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Abstract

In this thesis, we studied numerically systems consisting of several interacting elec-
trons in two-dimensions, con�ned to small regions between layers of semiconductors.
These arti�cially fabricated electron systems are dubbed quantum dots in the lit-
erature. Quantum dots provide a new challenge to theoretical calculations of their
properties using many-body methods. The size of these �arti�cial atoms� is several
orders of magnitude larger than that of atoms, leading to a much greater sensitivity
to magnetic �elds. The full many-body problem of quantum dots is truly complex
and simulating a quantum dot constrained by a magnetic �eld may be even more
complicated.

Of particular interest is the reliability of the Hartree-Fock (HF) method for stud-
ies of quantum dots in two-dimensions as a function of the external magnetic �eld.
In order to achieve this goal, we developed a Hartree-Fock code for electrons trapped
in a single harmonic oscillator potential in two-dimensions. We also developed a code
implementing many-body perturbation theory (MBPT) up to third order either di-
rectly applied to the harmonic oscillator basis or as a correction to the Hartree-Fock
energy. A discussion of the results compared with large-scale diagonalisation meth-
ods indicated a quadractic error growth of HF and MBPT as the interaction strength
increases. We tested also the reliability of a single Slater determinant approxima-
tion for the ground state of closed shell systems as a function of varying interaction
strength. We found that the Hartree-Fock method, compared with large-scale diago-
nalization methods, has a limited range of applicability as function of the interaction
strength and increasing number of eletrons in the dot, indicating a break of the com-
putational technique before entering the limit of validity of the closed-shell model.
Our study also showed that the HF approximation might become less accurate com-
pared to MBPT as the number of electrons in the dot increases.
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Chapter 1

Introduction

Following their recent successes in describing and predicting properties of materials,
electronic structure calculations using numerical computation have become increas-
ingly important in the �elds of physics and chemistry over the past decade, especially
with the development of supercomputers. From the basic constituents of a system
of particles and their interactions, a computational approach enables to derive the
electronic structure and the properties of the system.

A system of particles that is currently considered with attention is the quantum
dot: it is an arti�cial system consisting of several interacting electrons con�ned to
small regions between layers of semiconductors. The whole system can be seen as a
nanoscopic box of semiconductor with exceptional electrical and optical properties.
Applications based on quantum dots are developed in numerous �elds of medicine
and modern electronics.

Overview

This thesis describes a computional study of a quantum dot in two dimensions.
It presents the methods used in numerical simulations and some many-body tech-
niques with various levels of sophistication: Hartree-Fock method (HF), many-body
perturbation theory (MBPT), variational Monte-Carlo (VMC) and full con�gura-
tion interaction (FCI) (e.g. large scale diagonalisation) methods. It focuses on the
restricted Hartree-Fock method, one of the fastest and cheapest techniques but also
one of the less accurate. The aim of the study is to assess the appropriateness of this
method to study quantum dots in two-dimensions con�ned by a spherical potential
and squeezed by an external magnetic �eld.

Literature review

Similar Hartree-Fock studies were performed by Johnson and Reina in 1992 [25] and
Pfannkuche in 1993 [45].

Johnson and Reina derived an analytical expression for the exact ground state
and the HF energy of a N-particle quantum dot [25]. They managed to derive it by
approximating the electron interactions with a cut-o� to �rst order of the Coulomb
interaction. They found that the HF approximation becomes less accurate with an
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Chapter 1. Introduction

increasing number of electrons, a decreasing magnetic �eld, an increasing dot size
and increasing electron-electron interaction strength. Our model which includes the
complete Coulomb interaction leads to the same conclusion regarding the accuracy
of the Hartree-Fock method.

Pfannkuche computed the open-shell Hartree-Fock method and compared the re-
sults to exact diagonalization. They also remarked that the usefulness of the Hartree-
Fock method would be greatly enhanced if its reliability was properly understood [45].
Compared to their study, our closed-shell model implementation cannot give insights
on the electronic structure responsible for the inaccuracy of the correlation e�ects,
but it gives more information about the convergence of HF.

Waltersson analysed quantum dots using open-shell Hartree-Fock and second-
order perturbation theory [59]. Their results are used to validate our own imple-
mentation of the second order perturbation correction in the basis of Hartree-Fock
orbitals.

Simen Kvaal developed a large-scale diagonalization code [32] for computing the
approximated ground state using the full con�guration interaction method. We use
his results as reference for the �exact� ground state in the analysis of our results. We
also use his simulator to validate the two-body interaction matrix in the harmonic
oscillator basis.

Rune Albrigtsen studied quantum dots using closed-shell variational Monte-Carlo
(VMC) method [2]. His simulator is used for few con�gurations to compare the
accuracy against HF and MBPT.

A guide to the reader

This thesis is organized as follows.
Chapter 2 gives a general presentation of the quantum dot and of computational

studies.
Chapter 3 describes the phenomenological aspects and properties of quantum

dots.
Chapter 4 reviews some models for the quantum dot and introduces the theoreti-

cal approximations used in this thesis: the electrons are trapped in a single harmonic
oscillator potential and repel each other according to the bare Coulomb interaction.

When it comes to the treatment of the quantum dot model for numerical simu-
lation, chapter 5 introduces some possible many-body techniques, and more particu-
larly the Hartree-Fock theory. The iterative procedure is reviewed and its description
is adapted to our implementation.

Chapter 6 describes our computational implementation of the Hartree-Fock method
in two-dimensions for closed shell systems. We also describe the implementation of
the many-body perturbation corrections up to third order both as an improvement
of the Hartree-Fock energy or as an independent technique.

Results are provided in chapter 7 and compared to large-scale diagonalization. A
numerical analysis provides information on the convergence, on the stability and on
the e�ciency of the Hartree-Fock method and the many-body perturbation theory.
We test the reliability of a single Slater determinant approximation for the ground
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state of closed shell systems as function of the interaction strength (7.2.1). A dis-
cussion of the results (7.3) shows that the complexity of the Hartree-Fock method
grows exponentially with the size of the basis set and that parallelization improves
the e�ciency almost linearly with respect to the number of processors (7.4). When
compared to large-scale diagonalisation taken as reference, we observed a quadractic
error growth of HF and MBPT as the interaction strength increases (7.3.1). We �nd
that the Hartree-Fock method, compared with large-scale diagonalization methods,
has a limited range of applicability as function of the interaction strength and in-
creasing number of electrons in the dot, indicating a breakdown of the validity of
the ansatz for the ground state wave function used in the Hartree-Fock calculations.
In our case this ansatz is based on a single Slater determinant constructed by �lling
all single-particle levels below the chosen Fermi surface, the so-called closed-shell
approach. Our study also shows that the HF approximation becomes less accurate
compared to MBPT as the number of electrons in the dot increases (7.5.2). Con-
cluding remarks and suggestions for future work are given in the chapter 8.
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Chapter 2

General presentation

In our current understanding of nanotechnology, quantum dots are the most func-
tional and reproducible nanostructures available to researchers. Common shapes
include pyramids, cylinders, lens shapes, and spheres. Di�erent synthesis routes cre-
ate di�erent kinds of quantum dots. They are very small by nature, the smallest
objects that we can synthesize on the nanoscale. From this fact, they are assimilated
to dots, though one quantum dot can be made out of roughly thousands of atoms.
All the atoms pool their electrons to "sing with one voice", that is, the electrons
are shared and coordinated as if there was only one atomic nucleus setting up an
attraction at the centre. That property enables numerous revolutionary schemes for
electronic devices and quantum dots are often referred to as arti�cial atoms.

Depending on its application, the total diameter of a quantum dot varies between
2-10 nm, corresponding to 10-50 atoms, to sizes of hundreds of nanometers that can
contain a total of 100− 100, 000 atoms within the quantum dot volume [46], with an
equivalent number of electrons. Almost all electrons are tightly bound to the nuclei
of these atoms, however the number of �free electrons� in the dot can be very small:
between one and a few hundreds [1]. The reason why 'quantum' pre�xes the name
is because the dots exhibit quantum con�nement properties in all three dimensions.
This means that electrons within the dot cannot move freely around in any direction
leading to quantization as we will show in 3. The only thing that behaves like
this in nature is the atom. Compared to an atom, a quantum dot is at least ten
times bigger and above all tunable. This has a lot of important consequences for
researchers. For example they exhibit quantized energy levels like an atom. For a
given energy of excitation, for instance, a quantum dot will only emit speci�c spectra
of light. Quantum theory predicts that if their diameter is decreased there will be
a corresponding increase in frequency (e.g. in energy) of the emitted light, and this
property is now used in many applications.

This element of control over quantum dots' emission properties has huge impli-
cations for both electronic devices and medical applications. Due to their excellent
con�nement properties not seen in nanowires or quantum wells, quantum dots are ex-
tremely e�cient at emitting light. They have been the source of some of the world's
most powerful lasers produced to date, though the practicality of a quantum dot
laser is still being improved. In medical studies, quantum dots are already used as
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Chapter 2. General presentation

tags that can be inserted into patients. These tags can be seen under most medical
scanning technologies and can help pinpoint biological processes as they occur.

2.1 History of Quantum Dots

In the late 50's began the �rst studies of arti�cial quantum systems, mostly theoret-
ical due to the lack of funds. In the 60's, the technique of epitaxial depositions was
developed and with it, the possibility to build ultra-clean composite layers of semi-
conductor material sandwiched between two other layers of another semiconductor.
The �rst optical properties were discovered and the two-dimensional character of the
sample was observed. At the beginning of the 80's, rapid progress in technology was
made with accurate lithography technics (the �rst quasi one-dimensional quantum
wire was done based on these advances) [20].

Colloïdal quantum dots were discovered in 1981, during the development of ma-
terials for the photo-cleavage of water. Bulk cadmium sul�de (CdS) is known to be
an ideal electrode material; however it experiences photocorrosion upon irradiation.
It was believed that colloidal particles of cadmium sul�de, coated with a protec-
tive agent (i.e. RuO2), would be more resistant to corrosion. Therefore, a synthesis
method was developed to produce colloidal CdS through aqueous precipitation. The
resulting particles displayed unique properties not found in the bulk, including �uo-
rescent emission. These properties were determined to be the result of quantum size
e�ects [26], and were found to be tunable by altering the size of the particle [50].
This provided a method for selecting excitation and emission wavelengths and par-
ticle band gaps.

In the middle of the 80's, the �rst quantum dot based on etching techniques
was developed [Reed et al.;1986]. As a consequence, a complete quantization of the
electron free motion was possible.

At the end of the 80's and in the 90's, the methods evolved: lithography and
etching are still in use, but electron or ion-lithography have replaced light-lithography
resulting in an increased precision [20].

Lent predicted in 1993 the need for building quantum cellular automata (QCA)
cells of 2 nm in order to work at room temperature, where quantum cellular automata
refers to any models of quantum computation.

�Ultimately, temperature e�ects are the principal problem to be overcome in
physically realizing the QCA computing paradigm. The critical energy is the energy
di�erence between the ground state and the �rst excited state of the array. If this is
su�ciently large compared with kBT , the system will be reliably in the ground state
after a characteristic relaxation time. Fortunately, this energy di�erence increases
quadratically as the cell dimensions shrink. If the cell size could be made a few
Ångstroms, the energy di�erences would be comparable to atomic energy levels (i.e.
several electron-Volts!)�.

�As technology advances to smaller and smaller dimensions on the few-nanometer
scale, the temperature of operation will be allowed to increase. Perhaps our envi-
sioned QCA will �nd its �rst room temperature implementation in molecular elec-
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2.1. History of Quantum Dots

Figure 2.1: Two coupled
atomic quantum dots are
shown in this room tem-
perature scanning tunneling
microscopy image. In the
top frame the dots share
one electron. The elec-
tron moves freely between
the dots just like an elec-
tron in a chemical bond
within a molecule. The lower
frame demonstrates control
over that single electron and
the potential to do compu-
tations in a new way. The
electric �eld from the con-
trol charge pushes the elec-
tron to prefer staying on only
one of the quantum dots.
(Image courtesy of University
of Alberta/Prof. Robert A.
Wolkow)

tronics.� [35]

Interest in the use of quantum dots in biomedicine began in 1998. Coupling the
quantum dots directly to biorecognition molecules (e.g. antibodies, proteins), the
particles could be targeted to particular parts of the cell, producing a �uorescent
indicator [7, 8].

Early this year (Jan. 2009), the four-quantum dot cell dreamed by Lent to
build his �quantum cellular automata� as a replacement for classical computation
using CMOS technology has been achieved with the fabrication and control of a
1 nm-scale assembly of a four coupled silicon dangling bond (In condensed matter
physics, a dangling bond occurs when an atom is missing a neighbour to which it
would be able to bind. Such dangling bonds are defects that disrupt the �ow of
electrons and that are able to collect the electrons). Indeed single-atom quantum
dots make possible a new level of control over individual electrons, a development
that suddenly brings quantum dot-based devices within reach [17]. Composed of a
single atom of silicon and measuring less than one nanometre in diameter, these are
the smallest quantum dots ever created. Until now, quantum dots have been useable
only at impractically low temperatures, but the new atom-sized quantum dots work
at room temperature. And because they operate at room temperature and exist
on the familiar silicon crystals used in today's computers, researchers expect these
single atom quantum dots to transform theoretical plans into real devices. Figure 2.1
shows how atom-sized quantum dots can be manipulated at room temperature. The
single-atom quantum dots have also demonstrated another advantage: signi�cant
control over individual electrons by using very little energy. This low energy control
is seen as the key to quantum dot application in entirely new forms of silicon-based
electronic devices, such as ultra low power computers.
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Chapter 2. General presentation

2.2 Some applications of QD

Exceptional electrical and optical properties make quantum dots attractive compo-
nents for integration into electronic devices. One signi�cant asset of quantum dots
over traditional optoelectronic materials is that they exist in the solid state. Solids
tend to be more compact, easily cooled, and allow for direct charge injection. Ad-
ditionally, quantum dots can interconvert light and electricity in a tunable manner
dependent on crystal size, allowing for easy wavelength selection. This is a signi�cant
improvement over silicon-based materials, which require modi�cation of their chem-
ical composition (i.e. doping) to alter optical properties [60]. As a result researchers
have experimented with quantum dots in lasers, LEDS, photovoltaics and also for
new generations of transistors, prototypes of spin devices, logic gates with quantum
computers as the ultimate goal. Most of these applications are still in early devel-
opment; however the bene�ts of quantum dot components are evident, and could
lead to a complete revolution of the way of building electronic components at atomic
scale.

Another application of quantum dots and one of the fastest moving and most ex-
citing interfaces of nanotechnology is the use of (colloïdal) quantum dots in biology.
Again their unique optical properties make them appealing as in vitro and in vivo

�uorophores in a variety of biological investigations, in which traditional �uorescent
labels based on organic molecules fall short of providing long-term stability and simul-
taneous detection of multiple signals [39]. The ability to make quantum dots water
soluble and target them to speci�c biomolecules has led to promising applications
in cellular labelling, thus improving diagnostic methods (ex. tracking cancer cells in
vivo during metastasis [15, 23, 58], as shown in �gure 2.2) and in developing better
drug delivery systems to improve disease therapy [29]. It is even currently studied as
neuroelectronic interface for converting optical energy into electrical signal respond-
ing to the need for prosthetic devices that can repair or replace nerve function [63].
However there are still many open questions about the toxicity of inorganic QD. The
size and charge of most nanoparticles preclude their e�cient clearance from the body
as intact nanoparticles. Without such clearance or their biodegradation into biolog-
ically benign components, toxicity is potentially ampli�ed and radiological imaging
is hindered. Some neutral organic coatings prevents adsorption of serum proteins
(which otherwise increase the total diameter by more than 15nm and prevent renal
clearance). A �nal hydrodynamic diameter of less than 5.5nm resulted in rapid and
e�cient urinary excretion and elimination of quantum dots from the body [52].

These achievements, even in their premises, have laid the foundations for theo-
retical investigations to enable advances in the understanding of the fundamental
structure, stability and aqueous assembly of nanoparticle architectures. A physi-
cal systems consisting of between 10s − 1000s of atoms is already too complex to
be studied otherwise than using numerical methods for a reliable description. The
concept of arti�cial atom can even be generalized to arti�cial molecules.

Moreover QDs appear as good tools for studying atomic spectra of many-body
systems on a theoretical point of view using computational techniques. Thanks to
the possibility to build our own arti�cial atoms without considering the complexity
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2.3. Clari�cations about computational studies

Figure 2.2: Sensitivity and multicolor capability of quantum dot (QD) imaging in live animals
compared to classical organic �uorescent dyes.
(a) About a thousand QD-tagged cancers cells (orange,upper) and organic �uorescent dye (green,
lower). (b) Simultaneous in vivo imaging of multicolor QD-encoded microbeads. Approximately
1-2 millions beads in each color were injected subcutaneously at three adjacent locations on a host
animal (Image courtesy of X. Gao [15]).

of the nucleus, it becomes simpler to confront numerical and experimental results.

2.3 Clari�cations about computational studies

The usefulness of numerical simulation is more and more recognized and today it
is used in many domains of research and development: mechanics, �uid mechanics,
solid state physics, astrophysics, nuclear physics, climatology, quantum mechanics,
biology, chemistry... More than being limited to scienti�c subjects numerical simu-
lation is also used in human sciences (demography, sociology) as well as in �nance
or economy.

In physics, beside the importance for our basic understanding of quantal systems,
the capability to develop and study stable numerical quantum mechanical systems
with many degrees of freedom is of great importance, as analytic solutions are rare
or impossible to obtain.

Some de�nitions:

A numerical simulation reproduces the fundamental behaviour of a complex sys-
tem in order to study its properties and predict its evolution. It is based on the
implementation of theoretical models, i.e. it is an adaptation of mathematical mod-
els to numerical tools. Data mining and virtual reality are di�erent from numerical
simulation and should not be mistaken with it.

A numerical simulation is performed in several steps:

The model describes the system analysed by listing its essential parameters and
by writing the physical laws that rule its behaviour (and link the parameters) as
mathematical equations.

9



Chapter 2. General presentation

The simulation itself is the translation of the equations into computer language,
associated with the discretization of the physical domain to make it �nite (select a
time step, a �nite number of points, an acceptable level of accuracy, etc).

Computational techniques The resolution of the equations leads to the determina-
tion of the numerical values of all the parameters of the system in every points, i.e.
the state of the system is known. Various computational techniques can be used to
solve the equations, they can be grouped into two main approaches: the deterministic
and the statistical (or probabilistic) methods.

In the �rst approach, an algorithm will solve predictably the equations. For ex-
ample the object (or the domain) is discretized and the parameters of each element
are linked to its neighbours through algebraic equations. It is up to the computer
to solve the system that links all the equations. A deterministic method will always
produce the same output when given the same input, and the underlying machine
will always go through the same sequence of states (which is why it is called �deter-
ministic�). The Hartree-Fock method used in this thesis belongs to this category as
well as the Finite element method or the large scale diagonalisation.

The second approach, which groups the �Monte-Carlo� methods, is particularly
suited to phenomena characterized by a sequence of steps in which each element of
the object can be a�ected by di�erent �a priori� possible events. From step to step,
the evolution of the sample will be determined through a random draw (the name of
the method comes from this idea).

Validation of the results: the theoretical model and its translation into computer
programming must be validated by comparing with experimental data, or by testing
a very simple case for which an analytical solution can be found.

Numerical simulations, once validated, can explore more cases or unused con-
�gurations that were not tested by experiments, sometimes predicting unexpected
behaviours, leading to a greater knowledge of the physical behaviour of the system.
Therefore numerical simulation is the third form of study of phenomena, after theory
and experiment.
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Chapter 3

Physics of Quantum Dots: the

arti�cial atoms

As described previously, a quantum dot is a semiconductor whose charge-carriers
are con�ned in all three spatial dimensions, so much con�ned that quantum e�ects
become visible in many ways: �uorescent e�ect, quantized conductance, quantized
energy spectrum, etc.

The physics behind it involves the electronic structure of the material (here mainly
semiconductors) and some basic quantum mechanical e�ects such as size quantiza-
tion, quantum tunneling or Coulomb blockade.

This chapter reviews the basic quantum mechanical e�ects that explain the prop-
erties of quantum dots. First it explains what size quantization is and how it happens
for a con�ned particle. Then it presents the properties of semiconductors and the
speci�c features of semiconductors quantum dots, and how it enables the size quanti-
zation to occur at larger scale. It then explains the consequences of size quantization
on the optical and electronic properties of quantum dots. Finally, it presents the
quantum dots in a magnetic �eld.

3.1 Size quantization

Before applying quantum theory to quantum dots, we will explain how quantization
arises and why it is not always noticeable in everyday life.

The particle in a box We consider the well-known example of a particle in a one-
dimensional box of size a trapped by an in�nite potential (see �gure 3.1a). The
potential V (x) is given below:

V (x) = 0, for 0 < x < a,

V (x) =∞, for x ≤ 0, x ≥ a. (3.1)

How do these boundary conditions a�ect the particle? Due to the wave-particle
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Chapter 3. Physics of Quantum Dots: the arti�cial atoms

duality we can write the time-independent Schrödinger equation for this system:

d2Ψ(x)

dx2
=

2m

~2
[V (x)− E] Ψ(x). (3.2)

If we write the solutions of the Schrödinger equation under the form Ψ(x) =
Asin(kx) + Bcos(kx), we can �nd the constants A and B by using the boundary
conditions: at the boundaries of the box Ψ is null ie Ψ(0) = Ψ(a) = 0

Ψ(0) = 0 +B = 0, (3.3)

Ψ(a) = Asin(ka) = 0,

This can only be satis�ed by B = 0 and if either A = 0 or if ka = nπ. Setting
A = 0 would mean that the wave function is always zero, which is unacceptable, we
conclude that:

Ψn(x) = Asin(
nπx

a
), for n = 1, 2, 3, 4, . . . (3.4)

The constantA can be determined by normalization, by saying that Ψn(x)∗Ψn(x)dx
is the probability density, ie the probability of �nding the particle in the interval of
width dx centered on x. The probability density at any given point is shown in
�gure 3.1c. Because the probability of �nding the particle somewhere in the entire
interval [0, a] is one, ∫ a

0

Ψn(x)∗Ψn(x) = 1.

From that we obtain the normalized eigenfunctions plotted in �gure 3.1b

Ψn(x) =

√
2

a
sin
(nπx

a

)
. (3.5)

Now that we have the eigenfunctions, we can re-introduce them into the Schrödinger
equation to �nd the eigenvalues (i.e. eigen-energies of the system):

EnΨn(x) = − ~2

2m

d2Ψn(x)

dx2
(3.6)

=
~2

2m

(nπ
a

)2
√

2

a
sin
(nπx

a

)
. (3.7)

It leads to the following expression for the eigenvalues, which are also the possible
energies of the system:

En =
~2

2m

(nπ
a

)2

=
~2n2

8ma2
, for n = 1, 2, 3, . . . (3.8)

Compared to a free particle, we see that the energy for a particle in a box is
discrete: this is called quantization and the integer n is a quantum number. Another
important result of the calculation is that the lowest energy allowed is greater than
zero. The particle has a non zero minimum energy compared to a free particle, known
as a zero point energy.
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3.1. Size quantization

(a) The potential

(b) First eigenfunctions (c) Probability densities

Figure 3.1: (a) The potential described by equation (3.1). As the particle is con�ned to the range
0 ≤ x ≤ a, we say that it is con�ned to a one-dimensional box.
(b) The �rst few eigenfunctions for the particle in a box are shown together with the corresponding
energy eigenvalues. The energy scale is shown on the right with the zero for each level indicated by
the dashed line.
(c) The square of the magnitude of the wavefunction, or probability density, is shown as a function
of distance together with the corresponding energy eigenvalues. The energy scale is shown on the
left. The square of the wave function amplitude is shown on the right with the zero for each level
indicated by the dashed line.
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Chapter 3. Physics of Quantum Dots: the arti�cial atoms

Therefore quantization is simply a result of the con�nement of the particle and
provides new properties to the particle. By making the box size a tend to in�nity,
the con�nement condition is removed and the discrete energy spectrum becomes
continous in this limit. More generally, it means that any particle trapped with
some boundaries will experience quantization e�ect, like the particles trapped in the
quantum dots.

