
Monte Carlo methods for assessment of the
probability distributions of sub sea

resistivity models

by

Kristine Hermanrud

Thesis
for the degree of

Master of Science

(Master in Computational physics)

Faculty of Mathematics and Natural Sciences
University of Oslo

October 2009

Det matematisk- naturvitenskapelige fakultet
Universitetet i Oslo

i

Abstract

In this thesis we create a program which samples subsea resistivity models
from the a posteriori probability distribution based on marine controlled
source electromagnetic (CSEM) data.

In the first part we create a draft version of the code which assumes
that any subsea resistivity model can be described by only three parame-
ters. We use this code to identify the challenges we face when higher di-
mensional model spaces are allowed. The necessary improvements to the
code is made and the final program developed.

The final program is then used to study the resolution power of marine
CSEM data. The results confirm several resolution properties which have
previously been identified using other approaches. In addition we find a
probability measure describing the probability that certain resistivity prop-
erties are present in the model that produced a given dataset. Throughout
these studies both synthetic cases and the Troll West Oil Province are under
investigation.

ii

iii

Contents

Abstract ii

1 Introduction 3

2 Theory 5
2.1 A short introduction to the marine CSEM method 5

2.1.1 Electrical anisotropy 9
2.2 Inverse problems . 9

2.2.1 Model- and data space 9
2.2.2 Definition of probability 10
2.2.3 A priori and a posteriori probability 10
2.2.4 Joint, marginal and conditional probability 10
2.2.5 Probabilistic Formulation of Inverse problems 11
2.2.6 Monte Carlo Methods 12
2.2.7 Sampling the a posteriori probability distribution us-

ing a Monte Carlo method 13
2.3 Theory applied to the marine CSEM method 14

3 Method development 16
3.1 The first tests . 16

3.1.1 Description of the reference model and data acquisition 19
3.1.2 Some preliminary results 19
3.1.3 Discussion and conclusions for the first tests 22

3.2 Preparing the multilayer Monte Carlo code 22
3.2.1 Speeding up the code 23
3.2.2 Using a Simulated Annealing algorithm to find a start

model . 26
3.2.3 Sampling . 27

3.3 Description of the source code 27
3.4 Answering questions . 29

4 Synthetic examples 32
4.1 A priori information . 32
4.2 Description of the first reference model 33

1

4.2.1 Visualizing the a priori information 34
4.2.2 A posteriori information 36
4.2.3 Using multiple frequencies 38
4.2.4 Using another start model 41

4.3 The second synthetic reference model 41
4.3.1 A posteriori information 42

4.4 The third synthetic reference model 44
4.4.1 A priori information 44
4.4.2 A posteriori information 46

5 Tests on real data 48
5.1 From synthetic to real reference models 48
5.2 The Troll oil field . 49
5.3 Start models Troll . 49
5.4 A priori information . 50
5.5 A posteriori information . 54

5.5.1 Isotropic models . 54
5.5.2 Anisotropic models . 54

6 Discussion 59
6.1 Some general properties of the a posteriori distributions . . 59
6.2 The resistivity distribution in models accepted as samples of

the a posteriori probability distribution 60
6.2.1 The effect of using different frequencies 61

6.3 The use of a priori information 62
6.4 Troll West Oil Province . 62

7 Conclusions 66

A Additional figures 71

B Source codes 76
B.1 Script for the first tests . 76
B.2 Script for parallel computing 82
B.3 Multilayered Monte Carlo simulation 84
B.4 Code for collecting the results when doing parallel computing 99
B.5 Calculating probabilities . 105
B.6 Simulated Annealing to find start model 108

2

Chapter 1

Introduction

The seismic-reflection method provides the highest resolution of subseafloor
structure compared to other geophysical methods, and has therefore been
the primary geophysical tool for hydrocarbon exploration. Seismic meth-
ods can help identify subsea properties such as pore fluid, lithology and
porosity [1], but there is low confidence in the ability to determine whether
a reservoir contains hydrocarbons or water [2]. A report by Thirud [3] states
that as much as 90 % of all potential reservoirs are filled with saline water.

The marine controlled source electromagnetic (CSEM) method provides
information about the subsea resistivity structure, a property separating
water- from gas- and oil-filled reservoirs. Therefore, when the first field tri-
als demonstrated the possibility of detecting hydrocarbon reservoirs prior
to drilling [4] the marine CSEM method began to receive a significant amount
of commercial interest [5].

In the marine CSEM method observations are made by collecting data
from electromagnetic signals that have traveled through the seabed. The
problem is then to find a hypothetical subsea resistivity structure that ac-
cording to electromagnetic theory will provide data that fit the observa-
tions. To achieve this we need Inversion theory which describes how infor-
mation about a parameterized system can be extracted from data observed
from a measurement. The first formalizations of inversion theory dates
back to 1760-1810. Two of the basic motivations was then to use astro-
nomical data to infer the orbits of stellar objects and to use geodetic data to
describe the shape of the Earth [6]. The solution to the inverse problem was
then seen as the set of model parameters that best fit the observations.Since
then advances have been made to the inverse theory, especially by geo-
physicists trying infer the interior of the earth.

Solving inverse problems is typically similar to the problem of finding
a needle in a haystack. If the dimensionality of the problem is high then
finding any model that fits the observations will require an extensive and
time consuming search. Suppose that finding such a model is achievable,

3

then the difficulty of quantifying the non-uniqueness of the result arises:

How many models could describe the observations?

The main approach to reduce the number of solutions is to impose some
a priori information on the models. Starting from some a priori state of
information and taking the observations into account, we arrive at some a
posteriori state of information.This a posteriori state of information can be
described as a probability distribution over all possible subsea resistivity
structures. This approach, which is applicable to any inverse problem, has
previously been used for the purpose of inferring information about water-
gas- and oil- saturation and porosity of the subsea floor, by using seismic
amplitude versus angle (AVA) data and marine CSEM data jointly [7].

However, for the marine CSEM inversion problem where we infer infor-
mation about the subsea resistivity, the a posteriori distribution of models
is unexplored. Because marine CSEM inversion problems using 2.5D and
3D models are solved by gradient descent methods (Gauss-Newton and
Quasi-Newton respectively), the model accepted as the solution is depen-
dent on the start model and is likely to be a local optimum. Investigating
the a posteriori probability distribution of 1D models should provide infor-
mation about the non-uniqueness of the solutions and general resolution
properties which are also relevant to the solutions to 2.5D and 3D inver-
sion. The information we get from the a posteriori probability distribution
can also be used to find a measure of the probability that the model that
produced the observations contains specific resistivity values at depth.

The aim of this study is to create a program which samples subsea re-
sistivity 1D models from the a posteriori probability distribution instead
of finding one (possibly local) optimum, by using a Monte Carlo search
consisting of a (pseudo-) random walk. This program will then be used to
sample the a posteriori probability distributions using both synthetic and
real marine CSEM data sets.

4

Chapter 2

Theory

In this chapter we introduce the basic theory applied in this thesis. First
the principle of the marine CSEM method is explained. Then the focus is
on inversion theory including probability theory and Monte Carlo meth-
ods. Finally the inversion theory and the marine CSEM method theory are
merged to build the foundation this thesis is based on.

2.1 A short introduction to the marine CSEM method

In the marine CSEM method a mobile horizontal electromagnetic dipole
(HED) is towed from a boat while emitting low frequency (<10 Hz) elec-
tromagnetic signals. These signals travel both through the seabed and the
seawater. At the sea floor there is an array of electric field receivers. Elec-
tromagnetic energy constantly leaks from the seabed and is detected by
the receivers [8].The electromagnetic signals detected by the receivers will
be affected by the resistivity structure,and with the use of electromagnetic
theory these signals are interpreted to infer subsea floor information. An
illustration of a marine CSEM survey is found in figure 2.1.

When an alternating electric current travels through a material, the am-
plitude will decrease with the propagation depth. The rate at which it de-
creases depends on the resistivity of the medium and the frequency of the
wave. For a plane wave in a conductive medium the amplitude as a func-
tion of depth can be approximated by

E(d) ≈ E0(0) · e−d
√

ωµσ
2 = E0(0) · e−

d
δ (2.1)

where d is the distance, σ the conductivity, ω the angular frequency, µ the
magnetic permeability and δ the skin depth.

The skin dept is also defined as the distance a plane wave has propagated
when the amplitude is reduced to 1

e of it’s original value. We see from equation
2.1 that high resistivity in a material and low frequency results in long skin

5

Figure 2.1 Typical marine CSEM inline survey

Scattered Field
(or response from the reservoir)

Escatt = Ebackground+target - Ebackground

The electromagnetic fields detected by the receiver at the sea floor have
followed different paths. The direct signal is the signal that has only propa-
gated through the water and the air wave is the signal that has been guided
through the air. The third possible path is through the seabed. The addi-
tional response due to a high resistive layer is the scattered field.

6

depth, and therefore little attenuation. Because the resistivity in water is
in general lower than the resistivity in the seabed, the attenuation of the
current is less in the seabed than in the overlying water column.Thus we
expect that the signal measured by a receiver at a proper source-receiver
separation primarily will consist of the components of the source fields
which have followed a path through the seabed, and not of the fields that
have traveled directly via the water. Knowing that hydrocarbon filled rock
have high resistivity (in the range 10Ωm ∼ 200Ωm whereas in water-filled
rock and sand the resistivity is normally in the range 1 ∼ 20Ωm), we expect
that the amplitude of the source signal is less attenuated when propagating
through hydrocarbons.

The orientation of the fields is also critical to the propagation behavior.
If a conductive horizontal body is surrounded by less conductive matter, a
current flow parallel to the boundary (i.e horizontal) will have continuous
tangential electric fields across the surface, i.e,

ET
1 = ET

2 (2.2)

where the subscripts denote the two media. This boundary condition will
result in strong electric currents in the horizontal direction trough Ohm’s
law

Ji = σiEi (2.3)

for i = 1, 2 where Ji is the current density, σi is the electrical conductivity in
medium i. These strong electrical fields will induce magnetic fields through
Amperes law:

∇×H = J. (2.4)

For a thin resistive layer however, induction alone will not be measur-
able [9] if the burial of the resistive layer below the measurement surface is
much deeper than the thickness of the layer. Therefore thin, highly resistive
targets are hard to detect using the magnetotelluric method [10].

To detect such thin, highly resistive anomalies in the seabed, vertical
currents must be generated. If vertical currents or currents perpendicular
to the boundary are generated, then the boundary condition becomes

JN = JN
1 = JN

2 (2.5)

where the N superscript denotes that the direction of the currents are nor-
mal to the boundary.Together with Gauss’ theorem this continuity condi-
tion results in a buildup of charge on the boundary [11]:

ρs = JN
(ε1

σ1
− ε2

σ2

)
(2.6)

7

where ρs is the surface charge, and ε is the dielectric permittivity. The
charge buildup results in a galvanic effect that produces perturbations in
the electric fields that are measurable at the sea floor.

The HED excites both vertical and horizontal components, which means
that the response depends on the source-receiver geometry. The angle be-
tween the dipole axis and the line connecting the source and receiver is
often referred to as the source-receiver azimuth and is used to describe the
orientation of the fields. When the azimuth is 0o, we have in line geometry.
In this case, the components emitted by the source are mainly vertical and
the response should be strongly affected by the presence of a hydrocarbon
layer. If the azimuth on the other hand is 90o we have broadside geometry,
meaning the horizontal components will dominate.

Figure 2.2 Examples of amplitude and phase data

 Offset (m)

A
m

p
li
tu

d
e

0 2500 5000 7500 10000

1e-061e-06

1e-081e-08

1e-101e-10

1e-121e-12

1e-141e-14

A
m

p
li
tu

d
e

P
h
a
s
e

Offset (m)
0 2500 5000 7500 10000

180

90

0

-90

-180

P
h
a
s
e

a) b)

For both plots a) and b) the red circles represents obtained data from a
synthetic 1D 1.0Ωm half space with 500 m water depth. The black starts
represent the data when a 100.0 m thick highly resistive layer (100.0Ωm) is
introduced at 1000.0 m below the sea floor. The source frequency was 0.25
Hz. a) The amplitude vs. offset plots. b) Phase vs. offset plots.

The data, both amplitude and phase, at one receiver is highly depen-
dent on the source-receiver separation also referred to as the offset. An ex-
ample of the Ex data as a function of offset for an inline configuration is
shown in figure 2.2. Here, the red circles represents the data obtained for a
1.0Ωm half space under 500m water with resistivity 0.3125Ωm. The black
stars represent the data when a 100m thick layer with resistivity 100Ωm is

8

added at 1000.0 m below the sea floor. At 5000 m source-receiver separa-
tion, the amplitude plot shows a higher amplitude when the highly resis-
tive layer is present. We also see that the phase is significantly affected by
the highly resistive layer.

2.1.1 Electrical anisotropy

Electrical anisotropy occurs for thinly laminated sequences of sand and
shale in sedimentary basins [12]. The effect of electrical anisotropy on ma-
rine CSEM data is seen in both phase and amplitude data. The degree of
anisotropy can be characterized by the ratio

λ2 =
ρv

ρh
(2.7)

where ρv is the vertical resistivity and ρh is the horizontal resistivity. This
complicates the interpretation of the inversion problem as the effect of elec-
trical anisotropy can significantly influence the response measured at the
sea floor. For instance, in reference [12] a highly resistive layer embedded
in an anisotropic background gave a smaller magnitude vs. offset (MVO) re-
sponse than if embedded in an electrical isotropic medium. The conclusion
for the investigations in this paper was that a small reservoir was much
more difficult to detect even for intermediate anisotropy ratios (λ2 = 2.0 ∼
3.0).

2.2 Inverse problems

Feeding physical laws with parameter values and predicting the outcome
is called the forward problem. The inverse problem uses the result of a mea-
surement to infer the values of the parameters. The solution to the latter is
typically non unique, meaning that more than one combination of param-
eters could have given the observed result, whereas the forward problem
(in deterministic physics) has an unique solution.

2.2.1 Model- and data space

When a system has been parameterized, the model space M can be intro-
duced, where each point m ∈ M, represent a conceivable model of the sys-
tem. Each model consists of an ordered set of numerical values {m1, ..., mn}
. In order to fully describe the system, the number of model parameters can
either be finite or infinite.

When a parameterization has been chosen, each model, m, can be rep-
resented by a particular set of values for the model parameters. The model
parameters can either take on continuous or discrete values.

9

A basic definition used in inverse problems is the definition of proba-
bility distributions over the model space. The probability distribution is
defined such that P(M) = 1 and P(A), the probability of m ∈ A, is a non-
negative number when A is a subset of M. This probability can be defined
over any finite-dimensional model space.

The data space is the space of all conceivable instrumental responses.
This data space can be denoted D, and the result of one experiment repre-
sents a point d in data space [13]

2.2.2 Definition of probability

A process that selects points m ∈ M is said to sample the probability distri-
bution P if the probability that a chosen m is inside a region A ⊆ M equals
P(A). Thus, if the process G samples P, we can investigate P by examining
a set of points chosen by G, e.g. by drawing histograms representing the
frequency with which G selects points inside suitable regions of M.

Let P(·) be the probability distribution, then the Radon-Nikodym theo-
rem states that there exists a function f(x) such that

P(A) =
∫
A

f (x)dx (2.8)

where x = x1, x2, ..., xn and∫
A

dx =
∫

dx1

∫
dx2..., dxn︸ ︷︷ ︸

overA

. (2.9)

The function f(x) is the probability density [13].

2.2.3 A priori and a posteriori probability

The assumed probability distribution for all possible models is called the a
priori probability distribution. When data from a measurement have been
obtained, we can define the a posteriori probability distribution. This is a
revised probability distribution that take into account the new information
gained from the measurement [13, 14].

2.2.4 Joint, marginal and conditional probability

The probability of two or more events in conjunction is the joint probability.
The marginal probability distribution of a subset of a collection of variables
is determined from the joint probability density by integrating out the vari-
ables being discarded. The conditional probability is the probability of an
event occurring given specific values for all the other variables [13].

10

2.2.5 Probabilistic Formulation of Inverse problems

In the following, let dcal = d1
cal , d2

cal ... be the calculated data for given values
for the model parameters, or in other words, a solution to the forward prob-
lem for a given model. Furthermore, let dobs = d1

obs, d2
obs... be the observed

data from an actual measurement.Each model can be described with a set
of model parameters as explained in section 2.2.1, m = {m1, m2...}. Then, a
general form of the forward problem can be written

dcal = g(m) (2.10)

where g(m) is the forward operator [14]. Because the inverse problem,
(finding the model m having acquired a set of observed data values dobs),
is usually both under determined and ill-conditioned, the question “What
are the actual values of the model parameters ?” should be replaced by the
question “What information can we infer on the actual values of the model
parameters?”. This leads to the Bayesian approach to inverse problems,
which uses prior information and the information provided by a measure-
ment to define the a posteriori probability.

The solution we end up with is of the form

σ(m) = kρ(m)L(m) (2.11)

[14] where σ(m) is the a posteriori probability density, ρ(m) is the a priori
probability density and L(m) is a likelihood function.

The discretized version reads

σi =
ρiLi

∑j ρjLj
(2.12)

where ρi = ρ(mi)∆m1∆m2... is the equilibrium a priori distribution and
Li = Lmi

The term likelihood describes the hypothetical probability that an al-
ready occurred event would give a specific realization.

There are several ways of defining the likelihood function depending
on the type of experimental uncertainties. If a vector of observed data,
dobs,is described with Gaussian experimental uncertainties with a covari-
ance matrix C

L(m) = k exp
(
− 1

2

[
(g(m)− dobs)tC−1(g(m)− dobs)

])
(2.13)

which for statistical independent experimental uncertainties degenerates
into

L(m) = exp
(
− S(m)

)
(2.14)

where

S(m) =
1
2

N

∑
i=1

(gi(m)− di
obs)

2

s2
i

(2.15)

11

is the misfit function and s2
i is the total noise variance.

The misfit function can be described in several ways, including as the
sum of the absolute values of the misfit and as the sum of the squared
absolute values of the misfit (as in equation 2.15).The fact that the misfit
functions should depend on the experimental uncertainties became clear
early in the history of inverse problems [6]. Inverse problems are often
seen as an optimization problem (finding which model gives the lowest
misfit) and the misfit function given by the squared absolute value of the
misfit have been the most popular. The solution to this problem requires a
least squares method which only involves the use of simple linear algebra.

2.2.6 Monte Carlo Methods

The term Monte Carlo method is often encountered in computational sci-
ence, and can be described as a statistical simulation algorithm. Monte
Carlo methods are widely applied in fields of natural science such as chem-
istry,physics, biology and medicine as well as in financial engineering [15]
and econophysics [16].

Statistical simulation algorithms differ from numerical discretization
methods in that instead of discretizing functions (typically partial differ-
ential equations) and then solving a set of algebraic equations, the solution
is found by sampling from a probability distribution function (PDF) that
describes the system. Monte Carlo methods are not only used for simu-
lating stochastic processes, which can be described by PDFs, but also to
solve problems with no apparent stochastic content. An example of this is
the use of Monte Carlo methods for evaluating definite integrals. In this
case the desired solution is imposed in the PDF and the simulation may be
treated as a stochastic process. Multiple trials are carried out, and statistical
properties such as averages and variances may be calculated. If the system
can be described by PDFs, then the Monte Carlo simulation can proceed
by randomly sampling from these PDFs. This requires a random number
generator [17].

The sampling method that will be used in this thesis is the Metropolis
algorithm.This is a Markov Chain Monte Carlo method where each step de-
pends only on the previous step.The idea is to perform a random walk sam-
pled from an initial probability distribution and then modifying this walk
in such a way that the modified walk consists of samples from the target
distribution. The Metropolis rule is the probabilistic rule that modifies the
initial random walk. The classical Metropolis algorithm was introduced in
reference [18] by Metropolis,and was used to sample the Gibbs-Boltzmann
distribution describing the distribution of states in a system where

Pi =
exp(−Ei/(kBT))

∑i exp(−Ei/(kBT))
(2.16)

12

where kB is the Boltzmann constant, T is the temperature and Ei is the en-
ergy of the state i. The algorithm for sampling this distribution was as
follows:

Starting at some initial state with energy Einit a perturbation in the sys-
tem causing a change in energy ∆E is made. If this perturbation causes
the energy of the system to become lower then this new state is accepted.
Otherwise the move is allowed with the probability exp(−∆E/(kBT)).

2.2.7 Sampling the a posteriori probability distribution using a
Monte Carlo method

In section 2.2.5 an expression for the a posteriori distribution (see equation
2.11) was introduced. The question becomes:

How can we sample from this a posteriori distribution, σ(m)?

One way of achieving this is to sample from the a priori probability dis-
tribution and modify this distribution into the a posteriori distribution. To
modify the a priori probability distribution, the likelihood function is used
to decide if a model chosen according to the a priori probability distribution
can also be accepted as a sample of the a posteriori probability distribution
[14].

The recipe for sampling the a posteriori probability distribution is a fol-
lows: Suppose that Lj is the value of the likelihood function for a particular
model mj. A perturbation on this model is chosen from the a priori proba-
bility distribution giving a model mi which gives a value for the likelihood
function Li. Then the rule for accepting or rejecting a model is as follows.

1.If Li ≥ Lj (i.e the new model has higher likelihood than the old model)
then accept the move

2. Li < Lj (i.e., the new model gives a lower value of the likelihood
function than the old point) then accept the move with probability Li/Lj

It is shown in reference [14] that this sampling algorithm produces sam-
ples from the a posterior distribution. To see the connection between this
sampling method and the metropolis algorithm, let us insert the expression
for the likelihood function given in equation 2.14 in the sampling method
described above. The acceptance rule then becomes

Paccept =
{

1 ifS(mnew) ≤ S(mold)
exp(−∆S

s2) ifS(mnew) > S(mold)
(2.17)

where ∆S = S(mnew) − S(mold). With a uniform a priori distribution this
becomes identical with the metropolis algorithm in section 2.2.6.

An important feature of this method is that it is independent of the way
the probabilities have been normalized, meaning that the relative probabil-
ities of the models can be inferred from the random walk even before the

13

walk has been extensive enough for the denominator in equation 2.12 to be
calculated with good precision.

2.3 Theory applied to the marine CSEM method

The model space in marine CSEM inversion may consist of model param-
eters representing the resistivity as a function of depth below the sea floor,
ρ(z); z ∈ (0, a) where m(z) = ρ(z) and a is the maximum depth of investiga-
tion. This gives an infinite number of parameters for each model. However,
the space can be discretized, ρα = ρ(zα) where α = 1, ..., n, and a finite num-
ber of parameters can then be used in the inversion [13]. The allowed val-
ues for the model parameters,i.e the resistivity, are continuous because the
resistivity in the sea bed at a given depth can be any real number (within
reasonable limits).

The data space in the marine CSEM method consists of all conceivable
electromagnetic responses detected by the receivers at the sea floor.

The joint probability will in this case be the probability that a specific
model (with given values for all resistivity parameters) is equal to the model
that produced the set of obtained data. Because our model space is multi-
dimensional, visualizing the joint probability distribution is highly imprac-
tical. Instead, we can plot the marginal probability distributions of models.
This way the number of dimensions to represent is reduced. However,
information included in the joint probability distribution will be lost by
marginalizing the joint probability distribution.

The inversion problem in the marine CSEM method is finding a resis-
tivity (or conductivity) profile of the subsurface that gives a good data fit
with the actual measured data. Several methods for finding a misfit min-
imum like Newtons method, Gradient descent and Simulated annealing,
are commonly used for inverting CSEM surveys. The solution obtained by
inversion is, as mentioned in section 2.2 non-unique, which means there
may be several equally good minima. In the general case there is also a
multitude of sub-optimal minima. The methods mentioned above all run
the risk of ending up in a local minimum instead of a global minimum.
This is especially the case for Newtons method and gradient methods. The
simulated annealing scheme will, on the other hand, find the global misfit
minimum if the cooling of the temperature is infinitely slow. For a high di-
mensional inverse problem many iterations are required to find the global
minimum.

To exclude sub-optimal solutions it is common to constrain the mod-
els with some a priori information. This information could be in the form
of hard or soft constraints. A hard constraint is a direct constraint on the
parameters. An example could be that the resistivity in a particular layer
never exceeds a given value. A soft constraint is imposed as a penalty in the

14

misfit calculation. This type of constraint ensures that models that are seen
as less physical according to our a priori information, give larger misfit.

Assuming independent Gaussian distributed uncertainties, the misfit
function in equation 2.14 can be written

S(mi) = ∑
x

|E(x)obs − E(x)synt|2

α2|E(x)obs|2 + η(x)2 (2.18)

where the superscripts obs and synt referrers to the observed data from the
reference model and data from the synthetic sample models respectively. The
reference model is the actual model from which the obtained data were ac-
quired. Here, α is the multiplicative uncertainty in the acquired data and
η represents the additive background noise. The multiplicative data uncer-
tainty is typically 1-5% of the amplitude. The cause of this data uncertainty
can be bathymetry, slight rotations of the source etc. Then the measurement
uncertainty is proportional to the measured value. In contrast, the additive
data uncertainty does not depend on the measured signal. However, this
uncertainty may depend on acquisition parameters such as the source fre-
quency and position. The background noise is due to electrical signals that
do not contain information about the seabed, and is either caused by the
instrumentation or any other external uncontrolled source. An example of
background noise encountered in the marine CSEM method is the natural
field emissions that arise from the interaction of the solar wind with the
Earth’s magnetosphere.

When the background noise is high compared with to the data it may
be better to discard the measurement. This can be done by removing the
denominator in equation 2.18 and instead multiplying the equation with
weights wx given by

w(x) =

{
0 if |E(x)obs |2

|η(x)|2 < 10
1.0

α2|E(x)obs |2+η(x)2 otherwise
(2.19)

where η is the noise level.

