes. In Fig. 3.10 a similar convergence test is given for the Seebeck coefficient
as a function of the temperature. For the non–interpolated band structure grids in Fig. 3.10(a),
no overall convergence can be observed, although, it is signs of converging Seebeck coefficient
at higher temperatures. Interpolating the band structure grids in Fig. 3.10 with four intermedi-
ate points yields clear signs of convergence. This convergence further improves for the most
aggressive eight intermediate point interpolation scheme (see Fig. 3.10(c) and 3.10(d)). Accept-
able convergence within 5–10 μV/K is obtained for the most aggressive interpolation scheme,
although notice that this is almost an order of magnitude larger than what was possible with the
carrier concentration tests under the same conditions.

For readers unfamiliar with density functional calculations and the computational resources
needed to do such dense calculations should know that for the 28×28×14 calculations it was
necessary to use 32 processors with roughly 15GB of memory on each processor. And this is
part of the reason why we choose a simple system like the SrZn2Sb2 compound. Obtaining
such dense grids for larger systems, like the 14–1–11 compounds or the β–Zn4Sb3 compound is
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Figure 3.10: Convergence tests of the Seebeck coefficient as a function of temperature for
SrZn2Sb2. Fermi level is set at the top of the valence band. See Fig. 3.9 for additional details.

simply not possible. However, even though a dense grid is needed for the SrZn2Sb2 compound,
case–by–case studies of the convergence is crucial for the system of interest and a warning to the
reader is hereby given to carefully assess published results not discussing this.

It would be very beneficial to solve the aforementioned convergence problems, such that this
kind of transport calculations could be done for larger systems and maybe in the future also for
systems incorporating defects or other imperfections in the crystal.

A possible solution is a grid shift approach [59] currently under development in VASP5.X.
The main idea is based on the irreducible Brillouin zone (IBZ) and shifts of this. In principle
we would like to utilize the IBZ wherever possible due to the performance benefits. However,
figuring out an interpolation (or extrapolation) scheme that operates on the IBZ and implement
this into running density functional codes is not trivial. The method under development works
by shifting the whole IBZ as shown in Fig. 3.11 and utilize an interpolation and extrapolation of
the plane wave coefficients based on the original IBZ. The new shifted IBZ is then diagonalized
and the velocities (or other observables) are calculated. Contrary to the current approach of
generating the densest possible input grid and applying post–interpolation, this approach has
the potential of being more accurate (interpolation/extrapolation directly from the plane wave
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coefficients) and it is expected to give a significant improvement of speed and memory usage.

Figure 3.11: Outline of an interpolation approach that utilize irreducible Brillouin zone (IBZ)
grid–shifts. A cubic 3×3×1 (one to keep the two dimensionality of the figure) IBZ is shown
for simplicity. The black points and lines represent the original IBZ, while the blue and green
represent two different shifts. When all shifts are done, the IBZ is up sampled by two additional
intermediate points. Increasing the number of shifts, while decreasing the shift length would
increase the up sampling.

Even though this approach was initially intended for transport calculations it turns out it
could also be used to generate dense density of states, band structures and improve the slow
convergence of the optical properties (similar to the transport, due to the calculation of the mo-
mentum operator operating on the plane wave functions).

To illustrate some preliminary results of this approach, the density of states of the elemental
Al is given in Fig. 3.12. Four base �k–point grids are calculated; 7×7×7, 11×11×11, 33×33×33
and 55×55×55, respectively. Then, the base 11×11×11 grid is interpolated to a 33×33×33 and
a 55×55×55 grid. The agreement between the interpolated 33×33×33 and the base 33×33×33
grid is very good with the additional benefit of a significantly decreased computational time as
can be seen from Table 3.2. The calculation of the velocities currently suffer from a slight in-
crease in computational time (but significant memory savings) due to dynamic symmetry lockups
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Table 3.2: Al density of states calculation times over a set of different �k–point grids. The base
11×11×11 grid is interpolated to 33×33×33 and 55×55×55 �k–points using shifts of the irre-
ducible Brillouin zone and interpolation/extrapolation of the plane wave coefficients.

Grid Time [s]
11×11×11 28
33×33×33 470
55×55×55 1974
11×11×11→33×33×33 100
11×11×11→55×55×55 189

needed for the explicit use of the IBZ. However, a linear to constant lockup with respect to the
number of �k–points is expected when these routines are rewritten to utilize hashed �k–points. This
would yield a constant lockup time with some extra overhead (collision checks) compared to the
currently unhashed routines. Consequently an order of magnitude speedup is expected. The idea
of using hash lockups is not new [60] (Chap. 6) and we will not discuss this further in this thesis.

3.5 Band engineering and the impact on the transport prop-
erties

Now that a rigorous calculation of the transport properties can be done, let us investigate how
different band structure properties affect the electrical conductivity and the Seebeck coefficient.
To do this in a consistent manner we generate fictitious bands based on the modified single
parabolic band approximation

ε(�k) =
h̄2k2

2m∗
+ Δε, (3.119)

where m∗ is the effective mass and Δε is an energy shift constant. The effective mass will set the
curvature of the band. The effective mass is replaced by m∗ = ame for simplicity. The constant
a then determines the curvature of the band. A negative a generates a valence band, while a
positive a yields a conduction band.