One way to see quantization e�ects is to look for observables. The total energy is
one example of an observable that can be calculated once the eigenfunctions of the
time-independent Schrödinger equation are known. Another observable that comes
directly from solving this equation is the probability density, which is the quantum
mechanical analogue of position.

Observation of size quantization depending on temperature What is the limit size
of the con�nement so that such quantization e�ects are observable at our scale? We
consider for example that the particle is an electron trapped in a box. The answer
will come from the very small constants we have from the Schrödinger equation:
the reduced Planck constant ~ = h/π = 1.05 × 10−34 J.s (kg.m2.s−1) and the
mass of the electron m = 9.11 × 10−16 kg. To be noticeable, the energy should be
much greater than the thermal energy which is in the order of magnitude of kBT ,
where kB = 1.38 × 10−34 J.K−1 is the Boltzmann constant and T the temperature,
otherwise thermal �uctuations will disturb the motion of electrons and will smear
out the quantization e�ects.

At room temperature (i.e. 20� ' 293K), kBT ' 4.045 × 10−21 J . The gap
between the �rst two energy levels should be greater than this value:

∆E = E2 − E1 =
3~2

8ma2
=

4.54× 10−54

a2
& kBT, (3.9)

⇒ a . 1.06× 10−11m = 0.0106. nm

At dilution refrigerator temperatures (i.e. ∼ 100 mK), kBT ' 1.380× 10−35 J . The
gap between the �rst two energy levels doesn't need to be so big this time:

∆E = E2 − E1 =
3~2

8ma2
=

4.54× 10−54

a2
& kBT, (3.10)

⇒ a . 5.734× 10−10m = 0.573 nm.

We notice here that it is impossible to observe quantum e�ect with such a �free
electron� at room temperature, since the box should be roughly the size of an atom,
but it could be done at very low temperature.

We could therefore deduce the same for quantum dots, that are made of one or
several electrons con�ned in a semiconductor. From what we saw above it is not
possible to create a quantum dot small enough to observe size quantization at room
temperature. However we will see in the following section that the mass of the charge
carriers, which in�uences the limit size of the con�nement, is not the same when the
material is a semiconductor.
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3.2. Quantum dots made of semiconductors

Figure 3.2: Simpli�ed diagram of the electronic band structure of metals, semiconductors and
insulators. (Image courtesy of P. Kuiper)

3.2 Quantum dots made of semiconductors

A semiconductor is a material that has a resistivity value between that of a conductor
and an insulator. The conductivity of a semiconductor material can be varied under
an external electrical �eld.

Most semiconductors on the market are made of silicon (Si). Dozens of other
materials are used like germanium (Ge) or gallium arsenide (GaAs). Semiconductor
materials are the basic constituants of modern electronic devices (radio, computers,
telephones, and many others). Semiconductor devices include the transistor, solar
cells, many kinds of diodes including the light-emitting diode, the silicon controlled
recti�er, and digital and analog integrated circuits. Solar photovoltaic panels are
large semiconductor devices that directly convert light energy into electrical energy.

Energy bands in semiconductors In a metallic conductor, current is carried by the
�ow of electrons, but in semiconductors, current can be carried either by the �ow
of electrons or by the �ow of positively-charged "holes" in the electron structure
of the material. As shown in the previous section 3.1 electrons trapped in matter
will experience discretized energies. However compared to the particle in a box,
electrons in semiconductors as in other solids will not have narrow discrete energy
levels but tickher allowed bands of energy separated by forbidden gaps between them.
Therefore electrons trapped in matter can have energies only within certain energy
bands; the lowest energy is the ground state, corresponding to electrons tightly
bound to the atomic nuclei of the material, and the highest energy is the free electron
energy, which is the energy required for an electron to escape entirely from the
material. The energy bands each correspond to a large number of discrete quantum
states of the electrons. Most of the states with low energy (closer to the nucleus)
are full, up to a particular band called the valence band. Semiconductors and
insulators are di�erent from metals because the valence band in the semiconductor
materials is very nearly full under usual operating conditions, thus causing more
electrons to be available in the conduction band, which is the band immediately
above the valence band as shown in �gure 3.2. The ease with which electrons in a
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Chapter 3. Physics of Quantum Dots: the arti�cial atoms

semiconductor can be excited from the valence band to the conduction band depends
on the band gap between the bands, and it is the size of this energy bandgap that
serves as an arbitrary dividing line between semiconductors and insulators.

In the picture of delocalized states, for example in one dimension that is in a wire,
for every energy band there is a state with electrons �owing in one direction and one
state for the electrons �owing in the other. For a net current to �ow, electrons must
occupy more states corresponding to the �ow in one direction than they occupy states
for the �ow in the other direction, and for this they need energy. For a metal this
can be a very small energy. In the semiconductor the next higher states lie above the
band gap. However, as the temperature of a semiconductor rises above absolute zero,
there is more energy in the semiconductor to spend on lattice vibration and on lifting
some electrons into an energy states of the conduction band. The current-carrying
electrons in the conduction band are known as �free electrons�, although they are
often simply called �electrons� if context allows this usage to be clear.

Electrons excited to the conduction band leave behind electron holes, or unoccu-
pied states in the valence band. Both the conduction band electrons and the valence
band holes (excitons) contribute to electrical conductivity. The holes themselves
don't actually move, but a neighboring electron can move to �ll the hole, leaving a
hole at the place it has just come from, and in this way the holes appear to move,
and the holes behave as if they were actual positively charged particles.

One covalent bond between neighboring atoms in the solid is ten times stronger
than the binding of the single electron to the atom, so freeing the electron does not
imply destruction of the crystal structure.

In semiconductors, the dielectric constant is generally large, and as a result,
screening tends to reduce the Coulomb interaction between electrons and holes. The
result is a Mott-Wannier exciton, which has a radius much larger than the lattice
spacing. As a result, the e�ect of the lattice potential can be incorporated into
the e�ective masses of the electron and hole (see table 3.1 for typical values),
and because of the lower masses and the screened Coulomb interaction, the binding
energy is usually much less than a hydrogen atom, typically the order of 0.1 eV
(Wannier excitons are found in semiconductor crystals with small energy gaps and
high dielectric constant).

In quantum mechanics, the positions of electrons and holes are described as wave-
functions or probability distributions. The exciton has a certain size, determined by
the combined probability distribution functions, and if this size exceeds the particle
diameter, quantum con�nement occurs. The size limit for quantum con�nement can
be approximated from the modi�ed version of the De Broglie wavelength equation
considering its e�ective mass m∗:

λB =
h

p
=

~
m∗ω

, (3.11)

where λB is the de Broglie wavelength (the wavelength associated to a particle with
momentum p), ~ the reduced Planck constant and ω the angular frequency of the
particle.

Nanocrystals contain much fewer atoms than the bulk, therefore charge screening
e�ects are reduced. The e�ective mass declines and the de Broglie wavelength can
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3.2. Quantum dots made of semiconductors

Semiconductor material εr m∗e m∗h
(Free electron mass me = 9.11× 10−16 kg)

(Dielectric constant of vaccuum ε0 ' 8.854× 10−12 A2s4kg−1m−3)
Silicon (Si) (4.2 K) 11.7 1.08 me 0.56 me

Germanium (Ge) 16.4 0.55 me 0.37 me

Gallium arsenide (GaAs) 11.1− 12.4 0.067 me 0.45 me

Indium antimonide (InSb) 15.9 (at 77K) 0.013 me 0.6 me

Zinc oxide (ZnO) − 0.19 me 1.21 me

Zinc selenide (ZnSe) − 0.17 me 1.44 me

Table 3.1: Relative dielectric constant (εr) measured at 290K [62] and e�ective mass of charge-
carriers for some common semiconductors [18], m∗

e and m∗
h respectively for the electron and hole

e�ective mass

become extremely large, up to several nanometers and make the nanocrystal excited
with much less energy than an atom. For cadmium sul�de (CdS) and cadmium
telluride (CdTe), these wavelengths are 5.5 nm and 7.5 nm [63]. For particles that
are con�ned within sizes smaller than this wavelength, the excitons �feel� restricted.
Thus the nanocrystal will display a band gap and associated (optical and electrical)
quantum e�ects inversely proportional to its size.

Energy spectrum of semiconductor quantum dots An additional feature to the tran-
sition from bulk crystals to nanocrystals is a radical change in the energy spectrum
of the free carriers. It changes when the diameter d of the crystal becomes compara-
ble to the de Broglie wavelength of electrons in the crystal. Motion in the direction
accross the nanocrystal can be assumed bounded, and the energy spectrum in this
direction becomes discrete.

Figure 3.3 illustrates the di�erent energy spectra of bulk materials, molecules and
quantum dots.

Bulk semiconductor materials are characterized by bands of allowed potential
energy values. For an electron to be excited, it must absorb an energy higher than
the band gap. Any value greater than the band gap will produce an excited state.

When we examine a system consisting of only two atoms, the molecular orbitals
formed create discrete potential energy states. Electrons will only be excited if the
energy absorbed corresponds to speci�c discrete quantities. Other values are not
permitted and will not produce excited states.

Quantum Dots are an intermediate between discrete and continuous energy levels.
As the number of atoms in the particle is reduced, the energy bands split and shrink
but not to the point of being exactly discrete. Thus electrons in quantum dots may
be excited by energies in discrete intervals.
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Chapter 3. Physics of Quantum Dots: the arti�cial atoms

Figure 3.3: Possible energy states as a function of the particle size.
(A) Bulk materials have continuous energy bands and absorb energy at a value greater than
the band gap. (B) Molecular materials possess discrete energy levels and only absorb energy
with certain values. Moreover the band gap is greater than the one of a bulk material as a result
of shrinking and splitting of the energy bands. (C) Quantum dots lie between the extremes
(A,B). They possess discrete energy bands and absorb energy in discrete intervals. The band gap
is between the one of bulk material and the one of a molecular material. (Image courtesy of J.
Winter [63])

3.3 Optical properties

A lot of applications rely on the optical properties of quantum dots which result from
quantum con�nement.

The electrical and optical energy of the band gap are equivalent through the
following conversion:

∆E = ~ω =
hc

λ
, (3.12)

where ∆E is the band gap di�erence (�gure 3.4), ~ is the reduced Planck's constant,
c is the speed of light, λ and ω respectively the wavelength and the angular frequency
of the incident light. Thus the energy di�erence of the band gap is inversely propor-
tional to the wavelength of the incident light. Nanoparticles will only absorb light of
wavelengths shorter than the one determined by the band gap value.

For example, CdS (bulk) has a band gap of 2.42 eV , which corresponds to a
wavelength of 512 nm. So CdS (bulk) begins to absorb light at 512 nm and absorbs
continuously into the UV (e.g. shorter wavelengths/higher energies). As particle size
declines, the band gap increases and the absorbance starts at shorter wavelengths
(Figure 3.4).

The in�uence of particle size on optical properties is not limited to absorbance.
Particle �uorescence is also a function of the band gap. After an electron is ex-
cited, some of its energy is lost to atomic vibrations, satisfying the second law of
thermodynamics. Typically, this energy is converted to heat. When the electron
decays into the ground state it will emit light at a longer wavelength because of this
energy loss (Figure 3.5a). As the band gap decreases, a smaller amount of energy
is dissipated through �uorescent emission to return to the ground state, and the
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Figure 3.4: Band gap energy and optical absorption as a function of the crystal size.
The band gap (eV) increases with decreasing nanoparticle size. Band gap is inversely related to
the start in absorbance (λ) through the relationship E = hc/λ. Therefore smaller particles begin
to absorb at shorter wavelengths [61] (Image courtesy of J. Winter [63]).

wavelength of emitted light will shift to the red (Figure 3.5b). Because the band gap
is inversely proportional to nanocrystal size, larger nanocrystals display red-shifted
emission. Additionally, the energy lost to heat decreases in a size-dependent man-
ner. Figure 3.6 presents the emission spectra of quantum dots made from di�erent
materials and compare it to the visible wavelengths.

3.4 Electronic properties/Manipulation of quantum dots

Electron-transfer between materials Quantum con�nement also a�ects the electrical
properties of nanocrystals. Since gap energies are size dependent, electrical properties
that depend on this di�erence will display size dependence as well. One such property
is electron transfer. Electrons with no additional energy added prefer to move to lower
energy states within a given material. Because there are no energy states in the band
gap, the electron will decay until it reaches the lowest state in the conduction band,
and then return to the valence band through another mechanism (i.e. electron-hole
recombination, non-radiative energy loss, etc). However, if the electron encounters
a material with lower available energy states (i.e. lower conduction band), it can
transfer its electron to that material (Figure 3.7). This process is dependent on
the band gap. As the band gap increases, excited electrons occupy higher energy
levels, and can decay to a greater number of lower state values. As a result of size-
tunable band gaps within the quantum dot, electron transfer can be optimized to
many materials.

Single electron transport in quantum dots: Single-electron tunneling and Coulomb

blockade Electron transport through a quantum dot is studied by connecting the
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Chapter 3. Physics of Quantum Dots: the arti�cial atoms

(a) Fluorescence and red-shift of λ due to energy loss.

(b) Red-shifted emission due to crystal size.

Figure 3.5: Fluorescent emission and particle band gap, functions of the crystal size.
(a) Photon absorption creates an excited electron. This electron loses some energy to heat; then
decays to ground, emitting a photon. The emitted photon has a longer wavelength than the absorbed
photon because of the energy lost to heat.
(b) As the band gap decreases, the particle will absorb at longer wavelengths. This will produce a
red-shift in particle �uorescent emission. (Image courtesy of J. Winter [63])

Figure 3.6: Emission spectra of quantum dots built from di�erent materials.
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Figure 3.7: Electron transfer between materials
with di�erent band gaps.
If an excited electron in one material (A) encoun-
ters a second material (B) with a lower band gap
energy, it can transfer its electron to that mate-
rial. (Image courtesy of J. Winter [63])

quantum dot to surrounding reservoirs (Figure 3.8). The fact that the charge on the
electron island is quantized in units of the elementary charge e regulates transport
through the quantum dot in the Coulomb blockade regime. Here the transport
between the reservoirs and the dot occurs via tunnel barriers, which are thick
enough so that the transport is dominated by resonances due to quantum con�nement
in the dot. This requires a small transmission coe�cient through the barriers, and
thus the tunnel resistance has to be larger than the quantum resistance h/e2. If the
dot is fully decoupled from its environment, it con�nes a well de�ned number N of
electrons. For weak coupling, deviations due to tunneling through the barriers are
small, leading to discrete values in the total electrostatic energy of the dot. This
energy can be estimated by N(N−1)e2/(2C), where C is the capacitance of the dot.
Thus the addition of a single electron requires energy Ne2/C, which is discretely
spaced by the charging energy e2/C. If this charging energy exceeds the thermal
energy kBT , the electrons cannot tunnel on and o� the dot by thermal excitations
alone, and transport can be blocked, which is referred to as a Coulomb blockade.

The two barriers de�ne the coupling of the channel to its surroundings. The
conductance of the double-barrier channel is measured as a function of the gate
voltage at di�erent temperatures.

Following Kouwenhoven and McEuen (1999), �gure 3.9a schematically illustrates
an electron island connected to its environment by electrostatic barriers, the so-called
source and drain contacts, and a gate to which one can apply a voltage Vg as depicted
in �gure 3.8.

In this example, the level structure of the quantum dot connected to source
and drain by tunneling barriers is sketched schematically in Figures. 3.9(a)-(c). The
chemical potential inside the dot, where the discrete quantum states are �lled with N
electrons [i.e. the highest solid line in Figures. 3.9(a)-(c)], equals µdot(N) = E(N)−
E(N + 1), where E(N) is the total groundstate energy (here at zero temperature).

Figure 3.9d shows the results of the experiment. We can see how the Coulomb
blockade a�ects transport: clear peaks, equidistantly spaced, are separated by regions
of zero conductance.

When a bias voltage is applied to the source s and the drain d, the electrochemical
potentials µs and µd are di�erent, and a transport window µs − µd = −eVds opens
up, where e is the electron charge. In the linear regime the transport window −eVds
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Chapter 3. Physics of Quantum Dots: the arti�cial atoms

Figure 3.8: Schematic of a Single Electron Transistor (SET).
Setup for transport measurements on a lateral quantum dot. Because of the small size of the island
or quantum dot (QD) in the middle of the two tunnel junctions the capacitance becomes very high
and we see coulomb blockade e�ect.

is smaller than the spacing of the quantum states, and only the ground state of
the dot can contribute to the conductance. By changing the voltage on the back
gate, µdot(N+1) can be aligned with the transport window [Fig. 3.9b], and electrons
can subsequently tunnel on and o� the island at this particular gate voltage. This
situation corresponds to a conductance maximum, as marked by the label (b) in
Fig. 3.9d. Otherwise transport is blocked, as a �nite energy is needed to overcome
the charging energy. This scenario corresponds to zero conductance as marked by the
labels (a) and (c) in Fig. 3.9. The mechanism of discrete charging and discharging
of the dot leads to Coulomb blockade oscillations in the conductance as a function
of gate voltage (as observed, for example, in Fig. 3.9d): at zero conductance, the
number of electrons on the dot is �xed, whereas it is increased by one each time a
conductance maximum is crossed. [48]

Spectroscopic information about the charge state and energy levels of the in-
teracting quantum dot electrons can be obtained by analyzing the precise shape of
the Coulomb oscillations and the Coulomb staircase. In this way, single electron
transport can be used as a spectroscopic tool [42].

3.5 Quantum dot in a magnetic �eld

In many experimental situations with quantum dots, the electrons in quantum dots
are manipulated using an external magnetic �eld. This �eld is usually created so
that the magnetic �eld vector

−→
B is normal to the dot surface. For a typical quantum

dot this results in a complicated spectrum of energy levels shown in �gure 3.10.
The theoretical approach to the quantum dot given in the following chapter will

serve as a basis to understand the spectrum of �gure 3.10, even if the model used
includes many approximations.
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3.5. Quantum dot in a magnetic �eld

(a) Electron-transport blocked

(b) Electron-transport allowed: maximum conductance

(c) Electron-transport blocked again

(d) Conductance of the double-barrier channel
measured as a function of the gate voltage at dif-
ferent temperatures [40]

Figure 3.9: Single-electron transport in a quantum dot.
(a)-(c) Schematic picture of the level structures for single-electron transport (courtesy of A; Wacker).
The solid lines represent the ionization potentials where the upper equals µdot(N), whereas the
dashed lines refer to electron a�nities, where the lowest one equals µdot(N + 1). The gate bias
increases from (a) to (c) [48].
(d) An example of the �rst measurements of Coulomb blockade as a function of the gate voltage.

23



Chapter 3. Physics of Quantum Dots: the arti�cial atoms

Figure 3.10: Additional energy spectrum as a function of a magnetic �eld. The magnetic �eld
induces level crossings of single particle eigenstates which appear as cusps on the �gure. (Image
courtesy of M. Ciorga [10])
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Chapter 4

Modelling of Quantum Dots

Quantum systems are governed by the Schrödinger equation (4th postulate of quan-
tum mechanics):

H|ψ(t)〉 = i~
d

dt
|ψ(t)〉, (4.1)

where H is the quantum Hamilton operator (or Hamiltonian) and |ψ(t)〉 the state
vector of the system.

The solutions to the stationary form of this equation determine many physical
properties of the system at hand, such as the ground state energy of the system
which is the ultimate result of our simulations. Indeed as expressed in section 2.3 we
need a way to validate our model and we choose the ground state energy as physical
quantity that can be compared with experiments and other numerical simulations.

Solving the Schrödinger equation in the Hamiltonian formalism obviously requires
a de�nition of this Hamiltonian which translates as well as possible our knowledge
of the system into equations. We must identify the di�erent forces/�elds applied to
the system in order to include their respective �potentials� into the Hamiltonian.

In the case of a quantum dot, the Hamiltonian is basically characterized by the
di�erent forces applied to its constituants. This could be done by summing over
all the interactions between electrons and nuclei that constitute the quantum dot.
However, if the �nal objective is to perform fast predictions about the system, the
complexity of such a model may quickly reach the limits of the computational re-
sources.

Therefore we prefer a simpler model in which the system is limited to the free
charge-carriers by modelling a con�ning potential that traps them into the dot
as well as an interaction potential that characterizes the repulsion between those
electrons.

This chapter discusses possible models for those potentials. The derivation of
a Hamiltonian is then given for electrons that repeal each other by a Coulomb in-
teraction and that are trapped in a parabolic potential, and even more con�ned by
applying or not an external magnetic �eld. We show �nally that rescaling the prob-
lem with proper length and energy units leads to a simple form of the Hamiltonian
even when applying an external magnetic �eld to the quantum dot.
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4.1 Theoretical approximation of the quantum dot Hamilto-

nian

Two-body interaction potential The interaction potential between two electrons is
usually approximated proportional to the Coulomb repulsion in free space V (~ri, ~rj) =
1/rij. Other studies have investigated di�erent forms of potential. For example
Johnson and Payne [24] assumed the interaction potential V (~ri, ~rj) between particles
i and j moving in the con�ning potential to saturate at small particle separation
and to decrease quadratically with increasing separation. More recently, in order
to investigate spin relaxation in quantum dots, Chaney and Maksym in [9] built a
model where the electron-electron interactions were designed to follow experimental
data.

For sake of simplicity and since it is still in use in most studies of quantum dots,
we will stick to the approximation of the interaction potential proportional to the
Coulomb repulsion.

The con�ning potential De�ning the second potential that con�nes these electrons
is a more di�cult issue when modelling a quantum dot. Some numerical [30,37,38,53]
and experimental [27,22,21] studies have shown that for a small number of trapped
electrons, the harmonic oscillator potential is a good approximation, at least to �rst
approximation. In [24], the bare (i.e. unscreened) con�ning potential V (~ri) for the
ith particle is also modelled to be parabolic (i.e. the harmonic oscillator potential).
It has been shown theoretically that for electrons contained in a parabolic potential
there is a strong absorption of far-infrared light at the frequency corresponding to
the bare parabola [6, 44, 64, 36]. This theoretical prediction is consistent with some
experimental measurements on quantum dots [51]. Further evidence that the bare
potential in many quantum-dot samples is close to parabolic is provided by simple
electrostatic models [12].

Relations between con�ning potential and electron interactions Other studies tested
di�erent spherically symmetric con�ning potentials with di�erent pro�les (�soft� and
�hard�) on electrons in coupled QDs [34], and observed the resulting electron inter-
actions. It shows very di�erent behaviours of the electron interactions between the
soft (Gaussian) and the hard (rectangular-like) con�ning potential. This means that
the model of the con�ning potential has a strong in�uence on the electron-electron
interactions, and that it depends itself on the type and shape of the QD under study.

Motivation for the model chosen Since we are focusing on the limits of the Hartree-
Fock method with respect to other techniques rather than an exhaustive study of
di�erent types of quantum dots, we choose in the rest of the thesis to model the
single quantum dot by a de�nite number of electron Ne, trapped by a pure isotropic
harmonic oscillator potential and repealing each other with a two-body Coulomb
interaction. Only closed shell systems are studied, meaning that the number of
electrons present in the quantum dot are �lling all single particle states until the
Fermi level. This simpli�es greatly the problem since all combinations of single
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particle states are reduced to one Slater determinant as detailled in 5.2.2.

4.2 General form of Ĥ with explicit physical interactions

In this section we derive the Hamiltonian of the quantum dot model with and with-
out external magnetic �eld in order to show that the interaction with the external
magnetic �eld will basically result in a modi�ed harmonic oscillator frequency and a
shift of the energy proportional to the strength of the �eld.

4.2.1 Electrons trapped in an harmonic oscillator potential

We consider a system of electrons con�ned in a pure isotropic harmonic oscillator
potential V (~r) = m∗ω2

0r
2/2, where m∗ is the e�ective mass of the electrons in the

host semiconductor (as de�ned in section 3.2), ω0 is the oscillator frequency of the
con�ning potential, and ~r = (x, y, z) denotes the position of the particle.