15

Chapter 3

Method development

In this chapter we focus on the development of the source codes used to
produce the results in chapters 4 and 5.First we conduct a simple synthetic
study where each subsea resistivity model is fully described by three pa-
rameters. The results from this study are then used to develop a code that
handles higher dimensional model spaces. Finally, we describe the result-
ing algorithm used to produce the results in chapters 4 and 5, and highlight
some questions that can be answered by applying this method.

3.1 The first tests

Figure 3.1 Illustration of all possible models m ∈ M

All models m ∈ M consist of three horizontal, plane layers beneath the
sea floor. The water resistivity is fixed at 0.3125Ωm and the resistivity in
the top and bottom layers are fixed at 2Ωm. The water depth is 200m. The
parameters that are varied in this Monte Carlo simulation are the resistivity,
thickness and depth of the middle layer.

A python script was made for the first numerical experiments using
Monte Carlo simulations to investigate the a posteriori probability distri-
butions of sub sea models. In addition to assuming only one high resis-

16

tive horizontal layer the code also assumes known water depth and uni-
form background resistivity. There are only three parameters to vary in
this Monte Carlo simulation: resistivity, depth and thickness of the high
resistive layer. An illustration of all possible models is shown in figure 3.1.

Prior to starting the Monte Carlo simulation, the script takes as input
values limits for the model parameters (resistivity, depth and thickness of
the high resistive layer), water depth, the file containing data from the ref-
erence model etc. The input parameters that are not specified by the user is
set to default values.

When all initializations are made, a start model is created by randomly
choosing values for the model parameters within the user specified limits.
Then, data from this start model is calculated by solving the forward prob-
lem 1. This data is then used to calculate the misfit,S(mstart), with the data
obtained for the reference model and the value for the likelihood function
exp(−S(mstart)), where S(mstart) is given by equation 2.18.

At this stage,the current model is set to equal the start model and the
Monte Carlo loop begins. The current model is perturbed by varying one
of the model parameters, and the likelihood value of the new model is cal-
culated. This likelihood value is then compared with the likelihood value
obtained for the current model. The perturbed model is accepted or re-
jected as a sample of the a posteriori probability distribution according to
the algorithm described in section 2.2.7. If the sample is rejected, nothing
happens and the loop continues by perturbing the current model again and
testing the new model for acceptance. Otherwise, if the sample is accepted,
the current model is set equal to the accepted model, and the operations de-
scribed above are repeated. The loop continues until some stopping criteria
are met.

The perturbations in the Monte Carlo loop are done by varying each
model parameter in turn. The first variation is on the resistivity of the high
resistive layer. Regardless of whether the model is accepted or rejected, the
next perturbation is made by a variation on the depth of the high resistive
layer. Then, the variation is on the thickness, followed by a variation in
resistivity, and so on.

During these first tests a uniform a priori probability distribution was
used. This means that the only a priori information assumed about the sub
sea resistivity structure is that all resistivity values are equally probable. In
this case the a posteriori probability distribution simply becomes

σ(m) = kL(m). (3.1)

The flow chart for the the script described here is found in figure 3.2 and
the script can be found in appendix B.1

1This is done by a using an existing modeling code for plane 1D earth models called
elcardinal developed at EMGS

17

Figure 3.2 The flow chart for script used in the first numerical tests

Ωm

 |Eobs(x)-Enew|Eobs(x)-Enew(x)|^2(x)|^2

(|Eobs(x)|)^2
Σ
x

First a start model within the constraints given by the user is constructed.
Then, one of the model parameters (resistivity, depth or thickness) are var-
ied. Then, the value of the likelihood function is calculated for the new
model and accepted or rejected by the metropolis rule. These actions are
then repeated until the stopping criteria are met. The step lengths are up-
dated as the simulation proceeds such that the number of accepted moves
tends to 50 %

18

3.1.1 Description of the reference model and data acquisition

The reference model used here consists of a single high resistive layer of
80Ωm in a uniform background with resistivity 2.0Ωm. The highly resistive
target is placed at 500m - 600m below the sea floor (which is shallow), and
the water depth is 200.0 m (also shallow). The resistivity of the water is
0.3125 Ωm. Inline geometry is assumed for the acquisition, so that galvanic
effects dominate (see section 2.1). The receiver spacing is set to be 100 m.
We invert for one receiver where the first source-receiver offset is at 0.0 m
and the last offset is at 10 km.

3.1.2 Some preliminary results

The script was run three times using three different source frequencies for
the synthetic data acquisition. The non-normalized a posteriori probability
distributions (which are here equal to L(m)) for the Monte Carlo simula-
tion are shown in figures 3.3 and 3.4. In both figures, one thousand samples
of the a posteriori probability distribution were discarded in the beginning
of the Monte Carlo simulation to ensure a collection of samples from the
area of interest.

In figure 3.3 the thickness of the reservoir was held fixed at 100 m while
the resistivity and depth of the target layer could vary. The likelihood val-
ues are represented by the color scale. We see that for all three source fre-
quencies, 0.25 Hz, 0.50 Hz and 0.75 Hz, the resistivity and depth values
representing samples of the a posteriori probability distribution are con-
centrated around the point 80Ωm and 700.0m below the surface. At these
values, which are the same values as for the reference model, we also have
the maximum likelihood values.

The plots in figure 3.4 show non-normalized a posteriori distributions
when keeping the depth of the reservoir fixed at 700 m below the surface
varying only the thickness and resistivity of the target layer. In figure 3.4a a
source frequency of 0.25 Hz was used and in figure 3.4b a source frequency
of 0.75 Hz was used. Here too, the likelihood values are represented by the
color scale, and the resistivity and thickness are displayed on the x- and
y-axis respectively. In this case we see that the a posteriori distribution of
models looks very different. The most characteristic feature in these two
figures is the strong correlation between the thickness and the resistivity.
In the box 74Ωm < ρ < 84Ωm and 94m < thickness < 110m the figures
3.4a and b are almost identical. Very few samples were sampled outside of
this box. The shape of the a posteriori distributions resembles the shape of
the function f (x) ∝ 1

x . Also, we see that the point with resistivity of 80Ωm
and thickness of 100 m lies on this curve.

19

Figure 3.3 Samples of the a posteriori probability distribution

Resistivity (Ohm m)

Resistivity (Ohm m) Depth below su
rfa

ce
 (m

)

Depth below su
rfa

ce
 (m

)

Source frequency 0.25 HzSource frequency 0.25 Hz

0.25 Hz0.25 Hz

(O
hm

 m
)

(O
hm

 m
)

a) Frequency: 0.25 Hz

Resistivity (Ohm m)

Resistivity (Ohm m) Depth below su
rfa

ce
 (m

)

Depth below su
rfa

ce
 (m

)

Source frequency 0.50 HzSource frequency 0.50 Hz

0.50 Hz0.50 Hz

(O
hm

 m
)

(O
hm

 m
)

b) Frequency: 0.50 Hz

Resistivity (Ohm m)

Resistivity (Ohm m) Depth below su
rfa

ce
 (m

)

Depth below su
rfa

ce
 (m

)

Source frequency 0.50 HzSource frequency 0.50 Hz

0.75 Hz0.75 Hz

(O
hm

 m
)

(O
hm

 m
)

c) Frequency: 0.75 Hz

The value of the likelihood function for each model is represented by the
colors in these plots. Warmer color means higher likelihood. The data un-
certainty in these plots were assumed to be 5 % and the background noise
was assumed η = 10−15V/Am2. Whatever the frequency used in the syn-
thetic acquisition, the a posteriori distribution of models show a Gaussian
like function. The maximum likelihood is found at the values defining the
reference models. All simulations started from the same start model.

20

Figure 3.4 Plots of resistivity vs. thickness

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Resistivity (Ohm m)

T
h

ic
kn

e
ss

 (
m

)

A posteriori distribution

 72 74 76 78 80 82 84 86
 94
 96
 98

 100
 102
 104
 106
 108
 110
 112
 114

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Resistivity (Ohm m)

T
h

ic
kn

e
ss

 (
m

)

A posteriori distribution

 72 74 76 78 80 82 84 86
 94
 96
 98

 100
 102
 104
 106
 108
 110
 112
 114

a) Frequency = 0.25 Hz b) Frequency = 0.75 Hz

 95

 100

 105

 110

 72 74 76 78 80 82 84 86

f(X
)

X

f(x)=8000.0/x

c) f (x) = 8000.0
x

a) and b) show the a posteriori probabilities when the depth is held fixed
at 700.0 m below the surface. The plot a) was the result when using a
0.25 Hz source frequency whereas b) was produced using a 0.75 Hz source
frequency. In b) the area that the random walker has sampled is slightly
smaller than in a). However the two plots are almost identical,and the
function f (x) = 8000.0

x in c) fit both the a posteriori distributions in a) and b).
Thus, there is a strong correlation between the thickness and the resistivity.
This correlation does not seem to be strongly frequency dependent

21

3.1.3 Discussion and conclusions for the first tests

The main question that presents itself in the results from section 3.1.2 is

Why do we have the strong correlation between thickness
and resistivity?

The correlation between the thickness and resistivity of the target in-
dicates that the total resistivity of the models is an important quantity. If
the layer is thinner than the reference value, then the resistivity in the layer
is higher and vice versa.The function f (x) = 8000.0

x fit both the curves in
figure 3.4a and b. The function f (x) = 8000.0

x is displayed in figure 3.4 c
for comparison. Thus, the ”total” resistivity

∫
z ρ(z)dz is very well resolved

here. For further investigations we should therefore save the integral value∫
z ρ(z)dz for each sample of the a posteriori distribution and not only the

resistivity values.
We also notice that the higher the source frequency, the narrower the a

posteriori distribution of models in figure 3.3. A narrow a posteriori dis-
tribution represents well resolved values. In addition we see that the res-
olution improvement due to using higher source frequency is larger when
using 0.50 Hz instead of 0.25 Hz than it is when using 0.75 Hz instead of
0.50 Hz. However, the shape of the a posteriori distribution in figure 3.3 b
and c differ significantly. When using a source frequency of 0.50Hz, the dis-
tribution has a tail of models with low likelihood values towards shallow
depths and low resistivities. For the 0.75 Hz case, the a posteriori distri-
bution has a tail representing models with low likelihood values towards
deep depths and high resistivities. We conclude that for further tests we
should pay extra attention to the effect of using different frequencies when
acquiring data, and try to understand the physics explaining the results.

3.2 Preparing the multilayer Monte Carlo code

When producing the figures in section 3.1.2 we calculated data and the
data misfit for around nine thousand models. The computation time was
around twenty minutes for each result. When moving to a higher dimen-
sional problem (multilayer models), the size of the model space increases
dramatically. Suppose our discretization of a model consists of n layers,
then the dimensionality of the model space is proportional to n. To sample
the a posteriori probability distribution over a large model space will re-
quire a significantly increased number of model samples. This could create
problems for further investigations.

To prepare a code that will work for a higher dimensional model space
some modifications of the present script should be made. We need to iden-
tify the problems that may occur when moving to a higher dimensional

22

model space before we can suggest improvements. First we want to an-
swer the questions

1) Which parts of the code are the most time consuming

and

2) How much time should we expect to need for higher di-
mensional problems?

The part solving the forward problem (i.e. running elcardinal) is by
far the most time consuming part. Running elcardinal for three layered
models two hundred times took 23.24 seconds, while running the whole
script including allocations calculations, reading and writing to files for
two hundred models took 25.67 seconds.

However, when moving to higher dimensional model spaces, the time
spent on one forward calculation also increases dramatically. In the present
script only three resistivity values at different depth intervals are given as
input to elcardinal. We hope to have a code that can handle at least fifty re-
sistivity values at different depth intervals describing the subseafloor. Two
hundred forward computations using thirty layers, where each layer had
one resistivity value, took 95.15 seconds. This is more than four times the
time it took for the forward computations using only three resistivity val-
ues.

Suppose we want to use the same number of whole iterations as for the
previous tests where a whole iteration means that all parameters have var-
ied once. Then we would need 10 times the number of forward compu-
tations compared to when varying only three parameters. Also, each for-
ward calculation takes four times as much execution time. Instead of using
20 minutes we would now need 13 hours.

Taking into consideration that 3000 whole iterations will not be nearly
enough to sufficiently sample the a posteriori probability distribution and
that thirty parameters is a low number of parameters, we understand that
some improvements has to be done. Reducing the number of forward cal-
culations would improve the computational time significantly.

3.2.1 Speeding up the code

One way of reducing the number of forward computations is to calculate
the Frechet derivatives of the E-field with respect to the conductivity and
use these derivatives to estimate the data in a new point σ + ∆σ. By doing
this we avoid calling elcardinal every time we wish to calculate the value
of the misfit function. We estimate the data in the new point in model
space,Ex(offset, σ + ∆σ), by

Ex(offset, σ + ∆σ) ≈ Ex(offset, σ) +
δEx(offset, œ)

δσ

∣∣∣
d
∆σ (3.2)

23

where d is the depth and δEx(offset,σ)
δσ is the Frechet derivative. By Taylor

expansion the error due to this approximation is ∝ δ2Ex
δσ2

∣∣∣
d
∆2σ which is small

for small ∆σ.
The error in the misfit calculation due to estimation of data using the

Frechet derivatives will depend on the step length and the depth of where
the conductivity perturbation takes place. In figure 3.5 the step length-
and depth- dependence of the relative error in the misfit calculation is dis-
played. A half space model consisting of 500 m water and 2.0 Ωm resistivity
in the seabed was used as reference model. The model that was perturbed
was a half space model of 500 m water depth and a resistivity of 1.0Ωm in
the seabed. In each layer (100 m thick), the resistivity was perturbed by a
fixed step length. The relative error,

Err =
SF(m)− SE(m)

SE(m)
(3.3)

was calculated for all the perturbations. Here SF(m) and SE(m) denotes
the misfit in equation 2.18 when the Frechet derivatives and elcardinal re-
spectively was used to calculate the response from model m. Then the step
length increased, and the conductivity values in all layers were perturbed
with this new step length.

We see that small perturbations in deep layers result in low errors, while
large perturbations in shallow layers give high errors. The error will also
depend on δ2E(σ)

δσ2 |d which in turn will depend on the model under consid-
eration. Thus, it is difficult to find concrete rules, such as limiting the step
length at each depth interval, which ensures a small error in the misfit cal-
culations.

Hopefully, updating the step lengths in such a way that the acceptance
rate in each layer tends to 50 % will indirectly ensure small misfit errors:
The sensitivity to a change in resistivity in shallow layers is presumably in
general higher than in deep layers. Thus, the step length should automati-
cally end up being smaller in the top layers. However, to make sure that we
do not accept models with high misfit error, we can check the error before
saving a model as a sample of the a posteriori distribution. We can then
exclude the samples with high error.

Another way of speeding up the code significantly is to use parallel
computing. This means that we execute a number (f.ex 50) of jobs at the
same time (in parallel), and collect the results when all jobs have finished.
Roughly, if we would like to sample 100 000 models using 50 processes, the
execution time will be the same as if 2000 models were sampled using only
one process. 2 When parallel computing, there are a few things to consider.

2Tho finish the whole experiment will take a bit more time than the estimate in the text
because collecting the results from the processes takes some additional time.

24

Figure 3.5 Relative misfit error

 0
 0.005
 0.01
 0.015
 0.02
 0.025
 0.03
 0.035
 0.04

Step length (% of log10 domain)

De
pth

 (m
)

Relative error due to using Frechet derivatives

-0.1 -0.05 0 0.05 0.1

 500
 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

The reference model was a half space model with background resistivity of
2.0Ωm. The test model used to calculate the relative error is a half space
of 10.0Ωm, and perturbations on this test model were made to estimate the
data using the Frechet derivatives. This data was used to calculate the rel-
ative error in the misfit, Err = MisfitF−MisfitE

MisfitE
. Here, MisfitE is the data misfit

with the reference model calculated when elcardinal was used to estimate
the data and Misfit F is the data misfit when the Frechet derivatives were
used to calculate the new data.

25

The random number generator needs an integer starting value (seed) to
generate a sequence. If the seed is not specified, then Python automatically
sets the seed based on the system time, which will give a different sequence
at different times. However, when submitting jobs simultaneously, the seed
might be identical for all the jobs and the generated numbers will be the
same. [19] This will result in the exact same samples of the a posteriori
probability distribution for every job, and the whole point of parallelizing
the code vanishes. It is therefore important to specify different seeds for
each job.

All of the jobs start from the same start model. This start model may or
may not be a model with good misfit. If the start model is far from a misfit
minimum, then it will take many iterations before the random walker starts
to sample around the parts in model space with relatively high likelihood.
It becomes even more important to skip a sufficient number of the first
iterations when all jobs start from the same start model. Otherwise, the
start model and the first samples of models close to the start model will
give a significant but misleading contribution to the a posteriori probability
distribution. The question becomes

How many iterations should we skip?

One way of determining this is to calculate the average value for the resis-
tivity in each layer and wait with saving the models until the average has
stabilized for every layer.

3.2.2 Using a Simulated Annealing algorithm to find a start model

The problem with a large model space, is the large number of models far
from the reference model. This means that the chance of starting at a po-
sition in model space with a high likelihood value gets very small. Using
a Markov chain Monte Carlo method as a sampling method requires that
the starting position is close to the area of interest. Otherwise, the random
walker can get stuck in a place far from the true model, and we would
never know of the area of much better data misfit. A solution to this is to
first try to find a misfit minimum, and then use this as a starting position
for the Monte Carlo sampling.

The method Simulated Annealing is a good method to finding a start
position. The method was invented in the 1980’s [20] and has become a
tool in geophysical problems and has successfully been applied to marine
CSEM studies [21]. Simulated annealing is a numerical method used to
solve

min{ f (x)|x ∈ D}

where D is the domain. The idea is to start at some position x = x0 and
take a (small) random step x1 = x0 + ∆x. If f (x1) < f (x0) then the move

26

is accepted (x is set equal to x1). Otherwise, the move is accepted with the
probability e−∆x/T where T is some constant referred to as the temperature.
Then the procedure is repeated by taking another random step from the
new x. The loop continues for a given number of iterations before T is
lowered, meaning that the probability of accepting a “bad” move decreases.
The loop then continues using the new, lower temperature. The difference
between this algorithm and the Monte Carlo sampling with the Metropolis
test lies in the lowering of the temperature which ensures that the random
walker will stagnate in a (hopefully global) minimum.

3.2.3 Sampling

Because both vertical and horizontal components are emitted by the HED
the data are sensitive to both highly conductive and resistive layers (see
section 2.1). If the step lengths taken in the Monte Carlo simulation are
uniform with respect to resistivity then the step lengths with respect to
conductivity are highly non uniform. By introducing the parameters ρ′ =
log10(ρ) and σ′ = log10(σ) then

σ′ = log10(σ =
1
ρ
) = −log10(ρ) = −ρ′ (3.4)

and a uniform sampling in the log10(ρ) scale will give equally large steps
with respect to both ρ′ and σ′.

3.3 Description of the source code

The idea behind the multilayer Monte Carlo code is simple; keeping the
layers fixed in depth and thickness, the only attribute that varies is the re-
sistivity.

In figure 3.6 the flow chart for the multilayer Monte Carlo code is given.
First all the input parameters such as maximum value for the conductivity
in each layer, the input files (with the observed data and noise), number of
layers etc. are initialized. Then, the weights in equation 2.19 are calculated
and a start model is created. The start model can be explicitly chosen by
giving the file containing the start model as input. If the start model is
not given by an input file, a half space model,i.e. a model with uniform
resistivity in the seabed,is created. After the initializations, the Monte Carlo
loop begins by first perturbing the resistivity value in the shallowest seabed
layer. Then the metropolis test based on the specified a priori information
alone checks if this perturbation should be accepted. If the move is rejected,
the loop continues by varying the second shallowest layer. Or if the move
is accepted as a sample of the a priori distribution, a new acceptance test
based on the data misfit is performed. If the move is accepted (passes both

27

Figure 3.6 Flow chart for the multilayered Monte Carlo script

Read input
Create startmodel

 Monte Carlo loop:

Loop over all parameters in one model

Vary each parameter: σnew = σold + Δσ

Accept/reject due to a priori information

Accept/reject due to data misfit using
frechet derivatives

Check relative error made by using
frechet derivatives for every n'th

accepted variation

Reject

Reject

If no. of monte Carlo loops > no of
models to skip : Save modelSave model

Check for
stopping
criteria

E
rr

o
r

>
 1

0
 %

Stop:
Write
results
to file

S
to

p

N
o

 s
to

p

Update
step

lengths
Is the number
of performed
Monte Carlo
loops a
multiple of 10
?

Yes

No

28

the acceptance tests), then this new model with the perturbed resistivity
replaces the current model.

There will be a (small) relative error made by using the Frechet deriva-
tives instead of elcardinal when estimating the data of the perturbed model.
This error will mainly depend on the size of the perturbation and the depth
of where the perturbation takes place (see figure 3.5). If the error is large,
then we risk that moves accepted on the basis of the Frechet estimates
would not have been accepted if we used elcardinal to calculate the data,
and vice versa. Therefore, the accepted model will not be a good sample of
the a posteriori probability distribution.

However,because the step lengths in each layer are updated according
to the acceptance percentage,this will not create a huge problem. Shallow
layers should give stronger responses and therefore these layers will even-
tually end up having low maximum step lengths. The problem that the
relative error is too high will mostly occur in the beginning of the Monte
Carlo simulation when the maximum step lengths have not yet stabilized.

To avoid saving models with Frechet estimated data that differs signif-
icantly from elcardinal-calculated data, a simple error-test is included in
the script. For every nth accepted perturbation on a model, the relative er-
ror in the misfit made by using the Frechet estimates is calculated. If this
error is higher than 10 %, then all of the perturbations on this model are
erased, and the perturbation loop starts over beginning with the previous
saved model. If the relative error is small, the script continues accepting
the models as samples.

When all parameters have varied once, but before the model is saved
,the error test is performed again to ensure that the new model represents
a sample of the a posteriori probability distribution. Then, if the stopping
criteria are not met, the perturbation loop on each layer starts again, but
this time the perturbations are made on this newly saved model.

The source codes, (the multilayered Monte Carlo script and the code
that ensures the parallel computing), can be found in appendix B.3 and B.2.

3.4 Answering questions

A multitude of models giving data that sufficiently fit the data obtained
from the reference model will exist. It is therefore important to evaluate all
of these models. Because of the multidimensionality of the problem, the
joint probability distribution is impractical or even impossible to visual-
ize and we therefore plot the marginal a posteriori probability distribution
instead. This can be done by counting the number of models with resis-
tivity values within small intervals for each layer. Then histograms with
the number of models on the y-axis and resistivity intervals at the x-axis
can be created for each of these layers. If we want to look at the marginal

29

probability distribution of models at all layers in conjunction, we can use a
color scale to represent the number of models and plot the resistivity and
depth on the x- and y-axis respectively.

If the marginal probability distributions are Gaussian, then we could
plot the mean model with the standard deviations in each layer. We will
then be able to see that the resistivity in the layers that are best resolved
will have smaller standard deviations. 3

However, this will not give any information about how the combination
of resistivities is distributed (the joint probability distribution). Therefore,
another question that could be asked is how correlated the resistivity is for
different layers. Does the resistivity in one layer influence the resistivities in
another layer? The correlation matrix which is the normalized covariance
matrix

c(i, j) =
Cov(i, j)
σ(i)σ(j)

=
< (ρi − ρi)(ρj − ρj) >

σ(i)σ(j)
(3.5)

can therefore be useful to have a look at. Here i and j denotes the layer in-
dex, ρ represents the resistivity and σ the standard deviation of the marginal
resistivity distribution. Note that for i = j, the covariance Cov(i, i) equals
the variance in layer i < (ρi − ρi)2 >= σ2

i and therefore the diagonal ele-
ments of the correlation matrix should be 1. The largest correlations will
presumably be the correlation between adjacent layers. Deep layers should
be (close to) uncorrelated due to the data alone because deep layers are
expected to only weakly affect the data. The correlation between adjacent
layers as well as the correlation of one layer with all the other layers could
give valuable information. If, however, the a posterior probability distribu-
tion is far from Gaussian, calculating the covariance is meaningless.

Two additional quantities that could be interesting to calculate, is the
average resistivity in the models and the first order moment of the a poste-
riori probability distribution. These two quantities may be calculated by

ρ =

∫
z ρ(z)dz∫

z dz
≈ ∑i ρi+1(zi+1 − zi)

∑i(zi+1 − zi)
(3.6)

and

µ1 =

∫
z zρ(z)dz∫
z ρ(z)dz

≈ ∑i ρi+1(zi+1 − zi)2

2 ∑i ρi+1(zi+1 − zi)
. (3.7)

The first order moment of the probability distribution for each model is
here divided by

∫
z ρ(z)dz. This quantity gives the depth position of the ”

center of resistivity ”.
One could also use the results to test a hypothesis on the resistivity pro-

file. A question that could be asked is How probable is it that there exist lay-
ers with resistivity higher than 20 Ωm in the range 1000-1500 m below the sea

3We could also plot the median with mean deviations which is better if the marginal a
posteriori probability distributions are strongly skewed

30

floor?. This question could be answered by counting the number of mod-
els sampled from the a posteriori probability distribution that fulfill the
requirement and divide this number by the total number of sampled mod-
els. Although this question seems natural to ask at first, the models where
the resistivity is 15 Ωm in two adjacent layers (at depth 1000-1500 m) will
not be counted, but these cases are just as interesting.If we discretize our
model space so that there is 100m between each layer, then a model with
two adjacent layers each with a resistivity of 15Ωm could be the result of a
actual 100 m thick reservoir of 30Ωm with its center at the layer boundary
between the two neighboring layers.

Instead, one can ask What is the probability that total resistivity in the range
1000-1500 m below the sea floor is greater than some constant? Then, the prob-
lem can be written

P(
∫ 1500

1000
ρ(z)dz ≈

15

∑
i=10

diρi > constant) (3.8)

31

Chapter 4

Synthetic examples

To investigate properties of the a posteriori probability distribution, it is
useful to test the method on synthetic reference models. In this chapter
we look at three synthetic reference models, all of which consists of highly
resistive, infinite, horizontal layers in a uniform background. The two first
reference models both contain a single highly resistive layer, but at different
depths, and the third reference model consists of two high resistive layers.