Before generating the bands it is worthwhile to investigate the different parameters that de-
termine the electrical conductivity and the Seebeck coefficient. The electrical conductivity is
fully determined by Eq. (3.98), while the Seebeck coefficient uses a combination of Eq. (3.98)
and Eq. (3.99). While the relaxation time is of importance we will disregard it until further no-
tice. The two remaining properties in the conductivity tensor are then the velocity tensor and the



3.5. Band engineering and the impact on the transport properties 67

0 10
Energy [eV]

0

1

2

3

4

5

6

D
en

si
ty

 o
f s

ta
te

s [
st

at
es

/u
ni

t c
el

l]
7x7x7
11x11x11
33x33x33
55x55x55
11x11x11 -> 33x33x33
11x11x11 -> 55x55x55

5 7.5 101.5

2

Figure 3.12: Density of states for elemental Al for different sets of �k–point grids and interpo-
lation schemes. The 11×11×11 grid has been interpolated to a 33×33×33 (green circles) and
a 55×55×55 (indigo squares) grids to illustrate the potential of the shift approach. A Gaussian
smearing of 0.2 eV was added to the calculated results.

derivative of the equilibrium Fermi function. The velocities are dependent on the band structure
(and quantum effects beyond what can be observed in the band structure), while the band pickup
from the Fermi function derivative is only dependent on the temperature and the difference be-
tween the energy and the chemical potential.

To illustrate the band pickup at different temperatures we plot ∂f/∂ε as a function of ε − μ

in Fig. 3.13(a), where the Fermi energy is set at zero. The derivative distribution is centered at
μ, thus any shift of μ would shift the band pickup accordingly. The width of the distribution
increases with temperature as is well known from the Fermi function. For 300 K there is hardly
any band pickup outside ε − μ ± 0.2 eV, while there for 900K is significant pickup outside this
region, dropping to zero at approximately ε − μ ± 0.5 eV. This tells us that the semi–classical
conductivity is determined (at all interesting temperatures) by states with energies in a region
of ±0.5 eV around the chemical potential. Due to the temperature dependent width of the band
pickup, the band velocities close to ε = μ are dominating at low temperatures, while at elevated
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temperatures, velocities away from ε = μ becomes increasingly more important.
For the χ tensor the behavior is a bit more complicated. The main difference between the

pickup factor for χ and σ is an additional linear ε − μ weighting factor. In Fig. 3.13(b), where
(ε − μ)∂f/∂ε is plotted as a function of ε − μ, this is clearly seen. The pickup as a function of
temperature is similar to that of the electrical conductivity, but is now multiplied by a linear term.
The weighting amplitude is constant for all temperatures and the range pickup is slightly wider,
especially at elevated temperatures. But the region of ±0.5 eV around μ is still valid. Because of
the integral over the band pickup and velocity, the asymmetry of the χ band pickup leads to the
requirement of band asymmetry around μ to obtain a large χ and thus a large Seebeck coefficient.
If the bands are mirrored around μ within a large portion of the pickup region, χ would approach
zero and thus yield a small Seebeck coefficient. If we assume that the velocity is constant (e.g.
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Figure 3.13: (a) Band pickup for the σ (conductivity) tensor at four different temperatures. (b)
Similar, but for the χ tensor. See (a) for legend.

isotropic structure with linear bands), the Seebeck coefficient is independent of the velocity. For
the single band approximation we see that

v =
h̄k

m∗
, (3.120)

=

√
2ε

m∗
. (3.121)

Thus, for the single band approximation, the band pickup is multiplied by an additional
√

ε factor.
Due to the nature of the single band approximation it can immediately be recognized that the

electrical conductivity is easily calculated if the effective mass is known. It also turns out that
the Seebeck coefficient is independent of the effective mass. Substituting the single parabolic
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velocity Eq. (3.121) into Eq. (3.117) (and assuming a single band) the electrical conductivity σ

and the thermal coefficient χ are obtained for the single parabolic band approximation as follows

σs =
e2

ΩkbT

√
1

2h̄2m∗

∫ ∞

0

τ(ε)
ε1/2

cosh((ε − μ)/kbT ) + 1
dε, (3.122)

χs =
e

ΩkbT 2

√
1

2h̄2m∗

∫ ∞

0

τ(ε)
ε1/2(ε − μ)

cosh((ε − μ)/kbT ) + 1
dε, (3.123)

which from Eq. (3.91) gives the Seebeck coefficient

αs =
1

eT

(∫ ∞

0
τ(ε) ε3/2

cosh((ε−μ)/kbT )+1
dε∫ ∞

0
τ(ε) ε1/2

cosh((ε−μ)/kbT )+1
dε

− μ

)
, (3.124)

where τ(ε) is an energy dependent scattering time. The way of maximizing the Seebeck coef-
ficient from the single band approximation is if μ � ε or μ � ε. Another option would be to
make the denominator (conductivity) approach zero, which is satisfied for the same conditions.
Hence, the longer away from the band μ is placed, the larger the Seebeck coefficient. This is
somewhat fictitious since the conductivity would be zero and no current would be able to flow,
but it illustrates the demand for asymmetry around μ to obtain the highest possible Seebeck co-
efficient. The conductivity is increased by increasing the velocity (similar to a decrease of the
effective mass, or an increase of the band curvature).

To go beyond the single band approximation (but still in the parabolic approximation) we
have to sum over the additional bands in Eq. (3.122), (3.123) and (3.125). We will now leave
the single band approximation and perform band engineering to illustrate how the electrical con-
ductivity and Seebeck coefficient varies over a wide range of band combinations. All transport
calculations in the rest of this thesis are based on the solution of the Boltzmann equation under
the approximations that lead to the Boltzmann transport equations in Sec. 3.4.4. These equa-
tions are solved using the energy slit implementations presented in section Sec. 3.4.5. The band
curvature is determined by the constant a, while the energy shift is determined by Δε. Unless
otherwise stated, the relaxation time have been taken to be independent of both energy and �k–
points and fixed at 1 fs [9] (Chap. 1). For convenience the Fermi level εf is fixed at ε = 0, where
μ = εf at equilibrium.
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3.5.1 Chemical potential or carrier concentration