The Hamiltonian of a single particle trapped in this harmonic oscillator potential
simply reads

Ĥ =
p2

2m∗
+

1

2
m∗ω2

0‖r‖2, (4.2)

where p is the canonical momentum of the particle.

When considering several particles trapped in the same quantum dot, the Coulomb
repulsion between those electrons has to be added to the single particle Hamiltonian
which gives

Ĥ =
Ne∑
i=1

(
pi

2

2m∗
+

1

2
m∗ω2

0‖ri‖2
)

+
e2

4πε0εr

∑
i<j

1

‖ri − rj‖ , (4.3)

where Ne is the number of electrons, −e (e > 0) is the charge of the electron, ε0 and
εr are respectively the free space permitivity and the relative permitivity of the host
material (also called dielectric constant), and the index i labels the electrons.

4.2.2 Electrons trapped in an harmonic oscillator potential in the pres-

ence of an external magnetic �eld

We assume that the magnetic �eld
−→
B is static and along the z axis. At �rst we

ignore the spin-dependent terms. The Hamiltonian of these electrons in a magnetic
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�eld now reads [5]

Ĥ =
Ne∑
i=1

(
(pi + eA)2

2m∗
+

1

2
m∗ω2

0‖ri‖2
)

+
e2

4πε0εr

∑
i<j

1

‖ri − rj‖ , (4.4)

=
Ne∑
i=1

(
pi

2

2m∗
+

e

2m∗
(A · pi + pi ·A) +

e2

2m∗
A2 +

1

2
m∗ω2

0‖ri‖2
)

(4.5)

+
e2

4πε0εr

∑
i<j

1

‖ri − rj‖ , (4.6)

where A is the vector potential de�ned by B = ∇×A.
In coordinate space, pi is the operator −i~∇i and by applying the Hamiltonian

on the total wave function Ψ(r) in the Schrödinger equation, we obtain the following
operator acting on Ψ(r)

A · pi + pi ·A = −i~ (A · ∇i +∇i ·A) Ψ (4.7)

= −i~ (A · (∇iΨ) +∇i · (AΨ)) . (4.8)

We note that if we use the product rule and the Coulomb gauge ∇ ·A = 0 (by
choosing the vector potential as A = 1

2
B× r), pi and ∇i commute and we obtain

∇i · (AΨ) = A · (∇iΨ) + (∇i ·A)︸ ︷︷ ︸
0

Ψ = A · (∇iΨ). (4.9)

This leads us to the following Hamiltonian:

Ĥ =
Ne∑
i=1

(
− ~2

2m∗
∇2
i − i~

e

m∗
A · ∇i +

e2

2m∗
A2 +

1

2
m∗ω2

0‖ri‖2
)

(4.10)

+
e2

4πε0εr

∑
i<j

1

‖ri − rj‖ , (4.11)

The linear term in A becomes, in terms of B:

−i~e
m∗

A · ∇i = − i~e
2m∗

(B× ri) · ∇i (4.12)

=
−i~e
2m∗

B · (ri ×∇i) (4.13)

=
e

2m∗
B · L. (4.14)

where L = −i~(ri×∇i) is the orbital angular momentum operator of the electron i.
If we assume that the electrons are con�ned in the xy-plane, the quadratic term

in A appearing in 4.10 can be written under the form

e2

2m∗
A2 =

e2

8m∗
(B× r)2 (4.15)

=
e2

8m∗
B2r2

i . (4.16)
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4.2. General form of Ĥ with explicit physical interactions

Until this point we have neglected the intrinsic magnetic moment of the electrons
which is due to the electron spin in the host material. We will now add its e�ect to
the Hamiltonian. This intrinsic magnetic moment is given byMs = −g∗s(eS)/(2m∗),
where S is the spin operator of the electron and g∗s its e�ective spin gyromagnetic ratio
(or e�ective g-factor in the host material).We see that the spin magnetic moment
Ms gives rise to an additional interaction energy [5], linear in the magnetic �eld,

Ĥs = −Ms ·B = g∗s
e

2m∗
BŜz = g∗s

ωc
2
Ŝz, (4.17)

where ωc = eB/m∗ is known as the cyclotron frequency.
The �nal Hamiltonian reads

Ĥ =
Ne∑
i=1

(−~2

2m∗
∇2
i +

Harmonic ocscillator
potential︷ ︸︸ ︷

1

2
m∗ω2

0‖ri‖2
)

+

Coulomb
interactions︷ ︸︸ ︷

e2

4πε0εr

∑
i<j

1

|ri − rj|

+
Ne∑
i=1

(
1

2
m∗
(ωc

2

)2

‖ri‖2 +
1

2
ωcL̂

(i)
z +

1

2
g∗sωcŜ

(i)
z

)
︸ ︷︷ ︸

single particle interactions
with the magnetic �eld

, (4.18)

4.2.3 Scaling the problem: Dimensionless form of Ĥ

In order to simplify the computation, the Hamiltonian can be rewritten on dimen-
sionless form. For this purpose, we introduce the following constants:

� the oscillator frequency ω = ω0

√
1 + ω2

c/(4ω
2
0) ,

� a new energy unit ~ω,

� a new length unit, the oscillator length de�ned by l =
√

~/(m∗ω) , also called
the characteristic length unit.

We rewrite the Hamiltonian in dimensionless units using:

r −→ r

l
, ∇ −→ l ∇ and L̂z −→ L̂z

It leads to the following Hamiltonian:

Ĥ =
Ne∑
i=1

(
−1

2
∇2
i +

1

2
r2
i

)
+

Dimensionless
con�nement
strength (λ)︷ ︸︸ ︷
e2

4πε0εr

1

~ωl
∑
i<j

1

rij

+
Ne∑
i=1

(
1

2

ωc
~ω

L̂(i)
z +

1

2
g∗s
ωc
~ω

Ŝ(i)
z

)
, (4.19)

Lengths are now measured in units of l =
√

~/(m∗ω) , and energies in units of ~ω.
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Figure 4.1: Typical values for the oscillator frequency ω, the oscillator length l, the energy unit
~ω and the dimensionless con�nement strength λ as a function of the magnetic �eld strength in
GaAs semiconductors assuming: ~ω0 = 5× 10−3eV [28], εr ' 12 and m∗ = 0.067 me

A new dimensionless parameter λ = l/a∗0 (where a∗0 = 4πε0εr~2/(e2m∗) is the
e�ective Bohr radius) describes the strength of the electron-electron interaction.
Large λ implies strong interaction and/or large quantum dot [56]. Since both L̂z
and Ŝz commute with the Hamiltonian we can perform the calculations separately
in subspaces of given quantum numbers Lz and Sz. Figure 4.1 displays values of
the di�erent parameters as a function of the magnetic �eld strength for a particular
type of semiconductor: Gallium arsenide (GaAs) with know characteristics given in
table 3.1.

The simpli�ed dimensionless Hamiltonian becomes

Ĥ =
Ne∑
i=1

[
−1

2
∇2
i +

1

2
r2
i

]
+ λ

∑
i<j

1

rij
+

Ne∑
i=1

(
1

2

ωc
~ω

L(i)
z +

1

2
g∗s
ωc
~ω

S(i)
z

)
. (4.20)

The last sum which is proportional to the magnetic �eld involves only the quan-
tum numbers Lz and Sz and not the operators themselves [56]. Therefore these terms
can be put aside during the resolution, the squizzing e�ect of the magnetic �eld being
included simply in the parameter λ. The contribution of these terms will be added
when the other part has been solved. This brings us to the simple and general form
of the Hamiltonian:

Ĥ =
Ne∑
i=1

(
−1

2
∇2
i +

1

2
r2
i

)
+ λ

∑
i<j

1

rij
. (4.21)

In the next chapters, we will look for approximations of the ground state of the
quantum dot by solving the Schrödinger equation using this de�nition Ĥ.
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Chapter 5

Many-body treatment: the

Hartree-Fock method

A many-body system with interactions is generally very di�cult to solve exactly,
except for extremely simple cases [54, 55]. It is the same when it comes to quantum
dots that can simply be seen as a many-electron problem.

In the �rst section of this chapter we will detail the derivation of exact solutions for
the two-electrons quantum dot for some particular parameters. Then some numerical
approximations techniques are used in order to get information about the properties
of the system as close as possible from their real values. In this thesis we focus
on the ground state energy of quantum dots (i.e. the energy of the system at rest
without external time-dependent excitations). In order to calculate it, several many-
body techniques with di�erent accuray and e�ciency can be used, some of them are
presented here.

We will detail the Hartree-Fock method which is a major part of this thesis and
introduce other Ab initio methods such as perturbation theory, variational Monte-
Carlo or large scale diagonalisation.

5.1 Ab initio many-body techniques

The term �ab initio� indicates that the calculation is from �rst principles and that
no empirical data is used.

The simplest type of ab initio electronic structure calculation is the Hartree-Fock
(HF) scheme, in which the instantaneous Coulombic electron-electron repulsion is
not speci�cally taken into account. Only its average e�ect (mean �eld) is included in
the calculation. This is a variational procedure; therefore, the obtained approximate
energies, expressed in terms of the system's wave function, are always equal to or
greater than the exact energy, and tend to a limiting value called the Hartree-Fock
limit as the size of the basis is increased [11].

Many types of calculations begin with a Hartree-Fock calculation and subse-
quently correct for electron-electron repulsion, referred to also as electronic correla-
tion. Con�guration Interaction (CI) and Coupled cluster theory (CC) may be some
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Chapter 5. Many-body treatment: the Hartree-Fock method

Figure 5.1: Electron correlation energy in terms of various levels of theory of solutions for the
Schrödinger equation. (K. Langner, 2005)

examples of these post-Hartree-Fock methods.
Figure 5.1 presents a diagram illustrating electron correlation energy in terms

of various levels of theory. As shown on the �gure, HF may present the worse
approximation to the exact energy of a many-body system, but its simplicity is on
all fours with its computational e�ciency (i.e. speed) compared to other methods.

In some cases, particularly for bond breaking processes, the Hartree-Fock method
is inadequate and this single-determinant reference function is not a good basis for
post-Hartree-Fock methods. It is then necessary to start with a wave function that
includes more than one determinant.

A method that avoids making the variational overestimation of HF in the �rst
place is Quantum Monte Carlo (QMC), in its variational, di�usion, and Green's
function forms. These methods work with an explicitly correlated wave function and
evaluate integrals numerically using a Monte Carlo integration. Such calculations can
be very time-consuming, but they are probably the most accurate methods known
today.

Ab initio electronic structure methods have the ability to converge toward the
exact solution, when all approximations are su�ciently small in magnitude. In partic-
ular, con�guration interaction, where all possible con�gurations are included (called
�Full CI�) tends to the exact non-relativistic solution of the Schrödinger equation,
and therefore to the best possible solution in principle.

However Full CI is often impossible for anything but the smallest systems. More
generally, the downside of ab initio methods is their computational cost. They often
take enormous amounts of computer time, memory, and disk space.

5.2 Time-independent Hartree-Fock (HF) Theory

The Hartree-Fock method is a minimization method based on a mathematical tech-
nique known as the Lagrange multipliers, where the functional to minimize is the
energy of the system. The energy, which is an expectation value of the Hamiltonian,
can be written explicitly as an integral.
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5.2. Time-independent Hartree-Fock (HF) Theory

5.2.1 Variational Calculus and Lagrange Multipliers

As previously mentionned, we must resort to computers in most cases to determine
the solutions of the Schrödinger equation. It is of course possible to integrate the
equation using discretisation methods, but in most realistic electronic structure cal-
culations we would need huge numbers of grid points, leading to high computer time
and memory requirements. The variational method on the other hand enables us to
solve the Schrödinger equation much more e�ciently in many cases [57].

Based on the Lagrange multipliers for mathematical optimization (refer to ap-
pendix B for more details), the calculus of variations provides a strategy for �nding
the stationnary points of a function subject to some constraints. Maxima and minima
can be found in this way when the function is di�erentiable.

More speci�cally the calculation of variations involves problems where the quan-
tity to be minimized or maximized (the functional) is an integral.

In the general case we have an integral of the type

E[Φ] =

∫ b

a

f(Φ(x),
∂Φ

∂x
, x)dx,

where E is the quantity which is sought minimized or maximized.
The problem is that although f is a function of the variables Φ, ∂Φ/∂x and

x, the exact dependence of Φ on x is not known. This means that even though the
integral has �xed limits a and b, the path of integration is not known. In our case the
unknown quantities are the single-particle wave functions and we have to select an
integration path which makes the functional E[Φ] stationary, ie we look for minima,
or maxima or saddle points. In physics we search normally for minima.

Our task is therefore to �nd the minimum of E[Φ] so that its variation δE is
zero subject to speci�c constraints. In our case the constraints appear as the in-
tegral which expresses the orthogonality of the single-particle wave functions. The
constraints can be treated via the technique of the Lagrange multipliers.

In the following, we will be more speci�c with the form of the functional which
now reads

E[Φ] =
〈Φ|H|Φ〉
〈Φ|Φ〉 =

∫
Φ∗HΦdτ∫
Φ∗Φdτ

, (5.1)

where the integration is extended over the full range of all the coordinates of the
system.

We denote by En the eigenvalues of the Hamiltonian and by Ψn the corresponding
orthonormal eigenfunctions, and assume that Ĥ has at least one discrete eigenvalue.
It is clear that if the function Φ is identical to one of the exact eigenfunctions Ψn of
Ĥ; then E[Φ] will be identical to the corresponding exact eigenvalue En.

In the following, we will show that:

1. any function Φ for which the functional E[Φ] is stationary is an eigenfunction
of the discrete spectrum of Ĥ.

2. using the method of the Lagrange multipliers and varying the functional 〈Φ|H|Φ〉
subject to the normalisation condition 〈Φ|Φ〉 = 1, the Lagrange multiplier itself
has the signi�cance of an energy eigenvalue.
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Chapter 5. Many-body treatment: the Hartree-Fock method

3. the functional E[Φ] gives an upper bound for the ground state energy, also
known as the variational principle.

4. it is possible to solve the Schrödinger equation using the variational method.

Any function Φ for which the functional E[Φ] is stationary is an eigenfunction of Ĥ
If Φ and an exact eigenfunction Ψn di�er by an arbitrary in�nitesimal variation δΦ,

Φ = Ψn + δΦ,

then the corresponding �rst-order variation of E[Φ] vanishes:

δE = 0, (5.2)

and the eigenfunctions of Ĥ are solutions of the variational equation 5.2.
To prove this statement, we re-write the functional as

E[Φ]

∫
Φ∗Φdτ =

∫
Φ∗HΦdτ.

When we vary it it gives:

δE

∫
Φ∗Φdτ + E

∫
δΦ∗Φdτ + E

∫
Φ∗δΦdτ =

∫
δΦ∗HΦdτ +

∫
Φ∗HδΦdτ.

Since Φ|Φ is assumed to be �nite and non-vanishing, we see that the variational
equation 5.2 is equivalent to∫

δΦ∗(H − E)Φdτ +

∫
Φ∗(H − E)δΦdτ = 0. (5.3)

Although the variations δΦ and δΦ∗ are not independent, they may in fact be
treated as such, so that the individual terms in 5.3 can be set equal to zero. To see
how this comes about, we replace the arbitrary variation δΦ by iδΦ in 5.3 so that
we obtain

−i
∫
δΦ∗(H − E)Φdτ + i

∫
Φ∗(H − E)δΦdτ = 0. (5.4)

By combining 5.3 with 5.4 we then obtain the two equations{
δΦ∗(H − E)Φdτ = 0

Φ∗(H − E)δΦdτ = 0,
(5.5)

which is the desired result. Using the fact that Ĥ is Hermitian, we see that the two
equation 5.5 are equivalent to the Schödinger equation (H − E[Φ])Φ = 0.

Thus any function Φ = Ψn for which the functional 5.1 is stationary is an eigen-
value of Ĥ corresponding to the eigenvalue En = E[Ψn]. It is worth stressing that if Φ
and Ψn di�er by δΦ, the variational equation 5.2 implies that the leading term of the
di�erence E[Φ]−En is quadratic in δΦ. As a result, errors in the approximate energy
are of second order in δΦ when the energy is calculated from the functional 5.1.
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5.2. Time-independent Hartree-Fock (HF) Theory

The Lagrange multiplier has the signi�cance of an energy eigenvalue We also remark
that the functional 5.1 is independent of the normalisation and of the phase of Φ.
In particular, it is often convenient to impose the condition 〈Φ|Φ〉 = 1. The above
results may then be retrieved by varying the functional 〈Φ|H|Φ〉 = 1 subject to the
condition 〈Φ|Φ〉 = 1, namely

δ

∫
Φ∗HΦdτ = 0,

∫
Φ∗Φdτ = 1.

The constraint 〈Φ|Φ〉 = 1 may be taken care of by introducing a Lagrange mul-
tiplier (as described in appendix B) which we denote by Σ.

We de�ne the Lagrangian Λ as

Λ(Φ, Σ) =

∫
Φ∗HΦdτ −Σ

(∫
Φ∗Φdτ − 1

)
,

so that the variational equation reads

δΛ(Φ, Σ) = 0 (5.6)

δ

[∫
Φ∗HΦdτ −Σ

∫
Φ∗Φdτ

]
= 0, (5.7)

or ∫
δΦ∗(H −Σ)Φdτ +

∫
Φ∗(H −Σ)δΦdτ = 0.

This equation is identical to 5.3, and we see that the Lagrange multiplier Σ = E
has the signi�cance of an energy eigenvalue.

The variational principle An important additional property of the functional 5.1 is
that it provides an upper bound to the exact ground state E0. To prove this result,
we expand the arbitrary, normalisable function Φ in the complete set of orthonormal
eigenfunctions Ψn of Ĥ. This reads

Φ =
∑
n

anΨn. (5.8)

Substituing the expansion 5.8 into the functional 5.1, we �nd that

E[Φ] =

∑
n |an|2En∑
n | an |2

, (5.9)

where we have used the fact that HΨn = EnΨn and 〈Φ|Φ〉 =
∑

n |an|2. If we now
subtract E0, the lowest energy eigenvalue, from both sides of the functional 5.9 we
have

E[Φ]− E0 =

∑
n |an|2(En − E0)∑

n |an|2
. (5.10)

Since En ≥ E0, the right-hand side of 5.10 is non-negative, so that

E0 ≤ E[Φ], (5.11)

and the functional E[Φ] gives an upper-bound, or in order words aminimum principle

for the ground state energy [5].
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Chapter 5. Many-body treatment: the Hartree-Fock method

Solving the Schrödinger equation using the variational method In the variational
method, the possible solutions (i.e.�the stationary states of the energy functional) are
restricted to a subspace of the Hilbert space, and in this subspace we seek the �best
possible� solution. An important example is linear variational calculus, in which the
subspace is spanned by a set of basis vectors χi for i = 1, . . . , P where P is the size
of the basis set. We take these to be orthonormal at �rst, that is,

〈χi|χj〉 = δij.

For an arbitrary state |Ψ〉 =
∑

iCi|χj〉, the energy functional is given by

E =
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉 =

∑R
i,j=1C

∗
i CjHij∑R

i,j=1C
∗
i Cjδij

,

where Hij = 〈χi|H|χj〉 is assumed to be known.
The stationary states follow from the condition that the derivative of this func-

tional with respect to the Ci vanishes, which leads to

R∑
j=1

(Hij − Eδij)Cj = 0, for i = 1, . . . , R. (5.12)

Equation 5.12 is then an eigenvalue problem which can be written in matrix
notation as

HC = EC. (5.13)

This is the Schrödinger equation, formulated for a �nite, orthonormal basis.
The lowest eigenvalue of eq. 5.13 is always higher than or equal to the ground

state energy, as we proved that the ground state is the minimal value assumed by
the energy-functional in the full Hilbert space. If we restrict ourselves to a part of
this space, then the minimum value of the energy functional must always be higher
than or equal to the ground state of the full Hilbert space. Including more basis
functions into our basis set will increase the size of the subspace and consequently the
minimum of the energy functional will decrease (or stay the same). The behaviour of
the spectrum found by solving 5.13 when increasing size of the basis set R is depicted
in �gure 5.2.

The variational approach discussed here provides a powerful method for obtain-
ing approximate solutions of the wave function. However this might not be su�cient
when dealing with a system made of many interacting particles, where more approx-
imations have to be done about the wave function of the system in order to lead
again to a simple eigenvalue problem.

5.2.2 The many-body system with interacting particles

The Schrodinger equation for a system of N electron reads:

Ĥ(r1, r2, . . . , rN)Ψη(r1, r2, . . . , rN) = EηΨη(r1, r2, . . . , rN), (5.14)
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E[Φ](R=10)

E[Φ](R=20)

E[Φ](R=100)

E0

Figure 5.2: The behaviour of the ground state energy of eq. 5.12 when increasing basis set size R
in linear variational calculus. The upper index is the number of states in the basis set.

where the vector ri represents the coordinates (spatial and spin) of a particle i, η
stands for all the quantum numbers needed to classify a given N -particle state and
Ψη is the corresponding eigenfunction.

The Hamiltonian can be written under the form

Ĥ = T̂ + V̂ ,

where T̂ represents the kinetic energy of the system

T̂ =
N∑
i=1

p2
i

2mi

=
N∑
i=1

(
− ~2

2mi

∇2
i

)
=

N∑
i=1

t(ri),

and V̂ represents the potential energy (e.g. the harmonic oscillator potential in our
case),

V̂ =
N∑
i=1

u(ri)︸ ︷︷ ︸
one-particle
interaction

+
N∑
i<j

v(ri, rj).︸ ︷︷ ︸
two-particles
interaction

(5.15)

Hereafter we use atomic units, viz. ~=c=e=1 with e the elementary charge and c
the speed of light. This means that momenta and masses have dimension energy. In
the last equation we have singled out an external one-body potential term u which
is meant to represent an e�ective one-body �eld in which our particles move (i.e. the
harmonic oscillator potential in our �rst approximation for the con�ning potential
of the QD model) .

We have therefore assumed that a picture consisting of individual electrons is a
viable starting point for wave function approximations. We can rewrite the Hamil-
tonian for N electrons as

Ĥ = Ĥ0 + Ĥ1 =
N∑
i=1

ĥi +
N∑
i<j

v(ri, rj), (5.16)

where we have de�ned rij =‖ ~ri − ~rj ‖ and ĥi = t(ri) + u(ri).
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The �rst term of the eq.(5.16), Ĥ0, is the sum of the N one-body Hamiltonians ĥi.
Each individual Hamiltonian ĥi contains the kinetic energy operator of an electron
and its potential energy due to the con�ning potential. The potential energy term
due to the harmonic oscillator potential de�nes the one-body �eld ui = u(ri) of
eq.( 5.15). We have moved this term into the Ĥ0 part of the Hamiltonian, instead
of keeping it in V̂ as in eq.( 5.15). The reason is that we will hereafter treat Ĥ0 as
our non-interacting Hamiltonian. For a many-body wavefunction Ψη de�ned by an
appropriate single-particle basis, we can solve exactly the non-interacting eigenvalue
problem

Ĥ0Ψη = EηΨη,

with Eη being the non-interacting energy. This energy is de�ned by the sum over
single-particle energies. In our model of the quantum dot, the single-particle energies
are the harmonic oscillator single-particle energies in 2D or 3D respectively.

The second term of the eq.(5.16), Ĥ1, is the sum of the N(N − 1)/2 two-body
interactions between each pair of electrons. Note that the double sum carries a
restriction i < j.

Irrespective of these approximations, there is a wealth of experimental evidence
that these interactions have to obey speci�c symmetries. The total Hamiltonian
should be translationally invariant. If angular momentum is conserved, the Hamilto-
nian is invariant under rotations. Furthermore, it is invariant under the permutation
(interchange) of two particles. Since we deal with fermions, the total wave function
is antisymmetric.