4.1 A priori information

Because the solution to an inversion problem is non-unique and many of
the solutions may give models that are not physically realistic, it is use-
ful to introduce constraints that will exclude non physical models. This
is included as the a priori information. However, the a priori information
should be limited so that the data of a measurement still significantly influ-
ences the a posteriori information.

One type of a priori information that will be used here is that unsmooth
models are non-physical. We would therefore want to exclude such mod-
els. One way of achieving this is to introduce a regularization term in the
misfit given by equation 2.18. The modified misfit for a model m then reads

S(m) + R(m) = ∑
offset

|Etrue
x − Esynt

x |2wx + R(m) (4.1)

where the weights wx are given by equation 2.19 and R(m) is the regular-
ization term which will here be given by

R(m) =
∫

z

(δσ′

δz

)2
dz ≈

N

∑
i=0

(σ′i+1 − σ′i
zi+1 − zi

)2
. (4.2)

Here σ′ is the log10 value of the conductivity and z the depth beneath the
sea floor, N is the number of layers, σ′i the log10 value of the conductivity
in layer number i, and zi is the depth of layer number i .

32

Including the noise level which is usually in the range, 10−13 V
Am2 < η <

10−16 V
Am2 , means that we must also add noise to the data obtained for the

synthetic model. 1

We can then write equation 2.11

σ(m) = ρ exp(−S(m)− R(m)) (4.3)

= ρ exp(−R(m)) exp(−S(m)) (4.4)

= ρnew exp(−S(m)). (4.5)

Note that here σ denotes the a posteriori probability density and ρ is the a
priori probability distribution, not the conductivity and resistivity.

Other regularization formulas than the one given in equation 4.2 can
also be used. One possibility is to include some depth dependence, another
is to include regularization based on the gradient between resistivities and
not on the square of the gradient.

Introducing the regularization term in the a priori sampling instead of
including it in the likelihood function, saves a little computation time. Sam-
pling the new a priori probability distribution can be done by using the
metropolis rule to modify a uniform sampling according to the “ likelihood
function due to regularization ” given by

Lreg(m) = exp(−R(m)). (4.6)

One sample of the uniform distribution that is accepted by the metropolis
rule,will be a sample of the a priori probability distribution. Then the al-
gorithm moves on to the metropolis rule based on the data misfit alone. If
however the move is rejected based on the a priori information, then this
is not a sample of the a priori probability distribution and we may throw
away the model without checking the misfit due to data. Therefore we only
need to calculate the data misfit (calling elcardinal) when a model has been
accepted based on the a priori information.

Because there is no need to calculate the electric fields from the models
(they are only included in the −S(m) term of the misfit), sampling the a
priori distribution is much quicker than sampling the a posteriori distribu-
tion.

4.2 Description of the first reference model

In figure 4.1 the first reference model is shown. The sea floor is 500 m
below the surface, and the high resistive target ranges from 1000 to 1100 m
below the surface. The background resistivity is 2.0Ωm and the target has
a resistivity of 80Ωm.

1Adding noise to the data is easily done by using a program, ggAddNoise, developed
by EMGS.The noise added is random and uniformly distributed between -noise level and
noise level for each receiver

33

Figure 4.1 The first synthetic reference model

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 500 1000 1500 2000 2500 3000

log
10(

rho
)

Depth (m)

True model

A high resistive layer is found at 1000-1100 m below the surface and the
water depth is 500.0 m. The resistivity of this target is 80.0Ωm and the
background resistivity is set to 2.0Ωm

4.2.1 Visualizing the a priori information

There are two reasons for investigating the a priori information. One is to
verify that the algorithm is working correctly, the other is to understand
what information we are putting into the problem.

In figure 4.2 we see the obtained a priori information for the synthetic
reference model shown in figure 4.1.Each model consists of equally thick
layers beneath the sea floor, with the exception of the deepest layer. This
layer ranges to infinity. Here, the thickness of the layers is 100 m and the
number of layers is 26. Thus, the deepest layer takes on resistivities repre-
senting the effective resistivity from 3000m below the surface to infinity.

The sampling was done with a mapping ρ
′

= log10(ρ) and samples
were chosen uniformly between ρ

′
max and ρ

′

min. Because the upper and
lower limit in this case was set to 1.0Ωm < ρ < 100.0Ωm, the samples
are chosen uniformly from -1 to 2. This should give an average resistivity
of rho

′
= 0.5. The plot in figure 4.2a shows the mean sampled resistivity

at each layer with the standard deviations.The number of models sampled
from the a priori probability distribution is 200 000. We see that the stan-
dard deviations are larger at the top and bottom layers. This artifact comes
from the regularization term; The regularization for the top layer is defined
by the difference in resistivities between this layer and the layer below it.
For the other layers, the regularization is defined by the difference in resis-
tivity with both the layers above and below it. This allows the top layer to
vary more freely. The same argument goes for the bottom layer.

Figure 4.2b shows the correlation between adjacent layers. The corre-
lation is highly positive,meaning that if the resistivity in one layer is high,

34

Figure 4.2 The a priori information

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 500 1000 1500 2000 2500 3000

lo
g
1
0
(r

h
o
)

Depth (m)

Mean model
One standard deviation

-1

-0.5

 0

 0.5

 1

 0 500 1000 1500 2000 2500 3000

C
o
rr

e
la

ti
o
n

Depth (m)

Correlation between neighbouring layers

a) Mean model and std. deviations b) Neighboring correlations

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

-1 -0.5 0 0.5 1 1.5 2

n
u
m

b
e
r

o
f
m

o
d
e
ls

average resisistivity

Average total resistivity for accepted models
value if uniform distribution

Center of resistivity

c) Distribution of average resistivities d) Distribution of center of mass

a)In this figure the mean model is plotted together with the standard de-
viation in each layer. The a posteriori probability distributions are Gaus-
sian,and therefore this plot gives the intended information b)The plot
shows the correlation between adjacent layers. This correlation is an effect
of the regularization term alone, as the data misfit is not included in the a
priori sampling. c) This plot shows the a priori distribution of the average
resistivity between the sea floor and 3000 m below the sea floor. The up-
per and lower limit for the resistivity is 100.0Ωm and 1.0 Ωm respectively,
giving upper and lower limits for log10(ρ) 2 and -1. Sampling uniformly
from -1 to 2 should give an average of 0.5. d) Here we see the distribution
of the first order moment divided by the total resistivity. This is the center
of resistivity. If the resistivity is uniformly distributed between the layers
then the value should be 1750.0

35

it is more likely that the value in an adjacent layer is also high. This is as
expected since only the regularization determines the a priori distribution
of models. Higher correlations at the top and bottom layers have the same
explanation as for the standard deviations in figure 4.2a.

Figures 4.2c and d show the quantities given in equation 4.7 and equa-
tion 4.8.

ρ =

∫
z ρ(z)dz∫

z dz
≈ ∑i ρi+1(zi+1 − zi)

∑i(zi+1 − zi)
(4.7)

µ1 =

∫
z zρ(z)dz∫
z ρ(z)dz

≈ ∑i ρi+1(zi+1 − zi)2

2 ∑i ρi+1(zi+1 − zi)
. (4.8)

The average resistivity for each layer when sampled uniformly between -1
and 2 should be ρ

′
= 0.5. Figure 4.2c shows histograms of the number of

sampled models versus the average resistivity over all layers in a model.
As expected the most represented value is 0.5. For uniformly distributed
resistivity (all layers have the same resistivity) the expression in equation
3.7 reduces to

maxdepth + waterdepth
2

which in this case gives a value of 1750.0. We see that the models with
uniform resistivity is the most represented (figure 4.2d, and that the distri-
bution has a Gaussian shape.

4.2.2 A posteriori information

The results in this section were obtained for several source frequency com-
binations and the number of models that were skipped at the beginning of
the Monte Carlo search was 500. In total, the number of saved models were
200 000.

Figure 4.3a and b shows the marginal a posteriori probability distri-
bution for the resistivity at depths between 500 m and 3000m below the
surface (remember that the waterdepth is 500 m) when using the source
frequencies 0.25 Hz and 0.75 Hz respectively. First let’s discuss the similar-
ities between these two results.

In both figures 4.3 a and b we see that the target layer at 1000-1100 m
is better resolved (brighter colored peak) than most of the other layers. We
also notice that the first couple of layers are very well resolved. However,
most of the sampled resistivity values just above and below the target are
lower than the true value (the true value of the background is log10(ρ =
2) ≈ 0.30).Another similarity between the two results is that for the deeper
layers, the marginal probability distribution is more smeared than for the
top layers. This shows that the data contain less information about the
deeper layers than the top layers.

36

Figure 4.3 Marginal a posteriori probability distribution

Non gaussian
distribution

Non gaussian
distribution

a) Frequency=0.25 Hz

b) Frequency=0.75 Hz

Distribution of models of the a posteriori probability distribution when
separately using source frequencies 0.25 Hz and 0.75 Hz

If we look at the layers pointed out by the arrows in figure 4.3 a and
b we see that the a posteriori distribution has two probability peaks. For
such distributions the average resistivity in this layer lies between the two
peaks and is not probable at all. Therefore, plotting the average model
and its standard deviations as for the a priori distribution in figure 4.2 is
misleading.Also, computing the covariances in these layers is meaningless.

It is seen from figures 4.3a and b that the average resistivity in the bot-
tom layers is much higher than the true value in the reference model. We
also see this effect in figure A.1a and b. The equations 3.6 and 3.7 were
used to create the plots showing the average resistivity and the depth dis-
tribution of the resistivity for the models sampled from the a posteriori
probability distribution. We also see from these plots that too much high
resistivity is distributed too deep.

Moving on to the differences in the two results, we see that using a
source frequency of 0.25 Hz results in worse resolution of the target layer
than for a source frequency of 0.75 Hz. But this does not mean that using

37

0.75 Hz is better. Figure 4.3 also reveals that deeper layers (1500 m - 2500
m) are slightly better resolved when using a source frequency of 0.25 Hz
compared to using a 0.75 Hz source frequency. Therefore we would expect
that using both frequencies in the Monte Carlo simulation will give better
results than either frequency alone.

4.2.3 Using multiple frequencies

Figure 4.4 Marginal a posteriori probability distribution

 0
 5000
 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000

Depth (m)

log
10

(rh
o)

Samples of the a posteriori distribution

 500 1000 1500 2000 2500 3000
-1

-0.5

 0

 0.5

 1

 1.5

 2

Distribution of models from the a posteriori probability distribution when
jointly using frequency 0.25 Hz and 0.75 Hz

In figure 4.4 the resulting marginal a posteriori probability distribution
when using both source frequencies is displayed. We see many of the same
features here as in figure 4.3, but the overall resolution has increased dra-
matically. The target layer have been at least as well resolved as for the
0.75 Hz source frequency case,and the deeper layers have been much bet-
ter resolved than for either frequency alone.Even though the result is much
better, it is not perfect. The total resistivity and how the resistivity is dis-
tributed are much closer to values calculated directly from the reference
model. Plots showing this can be found in figure A.1 c.

So far we have seen that using both source frequencies, 0.25 Hz and 0.75
Hz, results in a sampling of models that are closer to the reference model
than when using each source frequency alone.

Is there a limit to the resolution due to increasing the number
of source frequencies?

Pursuing this question, another three different frequency combinations
were used to create samples from the a posteriori probability distributions.

38

These were f1 = 0.25Hz, 1.0Hz, f2 = 0.25Hz, 0.5Hz, 0.75Hz, 1.0Hz and f3 =
0.25Hz, 1.0Hz, 3.0Hz

The resulting a posteriori probability distributions are shown in figure
A.2. Here we see that for frequency combinations f2 and f3 the resolution is
better than for frequency combination f1. This tells us that both increasing
the frequency density and the upper frequency limit results in better reso-
lution. However, the improvement is not nearly as strong as it was when
going from one source frequency to two (figures 4.3 and 4.4).

One way of comparing the results in more detail is by answering the
question (mentioned in section 3.4): What is the probability that a layer at a
given depth has got a resistivity value within a specific interval?.

This probability is found by counting the number of models from the a
posteriori distribution that obey the given criteria, and divide this number
by the total number of models. (The source code for this calculation can be
found in appendix B.5).

The plots in figure 4.5 shows the probability that a layer has a resistiv-
ity in a specific interval vs. the depth of the layer. To produce the results in
figure 4.5 a and b, the a posteriori probability distribution of models when
using the source frequencies 0.25 Hz or 0.75Hz alone and the combination
of them were used. In figure 4.5 a the probability that a layer has a resis-
tivity value in the interval 50Ωm < ρ < 100Ωm is plotted as a function of
depth. The point on the x-axis, f.ex at 1000 m, is the upper boundary of
the layer. Remembering that the layer thickness is 100 m, this means that
the better the resolution, the higher the probability in the layer with upper
boundary at 1000m, and the lower the probability in the other layers.

We clearly see the improvement when jointly using the frequencies in-
stead of using either one alone. When using only the 0.25 Hz source fre-
quency,the probability that the layer at 1000 m - 1100 m has a resistivity
over 50Ωm is zero, but around 8% in the layers deeper than 2000 m. For
the 0.75 Hz source frequency there is about 28% probable that the layer
at 1000m - 1100 m has a resistivity between 50Ωm and 100Ωm. However,
the probability in the deeper layers is also much higher than for the 0.25
Hz case. When using both frequencies, the probability that the background
layers have resistivity values above 50Ωm is close to zero, and for the target
layer the probability is about 60 %.

In figure 4.5 b the probability that the layers have a resistivity value in
the range 1.0Ωm < ρ < 5.0Ωm as a function of depth is displayed. This
plot gives a better insight on how well the background layers have been
resolved. We see that when using the 0.75 Hz frequency there is only a 5
- 25 % chance that the layers below 1800.0 m have a resistivity between 1
Ωm and 5 Ωm, while for the 0.25 Hz case, the probability is between 20 - 50
%. In the top layers, the opposite is the case. The deeper layers are clearly
better resolved for the lower frequency and vice versa. When jointly us-
ing both frequencies, the background resistivity resolution has been signif-

39

Figure 4.5 The probability that a model sampled from the a posteriori prob-
ability distribution has a resistivity in a specific interval at depth

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 500 1000 1500 2000 2500 3000

P
(5

0
 O

m
e
g
a
 m

 <
 r

h
o
 <

 1
0
0
 O

m
e
g
a
 m

)

Depth (m)

Frequencies: 0.25 Hz, 0.75 Hz
Frequency: 0.75 Hz
Frequency: 0.25 Hz

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 500 1000 1500 2000 2500 3000
P

(1
 O

m
e
g
a
 m

 <
 r

h
o
 <

 5
 O

m
e
g
a
 m

)
Depth (m)

Frequencies: 0.25 Hz, 0.75 Hz
Frequency: 0.75 Hz
Frequency: 0.25 Hz

a) P(5000.0 < 100m · ρ < 10000.0) b) P(100.0 < 100m · ρ < 500.0)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 500 1000 1500 2000 2500 3000

P
(5

0
 O

m
e
g
a
 m

 <
 r

h
o
 <

 1
0
0
 O

m
e
g
a
 m

)

Depth (m)

0.25 Hz, 0.50 Hz, 0.75 Hz, 1.0 Hz
0.25 Hz, 1.0 Hz

0.25 Hz, 1.0 Hz, 3.0 Hz

 0

 0.2

 0.4

 0.6

 0.8

 1

 500 1000 1500 2000 2500 3000

P
(1

 O
m

e
g
a
 m

 <
 r

h
o
 <

 5
 O

m
e
g
a
 m

)

Depth (m)

0.25 Hz, 0.50 Hz, 0.75 Hz, 1.0 Hz
0.25 Hz, 1.0 Hz

0.25 Hz, 1.0 Hz, 3.0 Hz

a) P(5000.0 < 100m · ρ < 10000.0) b) P(100.0 < 100m · ρ < 500.0)

icantly improved both for deep and shallow layers.
Moving on to the plots in figure 4.5 b and c where the a posteriori prob-

ability distributions for the frequency combinations f1,f2 and f3 have been
used, we see that the difference in the resolution is much smaller than for
figures 4.5 a and b. There is a slight improvement when using all of the
frequencies 0.25 Hz, 0.50 Hz, 0.75 Hz and 1.0 Hz compared with using only
0.25 Hz and 1.0 Hz.There is also an improvement in the top layers when
using the frequency combination 0.25 Hz,1.0 Hz and 3.0 Hz instead of 0.25
Hz and 1.0 Hz. These results show that there is little to gain by increasing
the frequency density and frequency range beyond some reasonable limit,

40

which is consistent with the conclusion in reference [22].

4.2.4 Using another start model

In all the previous Monte Carlo simulations the reference model was used
as start model. The a posteriori probability distribution should be inde-
pendent of the start model if we wait long enough with saving the mod-
els. Starting with the reference model we know that we are close to the
global minimum 2, and samples representing the a posteriori distribution
are picked from the beginning.

To verify that the start model does not have much influence on the a
posteriori probability distribution, the Monte Carlo simulation when jointly
using the source frequencies 0.25 Hz and 0.75 Hz was rerun, starting with
a uniform start model. The resistivity was 2.0Ωm at all depths, and the
number of layers were increased so that the bottom layer took on resistiv-
ity values representing the effective resistivity at 3500m below the sea floor
to infinity. Everything else was kept the same.

By skipping the first 500 models on every process 3 before saving mod-
els the a posteriori probability distribution figure A.3 was produced. The
number of models from the a posteriori probability distribution was 200
000.

We see from figure A.3. that, as expected, the start model did not sig-
nificantly influence the result.

4.3 The second synthetic reference model

In section 4.2 the target layer was placed at a shallow depth beneath the
sea floor and is therefore considered an easy target to resolve. It is usual
that the reservoirs are found much deeper. The depth dependence of the
resolution seen in section 4.2, indicates that it is more difficult to detect
deeper high resistive targets.

The next reference model consist of a single high resistive layer at 2500m-
2600 m below the surface. The background resistivity is 2.0Ωm, and the
water depth 500 m. The regularization term in unchanged (see equation
4.2), therefore the a priori information is the same as in section 4.2.1.

The focus in this section will be on how the a posteriori probability dis-
tribution changes due to different noise levels and data uncertainty. The
results are obtained by jointly using the frequencies 0.25 Hz and 1.0Hz.

2We may not be in the global minimum because of regularization. If there was no a priori
information in addition to the uniform sampling of models ,the reference model would be
in the global a posteriori probability minimum

3100 processes were used so that the total number of skipped models was 50 000

41

4.3.1 A posteriori information

The marginal a posteriori probability distributions are shown in figure 4.6.
Looking at figure 4.6 a where the added noise,η, is |η| < 10−13V/Am2 and
assumed data uncertainty is 10 %, we see that models sampled from the
a posteriori probability distribution have a slight tendency to contain high
resistive layers around 2000 m below the surface. However, the probability
distribution is strongly smeared, especially for the deep layers (> 1500 m).
Although decreasing the data uncertainty does not improve the sharpness
of the a posteriori probability distribution (figure 4.6c), the depth at which
the models are most likely to have a high resistive layer is more accurate:
High resistive layers are most likely to be found around 2500 m below the
surface.

With lower background noise,|η| < 10−16V/Am2, (figure 4.6 b and d)
the probability distributions are less smeared, and the existence of a high
resistive layer is better seen. Here, the result of improving the data uncer-
tainty is clearly seen in the a posteriori probability distributions. In figure
4.6 b the a posteriori probability distribution is drastically smeared below
2500 m, whereas the probability distribution in figure 4.6 d the probability
distribution in the deeper layers is much sharper.Both of these figures show
that the the most probable models have a high resistive layer at around 2300
m below the surface.

In table 4.1 the probabilities that the average resistivity is more than
10Ωm at different depths intervals is displayed for each of the results in
figure 4.6. All depth intervals are here 500m thick, but the placement varies
from 1500m-2000 m to 2500-3000m below the surface.

From this table we see that it is only for the lowest noise level and data
uncertainty that the highest probability of high average resistivity is placed
at the correct depth (blue boxes). For both cases where 10 % data uncer-
tainty was assumed, the probability that the average resistivity is 10Ωm or
more, is slightly higher at 2000 - 2500 m than for 2200 - 2700 m below the
surface. However, the number of models with high resistive layers is sig-
nificantly higher for low noise level both in the interval 2000-2500 m and
2200-2700 m. For noise floor 10−13V/Am2 and data uncertainty of 1% the
depth which has the highest probability of consiting of high resistive layer
is too deep (2500-3000 m).

In both table 4.1 and figure 4.6 we see that it is significantly harder to
detect high resistive layers that are buried deep. Detecting such targets
require very low background noise and data uncertainty.

42

Figure 4.6 A posteriori probability distributions

 0
 20000
 40000
 60000
 80000
 100000
 120000

Depth (m)

lo
g
1
0
(r

h
o
)

Noisefoor=1e-13. alpha=0.1

 500 1000 1500 2000 2500 3000 3500 4000
-1

-0.5

 0

 0.5

 1

 1.5

 2

 0
 20000
 40000
 60000
 80000
 100000
 120000

Depth (m)

lo
g
1
0
(r

h
o
)

Noisefloor=1e-16. alpha=0.1

 500 1000 1500 2000 2500 3000 3500 4000
-1

-0.5

 0

 0.5

 1

 1.5

 2

a) |η| < 10−13V/Am2. α=10% b) |η| < 10−16V/Am2. α= 10%

 0
 20000
 40000
 60000
 80000
 100000
 120000

Depth (m)

lo
g
1
0
(r

h
o
)

Noisefloor=1e-13. alpha=0.01

 500 1000 1500 2000 2500 3000 3500 4000
-1

-0.5

 0

 0.5

 1

 1.5

 2

 0
 20000
 40000
 60000
 80000
 100000
 120000

Depth (m)

lg
o
1
0
(r

h
o
)

Noisefloor=1e-16. apha=0.01

 500 1000 1500 2000 2500 3000 3500 4000
-1

-0.5

 0

 0.5

 1

 1.5

 2

c)|η| < 1−13V/Am2. α=1% d) |η| < 10−16V/Am2. α= 1%

In a) and b) the data uncertainty is assumed to be 10%. The noise added
to the synthetic data,η , is |η| < 10−13V/Am2 and |η| < 10−16V/Am2 for
a) and b) respectively. In c) and d) 1% data uncertainty is assumed and the
noise added to the data is |η| < 10−13V/Am2 in c) and |η| < 10−16V/Am2

in d)

43

Table 4.1: The probability that a model sampled according to the a pos-
teriori probability distribution has an average resistivity above 10Ωm at
different depth intervals

Noise: 1e-13
Data
uncertainty:
10%

Noise: 1e-13
Data
uncertainty:
1%

Noise: 1e-16
Data
uncertainty:
10%

Noise: 1e-16
Data
uncertainty:
1%

0.142205

4.5 e-5

0.0

0.0

0.56675

0.172285

0.78056

0.614995

0.514395

0.34372

0.74161

0.843985

0.3292

0.4832

0.331435

0.2949

Result
obtained
for:

4.4 The third synthetic reference model

The motivation for the next synthetic model is to see if it is possible to detect
a high resistive layer below another high resistive layer. Also, the effect of
the regularization term is investigated here.

The synthetic reference model consists of two high resistive layers. The
shallow high resistive layer is at 1000 m below the sea floor and has a resis-
tivity of 20.0Ωm and the deep high resistive layer, with resistivity 100Ωm,
is placed at 2000.0 m below the sea floor.

4.4.1 A priori information

The hard constraints imposed in the a priori information was the upper
and lower limits for the resistivity ρmax = 500.0Ωm and ρmin = 0.01Ωm.

The a priori probability distributions and the a priori correlations be-
tween layers are shown in figure 4.7.The left plots (figure 4.7 a, c and e), are
obtained when imposing smoothness on the a priori models by using the
regularization term in equation 4.2 multiplied by a factor ten to increase its
influence. The plots to the right (figure 4.7 b, d and f) are obtained when
no a priori information apart from the hard constraints and the sampling
described in section 3.2.3 is assumed.

We see that the marginal a priori distribution of models where smooth-
ness is required in figure 4.7 a is Gaussian distributed for each layer.Without
the smoothness requirement we see that the a priori distribution of models

44

Figure 4.7 A priori information

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000

Depth (m)

lo
g

1
0

(r
h

o
)

A PRIORI DISTRIBUTION

 500 1000 1500 2000 2500 3000 3500 4000
-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3400
 3600
 3800
 4000
 4200
 4400
 4600
 4800
 5000
 5200

Depth (m)

lo
g

1
0

(r
h

o
)

A PRIORI DISTRIBUTION

 500 1000 1500 2000 2500 3000 3500 4000
-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

a) With strong regularization b) With no regularization

-1

-0.5

 0

 0.5

 1

 0 500 1000 1500 2000 2500 3000 3500 4000

Co
rre

la
tio

n

Depth (m)

Correlation adjacent layers

-1

-0.5

 0

 0.5

 1

 0 500 1000 1500 2000 2500 3000 3500 4000

Co
rre

la
tio

n

Depth (m)

Correlation adjacent layers

c) With strong regularization d) With no regularization

-1

-0.5

 0

 0.5

 1

 500 1000 1500 2000 2500 3000 3500 4000

Co
rre

la
tio

n

Depth (m)

Correlation c(z0,z): z0=2300m

-1

-0.5

 0

 0.5

 1

 500 1000 1500 2000 2500 3000 3500 4000

Co
rre

la
tio

n

Depth (m)

Correlation c(z0,z): z0=2300 m

e) With strong regularization f) With no regularization

The a priori probability distributions when imposing different a priori in-
formation on the models. The plots a, c and e are obtained when using a
strong smoothness constraint on the models. The plots in b, d and f are
obtained when no a priori information in addition to to the sampling de-
scribed in section 3.2.3 is imposed

45

is close to uniform (figure 4.7 b). The correlation between adjacent layers
when including the strict smoothness requirement on models from the a
priori probability distribution (figures 4.7 c) are positive and high.When
no soft constraint is imposed on the models, then the correlation between
adjacent layers fluctuates around zero (see figure 4.7 d).