Studies of the transport properties are usually given as a function of carrier concentration or
chemical potential. The carrier concentration is readily available from Hall measurements and it
is thus more common to use carrier concentration representation when presenting experimental
data. However, in this section we give most of the data versus the chemical potential due to
its simpleness. But, for the constant scattering and energy filtered power factor we also include
the carrier concentration representation. The relation between chemical potential and carrier
concentration nc for a single parabolic band [9] (Chap. 28) is given by

nc(μ, m∗, T ) =

√
2

π2

(
m∗kbT

h̄2

)3/2 ∫ ∞

0

ε1/2f(ε, μ, T )dε. (3.125)

where f is the equilibrium Fermi distribution. This is calculated for illustrative purposes for a
set of band curvatures in Fig. 3.14. It is important to emphasize that a sum over Eq. (3.126) is
needed if multiple bands are used.
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Figure 3.14: Carrier concentration as a function of chemical potential for a set of different effec-
tive masses (band combinations). The absolute value of the effective mass parameter a is used in
the calculation of Eq. (3.126). The temperature is fixed at 300 K.
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3.5.2 Temperature

To explicitly illustrate the temperature dependence of the band pickup we calculate the electrical
conductivity and the Seebeck coefficient as a function of μ for different temperatures. The va-
lence band is fixed at a = −1, Δε = 0 and thus resemble the free electron mass for simplicity.
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Figure 3.15: (a) Electrical conductivity and (b) Seebeck coefficient as a function of chemical
potential at four different temperatures. See (a) for legend.

From Fig. 3.15 the increased band pickup is clearly illustrated at elevated temperatures.
The fact that the Seebeck coefficient in Fig. 3.15(b) is largest when the band pickup decreases is
visible and due to the width of the pickup (and thus smaller conductivity), the Seebeck coefficient
at room temperature at μ = 0.3 eV is largest of all four. At higher temperature a decreased
slope of the Seebeck coefficient as a function of μ is observed. This is caused by different
band pickup between σ and χ as illustrated in Fig. 3.13(a) and Fig. 3.13(b). This behaviour
is cancelled between χ and σ at μ = 0, where the asymmetry is equal for all temperatures.
However, for μ 
= 0 the symmetry changes due to the band pickup and the curves start to separate.
To summarize;

• μ > 0; lower temperatures give higher Seebeck coefficients with the largest slope due to
a small denominator (conductivity). The electrical conductivity is small due to the lack of
band pickup (except close to μ = 0).

• μ < 0; higher temperatures give higher Seebeck coefficients. The electrical conductivity
at different temperatures becomes similar when μ enter the deeper regions of the band due
to the band pickup around μ.
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3.5.3 Curvature

In the previous section we underlined temperature dependent features of the electrical conductiv-
ity and Seebeck coefficient. We now fix the temperature (in this case at 300 K) and investigate the
curvature of single parabolic bands (both valence and conduction), but postpone the discussion
of the combination until a later section.

The electrical conductivity is proportional to the band curvature. From Fig. 3.16(a), we see
that bands with larger velocity results in an increased electrical conductivity. The difference of a
valence band and conduction band is also shown for the band curvatures a = −1.0 and a = 1.0,
respectively. The difference is just what we would expect, symmetric around μ = 0.
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Figure 3.16: (a) Electrical conductivity and (b) Seebeck coefficient as a function of chemical
potential for four different band curvatures, determined by the constant a. The temperature is
fixed at 300 K.

In Fig. 3.16(b) we again (also Eq. (3.125)) see that the Seebeck coefficient is independent
of a change in the band curvature (effective mass), except for the obvious valence to conduction
band changes. Negative Seebeck coefficients are a signature of positive band curvature, such that
n–doped materials will exhibit negative Seebeck values, while the opposite is true for p–doped
materials. Hence;

• Increasing the band curvature increases the conductivity, while the sign of the curvature
determines whether the conductivity increases for positive or negative μ.

• The Seebeck coefficient does not depend on the band curvature within the single parabolic
band approximation. A sign change of the curvature changes the sign and the increas-
ing/decreasing behaviour versus μ of the Seebeck coefficient.
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3.5.4 Degeneracy and reciprocal shift

It is now time to determine how the electrical conductivity and the Seebeck coefficient respond
to band degeneracy and shifts in reciprocal space. From the implementation of the energy slits
it should be obvious that any reciprocal shift does not matter as long as the band edges are
retained within the pickup region. The changes of the electrical conductivity due to degeneracy
are shown in Fig. 3.17(a), while they for the Seebeck coefficient are shown in Fig. 3.17(b). The
difference between a single band and two bands is evident for the conductivity. By adding a
second band with a smaller effective mass, the electrical conductivity increases as is expected
from the additive behaviour of the bands and the direct dependence of the effective mass.

Any additional band (as long as it is not energy shifted with respect to the others) will how-
ever not change the Seebeck coefficient. This is due to the cancellation effect between χ and σ

for a constant change in band curvature. Similar to the electrical conductivity, there is also no
change if we apply a reciprocal shift to one of the bands. The cancellation effect is a feature
of the parabolic band approximation and can also be seen from Eq. (3.125). To summarize this
section;
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Figure 3.17: (a) Electrical conductivity and (b) Seebeck coefficient as a function of chemical
potential, compared for one band, two bands similar curvatures and a two band case with different
curvatures. The temperature is fixed at 300 K. See (a) for legend.

• The electrical conductivity is dependent on the band degeneracy. A doubling of the degen-
eracy accordingly doubles the electrical conductivity if the bands are kept equal.

• The Seebeck coefficient is independent of the degeneracy in the parabolic approximation
(as long as the bands are not energy shifted). Deviations in real systems are expected due
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to the failure of the parabolic approximation.