Let P̂ be an operator which interchanges two particles. Due to the symmetries
we have assigned to our Hamiltonian, this operator commutes with the total Hamil-
tonian,

[Ĥ, P̂ ] = 0,

meaning that Ψη(r1, r2, . . . , rN) is an eigenfunction of P̂ as well, that is

P̂ijΨη(r1, r2, . . . , ri, . . . , rj, . . . , rN) = βΨη(r1, r2, . . . , rj, . . . , ri, . . . , rN),

where β is the eigenvalue of P̂ . We have introduce the su�x ij in order to indicate
that we permute particles i and j. The Pauli principle tell us that the total wave
function for a system of fermions has to be antisymmetric, resulting in the eigenvalue
β=−1.

We approximate our many-body wave function with the product of single-particle
wave functions. Since we assume that our Hamiltonian is time-independent, these
single-particle wave functions are normally the eigenfunctions of a selected one-body
Hamiltonian ĥi acting on particle i.

In Hartree-Fock we approximate the exact eigenfunction1 Ψλ by a trial wave

1We reserve Ψ as labelling for our exact wave function (eigen function, since there is no time-
dependence). The Slater determinant is only an approximation of the exact solution.
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function Φ built as a Slater determinant

Φ(r1, r2, . . . , rN, α, β, . . . , σ) =
1√
N !

∣∣∣∣∣∣∣∣∣∣

ψα(r1) ψβ(r2) . . . ψσ(rN)

ψα(r1) ψβ(r2) . . . ψσ(rN)

...
...

. . .
...

ψα(r1) ψβ(r2) . . . ψσ(rN)

∣∣∣∣∣∣∣∣∣∣
, (5.17)

where the variables ri include the coordinates of spin and space of particle i, and
α, β, . . . , σ encompass all possible quantum numbers needed to specify a particular
system.

The single-particle function ψα(ri) are eigenfunctions of the onebody Hamiltonian
ĥi, that is

ĥi = h(ri) = t(ri) + u(ri),

with eigenvalues

ĥiψα(ri) = [t(ri) + u(ri)]ψα(ri) = εαψα(ri).

For modelling a quantum dot we will equate ĥi with the single-particle Hamilto-
nian of the harmonic oscillator. Then the energies εα are the so-called non-interacting
single-particle energies, or unperturbed energies. The total energy is in this case the
sum over all single-particle energies, if no two-body or more complicated many-body
interactions are present.

We note again that the wave-function is antisymmetric with respect to an inter-
change of any two particles, as required by the Pauli principle. For an N -body Slater
determinant we have thus (omitting the quantum numbers α, . . . ,σ)

Φ(r1, r2, . . . , ri, . . . , rj, . . . , rN) = −Φ(r1, r2, . . . , rj, . . . , ri, . . . , rN).

5.2.3 The approximated energy of the system

We note E0 the ground state energy. According to the variational principle (given
in eq. 5.11) we have

E0 ≤ E[ΦT ] =

∫
Φ∗T ĤΦTdτ,

where we have used the shorthand dτ = dr1, dr2, . . . , drN, and where ΦT is a trial
function which we assume to be normalized∫

Φ∗TΦTdτ = 1.

In the Hartree-Fock method, correlations between electrons are not taken into
account and the trial function is just the Slater determinant of eq. (5.17) which can
be rewritten as

ΦT (r1, r2, . . . , rN, α, β, . . . , σ) =
1√
N !

∑
p

(−)pPΨα(r1)Ψβ(r2) . . .Ψσ(rN) (5.18)

=
√
N !AΦH , (5.19)
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where we have introduced the antisymmetrization operator A de�ned by the
summation over all possible permutations of 2 nucleons. It is de�ned as

A =
1

N !

∑
P

(−)pP̂ , (5.20)

with p standing for the number of permutations. We have introduced here the so-
called Hartree function, de�ned by the simple product of all possible single-particle
functions

ΦH(r1, r2, . . . , rN, α, β, . . . , σ) = Ψα(r1)Ψβ(r2) . . .Ψσ(rN). (5.21)

Both Ĥ0 and Ĥ1 are invariant under all possible permutations of any two electrons
and hence commute with A

[Ĥ0, Â] = [Ĥ1, Â] = 0. (5.22)

Furthermore, A satis�es
A2 = A, (5.23)

since every permutation of the Slater determinant reproduces it.
The expectation value of Ĥ0

〈ΦT |Ĥ0|ΦT 〉 =

∫
Φ∗T Ĥ0ΦTdτ = N !

∫
AΦ∗HĤ0AΦHdτ

= N !

∫
Φ∗HĤ0A2ΦHdτ

= N !

∫
Φ∗HĤ0AΦHdτ,

where we have used eq. (5.22) and ( 5.23). The next step is to replace the antisym-
metrization operator by its de�nition in eq.(5.20) and to replace Ĥ0 with the sum of
one-body operators as in eq.(5.16)

∫
Φ∗T Ĥ0ΦTdτ =

N∑
i=1

∑
P

(−)p
∫

Φ∗H ĥiP̂ΦHdτ.

The integral vanishes if two or more electrons are permuted in only one of the
Hartree functions ΦH because the individual single-particle wave functions are as-
sumed orthogonal (〈Ψα|Ψβ〉 = δαβ).

We obtain then ∫
Φ∗T Ĥ0ΦTdτ =

N∑
i=1

∫
Φ∗H ĥiΦHdτ.

The orthogonality of the single-particle functions allows us to further simplify
the integral, and we arrive at the following expression for the expectation values of
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5.2. Time-independent Hartree-Fock (HF) Theory

the sum of one-body Hamiltonians (i.e.�the expectation value of the non-interacting
single particle energies)∫

Φ∗T Ĥ0ΦTdτ =
N∑
µ=1

∫
Ψ∗µ(r)ĥΨµ(r)dr =

N∑
µ=1

〈µ|h|µ〉. (5.24)

Regarding the interaction part, the expectation value of the two-body Hamilto-
nian is obtained in a similar manner. We have

〈ΦT |Ĥ1|ΦT 〉 =

∫
Φ∗T Ĥ1ΦTdτ = N !

∫
AΦ∗HĤ1AΦHdτ,

which reduces to∫
Φ∗T Ĥ1ΦTdτ =

N∑
i<j=2

∑
P

(−)p
∫

Φ∗HV (rij)P̂ΦHdτ,

by following the same arguments as for the one-body Hamiltonian. Because of the
dependence on the inter-electron distance rij, permutations of any two electrons no
longer vanish.∫

Φ∗T Ĥ1ΦTdτ =
N∑

i<j=2

∫
Φ∗HV (rij)ΦHdτ −

∫
Φ∗HV (rij)PijΦHdτ

=
N∑

i<j=2

∫
Φ∗HV (rij)(1− Pij)ΦHdτ,

where Pij is the permutation operator that interchanges electron i and electron j.
Again we use the assumption that the single-particle wave functions are orthogonal
(as eigenvectors of an hermitian operator, the Hamiltonian), and we get

∫
Φ∗Ĥ1Φdτ = 1

2

∑N
µ=1

∑N
ν=1

[∫
Ψ∗µ(ri)Ψ

∗
ν(rj)V (rij)Ψµ(ri)Ψν(rj)dridrj

]
(5.25)

−1
2

∑N
µ=1

∑N
ν=1

[∫
Ψ∗µ(ri)Ψ

∗
ν(rj)V (rij)Ψµ(rj)Ψν(ri)dridrj

]
. (5.26)

The �rst term is the so-called direct term. It is frequently also called the Hartree
term, while the second is due to the Pauli exclusion principle and is called the
exchange term or just the Fock term. The factor 1/2 is introduced because we now
run over all pairs twice.

The last equation allows us to introduce some additional de�nitions. The single-
particle wave functions Ψµ(r), de�ned by the quantum number µ and r (recall that
r also includes spin degree) are de�ned as

Ψα(r) = 〈r|α〉.
We introduce the following shorthands for the above two integrals

〈µν|V |µν〉 =

∫
Ψ∗µ(ri)Ψ

∗
ν(rj)V (rij)Ψµ(ri)Ψν(rj)dridrj,
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and

〈µν|V |νµ〉 =

∫
Ψ∗µ(ri)Ψ

∗
ν(rj)V (rij)Ψν(ri)Ψµ(rj)dridrj.

Since the interaction is invariant under the interchange of two particles it means
for example that we have

〈µν|V |µν〉 = 〈νµ|V |νµ〉,

or in the more general case

〈µν|V |στ〉 = 〈νµ|V |τσ〉.

The direct and exchange matrix elements can be brought together if we de�ne
the antisymmetrized matrix element

〈µν|V |µν〉AS = 〈µν|V |µν〉 − 〈µν|V |νµ〉,

or for a general matrix element

〈µν|V |στ〉AS = 〈µν|V |στ〉 − 〈µν|V |τσ〉.

It has the symmetry property

〈µν|V |στ〉AS = −〈µν|V |τσ〉AS = 〈νµ|V |στ〉AS.

The antisymmetric matrix element is also hermitian, implying

〈µν|V |στ〉AS = 〈στ |V |µν〉AS.

With these notations we can rewrite eq.(5.25) as

〈ΦT |Ĥ1|ΦT 〉 =

∫
Φ∗T Ĥ1ΦTdτ =

1

2

N∑
µ=1

N∑
ν=1

〈µν|V |µν〉AS. (5.27)

Combining eqs.(5.24) and (5.27) we obtain the energy functional

E[ΦT ] =
N∑
µ=1

〈µ|h|µ〉+
1

2

N∑
µ=1

N∑
ν=1

〈µν|V |µν〉AS. (5.28)

which we will use as our starting point for the Hartree-Fock calculations.

5.2.4 The restricted Hartree-Fock equations and their self-consistent

solutions

Based on the variational method discussed in section 5.2.1, the Hartree-Fock tech-
nique aims at minimizing the energy functional given in eq. 5.28. Nevertheless ob-
taining an eigenvalue problem to solve is not straight forward when dealing with
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5.2. Time-independent Hartree-Fock (HF) Theory

many interacting particles (as shown in 5.2.1) until we do a second approximation
on the interacting potential.

The Coulomb repulsion induces a two-body interaction. As we show in the fol-
lowing, this leads to a system of coupled single-particle equations. A way to decouple
those equations is to de�ne an e�ective potential, which is an average of the Coulomb
repulsion over all the electrons of the system. That is why the Hartree-Fock method
is categorized as a mean-�eld approximation.

One technique for solving this problem starts by expanding each single-particle
eigenvector Ψi in terms of any convenient complete set of single-particle states |α〉:

Ψi = |i〉 =
∑
α

cαi |α〉. (5.29)

In our case, the complete set of single-particle states |α〉 corresponds to the
harmonic oscillator states. While the expansion (5.29) in general involves an in�nite
number of terms, we always truncate it in approximation procedures, so that we shall
assume here that (5.29) is a �nite sum [43].

Ψi = |i〉 =
∑
α

cαi |α〉. (5.30)

Introducing the expansion (5.30) in the expectation value of Ĥ (eq. 5.28), we can
write

E[Φ] = 〈Φ|Ĥ0|Φ〉+ 〈Φ|Ĥ1|Φ〉 (5.31)

=
N∑
i=1

〈i|h|i〉+
1

2

N∑
i=1

N∑
j=1

〈ij|V |ij〉AS (5.32)

=
N∑
i=1

∑
αγ

Cα∗
i Cγ

i 〈α|h|γ〉+
1

2

N∑
i,j=1

∑
αβγδ

Cα∗
i Cβ∗

j C
γ
i C

δ
j 〈αβ|V |γδ〉AS. (5.33)

The objective is of course to minimize the energy functional in eq. 5.31 with
respect to some constraints that ensure the orthonormality of the single-particle
eigenvectors. For that purpose we introduce the εi as Lagrange multipliers to ensure
the constraints of orthonormality, meaning for any particle i and j

〈i|j〉 = δij∑
αβ

Cα∗
i Cβ

j 〈α|β〉︸ ︷︷ ︸
δαβ

= δij (5.34)

∑
α

Cα∗
i Cα

j = δij. (5.35)

Then a variatonal analysis implies minimizing the Lagrangian Λ

Λ = Λ(Cα
1 , C

α
2 , . . . , C

α
N , ε1, ε2, . . . , εN) (5.36)

= E[Φ]−
N∑
i=1

εi

(∑
α

Cα∗
i Cα

i

)
, (5.37)
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with respect to the coe�cient Cα∗
i (or Cα

i ).
The variational equation as de�ned in 5.6 leads to take the derivative of (5.36)

with respect to Cα∗
i and to set it to zero

d

dCα∗
i

[Λ(Cα
1 , C

α
2 , . . . , C

α
N , ε1, ε2, . . . , εN)] = 0, ∀ i ∈ N∗

d

dCα∗
i

[
E[Φ]−

N∑
i=1

εi
∑
α

Cα∗
i Cα

i

]
= 0, ∀ i ∈ N∗.

Remembering that Cα
i and Cα∗

i can be treated as independent, we arrive at the
Hartree-Fock equations (one equation for each particle i in its state |α〉)

∑
γ

〈α|h|γ〉 Cγ
i +

N∑
j=1

∑
βγδ

Cβ∗
j 〈αβ|V |γδ〉AS Cγ

i C
δ
j = εi C

α
i ,∀ i ∈ N∗ (5.38)

The Hartree-Fock equations in (5.38) may be rewritten as

∑
γ

〈α|h|γ〉 Cγ
i +

∑
γ

[
N∑
j=1

∑
βδ

Cβ∗
j 〈αβ|V |γδ〉AS Cδ

j

]
Cγ
i = εi C

α
i , ∀ i ∈ N∗∑

γ

Oαγ Cγ
i = εi C

α
i , ∀ i ∈ N∗. (5.39)

which shows that eq.(5.38) is a system of non-linear equations in the Cα
i , C

α∗
i ,

since Oαγ depends itself on the unknowns, which may be solved by an iterative
procedure.

The iterative (self-consistant) procedure may be derived as follows. We de�ne an
e�ective Coulomb interaction potential U as

〈α|U |γ〉 ≡
N∑
j=1

∑
βδ

Cβ∗
j 〈αβ|V |γδ〉AS Cδ

j , (5.40)

and calculate these matrix elements with initial values for Cα
i , say δ

α
i . When we

substitute the result in eq.(5.38), we get a system of linear equations in the Cα
i ; this

we can now solve in the standard way. If we started with a set of K states |α〉, the
vectors Cα

i are K-dimensional and orthogonal, and so obey∑
α

Cα∗
i Cα

j = δij.

There are thusK independent vector solutions of the linearised version of eq.(5.38),∑
γ

[〈α|h|γ〉+ 〈α|U |γ〉]Cγ
i = εi C

α
i .

Among those solutions we select those for the n lowest eigenvalues εi and sub-
stitute them back into (5.40); this provides the starting point for the next iteration.
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The process is continued until self-consistency is reached, or in other words until the
Cα
i converge within a certain approximation [43].
The Hartree-Fock equations in (5.38) may again be rewritten as

∑
γ

〈α|h|γ〉 Cγ
i +

∑
γ

[
N∑
j=1

∑
βδ

Cβ∗
j 〈αβ|V |γδ〉AS Cγ

j C
δ
j

]
Cγ
i = εi C

α
i , ∀ i ∈ N∗

∑
γ

[
tαγ +

N∑
j=1

∑
γ,δ=1

Vαβγδ C
β∗
j Cδ

j

]
Cγ
i = εi C

α
i , ∀ i ∈ N∗

(5.41)

where the two-body interaction matrix element Vαβγδ can be computed in advance

Vαβγδ(ij) = 〈αβ|V (ij)|γδ〉AS, (5.42)

as well as the one-body part tαγ(i)∑
γ

tαγ(i) =
∑
γ

〈α|h(i)|γ〉 = εHOα ,

where εHOα are the energy eigenvalues of the one-body harmonic oscillator in state
|α〉 (then solution of the eigenproblem: hHO|α〉 = εHOα |α〉).

5.3 Many-body perturbation corrections (MBPT)

When we start developing the expression of an excited state of the unperturbed
Hamiltonian as given from the perturbation theory, it becomes complicated to write
the combinations of Slater determinants in terms of permutations of occupied and
unoccupied single particle orbitals. Refer to [19,47] for an introduction to the occu-
pation number formalism, also known as second quantization.

In this section we describe the Rayleigh-Schrödinger perturbation theory, which
is the elementary time-independent perturbation theory described in most text-
books [47].

Let us take the Hamiltonian to be

Ĥ = Ĥ0 + Ĥ ′,

but now we shall treat Ĥ ′ as any perturbation, such as the Coulomb interaction. We
suppose that Φn is an eigenfunction of Ĥ0 corresponding to the eigenvalue En, that
is,

Ĥ0Φn = EnΦn,

and wish to consider the e�ect of the perturbation on a particular state Φ0, where

Ĥ0Φ0 = E0Φ0.
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Chapter 5. Many-body treatment: the Hartree-Fock method

We denote by Ψ0 the state into which Φ0 changes under the action of the pertur-
bation, so that Ψ0 is an eigenfunction of Ĥ, corresponding to the eigenvalue E, say

ĤΨ0 = EΨ0.

Therefore Φ0 and Ψ0 denote the ground states of the unperturbed and perturbed
systems respectively. We thus have

Ĥ ′Ψ0 = (Ĥ − Ĥ0)Ψ0 = (E − Ĥ0)Ψ0, (5.43)

so that
〈Φ0|Ĥ ′|Ψ0〉 = E〈Φ0|Ψ0〉 − 〈Φ0|Ĥ0|Ψ0〉. (5.44)

Now, since Ĥ0 is Hermitian, 〈Φ0|Ĥ0|Ψ0〉 = E0〈Φ0|Ψ0〉, and substitution in (5.44)
gives:

E − E0 =
〈Φ0|Ĥ ′|Ψ0〉
〈Φ0|Ψ0〉 .

This expression is, of course, exact and independent of any particular perturba-
tion method. However, it cannot be used immediately, because the right-hand side
contains the perturbed wave function, which is unknown.

We now de�ne a so-called projection operator R for the state Φ0 by the equation

RΨ = Ψ− Φ0〈Φ0|Ψ〉, (5.45)

where Ψ is any function of the same variables as Φ0. This operator removes the Φ0

component of the function Ψ. Thus, if

Ψ =
∞∑
n=0

BnΦn

is the expansion of Ψ in terms of the functions Φn, assumed orthonormal, we �nd

RΨ = Ψ− Φ0

∞∑
n=0

Bn〈Φ0|Φn〉 (5.46)

= Ψ−B0Φ0.

In particular,
RΦ0 = 0. (5.47)

If we subsitute RΨ for Ψ in eq.(5.45), we obtain

R2Ψ = RΨ− Φ0〈Φ0|RΦ〉
= RΨ− Φ0 (〈Φ0|Ψ〉 − 〈Φ0|Φ0〉〈Φ0|Ψ〉) (5.48)

= RΨ.

This also follows immediately from eq.(5.46) and (5.47).
We shall in future write

〈Φ0|Ψ0〉 = C,
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a constant depending upon the normalization of Ψ0. Eq.(5.45) gives

R(E − Ĥ0)Φ0 = (E0 − Ĥ0)Ψ0 − Φ0〈Φ0|E0 − Ĥ0|Ψ0〉
= (E0 − Ĥ0)Ψ0 − CE0Φ0 + Φ0〈Φ0|Ĥ0|Ψ0〉 (5.49)

= (E0 − Ĥ0)Ψ0.

In other words, R commutes with E0 − Ĥ0.
Now,

(E0 − Ĥ0)Ψ0 = (E0 − Ĥ + Ĥ ′)Ψ0 = (E0 − E + Ĥ ′)Ψ0,

so that
(E0 − Ĥ0)RΨ0 = R(E0 − Ĥ0)Ψ0 = R(E0 − E + Ĥ ′)Ψ0,

and therefore, it is possible to write [47]

RΨ0 =
R

E0 − Ĥ0

(E0 − E + Ĥ ′)Ψ0 = Ψ0 − Φ0〈Φ0|Ψ0〉,

again using eq.(5.45). The perturbed wave function Ψ0 thus satis�es the equation

Ψ0 = CΦ0 +
R

E0 − Ĥ0

(E0 − E + Ĥ ′)Ψ0,

which may be iterated to give

Ψ0 = CΦ0 +
R

E0 − Ĥ0

(E0 − E + Ĥ ′)

(
CΦ0 +

R

E0 − Ĥ0

(E0 − E + Ĥ ′)Ψ0

)
= CΦ0 +

CR

E0 − Ĥ0

(E0 − E + Ĥ ′)Φ0 +

(
R

E0 − Ĥ0

(E0 − E + Ĥ ′)Ψ0

)2

(CΦ0 + . . . )

(5.50)

=C
∞∑
n=0

(
R

E0 − Ĥ0

(E0 − E + Ĥ ′)

)n
Φ0.

The perturbed energy can be obtained by substituting this expression in eq.(5.45),
thus:

E − E0 =
∞∑
n=0

〈
Φ0|Ĥ ′

(
R

E0 − Ĥ0

(E0 − E + Ĥ ′)

)n
|Φ0

〉
. (5.51)

It will be observed that the right-hand side of this equation also contains E, but this
is eliminated when the terms are expanded. We shall write

∆E = E − E0 = ∆E(1) + ∆E(2) + ∆E(3) + . . .

where ∆E(m), the mth-order energy correction, contains the mth-order power of the
perturbation Ĥ ′. The �rst-order correction is the term of (5.51) with n = 0, that is

∆E(1) = 〈Φ0|Ĥ ′|Φ0〉.
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The second-order correction is

∆E(2) = 〈Φ0|Ĥ ′ R

E0 − Ĥ0

(E0 − E + Ĥ ′)|Φ0〉. (5.52)

From eq.(5.47)
R(E0 − E + Ĥ ′)Φ0 = RĤ ′Φ0,

so that (5.52) can also be written

∆E(2) = 〈Φ0|Ĥ ′ R

E0 − Ĥ0

Ĥ ′|Φ0〉. (5.53)

We may expand Ĥ ′Φ0 in terms of the Φn, thus:

Ĥ ′Φ0 =
∞∑
n=0

BnΦn.

The coe�cient Bn are obtained by multiplying both sides of this equation by Φ∗m
and integrating over the con�guraiton space of the system. This gives

〈Φm|Ĥ ′|Φ0〉 =
∞∑
n=0

Bn〈Φm|Φn〉 = Bm,

and

Ĥ ′Φ0 =
∞∑
n=0

〈Φn|Ĥ ′|Φ0〉Φn, (5.54)

so that

RĤ ′Φ0 =
∞∑
n=0

〈Φn|Ĥ ′|Φ0〉Φn,

which simply removes the Φ0 term from eq.(5.54). It then follows from eq.(5.53) that

∆E(2) = 〈Φ0|Ĥ ′ 1

E0 − Ĥ0

∞∑
n=0

〈Φn|Ĥ ′|Φ0〉|Φn〉

=
∞∑
n=0

〈Φ0|Ĥ ′|Φn〉〈Φn|Ĥ ′|Φ0〉
E0 − En ,

or, on the assumption that Ĥ ′ is Hermitian,

∆E(2) =
∞∑
n=0

|〈Φn|Ĥ ′|Φ0〉|2
E0 − En . (5.55)

This depends only upon Ĥ ′ and the unperturbed energy levels and wave functions.
The higher-order energy corrections may be found in the same way. For example

the third-order energy correction reads
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Figure 5.3: Antisymmetrized Goldstone diagrams through third order in perturbation theory.
The dashed lines represents the interaction. Particle and hole states are represented by upward and
downward arrows, respectively. The �rst-order diagram is omitted. All closed circles stand for a
summation over hole states.(Image courtesy of M. Hjorth-Jensen)

∆E(3) =
∞∑
n=0

∞∑
n=0

〈Φ0|Ĥ ′|Φm〉〈Φm|Ĥ ′|Φn〉〈Φn|Ĥ ′|Φ0〉
(E0 − Em)(E0 − En)

(5.56)

− 〈Φ0|Ĥ ′|Φ0〉
∞∑
n=0

〈Φ0|Ĥ ′|Φn〉〈Φn|Ĥ ′|Φ0〉
(E0 − En)2

.