In figures 4.7 e and f the correlation function c(i, j) given in equation
3.5 is displayed. The indices i and j represents the number of the layer,
and here the layer 2300m < zi < 2400m was chosen. From these plots we
see that the resistivity in one layer is only correlated with itself when no
a priori smoothness is assumed. When only smooth models are accepted
as samples of the a priori probability distribution, then the resistivity in
one layer is positively correlated with all the other layers. However, this
correlation decreases as the distance to the other layers increases.

4.4.2 A posteriori information

Figure 4.8 Marginal a posteriori probability distributions

 0
 20000
 40000
 60000
 80000
 100000
 120000

Depth (m)

log1
0(rh

o)

A POSTERIORI DISTRIBUTION

 500 1000 1500 2000 2500 3000 3500 4000
-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

a) No regularization

 0
 20000
 40000
 60000
 80000
 100000
 120000
 140000
 160000
 180000

Depth (m)

log1
0(rh

o)

A POSTERIORI DISTRIBUTION

 500 1000 1500 2000 2500 3000 3500 4000
-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

b) Strict regularization

a) The result when assuming no a priori smoothness. b) The result when
assuming that smooth models are much more correct

The a posteriori probability distributions when running the Monte Carlo

46

simulation both with and without the regularization term are found in fig-
ure 4.8. The results were obtained using an inline configuration. The noise
level was 10e − 15V/Am2 and the data uncertainty is assumed to be 2.5%
of the amplitude. The results here were obtained using a half space model
of 2.0Ωm as start model. The number of models skipped at the beginning
of the simulation for each job was 1000. The total number of models con-
sidered as samples of the a posteriori probability distribution was 200000.

It is clear from the distributions of models that including the regulariza-
tion term has been very effective. A great number of non physical models
have been excluded, and the result is a distribution of models that are much
closer to the reference model.

Although the deepest layer is not resolved when no regularization is
used, the total average resistivity beneath the sea floor is closer to the aver-
age resistivity of the reference model, than when smoothness is imposed.
(See figure A.4.

The plots in figure 4.8 show the importance of the a priori informa-
tion.Therefore, this information should be carefully chosen. If no regular-
ization is used, then detecting the deepest target seems to be an almost
impossible task. The shallow layer, however, is well resolved. In fact, the
shallow layer is better resolved when only the data misfit is considered.
This is an indication that the regularization should not be so strict in shal-
low layers, but that it is OK for the regularization to play an important part
in deep layers. Using another regularization formula,

R(m) =
N

∑
i=0

(σ′i+1 − σ′i
zi+1 − zi

)2(zi+1 − z0

5z0

)
(4.9)

, where the misfit penalty due to large resistivity gaps between adjacent
layers increases with depth, did not significantly improve the result. The
resulting a posteriori distribution of models with the regularization in 4.9
can be found in figure A.5.

47

Chapter 5

Tests on real data

In this chapter we move on from using data obtained from synthetic to
real reference models. The site under consideration is the Troll West Oil
Province (TWOP). First, we briefly discuss some considerations that need
to be taken into account when using real data instead of synthetic data. A
short description of drilling results on TWOP will then be given, before the
focus moves on to the results, both of start models found by the simulated
annealing code in appendix B.6 and the a posteriori distribution of models
for three different a priori assumptions.

5.1 From synthetic to real reference models

All synthetic reference models discussed so far were isotropic models mean-
ing that the horizontal and vertical resistivities were forced equal in the
Monte Carlo simulations. However, as mentioned in section 2.1.1, the hori-
zontal and vertical resistivities in the seabed may not be equal in real world
scenarios. This should be taken into consideration when using data from a
real test site. By introducing horizontal resistivities as well as vertical resis-
tivities, the number of model parameters is doubled and the model space
is dramatically increased. Therefore, some a priori information due to the
properties of anisotropy should be included.

One assumption that we make is that the horizontal resistivity is always
less than the vertical resistivity [23]. Also the anisotropy ratio,

λ2 =
ρv

ρh
(5.1)

, is considered to be high if λ2 > 3.0, and models with very high anisotropy
ratio could be seen as non physical. Therefore, a soft constraint on the
anisotropy ratio could also be included to ensure that models with anisotropy
values above λ2 = 3.0 are less probable than models with lower anisotropy
ratio.

48

The noise that was present during the acquisition of real data, can be
estimated directly. The noise values are then stored in a separate file which
is read directly by the Monte Carlo script and used to calculate the weights
in equation 2.19.

5.2 The Troll oil field

The Troll West, located in the North Sea, is a producing field with an ap-
proximate size of 10x2.5 km. The depth of the target is at around 1500 m
below the surface and the water depth is around 300.0 m. In the following,
we use data from a receiver positioned at the seafloor 332.0 m below the
surface. The conductivity of the water was measured σ = 3.69 Sm−1

5.3 Start models Troll

By running the simulated annealing script in appendix B.6 the start models
for the Monte Carlo simulations were found. The smoothness requirement
implemented by the regularization term in equation 4.2 was included in
the simulated annealing search for both the isotropic and anisotropic start
models (see figures 5.1 and 5.2).

In figure 5.1 the 1D inversion result when allowing only isotropic mod-
els is displayed. This start model clearly shows three resistivity peaks, one
just below the sea floor, another at about 600 m below the surface and one
with an even higher resistivity at around 1400 m below the surface. The
background resistivity rises to very high values below 2500.0 m below the
surface.

Figure 5.1 Isotropic start model found by 1D inversion on the Troll oil field

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

log1
0(rh

o)

Depth (m)

Isotropic startmodel Troll

The start model found by the simulated annealing code in appendix B.6
when allowing only isotropic models. Smoothness was assumed by in-
cluding the regularization term in equation 4.2.

49

The anisotropic start model in figure 5.2 was obtained when no con-
straint on the anisotropy was included. This was done because a hard con-
straint on the anisotropy could limit the search, and we are more likely to
get stuck in a local misfit minimum.

The 1D inversion result here clearly shows two different profiles for the
vertical and horizontal resistivities. Both the vertical and horizontal resis-
tivity profiles differ from the isotropic start model. We see that the resistiv-
ity peaks at 400.0 and 600.0 m in the isotropic start model, has been com-
bined into one peak for both the vertical and horizontal resistivity profiles.
However, for the vertical resistivity profile, the gap between the two resis-
tivity peaks (at around 500.0 m and 1300.0m below the surface) is much less
defined than for the horizontal resistivity profile. The resistivity just below
the second highly resistive peak is also lower in the horizontal case.

Figure 5.2 Anisotropic start model found by 1D inversion on the Troll oil
field

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

lo
g1

0(
rh

o)

Depth (m)

Vertical resistivity

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

lo
g1

0(
rh

o)

Depth (m)

Horizontal resistivity

a)Vertical resistivity b) Horizontal resistivity

The start model is found by using the simulated annealing algorithm de-
scribed in section 3.2.2. Here, no regularization due to the ratio between
horizontal and vertical resistivity was included in the misfit function. The
regularization used is the same as in equation 4.2.

We notice that the top high resistive peak and the layers below 3500.0 m
below the surface have higher horizontal than vertical resistivities. How-
ever, at depths between 700.0 - 3500.0 m the horizontal resistivity is in gen-
eral lower than the vertical.

5.4 A priori information

In figures 5.3, 5.4, 5.5 and 5.6 the a priori information used in the following
Monte Carlo simulations of both isotropic and anisotropic models on the
Troll oil field is shown.

50

Figure 5.3 A priori information for isotropic models on the Troll oil field

 1400
 1600
 1800
 2000
 2200
 2400
 2600
 2800

Depth (m)

lo
g1

0(
rh

o)

A priori distribution

 500 1000 1500 2000 2500 3000 3500 4000

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2
 2.5

-1

-0.5

 0

 0.5

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500
C

or
re

la
tio

n
Depth (m)

Correlation adjacent layers

-1

-0.5

 0

 0.5

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

C
or

re
la

tio
n

Depth (m)

Correlation c(z0,z): z0=2032.0

a) No regularization

 0
 500
 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

Depth (m)

lo
g1

0(
rh

o)

A priori distribution

 500 1000 1500 2000 2500 3000 3500 4000
-2

-1.5
-1

-0.5
 0

 0.5
 1

 1.5
 2

 2.5

-1

-0.5

 0

 0.5

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

C
or

re
la

tio
n

Depth (m)

Correlation adjacent layers

-1

-0.5

 0

 0.5

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

C
or

re
la

tio
n

Depth (m)

Correlation c(z0,z): z0=2032.0

b) With regularization

Figure 5.4 A priori information for anisotropic models on Troll

 1600
 1800
 2000
 2200
 2400
 2600
 2800

Depth (m)

lo
g1

0(
rh

o)

A priori distribution

 500 1000 1500 2000 2500 3000 3500 4000
-2

-1.5
-1

-0.5
 0

 0.5
 1

 1.5
 2

 2.5

-1

-0.5

 0

 0.5

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

C
or

re
la

tio
n

Depth (m)

Correlation between adjacent layers

-1

-0.5

 0

 0.5

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

C
or

re
la

tio
n

Depth (m)

Correlation c(z0,z): z0=2032 m

a) Vertical resistivity

 1400
 1600
 1800
 2000
 2200
 2400
 2600
 2800

Depth (m)

lo
g1

0(
rh

o)

A priori distribution

 500 1000 1500 2000 2500 3000 3500 4000
-2

-1.5
-1

-0.5
 0

 0.5
 1

 1.5
 2

 2.5

-1

-0.5

 0

 0.5

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

C
or

re
la

tio
n

Depth (m)

Correlation between adjacent layers

-1

-0.5

 0

 0.5

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

C
or

re
la

tio
n

Depth (m)

Correlation c(z0,z): z0=2032 m

b) Horizontal resistivity

Here no a priori information in addition to the sampling described in sec-
tion 3.2.3 is assumed

When assuming isotropic models only, we have used two different types
of a priori information for our studies. First, we assumed no additional a
priori information to the log10-sampling described in section 3.2.3. This

51

Figure 5.5 A priori information for anisotropic models on Troll

 0
 500
 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

Depth (m)

lo
g1

0(
rh

o)
A priori distribution

 500 1000 1500 2000 2500 3000 3500 4000
-2

-1.5
-1

-0.5
 0

 0.5
 1

 1.5
 2

 2.5

-1

-0.5

 0

 0.5

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

lo
g1

0(
rh

o)

Depth (m)

Correlation adjacent layers

-1

-0.5

 0

 0.5

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

C
or

re
la

tio
n

Depth (m)

Correlation c(z0,z): z0=2032.0

a) Vertical resistivity

 0
 1000
 2000
 3000
 4000
 5000
 6000

Depth (m)

lo
g1

0(
rh

o)

A priori distribution

 500 1000 1500 2000 2500 3000 3500 4000
-2

-1.5
-1

-0.5
 0

 0.5
 1

 1.5
 2

 2.5

-1

-0.5

 0

 0.5

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

lo
g1

0(
rh

o)

Depth (m)

Correlation adjacent layers

-1

-0.5

 0

 0.5

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

C
or

re
la

tio
n

Depth (m)

Correlation c(z0,z): z0=2032.0

b) Horizontal resistivity

Here we have included a strong misfit penalty if ρv < ρh in addition to the
sampling described in section 3.2.3

Figure 5.6 A priori information for anisotropic models on Troll

 0
 1000
 2000
 3000
 4000
 5000
 6000

Depth (m)

lo
g1

0
(rh

o)

"plotnoise.dat" using 2:1:3

 500 1000 1500 2000 2500 3000 3500 4000
-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

-1

-0.5

 0

 0.5

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

C
or

re
la

tio
n

Depth (m)

Correlation adjacent layers

-1

-0.5

 0

 0.5

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

C
or

re
la

tio
n

Depth (m)

Correlation c(z0,z): z0=2032.0

a) Vertical resistivity

 0
 1000
 2000
 3000
 4000
 5000
 6000

Depth (m)

lo
g1

0
(rh

o)

"plotnoisehor.dat" using 2:1:3

 500 1000 1500 2000 2500 3000 3500 4000
-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

-1

-0.5

 0

 0.5

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

C
or

re
la

tio
n

Depth (m)

Correlation adjacent layers

-1

-0.5

 0

 0.5

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

C
or

re
la

tio
n

Depth (m)

Correlation c(z0,z): z0=2032.0

b) Horizontal resistivity

Here we have included a strict misfit penalty if ρv < ρh and a weak penalty
if the anisotropy ratio λ2 > 3.0

52

ensured that the data strongly determine the a posteriori distribution of
models. The a priori information can be found in figure 5.3 a.

We also run one Monte Carlo simulation imposing smoothness through
the regularization term in equation 4.2 on the isotropic models. The a priori
information in this case can be found in figure 5.3 b. The start model used
to create the plots in figure 5.3 was the one shown in figure 5.1.

The a priori information when no smoothness was imposed on the mod-
els shows uniformly distributed resistivity values.The resistivities in each
layer are more or less uncorrelated with the resistivities in the adjacent lay-
ers. The correlation of the resistivities in one layer with the resistivities in
all the layers is 1 with itself and around zero with all the others. When
including the regularization we see that the a priori distribution of models
is Gaussian like in each layer, and that the resistivities in adjacent layers
are positively correlated. The correlation between resistivities in one layer
and all the other layers seems to decrease exponentially with the distance
between the layers.

For the anisotropic models three different types of a priori information
was used. In all three cases the start model was the one shown in figure 5.2.

In the first case no regularization was imposed (see figure 5.4). The only
a priori information was the hard constraints on the upper and lower resis-
tivity limits ρmax = 500Ωm and ρmin = 0.01Ωm and the a priori sampling
described in section 3.2.3. We see that both the horizontal and vertical resis-
tivity distributions consist of uniformly distributed (in the log10(ρ) scale),
uncorrelated models.

Figure 5.5 shows the a priori information when including both the smooth-
ness requirement given by the regularization formula in equation 4.2 and
including a strict misfit penalty if the horizontal resistivity in a layer is
higher than the vertical resistivity. The effect is clearly seen in the a priori
distribution of models. Here both the vertical and horizontal resistivities
are Gaussian distributed in each layer, but the average vertical resistivity
is around ρv = 101.3Ωm while the average horizontal resistivity is about
ρh = 10−0.3Ωm. The correlation plots are strongly affected by the smooth-
ness regularization.

The third a priori information that was used included the weak misfit
penalty,

P(m) = ∑
i

(
ρ′v,i − ρ′h,i

)2
· k (5.2)

where i denotes the layer number, v and h denotes the vertical and hori-
zontal directions and

k =

{
1.0 if ρv,i

ρh,i
> 3.0

0.0 otherwise
(5.3)

53

together with the smoothness regularization and the strict misfit penalty on
ρv < ρh. By doing this, we assume that very high anisotropy is physically
unlikely. The a priori information is displayed in figure 5.6. We clearly see
the effect of the additional constraint, the difference between the horizontal
and vertical average resistivities is much less than in figure 5.5. Also we see
from the correlation plots that these are almost identical. This means that
the models that are accepted as samples of the a priori probability distribu-
tion are much closer to isotropic than for the previous case.

5.5 A posteriori information

The source frequencies used for acquisition during this marine CSEM in-
line survey on the Troll oil field was 0.25Hz, 0.75 Hz and 1.25 Hz. In the
following results 2.5 % multiplicative data uncertainty was assumed. The
total number of saved models sampled from the a posteriori probability
distribution was 200 000.

5.5.1 Isotropic models

The a posteriori probability distributions when assuming isotropic mod-
els are shown in figure 5.7. With no a priori smoothness regularization we
see that the start model found by simulated annealing fit fairly well with
the a posteriori distribution of models (figure 5.7a). However, most sam-
ples of the a posteriori distribution have placed the high resistivities a few
hundred meters shallower than in the start model (1100-1400 m below the
surface). We also notice the sharp resistivity contrast at around 2100 m
below the surface, where the resistivities suddenly become very high.

When the smoothness constraint was introduced, the a posteriori dis-
tribution of models (figure 5.7b) did not change much. The main differ-
ence between the figures 5.7 a and b is at 2000.0 to 3000.0 m below the sur-
face. Here we see that the transmission from low to high resistivity is much
smoother when including the smoothness regularization. Here too, most
of the high resistivities are placed at 1100.0 -1400.0 m below the surface.

5.5.2 Anisotropic models

In figure 5.8 we see the a posteriori distribution of models when no a priori
information on the anisotropy ratio or smoothness was assumed. Here the
vertical resistivity (figure 5.8 a) shows a high resistivity area around 1100-
1400 m below the surface. We see that the vertical resistivity’s just above
and below this highly resistive area have varied more freely in the log10
scale than at the high resistivity location. At depths deeper than 2000.0 m
below the surface, very little information can be inferred about the resistiv-
ity profile.

54

Figure 5.7 Marginal a posteriori distribution of models

 0
 20000
 40000
 60000
 80000
 100000
 120000
 140000

Depth (m)

log
10(

rho
)

A posteriori distribution

 500 1000 1500 2000 2500 3000 3500 4000
-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

a) No regularization

 0
 20000
 40000
 60000
 80000
 100000
 120000
 140000
 160000

Depth (m)

log
10(

rho
)

A posteriori distribution

 500 1000 1500 2000 2500 3000 3500 4000
-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

b) With regularization

The a posteriori distribution of models when no a priori information was
assumed in addition to the uniform log10(ρ) -sampling a). b) The a poste-
riori distribution of models when smoothness was assumed as prior infor-
mation

55

Figure 5.8 Marginal a posteriori distribution of models

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000

Depth(m)

log
10(

rho
)

A posteriori distribution

 500 1000 1500 2000 2500 3000 3500 4000
-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

a)Vertical resistivity

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000
 80000
 90000

Depth(m)

log
10(

rho
)

A posteriori distribution

 500 1000 1500 2000 2500 3000 3500 4000
-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

b)Horizontal resistivity

The a posteriori distribution of models when no a priori information was
assumed. a) The a posteriori distribution of vertical resistivity at depth. b)
The a posteriori distribution of horizontal resistivity at depth.

56

From the a posteriori distribution of horizontal resisitivities at depth
(figure 5.8 b) however, we see that the distribution of models is more de-
fined at high conductivity areas (at about 700.0-800.0m, 1300.0-1500.0 m be-
low the surface). The top layer is also very well defined for the horizontal
resistivities. At depths where the sampled models do not primarily consist
of low horizontal resistivities, the distribution is highly smeared and little
information can be inferred.

Figure 5.9 Marginal a posteriori distribution of models

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000
 80000

Depth (m)

log
10(

rho
)

A posteriori distribution

 500 1000 1500 2000 2500 3000 3500 4000
-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

a) Vertical resistivity

 0
 20000
 40000
 60000
 80000
 100000
 120000
 140000

Depth (m)

log
10(

rho
)

A posteriori distribution

 500 1000 1500 2000 2500 3000 3500 4000
-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

b) Horizontal resistivity

The a posteriori distribution of models when smoothness and a strict
penalty if ρver < ρhor is assumed as a priori information. a) The a posteriori
distribution of vertical resistivity at depth. b) The a posteriori distribution
of horizontal resistivity at depth.

In figure 5.9 we see the a posteriori distribution of models when includ-
ing a weak smoothness regularization and assuming that models where
ρver > ρhor are physically unlikely. At depths up to about 2000 m,the hor-
izontal resistivities follow the vertical resistivities closely. However, apart
from the highly conductive areas, the resistivity profile is less defined.

57

At depths deeper than 2000 m below the surface, the a posteriori distri-
bution of models for vertical and horizontal resistivities separates. Here,the
distributions show high vertical resistivities than horizontal resistivities,
but both distributions are highly smeared.

Figure 5.10 Marginal a posteriori distribution of models

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000
 80000

Depth (m)

log
10(

rho
)

A posteriori distribution

 500 1000 1500 2000 2500 3000 3500 4000
-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

a) Vertical resistivity

 0
 20000
 40000
 60000
 80000
 100000
 120000
 140000
 160000

Depth (m)

log
10(

rho
)

A posteriori distribution

 500 1000 1500 2000 2500 3000 3500 4000
-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

b) Horizontal resistivity

The a posteriori distribution of models when smoothness, the strict misfit
penalty on ρver < ρhor and a weak misfit penalty on λ2 > 3.0 is imposed.
a) The a posteriori distribution of vertical resistivity at depth. b) The a
posteriori distribution of horizontal resistivity at depth.

In figure 5.10 we see the a posteriori distribution of models when a mis-
fit penalty on the anisotropy ratio λ2 > 3.0 is included in addition to the
a priori information for the previous case (figure 5.9). We see that this soft
constraint has not influenced the result significantly. However, the horizon-
tal resistivities follow the vertical a bit closer. At depths deeper than 2000.0
m below the surface, we see a small change from the result in figure 5.9.
Here the horizontal and vertical resistivity distributions do not separate as
much.

58

Chapter 6

Discussion

In this chapter we explain the physics describing some of the results ob-
tained in the previous chapters. First we look at some general properties
that were observed in both synthetic and real examples. Then we move
on to more specific results, such as the effect of using multiple frequencies
and different types of a priori information. Finally we discuss the results
obtained on the Troll West Oil Province.

6.1 Some general properties of the a posteriori distri-
butions

A feature that all a posteriori probability distribution both on synthetic data
and on real data had in common was the depth dependence of the resolu-
tion. It is clear that the response from deep layers have less impact on the
data than the response from shallow layers. The reason for this is that sig-
nals which have propagated through the deep layers have traveled a longer
distance, thus strength of the signal has attenuated more. These signals are
therefore more drowned in the background noise. This also explains why
low background noise give much better resolution of the resistivity profile
(figure 4.6).

Also, if a highly resistive area is found, the inversion solution usually
shows a thicker highly resistive reservoir but with lower resistivity than
what was the actual case for the reference model. This is especially the case
when smoothness regularization is imposed on the models.We saw, dur-
ing the first tests, that we could not resolve either resistivity or thickness
of the highly resistive target, but that the product of the two was well de-
fined. This explains why the samples of the a posteriori distribution are
more likely to contain broader highly resistive reservoirs with lower resis-
tivity magnitude, especially when smoothness regularization is included.
The results showing that the resistivity-thickness product of a high resis-
tive layer is better resolved in marine CSEM 1D inversion than merely the

59

resistivity, is confirmed in reference [24].

6.2 The resistivity distribution in models accepted as
samples of the a posteriori probability distribu-
tion

The results from the first tests lead to the idea of calculating the average
resistivities and the second order moment for each model sampled from
the a posteriori probability distribution.

When moving on to the Monte Carlo simulations where synthetic data
estimated from multi layered models were used, we saw that the models
sampled from the a posteriori probability distribution rarely had the same
average resistivity as the reference model (see figures A.1 in appendix A).

For instance, in the synthetic case study where there was only one highly
resistive layer (section 4.2.2) at 1000.0 m below the surface, the average re-
sistivitiy in all models sampled from the a posteriori probability distribu-
tion was too high. However, the average resistivity of the samples came
significantly closer to the average resistivity of the reference value when
jointly using both source frequencies 0.25Hz and 0.75 Hz.

A quotation from reference [24] reads:

As a thumb of rule, if an anomalous body is twice as far away, it
has to be twice as big to produce the same measured anomaly.

Taking a closer look at the a posteriori probability distributions in figure 4.3
we see that the total resistivity from the sea floor and down to the reservoir
location is lower than the total resistivity in this depth range for the refer-
ence model. To compensate, the resistivity in the deeper layers rises above
the reference value. Because the effect on the data due to the resistivities
in deep layers is less than for shallower layers, the additional resistivity
in the deeper layers exceed the ”missing” resistivity in the shallow layers.
This also explains why the average resistivity over all layers is concentrated
much deeper than for the reference model (see figures A.1 c and d).

For the third synthetic reference model we also saw that the average re-
sistivity of the samples from the a posteriori distribution was too high and
that the resistivity distribution was too deep (see figure A.4). However,
when the smoothness regularization was included and thereby excluding
a large number of non physical models, the samples had a much more cor-
rect average resistivity and second order moment.Thus, regularization can
work in favor of resolving the total resistivity.

60

6.2.1 The effect of using different frequencies

When investigating the effect of using multiple frequencies, we found that
the improvement is drastic when using two frequencies with suitable spac-
ing instead of one. However, we also found that the resolution of the re-
sistivity profile does not continue to improve significantly when increasing
the frequency density or outer frequency limits. Because increasing the
number of frequencies also increases the computation time, we prefer us-
ing few frequencies.

The effect of jointly using multiple frequencies for 1D marine CSEM
inversion was also discussed in reference [22]. The conclusion in this pa-
per is consistent with the results from section 4.2.3. Here, ten different 1D
inversion results for each source frequency combination was used for the
investigation instead of looking at the a posteriori distributions of models.
With our method we see resolution properties of 200 000 models for each
source frequency combination. This implies that the Monte Carlo method
in this thesis for investigating the effect of using different frequencies pro-
vides more certain results.

From figures 4.3 and 4.5 we draw the conclusion that using high source
frequencies result in better resolution of highly resistive layers and low
source frequencies result in better resolution of the background resistiv-
ity in deep layers. We can also see this effect in the the plots from figure 3.3
that were obtained for the three layered first test case in section 3.1.2. Here,
the a posteriori distributions when using a 0.5Hz source frequency has a
tail towards toward the shallow depths whereas the a posteriori distribu-
tion when using 0.75Hz has a tail toward the deep layers. The tail indicate
that the resistivity values are more poorly resolved at this depth. Conse-
quently, using a 0.5 Hz source signal resolves the resistivities in deep layer
better than a 0.75 Hz source frequency, and vice versa.