3.5.5 Energy shift

We have so far not investigated the effect of energy shifts of the generated bands. To investigate
this we use sets of single parabolic bands with different effective masses and energy shifts. In
Fig. 3.18(a) we see that a negative energy shift lowers the onset for band pickup and thus lowers
the onset of electrical conductivity. By introducing an additional band with the same curvature,
but energy shifted from the original, the electrical conductivity increases accordingly as we saw
in the previous discussion, although with a modification due to the later band pickup of the
shifted band. Again, changes in the effective mass follows the previous discussions. However,
for the Seebeck coefficient in Fig. 3.18(b) we see that the largest difference is introduced by the
single band energy shifts. As previously discussed the Seebeck coefficient is largest where the
conductivity drops to zero. It is also important to notice that it is the first band that dominate
the Seebeck coefficient. The introduction of additional bands deeper in energy only modify the
Seebeck coefficient in the band pickup region of the additional band. An interesting fact to note
is the subtle difference in the Seebeck coefficient between the a = −1.0,−0.5, Δε = 0,−0.1

eV and a = −1.0,−0.5, Δε = −0.1, 0 eV calculations (see inset in Fig. 3.18(b)). The latter will
have a slightly higher electrical conductivity in the region from -0.1 to 0 eV, which yields a lower
Seebeck coefficient close to and in this region. The impact of energy shifts can be summarized
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Figure 3.18: (a) Electrical conductivity and (b) Seebeck coefficient as a function of chemical
potential, compared for one band with and without energy shifts and two bands with different
curvatures and energy shifts. The temperature is fixed at 300 K and the energy shift is given by
Δε. See (a) for legend.
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as follows;

• The electrical conductivity as a function of chemical potential changes drastically between
the different energy shifts. The largest conductivity is found for the band combination with
the lowest effective mass (largest band curvature).

• The Seebeck coefficient is highly dependent on the first band. Additional bands introduce
small (but still important) modifications in the respective pickup regions.

3.5.6 Conduction band

Even though the previous discussions are important, they are somewhat artificial. In most realis-
tic situations, particularly at high temperate and in narrow band gap systems, conduction bands
will contribute. In Fig. 3.19(a) the electrical conductivity is given as a function of chemical
potential for different combinations of valence and conduction bands. The previous discussion
of the change in the conductivity as the effective mass changes still holds, although with addi-
tional contributions on the conduction side. When the conduction band is pulled down into the
valence region to generate a metal–like system there is a non–zero region of the conductivity in
the overlap region between the valence and conduction bands. This even occurs for bands sepa-
rated by a small gap (because of the distribution at 300 K). The Seebeck coefficient is similarly
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Figure 3.19: (a) Electrical conductivity and (b) Seebeck coefficient as function of chemical po-
tential, compared for different combinations of a (negative is valence, positive is conduction)
and energy shifts. The temperature is fixed at 300 K and the energy shift is given by Δε.

illustrated in Fig. 3.19(b). Here, we start to see many of the commonly known behaviours of the
Seebeck coefficient for semi–conductors. For example, introducing a conduction band with the
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same effective mass as the valence band, separated by a small band gap gives a transition region
in the middle of the gap. In this region, the Seebeck coefficient changes sign from positive to
negative when the conduction band starts to dominate (or opposite for the valence band). A neg-
ative Seebeck coefficient is associated with n–type behaviour, while p–type is positive. When
the gap decreases, the maximum and minimum Seebeck coefficient decreases due to the lack of
asymmetry around μ. Again, we see that an effective mass change is ignored if there is an equal
change between the conduction and valence band. A decrease of the effective mass in the con-
duction band with respect to the valence band (or vice versa) results in a decrease of the Seebeck
coefficient due to the increased conductivity. To summarize;

• Introducing conduction bands does not modify the original discussion about the electri-
cal conductivity. However, due to the change in sign of the effective mass, we also get
conductivity contribution for positive μ. At a sufficiently wide gap (depending on the tem-
perature), there is a region of zero conductivity in the gap region. This disappears when
the thermal band pickup enclose the gap (e.g. high temperatures and/or small gap). A clear
metallic behaviour is then observed.

• The effect of conduction bands on the Seebeck coefficient is significant. A negative See-
beck coefficient is to be associated with n–doped systems, while a p–type is to be associ-
ated with the positive counterpart. The transition between a positive and negative Seebeck
coefficient takes place in the middle of the gap region if the valence and conduction bands
are symmetric around the gap with a sign change. A small band gap accordingly give a
small Seebeck coefficient due to less antisymmetry around μ.

3.5.7 Modifications due to electron scattering

Due to the non–cancelling relaxation time τ from σ, it is somewhat artificial to fix the scattering
time without considering basic electron scattering. If we simply set τ to a constant, we get a
conductivity that is increasing with increasing number of bands. Hence, the conductivity would
keep rising monotonically as the temperature is increased. For real systems this is highly un-
physical and we need to introduce a parametrization for the relaxation time to account for at least
the majority of effects.

The two dominating scattering mechanisms in doped semi–conductors are scattering by
acoustical phonons and impurities. Simple models for both are given by Fistul [48] (Tab. 3.2). In
this thesis we have implemented a factor similar to the one given in Eq. (3.2.22) of Fistul [48].
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To summarize, Fistul defines

τa,i = τa
0

|ε|3/2

|ε|2 + ξ2
, (3.126)

where
ξ2 =

τa
0

τ i
0

, (3.127)

as a relaxation time that contains both scattering by acoustical vibrations and impurities through
τa
0 and τ i

0, respectively. Here, ξ2 gives the ratio between the acoustical and impurity contributions.
The prefactor τa

0 is given as

τa
0 =

9

4
√

2

h̄4ω2M

C2a2(m∗kbT )3/2
, (3.128)

where C is a Bloch constant, ξ the lattice parameter, ω the sound velocity, a the lattice parameter
and M the atomic mass. We take τa

0 to be constant in energy. Hence, τa,i is a function of energy
and ξ2 only. Substituting Eq. (3.127) into the transport equations, we see that τa

0 cancels for
the Seebeck and Hall coefficients, while it is retained for the electrical and thermal conductivity.
The cancellation is convenient due to the complex problem of calculating τa

0 from ab–initio
principles. Common relaxation times are in the order of tenths of femtoseconds [9] (Chap. 1).
To simplify the comparisons we will fix τa

0 at 1 fs.
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Figure 3.20: (a) Electrical conductivity and (b) Seebeck coefficient as function of chemical po-
tential, compared for different combinations of the scattering parameter ξ. Only one valence
band with a = −1 is included in the calculation. The temperature is fixed at 300 K. See (a) for
legend.