When re-writing the many-body energy corrections in particle and hole state
formalism, we may bene�t from using the Goldstone diagrams [13]. Figure 5.3 shows
all antisymmetrized Goldstone diagrams through third order in perturbation theory
(we omit the �rst-order diagram). All closed circles stand for a summation over hole
states.

In the occupation number representation, Ĥ ′ can be expressed in terms of anihi-
lation (ci = k) and creation operators (c†k) as

Ĥ ′ =
1

2

∑
ijkl

〈ij|v|kl〉c†ic†jclck,

where

〈ij|v|kl〉 =

∫ ∫
φ∗i (x1)φ∗j(x2)v(x1,x2)φ∗k(x1)φ∗l (x2)dx1dx2,

and the sum is over all values of i, j, k and l.
This notation leads us to the following expression for the many-body energy
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corrections

∆E(1) = 〈Φ0|Ĥ ′|Φ0〉. (5.57)

=
1

2

∑
h1h2

(〈h1h2|v|h1h2〉 − 〈h1h2|v|h2h1〉)

=
1

2

∑
h1h2

〈h1h2|v|h1h2〉as,

where h1 and h2 are hole states.

∆E(2) =
∞∑
n=0

〈Φ0|Ĥ ′|Φn〉〈Φn|Ĥ ′|Φ0〉
E0 − En (5.58)

=
1

4

∑
h1h2p1p2

|〈h1h2|v|p1p2〉|2as
εh1 + εh2 − εp1 − εp2

,

where p1 and p2 are particle states, and εh1 , εh2 , εp1 and εp2 are the single particle
energies of the basis set.

∆E(3) =
∞∑
n=0

∞∑
n=0

〈Φ0|Ĥ ′|Φm〉〈Φm|Ĥ ′|Φn〉〈Φn|Ĥ ′|Φ0〉
(E0 − Em)(E0 − En)

− 〈Φ0|Ĥ ′|Φ0〉
∞∑
n=0

〈Φ0|Ĥ ′|Φn〉〈Φn|Ĥ ′|Φ0〉
(E0 − En)2

= ∆E
(3)
4p−2h + ∆E

(3)
2p−4h + ∆E

(3)
3p−3h, (5.59)

where ∆E
(3)
4p−2h is the contribution to the third-order energy correction due to the

4-particle/2-hole excitations, ∆E
(3)
2p−4h is the contribution to the third-order energy

correction due to the 2-particle/4-hole excitations and ∆E
(3)
3p−3h is the contribution

to the third-order energy correction due to the 3-particle/3-hole excitations.
The contributions can be written as

∆E
(3)
4p−2h =

1

8

∑
h1h2p1p2

(
〈h1h2|v|p1p2〉as

εh1 + εh2 − εp1 − εp2
∑
p3p4

〈p1p2|v|p3p4〉as〈p3p4|v|h1h2〉as
εh1 + εh2 − εp3 − εp4

)
,

(5.60)

∆E
(3)
2p−4h =

1

8

∑
h1h2p1p2

(
〈h1h2|v|p1p2〉as

εh1 + εh2 − εp1 − εp2
∑
h3h4

〈h1h2|v|h3h4〉as〈h3h4|v|h1h2〉as
εh3 + εh4 − εp1 − εp2

)
,

(5.61)

∆E
(3)
3p−3h =

∑
h1h2p1p2

(
〈h1h2|v|p1p2〉as

εh1 + εh2 − εp1 − εp2

(∑
h3

∑
p3

〈h1h3|v|p1p3〉as〈p3h2|v|h3h2〉as
εh1 + εh3 − εp1 − εp3

))
,

(5.62)

where the pi denote the particle states, hi the hole states, and εi the single particle
energies of the correspon�ng state.
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5.4 Variational Monte-Carlo (VMC) method

Variational Monte Carlo (VMC) is based on QuantumMonte Carlo method where the
wave function is written as a function of the distance between each pair of quantum
particles to explicitly include correlation between the electrons. This increases the
accuracy, however the many-body integral becomes unseparable, so Monte Carlo is
the only way to evaluate it e�ciently.

The basic Monte Carlo strategy consists in analysing hundreds to millions of
possible con�gurations (here: positions of the electrons) instead of few discrete sce-
narios. The results provide the probabilities of the di�erent outcomes to occur. The
points can be sampled with an homogeneous random distribution, or preference can
be given to points located in areas where the distribution is large to obtain more
accurate results and avoid wasting time in regions of low interest. This is called
importance sampling. A �owchart of a typical variatonal Monte Carlo method is
given in �gure 5.4.

First an initial point R is chosen and ψ(R) is computed. Then at each step a
new position R′ is generated by adding a random vector to R (this random vector
having a �drift� component towards the region of large distribution in the case of
importance sampling). The Metropolis algorithm is used to check whether the move
is accepted by calculating the ratio ω = P (R)/P (R′). If ω ≥ s, where s is a random
number between 0 and 1, the new position is accepted, otherwise the electron stays
in the same place. At the end of Monte Carlo sampling the mean energy and the
standard deviation are calculated.

In VMC the variational method is used to approximate the ground state of the
system. It consists in choosing a �trial wavefunction� depending on one or more
parameters, and �nding the values of these parameters for which the expectation
value of the energy is the lowest possible. The di�culty in the VMC method is
the construction of a trial wave function: it is essential to have an optimized wave
function as close as possible to the exact wave function, ie it must satisfy as many
known properties of the exact wave function as possible: for example it should be well
de�ned at the origin and the derivative should be well de�ned too; the �cusps� of the
wave function (discontinuities in the �rst derivative of the wave function when two
charged particles come close together) can be used as constraints that the trial wave
function has to respect. It is also important that the value, gradient and laplacian
of the trial wave function can be e�ciently computed. Di�erent strategies are used
to adjust the trial wave function: optimization of energy, variance, or a combination
of both.

Advantages of VMC This method is relatively simple to understand and then to
program. Once the trial wave function is built no further approximation is needed.
With VMC you can tell how important a given correlation is by systematically adding
terms to the trial wave function. In addition, you end up with an explicit form of
the trial wave function which helps understanding the system.
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Disadvantages of VMC In order to get reliable results the trial wave function has to
be optimized. However, there is nothing internal to the method that tells us when we
should stop to introduce additional corrections. The optimization of the trial wave
function is very time consuming, and usually it is stopped when the expected result
is obtained. This brings an element of human bias, which inevitably introduces
systematic errors. Therefore the VMC method may become less reliable as the
physics of system gets more complex.

5.5 Full Con�guration Interaction (FCI) method

The Hamiltonian of a N-electron system can usually be writen under the form

Ĥ = Ĥ0 + Ĥ ′, (5.63)

where Ĥ0 is the single-particle part of the Hamiltonian and Ĥ ′ the two-particle part.
Let {|φi〉}NBi=1 be an arbitrary complete orthonormal basis of the given truncated
Hilbert space with dimension NB. Then the eigenvalue equation of the Hamiltonian
Ĥ can be written in the matrix representation as

Hc = Ec, (5.64)

where H is a matrix with the matrix elements Hnm = 〈Φn|Ĥ|Φm〉, c is a vector
with elements (cn)NBn=1, and E is the energy of the system. By solving this matrix
eigenvalue equation the exact solution of the Hamiltonian equation can ideally be
calculated and the eigenstate |ψ〉 is the linear combination of the basis states |φi〉:

|ψ〉 =

NB∑
i=1

ci|φi〉. (5.65)

In real computations only a �nite number of basis functions can be included. This
is the most basic idea of the full con�guration interaction (FCI) (Exact or Large Scale
Diagonalization) method.

In the FCI method the basis states |φi〉 are chosen to be N-electron eigenstates
of the single-particle Hamiltonian Ĥ0. The basis states are Slater determinants

|φi〉 = Slater({|ϕj〉, j ∈ S}), (5.66)

where the N di�erent single-particle wave functions |ϕj〉 are eigenstates of Ĥ0, and
S is a set of N indices chosen among totally M possible states. The total number
of basis states |φi〉 is thus the number of possible combinations NB =

(
M
N

)
. A basis

function |φα〉 can be written in the occupation number representation as

|φα〉 = |nα1, nα2, ..., nαM〉, (5.67)

where nαj is the number of particles in the state j. Pauli exclusion principle sets
the restriction nαj ∈ {0, 1} for fermions. N states have to be occupied and the rest
unoccupied.
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Figure 5.4: Flowchart of our implementation of the Hartree-Fock algorithm.
(Image courtesy of I. Vallejo Henao)
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Chapter 5. Many-body treatment: the Hartree-Fock method

To solve the eigenvalue equation 5.64 the matrix elementsHnm must be calculated
�rst. In second quantization the single-particle operator can be written as [47]

Ĥ0 =
∑
i,j

hijc
†
icj, (5.68)

where
hij = 〈i|ĥ|j〉 =

∫
drϕ∗i (r)h(r)ϕj(r). (5.69)

The states |i〉 = ϕi(r) are single-particle basis functions and ĥ = h(r) is the single-
particle operator. The creation operator c†i increases the number of particles in state
i by 1 and the annihilation operator decreases the same by 1.

The two-particle part of the Hamiltonian can be written in the same way as the
single-particle part:

H ′ =
1

2

∑
i,j,k,l

〈ij|v̂|kl〉c†ic†jckcl, (5.70)

where

〈ij|v̂|kl〉 = vijkl = δσi,σkδσj ,σl

∫
dr

∫
dr′ϕ∗i (r)ϕ∗j(r

′)v(r, r′)ϕk(r)ϕl(r
′). (5.71)

The states |i〉 are single-particle basis functions and v(r, r′) is the two-particle oper-
ator in the coordinate representation.

As the single-particle basis functions |i〉 in this case are eigenstates of ĥ, the
single-particle parts of the matrix elements are

H0αβ = 〈Φα|Ĥ0|Φβ〉 = δαβ
∑
i

nαiεi, (5.72)

where εi are single-particle energy eigenvalues.
The two-particle parts of the matrix elements

Ĥ ′αβ = 〈Φα|Ĥ ′|Φβ〉, (5.73)

can be derived using the properties of creation and annihilation operators. These
elements are di�erent sums of vijkl terms multiplied by nαi terms. More details can
be found in [4].

The total number of basis functions NB can be reduced by using the symmetries
of the Hamiltonian, for example �xing the z-component of the total spin and/or
angular momentum. Finally the Hamiltonian matrix is diagonalized.

The most serious disadvantage of the FCI method is that the basis size grows
exponentially with the number of electrons N and the number of Slater determinants
M as NB =

(
M
N

)
.

54



Chapter 6

Implementation

This chapter presents the simulator, its structure and a description of its implemen-
tation. First we give a description of the project to clarify the structure of the code
implementation. Then we focus on important parts of the simulator and we �nally
explain how to run it in order to obtain the approximated ground state of a quantum
dot.

The C++ language has been chosen in this project for its e�ciency as a low-level
language which becomes important when running expensive simulations, and for its
�exibility as an object oriented language. Classes have been developed in order to
re�ect the independent parts of the simulator or to de�ne global functions. We also
make important use of the Blitz++ and Lpp / Lapack libraries which provide
performances on par with Fortran 77/90, respectively managing dense arrays and
vectors, and providing routines for linear algebra.

6.1 Overview

Our simulator [41] computes approximations to the ground state energy of quantum
dots in two-dimensions using two many-body techniques: the Hartree-Fock method
and the many-body perturbation theory. Both calculations are implemented in an
harmonic oscillator basis, but our simulator allows also to combine the methods in
order to compute the second and third order many-body perturbation corrections
to the HF energy. Making use of the nice properties of the harmonic oscillator
eigenstates, we developed a simple and e�cient code in the energy basis. This means
that we actually avoid to compute the matrix elements by numerical integration, but
we use analytical expressions to compute them.

The current version only considers closed-shell systems where particles are trapped
within an isotropic harmonic oscillator potential in two-dimensions. However the
code is organized in a way to allow generalization of the problem, and more particu-
larly the possibilities to compute the Hartree-Fock approximation of the total energy
in three-dimensions, to use numerical integration for computing the matrix elements,
to include di�erent types of basis and the possibility to include di�erent forms of the
con�ning potential.
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This short description allows us to identify the main elements of the imple-
mentation for which we built the corresponding classes: simulator, HartreeFock,
PerturbationTheory, singleOrbitalEnergies. Other classes can be derived on the
need for �exibility and will be detailled in the following.

The accuracy and the stability of the simulator will depend on the arbitrary set
of input parameters associated to the Hartree-Fock technique (size of the basis set,
precision required in the self-consistent process), and also the parameters used to
model the quantum dot (the number of electrons trapped into the dot, the strength
of its parabolic potential), leading to the following set of simulation parameters:

The Fermi level Rf (Rf ∈ N Rf ≥ 0) which characterizes the number of charge-
carriers trapped into the dot, since our closed-shell system ��lls� the shells with
electrons up to the Fermi level (i.e. in the harmonic oscillator basis: Rf = 0 ⇒ 2
electrons in the dot, Rf = 1⇒ 6 electrons in the dot, Rf = 2⇒ 12 electrons, · · · ).

The size of the basis set characterized by Rb (Rb ∈ N Rb ≥ Rf ) which de�nes the
maximum shell number in the model space (i.e. the shell-truncated Hilbert space)
for our Hartree-Fock computation. It implies the number of orbitals in which each
single particle wavefunction will be expanded. So the bigger the basis set, the more
accurate the single particle wavefunction is expected. In mathematical notation, Rb

and the size of the basis set B are de�ned by

B = B(Rb) =
{|φnml(r)〉 : 2n+ |ml| ≤ Rb

}
, (6.1)

where |φnml(r)〉 are the single orbital in the Harmonic oscillator basis with quantum
numbers n, ml such that the single orbital energy reads: εnml = 2n + |ml| + 1 in
two-dimensions.

The con�nement strength λ (λ ∈ R+) de�nes the strength of the Coulomb inter-
action. It is a dimensionless parameter which depends on the type and size of the
material, and also incorporate the change in con�nement strength due to an external
magnetic �eld as described in section 4.2.3.

The precision of the self-consistent Hartree-Fock process εHF (εHF ∈ R+) has de-
fault value set to 10−12 which is a good approximation with respect to the accuracy of
other constants of the system (i.e. e, me, a∗0, ~, . . . whose accuracy does not undergo
10−12). This arbitrary parameter may have important consequences for the conver-
gence of Hartree-Fock when the electron interaction becomes too high if a maximum
number of iterations was not set.

6.2 Class implementation

This section presents a short description of the important classes implemented in our
simulator.
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6.2. Class implementation

6.2.1 The simulator class

Figure 6.1 is a �owchart of the overall simulator where each block corresponds to
a speci�c function and most of the time associated to one or several classes. The
simulator class is the main class which links all the building blocks of the simulator.
It starts by initializing the parameters with the input �le written in the con�guration
�le parameters.inp and eventual overwrite them using arguments given in the com-
mand line. The simulator checks if the combination of parameters is correct in order
to avoid any memory con�ict. For example one cannot compute a 20-electron quan-
tum dot within a model space containing only the �rst two shells. The model space
is built by allocating memory for all the particle states and the hole states. This is
done by creating an orbitalsQuantumNumbers object. Once the tables of states are
built and containes their associated quantum numbers n, ml and ms, the simulator
is almost ready to start the Hartree-Fock algorithm.

A way to improve greatly the performance is done by computing the matrix of
the two-body interactions in the harmonic oscillator basis (also called the Coulomb

matrix ) apart from the HF algorithm and to store it for all future simulation using
the same model space. This is done in a speci�c class called CoulombMatrix which
reads the matrix from �le when it exists. Otherwise it builds it and store it to �le
for other simulations. The HartreeFock is then used to compute the Hartree-Fock
approximation to the ground state energy of the quantum dot. Other outputs of
the Hartree-Fock algorithm includes the HF eigenenergies, the HF eigenstates and
eventually the HF matrix of the two-body interaction which can be reused as input
for other ab initio techniques to improve their performance. Once HF has converged,
the functions of the class PerturbationTheory can be used to compute the second
and third-order many-body perturbation corrections using the new HF interaction
matrix and the HF eigenenergies. Independently of the Hartree-Fock algorithm,
the simulator can reuse the table of particle and hole states, as well as the Coulomb
matrix in order to compute all many-body perturbation corrections up to third order
directly in the harmonic oscillator basis set Therefore our simulator permits an easy
comparison of the performance of both many-body techniques (HF, MBPT) and also
permits to investigate the performance of HF imporved by MBPT corrections.

The overall simulation can be optimized using parallelization of the code on a
cluster of nodes and using the Message-Passing Interface (MPI) to manage the com-
munication between the nodes. This gretaly improves some bottlenecks of the sim-
ulator which are: the construction of the two-body interaction matrices and the
high order terms in the many-body perturbation theory. This is implemented in our
simulator using the mpi_parameters class. The performance of the parallelization is
discussed in section 7.4.

6.2.2 The orbitalsQuantumNumbers class

The orbitalsQuantumNumbers class mainly generates the list of all possible states
(|α〉 → |n,ml,ms〉) in the model space up to a maximum number of shell de�ned by
the parameter Rb. It also generates a list of couple of states that will be used in the
computation of the two-body interactions. In order to reduce the complexity of the
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Figure 6.1: Flowchart of the complete simulator.
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computations, we exploit invariance of the Hamiltonian with respect to angular mo-
mentum and spin. Indeed, since [Ĥ, L̂2] = [Ĥ, L̂z] = 0 and [Ĥ, Ŝ2] = [Ĥ, Ŝz] = 0, the
Hamiltonian matrix can be written as a block diagonal matrix where each block can
be trated independently thus improving drastically the computation of the eigenvalue
problem. This requires a function orbitalsQuantumNumbers::sort_TableOfStates()

to organize the harmonic oscillator states with respect to their angular momentum
and spin quantum numbers.

6.2.3 The CoulombMatrix class

The Coulomb matrix in our simulator corresponds to the two-body Coulomb inter-
action computed in the harmonic oscillator basis set:

Vαβγδ = 〈αβ|Vij|γδ〉as.
This matrix will increase exponentially with respect to the size of the basis.

As for the Hamiltonian, we should note that the Coulomb interaction conserves
the total spin and the total angular momentum of the two-body interaction. This
also requires some sorting of the table of couple of state. This is also done in the
orbitalsQuantumNumbers class. Instead of computing the matrix element (5.42), using
numerical integration, we implemented the analytical expression derived by Anisi-
movas and Matulis [3] (The analytical expression and its implementation is given
in appendix A). The implementation requires many loops over the quantum num-
bers of the four states involved in the two-body interaction, and the computation
of each element can really slow down the complete simulation. Therefore we im-
plemented a way to read the direct terms from �les generated from OpenFCI, an
open source simulator computing the full con�guration interaction ground state of
quantum dots. An exhausive list of direct terms is generated with a simple modi�-
cation of the tabulate() function provided by OpenFCI. The results are stored in
an textual output �le (e.g. R06.txt for direct terms in a model space with Rb = 6),
which is then used by our simulator to compute the matrix elements of the Coulomb
interaction. A comparison of the results obtained using the anaytical expression and
using the numerical integration of OpenFCI is given in section 7.1.2.

6.2.4 The HartreeFock class

An important part of our simulator is included in the HartreeFock class. A �owchart
of the Hartree-Fock algorithm is given in �gure 6.2 which resumes the initialization
of HF and iterative procedure already discussed in section 5.2.4.

While the eigenvalue problem may lead to an impracticable matrix diagonaliza-
tion in a big model space, the use of symmetry and invariance greatly simpli�es the
problem. As we mentionned it, the construction of the Fock matrix to diagonalize
and its splitting into smaller matrices depends on the block diagonal form of the
Coulomb matrix, since the one-body part of the Hamiltonian is simply a diagonal
matrix in the harmonic oscillator basis set.

Therefore the construction of the eigenvalue problem is really quick and easy in
the energy basis once the Coulomb matrix is known. We initialize the coe�cients
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Figure 6.2: Flowchart of our implementation of the Hartree-Fock algorithm computing the
Hartree-Fock energy, the 2nd and 3rd-order many-body perturbation corrections to the HF en-
ergy, and the many-body perturbation corrections in the harmonic oscillator basis set from 1st to
3rd-order.
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Cα
i for particle i such that each state below the Fermi level is occupied by one and

only one particle. This corresponds to the implementation of the closed-shell model.
With this �rst set of coe�cients, we can now compute the initial e�ective Coulomb

potential U de�ned in equation (5.40). The HF algorithm simply reads the harmonic
oscillator energies (|α〉 → εα = 〈α|ĥ|α〉) from the singleOrbitalEnergies class in or-
der to complete the Fock matrix with elements Oαγ de�ned in (5.39). In order to
solve the eigenvalue problem, we implemented the class algebra which interfaces
Blitz++ and Lapack and computes the Hartree-Fock eigenenergies and eigenvec-
tors.

The function HartreeFock::compute_Sigma() computes the average di�erence be-
tween eigenvalues of two successive iterations. This provides a criteria for stopping
the iterative process when compared to the precision parameter arbitrary set in the
con�guration �le. If the eigenvalues di�er from the ones of the previous iteration,
the HF algorithm will use the HF eigenvectors to compute a new e�ective Coulomb
potential U (k+1), which then leads to a new eigenvalue problem and so on until self-
consistency is reached.

The total energy is then computed with the optimized coe�cients Cα
i as detailled

in eq.(5.31).

6.2.5 The PerturbationTheory class

The computation of the many-body perturbation corrections is developed in a general
form, to be computed either with the eigenenergies/eigenvectors of the either the
harmonic oscillator basis, or with those computed from the Hartree-Fock algorithm.
We simply implemented the di�erent many-body perturbation corrections, from 0th-
order, to 3rd-order. Each correction term can be computed in any basis set, which
makes it general for computing the pure many-body perturbation energy in the
harmonic oscillator basis from 0th-order, to 3rd-order, or to compute only 2nd-order
and 3rd-order corrections to the Hartree-Fock energy using the HF eigenstates and
eigenvalues as single particle states and single particles energies. Since the second-
and third-order correction terms are require many summation over the two-body
interaction matrix elements, we optimized their calculation withMPI parallelization,
where each node of the supercluster compute parts of the sums detailled in 5.58 and
5.60.

6.3 Running a simulation

Running the simulator [41] for di�erent set of parameters is rather easy. The main
program project reads the input parameters from �le (parameters.inp) and even-
tually overwrite them with command line arguments before proceeding with the
Hartree-Fock algorithm and the calculations of the many-body corrections. While
running the executable, the Hartree-Fock approximation of the total energy is com-
puted in a self-consistent way, followed by the many-body perturbation corrections
�rst wihtin the Hartree-Fock basis, then in the harmonic oscillator basis. The results
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are �nally printed out to screen and to �le.
You can either launch the simulator with default parameters included in the

con�guration �le with:

> ./project

or overwrite some of the parameters with a set of command line arguments, like in
the following example:

> ./project dim 2 Rf 1 Rb 5 lambda 1.4

which runs a simulation in two-dimensions, with particles �lling the harmonic oscilla-
tor states |n,ml,ms〉 up to the maximum shell number Rf = 2n+ |ml| = 1 (including
spin degeneracy), in a model space containing all harmonic oscillator states up to
the maximum shell number Rb = 5, and �nally with a con�nement strength set to
λ = 1.

A list of command line parameters is given in table 6.1 and an example of con-
�guration �le is given in table 6.2.

The command lines are particularly useful for production runs where the scripts
can simply change the arguments in the command line in order to run a di�erent set
simulation.