The anomalous response from a reservoir will only be detected by the
receivers at the sea floor if the perturbations are not masked by the back-
ground currents [25]. Low frequencies result in little attenuation (see equa-
tion 2.1) and therefore the background currents are strong. Consequently,
the resolution of a potential reservoir becomes poor. For higher frequencies
the current rapidly attenuates, and the background current becomes small
at much shorter offsets. Thus, it makes sense that a highly resistive layer
will be better resolved when using higher source frequencies. However, if
the the source frequency is too high, the currents are severely attenuated
before reaching the highly resistive target. Thus, the interaction between
the source signal and the reservoir is not significant, and the receivers will
not detect the reservoir even though the background currents are negligible
at the sea floor.

The optimal source frequency depends on the resistivity structure in the
seabed which is the reason why there is not one standard frequency used

61

for marine CSEM surveys [25].
Low source frequencies resolves the background resistivity better ac-

cording to reference [26], but 0.25 Hz is not low enough for this purpose.
In reference [26] it is argued that frequencies as low as 0.05 Hz or less re-
solve the deep background resistivity. Only medium and high frequencies
(0.25 Hz, 0.75 Hz 1.25 Hz) were used in the data acquisition on the Troll oil
field and this could partly explain the unlikely high background resistivity
values.

6.3 The use of a priori information

In this thesis we have also seen examples of how the a priori information
imposed on the solutions influence the a posteriori probability distribu-
tions. In section 4.4.2 the smoothness requirement resulted in a much better
recovery of the deepest highly resistive layer. When no smoothness regu-
larization was used, the deepest target was not resolved at all. In this case
the smoothness constraint served its purpose of excluding non physical
models.

The shallow highly resistive target was better resolved when the only
a priori information assumed was the sampling described in section 3.2.3.
A depth dependent regularization, however, did not significantly improve
the resolution for this highly resistive target compared to the results ob-
tained with depth independent regularization (see figures A.5 and 4.8b re-
spectively) This indicates that constraining the resistivity in deep layers can
lead to less resolved shallow layers.

6.4 Troll West Oil Province

The first thing to comment on our results from the Troll oil field is the highly
resistive area found at around 432-832 m below the surface in both the start
model and the a posteriori distributions. Other marine CSEM inversion re-
sults also show this highly resistive top area. An inversion result obtained
from common midpoint (CMP) inversion is shown in figure A.6. Also, in
reference [27] high resistivity at this depth was found to be consistent with
measurements from well logs. Here it is stated that this is the result of a
so-called glacio-marine sediment package.

Assuming isotropic models, the a posteriori probability distribution did
not vary much with and without a smoothness regularization. The main
difference with and without the smoothness constraint was seen at 2000 -
3000 m below the surface. This means that the resolution power of the data
was weak enough at this depth for the regularization term to significantly
influence the result. In contrast, the resistivity in the top layers was not in-

62

fluenced by the regularization. Here, the resolution power of the data have
been strong enough for the effect of the priori information to be minimal.

When allowing anisotropic models and including no smoothness or
anisotropy constraints the horizontal resistivities were in general poorly re-
solved (see figure 5.8b). The only well defined horizontal resistivity values
were low resistivity values. Thus, the data must be much more sensitive
to horizontal high conductivities than horizontal high resistivities, which
is consistent with the theory in section 2.1. Therefore, the horizontal com-
ponents helps resolving the resistivity in the layers just above and below a
highly resistive target.

The a priori information had a huge impact on the a posteriori distribu-
tion of models when allowing anisotropic models. When excluding most
models with higher horizontal than vertical resistivity values and imposing
smoothness, the a posteriori probability distribution of horizontal resistiv-
ity values became significantly sharper. The horizontal a posteriori distri-
bution also followed the same path as the vertical resistivity distribution.

Constraining the models further did not have a huge impact on the re-
sults, but it was noticeable that the horizontal and vertical resistivities be-
came even more alike, especially in deep layers (> 2000m). Although the
smoothness regularization was equal for both the isotropic and anisotropic
simulations, the anisotropic case (when constraining some anisotropic prop-
erties) gave a much more defined, smoothened a posteriori distribution of
models than for the isotropic case (compare figures 5.9 and 5.10 with fig-
ure 5.7). We therefore conclude that anisotropic inversion is better than
isotropic inversion when constraining anisotropic properties.

Because 1D models assume infinite x and y directions no 1D model will
truly explain the data from a 3D reference model. Trying to fit data acquired
from a 3D reference model to 1D models will especially give less reliable
results for small reference reservoirs. The Troll oil field is small enough for
1D models to not be able to fully describe the data, but large enough for the
oil reservoir to be identified at depth although a few hundred meters too
shallow.

To check that 1D inversion on data acquired from a 3D reference model
can place a highly resistive target slightly too shallow, the Monte Carlo
simulation was run on data acquired from a synthetic 3D reference model.
This reference model consisted of a 100 m thick body with vertical resis-
tivity ρv = 25Ωm at 1000.0 m below the sea floor. The lateral extent of
the highly resistive body was 3 × 4 km, the background vertical resistiv-
ity was ρv = 2.0Ωm and the anisotropy ratio was λ2 = 2.0. The water
depth of the 3D reference model was 1000.0 m and the water resistivity
was ρ = 0.32Ωm. In the Monte Carlo simulation smoothness regulariza-
tion and a high misfit penalty on ρv < ρh was included. The resulting a
posteriori distribution of models can be found in figure 6.1. For the vertical
resistivity we see a resistivity contrast at 2100.0 m below the surface which

63

Figure 6.1 A posteriori information on synthetic 3D reference model

 0
 20000
 40000
 60000
 80000
 100000
 120000
 140000

Depth (m)

lo
g1

0(
rh

o)
A posteriori distribution

 1000 1500 2000 2500 3000 3500 4000
-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0
 10000
 20000
 30000
 40000
 50000
 60000

Depth (m)

lo
g1

0(
rh

o)

A posteriori distribution

 1000 1500 2000 2500 3000 3500 4000
-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

a) Vertical resistivity b) Horizontal resistivity

is exactly where the lower boundary of the highly resistivity body in the
reference model is placed. Above this depth, we see a slightly higher resis-
tivity bump at 1500.0 m to 2100.0 m. For the horizontal resistivity the effect
of the highly resistive body is better seen, but it is clearly placed a few hun-
dred meters too shallow. The resistivity-bump at around 1500.0 to 2100.0 m
is much lower than the resistivity value in the reference value. This effect is
much more significant here than when using synthetic 1D reference mod-
els. Thus, we should also expect that the highly resistive areas found by
using the TWOP data, actually has much greater resistivity. We also notice
that the resistivity (both vertical and horizontal) in deep layers (>3200.0 m
below the surface) became very high, indicating that some high resistivi-
ties at shallower depths have not been properly resolved. This indicates
that the very high background resistivities found on the TWOP could also
be a result of trying to fit 1D models to data acquired from a 3D model.

A question such as

What is the probability that there exists highly resistive areas
between 1300m and 1600 m below the surface at the TWOP?

can only be answered according to the a posteriori distribution of 1D mod-
els in this thesis. However, if 2D models were used, the depth of the anoma-
lous body would be better determined and the question could be more con-
fidently answered. Also, if the 3D reference model is very large in the x-
and y-directions, a more confident answer could be given. The answer to
such a question will also depend on the a priori information one chooses to
use.

In tables A.1 and A.2, we see the probabilities of there being an average
resistivity higher than 5Ωm at a given depth interval of 300.0 m for the three

64

different a priori informations used on the Troll oil field in this thesis. For
all vertical resistivities the most probable depth-interval of where to find a
highly resistive area is at 1132-1432 m below the surface. We see that this is
also the case for the horizontal resistivities when the strict misfit penalty on
models where ρv < ρh is included. In addition we notice that the fraction
of models with high vertical resistivity at 1132-1432 m below the surface
increases dramatically when also including a misfit penalty when λ2 > 3.0.

Combining the numbers in tables A.1 and A.2 with our results that 1D
inversion using a 3D reference model reproduces a highly resistive reser-
voir a few hundred meters too shallow and with lower resistivity, we sug-
gest that the results from tables A.1 and A.2 are more realistic if we move
them a 100.0-200.0 m meters deeper. Then the conclusion becomes that the
existence of a highly resistive area at around 1500.0 m below the surface
is very probable, especially when assuming the third a priori information
described in section 5.4.

65

Chapter 7

Conclusions

We have seen that a Monte Carlo method for sampling solutions of inverse
problems can be used to display the marginal a posteriori probability dis-
tributions of sub sea resistivity models. Unfortunately it is impossible to
display the joint probability distribution because of the high dimensional-
ity of the problem.

The synthetic studies in this thesis have shown many of the same reso-
lution properties of marine CSEM data as previously obtained from other
methods of investigation. Amongst these results are the depth dependence
of the resolution power of the data, the advantages of jointly using multiple
frequencies and that the resistivity-thickness product of a highly resistive
layer is well resolved for 1D inversion.In addition we have seen that using
high frequencies for the data acquisition (1.0 ∼ 3.0Hz) in general gives data
that resolves shallow, highly resistive layers better compared to using low
frequencies (0.25 ∼ 1.0Hz). Through the sampling of models from the a
posteriori distribution we were also able to confirm that the inline data are
less sensitive to horizontal high resistivities than vertical high resistivities,
but more sensitive to high horizontal conductivities.

In addition to conducting synthetic studies, we have also run the Monte
Carlo simulation using data acquired from the TWOP. By comparing the a
posteriori distribution of models using data from a synthetic 3D reference
model, we have identified some limitations of explaining real data with 1D
models. In our case, we found that the sampling of 1D models resulted in a
reservoir placed a few hundred meters too shallow and the resistivity value
of the target layer was severely weakened. Taking this information into
account, we estimated the probability of the existence of a highly resistive
area at depth at the TWOP given the a priori information.

Due to the increased number of parameters when moving from 1D to
2.5D and 3D models, a Monte Carlo approach for these cases will not pro-
vide much information in the near future. The method may be used to
sample the a posteriori distribution just in the vicinity of an inversion re-

66

sult, but the information we get will be limited to very small portions of
the model space. Thus, for future work, we should keep the focus on sam-
pling 1D models. By identifying the errors made by the 1D approximation
through comparison with synthetic 3D models, we can reconstruct more re-
alistic results. Thus, this 1D model sampling is of great interest even when
the data can not be fully explained by 1D models. For future work we could
investigate more limitations due to using 1D models on data acquired from
3D models by conducting studies using synthetic 3D reference models of
different shapes.

Because the resistivity values in deep layers were worse resolved than
in the top layers one could consider to increase the thickness of each layer
with depth. It would also be interesting to do more tests regarding anisotropy,
both on synthetic reference models and on real data. In addition, we could
jointly use marine CSEM- and magnetotelluric (MT) data in the Monte
Carlo simulations, as this will provide more data directly affected by the
subsea resistivity profile. This should improve the resolution of a potential
highly resistive target significantly according to reference [28]. Although
seismic methods provides information about other subsea properties than
the resistivity, we can also use the results from seismic interpretations di-
rectly in CSEM inversion. One suggestion is to use the horizons separating
different rock types and sediments, seen from seismic interpretations, as
boundaries for the layers, or impose the horizons as a priori information
through a soft constraint.

67

Bibliography

[1] K.V Sickle and J.E.Valusek. AVO analysis of 3-D seismic data identifies
untested reservoirs in old gas field. The leading edge, 9:18–22, 1990.

[2] D. Wright, A.Ziolkowski, and B.Hobbs. Hydrocarbon detection
and monitoring with a multicomponent transient electromagnetic
(MTEM) survey. The leading edge, 21:852–864, 2002.

[3] AA.P Thirud. Waves of information. EMGS article,Scandinavian Oil-
Gas Magazine, No.3/4, pp.8-9, 2002.

[4] S. Ellingsrud, T.Eidesmo, and S.Johansen. Remote sensing of hydro-
carbon layers by seabed logging (SBL): Results from a cruise offshore
Angola. The leading edge, 21:972–982, 2002.

[5] Constable S. and L.J.Srnka. An introduction to marine controlled-
source methods for hydrocarbon exploration. Geophysics, 72:WA3–
WA12, 2007.

[6] A. Tarantola. Popper, Bayes and the inverse problem. Nature Physics,
2:492–494, 2006.

[7] J. Chen, G.M Hoversten, D.Vasco, Y. Rubin, and Z.Hou. A Bayesian
model for gas saturation estimation using marine seismic AVA and
CSEM data. Geophysics, 72:WA85–WA95, 2007.

[8] T.Eidesmo, S.Ellingsrud, L.M MacGregor, S.Constable, M.C Sinha,
S.Johansen, F.N Kong, and H.Westerdahl. Sea Bed Logging (SBL), a
new method for remote and direct identification of hydrocarbon filled
layers in deepwater areas. First Break, 20:144–152, 2002.

[9] A. Hordt, P.Andrieux, F.M.Neubauer, H.Ruter, and K.Vozoff. A first
attempt at monitoring underground gas storage by means of time-
lapse multichannel transient electromagnetics. Geophysical Prospecting,
48:489–509, 2000.

[10] S. Constable and C.J.Weiss. Mapping thin resistors and hydrocarbons
with marine EM methods: Insights from 1D modeling. Geophysics,
71:G43–G51, 2006.

68

[11] S.H Ward and G.W.Hohmann. Electromagnetic theory for geophysi-
cal applications. Electromagnetic Methods Applied Geophysics, 1:131–311,
1988.

[12] X. Lu and C. Xia. Understanding Anisotropy in Marine CSEM Data.
SEG Expanded abstract, 26:633–637, 2007.

[13] A. Tarantola. Inverse problem theory and methods for model parameter es-
timation. Society for Industrial and Applied Mathematics, 2005.

[14] K. Mosegaard and A. Tarantola. Monte Carlo sampling of solutions
to inverse problems. Journal of Geophysical Research, 100:12431–12447,
1995.

[15] P. Glasserman. Monte Carlo Methods in Financial Engineering. Sprinter-
Verlag, 2004.

[16] D. Stauffer. Econophysics - A new area for computational statistical
physics? International journal of modern physics C, 11:1081–1087, 2000.

[17] M. Hjorth-Jensen. Lecture notes on Computational physics.
http://www.uio.no/studier/emner/matnat/fys/FYS3150/h08 /un-
dervisningsmateriale/Lecture%20Notes/lecture2008.pdf.

[18] Metropolis N., A.W. Rosenbluth, M.N. Rosenbluth, A.H Teller, and
E. Teller. Equation of State Calculations by Fast Computing Machines.
Journal of chemical physics, 21:1087–1092, 1953.

[19] C. Fehily. Visual QuickStart Guide Python. Peachpit Press, 2002.

[20] S. Kirkpatrick, C.D Gelatt Jr., and M.P. Vecchi. Optimization by Simu-
lated Annealing. Science, 220:671–680, 1983.

[21] Birsan M. A byesian approach to electromagnetic sounding in a ma-
rine environment. IEEE Transactions on Geoscience and Remote Sensing,
41:1455–1460, 2003.

[22] K. Key. 1D inversion of multicomponent, multifrequency marine
CSEM data: Methodology and synthetic studies for resolving thin re-
sistive layers. Geophysics, 74:F9–F20, 2009.

[23] M.E. Everett and S. Constable. Electric dipole fields over an
anisotropic seafloor:theory and application to the structure of 40 Ma
Pacific Ocean lithosphere. Geophysical Journal International, 136:41–56,
1999.

[24] N.B. Christensen and K. Dodds. 1D inversion and resolution analysis
of marine CSEM data. Geophysics, 72:WA27–WA38, 2007.

69

[25] E.S Um and D.L. Alumbaugh. On the physics of the marine controlled-
source electromagnetic method. Geophysics, 24:WA13–WA26, 2007.

[26] P. Dell’Aversana, M. Vivier, and A.Tansini. Expanding the Frequency
Spectrum in Marine CSEM Applications. EGM 2007 International
Workshop, 2007.

[27] I. Brevik, P.T.Gabrielsen, and J.P Morten. The role of EM rock physics
and seismic data in integrated 3D CSEM data analysis. SEG Houston
2009 International Exposition and Annual Meeting, 2009.

[28] L. MacGregor and P. Harris. Marine CSEM Sounding: Moving beyond
the Image. EGM 2007 International Workshop, 2007.

70

Appendix A

Additional figures

Figure A.1 Distribution of average resistivities and center of resistivities for
models sampled from the a posteriori probability distribution.This figure
was obtained using the first synthetic reference model in chapter 4

 0

 5000

 10000

 15000

 20000

-1 -0.5 0 0.5 1 1.5 2

No
 of

mo
del

s

Average log10(rho)

Average total resistivity
True value

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 500 1000 1500 2000 2500 3000 3500 4000

No
 of

mo
del

s

Center of resistivity

Center of resistivity
True value

a) The distribution of total resistivity and center of resistivity for a source
frequency of 0.25 Hz

 0

 5000

 10000

 15000

 20000

 25000

-1 -0.5 0 0.5 1 1.5 2

No
 of

mo
del

s

Average log10(rho)

Average total resistivity
True value

 0

 20000

 40000

 60000

 80000

 100000

 0 500 1000 1500 2000 2500 3000 3500 4000

No
 of

mo
del

s

Center of resistivity

Center of resistivity
True value

b)The distribution of total resistivity and center of resistivity for a source
frequency of 0.75 Hz

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

-1 -0.5 0 0.5 1 1.5 2

No
 of

mo
del

s

Average log10(rho)

Average total resistivity
True value

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 500 1000 1500 2000 2500 3000 3500 4000

No
 of

mo
del

s

Center of resistivity

Center of resistivity
True value

c)The distribution of total resistivity and center of resistivity for jointly
using source frequencies 0.25 Hz and 0.75 Hz

71

Figure A.2 Marginal a posteriori distribution

 0
 10000
 20000
 30000
 40000
 50000
 60000

Depth (m)

log
10

(rh
o)

A posteriori distribution

 500 1000 1500 2000 2500 3000
-1

-0.5

 0

 0.5

 1

 1.5

 2

a)frequencies: 0.25 Hz, 1.0 Hz

 0
 10000
 20000
 30000
 40000
 50000
 60000
 70000
 80000
 90000

Depth (m)

log
10

(rh
o)

A posteriori distribution

 500 1000 1500 2000 2500 3000
-1

-0.5

 0

 0.5

 1

 1.5

 2

b) frequencies: 0.25 Hz, 0.50 Hz, 0.75 Hz, 1.0 Hz

 0
 20000
 40000
 60000
 80000
 100000
 120000
 140000
 160000

Depth (m)

log
10

(rh
o)

A posteriori distribution

 500 1000 1500 2000 2500 3000
-1

-0.5

 0

 0.5

 1

 1.5

 2

c) frequencies: 0.25 Hz, 1.0 Hz, 3.0 Hz

The results are obtained when using different source frequency combina-
tions

72

Figure A.3 Marginal a posteriori probability distribution

 0
 5000
 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000
 50000

Depth (m)

log1
0(rh

o)

A posteriori probability distribution

 500 1000 1500 2000 2500 3000 3500 4000
-1

-0.5

 0

 0.5

 1

 1.5

 2

The result is obtained when starting the Monte Carlo simulation from a
model consisting of a uniform subseafloor resistivity structure of 2.0Ωm
and jointly using both 0.25 Hz and 0.75Hz as source frequencies.

Figure A.4 Distribution of average resistivities for the models sampled
from the a posteriori probability distribution. This figure was obtained us-
ing the third synthetic reference model in chapter 4

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

No
 o

f m
od

el
s

Average log10(rho)

Average total resistivity
Reference value

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 1000 1500 2000 2500 3000 3500 4000

No
. o

f m
od

el
s

Center of resistivity

Center of resistivity
Reference value

a) No regularization

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

No
 o

f m
od

el
s

Average log10(rho)

Average total resistivity
Reference value

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 1000 1500 2000 2500 3000 3500 4000

No
 o

f m
od

el
s

Center of resistivity

Center of resistivity
Reference value

b) Strict regularization

The models sampled from the a posteriori probability distribution when
smoothness is not assumed have average resisitivities closer to the average
resistivity for the reference model.

73

Figure A.5 Marginal a posteriori probability distribution

 0
 50000
 100000
 150000
 200000
 250000

Depth (m)

log
10

(rh
o)

A posteriori distribution

 500 1000 1500 2000 2500 3000 3500 4000
-2

-1.5
-1

-0.5
 0

 0.5
 1

 1.5
 2

 2.5

The result is obtained when using the depth dependent regularization in
equation 4.9.

Figure A.6 CMP inversion result on TWOP

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0 500 1000 1500 2000 2500 3000 3500 4000

log
10

(rh
o)

Depth (m)

CMP isotropic result

This resistivity profile on the TWOP was found by CMP inversion by some-
one else at EMGS

74

Table A.1: Probabilities vertical resistivities
Probability No smoothness Smoothness and Smoothness and

regularization penalty on ρv < ρh penalty on ρv < ρh
and λ2 > 3.0

P(
∫ 1132

832 ρdz > 1500.0) 0.0 0.0 0.0
P(

∫ 1232
932 ρdz > 1500.0) 0.0 0.00117 0.00690

P(
∫ 1332

1032 ρdz > 1500.0) 0.03772 0.06026 0.28815
P(

∫ 1432
1132 ρdz > 1500.0) 0.10515 0.28567 0.92635

P(
∫ 1532

1232 ρdz > 1500.0) 0.02409 0.05670 0.55506
P(

∫ 1632
1332 ρdz > 1500.0) 0.00403 0.00238 0.07418

P(
∫ 1732

1432 ρdz > 1500.0) 0.00442 0.0 0.0
P(

∫ 1832
1532 ρdz > 1500.0) 0.01031 0.0 0.0

Table A.2: Probabilities horizontal resistivities
Probability No smoothness Smoothness and Smoothness and

regularization penalty on ρv < ρh penalty on ρv < ρh
and λ2 > 3.0

P(
∫ 1132

832 ρdz > 1500.0) 0.995 0.0 0.0
P(

∫ 1232
932 ρdz > 1500.0) 0.99803 0.00239 0.0

P(
∫ 1332

1032 ρdz > 1500.0) 0.99661 0.04241 0.00958
P(

∫ 1432
1132 ρdz > 1500.0) 0.86994 0.11307 0.07511

P(
∫ 1532

1232 ρdz > 1500.0) 0.55732 0.01725 0.01444
P(

∫ 1632
1332 ρdz > 1500.0) 0.54063 0.00145 0.00090

P(
∫ 1732

1432 ρdz > 1500.0) 0.87744 0.0 0.0
P(

∫ 1832
1532 ρdz > 1500.0) 0.96334 0.0 0.0

75

Appendix B

Source codes

B.1 Script for the first tests
#! /usr/bin/env python

import sys

import os

import os.path

import shutil

import loghelper

import arguments

import pyelio #Needed to read files of type <filename>.nc

import random

import math

progName = "firstMC.py"

infostring = """

NAME:filtesting.py

DESCRIPTION:

The program constructs several models consisting of one resistive layer in a uniform background.

The resistive layer varies in depth, thickness and resistivity.

Synthetic data are esitmated for the different models by calling elcardinal,

and then compared with the data from the obsResult file (observed data)

The resultfile, <filename>.dat, contains columns of data representing:

Likelihood value | log(resistivity of the layer) | depth of upper boundaray of the layer (from surface) | tickness of layer

""" #end multiline string

def main(argv):

if('-help' in argv):

print infostring

sys.exit(0)

optionList = [

'obsResults=infiltest2.nc', 'File containing observed data',

'filename=result', 'The name of the resultfile',

'nrmodels=1000 ', 'Number of accepted models',

'resmaxhor=200.0', 'Upper bound for the horizontal resistivity of the layer',

'resminhor=1.0', 'Lower bound for the horizontal resistivity of the layer',

'resmaxver=200.0', 'Upper bound for the vertical resistivity of the layer',

'resminver=1.0', 'Lower bound for the vertical resistivity og the layer'.