A large ξ means that τa
0 >> τ i

0, thus primarily ionic scattering. For a small ξ the opposite
is true. The combined approach of Eq. (3.129) is difficult to compare to a constant scattering
time used until now. This is due to the energy dependence (that modify the band pickup) and
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quantitative comparisons with the previous results will not be done.
In Fig. 3.20 we compare results given different scattering parameters ξ for the electrical

conductivity and Seebeck coefficient. One valence band with a = −1 has been included in the
calculations. A scattering parameter of ξ = 1 clearly yields the largest dampening of the conduc-
tivity and hence the largest Seebeck coefficient. Also, the curvature of the electrical conductivity
changes quite drastically from ξ = 1 to ξ = 0.001, the transition from combined ionic and
acoustic to predominantly acoustic scattering. It is interesting to note the rather small change of
the Seebeck coefficient (compared to the electrical conductivity), which is a consequence of the
cancellation between the χ tensor and the electrical conductivity. There is however a constant
shift of the Seebeck coefficient for the different scattering parameters.
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Figure 3.21: (a) Electrical conductivity and (b) Seebeck coefficient as function of chemical po-
tential, compared for different combinations of the scattering parameter ξ. One valence band and
one conduction band with a = −1, Δε = 0 eV and a = 1, Δε = 0.1 eV are included in the
calculation. The temperature is fixed at 300 K. See (a) for legend.

Introducing a shifted conduction band in Fig. 3.21 yields similar results, although with ad-
ditional features. Due to the conduction band, a transition from n–type to p–type and the sign
change in the Seebeck coefficient are observed. As before, the smallest conductivity gives the
largest Seebeck coefficient.

We can briefly summarize the scattering section in a few points;

• Scattering due to ionic impurities and acoustic vibrations scattering alters the electrical
conductivity significantly.

• In this simple model, ionic scattering is the strongest electron scatter process.
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• Changes in the Seebeck coefficient due to scattering are less significant than the changes
observed for the electrical conductivity. The behaviour as a function of chemical potential
(and carrier concentration) is fairly similar, but a constant shift is applied.

• The difference between the one and two band model is similar to the previous discussion
disregarding scattering mechanisms.

3.5.8 Power factor and optimization of electronic properties

It should from the proceeding discussions be apparent that we can not simultaneously obtain
a large electrical conductivity and a Seebeck coefficient. To obtain a large zT value, this is
precisely what is needed. The combination enters in the power factor p = α2σ in Eq. (2.4).
Hence, for thermoelectric optimization, knowledge about this factor is crucial. We will in this
section discuss the compromise between the electrical conductivity and the Seebeck coefficient
and how to obtain the “optimal” power factor.

Power factor with constant scattering

Let us first consider the power factor in absence of energy dependent scattering with a constant
scattering time of 1 fs [9] (Chap. 1). In Fig. 3.22(a) we give the power factor as a function of the
chemical potential for different combinations of bands. The maximum power factor is clearly
obtained for bands with the smallest effective mass (largest conductivity). The introduction of an
additional valence band with a = −0.5 increases the power factor, but when a is increased the
power factor approach the limit of the original band (compare green solid, dashed and dotted lines
to the black solid line in Fig. 3.22). Similar behaviour is seen for the power factor as a function
of carrier concentration (only shown for valence bands) in Fig. 3.22(b). This is a very important
observation that confirms that a small effective mass is essential for large power factors. The
power factor is thus strongly dependent on the electrical conductivity and optimization of this
should be a primary concern as long as a decent Seebeck coefficient is met in a given system.
The addition of a conduction band introduces a second peak and has a relatively small effect on
the peak associated with the valence band. Another interesting observation is the shift of the
valence peak if one valence band is downshifted in energy (compare solid purple and green line
in Fig. 3.22). This is accompanied by an increase of the peak width at a cost of the height and
indicates that the range of operational temperature might be increased by filling the valence (or
conduction if n–type is wanted) region with several similar, but energy shifted bands.



80 Chapter 3. Density functional theory studies of thermoelectric materials

-0.2 0 0.2

μ [eV]

0

20

40

60

80
p 

[m
W

K
-2

m
-1

]

(a) As a function of chemical potential

1×10-8 1×10-6 1×10-4

nc [x 1021 cm-3]

0

20

40

60

80

p 
[m

W
K

-2
m

-1
]

a=-0.5, 1.0, Δε=0, 0.2 eV
a=-0.5, 1.0, Δε=0, 0.4 eV
a=-0.5, -0.5, Δε=0, -0.1 eV
a=-0.5, -0.5
a=-0.5, -1.0
a=-0.5, -1.5
a=-0.5
a=-1.0
a=-1.5

(b) As a function of carrier concentration

Figure 3.22: (a) The power factor and as a function of the chemical potential and (b) carrier
concentration, compared for different combinations of bands given by the curvature a and the
energy shift Δε. The temperature is fixed at 300 K. See (b) for legend.

Power factor with energy dependent scattering

In the last section we discovered that the power factor was strongly dependent on the conduc-
tivity (or more directly, the effective mass). Due the sensitivity of the electrical conductivity to
scattering it is expected that the power factor will change significantly when electron scattering
is involved. In Fig. 3.23(a), 3.23(b) and 3.23(c) the power factor for three different scattering
parameters ξ = 0.01, 0.1 and 1.0 is given.