PARAMETERS COMMAND LINE SHORTCUTS
[OPTIONS] [VALUES]

Dimension of the dot d OR dim {2,3}

Size of the closed-shell model (Rf ) f OR Rf OR Rfermi ∈ N

Size of the model space (Rb) b OR Rb OR R_basis ∈ N with Rb ≥ Rf

Dimensionless con�nement strength (λ) lambda OR l ∈ R+

SCF precision epsilon OR e ∈ R+∗

boolean for including the Coulomb
interactions

coulomb OR cp {0,1}

boolean for computing MBPT in the
harmonic oscillator basis

perturbationTheory OR pt {0,1}

boolean for computing MBPT corrections in
HF basis

HF_PT_correction OR HF_PT {0,1}

boolean for reading the direct terms from
OpenFCI output �les

openFCI OR readCI OR r {0,1}

boolean for writing input/output data to �le logInfos OR log {0,1}

Table 6.1: List of possible command line arguments for running the HF/MBPT simulator.
ex.: > ./project [option1] [value1] [option2] [value2]...
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######################################################################

# *** parameters.inp contains input parameters for the simulation of #

# a quantum dot using closed-shell Hartree-Fock *** #

######################################################################

################################

# --- model space parameters ---

dimension = 2 # [dim or d] 2D or 3D

R_basis = 3 # [Rb or b] maximum shell number for the HO basis

set (ex. R=2n+|m| in 2D)

R_fermi = 1 # [Rf or f] Fermi level defining #electrons in the

closed shell system

includeCoulombInteractions = yes # [coulomb or c] Switch ON/OFF the

Coulomb piece

################################

# --- interaction parameters ---

lambda = 1.0 # [lambda or l] strength of the interaction

################################

# --- Hartree-Fock parameters ---

epsilon = 1e-12; # [epsilon or e] precision used for self-consistency

of the total energy

################################

# --- computational parameters ---

readFromOpenFCI = yes # [openFCI or r] read single element for Coulomb

piece from OpenFCI instead of analytical

expression of Rontani

perturbationTheory = yes # compute the Perturbation theory up to 3rd order

with the interaction expressed in the HO basis

HF_PT_correction = yes # compute the Perturbation theory up to 3rd order

with the interaction expressed in the HF basis

save_states = no # write table of quantum states

save_EigValPb = no # write the Blocks to diagonalize and the

eigenvalues to file

Table 6.2: Example of input �le con�guration.
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Chapter 7

Computational Results and Analysis

7.1 Validation of the simulator

The aim of this chapter is to give a critical survey of the applicability of the Hartree-
Fock method and many-body perturbation theory. We apply the theory to studies
of quantum dots with several electrons. We present several results for these systems
and compare our calculations with exact diagonalization results where possible. We
present also several validations and benchmarks of the developed codes.

7.1.1 Reproducing the non-interacting ground state energy

A �rst simple test consists in checking if the simulator reproduces the exact ground
state energy for a QD with non-interacting particles. It is done by switching o� the
interaction (possible by setting includeCoulombInteractions = false in the input
parameter �le), or by zeroing the con�nement strength λ (also accessible from the
parameters.inp). The expected energy is the sum over each occupied single harmonic
oscillator orbital with the de�nite energy εnml = 2n+ |ml|+1. The results of this test
are summarized in table 7.1 and correspond exactly to the ground state energy of
particles trapped in a harmonic oscillator when neglecting the electron interaction.

Basis Particles in the Quantum dot
Size 2 6 12 20

Rb (Rf = 0) (Rf = 1) (Rf = 2) (Rf = 3)

0 2 ~ω 10 ~ω 28 ~ω 60 ~ω
1 2 ~ω 10 ~ω 28 ~ω 60 ~ω
2 2 ~ω 10 ~ω 28 ~ω 60 ~ω
...

...
...

...
...

12 2 ~ω 10 ~ω 28 ~ω 60 ~ω

Table 7.1: Ground state energy of quantum dots with non-interacting particles.
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7.1.2 Checking the two-body interaction matrix with OpenFCI results

Another test consists in comparing the Coulomb interaction matrix computed an-
alytically in our simulator (the analytical expression is detailled in appendix A) to
the numerical computation developed by S. Kvaal in his Con�guration interaction
simulator called �OpenFCI� [32].

The two-body interaction Vαβγδ is stored as a matrix and acts on two couples of
single orbitals (|α〉, |β〉), ( |γ〉, |δ〉):

Vαβγδ = 〈α(ri)β(rj)|V (rij)|γ(ri)δ(rj)〉as
= 〈α(ri)β(rj)|V (rij)|γ(ri)δ(rj)〉︸ ︷︷ ︸

Direct term

−〈α(ri)β(rj)|V (rij)|γ(rj)δ(ri)〉,︸ ︷︷ ︸
Exchange term

where V (rij) = 1/rij is the Coulomb interaction operator acting on particles i and
j.

It is actually possible to compare the direct term of each simulator by comparing
the results of the functions that generate them: anisimovas() in our simulator and
singleElement() in OpenFCI.

double anisimovas (const int n1, const int m1, const int n2, const int m2,
const int n3, const int m3, const int n4, const int m4);

double QdotInteraction::singleElement(int N1, int m1, int N2, int m2,
int N1pr, int m1pr, int N2pr, int m2pr);

It should be noted that the quantum numbers called in both functions do not ex-
actly correspond. Indeed if the state |α〉 corresponds to both states |n1m1〉 from
anisimovas() and |N1m1〉 from singleElement(), the quantum number N is here
de�ned by N = 2n + |m|. Therefore it is possible to call the function in OpenFCI
using the quantum numbers as de�ned in our simulator as follow

singleElement(2*n1+abs(m1), m1, 2*n2+abs(m2), m2,
2*n3+abs(m3), m3, 2*n4+abs(m4), m4);

Several outputs of the functions have been computed and compared (see table
7.2). The di�erence between the results of the functions is of the order of 10−15

or lower, showing an excellent agreement to numerical precision. The computation
of these direct terms based on numerical integrations in OpenFCI is much faster
than using our analytical expression, so a modi�cation of the code has been made in
order to build the Coulomb matrix of interactions by reading the values from a �le
previously obtained by running the tabulate() function of OpenFCI (see [33] for
more information).

7.1.3 Comparison of MBPT results with a similar numerical experi-

ment

In a similar study of quantum dots by Waltersson [59], many-body perturbation
theory (MBPT) and many-body perturbation correction to the Hartree-Fock energy
are performed on an open-shell system. Whereas closed-shell and open-shell systems
may not yield the same results, we try here to compare and observe our results with
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Quantum numbers Direct terms Di�erence
n1 m1 n2 m2 n3 m3 n4 m4 singleElement() anisimovas()
0 -2 0 -2 0 -2 0 -2 +0.71600465852496875 +0.716004658524967640 1.11e-15
0 -2 0 -1 0 -2 0 -1 +0.75394678572885431 +0.753946785728855317 9.99e-16
0 -2 0 -1 0 -1 0 -2 +0.30353701763109730 +0.303537017631097860 5.55e-16
0 -2 0 0 0 -2 0 0 +0.74415526903108020 +0.744155269031077759 2.44e-15
0 -2 0 0 0 -1 0 -1 +0.27694591420398728 +0.276945914203986898 3.89e-16
0 -2 0 0 0 0 0 -2 +0.11749820037332800 +0.117498200373328198 1.94e-16
0 -2 0 1 0 -2 0 1 +0.75394678572885809 +0.753946785728855317 2.78e-15
0 -2 0 1 0 -1 0 0 +0.27694591420398728 +0.276945914203986898 3.89e-16
0 -2 0 1 0 0 0 -1 +0.16616754852239221 +0.166167548522392211 0.00e+00
0 -2 0 1 0 1 0 -2 +0.14687275046666059 +0.146872750466660123 4.72e-16
0 -2 0 2 0 -2 0 2 +0.71600465852497219 +0.716004658524967640 4.55e-15
0 -2 0 2 0 -1 0 1 +0.30353701763109858 +0.303537017631097860 7.22e-16
0 -2 0 2 0 0 0 0 +0.11749820037332819 +0.117498200373328198 0.00e+00
0 -2 0 2 0 1 0 -1 +0.14687275046666051 +0.146872750466660123 3.89e-16
0 -2 0 2 0 2 0 -2 +0.12851365665832831 +0.128513656658326258 2.05e-15
0 -1 0 -2 0 -2 0 -1 +0.30353701763109730 +0.303537017631097749 4.44e-16
0 -1 0 -2 0 -1 0 -2 +0.75394678572885442 +0.753946785728855317 8.88e-16
0 -1 0 -1 0 -2 0 0 +0.27694591420398728 +0.276945914203986842 4.44e-16
0 -1 0 -1 0 -1 0 -1 +0.86165346940440823 +0.861653469404406013 2.22e-15
0 -1 0 -1 0 0 0 -2 +0.27694591420398728 +0.276945914203986898 3.89e-16
0 -1 0 0 0 -2 0 1 +0.27694591420398728 +0.276945914203986842 4.44e-16
0 -1 0 0 0 -1 0 0 +0.93998560298662536 +0.939985602986624479 8.88e-16
0 -1 0 0 0 0 0 -1 +0.31332853432887497 +0.313328534328874808 1.67e-16
0 -1 0 0 0 1 0 -2 +0.16616754852239229 +0.166167548522392211 8.33e-17
0 -1 0 1 0 -2 0 2 +0.30353701763109858 +0.303537017631097749 8.33e-16
0 -1 0 1 0 -1 0 1 +0.86165346940440690 +0.861653469404406013 8.88e-16
0 -1 0 1 0 0 0 0 +0.31332853432887491 +0.313328534328874808 1.11e-16
0 -1 0 1 0 1 0 -1 +0.23499640074665628 +0.234996400746656397 1.11e-16
0 -1 0 1 0 2 0 -2 +0.14687275046666051 +0.146872750466660123 3.89e-16
0 -1 0 2 0 -1 0 2 +0.75394678572885776 +0.753946785728855317 2.44e-15
0 -1 0 2 0 0 0 1 +0.27694591420398717 +0.276945914203986898 2.78e-16
0 -1 0 2 0 1 0 0 +0.16616754852239229 +0.166167548522392211 8.33e-17
0 -1 0 2 0 2 0 -1 +0.14687275046666059 +0.146872750466660123 4.72e-16

Table 7.2: Comparison of a few Direct terms 〈n1m1, n2m2|V (rij)|n3m3, n4m4〉 computed using
numerical integration within OpenFCI, or computed from an analytical expression within our
simulator

these calculations. Therefore we aim at reproducing a study of the convergence of
the second order perturbation correction to the Hartree-Fock energy as a function of
the basis size. In his open-shell model, Waltersson represents the basis size either by
max(n) or max(|ml|), whereas in our closed-shell model both max(n) and max(|ml|)
depend on the value of the maximum shell number Rb which are here

max(n) = floor(Rb/2), (7.1)

max(|ml|) = Rb. (7.2)

The convergence of the second order many-body perturbation correction as a function
of the basis size by Waltersson is given in �gure 7.1 while our reproduction is given
in �gure 7.2.

The two �gures look similar in shape and values. However, the results from
Waltersson are slightly shifted to lower values when the size of the basis increases
which could represent a better correction to the positive Hartree-Fock energy. This
shift probably results from the di�erent shell models.
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Figure 7.1: Second-order perturbation theory correction to the energy as a function of max(n)
(squares) and max(|ml|) (circles) for the two electron dot with the con�nement strength ~ω =
6meV . [59]
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Figure 7.2: Second-order perturbation theory correction to the energy as a function of max(n)
(squares) and max(|ml|) (circles) for the two electron dot with the con�nement strength ~ω =
6meV which translates into a dimensionless con�nement strength of λ = 1.406 using the same
material characteristics of GaAs than Waltersson in [59].
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7.2 Restrictions to the closed-shell model

7.2.1 Limits of the model through a theoretical approximation

In this section we will show the theoretical limit of our closed-shell model as func-
tion of the strength of the external magnetic �eld. This is supposed to provide a
theoretical upper bound to the external magnetic �eld, above which the electronic
structure is not anymore correctly represented by the particles �lling all the shells
up to the Fermi level, but possibly by a new structure where the total spin or total
angular momentum might di�er from zero.

When neglecting the repulsions between the particles, the eigenenergies εnml as a
function of the magnetic �eld B can be solved analytically for a parabolic con�ning
potential V (r) = 1/(2m∗ω2

0r
2) leading to a spectrum known as the Fock-Darwin

states [14, 31]

εnml = (2n+ |ml|+ 1) ~ω − 1

2
~ωcml (7.3)

= (2n+ |ml|+ 1) ~ω0

√
1 +

ω2
c

4ω2
0

− 1

2
~ωcml, (7.4)

where ~ω0 is the electrostatic con�nement strength, and ωc = eB/m∗ is the cyclotron
frequency. Each state |n,ml〉 is spin-degenerate.

Rewriting the eigenenergies in units of ~ω0, εnml becomes dimensionless and we
obtain

εnml = (2n+ |ml|+ 1)

√
1 +

(ωc/ω0)2

4
− 1

2
(ωc/ω0)ml (7.5)

= (2n+ |ml|+ 1)

√
1 + (

eB

2m∗ω0

)2 − eB

2m∗ω0

ml. (7.6)

These eigenenergies are plotted in �gure 7.3 as function of the magnetic �eld. The
orbital degeneracies at B = 0 are lifted in a magnetic �eld. As B increases, a single-
particle state with a positive or negative angular momentum (ml) shifts to lower or
higher energy, respectively. The lowest energy state |n,ml〉 = |0, 0〉 is a two-fold
spin degenerate (The Zeeman spin-splitting in a magnetic �eld is neglected). The
next state has a double orbital degeneracy, ε0,1 = ε0,−1. This degeneracy forms the
second shell, which can contain up to four electrons when we include the two-fold
spin degeneracy. It will be �lled for N = 6. The third shell has a triple-orbital
degeneracy formed by |1, 0〉, |0, 2〉 and |0,−2〉 so that it can hold up to six electrons.
This shell leads to the magic number N = 12.

When the magnetic �eld is increased, the electron occupying the highest energy
state is forced into di�erent orbitals states. As an example, consider a seven non-
interacting electrons system. The transitions for the state of the 7th electron is
indicated in �gure 7.3 by a thicker line. At low B, the highest occupied state is
|0, 2〉, which decreases in energy with B. At some point it crosses the increasing
energy state |0,−1〉. With a slightly higher magnetic �eld, |0, 2〉 has now a lower
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Figure 7.3: Spectrum of Fock-Darwin orbitals for a system of seven non-interacting particles with
typical values for GaAs: con�nement energy ~ω0 = 5meV , relative permittivity εr = 12, e�ective
mass m∗ = 0.067me.

energy than |0,−1〉. This forces the electrons to switch states and it ends up with
two electrons in state |0, 2〉 and only one in state |0,−1〉. For ~ω0 = 3meV this
occurs at B ' 2.1T . The seventh electron makes a second transition into the state
|0, 3〉 at 2T . Similar transitions are also seen for di�erent numbers of particles and
with an increasing number of crossings for larger systems. After the last crossing
the electrons occupy states forming the so-called, lowest orbital Landau level. These
states are characterized by the quantum numbers (0,ml) with ml ≥ 0.

Considering such transitions, we see that increasing the magnetic �eld will change
the shell structure of our system and we may wonder what happens to the closed-shell
model. The closed-shell system is described by a single Slater determinant. There-
fore any new con�guration implying the occupation of a state with an energy higher
than the Fermi level would break it. Since our simulator is based on a single Slater
determinant, our shell structure is initialized and kept with particles occupying the
lowest states identical to those with a zero magnetic �eld. Therefore any transition
from an occupied state to an �excited� state (non-occupied state when B was low or
null) will mark the end of the model. In this case the total angular momentum M
or total spin S may change from zero to a positive value, the single particle energies
associated with the new occupied states will switch to a higher value, and our com-
plete computation of the ground state with constant non-interacting eigenenergies,
zero total angular momentum and zero total spin fails.

Figures 7.4 and 7.5 display with thick lines the di�erent transitions of states when
the magnetic �eld is increased respectively for a six- and twelve-particle quantum
dot. For the six-particle dot we see for example that the two electrons in the 3rd shell
(�gure (7.4)) are in the state |0,−1〉 without magnetic �eld, but switch to the state
|0, 3〉 when the magnetic �eld exceeds 2.1 T , whereas electrons in the �rst and second
shell stay respectively in the states |0, 0〉 and|0, 1〉, even under a high magnetic �eld.
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Figure 7.4: Spectrum of Fock-Darwin orbitals for a system with six non-interacting particles and
using typical values for GaAs: con�nement energy ~ω0 = 5meV , relative permittivity εr = 12.

Therefore a theoretical study of the Fock-Darwin orbitals predicts that our model
should be restricted to a maximum B �eld of 2.1T for a six-particle dot, and 1.2T
for a twelve-particle dot. In the quantum dot model the parameter is not B but
the dimensionless con�nement strength parameter λ, which is related to B by the
following expression (see section 4.2.3)

λ(B) =
1

a∗0

(
4~2

4ω2
0m
∗ + e2B

)1/4

. (7.7)

Considering a material like GaAs (with typical values ~ω0 = 5meV , m∗ = 0.067me

and εr = 12 ⇒ a∗0 = 9.47 × 10−9m), this gives λ ≥ 1.543 for a six-particle dot,
and λ ≥ 1.575 for a twelve-particle dot, and no lower bound for λ (i.e. no upper
bound for B) in the case of a two-particle dot as summarized in table 7.3. Note
that a refrigerator magnet has a magnetic �eld of about 5 mT , magnetic resonance
imaging (MRI) �eld strengths range from 1.5 T to 3 T , while an NMR spectrometer
works with a �eld strength of 11.7 T . Higher strengths can be achieved: for example
16 T are necessary to levitate a frog and the strongest continuous magnetic �eld yet
produced in a laboratory is about 45 T . This gives a rough idea of the domain of
application of the closed shell model for the simulation in laboratory experiments.

However, the above analysis does not take into account the repulsion between the
electrons. This repulsion will change the shell structure and obviously the limitations
on B and λ mentioned previously. As seen in section 4.2.3 the characteristic length l
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Figure 7.5: Spectrum of Fock-Darwin orbitals for a system with twelve non-interacting particles
and using typical values for GaAs: con�nement energy ~ω0 = 5meV , relative permittivity εr = 12.

Nb. of Maximum Minimum con�nement
electrons B �eld strenght λ

2 ∞ 0
6 2.1 T 1.543
12 1.2 T 1.575
20 0.85 T 1.583

Table 7.3: Restriction on λ and B for a valid closed-shell model

decreases with an increasing magnetic �eld, indicating that the con�nement becomes
stronger for larger B. This is also observed as a shrinking of the wavefunctions [28].
The e�ect is that when B is increased, two electrons occupying the same state will be
pushed closer together. The decreasing distance between the electrons will increase
the Coulomb interactions which may change the electron con�guration. This would
cause a breakdown of the closed-shell model and eventually may result in wrong
predictions by our Hartree-Fock technique. Numerical calculations which include
the electron interactions are then necessary to build an accurate shell structure as a
function of the magnetic �eld. This is done in the next section using full con�guration
interaction.
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7.2.2 Limits of the closed-shell model better approximated with full con-

�guration interaction

It was a rough approximation to neglect the Coulomb interaction as we did in the
previous study of the Fock-Darwin orbitals. A more realistic study of the reliability
of the closed-shell model requires to take these interactions into account. However,
as discussed in chapter 5, only numerical methods are able to provide approximations
to the ground state energy of a general quantum dot. Among ab initio methods, full
con�guration interaction provides normally the best approximation to the ground
state because it considers almost all possible excitations within a given space.

In this section results of full con�guration interaction are produced and discussed
in order to �nd the real limits of the closed shell model when including the electron-
electron interactions.

With a two-electron quantum dot, it is likely that the ground state remains char-
acterized by the two electrons lying in the �rst shell (n,ml) = (0, 0) when increasing
the magnetic �eld up to the maximum values achievable in laboratory.

For 6 electrons, the closed-shell model with the six electrons occupying the �rst
levels (n,ml) = {(0, 0), (0, 1), (0,−1)} might not always be the optimal electron
con�guration as the magnetic �eld increases. This is what we tried to show by
using the OpenFCI (full con�guration interaction) simulator and running it for
di�erent electron con�gurations. Taking as minimum input parameters the number
of particles N , the total angular momentumM , the total spin S and the con�nement
strength λ, this simulator computes the �rst minimum eigenenergies (the lowest one
being the ground state energy of the system) using large scale diagonalisation.

Figures 7.6, 7.7 and 7.8 show the ground state energies of a six-particle quan-
tum dot for various combinations of M and S, each plot corresponding to di�erent
con�nement strength λ = {0.1, 0.5, 1, 2} in �gure 7.6 and λ = {5, 10, 20, 50} in �g-
ure 7.7 respectively from top to bottom. By �nding the exact minimum through all
possible combinations of (M,S) 7.6 and 7.7, we discovered that (M,S) = (0, 0) is the
lowest ground state energy for a six-particle dot up to a con�nement strength λ = 10,
whereas with λ = 15, the prefered electron con�guration exhibits (M,S) = (1, 2).