'maxdepth=700.1', 'Max depth to the upperborder of the resistive layer',

76

'mindepth=699.9', 'Min depth to the upperborder of the resistive layer',

'thickmax=500.0', 'Max thickness of the resistive layer',

'thickmin=5.0', 'Min thickness of the resistive layer.',

'waterreshor=.3125', 'Resistivity of the water in the horizontal direction',

'waterresver=.3125', 'Resistivity of the water in the vertical direction',

'bgresver=2.0', 'Vertical resistivity of the background',

'bgreshor=2.0', 'Horizontal resistivity of the background',

'waterdepth=200.0', 'Depth to seafloor',

'par=res', 'par=con for conductivity input, par=res for resistivity input',

'tvi=off', 'Isotropic models if tvi=off. Can also use tvi=on',

'skip=0', 'Number of accepted models to skip in the beginning of the simulation',

'alpha=0.05', 'The multiplicative data uncertainty',

'noise=-15', 'The noise level. 10^noise' ,

]

arg = arguments.arguments(optionList,argv)

vars = arg.getargs()

obsResults = vars['obsResults']

filename = vars['filename']

nrmodels = int(vars['nrmodels'])

resmaxhor = float(vars['resmaxhor'])

resminhor = float(vars['resminhor'])

resmaxver = float(vars['resmaxver'])

resminver = float(vars['resminver'])

mindepth = float(vars['mindepth'])

maxdepth = float(vars['maxdepth'])

waterreshor = float(vars['waterreshor'])

bgreshor = float(vars['bgreshor'])

waterresver = float(vars['waterresver'])

bgresver = float(vars['bgresver'])

waterdepth = float(vars['waterdepth'])

thickmin = float(vars['thickmin'])

thickmax = float(vars['thickmax'])

par = vars['par']

tvi = vars['tvi']

skip = int(vars['skip'])

alpha = float(vars['alpha'])

noise = float(vars['noise'])

noise = math.pow(10,noise)

frequencies = []

if (resmaxhor < resminhor) or (resmaxver < resminver) or (maxdepth < mindepth) or (thickmax < thickmin) :

print 'Error: The max and min values are incorrect'

sys.exit(0)

#COLLECTING THE FREQUENCIES FROM THE OBSERVED DATA FILE

obsr = pyelio.SurveyResult(obsResults, pyelio.FileOpenMode.READ_ONLY)

ex1obs = obsr.getChannel(pyelio.ChannelType.CH_EMF_EX,1)

if ex1obs.hasFrequencyResult() :

freqsobs = ex1obs.getFrequencyResult().getFrequencies()

for f in freqsobs :

frequencies.append(f.getValue())

print f.getValue()

#OPEN RESULTFILE

raccept = open(filename, 'w')

#ALLOCATIONS

resaccept = []

77

depthaccept = []

thickaccept = []

probaccept = []

model = 0

probability_old = 0.0

reject = 0

rejecttot = 0

accept = 0

accepttot = 0

steplength = 0.1

nrmoves = 0

case = 0

tvi_off_on = 3

if (tvi=='on'):

tvi_off_on = 4

#CREATING STARTMODEL

rdepth = random.random()

rreshor = random.random()

rthick = random.random()

rresver = random.random()

resistivityhor_old = resminhor + (resmaxhor-resminhor)*0.5 #rreshor

resistivityver_old = resminver + (resmaxver-resminver)*0.5 #rresver

depth_old = mindepth + (maxdepth -mindepth)*0.5 #rdepth

thick_old = thickmin + (thickmax-thickmin)*0.5 #rthick

layerlower_old = depth_old + thick_old

zlay_old = [waterdepth, depth_old, layerlower_old]

filename = 'model' + str(model) + '.nc'

zr = zlay_old[0]

mhor = [waterreshor,bgreshor,resistivityhor_old, bgreshor]

mver = [waterresver,bgresver,resistivityver_old, bgresver]

#END CREATION OF STARTMODEL

cmd=mkcommand(filename,par, zlay_old, frequencies, tvi, mhor, mver, zr)

loghelper.runCommand(cmd)

misfit_old = calc_misfit_ALL_FREQS(model,freqsobs,alpha,noise)

probability_old = math.exp(-misfit_old)

#BEGINNING MONTE CARLO LOOP

while(accepttot < nrmodels + skip) :

print 'accepttot', accepttot

nrmoves+=1

resinrangehor = False

resinrangever = False

depthinrange = False

thickinrange = False

#TAKING A STEP

if (case==0):

resistivityver=new_model(resinrangever,resmaxver,resminver,resistivityver_old,steplength)

resistivityhor=resistivityhor_old

depth=depth_old

thick=thick_old

if(case==1):

depth= new_model(depthinrange, maxdepth, mindepth, depth_old, steplength)

78

resistivityhor=resistivityhor_old

resistivityver=resistivityver_old

thick=thick_old

if(case==2):

thick= new_model(thickinrange, thickmax, thickmin, thick_old, steplength)

resistivityhor= resistivityhor_old

resistivityver=resistivityver_old

depth=depth_old

if (case==3):

resistivityhor=new_model(resinrangehor,resmaxhor,resminhor,resistivityhor_old,steplength)

resistivityver=resistivityver_old

depth=depth_old

thick=thick_old

#END STEP

#THE VALUES TO BE SENT TO ELCARDINAL

zlay = [waterdepth, depth, depth + thick]

mhor = [waterreshor,bgreshor,resistivityhor, bgreshor]

mver = [waterresver,bgresver,resistivityver, bgresver]

filename = 'model' + str(model) + '.nc'

#RUNNING ELCARDINAL

cmd = mkcommand(filename,par, zlay, frequencies, tvi, mhor, mver, zr)

loghelper.runCommand(cmd)

misf = calc_misfit_ALL_FREQS(model, freqsobs,alpha,noise)

FIND PROBABILITY OF MODEL

probability = math.exp(-misf)

#UPDATE STEPLENGTH

if (nrmoves%20==0):

print 'accept=', accept, 'reject=', reject, "nrmoves=", nrmoves

steplength=adjust_steplength(accept, reject, steplength)

accept=0

reject=0

delta = (-misf + misfit_old)

r = random.random()

if ((-misf + misfit_old) > 500.0):

delta = 10.0

r = 1.0

#METROPOLISTEST

if(misf < misfit_old or r < math.exp(delta)):

print 'ACCEPT'

accepttot +=1

accept += 1

probability_old = probability

resistivityhor_old = resistivityhor

resistivityver_old = resistivityver

thick_old = thick

depth_old = depth

misfit_old = misf

if (accepttot > skip):

resaccept.append(resistivityver_old)

depthaccept.append(depth_old)

79

thickaccept.append(thick_old)

probaccept.append(probability_old)

else :

reject +=1

rejecttot+=1

print 'REJECT'

#END METROPOLIS TEST

#REMOVE FILES

removefile = 'rm ' + filename

loghelper.runCommand(removefile)

if(accepttot==skip):

rejecttot = 0

model = 0

#SET CASE: NEW PARAMTER TO VARY

case+=1

case = case % tvi_off_on

model += 1

print 'rejecttot =', rejecttot , ' accepttot= ', accepttot

#PRINT TO RESULTFILE

for k in range(len(resaccept)):

raccept.write(str(probaccept[k]) + '\t' + str(resaccept[k]) + '\t'

+ str(depthaccept[k]) + '\t'+ str(thickaccept[k]) + '\n')

raccept.close()

##

def mkcommand(filename,par, layers, frequencies, tvi, mhor,mver, zr):

if (tvi=='off'):

mhor=mver

if (len(layers)!= len(mver)-1) :

print 'Error: Each layer needs a spesified value for the resistivity/conductivity'

print len(layers), len(mver)

zs= zr - 30

command = 'elcardinal '

command += 'ofel=' + filename

command += ' par=' + par

command += ' zlay='

for i in range(len(layers)-1):

command+= str(layers[i]) + ','

command += str(layers[len(layers)-1])

command += ' freq='

for i in range(len(frequencies) -1):

command+= str(frequencies[i]) + ','

command += str(frequencies[len(frequencies)-1])

command += ' tvi=' + tvi

command += ' mver='

for i in range(len(mver)-1):

command += str(mver[i]) + ','

command += str(mver[len(mver) - 1])

command += ' mhor='

for i in range(len(mhor)-1):

command += str(mhor[i]) + ','

command += str(mhor[len(mhor) - 1])

command += ' zr='+ str(zr)

command += ' zs='+ str(zs)

80

command += ' comp=' + 'ex'

return command

###

def adjust_steplength(accept, reject, steplength):

if (float(accept)/float(reject+accept) < 0.50):

steplength/=1.1

print 'step length decreased. accept < 50%', 'stepl= ', steplength

else:

steplength*=1.1

print 'step length increased. accept >= 50%', 'stepl= ', steplength

return steplength

##

def new_model(bool, max, min,pos_old, steplength):

while not bool:

r=random.random()

step = (max-min)*steplength

pos_new = pos_old + (r-0.5)*(step)

bool=True

if(pos_new < (min) or pos_new > (max)) :

bool=False

return pos_new

###

def calc_misfit_ALL_FREQS(model,freqsobs,alpha,noise):

sr = pyelio.SurveyResult('model' + str(model) + '.nc', pyelio.FileOpenMode.READ_ONLY)

ex1=sr.getChannel(pyelio.ChannelType.CH_EMF_EX,1)

if ex1.hasFrequencyResult():

ex1_freq = ex1.getFrequencyResult()

freqs = ex1_freq.getFrequencies()

misf= 0

#Calculate misfit: |Ex(offset)-Ex_obs(offset)|^2/(|Ex|^2 + eta)

for i in range(len(freqsobs)):

data = list(freqs[i].getComplexSamples())

dataobs = list(freqsobs[i].getComplexSamples())

for k in range(len(dataobs)):

misf += (abs(data[k]-dataobs[k])*abs(data[k]-dataobs[k]))

misf /=(alpha*alpha*(abs(dataobs[k])*abs(dataobs[k]))+noise*noise)

return misf

###

###

if __name__=="__main__":

main(sys.argv)

###

81

B.2 Script for parallel computing

#! /usr/bin/env python

import sys

import os.path

#Set dir for local modules.

binDir = os.path.dirname(sys.argv[0])

binDir = os.path.abspath(binDir)+'/'

sys.path.append(binDir) # Where to find the following modules:

import arguments

import elgogo

progName = "parallelMC.py"

infostring = """

NAME: parallelMC.py

The script calls the multilayered Monte Carlo code multiMC.py in parallel.

The number given for paraJobs defines how many jobs are to be run in parallel.

When all jobs are done, the script calls the program collect.py which

collects the results from all jobs and put the resulting files in the directory

resultDir/collectedFiles.Default directory for the resulting files is

Troll/collectedFiles.The file containing the startmodel must consist of

three columns containing:

|Depth |Vertical resisitivity | Horizontal resisitivy|

""" #end multiline string

def main(argv):

if('-help' in argv):

print infostring

sys.exit(0)

optionList = [

'prefix=Troll', 'Prefix for the parallel job',

'ofile=Tr_007_Data.nc', 'The file containing observed data',

'resultDir=Troll', 'Where to store the result files.',

'waterdepth=332.00', 'Depth to seafloor',

'maxdepth=4332.0', 'Depth of the deepest layer boundary',

'nrzlay=41', 'The number of layers below the seafloor',

'maxcon=100.0', 'The maximum conductivity',

'mincon=0.002', 'The minimum conductivity',

'mverstart=3.2,0.5', 'Vertical water conductivity:water,background',

'mhorstart=3.2,0.5', 'Horizontal water conductivity',

'nrvar=1000', 'The number of whole iterations',

'tvi=on', 'tvi=on gives anisotropic models and tvi=off isotropic ',

'skip=1000', 'The number whole iterations to skip in the beginning',

'alpha=0.025', 'The multiplicative data uncertainty',

'noisefile=Tr_007_Noise.nc', 'Input noise file.If noisefile=none 10^noisefloor value is used ',

'noisefloor=-15', 'Noise level. 10^noisefloor' ,

'acur=4', 'Accuracy in integration for the forward problem',

'startmod=startmodel', 'File with startmodel.If "none",the halfspace model is used',

'paraJobs=100', 'Number of jobs to run in parallel',

'randomSeedGroup=1', 'randomSeed=randomSeedGroup*654321+i*1234+7',

]

read command line

arg = arguments.arguments(optionList,argv)

vars = arg.getargs()

prefix = vars['prefix']

82

resultDir = vars['resultDir']

kFaktor = vars['kFaktor']

randomSeedGroup = vars['randomSeedGroup']

create resultDir if not exist

if (not os.path.isdir(resultDir)):

print("# frechall_Parallel.py: Creating new directory: " + resultDir)

os.mkdir(resultDir)

if (not os.path.isdir(resultDir+ '/collectedFiles')):

print("# frechall_Parallel.py: Creating new directory: "

+ resultDir + '/collectedFiles')

os.mkdir(resultDir+'/collectedFiles')

create job list

verbose = "1"

jobList = []

jobListCollect = []

for i in range(int(kFaktor)):

command = binDir + "multiMC.py"

command += " obsfile="+vars['obsfile']

command += " noisefile="+vars['noisefile']

command += " waterdepth="+vars['waterdepth']

command += " maxcon="+vars['maxcon']

command += " mincon="+vars['mincon']

command += " nrzlay="+vars['nrzlay']

command += " maxdepth="+vars['maxdepth']

command += " acur="+vars['acur']

command += " mverstart="+vars['mverstart']

command += " mhorstart="+vars['mhorstart']

command += " startmod="+vars['startmod']

command += " nrvar="+vars['nrvar']

command += " tvi="+vars['tvi']

command += " skip="+vars['skip']

command += " alpha="+vars['alpha']

command += " noisefloor="+vars['noisefloor']

command += " noisefile="+vars['noisefile']

command += " resultfilename="+resultDir+"/result."+str(i)

command += " randomSeed="+str(int(randomSeedGroup)*654321 + i*1234 + 7)

command += " verbose="+verbose

jobList.append([command,"normal"])

if (verbose == "1"):

verbose = "0"

print jobList

#Create joblist for collecting the results

commandCollect= binDir + 'collect.py'

commandCollect+=' files=' + resultDir+"/noise."

commandCollect+=' paraJobs=' + str(kFaktor)

commandCollect+=' result=' + resultDir + '/collectedFiles/noise'

commandCollect+= " maxcon=" +vars['maxcon']

commandCollect+= " mincon=" +vars['mincon']

commandCollect+= " tvi=" +vars['tvi']

print commandCollect

jobListCollect.append([commandCollect,"normal"])

submitt job to queue

elgogo.lsf_go(prefix,500,jobList,".")

83

#Collect results in resultDir/collectFiles

elgogo.lsf_go(prefix,100,jobListCollect,".")

finalize

print "# frechall_Parallel.py: exit at end script"

##

if __name__=="__main__":

main(sys.argv)

###

B.3 Multilayered Monte Carlo simulation

#! /usr/bin/env python

import sys

import os

import os.path

#Set dir for local modules.

binDir = os.path.dirname(sys.argv[0])

binDir = os.path.abspath(binDir)+'/'

sys.path.append(binDir) # Where to find the following modules:

import shutil

import loghelper

import arguments

sys.path.append(os.environ['HOME'] + os.path.sep + 'pyelio')

import pyelio #Needed to read files of type <filename>.nc

import random

import math

import struct

import pynavutil

#import decimal

progName = "multiMC.py"

infostring = """

NAME:multiMC.py

The script performs a Monte Carlo simulation for 1D models. Horizontal layers with fixed spacing is

assumed.The script reads data from a file of the type <filename.nc> which is the file containing

the obtained data from a true model.It then generates a series of sub seafloor models and uses

elcardinal to calulate new data, which again gives a misfit with the data from the true model.

The misfit is used in a metropolis rule, and the result is samples of the a posterior probability

distribution.

The output files are:

**

<resultfilename>.dat:

This file contains columns with values for :

**** Vertical resistivity ****

|depth | best model |avrage model |mean model |average log10rho*log10rho | skewness | kurtosis|

84

If anisotrop models, then the file also contain these quantities for the horizontal resistivities

**

**

<resultfilename>res.dat:

This file contains columns with values for :

|depth |Average total resistivities | Second order moment of the resistivity |

**

<resultfilename>cum.dat:

This file contains columns with values for :

|resistivity | No of models 1st layer with resistivity in column 1 | No of models 2nd layer|..|last layer|

<resultfilename>cumhor.dat:

#

Same as for <resultfilename>cum.dat but for horizontal resistivities

<resultfilename>lst.dat:

This file contains columns with values for :

|resistivity values sample no. 1 [rho1, rho2 ... rho n]|

|resistivity values sample no. 2 [rho1, rho2 ... rho n]|

etc. #

<resultfilename>lsthor.dat:

Same as for <resultfilename>lst.dat but for horizontal resistivities

""" #end multiline string

def main(argv):

if('-help' in argv):

print infostring

sys.exit(0)

optionList = [

'ofile=Tr_007_Data.nc', 'The file containing observed data',

'resfile=syntuni', 'Where to store the result files.',

'waterdepth=500.00', 'Depth to seafloor',

'maxdepth=4000.0', 'Depth of the deepest layer boundary',

'nrzlay=10', 'The number of layers below the seafloor',

'maxcon=100.0', 'The maximum conductivity',

'mincon=0.002', 'The minimum conductivity',

'mverstart=3.69,0.25', 'Vertical water conductivity:water,background',

'mhorstart=3.69,0.5', 'Horizontal water conductivity',

'nrvar=10', 'The number of whole iterations',

'tvi=on', 'tvi=on gives anisotropic models and tvi=off isotropic ',

'skip=0', 'The number whole iterations to skip in the beginning',

'alpha=0.025', 'The multiplicative data uncertainty',

'noisefile=Tr_007_Noise.nc','Input noise file.If noisefile=none 10^noisefloor value is used ',

'noisefloor=-15', 'The noise level. 10^noisefloor' ,

'acur=4', 'Accuracy in integration for the forward problem',

'startmod=startmodel', 'File with startmodel.If "none",the halfspace model is used',

'randomSeed=9', 'seed for the random number generator',

'verbose=0', '=0,1,2 verbose level',

85

]

#READING ARGUMENTS

arg = arguments.arguments(optionList,argv)

vars = arg.getargs()

obsfile = vars['ofile']

resfile = vars['resfile']

noisefile = vars['noisefile']

waterdepth = float(vars['waterdepth'])

maxcon = float(vars['maxcon'])

mincon = float(vars['mincon'])

nrzlay = int(vars['nrzlay'])

maxdepth = float(vars['maxdepth'])

spacezlay = int(vars['nrzlay'])

acur = int(vars['acur'])

mverstart = eval(vars['mverstart'])

mhorstart = eval(vars['mhorstart'])

startmod = vars['startmod']

nrvar = int(vars['nrvar'])

tvi = vars['tvi']

skip = int(vars['skip'])

alpha = float(vars['alpha'])

noisefloor = float(vars['noisefloor'])

verbose = int(vars['verbose'])

nrcum=40

if (noisefile == 'none'):

noise = math.pow(10,noisefloor)

noise_dat = [math.pow(10,noisefloor)]

print noise

randomSeed = int(vars['randomSeed'])

par='con'

nrcum=40

Starting the script

initiate LogClass

log = LogClass(progName,int(verbose))

log.writeln("***** Starting *****")

print options used

log.writeln("* Used options:")

log.printOptions(vars)

Start the random number generator

random.seed(randomSeed)

mverwater=mverstart[0]

mhorwater=mhorstart[0]

log.write(str(mverstart)+" "+str(mverwater))

frequencies = []

###READING NOISEFILE###

if (noisefile!= 'none'):

86

noise=pyelio.SurveyResult(noisefile, pyelio.FileOpenMode.READ_ONLY)

ex1noise=noise.getChannel(pyelio.ChannelType.CH_EMF_EX,1)

if ex1noise.hasFrequencyResult() :

noisef = ex1noise.getFrequencyResult().getFrequencies()

###COLLECTING FREQUENCIES USED TO OBTAIN DATA FROM TRUE MODEL#########

obsr = pyelio.SurveyResult(obsfile, pyelio.FileOpenMode.READ_ONLY)

#Ex-kanalen

ex1obs=obsr.getChannel(pyelio.ChannelType.CH_EMF_EX,1)

if ex1obs.hasFrequencyResult() :

freqsobs = ex1obs.getFrequencyResult().getFrequencies()

for f in freqsobs :

frequencies.append(f.getValue())

print f.getValue()

w=[]

data_obs=[]

noise_data=[]

###READING DATA FROM TRUE MODEL AND CALCULATING WEIGTHS: 1/(alpha^2*Eo^2 + noise^2)

###IF noise to signal ratio less than 10 then the weight=0

for i in range(len(frequencies)):

print 'i', i

if (noisefile !='none'):

noise_data.append(list(noisef[i].getComplexSamples()))

data_obs.append(list(freqsobs[i].getComplexSamples()))

for i in range(len(frequencies)):

if (noisefile == 'none'):

noise_data.append(noise_dat)

w.append([0.0]*len(data_obs[i]))

for k in range(len(data_obs[i])):

if len(noise_data[i])>1:

noise=abs(noise_data[i][k])

datobs=abs(data_obs[i][k])

weight= 1.0/((alpha*alpha)*(datobs*datobs) + noise*noise)

w[i][k]=(weight)

ratio=abs(datobs)/(abs(noise))

if (ratio < 10):

w[i][k]=0

###READING INN OFFSETS

nav_x = obsr.getChannel(pyelio.ChannelType.CH_SOURCE_X, 1)

nav_y = obsr.getChannel(pyelio.ChannelType.CH_SOURCE_Y, 1)

sx = nav_x.getFrequencyResult().getFrequencies()[0].getSamples()

sy = nav_y.getFrequencyResult().getFrequencies()[0].getSamples()

Receiver coordinates

rec_x = obsr.prop_receiver_x

rec_y = obsr.prop_receiver_y

using navutils offset calculatro

offsets = pynavutil.calculate_offsets(sx, sy, rec_x, rec_y)

rl = offsets[len(offsets)-1]

dr = offsets[1]-offsets[0]

r0 = offsets[0]

87

###CREATING START MODEL (FROM FILE OR FROM INPUT PARATMETERS)

layer=[]

if (startmod=='none'):

for l in range(nrzlay):

ld=waterdepth + l*(maxdepth-waterdepth)/(nrzlay-1)

layer.append(ld)

zr=waterdepth

else:

depth=open(startmod, 'r')

lay=open(startmod, 'r')

ld=lay.read()

nrl=len(depth.readlines())

for i in range(nrl-2):

layer.append(eval(ld.split()[3*(i+1)]))

zr=layer[0]

tvimod=1

if (tvi =='on'):

tvimod=2

laycum=[]

laycumhor=[]

ad=-round(math.log10(1.0/maxcon)/math.log10(1.0/mincon)*nrcum)

ad=int(ad)

newmax=ad*math.log10(1.0/mincon)/nrcum

maxcon= math.pow(10,newmax)

for k in range(len(layer)+1):

laycum.append([0]*(nrcum+ad))

laycumhor.append([0]*(nrcum+ad))

#INITIAL MODEL

mver_old=startmodel(mverstart, nrzlay, startmod,1)

mhor_old=startmodel(mhorstart,nrzlay, startmod,2)

if (tvimod==1):

for i in range(len(mver_old)):

mhor_old[i]=mver_old[i]

accepttot=0

rejecttot=0

SOME ALLOCATIONS

probaccept = []

avmverres = [0]*len(mver_old)

avmhorres = [0]*len(mhor_old)

cum2 = [0]*len(mver_old)

cum2hor = [0]*len(mhor_old)

rhointegrated = []

zrhointegrated = []

z2rhointegrated = []

mveraccept = []

mhoraccept = []

for i in range(len(mver_old)):

88

mveraccept.append(mver_old[i])

mhoraccept.append(mhor_old[i])

it=0

probmax=0.0

maxstep = [0.1]*len(layer)*tvimod

accept = [0]*len(layer)*tvimod

reject = [0]*len(layer)*tvimod

zul = layer[len(layer)-1]

lstverres=[]

lsthorres=[]

for i in range(len(layer)+1):

lstverres.append([0]*(nrvar+skip+5))

lsthorres.append([0]*(nrvar+skip+5))

check = 60

mv_good = [0]*len(mver_old)

mh_good = [0]*len(mhor_old)

misfmin = 1000000

cmd=mkcommand(1, mver_old, mhor_old, layer, zr, tvi,acur, frequencies, r0,dr,rl,randomSeed)

loghelper.runCommand(cmd)

misf_old=calc_misfit(1,data_obs,alpha,noise,frequencies,r0,dr,rl,

mver_old,mhor_old,layer,tvimod,w,randomSeed)

misf_old_reg=calc_misf_reg(frequencies,mver_old, mhor_old,layer,tvimod)

BEGINING OF MONTE CARLO LOOP OVER MODELS

while (len(probaccept) < (nrvar + skip)):

cont=False

delta=[]

delta=[0]*(tvimod*len(mver_old)-tvimod)

acceptround=0

rejectround=0

for i in range(len(mver_old)):

mv_good[i]=mver_old[i]

mh_good[i]=mhor_old[i]

misf_good=misf_old

BEGINNING LOOP OVER ALL LAYERS (PARAMETERS)

for l in range(len(layer)*tvimod):

mv=[]

mh=[]

for i in range(len(mver_old)):

mv.append(mver_old[i])

mh.append(mhor_old[i])

print '********L******', l

inrange=False

TAKING A STEP

if (l < len(layer)):

deltacon = step(inrange, maxcon, mincon, mver_old[l+1], maxstep[l])

mv[l+1]*=deltacon

delta[l]=mv[l+1]-mver_old[l+1]

else:

deltacon = step(inrange, maxcon, mincon,

89

mhor_old[l -len(layer)+1], maxstep[l-len(layer)])

mh[l - len(layer) +1]*=deltacon

delta[l]=mh[l-len(layer)+1]-mhor_old[l-len(layer)+1]

misfreg=calc_misf_reg(frequencies,mv, mh,layer,tvimod)

r=random.random()

ACCEPTANCE TEST BASED ON REGULARIZATION

if (misfreg < misf_old_reg or r < math.exp(-misfreg + misf_old_reg)):

misf = calc_misfit_Frechet(1, data_obs,alpha, noise,frequencies,

delta,0,tvi,r0,dr,mv, mh,layer,tvimod,w,randomSeed)

r=random.random()

###ACCEPTANCE TEST BASED ON DATA ###

if (misf < misf_old or r < math.exp(-misf + misf_old)):

acceptround+=1

accepttot+=1

accept[l]+=1

misf_old=misf

relerr=0

misf_old_reg=misfreg

print 'ACCEPT'

if (tvi=='on'):

if (l < len(layer)):

mver_old[l+1]=mv[l+1]

else:

mhor_old[l-len(layer)+1]=mh[l-len(layer)+1]

else:

if (l < len(layer)):

mver_old[l+1]=mv[l+1]

mhor_old[l+1]=mv[l+1]

else:

rejectround+=1

rejecttot+=1

reject[l]+=1

print 'REJECT'

if (l < len(layer)):

delta[l]=0

else:

delta[l]=0

else:

rejectround+=1

rejecttot+=1

reject[l]+=1

print 'REJECT REG'

if (l < len(layer)):

delta[l]=0

else:

delta[l]=0

CHECKING THE ERROR MADE IN THE MISFIT BY USING ELCARDINAL

IF THE ERROR HIGHER THAN 10% THIS NEW MODEL IS DELETED

AND RETURN TO THE MODEL WE HAD BEFORE THE LOOP OVER ALL

PARAMETERS AND TRY AGAIN.

if (acceptround==check):

acceptround=0

cmd=mkcommand(1, mver_old, mhor_old, layer, zr, tvi,acur,

90

frequencies, r0,dr,rl,randomSeed)

loghelper.runCommand(cmd)

misfelc = calc_misfit(1,data_obs,alpha,noise,frequencies,r0,

dr,rl,mver_old,mhor_old, layer,tvimod,w,randomSeed)

relerr2=abs((misf_old+misf_old_reg) -(misfelc+misf_old_reg))/(misfelc+misf_old_reg)

delta=[0]*(tvimod*len(mver_old)-tvimod)

misf_old=misfelc

if (relerr2 > 0.1):

for i in range(len(mver_old)):

mver_old[i]=mv_good[i]

mhor_old[i]=mh_good[i]

misf_old=misf_good

misf=misf_old

cont=True

break

if (cont==True):

cont=False

continue

it+=1

UPDATING STEP LENGTH

if (it%10==0):

for l in range(len(layer)*tvimod):

acpt=accept[l]

rjct=reject[l]

maxstep[l]=uppdate_step(acpt, rjct,maxstep[l])

accept[l]=0

reject[l]=0

CHECKING RELATIVE ERROR AGAIN: IF ERROR > 10% :