The result of ionic and acoustical scattering (ξ = 1.0) can be understood from Fig. 3.21(a).
The slope and magnitude of the electrical conductivity are significantly changed, while the See-
beck coefficient remains virtually unchanged. Thus, as a consequence, the peak of the power
factor is downshifted and decreased due to the slope and magnitude changes of the electrical con-
ductivity. A more subtle change is the similarity between the energy shifted calculation (solid
indigo line) and the non–shifted calculation (solid green line) for larger ξ. One might expect
these changes to be similar to the constant scattering calculations in Fig. 3.22. However, due to
the modification in the band pickup (additional energy terms from τa,i) there is less change when
the scattering model is applied.

When acoustical scattering becomes more important (ξ = 0.1) we see that the shift and
decrease of the valence peak is smaller. And, when the acoustic scattering is predominant
(ξ = 0.01) we retain similar behaviour to the constant scattering time approach, except for the
modification of the band pickup, causing a different behaviour of the shifted band. An increase
of the power factor is seen due to the increase of the total scattering time. All these changes can
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Figure 3.23: The power factor as a function of the chemical potential, compared for different
combinations of bands given by the curvature a and the energy shift Δε. The temperature is
fixed at 300 K. Scattering parameters are ξ = 0.01, 0.1, 1.0 for (a), (b) and (c), respectively.

be explained from the electrical conductivity in Fig. 3.21(a).

3.5.9 Figure–of–merit

The previous section discussed band dependencies of the power factor. A strong correlation
between the velocity (electrical conductivity) and power factor was shown. However, the figure–
of–merit, zT also depends on the electrical and lattice thermal conductivities. From Eq. (2.4) we
can separate these thermal conductivities such that

zT =
α2σ

κe + κl

T, (3.129)

where κe and κl are the electrical and lattice thermal conductivities, respectively. By rewriting
Eq. (3.130) we get

zT =
α2σ(

1 + κl

κe

)
κe

T. (3.130)
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Through Wiedemann-Franz law [61]
κe = L0Tσ, (3.131)

where L0 is the Sommerfield Lorentz constant [9] (Chap. 1), we obtain

zT =
α2

L0

(
1 + κl

κe

) . (3.132)

Generally, L0 should be replaced by a Lorentz function L, which can is calculated from the
ratio between the electrical conductivity and the electrical thermal conductivity tensors. This is
clearly shown in Fig. 3.24 for different band combinations. Unless the valence bands are shifted
with respect to each other, they do not alter the one band behaviour of the Lorentz function. A
small difference between the energy shifted (purple diamonds) and the energy non-shifted (green
circles) Lorentz functions can be seen close to the shifted band onset. Adding a conduction band
pulls the Lorentz values down towards the L0 constant. In the metallic (or highly doped) limit,
the Lorentz function approaches the commonly used L0 constant.

To illustrate the band curvature dependence of the figure–of–merit, we calculate the Lorentz
tensor and use its trace in Eq. (3.131) and give the figure–of–merit as a function of chemical
potential and lattice thermal conductivity in Fig. 3.25 and 3.26. From this it is clear that a
large band curvature and low lattice thermal conductivity are needed to obtain a large zT value.
Additional bands increase the zT value further and if they are shifted with respect to each other,
a slight increase of the width of the zT peak at the cost of height is observed (similar to the
power factor). A conduction band yields what is expected, another zT peak associated with it,
where the separation between the center zT valence and conduction peak is determined by the
the band gap. For a sufficiently large gap the single band zT valence peak is retained. However,
by pulling the conduction band into the valence region the zT peak decreases drastically even
though the band curvature is large. Notice that the zT value is largest right above the valence
band edge onset. Unfortunately this is a region which is difficult to reach, but the closer we are to
the termination of the band from below (valence bands), the larger the zT value is, demonstrating
also the need for asymmetry.

We can thus summarize;

• By lowering the lattice thermal conductivity, the zT value increases.

• Increasing the band curvature and/or degeneracy increases the zT value.

• Asymmetry around μ is necessary for a large zT value and the chemical potential should
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be set close to the band onset in the given temperature range.

• The operational temperature might be improved by adding several bands with sufficient
spacing so that continues asymmetries exist for decreasing (increasing for n-type) chemical
potential.
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Figure 3.24: Lorentz function for different combinations of bands given by the curvature a and
the energy shift Δε. Temperature is fixed at 300K. The Sommerfield Lorentz number L0 is also
shown for comparison.

3.5.10 Energy filtering

Albeit this might seem artificial, there is a possible way to increase the power factor beyond
the classical approach. What if we introduce an energy barrier that modifies the band pickup?
This would increase or decrease the asymmetry around μ and thus modify the Seebeck coefficient
significantly. At the same time, the electrical conductivity should also change (within the filtering
region), but opposite to the Seebeck coefficient, thus leading to a possible large change in the
power factor. Such a barrier could arise from e.g. scattering. For modelling purposes we chose
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here a scattering time relaxation to be represented by a Heavyside step function H(−ε−εb) times
a constant scattering time. By using this function an energy filtered band pickup is generated such
that only states with larger energy than the barrier is allowed to be involved in the transport. The
reason for choosing such simple function is purely due to implementation reasons and for more
realistic calculations it would be beneficial to introduce a more complicated filter function (e.g.
at least a Gaussian smeared Heavyside function). We now define the energy dependent scattering
time as

τ(ε) = τ0H(|ε| − εb), (3.133)

where τ0, ε and εb are the constant relaxation time, the energy and the energy barrier, respectively.
The Heavyside step function is defined as

H(|ε| − εb) =

⎧⎪⎨
⎪⎩

0 |ε| < εb

1
2

|ε| = εb

1 |ε| > εb

(3.134)

For simplicity we again fix τ0 at 1 fs [9] (Chap. 1). In Fig. 3.27 we compare the electrical
conductivity and the Seebeck coefficient at different energy barriers and different combinations
of valence bands. The Seebeck coefficient is significantly enhanced by the introduction of an
energy barrier. Increasing the energy barrier further yields an even larger Seebeck coefficient.
The electrical conductivity rapidly drops to zero in the region where the Heavyside function is
zero, but approaches the unfiltered calculation away from the barrier onset.