In spite of the trend of the ground state energy in the 3D plots as a function of
M and S, it might not be easy to distinguish which combination (M,S) gives the
lowest energy. Tables 7.4 and 7.5 list the energies corresponding to each combination
and the lowest energy for each value of the con�nement strength λ is highlighted in
bold face.
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Figure 7.6: Ground state energies for a six-particle QD computed using OpenFCI as a function
of the total spin S and total angular momentum M . Each plot corresponds to a given value of the
con�nement strength λ = 0.1, 0.5, 1 and 2. Up to the dimensionless con�nement strength λ = 2,
the lowest energy state is obtained for the con�guration (M,S) = (0, 0), validating thereby the
closed-shell model up to λ = 2.
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Figure 7.7: Ground state energies for a six-particle QD computed using OpenFCI as a function
of the total spin S and total angular momentum M . Each plot corresponds to a given value of the
con�nement strength λ = 5, 10, 20 and 50. One can observe that the lowest energy is not anymore
obtained for (M,S) = (0, 0) as the con�nement strength increases. This is a demonstration that the
closed-shell model breaks at least from λ = 20 and that we cannot trust it anymore for con�nement
strength higher than λ = 10.
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Figure 7.8: Ground state energies for a six-particle QD computed using OpenFCI as a function
of the total spin S and total angular momentum M . Each plot corresponds to a given value of
the con�nement strength λ = 11, 12, 13 and 15. This �gure shows that the �rst change in the
electronic con�guration from (M,S) = (0, 0) occurs for 13 < λ ≤ 15. We can conclude that the
closed-shell model cannot be trusted for λ ≥ 13.
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Energy in unit of ~ω of a six-particle dot obtained for each combination of (M ,S and λ)
λ M S = 0 S = 1 S = 2 S = 3 S = 4 S = 5 S = 6

0.1

0 11.1978891344 − 13.0565458509 − 13.0306198232 − 14.8617426362
1 12.161788636 − 12.1228998086 − 13.9619523669 − 15.8438291847
2 13.0541409412 − 13.0543696462 − 13.0479092548 − 16.8150801525
3 12.1565732709 − 12.1286041835 − 13.9783634734 − 15.8336957766
4 13.0808492317 − 13.0642360558 − 14.9084543531 − 16.8102750026
5 14.0377732477 − 14.0097760564 − 13.9937294856 − 15.8342807494
6 13.0936355988 − 14.9480199174 − 14.944795351 − 16.8159076585
7 14.0939135823 − 14.0386678117 − 15.8883056992 − 17.7896003155
8 14.9868752972 − 14.9897402773 − 16.8362996072 − 18.7685556996
9 15.941652286 − 15.9381674099 − 17.8024364205 − 17.7820000116
10 16.8929103322 − 16.8993329996 − 16.8911751901 − 18.7560481367
11 17.8934864395 − 17.8470437348 − 17.8557578353 − 19.7384254286
12 18.8059869671 − 18.8084023637 − 18.8153875945 − 20.7254199174

0.5

0 15.5617751019 − 16.966166432 − 16.871772355 − 18.1622424979
1 16.4044292865 − 16.2537138896 − 17.5752283136 − 19.0834975974
2 16.9555562338 − 16.9636785505 − 16.9488349783 − 19.9589980355
3 16.3909605917 − 16.279069572 − 17.6459810924 − 19.0380846039
4 17.077692629 − 17.0081494281 − 18.345626646 − 19.9390056216
5 17.8923198765 − 17.7746900892 − 17.7147205056 − 19.0403232195
6 17.1345648299 − 18.5115121013 − 18.5052825396 − 19.9636653826
7 18.1412125077 − 17.9027034622 − 19.2596187485 − 20.8466577601
8 18.6823740646 − 18.6940902667 − 20.0384606413 − 21.765094962
9 19.4781018652 − 19.4754973684 − 20.8935077402 − 20.8207439572
10 20.272873974 − 20.3068987984 − 20.2841911217 − 21.6997487647
11 21.2895239718 − 21.0858286183 − 21.1290221438 − 22.623042277
12 21.9075379553 − 21.9160281905 − 21.9475742808 − 23.5741455919

1

0 20.2571791113 − 21.2789981289 − 21.1483419586 − 22.0022205941
1 20.9749296631 − 20.7598331889 − 21.6538800561 − 22.8661695662
2 21.2599579854 − 21.2821095699 − 21.2792687299 − 23.6550135103
3 20.9671026881 − 20.8035334518 − 21.7707471281 − 22.7866733195
4 21.4667705078 − 21.359594087 − 22.2749375665 − 23.6214565309
5 22.150155073 − 21.9721573278 − 21.884399932 − 22.7881516577
6 21.5630576706 − 22.5351676942 − 22.5364737402 − 23.663506028
7 22.5942511253 − 22.1780128424 − 23.1282803854 − 24.4604431194
8 22.8188269396 − 22.8406352537 − 23.7672441229 − 25.3487993204
9 23.4647807574 − 23.4774102878 − 24.5237438226 − 24.437111507
10 24.1348663101 − 24.1974193667 − 24.1850198476 − 25.2140293553
11 25.1712359394 − 24.8418490148 − 24.9187878288 − 26.0851798722
12 25.5513885819 − 25.5581213564 − 25.6071999655 − 27.0164861198

2

0 28.0329550231 − 28.6765243777 − 28.5433569395 − 28.9829490384
1 28.5875104818 − 28.3590590553 − 28.8329004272 − 29.7800781342
2 28.6493239207 − 28.6775309794 − 28.7364010594 − 30.4662810353
3 28.5996827157 − 28.4274289424 − 28.9932495629 − 29.644371783
4 28.9358749584 − 28.8071713271 − 29.2994140078 − 30.4045371792
5 29.4418369302 − 29.2587757025 − 29.1463913256 − 29.6368235281
6 29.0891272881 − 29.6336201736 − 29.6403711077 − 30.4767147494
7 30.2288380451 − 29.5200135448 − 30.0805742171 − 31.1766133172
8 30.0290919414 − 30.0780756092 − 30.5833574696 − 32.0854456593
9 30.5051303098 − 30.5382881767 − 31.2206550065 − 31.1827194217
10 31.0686354739 − 31.149558625 − 31.1891682104 − 31.804014365
11 32.0668783868 − 31.6399906569 − 31.7814747312 − 32.6329816775
12 32.2950020122 − 32.2812570977 − 32.3335540202 − 33.5602013595

Table 7.4: Ground state energies in units of ~ω obtained with OpenFCI which implements the
full con�guration interaction method (with the maximum shell number R = 5). The ground state
energy for each value of the con�nement strength λ = {0.1, 0.5, 1, 2} is boldfaced, showing the
lowest energy con�guration with respect to the total angular momentum M and total spin S.
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Energy in unit of ~ω of a six-particle dot obtained for each combination of (M ,S and λ)
λ M S = 0 S = 1 S = 2 S = 3 S = 4 S = 5 S = 6

5

0 46.4816466894 − 46.8289419415 − 46.7729495876 − 46.9796295496
1 46.821461584 − 46.6822362309 − 46.8843337823 − 47.7848726408
2 46.8201453068 − 46.8249059264 − 46.9848775309 − 48.4486722898
3 46.8779563634 − 46.7912636224 − 47.0478259205 − 47.4454818065
4 47.1987202116 − 47.0226098251 − 47.2249177042 − 48.3011580081
5 47.5068819564 − 47.3915579062 − 47.2320124154 − 47.4490465265
6 47.4707134722 − 47.6406084941 − 47.6225860534 − 48.4409476451
7 48.1568096159 − 47.7204807904 − 47.9994772522 − 49.4379811615
8 48.1984357789 − 48.2999644817 − 48.4746160616 − 50.1957421823
9 48.5541561686 − 48.59619815 − 49.0445852679 − 49.0600386679
10 49.1359494783 − 49.1738310071 − 49.3040250889 − 49.5922406417
11 49.9574758125 − 49.5945573352 − 49.7675922721 − 50.5562628698
12 50.3406681585 − 50.2685117969 − 50.2883288438 − 51.5769349731

10

0 73.0673544574 − 73.3937354921 − 73.2756230049 − 73.7604409912
1 73.5223189729 − 73.1969130995 − 73.314432723 − 74.6926730698
2 73.369959718 − 73.3430190975 − 73.505676967 − 75.1294284718
3 73.4328685759 − 73.3935786445 − 73.7640234958 − 73.5827509737
4 73.7779468448 − 73.6422706745 − 73.7622908159 − 75.2480804704
5 74.4201391726 − 73.9923135684 − 73.8249480462 − 74.1676534336
6 74.275657278 − 74.3145190656 − 74.2719444082 − 75.4031376911
7 75.2365149728 − 74.5014772184 − 74.7022012351 − 76.7150715151
8 75.065712931 − 75.1754875658 − 75.1587445552 − 77.2589383227
9 75.5338734086 − 75.5425839372 − 76.3604025086 − 75.5927771225
10 76.2182975427 − 76.2458499788 − 76.2016020677 − 77.0332670376
11 77.446936995 − 76.7277275927 − 76.8120478435 − 78.1695584306
12 77.5889257943 − 77.4613580659 − 77.4947139477 − 79.31688644

20

0 122.433260001 − 122.513927462 − 122.412603516 − 125.245351666
1 124.83102857 − 122.325695478 − 122.349574793 − 126.305882321
2 122.651699164 − 122.652094474 − 122.656796984 − 125.06124293
3 122.724689893 − 122.704445685 − 125.162233987 − 122.655970732
4 123.274569702 − 123.144311312 − 123.155865954 − 126.791966535
5 126.304835917 − 123.524537031 − 123.307211571 − 125.717615043
6 124.131186017 − 124.096504504 − 124.112622923 − 127.11380913
7 127.556372534 − 124.437366492 − 124.571606214 − 128.454779116
8 125.334635172 − 125.480351924 − 125.316900883 − 128.563403526
9 126.083358337 − 126.001938857 − 128.767780557 − 125.791509155
10 127.141726105 − 127.175867638 − 126.930157706 − 128.98634957
11 131.023783431 − 127.831188112 − 127.842559193 − 131.765377421
12 129.313935266 − 128.962957408 − 128.970840663 − 132.806412758

50

0 266.841126092 − 266.750910329 − 266.526734173 − 277.147035697
1 274.228755187 − 266.208423455 − 266.157018073 − 277.62841964
2 267.147031866 − 267.194265882 − 267.023748867 − 271.5724201
3 267.147365528 − 267.057824922 − 273.347485885 − 266.753856556
4 268.599530467 − 268.252383419 − 268.218253995 − 276.629703425
5 275.976226157 − 268.916913575 − 268.334355515 − 278.64440077
6 270.45288965 − 270.396270638 − 270.458488948 − 279.926665828
7 277.94909902 − 270.902043113 − 271.210761746 − 281.122638855
8 273.150436294 − 273.492671773 − 273.101699304 − 280.003137843
9 274.583720663 − 274.417711384 − 280.223263543 − 273.854144798
10 277.220770836 − 277.175271179 − 276.687664537 − 280.205053778
11 287.375386311 − 278.435414894 − 278.391012402 − 289.407892825
12 282.30352042 − 281.17733536 − 280.970785713 − 289.947408632

Table 7.5: Ground state energies in units of ~ω obtained with OpenFCI which implements the
full con�guration interaction method (with the maximum shell number R = 5). The ground state
energy for each value of the con�nement strength λ = {5, 10, 20, 50} is boldfaced, showing the
lowest energy con�guration with respect to the total angular momentum M and total spin S.
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Energy in unit of ~ω of a six-particle dot obtained for each combination of (M ,S and λ)
λ M S = 0 S = 1 S = 2 S = 3 S = 4 S = 5 S = 6

11

0 78.143195073 − 78.413381482 − 78.313931985 − 78.969623622
1 78.712832202 − 78.244926651 − 78.336027604 − 79.924885843
2 78.429726984 − 78.401027036 − 78.526842185 − 80.233679779
3 78.495978621 − 78.470202649 − 78.961969108 − 78.595911825
4 78.842138362 − 78.729075331 − 78.814661711 − 80.477073212
5 79.667256553 − 79.066249937 − 78.912363711 − 79.377156886
6 79.392872079 − 79.409142326 − 79.375032229 − 80.641855045
7 80.532580259 − 79.629358838 − 79.802617965 − 81.968771076
8 80.207571918 − 80.316653671 − 80.271088646 − 82.477310161
9 80.715571857 − 80.706306048 − 81.713423473 − 80.701437675
10 81.414817055 − 81.446423472 − 81.362609720 − 82.412650789
11 82.845941833 − 81.944130787 − 82.010984011 − 83.581918646
12 82.840631132 − 82.697400291 − 82.734429127 − 84.733613844

12

0 83.167708584 − 83.394193093 − 83.303740571 − 84.156600106
1 83.881409398 − 83.240872661 − 83.313514747 − 85.132918037
2 83.437378073 − 83.410427035 − 83.509490136 − 85.297706724
3 83.507358020 − 83.490277525 − 84.138461310 − 83.571238814
4 83.863297552 − 83.762128115 − 83.823591310 − 85.679797042
5 84.893845201 − 84.093502988 − 83.944788679 − 84.566628964
6 84.457542775 − 84.457589780 − 84.432637253 − 85.856187641
7 85.810237363 − 84.705736390 − 84.857914806 − 87.194074485
8 85.304914828 − 85.414959288 − 85.347083513 − 87.663225340
9 85.848424314 − 85.822908124 − 87.048635983 − 85.777393353
10 86.570487591 − 86.605228217 − 86.490101785 − 87.765581961
11 88.229997119 − 87.118791595 − 87.173065337 − 88.976696821
12 88.061974379 − 87.900242635 − 87.938543965 − 90.128654898

13

0 88.151505022 − 88.344328182 − 88.257577395 − 89.326338416
1 89.033058061 − 88.197386078 − 88.257291889 − 90.321520824
2 88.406631105 − 88.383064086 − 88.462011769 − 90.330196713
3 88.479619296 − 88.466751712 − 89.298397953 − 88.516500173
4 88.851639268 − 88.754730627 − 88.800436095 − 90.862030864
5 90.104399883 − 89.085924916 − 88.935726594 − 89.740601801
6 89.483225708 − 89.472470474 − 89.455809279 − 91.051419446
7 91.073352679 − 89.742146874 − 89.880653364 − 92.396900798
8 90.368739460 − 90.481168561 − 90.395396440 − 92.823919873
9 90.943614219 − 90.905029823 − 92.369007344 − 90.827942565
10 91.695847699 − 91.732671823 − 91.592274306 − 93.077104797
11 93.602413719 − 92.262446130 − 92.307361308 − 94.357271821
12 93.260556659 − 93.078253978 − 93.115930138 − 95.505968804

15

0 98.030368353 − 98.175943830 − 98.089020148 − 99.627578422
1 99.298992309 − 98.026884251 − 98.070911523 − 100.653451690
2 98.265358634 − 98.249612566 − 98.299715129 − 100.324678925
3 98.341455866 − 98.329682836 − 99.581785412 − 98.339262951
4 98.756777622 − 98.656448463 − 98.684658346 − 101.180676624
5 100.489379141 − 98.996614532 − 98.832723557 − 100.054283015
6 99.455054715 − 99.431922968 − 99.428397280 − 101.399088100
7 101.565816782 − 99.731093247 − 99.857712159 − 102.751758487
8 100.425553944 − 100.545499985 − 100.431859839 − 103.089812111
9 101.055134783 − 100.998311122 − 102.966578977 − 100.873025038
10 101.882958568 − 101.921395902 − 101.741972578 − 103.483331676
11 104.321280076 − 102.485133898 − 102.516690762 − 105.084891895
12 103.608899864 − 103.381455766 − 103.413959297 − 106.217617700

Table 7.6: Ground state energies in units of ~ω obtained with OpenFCI which implements the
full con�guration interaction method (with the maximum shell number R = 5). The ground state
energy for each value of the con�nement strength λ = {11, 12, 13, 15} is boldfaced, showing the
lowest energy con�guration with respect to the total angular momentum M and total spin S.
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Figure 7.9: Hartree-Fock approximation to the ground state energy of a two-particle quantum
dot, with a con�nement strength λ = 1

The tables clearly show that the closed-shell model looks valid for a con�nement
strength in the range λ = 0.1→ 13 and breaks at least for λ ≥ 15. These values can
be either translated into a possible range of the applied external magnetic �eld, or
into the size of the quantum dot itself, or even into a combination of both the size
of the quantum dot and the magnetic �eld. These results obviously predominate the
ones obtained in section 7.2.1 which neglected the electron-electron interactions.

7.3 Convergence, stability and accuracy of the Hartree-Fock

Algorithm

7.3.1 Importance of the model space

Figure 7.9 presents the results of the simulator, providing the Hartree-Fock approx-
imation to the ground state energy of a two-particle quantum dot where the charge
carriers are con�ned by a dimensionless con�nement strength λ = 1. In two dimen-
sions, the exact ground state energy of such a system is known to be equal to E0 = 3
in units of ~ω, as shown in chapter 4. Therefore we see easily that Hartree-Fock
provides an approximation to the exact energy with a di�erence of 5.33%.

Figure 7.10 presents the convergence plots (left plots) of the Hartree-Fock ap-
proximation to the ground state energy for quantum dots with di�erent numbers of
particles (2, 6, 12 and 20 particles) as a function of the maximum shell number in
the basis set (Rb) and for di�erent values of the con�nement strength λ. We see
from these results that the Hartree-Fock approximation converges to its best ap-
proximation with a basis set of a few shells above the Fermi level. For the case of
a two-electron quantum dot (top of �gure 7.10), we see that the Hartree-Fock ap-
proaximation has achieved its convergence limit with a basis set up to the 4th shell.
For a six-particle quantum dot, the limit seems to be achieved from the 5th shell and
from the 7th shell for a 12-particle quantum dot.
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Figure 7.10: (Left) Hartree-Fock approximation to the ground state energy of quantum dots with
2, 6, 12 and 20 trapped particles as a function of the size of the basis set, and for di�erent values
of the con�nement strength λ = 0, 0.5, 1 or 2. As the number of particles in the dot increases, the
minimum model space includes all the shells occupied by particles. This explains for example why
for 20 particles, the �rst energies are obtained only from Rb = 3.
(Right) Hartree-Fock relative error (EHF (Rb)− EHFmin)/EHFmin as a function of the size of the basis
set for the same quantum dots. An exponential dependence in Rb can be observed in the cases
where the relative error is not exactly zero.
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When increasing the size of the quantum dot one shell at a time, the convergence
limit EHF (Rb

max) doesn't seem to be achieved with a linear increase in the size of
the basis set. Then another interesting plot should show how the Hartree-Fock
limit is scaled with the size of the basis set. This is displayed in the right plots of
�gure 7.10), where the relative error

(
EHF (Rb)− EHF

min

)
/EHF

min is given as a function
of the maximum shell number in the basis set (Rb). The plots display almost linear
curves, implying a quasi-exponential dependence in Rb.

We also remark in the case of the 20-particle quantum dot (bottom of �gure 7.10)
that Hartree-Fock stops improving its limit when increasing the basis set in the
case of the �high� con�nement strength λ = 2. This is our �rst observation of the
breakdown of the Hartree-Fock approach for a high number of particles within a
strong con�nement strength (i.e. for a GaAs quantum dot, λ = 2 would correspond
to ~ω0 = 2.96meV ).

7.3.2 Importance of the interaction strength

We discussed the ranges of the con�nement strength λ that would make sense physi-
cally through an experimental approximation using large scale diagonalization 7.2.2.
From a computational point of view, it is also interesting to study the convergence of
the Hartree-Fock algorithm with respect to the con�nement strength and to observe
how fast the iterative process is converging.

To do so we look at the �convergence history� of a simulation, meaning that we
look at the improvement in the approximated energy as function of the number of
iterations. This could be done by plotting the energy di�erence expressed by

δ(iter) = |EHF (iter)− EHF (iter − 1)|.
However since the self-consistency in our simulator depends on the convergence of
the eigenenergies and not on the total energy, it seems more natural to plot the
following relative energy di�erence

δ(iter) =
1

nbStates

(∑
nml

|εnml(iter)−
∑
nml

εnml(iter − 1)|
)
,

where εnml is the eigenenergy of the system of the single orbital |nml〉.
For a higher resolution than the machine resolution (e.g. ε ≤ 2× 10−16), we may

experience potential losses of numerical precision. We stopped the iterative process
at the maximum number of iterations (here �xed to 1000).

Assuming the following form of the convergence over iterations

δ(iter) ' 10−β iter,

a possibly more intuitive way to look at the �convergence history� would be to write:

log δ(iter) ' −β iter,
where β is a constant depending on the parameters (Rb, Rf and λ). In this case we
can interpret the plot saying that, at this iteration, you improve the precision on the
relative energy di�erence with β digits compared to the previous iteration.
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Figure 7.11 is therefore plotting the variations of the eigenenergies produced by
the Hartree-Fock iterative process in a semilog form on the y− axis as a function of
iterations. From top to bottom are plotted di�erent quantum dots composed of 2, 6,
12 and 20 particles respectively. Each plot compares di�erent con�nement strengths
(λ = {1, 2, 5}) and di�erent basis set (Rb = {4, 8}). For each dot the complete
convergence history is given on the left and a zoom on the �rst iterations is plotted
on the right. For each curve, β is computed by linear regression and indicates the
number of digits with which the precision is improved from one iteration to the next
one. For the strange behaviour observed for some con�gurations of parameters, the
linear regression is performed on the �rst iterations only where the iterative process
is actually converging.

These plots show already several behaviours of the iterative process. First, in-
creasing the con�nement strength λ always results in slower convergence steps be-
tween iterations.We note also the non-converging con�gurations (λ = 5, Rb = 8 for
the 12-particle dot, but not for the 20-particle dot, λ = 2, Rb = 8 for the 20-particle
dot while a higher con�nement strength λ = 5, Rb = 8 seems to converge after
two converging descents). Finally, we were looking for some limits of parameters
from which Hartree-Fock would not converge anymore. However we see here that
we can have a converging process for a given con�guration, and a non-converging
process with a lower con�nement strength keeping other parameters �xed. This was
not really expected and could be due to an implementation issue, rather di�cult to
identify.

Studying the �convergence history� also tells us about a phenomenon to take into
account when dealing with the stability of the simulator. In most of the plots of
�gure 7.11 we observe a plateau with small oscillations for high iteration numbers.
Since the simulations have been performed with a very high resolution of ε = 10−20,
we expected to observe such a plateau around the machine precision (i.e. numerical
precision ' 2 × 10−16). And we of course expect machine precision to prevent our
results to be known up to a given number of digits.

However a closer look at these plateaux (�gure 7.12) reveals that the limit of
convergence will occur for much lower precision as the interaction strength is in-
creased. In a sense, one could say that increasing the interaction strength will �lower
the machine precision�. It is di�cult to see how this process happens in the itera-
tive scheme. It seems that errors are added at each iteration proportionally to the
interaction strength. Figure 7.12.

To comprehend this particular case might be complicated, but understanding
this process could be helped by studying another problem: the �cancellation error�
or �round-o� error� in the �nite di�erence method. Let us compute and compare the
exact second derivative of u(x) = ex for x = 1, to the numerical second derivative of
u(x) using the �nite di�erence method

u′′(x) −→ (δ2u)j =
uj+1 − uj + uj−1

h2
, (7.8)

where h is the spacing between discrete values of x. We note from �gure 7.13 that
the accuracy of the derivative improves from h = 100 to 2 10−4 approximately. With
values of h lower than hlimit = 2 10−4, this simple scheme starts diverging. It can be
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Figure 7.11: Convergence history of the Hartree-Fock iterative process. From top to bottom are
plotted QDots with 2, 6, 12 and 20 particles respectively. Each plot compares di�erent con�nement
strengths (λ = {1, 2, 5}) and di�erent basis set (Rb = {4, 8}). For each dot the complete convergence
history is given on the left and a zoom on the �rst iterations is plotted on the right. For each curve,
β is computed and indicates the number of digits that improves the precision from one iteration to
the next one.
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Figure 7.12: Zoom over the limit of convergence of the Hartree-Fock iterative process.
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method.
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shown that the �nite di�erence method will not converge if h ≤ √ε where ε is the
machine precision [16]. If now we take a value of h slightly below hlimit, we will add
errors to the computation of the second derivative; an error which will be inversely
proportional to h.

Our simulation can be a�ected in the same way when making a substraction, and
according to the plots previously discussed, it might be related to the parameter λ.

Thinking of a substraction proportional to λ, the two-body interaction element
Vαβγδ, in which we substract the exchange term from the direct term, would logically
appear to be responsible for the round-o� error. Errors and growth of errors due to
the iterative scheme will occur when the direct term is close in value to the exchange
term. Since the interaction is directly proportional to the con�nement strength λ,
the error too will become proportional to λ. These errors then enter the eigenvalue
solver of the Hartree-Fock algorithm in a non-trivial way which might be responsible
for the strange behaviour we observed for some con�gurations of parameters.

It was important to look at the convergence history which tells us a lot about the
convergence, the accuracy and the stability of the Hartree-Fock algorithm. Three
parameters seem to dominate the behaviour of the simulator: the strength of the
interaction which obviously dictates the choice of the precision and the maximum
number of iterations imposed to the self-consistent scheme. Indeed we may get
some wrong and unexpected behaviour of the simulator when asking for a too high
precision in the self-consistent scheme. However one cannot �x these values once
for all since the convergence speed and the �nal accuracy obviously depend on the
con�nement strength characterized by the dimensionless parameter λ.

7.4 Scaling of the simulator with parallelization

Our simulator is implemented in a way that it computes, writes to �le and reads
from �le the two-body interaction matrices either in the harmonic oscillator basis
(i.e. what we call here the Coulomb matrix), or in the Hartree-Fock basis (i.e. the
basis made of the Hartree-Fock orbitals after the convergence of the self-consistent
process).

We noticed above that building these big matrices is the weakest point of the
simulator in terms of e�ciency, just before the computation of the perturbation
theory corrections. Using parallelization with MPI, the computation of the elements
of these interaction matrices and the sum performed in the perturbation theory
corrections have been equally shared among the number of processors and this section
aims at studying the e�ciency of this parallelization, or in other words, it observes
the scaling of the complete simulator according to the number of processors used.

Table 7.7 compares the duration of di�erent con�gurations as a function of the
number of processors when the simulations were launched on the supercomputer of
the University of Oslo calledTITAN. The study has just been performed over 2 small
sizes of quantum dots, respectively two-electron and six-electron dots. Therefore the
e�ect of the size of the dot doesn't look signi�cative here, but it seems negligible
compared to the in�uence of the basis size. Moreover the duration is not completely
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proportional to the number of processors, but not far to be. We did not expect
to have a complete linear relationship between the number of processors used and
the duration of the overall simulation since the Hartree-Fock algorithm itself is not
parallelized. However it improves a lot the speed of the complete simulation and
con�rms the usefulness of parallelizing the code.