MODEL DELETED, RETURN TO THE MODEL PRIOR TO THE LOOP

OVER ALL PARAMETERS AND TRY AGAIN

cmd=mkcommand(1, mver_old, mhor_old, layer, zr, tvi,acur,

frequencies, r0,dr,rl,randomSeed)

loghelper.runCommand(cmd)

misfelc = calc_misfit(1,data_obs,alpha,noise,frequencies,

r0,dr,rl,mver_old,mhor_old, layer,tvimod,w,randomSeed)

relerr2=abs((misf_old+misf_old_reg) -(misfelc+misf_old_reg))/(misfelc+misf_old_reg)

print '*relerr*', relerr2

if (relerr2 > 0.10):

for i in range(len(mver_old)):

mver_old[i]=mv_good[i]

mhor_old[i]=mh_good[i]

misf_old=misf_good

continue

ALL PARAMETERS HAVE VARIED AND PASSED THE RELATIVE ERROR TESTS: STORING THE NEW MODEL

misf_old=misfelc

if (it > skip):

integral=(zul - layer[len(layer)-1])*(math.log10(1.0/mver_old[len(layer)]))

zintegral=(zul*zul - layer[len(layer)-1]*layer[len(layer)-1])

*(math.log10(1.0/mver_old[len(layer)]))

z2integral=(math.pow(zul,3.0) - math.pow(layer[len(layer)-1],3.0))

*(math.log10(1.0/mver_old[len(layer)]))

91

probaccept.append(misf_old)

for m in range(len(layer)-1):

integral+= (layer[m+1]-layer[m])*(math.log10(1.0/mver_old[m+1]))

zintegral+= (layer[m+1]*layer[m+1]-layer[m]*layer[m])

*(math.log10(1.0/mver_old[m+1]))

z2integral+= (math.pow(layer[m+1],3.0)-math.pow(layer[m],3.0))

*(math.log10(1.0/mver_old[m+1]))

for m in range(len(layer)+1):

a=mver_old[m]

b=mhor_old[m]

avmverres[m]+=math.log10(1.0/a)

avmhorres[m]+=math.log10(1.0/b)

cum2[m]+=math.log10(1.0/a)*math.log10(1.0/a)

cum2hor[m]+=math.log10(1.0/b)*math.log10(1.0/b)

lstverres[m][len(probaccept)-1]=1.0/(mver_old[m])

lsthorres[m][len(probaccept)-1]=1.0/(mhor_old[m])

place=int(math.log10((1.0/mver_old[m]))/(math.log10((1.0/mincon))/nrcum) +ad)

placehor=int(math.log10((1.0/mhor_old[m]))/(math.log10((1.0/mincon))/nrcum)+ad)

laycum[m][place]+=1

laycumhor[m][placehor]+=1

if (misfmin > misf_old):

mveraccept[m]=mver_old[m]

mhoraccept[m]=mhor_old[m]

probmax = misf_old

zintegral/=2.0

z2integral/=3.0

zintegral/=integral

z2integral/=integral

rhointegrated.append(integral/(zul-waterdepth))

zrhointegrated.append(zintegral)

z2rhointegrated.append(z2integral)

for i in range(len(avmverres)):

avmverres[i]/=len(probaccept)

avmhorres[i]/=len(probaccept)

cum2[i]/=len(probaccept)

cum2hor[i]/=len(probaccept)

cumint=math.log10((1.0/mincon))/nrcum

n=[0]*len(mver_old)

nhor=[0]*len(mver_old)

median=[0]*len(mver_old)

medianhor=[0]*len(mver_old)

stdmverres=[0]*len(mver_old)

stdmhorres=[0]*len(mver_old)

skewmverres=[0]*len(mver_old)

skewmhorres=[0]*len(mver_old)

92

kurtmverres=[0]*len(mver_old)

kurtmhorres=[0]*len(mver_old)

####CALCULATING STATISTICAL PROPERTIES

for l in range(len(layer)):

for i in range(len(probaccept)):

stdmverres[l+1]+=math.pow((math.log10(lstverres[l+1][i])-(avmverres[l+1])),2)

stdmhorres[l+1]+=math.pow((math.log10(lsthorres[l+1][i])-(avmhorres[l+1])),2)

skewmverres[l+1]+=math.pow((math.log10(lstverres[l+1][i])-(avmverres[l+1])),3)

skewmhorres[l+1]+=math.pow((math.log10(lsthorres[l+1][i])-(avmhorres[l+1])),3)

kurtmverres[l+1]+=math.pow((math.log10(lstverres[l+1][i])-avmverres[l+1]),4)

kurtmhorres[l+1]+=math.pow((math.log10(lsthorres[l+1][i])-avmhorres[l+1]),4)

skewmverres[l+1]/=len(probaccept)

skewmverres[l+1]/=(math.pow((stdmverres[l+1])/len(probaccept),1.5))

skewmverres[l+1]*=(math.sqrt(len(probaccept)*(len(probaccept)-1))/(len(probaccept)-2))

kurtmverres[l+1]/=len(probaccept)

kurtmverres[l+1]/=(math.pow((stdmverres[l+1])/len(probaccept),2))

kurtmverres[l+1]-=3

stdmverres[l+1]/=(len(probaccept)-1)

stdmverres[l+1]=math.sqrt(stdmverres[l+1])

if(tvi=='on'):

stdmhorres[l+1]/=(len(probaccept)-1)

stdmhorres[l+1]=math.sqrt(stdmhorres[l+1])

skewmhorres[l+1]/=math.pow(stdmhorres[l+1],3)

skewmhorres[l+1]/=len(probaccept)

kurtmhorres[l+1]/=math.pow(stdmhorres[l+1],4)

kurtmhorres[l+1]/=len(probaccept)

kurtmhorres[l+1]-=3

WRITING RESULT TO FILE

resultname = resfile + '.dat'

resultnameres = resfile + 'res' + '.dat'

resultnamecum = resfile + 'cum' + '.dat'

resultnamecumhor = resfile + 'cumhor' + '.dat'

resultnamelst = resfile + 'lst' + '.dat'

resultnamelsthor = resfile + 'lsthor' + '.dat'

res = open(resultname, 'w')

resres = open(resultnameres, 'w')

cum = open(resultnamecum, 'w')

lists = open(resultnamelst, 'w')

if (tvi=='on'):

cumhor= open(resultnamecumhor, 'w')

listshor=open(resultnamelsthor,'w')

WRITING ALL ACCEPTED MODELS TO FILE

for i in range(len(layer)):

for j in range(len(probaccept)):

lists.write(str(lstverres[i+1][j]) + ',\t')

lists.write('\n')

93

if (tvi=='on'):

for i in range(len(layer)):

for j in range(len(probaccept)):

listshor.write(str(lsthorres[i+1][j]) + ',\t')

listshor.write('\n')

WRITING BEST MODEL, MEAN MODEL, AVERAGE OF log10rho*log10rho , SKEW AND KURTOSIS TO FILE

res.write('0.0'+ '\t' + str(1.0/(mveraccept[0])) + '\t' + str((avmverres[0])) +

'\t' + str(cum2[0]) + '\t' + str(skewmverres[0]) + '\t' + str(kurtmverres[0]))

if (tvi=='on'):

res.write('\t '+ str(1.0/(mhoraccept[0])) + '\t' + str((avmhorres[0])) + '\t' +

'\t' + str(cum2hor[0]) +

'\t' + str(skewmhorres[0]) + '\t' + str(kurtmhorres[0]))

res.write('\n')

for g in range(len(mveraccept)-1):

res.write(str(layer[g]) + '\t' + str(1.0/(mveraccept[g+1])) + '\t'+ str((avmverres[g+1])) +

'\t' + str(cum2[g+1]) +'\t' + str(skewmverres[g+1]) + '\t' + str(kurtmverres[g+1]))

if (tvi=='on'):

res.write('\t'+ str(1.0/(mhoraccept[g+1])) + '\t' + str((avmhorres[g+1])) +

'\t ' + str(cum2hor[g+1]) + '\t' + str(skewmhorres[g+1]) + '\t' + str(kurtmhorres[g+1]))

res.write('\n')

nrspaces=100

nrspaces2=100

rhoplass=[0]*nrspaces

zrhoplass=[0]*nrspaces2

z2rhoplass=[0]*nrspaces

minrho=-math.log10(maxcon)

maxrho=-math.log10(mincon)

zminrho=-0.5*(zul*zul - math.pow((zul-(layer[2]-layer[1])),2.0))/((layer[2]-layer[1]))

zmaxrho=0.5*(zul*zul - math.pow((zul-(layer[2]-layer[1])),2.0))/((layer[2]-layer[1]))

WRITING AVERAGE OF AVERAGE RESISITIVIY AND CENTER OF RESISTIVITY TO FILE

for i in range(len(rhointegrated)):

if (zrhointegrated[i] > zmaxrho or zrhointegrated[i] < zminrho):

continue

rhoplass[int((rhointegrated[i]-minrho)*(nrspaces-1)/(maxrho-minrho))]+=1

zrhoplass[int((zrhointegrated[i]-zminrho)*(nrspaces-1)/(zmaxrho-zminrho))]+=1

for q in range(nrspaces):

resres.write(str(minrho + q*(maxrho-minrho)/nrspaces) + '\t' + str(rhoplass[q]) +

'\t'+str(zminrho + q*(zmaxrho-zminrho)/nrspaces) + '\t' + str(zrhoplass[q]) + '\n')

WRITING MARGINAL PROBABILITY DISTRIBUTIONS FOR EACH LAYER TO FILE

for j in range(nrcum+ad):

cum.write(str(cumint*(j-ad) + 0.5*cumint) + '\t')

for k in range(len(layer)+1):

cum.write(str(laycum[k][j]) + '\t')

cum.write('\n')

if (tvi=='on'):

for j in range(nrcum+ad):

cumhor.write(str(cumint*(j-ad) + 0.5*cumint) + '\t')

for k in range(len(layer)+1):

94

cumhor.write(str(laycumhor[k][j]) + '\t')

cumhor.write('\n')

END MAIN

################ METHOD TO ALLOCATE STARTMODEL #################################

def startmodel(mstart, nrzlay,startmod,i):

mver_old = [mstart[0]]

if (startmod == 'none'):

for m in range(nrzlay):

temp=mstart[1]

mver_old.append(temp)

else:

start=open(startmod, 'r')

startl=open(startmod, 'r')

test=start.read()

lines=startl.readlines()

mver_old[0]=eval(test.split()[i])

for l in range(len(lines)-2):

mver_old.append(eval(test.split()[(l+1)*3 + i]))

print l, (eval(test.split()[(l+1)*3 + i]))

return mver_old

################### METHOD FOR TAKING A CONDUCTIVITY STEP ########################

def step(bool, max, min,pos_old, maxstep):

r=random.random()

deltacon = (math.log10(max)-math.log10(min))*(r-0.5)*maxstep

while not bool:

delta = math.pow(10,deltacon)

pos_new=pos_old*delta

bool=True

if (pos_new < (min)):

bool=False

deltamin= math.log10(min/pos_old)

deltacon-=2*deltamin

deltacon*=-1

if (pos_new > max):

bool=False

deltamax=math.log10(max/pos_old)

deltacon-=2*deltamax

deltacon*=-1

return delta

##################### METHOD FOR UPDATING THE STEP LENGTH #########################

def uppdate_step(accept, reject, step):

if ((reject - accept) == 0):

return step

if (float(accept)/(reject+accept) > 0.5):

step*=1.5

if (float(accept)/(accept+reject) < 0.5):

step/=1.5

if (step > 1.0):

step=1.0

95

return step

###################### METOD FOR CALCULATING MISFIT USING ELCARDINAL #############################

def calc_misfit(model,dataobs,alpha,noisefile,frequencies,r0,dr,rl,mver,

mhor,zlay,tvimod,w,randomSeed):

filename = 'model' + str(model) + '_rs'+str(randomSeed)+'.nc'

sr = pyelio.SurveyResult(filename, pyelio.FileOpenMode.READ_ONLY)

#Choosing the Ex-channal for the test model!

ex1=sr.getChannel(pyelio.ChannelType.CH_EMF_EX,1)

if ex1.hasFrequencyResult():

ex1_freq = ex1.getFrequencyResult()

freqs = ex1_freq.getFrequencies()

misf= 0

maxoffset=[]

#Calculating misfit: |Ex(offset)-Ex_obs(offset)|^2/(|Ex|^2 + err)

nopoints=0

for i in range(len(frequencies)):

data = list(freqs[i].getComplexSamples())

n= (1500 - r0)/dr

n=int(n)

maxoffset.append(rl - i*500)

j=(rl -maxoffset[i])/dr

max=round(j)

max=0

for k in range(len(dataobs[i])-(n+max)):

misf += (abs(data[k+n]-dataobs[i][k+n])*abs(data[k+n]-dataobs[i][k+n]))*(w[i][k+n])

return misf

######################METHOD FOR CALCULATING MISFIT USING THE FRECHET DERIVATIVES ################

def calc_misfit_Frechet(model, dataobs,alpha, noisefile,frequencies, delta,l,tvi,r0

,dr,mver,mhor,zlay,tvimod,w,randomSeed):

r=open('f' + str(model) + '_rs'+str(randomSeed), 'rb')

dat2=[]

counter=0

sizef=struct.calcsize('f')

while 1:

data2=r.read(sizef)

if (data2== ''):

break

if (counter%2==0):

num=struct.unpack('f', data2)

num=num[0]*complex(1,0)

if (counter%2==1):

numj=struct.unpack('f', data2)

num += numj[0]*complex(0,1)

dat2.append(num)

counter+=1

sr = pyelio.SurveyResult('model' + str(model) +

'_rs'+str(randomSeed)+ '.nc', pyelio.FileOpenMode.READ_ONLY)

#Choosing the Ex-channal for the test model!

ex1=sr.getChannel(pyelio.ChannelType.CH_EMF_EX,1)

96

if ex1.hasFrequencyResult():

ex1_freq = ex1.getFrequencyResult()

freqs = ex1_freq.getFrequencies()

misf= 0

nofreqs=len(frequencies)

nopoints=0

for i in range(len(frequencies)):

data = list(freqs[i].getComplexSamples())

max=0

n= (1500 - r0)/dr

n=int(n)

Estimating new data for Ex

if(tvi=='on'):

for k in range(len(data)-(n+max)):

add=0

for l in range (len(delta)/2):

lay=l+(len(delta)/2)

add+= (dat2[k+n+(lay*nofreqs + i)*len(data)]*delta[l])

add+= (dat2[k+n+(l*nofreqs + i)*len(data)]*delta[lay])

data[k+n] += add

Calculating data misfit

misf += (abs(data[k+n]-dataobs[i][k+n])*abs(data[k+n]-dataobs[i][k+n]))*(w[i][k+n])

else:

for k in range(len(data)-(n+max)):

add=0

for l in range (len(delta)):

lay=l+(len(delta))

add+= (dat2[k+n+(l*nofreqs + i)*len(data)]*delta[l])

data[k+n] += add

Calculating data misfit

misf += (abs(data[k+n]-dataobs[i][k+n])*abs(data[k+n]-dataobs[i][k+n]))*(w[i][k+n])

return misf

###################### METHOD FOR CALCULATING MISFIT BASED ON REGULARIZATION ##########################

def calc_misf_reg(frequencies,mver, mhor,zlay,tvimod):

s=2

reg2=0

reg=0

for r in range(len(mver)-s):

reg+=math.pow((math.log10(mver[r+s])-math.log10(mver[r+s-1])),2)

if (tvimod==2):

for r in range(len(mver)-s):

reg2+=math.pow((math.log10(mhor[r+s])-math.log10(mhor[r+s-1])),2)

if (mhor[r+s-1]< mver[r+s-1]):

reg2+=10000000*math.pow((math.log10(mhor[r+s-1]) - math.log10(mver[r+s-1])),2)

else:

if (abs(mhor[r+s-1])/(mver[r+s-1]) > 3.0):

reg2+=5*abs(math.pow((math.log10(mver[r+s-1])-math.log10(mhor[r+s-1])),2))

reg+=reg2

if tvimod==2:

reg/=2.0

return reg

97

########################### METHOD FOR MAKING COMMAND ##

def mkcommand(model, mver, mhor, layers, zr, tvi, acur, frequencies ,r0,dr,rl,randomSeed):

filename= 'model' + str(model) + '_rs'+str(randomSeed)+'.nc'

if (tvi=='off'):

mhor=mver

if (len(layers)!= len(mver)-1) :

print 'Error: Each layer needs a spesified value for the resistivity/conductivity'

print len(layers), len(mver)

zs= zr - 30

frex='f'+str(model) + '_rs'+str(randomSeed)

command = binDir + 'elcardinal '

command += 'ofel=' + filename

command += ' par=' + 'con'

command += ' acur='+str(acur)

command += ' comp=ex'

command += ' method=digf'

if (model !=0):

command += ' frex=' + frex

command += ' zlay='

for i in range(len(layers)-1):

command+= str(layers[i]) + ','

command += str(layers[len(layers)-1])

command += ' freq=' + str(frequencies[0])

for i in range(len(frequencies) - 1):

command += ',' + str(frequencies[i+1])

command += ' tvi=' + tvi

command += ' mver='

for i in range(len(mver)-1):

command += str(mver[i]) + ','

command += str(mver[len(mver) - 1])

command += ' mhor='

for i in range(len(mhor)-1):

command += str(mhor[i]) + ','

command += str(mhor[len(mhor) - 1])

command += ' zr='+ str(zr)

command += ' zs='+ str(zs)

command += ' r0='+ str(r0)

command += ' dr='+ str(dr)

command += ' rl='+ str(rl)

return command

###################################### LogClass ##################################

class LogClass:

progName = ""

verbose = 0

def __init__(self,progName,verbose):

self.progName = progName

self.verbose = verbose

def write(self,message,funcName=""):

if (self.verbose > 0):

print "# "+self.progName+": "+funcName+" "+message

def writeln(self,message,funcName=""):

98

if (self.verbose > 0):

print

print "# "+self.progName+": "+funcName+" "+message

def WRITE(self,message,funcName=""):

print "# "+self.progName+": "+funcName+" "+message

def WRITELN(self,message,funcName=""):

print

print "# "+self.progName+": "+funcName+" "+message

def eWrite(self,message,funcName=""):

print

print "# "+self.progName+": "+funcName+": ERROR: "+message

sys.exit(-1)

def printOptions(self,argDict):

for key in argDict:

self.write(" "+key+"="+argDict[key])

############################ END LogClass ######################################

##

STARTING MAIN

if __name__=="__main__":

main(sys.argv)

B.4 Code for collecting the results when doing paral-
lel computing

#! /usr/bin/env python

import sys

import os.path

import struct

import math

#Set dir for local modules.

binDir = os.path.dirname(sys.argv[0])

binDir = os.path.abspath(binDir)+'/'

sys.path.append(binDir) # Where to find the following modules:

import arguments

def main(argv):

optionList = [

'files=resultDir/result.', 'The file containing observed data',

'paraJobs=1', 'Number of parallel jobs',

'result=resultDir/collectedFiles/result','The name of the resultfile. The resulting name will be resultfilename.dat',

'tvi=off', 'tvi=on or tvi=off',

'maxcon=10.0', 'max condutctivity',

'mincon=0.01', 'min conductivity',

]

nrcum = 40

arg = arguments.arguments(optionList,argv)

99

vars = arg.getargs()

files = vars['files']

paraJobs = int(vars['paraJobs'])

result = vars['result']

tvi = vars['tvi']

maxcon = float(vars['maxcon'])

mincon = float(vars['mincon'])

ad=-round(math.log10(1.0/maxcon)/math.log10(1.0/mincon)*nrcum)

ad=int(ad)

newmax = ad*math.log10(1.0/mincon)/nrcum

maxcon = math.pow(10,newmax)

tvimod = 1

if (tvi=='off'):

tvimod=0

resvarnames = []

resvarnamesres = []

resvarnameslst = []

resvarnameslsthor = []

depth = [0]

rhonr = [0]

zrhonr = [0]

rho = [0]

zrho = [0]

mveravnew = [0]

stdnew = [0]

mhoravnew = [0]

stdnewhor = [0]

rhonrnew = [0]

zrhonrnew = [0]

modelsnew = []

modelsnewhor = []

ncorr = [0]

for i in range(paraJobs):

resvarnames.append(files + str(i) + '.dat')

resvarnamesres.append(files + str(i) + 'res.dat')

resvarnameslst.append(files + str(i) + 'lst.dat')

if (tvi=='on'):

resvarnameslsthor.append(files + str(i) + 'lsthor.dat')

for i in range(paraJobs):

mverav = [0]

std = [0]

mhorav = [0]

stdhor = [0]

ncorr = [0]

name = resvarnames[i]

nameres= resvarnamesres[i]

namelst= resvarnameslst[i]

resres =open(nameres, 'r')

res =open(name,'r')

reslines =open(name,'r')

100

reslines2 =open(nameres,'r')

reslayers =open(namelst,'r')

if (tvi=='on'):

namelsthor = resvarnameslsthor[i]

reslayershor= open(namelsthor,'r')

layershor = reslayershor.readlines()

test = res.read()

testres = resres.read()

lines = reslines.readlines()

lines2 = reslines2.readlines()

layers = reslayers.readlines()

mverav[0] = eval(test.split()[2])

std[0] = eval(test.split()[3])

if (tvi=='on'):

mhorav[0] = eval(test.split()[7])

stdhor[0] = eval(test.split()[8])

rhonr[0] = eval(testres.split()[1])

zrhonr[0] = eval(testres.split()[3])

models = []

modelshor = []

for j in range(len(layers)):

models.append(eval(layers[j]))

if (tvi=='on'):

modelshor.append(eval(layershor[j]))

if (i==0):

for j in range(len(layers)):

modelsnew.append(eval(layers[j]))

if(tvi=='on'):

modelsnewhor.append(eval(layershor[j]))

else:

for k in range(len(layers)):

modelsnew[k]+=(models[k])

if(tvi=='on'):

modelsnewhor[k]+=modelshor[k]

if (i==0):

mveravnew[0] = mverav[0]

stdnew[0] = std[0]

mhoravnew[0] = mhorav[0]

stdnewhor[0] = stdhor[0]

rhonrnew[0] = rhonr[0]

zrhonrnew[0] = zrhonr[0]

depth[0] = eval(test.split()[0])

rho[0] = eval(testres.split()[0])

zrho[0] = eval(testres.split()[2])

for l in range(len(lines)-1):

depth.append(eval(test.split()[(l+1)*(6+(tvimod*5)) + 0]))

for l in range(len(lines2)-1):

rho.append(eval(testres.split()[4*l]))

zrho.append(eval(testres.split()[4*l + 2]))

101

for l in range(len(lines)-1):

mverav.append(eval(test.split()[(l+1)*(6+(tvimod*5)) + 2]))

std.append(eval(test.split()[(l+1)*(6+(tvimod*5)) + 3]))

if (tvi=='on'):

mhorav.append(eval(test.split()[(l+1)*(6+(tvimod*5)) + 7]))

stdhor.append(eval(test.split()[(l+1)*(6+(tvimod*5)) + 8]))

if (i ==0):

mveravnew.append(mverav[l+1])

stdnew.append(std[l+1])

if (tvi=='on'):

mhoravnew.append(mhorav[l+1])

stdnewhor.append(stdhor[l+1])

else:

mveravnew[l]+= mverav[l]

stdnew[l]+=std[l]

if(tvi=='on'):

mhoravnew[l] += mhorav[l]

stdnewhor[l] += stdhor[l]

for l in range(len(lines2)-1):

rhonr.append(eval(testres.split()[4*l + 1]))

zrhonr.append(eval(testres.split()[4*l + 3]))

if (i ==0):

rhonrnew.append(rhonr[l+1])

zrhonrnew.append(zrhonr[l+1])

else:

rhonrnew[l] += rhonr[l]

zrhonrnew[l] += zrhonr[l]

if (i!=0):

mveravnew[len(mveravnew)-1] += mverav[len(mverav)-1]

stdnew[len(mveravnew)-1] += std[len(mveravnew)-1]

rhonrnew[len(rhonrnew)-1] += rhonr[len(rhonrnew)-1]

zrhonrnew[len(zrhonrnew)-1] += zrhonr[len(zrhonrnew)-1]

if (tvi == 'on'):

mhoravnew[len(mhoravnew)-1] += mhorav[len(mhorav)-1]

stdnewhor[len(mhoravnew)-1] += stdhor[len(mhoravnew)-1]

for k in range(len(mveravnew)):

stdnew[k] /= paraJobs

mveravnew[k]/= paraJobs

stdnew[k] = math.sqrt(stdnew[k]-(mveravnew[k]*mveravnew[k]))

if (tvi == 'on'):

stdnewhor[k] /= paraJobs

mhoravnew[k] /= paraJobs

stdnewhor[k] = math.sqrt(stdnewhor[k]-(mhoravnew[k]*mhoravnew[k]))

sumver=[]

sumhor=[]

corr=[]

corrhor=[]

for i in range(len(modelsnew)):

corr.append([0]*(len(modelsnew)))

corrhor.append([0]*(len(modelsnew)))

for k in range(len(modelsnew)):

for l in range(len(modelsnew)):

a=0

b=0

102

for i in range(len(modelsnew[0])):

a+=(math.log10(modelsnew[k][i])-(mveravnew[k+1]))*(math.log10(modelsnew[l][i]) - (mveravnew[l+1]))

if (tvi =='on'):

b+=(math.log10(modelsnewhor[k][i])-(mhoravnew[k+1]))*(math.log10(modelsnewhor[l][i])