Results of this are apparent when we look at the power factor as a function of chemical
potential in Fig. 3.28(a). Close to a doubling of the power factor is observed when we introduce
an energy barrier in 0.1 eV steps. This change is dramatic. In Fig. 3.28(b) the power factor
as a function of carrier concentration is plotted (only for the valence bands) and it is similarly
behaved as the results presented in Fig. 3.28(a).

To illustrate the change in the figure–of–merit due to energy filtering we give the zT value as
a function of lattice thermal conductivity and chemical potential in Fig. 3.29 for three different
energy filtering schemes, given by the energy barrier εb. Similarities between the changes due
to the energy filtering in the power factor and the zT value are observed. Notice that the energy
filtering shifts the zT peak to lower chemical potential, or higher carrier concentration. This is
very convenient, since the right size of filtering can tune the zT to the chemical potential that
yields the highest band curvature or to chemical potentials that can be reached in real samples.



3.5. Band engineering and the impact on the transport properties 85

3.5.11 Band structure requirements

In this section we will briefly summarize the band engineering sections by pointing out some
key requirements needed of the band structure to be able to obtain a large power factor and
figure–of–merit. Based on the previous discussions the reader should consider the following;

• Low effective masses (high velocity) are important (if not crucial)

• A high level of degeneracy is important (degeneracy in �k–space is equally valid)

• Decent Seebeck coefficient is important (asymmetry around μ)

• Depending on the operational range in temperature or chemical potential there is a com-
promise between the electrical conductivity and the Seebeck coefficient. If an acceptable
Seebeck coefficient is obtained, focus should be shifted towards maximizing the electronic
conductivity.

• A wider operational temperature can be obtained (with a compromise of the peak power
factor and figure–of–merit value) by shifting (or adding) similar bands with low effective
mass downwards (upwards if n–type) in the valence (conduction if n–type) band.

• When the “optimal” power factor is reached and there is little potential for improvement,
energy filtering should be introduced to further improve the power factor. If an almost
perfect step function can be made, it should be possible to increase the power factor by a
factor of 2–4 (and accordingly the zT value).

• Energy filtering can potentially be used to tune the optimal figure–of-merit to a feasible
chemical potential and carrier concentration region.
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(a) a=-1.5 (b) a=-1.0

(c) a=-0.5 (d) a=-0.5, -1.5

(e) a=-0.5, -1.0 (f) a=-0.5, -0.5

(g) a=-0.5,-0.5, Δε=0, -0.1 eV (h) a=-0.5, 1.0, Δε=0, 0.4 eV

Figure 3.25: Figure–of–merit, zT , as a function of the chemical potential and lattice thermal
conductivity κl at different combinations of bands given by the curvatures a and the energy shift
Δε. The temperature is fixed at 300 K.
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(a) a=-0.5, 1.0, Δε=0, 0.2 eV (b) a=-0.5, 1.0, Δε=0, -0.1 eV

Figure 3.26: Figure–of–merit, zT , as a function of the chemical potential and lattice thermal
conductivity κl at different combinations of bands given by the curvatures a and the energy shift
Δε. The temperature is fixed at 300 K.
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Figure 3.27: (a) Electrical conductivity and (b) Seebeck coefficient as function of chemical po-
tential, compared for different combinations of the energy barrier εb. One valence band, a = −1,
is included in the calculation. Data for the two band case is not shown due to the similarities to
the one band case (see previous discussions). The temperature is fixed at 300 K and the energy
shift is Δε. See (a) for legend.
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Figure 3.28: (a) Power factor as function of the chemical potential and (b) carrier concentration,
compared for different combinations of the energy barrier εb and bands. The temperature is fixed
at 300 K and the energy shift is Δε. See (b) for legend.

(a) a=-1.0 (b) a=-1.0, εb=-0.1 eV

(c) a=-1.0, εb=-0.2 eV

Figure 3.29: Figure–of–merit, zT , as a function of the chemical potential and lattice thermal
conductivity κl at a = −1.0 and different energy barriers εb. The temperature is fixed at 300 K.
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Papers

We will here present the papers included in this thesis. All articles are based on density functional
calculations and all, except the first paper also include experimental data to confirm or investigate
motivating questions of the papers further.

Paper I – Bond analysis of phosphorus skutterudites: elongated
lanthanum electron buildup in
LaFe4P12

Status: Submitted to Computational Material Science, 29.06.2009

Authors: Espen Flage–Larsen, Ole Martin Løvvik, Øystein Prytz and Johan Taftø

Recently there have been much experimental and theoretical work regarding the correlated
motion of the filler ions in the skutterudite structure. We thus wanted to investigate the charge
surroundings of the filler ions and intended to perform a strict electron charge analysis to get
a better spatial view of the electronic structure close to the filler ions. However, such charge
analysis is complicated by the lack of a well defined charge reference.

From a modelling point of view, we have the option of generating a procrystal containing a
superposition of free atomic electron densities. Such a procystal contains overlapping densities,
but is by definition without bonds. The bonds can then be analysed and visualized from the
difference between the crystal and procrystal electron density.

We performed such an analysis for the phosphorus skutterudites CoP3 and LaFe4P12.
All calculation, visualisations, most of the interpretation and the write up of the article was

done by Espen Flage–Larsen, while Ole Martin Løvvik assisted.



Paper II – The influence of exact exchange corrections in van
der Waals layered narrow band gap black phosphorus

Status: Submitted to Journal of Physics: Condensed Matter, 11.08.2009

Authors: Øystein Prytz and Espen Flage–Larsen

Based on the development of new hybrid functionals for use in the density functional frame-
work we wanted to do a comparison of these new functionals and how they performed in a
combined covalent and van der Waals bond dominated structure. The van der Waals interaction
is purely determined by long–range correlation forces and is not included in any of the tradi-
tional functionals. However, it is well known that many of the DFT functionals include residue
exchange couplings at long range, which effectively introduces an artificial bond in the van der
Waals region. By the inclusion of Fock terms (exact exchange) this can be corrected such that
the functional is free of van der Waals bonds.