- (mhoravnew[l+1]))

a /= (len(modelsnew[0]))

b /= (len(modelsnew[0]))

if (k==l):

sumver.append(math.sqrt(a))

sumhor.append(math.sqrt(b))

corr[k][l] = a

corrhor[k][l] = b

for k in range(len(modelsnew)):

for l in range(len(modelsnew)):

corr[k][l]/=(sumver[k]*sumver[l])

if(tvi=='on'):

corrhor[k][l]/=(sumhor[k]*sumhor[l])

print corr[k][k], k

THE CUMULATIVE FILES

logres = [0]

logreshor = [0]

resvarnames = []

resvarnameshor = []

laycumnew = []

laycumnewhor = []

for k in range(len(depth)):

laycumnew.append([0]*(nrcum+ad))

if (tvi=='on'):

laycumnewhor.append([0]*(nrcum+ad))

for i in range(paraJobs):

resvarnames.append(files + str(i) + 'cum.dat')

if (tvi=='on'):

resvarnameshor.append(files + str(i) + 'cumhor.dat')

for i in range(paraJobs):

name = resvarnames[i]

rescum = open(name,'r')

reslinescum = open(name,'r')

test = rescum.read()

lines = reslinescum.readlines()

if (tvi=='on'):

namehor = resvarnameshor[i]

rescumhor = open(namehor, 'r')

testhor = rescumhor.read()

reslinescumhor = open(namehor, 'r')

lineshor = reslinescumhor.readlines()

if (i==0):

logres[0] = eval(test.split()[0])

for l in range(len(lines)-1):

logres.append(eval(test.split()[(l+1)*(len(depth)+1) + 0]))

if(tvi=='on'):

logreshor[0] =eval(testhor.split()[0])

for l in range(len(lines)-1):

logreshor.append(eval(testhor.split()[(l+1)*(len(depth)+1) + 0]))

103

for l in range(len(depth)):

for j in range(len(logres)):

laycumnew[l][j]+=(eval(test.split()[(l+1 + j*(len(depth)+1))]))

if (tvi=='on'):

for l in range(len(depth)):

for j in range(len(logreshor)):

laycumnewhor[l][j]+=(eval(testhor.split()[(l+1 + j*(len(depth)+1))]))

rescollect = open(result, 'w')

rescollectcum = open(result + 'cum', 'w')

rescollectcorr = open(result + 'corr', 'w')

rescollectres = open(result + 'res', 'w')

rescollectlst = open(result + 'lst', 'w')

resultname6 = result + 'matrix'

rescollectmatrix = open(resultname6, 'w')

if (tvi=='on'):

rescollecthor = open(result + 'hor', 'w')

rescollectcumhor = open(result + 'cumhor', 'w')

rescollectlsthor = open(result + 'lsthor', 'w')

print 'WRITING TO FILES'

for z in range(len(modelsnew[0])):

for w in range(len(modelsnew)):

rescollectlst.write(str(modelsnew[w][z]) + ',\t')

rescollectlst.write(str(modelsnew[w][z]))

rescollectlst.write('\n')

WRITING CORRELATION MATRIX TO FILE

for k in range (len(modelsnew)-1):

rescollectmatrix.write(str(depth[k+1]) + '\t')

for l in range ((len(modelsnew)-1)+tvimod*(len(modelsnew)-1)):

if (l < len(modelsnew)-1):

rescollectmatrix.write(str(corr[k+1][l+1]) + '\t')

else:

rescollectmatrix.write(str(corrhor[k+1][l-len(modelsnew)]) + '\t')

rescollectmatrix.write('\n')

if (tvi=='on'):

for z in range(len(modelsnew[0])):

for w in range(len(modelsnew)-1):

rescollectlsthor.write(str(modelsnewhor[w][z]) + ',\t')

rescollectlsthor.write(str(modelsnewhor[w][z]))

rescollectlsthor.write('\n')

rescollectcorr.write(str(0.0)+ '\t' + str(0.0)+ '\n')

for k in range (len(modelsnew)-1):

if (tvi=='on'):

rescollectcorr.write(str(depth[k+1]) + '\t' +str(corr[k][k+1]) + '\t' + str(corrhor[k][k+1]))

else:

rescollectcorr.write(str(depth[k+1]) + '\t' +str(corr[k][k+1]))

rescollectcorr.write('\n')

for w in range(len(rhonrnew)):

104

rescollectres.write(str(rho[w]) + '\t' + str(rhonrnew[w]) + '\t' + str(zrho[w]) + '\t'

+ str(zrhonrnew[w]) + '\n')

for w in range(len(mveravnew)):

rescollect.write(str(depth[w]) + '\t' + str(mveravnew[w]) + '\t' + str(stdnew[w]) + '\n')

if (tvi=='on'):

rescollecthor.write(str(depth[w]) + '\t' + str(mhoravnew[w]) + '\t' + str(stdnewhor[w]) + '\n')

for j in range(nrcum+ad):

rescollectcum.write(str(logres[j]) + '\t')

for k in range(len(depth)):

rescollectcum.write(str(laycumnew[k][j]) + '\t')

rescollectcum.write('\n')

if (tvi=='on'):

for j in range(nrcum+ad):

rescollectcumhor.write(str(logreshor[j]) + '\t')

for k in range(len(depth)):

rescollectcumhor.write(str(laycumnewhor[k][j]) + '\t')

rescollectcumhor.write('\n')

rescollect.close()

rescollectcum.close()

rescollectcorr.close()

rescollectres.close()

rescollectlst.close()

rescollectmatrix.close()

if (tvi=='on'):

rescollectcum.close()

rescollecthor.close()

rescollectlsthor.close()

print 'FINITO'

##

if __name__=="__main__":

main(sys.argv)

###

B.5 Calculating probabilities

#! /usr/bin/env python

import sys

import os.path

import struct

import math

#Set dir for local modules.

binDir = os.path.dirname(sys.argv[0])

binDir = os.path.abspath(binDir)+'/'

sys.path.append(binDir) # Where to find the following modules:

import arguments

progName = "calcProb.py"

infostring = """

NAME:calcProb.py

The script reads in the file containing all models that are sampled from the a posteriori

probability distribution. It then counts the number of models that has values consistent

105

with the ones given by the user and devides this number by the total number of models.

The models that fit the criteria are all models that have an average resistivity which is

< *maxvalue* and > *minvalue* in the depth interval from *mindepth* to *maxdepth*.

If *checkall=off* then you check only for the given depth interval.

If *checkall=on* then the script first calculates the probability that

the models have an average resistivity which is < *maxvalue* and > *minvalue*

in the depth interval from seafloor depth to seafloor depth + *interval*.

Next, it calculates the probability that the models have an average resistivity

which is < *maxvalue* and > *minvalue*

in the depth interval from (seafloor depth + layerthickness) to

(seafloor depth + layerticknes + *interval*) etc.

"""

def main(argv):

if('-help' in argv):

print infostring

sys.exit(0)

optionList = [

'readfile=result', 'Filename for the collected resultfiles',

'mindepth=2300.0', 'lower limit',

'maxdepth=2400.0', 'upper limit for testing hypotesis',

'maxvalue=5000.0', 'How many models smaller than this value',

'minvalue=1000.0', 'How many models greater than this value',

'checkall=off', 'Check more that one value',

'interval=100.0', 'interval spacing: must be a least 100.0 m',

]

arg = arguments.arguments(optionList,argv)

vars = arg.getargs()

readf = vars['readfile']

readfile = vars['readfile']+'lst'

maxdepth = float(vars['maxdepth'])

mindepth = float(vars['mindepth'])

minvalue = float(vars['minvalue'])

maxvalue = float(vars['maxvalue'])

checkall = vars['checkall']

interval = float(vars['interval'])

if (maxdepth <= mindepth):

print 'Error: maxdepth <= mindepth'

sys.exit(0)

res = open(readf,'r')

reslines = open(readf,'r')

test = res.read()

testlines = reslines.readlines()

depth=[]

first=True

firstmax=True

if (checkall=='off'):

for k in range(len(testlines)):

depth.append(eval(test.split()[3*k]))

if (depth[k]>=mindepth and first):

lowerlayer=k-1

first=False

106

if (depth[k]>=maxdepth and firstmax):

upperlayer=k-1

firstmax=False

file =open(readfile, 'r')

mod = file.readlines()

models=[]

probmodel=0

totmodel=0

for i in range(len(mod)):

models.append(eval(mod[i]))

totmodel+=1

sum=0

for l in range(lowerlayer, upperlayer):

sum+=(models[i][l])*(depth[l+2]-depth[l+1])

if (sum >= minvalue and sum <=maxvalue):

probmodel+=1

probmodel/=float(totmodel)

print probmodel

sys.exit(0)

else:

resprob=open('resprob', 'w')

for k in range(len(testlines)):

depth.append(eval(test.split()[3*k]))

models=[]

totmodel=0

for k in range(len(testlines)-int(interval/100) -1):

lowerlayer = k

upperlayer = int((interval/100)) + k

file = open(readfile, 'r')

mod = file.readlines()

probmodel = 0

for i in range(len(mod)):

if (k==0):

models.append(eval(mod[i]))

totmodel+=1

sum=0

for l in range(lowerlayer, upperlayer):

sum+=(models[i][l])*(depth[l+2]-depth[l+1])

if (sum >= minvalue and sum<= maxvalue):

probmodel+=1

probmodel/=float(totmodel)

print probmodel

resprob.write(str((depth[lowerlayer+1]+ depth[upperlayer+1])/2.0) + '\t'

+ str(probmodel) + '\n')

resprob.close()

107

##

if __name__=="__main__":

main(sys.argv)

###

B.6 Simulated Annealing to find start model

#! /usr/bin/env python

import sys

import os

import os.path

#Set dir for local modules.

#binDir = os.path.dirname(sys.argv[0])

#binDir = os.path.abspath(binDir)+'/'

#sys.path.append(binDir) # Where to find the following modules:

import shutil

import loghelper

import arguments

import pyelio #Needed to read files of type <filename>.nc

import random

import math

import struct

import pynavutil

#import decimal

progName = "sa.py"

infostring = """

NAME:sa.py

This script performes a simulated annealing search for the model of best data fit with the

observed data from ifel.

The Frechet derivatives are used to estimate the E_x data for each point.

The output file with the name spesified by the user contain, consists of three columns:

###

#|Depth (m) | Vertical conductivity | Horizontal conductivity | #

###

""" #end multiline string

def main(argv):

if('-help' in argv):

print infostring

sys.exit(0)

optionList = [

'ifel=Tr_007_Data.nc', 'The file containing observed data',

'ofel=starthei', 'The filename where the result model is saved',

'waterdepth=332.0', 'Depth to seafloor',

'maxdepth=4332.0', 'Depth of the deepest layer boundary',

'nrzlay=41', 'The number of layers below the seafloor (waterlayer not included)',

'maxcon=10.0', 'The maximum conductivity',

'mincon=0.01', 'The minimum conductivity',

'mverstart=3.69,0.25', 'The vertical water conductivity',

'mhorstart=3.69,0.50', 'The horizontal water conductivity',

108

'tvi=off', 'tvi=off forces horizontal and vertical conductivity equal.Option tvi=on',

'skip=0', 'Number of models to skip in the beginning of the Monte Carlo simulation',

'alpha=0.05', 'The apha in the error in Ex',

'noisefile=Tr_007_Noise.nc', 'The input noise file. If noisefile=none the noisefloor value is used',

'noisefloor=-14', 'The noise level. 10^noise' ,

'acur=4', 'accuracy in integration',

'it=5', 'Max iterations in the simmulated annealing scheme',

]

arg = arguments.arguments(optionList,argv)

vars = arg.getargs()

obsfile = vars['ifel']

ofel = vars['ofel']

noisefile = vars['noisefile']

waterdepth = float(vars['waterdepth'])

maxcon = float(vars['maxcon'])

mincon = float(vars['mincon'])

nrzlay = int(vars['nrzlay'])

maxdepth = float(vars['maxdepth'])

spacezlay = int(vars['nrzlay'])

it = int(vars['it'])

mverstart = eval(vars['mverstart'])

mhorstart = eval(vars['mhorstart'])

acur = vars['acur']

tvi = vars['tvi']

skip = int(vars['skip'])

alpha = float(vars['alpha'])

noisefloor = float(vars['noisefloor'])

if (noisefile == 'none'):

noise = math.pow(10,noisefloor)

noise_dat = [math.pow(10,noisefloor)]

mverwater=mverstart[0]

mhorwater=mhorstart[0]

par = 'con'

frequencies = []

if (noisefile!= 'none'):

noise=pyelio.SurveyResult(noisefile, pyelio.FileOpenMode.READ_ONLY)

ex1noise=noise.getChannel(pyelio.ChannelType.CH_EMF_EX,1)

if ex1noise.hasFrequencyResult() :

noisef = ex1noise.getFrequencyResult().getFrequencies()

obsr = pyelio.SurveyResult(obsfile, pyelio.FileOpenMode.READ_ONLY)

#Ex-kanalen

ex1obs=obsr.getChannel(pyelio.ChannelType.CH_EMF_EX,1)

if ex1obs.hasFrequencyResult() :

freqsobs = ex1obs.getFrequencyResult().getFrequencies()

for f in freqsobs :

frequencies.append(f.getValue())

print f.getValue()

w = []

data_obs = []

109

noise_data = []

###READING DATA FROM TRUE MODEL AND CALCULATING WEIGTHS: 1/(alpha^2*Eo^2 + noise^2)

###IF noise to signal ratio less than 10 then the weight=0

for i in range(len(frequencies)):

if (noisefile !='none'):

noise_data.append(list(noisef[i].getComplexSamples()))

data_obs.append(list(freqsobs[i].getComplexSamples()))

for i in range(len(frequencies)):

if (noisefile == 'none'):

noise_data.append(noise_dat)

w.append([0.0]*len(data_obs[i]))

for k in range(len(data_obs[i])):

if len(noise_data[i])>1:

noise=abs(noise_data[i][k])

datobs=abs(data_obs[i][k])

weight= 1.0/((alpha*alpha)*(datobs*datobs) + noise*noise)

w[i][k]=(weight)

ratio=abs(datobs)/(abs(noise))

if (ratio < 10):

w[i][k]=0

nav_x = obsr.getChannel(pyelio.ChannelType.CH_SOURCE_X, 1)

nav_y = obsr.getCha

\par

\end{center}

nnel(pyelio.ChannelType.CH_SOURCE_Y, 1)

sx = nav_x.getFrequencyResult().getFrequencies()[0].getSamples()

sy = nav_y.getFrequencyResult().getFrequencies()[0].getSamples()

Receiver coordinates

rec_x = obsr.prop_receiver_x

rec_y = obsr.prop_receiver_y

using navutils offset calculatro

offsets = pynavutil.calculate_offsets(sx, sy, rec_x, rec_y)

rl = offsets[len(offsets)-1]

dr = offsets[1]-offsets[0]

r0 = offsets[0]

layer=[]

for l in range(nrzlay):

ld=waterdepth + l*(maxdepth-waterdepth)/(nrzlay-1)

layer.append(ld)

tvimod=1

if (tvi =='on'):

tvimod=2

maxstep = 0.01

start = open(ofel, 'w')

#INITIAL MODEL

count = 0

nrmoves = 0

110

mver_old=startmodel(mverstart, nrzlay)

mhor_old=startmodel(mhorstart,nrzlay)

if (tvimod==1):

for i in range(len(mver_old)):

mhor_old[i]=mver_old[i]

zr = layer[0]

cmd = mkcommand(1, mver_old, mhor_old, layer, zr, tvi,acur, frequencies, r0,dr,rl)

loghelper.runCommand(cmd)

misf_old = calc_misfit(1,data_obs,alpha,noise,frequencies,r0,dr,rl,mver_old,mhor_old,layer,tvimod,w)

misf_old_reg = calc_misf_reg(mver_old, mhor_old,layer,tvimod)

probability_old = math.exp(-misf_old)

temp = 1.0

delta = [0]*(tvimod*len(mver_old)-tvimod)

mv_good = [0]*len(mver_old)

mh_good = [0]*len(mhor_old)

acceptround = 0

cmd = mkcommand(1, mver_old, mhor_old, layer, zr, tvi,acur, frequencies, r0,dr,rl)

loghelper.runCommand(cmd)

misf_old = calc_misfit(1,data_obs,alpha,noise,frequencies,r0,dr,rl,mver_old,mhor_old,layer,tvimod,w)

misf_old_reg = calc_misf_reg(mver_old, mhor_old,layer,tvimod)

while (count < it or misf_old < 0.01):

temp /= 1.001

count += 1

cont = False

for i in range(len(mver_old)):

mv_good[i] = mver_old[i]

mh_good[i] = mhor_old[i]

misf_good = misf_old

misf_reg_good = misf_old_reg

delta = []

delta = [0]*(tvimod*len(mver_old)-tvimod)

print mver_old

print 'misf_old', misf_old

for l in range(len(layer)*tvimod):

mv=[]

mh=[]

for i in range(len(mver_old)):

mv.append(mver_old[i])

mh.append(mhor_old[i])

inrange=False

TAKING A STEP

if (l < len(layer)):

deltacon = step(inrange, maxcon, mincon, mver_old[l+1], maxstep)

mv[l+1] *= deltacon

delta[l] = mv[l+1]-mver_old[l+1]

else:

deltacon = step(inrange,maxcon,mincon,mhor_old[l -len(layer)+1],maxstep)

111

mh[l - len(layer) +1]*= deltacon

delta[l] = mh[l-len(layer)+1]-mhor_old[l-len(layer)+1]

misfreg=calc_misf_reg(mv, mh,layer,tvimod)

r=random.random()

ACCEPTANCE TEST BASED ON REGULARIZATION

if (misfreg < misf_old_reg or r < math.exp((-misfreg + misf_old_reg)/temp)):

misf = calc_misfit_Frechet(1, data_obs,alpha, noise,frequencies,delta,0,

tvi,r0,dr,mv, mh,layer,tvimod,w)

r=random.random()

###ACCEPTANCE TEST BASED ON DATA

if (misf < misf_old or r < math.exp((-misf + misf_old)/temp)):

acceptround+=1

misf_old=misf

misf_old_reg=misfreg

print 'ACCEPT'

if (tvi=='on'):

if (l < len(layer)):

mver_old[l+1]=mv[l+1]

else:

mhor_old[l-len(layer)+1]=mh[l-len(layer)+1]

else:

if (l < len(layer)):

mver_old[l+1]=mv[l+1]

mhor_old[l+1]=mv[l+1]

else:

print 'REJECT'

if (l < len(layer)):

delta[l]=0

else:

delta[l]=0

else:

print 'REJECT REG'

if (l < len(layer)):

delta[l]=0

else:

delta[l]=0

CHECKING THE ERROR MADE IN THE MISFIT BY USING ELCARDINAL

IF THE ERROR HIGHER THAN 10

PARAMETERS AND TRY AGAIN.

cmd = mkcommand(1, mver_old, mhor_old, layer, zr, tvi,acur, frequencies, r0,dr,rl)

loghelper.runCommand(cmd)

misfelc = calc_misfit(1,data_obs,alpha,noise,frequencies,r0,dr,rl,mver_old,mhor_old, layer,tvimod,w)

relerr2 = abs((misf_old+misf_old_reg) -(misfelc+misf_old_reg))/(misfelc+misf_old_reg)

delta = [0]*(tvimod*len(mver_old)-tvimod)

misf_old = misfelc

print '*****relerr ****', relerr2

if (relerr2 > 0.1):

for i in range(len(mver_old)):

mver_old[i] = mv_good[i]

mhor_old[i] = mh_good[i]

misf_old=misf_good

misf_reg=misf_reg_good

112

cont=True

if (cont==True):

cont=False

print 'CONTINUE'

continue

start.write('0.0' + '\t'+str(mver_old[0]) + '\t' + str(mhor_old[0]) + '\n')

for i in range(len(mver_old)-1):

start.write(str(layer[i]) + '\t'+str(mver_old[i+1]) + '\t' + str(mhor_old[i+1]) + '\n')

start.write('\n')

###

def startmodel(mstart, nrzlay):

mver_old = [mstart[0]]

for m in range(nrzlay):

temp=mstart[1]

mver_old.append(temp)

return mver_old

##

def step(bool, max, min,pos_old, maxstep):

r = random.random()

deltacon = (math.log10(max)-math.log10(min))*(r-0.5)*maxstep

while not bool:

delta = math.pow(10,deltacon)

pos_new = pos_old*delta

bool = True

if (pos_new < (min)):

bool = False

deltamin = math.log10(min/pos_old)

deltacon -= 2*deltamin

deltacon *= -1

if (pos_new > max):

bool = False

deltamax = math.log10(max/pos_old)

deltacon -= 2*deltamax

deltacon *= -1

return delta

###

def calc_misfit_Frechet(model, dataobs,alpha, noisefile,frequencies,

delta,l,tvi,r0,dr,mver,mhor,zlay,tvimod,w):

r=open('f' + str(model), 'rb')

print "READING FRECHET FILE", 'f' + str(model)

dat2 = []

counter= 0

sizef = struct.calcsize('f')

while 1:

data2=r.read(sizef)

if (data2== ''):

break

if (counter%2==0):

num = struct.unpack('f', data2)

113

num = num[0]*complex(1,0)

if (counter%2==1):

numj = struct.unpack('f', data2)

num += numj[0]*complex(0,1)

dat2.append(num)

counter+=1

sr = pyelio.SurveyResult('model' + str(model) + '.nc', pyelio.FileOpenMode.READ_ONLY)

#Choosing the Ex-channal for the test model!

ex1=sr.getChannel(pyelio.ChannelType.CH_EMF_EX,1)

if ex1.hasFrequencyResult():

ex1_freq = ex1.getFrequencyResult()

freqs = ex1_freq.getFrequencies()

misf = 0

nofreqs = len(frequencies)

nopoints = 0

for i in range(len(frequencies)):

data = list(freqs[i].getComplexSamples())

max =0

n = (1500 - r0)/dr

n = int(n)

Estimating new data for Ex

if(tvi=='on'):

for k in range(len(data)-(n+max)):

add = 0

for l in range (len(delta)/2):

lay = l+(len(delta)/2)

add += (dat2[k+n+(lay*nofreqs + i)*len(data)]*delta[l])

add += (dat2[k+n+(l*nofreqs + i)*len(data)]*delta[lay])

data[k+n] += add

Calculating misf

misf += (abs(data[k+n]-dataobs[i][k+n])*abs(data[k+n]-dataobs[i][k+n]))*(w[i][k+n])

else:

for k in range(len(data)-(n+max)):

add=0

for l in range (len(delta)):

lay = l+(len(delta))

add += (dat2[k+n+(l*nofreqs + i)*len(data)]*delta[l])

data[k+n] += add

misf += (abs(data[k+n]-dataobs[i][k+n])*abs(data[k+n]-dataobs[i][k+n]))*(w[i][k+n])

return misf

##

def calc_misfit(model,dataobs,alpha,noisefile,frequencies,r0,dr,rl,mver,mhor,zlay,tvimod,w):

filename = 'model' + str(model) + '.nc'

sr = pyelio.SurveyResult(filename, pyelio.FileOpenMode.READ_ONLY)

#Choosing the Ex-channal for the test model!

ex1 = sr.getChannel(pyelio.ChannelType.CH_EMF_EX,1)

if ex1.hasFrequencyResult():

ex1_freq = ex1.getFrequencyResult()

freqs = ex1_freq.getFrequencies()

114

misf = 0

maxoffset =[]

#Calculating misfit: |Ex(offset)-Ex_obs(offset)|^2/(|Ex|^2 + err)

nopoints=0

for i in range(len(frequencies)):

data = list(freqs[i].getComplexSamples())

n = (1500 - r0)/dr

n = int(n)

maxoffset.append(rl - i*500)

j = (rl -maxoffset[i])/dr

max = round(j)

max = 0

for k in range(len(dataobs[i])-(n+max)):

misf += (abs(data[k+n]-dataobs[i][k+n])*abs(data[k+n]-dataobs[i][k+n]))*(w[i][k+n])

return misf

##

def calc_misf_reg(mver, mhor,zlay,tvimod):

s=2

reg=0

reg2=0

for r in range(len(mver)-s):

reg += math.pow(math.log10(mver[r+s])-math.log10(mver[r+s-1]),2)

if (tvimod==2):

reg += math.pow(math.log10(mhor[r+s])-math.log10(mhor[r+s-1]),2)

reg += reg2

if tvimod==2:

reg /= 2

return reg

##

def mkcommand(model, mver, mhor, layers, zr, tvi, acur, frequencies ,r0,dr,rl):

filename = 'model' + str(model) + '.nc'

#for i, file in enumerate(cmpFiles):

if (tvi=='off'):

mhor = mver

if (len(layers)!= len(mver)-1) :

print 'Error: Each layer needs a spesified value for the resistivity/conductivity'

zs= zr - 30

frex='f'+str(model)

command = 'elcardinal '

command += 'ofel=' + filename

command += ' par=' + 'con'

command += ' acur='+str(acur)

command += ' method=digf'

command += ' comp=ex'

if (model !=0):

command += ' frex=' + frex

command += ' zlay='

for i in range(len(layers)-1):

command+= str(layers[i]) + ','

command += str(layers[len(layers)-1])

command += ' freq=' + str(frequencies[0])

for i in range(len(frequencies) - 1):

115

command += ',' + str(frequencies[i+1])

command += ' tvi=' + tvi

command += ' mver='

for i in range(len(mver)-1):

command += str(mver[i]) + ','

command += str(mver[len(mver) - 1])

command += ' mhor='

for i in range(len(mhor)-1):

command += str(mhor[i]) + ','

command += str(mhor[len(mhor) - 1])

command += ' zr='+ str(zr)

command += ' zs='+ str(zs)

command += ' r0='+ str(r0)

command += ' dr='+ str(dr)

command += ' rl='+ str(rl)

return command

##

if __name__=="__main__":

main(sys.argv)

###

116