The black phosphorus was chosen as a test case based on previous work on phosphorus in
the electron microscope. Also, the black phosphorus contains important covalent bonds that
need to be handled correctly before a satisfactory agreement can be met with the experiments.
In this work we obtained electron energy loss spectra (EELS) and compared them to real space
multiple scattering (RSMS) and density functional theory (DFT) calculations. Even in the RSMS
calculations most features except the band gap were accounted for. However, a dispersion in
the conduction band was lacking. Similar results were obtained using the standard functionals
(PZ–LDA) and (PBE–GGA). When the hybrid functionals (HSE03 and PBE0) were applied a
significant dispersion was added together with an opening of a gap. Relaxation of the structure
was also done using the hybrid functionals, which gave indications that PBE0 was free of the
exchange residue due to a non–converged and drifting inter–layer distance.

This paper is not following the red line of first–principle studies of thermoelectric materials
that is the focus of this thesis. However, it is still included to demonstrate the importance of
investigating new functionals. In particular, the hybrid functionals will be of importance to many
thermoelectric materials that contains d and f states close to the Fermi level (see for example
paper V).

Øystein Prytz did the experimental work and the RSMS calculations, while Espen Flage–
Larsen did the DFT part. The interpretation of the results and writeup of the article were a joint
effort.



Paper III – Electron energy loss spectroscopy of the L2,3 edge of
phosphorus skutterudites and electronic structure calculations

Status: Published in Physical Review B, 11.08.2009

Authors: Ragnhild Sæterli, Espen Flage–Larsen, Øystein Prytz, Johan Taftø, Knut Marthin-
sen and Randi Holmestad

Ref: Phys. Rev. B 80, 075109 (2009)

Motivated for the same reasons as in the first paper we wanted to do a combined analysis of
electron energy loss spectroscopy (EELS) and density functional calculations (DFT) to further
investigate the phosphorus bonds. Experimental investigations of the phosphorus energy loss
edges were lacking in the literature and data was acquired and compared to density functional
calculations of the conduction density of states. A good agreement between experiments and
calculations was found. Real space multiple scattering (RSMS) calculations were also performed
to calculate the EELS spectra directly. The agreement of the EELS spectra and RSMS calculation
was satisfactory.

The experimental work was done by Ragnhild Sæterli, DFT calculations were performed by
Espen Flage–Larsen, and the RSMS calculations by Øystein Prytz. The writing of the article was
a collaboration between all three, although Ragnhild did much of the writing of the introduction
and the interpretation of the experimental results.



Paper IV – Electronic structure and transport in thermoelec-
tric compounds AZn2Sb2 (A = Sr, Ca, Yb, Eu)

Status: Submitted to Dalton Transactions, 14.07.2009

Authors: Eric S. Toberer, Andrew F. May, Brent Melot, Espen Flage–Larsen and Jeff
Snyder

The aim of this invited paper was to summarize previous work on the 122 Zintl compounds and
put them into a larger thermoelectric context. In addition the thermoelectric properties of the (up
until then undocumented) SrZn2Sb2 were included and analysed. The results was found to fit
well within the 122 context.

Thermoelectric measurements and synthesis were done by Eric Toberer, Andrew May and
Jeff Snyder. Density functional and transport calculations were done by Espen Flage–Larsen.
Initial results of Brent Melot were reworked and charge analyses were added. The interpreta-
tion of the thermoelectric properties was initially done by Eric Toberer and Andrew May with
additional interpretations and comments by Espen Flage–Larsen.



Paper V – Valence band study of thermoelectric Zintl SrZn2Sb2

and YbZn2Sb2

Status: Submitted to Physical Review B, 13.08.2009

Authors: Espen Flage–Larsen, Spyros Diplas, Eric S. Toberer and Andrew F. May

This paper sought to address several issues regarding the calculations in Paper IV. Due to the
need for a band gap of the SrZn2Sb2, a semi–empirical correction was added to be able to obtain
reasonable transport properties. Based on previous discoveries and experience of Paper II, cal-
culations using hybrid functionals were compared to the previous calculations in Paper IV and
X–ray photoemission spectra. Excellent corrections of the Zn d peak, Yb f peak and band gap
were shown for the hybrid functionals. In addition, there have been some discussions in the liter-
ature regarding additional inherent Yb3+ in the YbZn2Sb2. Due to non-existing density of states
for the Yb2O3 (should nominally contain Yb3+) in the literature, this was calculated. However,
these calculations did not reproduce the claimed Yb3+ region and it is thus an XPS effect due to
Yb 4d–4f resonances as previously indicated in literature. The YbZn2Sb2 sample was investi-
gated as a function of in–situ Ar+ scattering before doing an XPS sweep. Significant reduction
in the Yb3+ peaks was found. However, even after one hour of sputtering (unrealistically long)
there were still signs of Yb3+ in the sample, either due to Yb2O3 in the sample (not only surface)
or inherent Yb3+. Structure relaxation was then done for a 1×1×3 cell with three Yb layers and
no forced symmetry. No significant deviation from the reported structure was found. In addi-
tion, relaxation of the same cell, but with one Yb removed did not yield significant occupancy
change to conclude that inherent Yb3+ was likely. However, these models were simple and larger
superstructure and defect models need to be considered before drawing conclusions.

Density functional calculations were performed by Espen Flage–Larsen, while Spyros Diplas
obtained experimental X–ray photoemission spectra. Eric Toberer and Andrew May did the
sample synthesis. The writeup and interpretations was mostly done by Espen Flage–Larsen with
assistance of Spyros Diplas on the oxygen discussion.
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