] e− λ Basis size Duration of the simulation (in minutes) wrt the nb. of processors below
(Rb) 1 9 19 49 99 199 299 399 499

2

2 ≤ 0.01 ≤ 0.01 ≤ 0.01 ≤ 0.01 ≤ 0.01 0.01 ≤ 0.01 ≤ 0.01 0.01
4 1.13 0.14 0.07 0.03 0.03 0.01 0.01 0.01 0.011
7 751.32 83.65 37.78 17.73 9.08 4.96 3.49 2.64 2.36
2 ≤ 0.01 ≤ 0.01 ≤ 0.01 ≤ 0.01 ≤ 0.01 ≤ 0.01 ≤ 0.01 ≤ 0.01 ≤ 0.01
4 1.16 0.15 0.09 0.04 0.04 0.02 0.03 0.02 0.0210
7 751.45 84.28 38.18 18.03 10.45 5.24 3.91 3.1 2.38

6

2 ≤ 0.01 ≤ 0.01 ≤ 0.01 ≤ 0.01 ≤ 0.01 ≤ 0.01 ≤ 0.01 ≤ 0.01 0
4 1.24 0.15 0.08 0.04 0.03 0.01 0.02 0.01 0.011
7 777.02 86.9 36.75 18.33 9.22 5.13 3.71 2.8 2.22
2 ≤ 0.01 ≤ 0.01 ≤ 0.01 ≤ 0.01 ≤ 0.01 ≤ 0.01 ≤ 0.01 ≤ 0.01 ≤ 0.01
4 1.23 0.19 0.13 0.08 0.07 0.06 0.07 0.06 0.0610
7 740.45 82.73 40.17 18.51 9.7 5.68 4.3 3.42 2.83

Table 7.7: Simulation duration (in minutes) for di�erent con�gurations of parameters as a function
of the number of processors used on the supercomputer TITAN.

7.5 Comparison of ab initio methods applied to quantum dots

In this section we discuss the reliability of two many-body techniques (Hartree-
Fock and many-body perturbation theory) by comparing their approximations to the
ground state energy of quantum dots with the �exact� ground state energy. Since it is
not possible to compute an exact energy for any value of the con�nement strength λ
and any number of particles trapped in the quantum dot, we will assume the results
from con�guration interaction as �exact� and we will therefore compute the relative
error of each approximated ground state with respect to the CI energy. The relative
error is simply de�ned by

εmethod =
Emethod − ECI

ECI
, (7.9)

where ECI is the ground state energy obtained using full con�guration interaction
and computed thanks to OpenFCI. The quantity Emethod is the approximation to
the ground state energy either using the Hartree-Fock method or many-body pertur-
bation theory, or a combination of these techniques. The parameters used to compute
the �exact� ground state are listed in tables 7.9, 7.10, 7.11, 7.12, 7.13 and 7.14 with
the relative errors of each method, for each con�guration of the parameters.

In order to simplify the notations, we introduce short keywords in the plots to
denote the various techniques: HF refers to the Hartree-Fock method alone while
MBPT(HF)-2nd order refers to the Hartree-Fock energy corrected with a 2nd order
many-body perturbation correction computed in the new Hartree-Fock (HF) basis
set. Similarly MBPT(HF)-3rd order refers to the Hartree-Fock energy corrected with
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the 2nd and 3rd order many-body perturbation corrections computed in the new
Hartree-Fock basis set. When computing the ground state energy using the many-
body perturbation theory directly from the Harmonic oscillator (HO) basis set, we
denote by MBPT(HO)-1st order, MBPT(HO)-2nd order and MBPT(HO)-3rd order
the MBPT energy correcting the non-interacting ground state energy respectively
with up to the 1st, 2nd and 3rd order corrections.

7.5.1 Quadratic error growth for HF and MBPT

Figure 7.14 summarizes most of the simulations performed in order to compare the
behaviour of all methods. It is di�cult to compare the di�erent methods from
these �rst plots but it gives some ideas about the general trend of the techniques
implemented.

We observe that all the methods exhibit approximately the same scaling with
respect to the con�nement strength. Since the data are plotted in logscale, we see
clearly a power law. We denote by β the slope of the logscale plot, which corresponds
to the approximated error growth given by

εmethod ∝ (Emethod
)β
. (7.10)

The di�erent values of β are valid only for the linear part of the logscale plots. For
each con�guration, β is given on the plot itself, and for most of them indicates β ' 2,
meaning that the error of the methods increases almost quadratically with λ.

If the error grows similarly among the di�erent methods as a function of λ2, each
method display however a di�erent accuracy for a given λ. Figure 7.15 zooms on the
quadratic part for the same previous con�gurations and highlights the di�erence in
accuracy between the methods.

7.5.2 Accuracy depending on the number of particles

Table 7.8 indicates the shifts in accuracy for each method with respect to the most
accurate one. We see that the Hartree-Fock method corrected by second and third
order perturbation correction obtains the best accuracy for two-electron and six-
electron QD, but the order changes when it comes to a 12-electron QD, the same
method exhibits the worst performance. This shows a clear dependence on the
accuracy of the methods with respect to the number of particles in the system.
Stated di�erently, HF gives a lower accuracy compared to MBPT as the number of
particles increases in the dot.

7.5.3 Limit of validity or break of the methods

A quick study of the full con�guration ground state of a two-electron QD, similar to
the one done in section 7.2.2 reveals that the closed-shell model starts breaking in
the range λ ∈ [50; 100], since the lowest ground state energy for various total angular
momentum M = {0 : 12}, S = {0, 2} is achieved for (M,S)2e−

λ=100 = (1, 2) for λ = 100
while it is still (M,S)2e−

λ=50 = (0, 0) for λ = 50. Recall that the break of the closed-
shell model of a six-electron dot occurs in the range λ ∈ [13, 15]. Unfortunately
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Figure 7.14: Comparison of several ab initio methods for computing the ground state energy of
quantum dots with 2, 6 and 12 electrons respectively from top to bottom. The plots display the
error on the ground state energy performed with each method with respect to the con�guration
interaction energy obtained using OpenFCI, as a function of the con�nement strength λ. Left plots
are calculations performed with a basis size de�ned by Rb = 4, the right plots with Rb = 8.
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Figure 7.15: Comparison of several ab initio methods for computing the ground state energy of
quantums dots with 2, 6 and 12 electrons respectively from top to bottom. The plots display a
zoom on the quadratic growth of the error when λ is relatively small (λ < 0.05), showing di�erent
accuracies with respect to the method, the number of particles and the size of the basis.
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] e− Basis size Relative error shift between each method
(Rb) (εmin indicates the lowest relative error among the methods)

2

MBPT(HF)-2ndorder and MBPT(HF)-3rdorder → εmin
MBPT(H0)-2ndorder and MBPT(H0)-3rdorder → 6.6 εmin

HF → 12.6 εmin
4

MBPT(HO)-1st order → 20.7 εmin
MBPT(HF)-2ndorder and MBPT(HF)-3rdorder → εmin
MBPT(H0)-2ndorder and MBPT(H0)-3rdorder → 2.5 εmin

HF → 8.5 εmin
8

MBPT(HO)-1st order → 12.7 εmin

6

MBPT(HF)-2ndorder and MBPT(HF)-3rdorder → εmin
HF → 9.8 εmin

MBPT(H0)-2ndorder and MBPT(H0)-3rdorder → 40.9 εmin
4

MBPT(HO)-1st order → 54.1 εmin
MBPT(HF)-2ndorder and MBPT(HF)-3rdorder → εmin

HF → 1.3 εmin
MBPT(H0)-2ndorder and MBPT(H0)-3rdorder → 5.3 εmin

8

MBPT(HO)-1st order → 7.9 εmin

12

MBPT(HO)-2ndorder and MBPT(HO)-3rdorder → εmin
MBPT(HO)-1st order → 1.3 εmin

HF → 1.8 εmin
4

MBPT(HF)-2ndorder and MBPT(HF)-3rdorder → 2 εmin
MBPT(HO)-2ndorder and MBPT(HO)-3rdorder → εmin

MBPT(HO)-1st order → 1.6 εmin
HF → 2.3 εmin

8

MBPT(HF)-2ndorder and MBPT(HF)-3rdorder → 2.8 εmin

Table 7.8: Classi�cation of the methods with respect to their relative accuracy in the range of λ
that exhibits a quadractic error growth. The performance of each method shows a dependence to
the number of particles in the dot. MBPT obtains a better accuracy than HF as the number of
particles increases.

we don't know for which value of λ the closed-shell model breaks in the case of the
twelve-electron dot, but we know that this happens at least before the break of the
six-electron QD, then before λ = 15. A similar study should be done for the 12-
electron case, however it will require much more time and resources to compute it
using full con�guration interaction.

Therefore another interesting part to discuss on the plots of �gure 7.14 concerns
the behaviour of the methods while approaching large values of λ, e.g. approaching
the limits of the closed shell. A zoom in the region λ = [0.1, 50] is given in �gure 7.16
and reports the error of each method.

It is only in this region that the 2nd and 3rd order perturbation corrections either
in the Harmonic oscillator or in the basis set of Hartree-Fock orbitals start showing
di�erent accuracies. However they give results at the opposite of our expectations.
Indeed while the 3rd correction is supposed to improve the accuracy, we see that the
error is here increasing compared to the 2nd order correction in most of the cases. A
possible explanation could be that this signals a slower convergence in terms of the
interaction and that higher-order corrections are needed.

Other di�erences are based on the evolution of each method while λ approaches
critical values. We remark that the second (and third order) perturbation corrections
blow up above λ = 10, while the �rst-order perturbation theory correction tends
smoothly toward a linear error growth while all other methods starts oscillating
more or less, showing signs of instability. We didn't expect the methods to get a
lower error growth when approaching the limit of the closed-shell model. Since this

91



Chapter 7. Computational Results and Analysis

10−5

10−4

10−3

10−2

10−1

100

101

102

0.1 1 2 10 50

R
el
at
iv
e
er
ro
r

Con�nement strength λ

Relative error wrt CI energy for a 2-particles QD (Rb = 4)

HF
MBPT(HF) 2ndorder
MBPT(HF) 3rdorder
MBPT(HO) 1storder
MBPT(HO) 2ndorder
MBPT(HO) 3rdorder

10−5

10−4

10−3

10−2

10−1

100

101

102

0.1 1 2 10 50

R
el
at
iv
e
er
ro
r

Con�nement strength λ

Relative error wrt CI energy for a 2-particles QD (Rb = 8)

HF
MBPT(HF) 2ndorder
MBPT(HF) 3rdorder
MBPT(HO) 1storder
MBPT(HO) 2ndorder
MBPT(HO) 3rdorder

10−5

10−4

10−3

10−2

10−1

100

101

0.1 1 2 10 50

R
el
at
iv
e
er
ro
r

Con�nement strength λ

Relative error wrt CI energy for a 6-particles QD (Rb = 4)

HF
MBPT(HF) 2ndorder
MBPT(HF) 3rdorder
MBPT(HO) 1storder
MBPT(HO) 2ndorder
MBPT(HO) 3rdorder

10−4

10−3

10−2

10−1

100

101

0.1 1 2 10 50

R
el
at
iv
e
er
ro
r

Con�nement strength λ

Relative error wrt CI energy for a 6-particles QD (Rb = 8)

HF
MBPT(HF) 2ndorder
MBPT(HF) 3rdorder
MBPT(HO) 1storder
MBPT(HO) 2ndorder
MBPT(HO) 3rdorder

10−4

10−3

10−2

10−1

100

0.1 1 2 10 50

R
el
at
iv
e
er
ro
r

Con�nement strength λ

Relative error wrt CI energy for a 12-particles QD (Rb = 4)

HF
MBPT(HF) 2ndorder
MBPT(HF) 3rdorder
MBPT(HO) 1storder
MBPT(HO) 2ndorder
MBPT(HO) 3rdorder

10−4

10−3

10−2

10−1

100

0.1 1 2 10 50

R
el
at
iv
e
er
ro
r

Con�nement strength λ

Relative error wrt CI energy for a 12-particles QD (Rb = 8)

HF
MBPT(HF) 2ndorder
MBPT(HF) 3rdorder
MBPT(HO) 1storder
MBPT(HO) 2ndorder
MBPT(HO) 3rdorder

Figure 7.16: Comparison of several ab initio methods for computing the ground state energy of
quantums dots with 2, 6 and 12 electrons respectively from top to bottom for large con�nement
strength λ. The plots display a zoom for λ approaching the limit of the closed-shell model.
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7.5. Comparison of ab initio methods applied to quantum dots

phenomenon seems more and more important as the number of electrons increases,
this could be due to the smaller and smaller Hilbert space we used to compute the
�exact� full con�guration interaction energy in a short time (R = 5 for 2 electrons,
R = 4 for 6 electrons and R = 3 for 12 electrons). On the contrary, an accurate
study should include more and more shells as the size of the system increases.

While the instability of the 2nd order correction has been predicted and discussed
in the literature [47], we see here that up to λ = 50 which is already above the limit of
the closed-shell model, the many-body perturbation corrections in the Hartree-Fock
basis oscillates but does not blow up as with the harmonic oscillator basis. This
may be due to the optimized eigenstates of the Hartree-Fock basis compared to the
harmonic oscillator states, but this might not be true anymore as λ further increases.

Finally we see that the Hartree-Fock approach as well as MBPT and the combi-
nations of these methods actually give really high relative errors before they actually
reach the limit of the closed-shell model. The relative errors are listed in tables 7.9,
7.10, 7.11, 7.12, 7.13 and 7.14. These errors are however underestimated; �rst because
con�guration interaction is also an approximation to the true ground state energy,
and secondly, as we just mentioned, because our truncation of the Hilbert space was
really rough, which translates into a bigger inaccuracy of our CI calculations.
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7.5. Comparison of ab initio methods applied to quantum dots
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7.5. Comparison of ab initio methods applied to quantum dots
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7.5. Comparison of ab initio methods applied to quantum dots
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Chapter 7. Computational Results and Analysis

7.5.4 Short comparison to the variational Monte Carlo method

We brie�y compare our previous results with a few runs of the variational Monte
Carlo (VMC) simulator developed by Rune Albrigtsen. The details of the simula-
tions performed are given in appendix C. The idea is to compare (even for a few
simulations) the approximated energy of VMC to the FCI ground state and to the
other methods. Table 7.15 indicates that the energies computed with VMC are lower
than the FCI ground state for quantum dots with 2, 6 and 12 electrons and with a
con�nement strength λ = 1.

These VMC calculations, as our Hartree-Fock implementation, use the closed-
shell Slater determinant as an ansatz for the ground state. The lower energy obtained
with VMC could be due to a breakdown of the method considering λ = 1 as a large
interaction strength. However we have seen in section 7.2.2 that λ = 1 is still far
from the breaking limit (λ2e−

limit ≥ 50, λ6e−

limit ≥ 13), and that increasing the model
space of FCI usually increases this limit.

Therefore, FCI calculations should be run over a much larger space in order to
decide the nature of the ground state and study the breaking of the VMC calculations
according to the new �exact� energies.

2-electron QD 6-electron QD 12-electron QD
energy (~ω) energy (~ω) energy (~ω)

Full CI 3.013626 20.316754 70.312502
VMC 3.0025 ±1.2 10−4 20.1909 ±3.6 10−4 65.79±1.9 10−3

HF 3.16908 20.744840 66.912244
HF+MBPT(HF)-2ndorder 3.015743 20.337553 65.870798

MBPT(HO)-1storder 3.253314 22.219812 73.765549
MBPT(HO)-2ndorder 3.022410 21.477290 72.328704

Table 7.15: Comparison of approximation to the ground state energy of quantum dots with λ = 1.

This short comparison with the VMC results let us think that some of our previous
conclusions may be altered by the accuracy of the FCI calculations within a too
small Hilbert space. If the FCI method in a very small space becomes less accurate
than the Hartree-Fock method, and closer to the MBPT results, we would conclude
wrongly that MBPT performs better than Hartree-Fock (which we may have done
in section 7.5.2).

This shows the importance of the FCI accuracy with respect to the size of the
model space.
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Chapter 8

Conclusion

8.0.5 Critical discussion of the method and results

In this thesis we performed a computional study of a quantum dot in two dimensions
where the electrons are trapped in a harmonic oscillator potential and repel each
other with a Coulomb interaction. The main objective was to compare the e�ciency
and the limits of convergence/accuracy of several ab-inito many-body techniques
to approximate the ground state energy of the quantum dot with respect to the
con�nement strength. For this purpose, we developed a simulator for computing
the Hartree-Fock (HF) and many-body perturbation theory (MBPT) energies. The
many-body perturbation corrections were implemented up to third order, however
our results (section 7.5.3) showed that the third order never really improved the
accuracy over the second order corrected energy.

The implemented model and the origin of the dimensionless con�nement strength
λ are discussed in chapter 4, where λ shows to be proportional to the natural oscillator
length of the host semiconductor. However the con�nement strength can also be
modi�ed by applying an external magnetic �eld which will squeeze the electrons in
smaller regions of space. We derived the Hamiltonian of quantum dots in a magnetic
�eld also in chapter 4 where we show that the interaction with the magnetic �eld
can simply be reformulated as a new harmonic oscillator con�nement potential with
a modi�ed oscillator frequency ω, to which one should add a shift in energy due to
the interaction of the magnetic �eld with the angular and spin parts of the system.
For a typical quantum dot made of Gallium arsenide (GaAs), we show that the
dimensionless con�nement strength should vary in the range λ ∈ [0, 1.6], decreasing
as the magnetic �eld increases. However as the magnetic �eld increases, our simple
model may fail since it does not take into account the modi�cation in the physical
length of the quantum dot when forcing the electrons to get closer to each other.
It does also not include the modi�cation in the type of interaction that models
the repulsion between the electrons. From a computational point of view, it was
interesting anyway to observe the behaviour of the various computational techniques
for a bigger range of λ (λ ∈ [0, 100]), and keeping our electron interaction in the form
of a Coulomb repulsion.

If our model relies on an arbitrary form of the electron interaction, its imple-
mentation is also restricted to a closed-shell model in which the wave function of
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Chapter 8. Conclusion

the system is approximated by a unique Slater determinant. This closed-shell model
implies that the particles of the system occupies all the shells up to the Fermi level.
We made an attempt to study the limit of this model by neglecting the electron
interactions. This is done in section 7.2.1 while observing the level crossing of the
Fock-Darwin orbitals as a function of the magnetic �eld. It shows that the model
actually breaks for B = 2.1T (i.e. λ = 1.54 in GaAs) in a six-particles quantum dot
and B = 1.2T (i.e. λ = 1.58 in GaAs) in a twelve-particles quantum dot, giving
some upper bound in magnetic �eld and lower bound in λ. Again this theoretical
case completely neglects the e�ect of the repulsion between the electrons while the
magnetic �eld increases, which should in reality results in a much lower limit for B,
but in a non-trivial change in λ. As mentionned in 7.2.1 this range of magnetic �eld
are easily achievable today in laboratories. Therefore the closed-shell model could
not potentially be used to investigate any possible magnetic strength.

Anyway, introducing the electron interaction and sticking to the Coulomb in-
teraction model, a numerical computation is clearly the only way to �nd an upper
bound for λ indicating the limit of the closed-shell model. The study was per-
formed using full con�guration interaction (FCI) on a six-electrons quantum dot
(section 7.2.2). We observed a change in total angular momentum M and total spin
S from (0, 0) → (1, 2) indicating a break of the closed-shell model for an increase
of the con�nement strength from λ = 13 to λ = 15. A similar study done for the
two-electrons dot (section 7.5.3) shows a breakdown of the closed-shell model be-
tween λ = 50 and λ = 100. However these �ndings regarding the limitations of the
shell model should be taken with great care, or as a preliminary study for a more
accurate investigation, since our FCI calculations were performed in a very restricted
Hilbert space. For example we noticed that for a six-electrons dot, FCI calculations
indicate a breakdown between λ = 5 and λ = 10 for a maximum shell number R = 4
since the lowest ground states respectively correspond to (M,S)R=4

λ=5 = (0, 0) and
(M,S)R=4

λ=5 = (1, 4). Therefore one might conclude (wrongly) that this marks the
limit of the shell model. However the same calculations were done with a maxi-
mum shell number R = 5, the ground state obtained for the con�guration indicates
(M,S)R=5 = (0, 0) ≤ (M,S)R=4 = (1, 4), meaning that the closed-shell model is
actually still valid for a six-electrons dot when λ = 10. Therefore restricting the
Hilbert space too much in FCI calculations could lead to wrong interpretations. It
also means that our current observations could lead to higher limits while running
FCI simulations in a bigger model space.

After studying the limits of the shell model, it was interesting to know if the
computational techniques would actually break or not before the shell model. Since
Hartree-Fock theory, perturbation theory and combinations of these techniques are
in essence lower approximations to the exact ground state than FCI, we also observed
how fast the di�erent methods will diverge from the FCI calculation taken here as
reference with respect to the interaction strength λ and the number of particles in
the dot. The implementation of a simulator based on the Hartree-Fock method and
many-body perturbation theory allowed us to investigate the approximated ground
states for λ = 0 → 100 and di�erent sizes of our model space characterized by the
maxmum shell number Rb. The results are summarized and analyzed in section( 7.5).
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It shows that HF, MBPT and the combinations of these methods display an error
growing quadratically with λ when compared to the �exact� FCI energies. It also
show some linear di�erence in the relative error between the methods themselves.
For example, a two-electrons dot will be better approximated by HF+MBPT(HF)-
2ndorder with a much smaller error than MBPT(HO)-1storder (Results are summa-
rized in table 7.8). Finally this linear di�erence in accuracy appears to change with
the size of the dot, which indicates that the Hartree-Fock method becomes less accu-
rate compared to many-body perturbation theory as the number of electrons in the
dot increases.

8.0.6 Perspectives for future works

When investigating the performance of our simulator (section 7.3) we observed an
exponential scaling of the method with respect to the size of the model space (given
by Rb). More speci�cally the duration of the simulation and the complexity of the
Hartree-Fock approach increase exponentially with the size of the basis. A �rst issue
in the implementation was to optimize the resolution of the huge eigenvalue problem
performed at each Hatree-Fock iteration. This has been done by splitting the huge
matrix to diagonalize into much smaller matrices , making use of symmetry properties
of the system, particularly due to invariance of the two-body interaction matrix with
respect to the total angular momentum. Once this new implementation improved the
e�ciency, the second bottleneck occurs when computing the matrix elements of the
same two-body interaction matrix. We saw that the parallelization of the code with
MPI improves almost linearly the performance of the simulator with respect to the
number of processors used (discussed in section 7.4). Moreover, the �rst interaction
matrix computed in the harmonic oscillator basis can be computed once for all and
reused for any simulation requiring the same basis size (i.e. same Rb), which saves
already a lot of time before entering the Hartree-Fock algorithm itself. Our simulator
includes this improvement and reads the matrix from �le if it exists. However a new
interaction matrix has to be computed at the end of Hartree-Fock calculation, and
this depends on several input parameters. The construction of this second matrix is
actually not optimized yet. However a way to do it would be to compute each matrix
element using a center-of-mass transformation, as it is done in OpenFCI [32]. This
would of course require the implementation of numerical integration whereas our
simple simulator currently works within the energy basis, relying on nice properties
of Harmonic oscillator orbitals. Once numerical integration is implemented, this will
also allow us to compute the matrix elements in three-dimension and to change the
shape of the con�ning potential.

We already discussed a lot about the limitation of the closed-shell model and
how it might a�ect the reliability of our results. A more accurate comparison of the
method should include FCI results with a much bigger model space, which could lead
to an interesting study of the shell model break while plotting variational Monte-
Carlo (VMC) results which exhibits much better accuracy than HF or MBPT. Of
course a way to overcome the restriction due to the closed-shell model would be to
implement an open-shell model. Despite the more complex implementation (mainly
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combinatorics) for including the combinations of Slater determinants, it would be
interesting to compare the e�ciency and the convergence of an open-shell HF com-
pared to our current closed-shell implementation. This would also give us many
insights on the electronic structure responsible for this inaccuracy of the correlation
e�ects.

Combining the techniques is usually a good tradeo� between convergence and
accuracy. We did it for example by correcting the HF energy with a second order
perturbation correction which improves the results, at least for small systems. We
could either use the two-body interaction matrix computed in the basis set of Hartree-
Fock orbitals as input of the FCI calculation, or use the FCI method to produce an
e�ective interaction that would serve of starting point in our HF simulation instead
of the bare Coulomb interaction computed in the harmonic oscillator basis.

8.0.7 Further extensions

This simple numerical study of quantum dots opens many questions on how to im-
prove the performance of computational techniques, how the same problem scales
with other techniques, and also how does it improves our understanding of quantum
dots themselves. Therefore it would be interesting to compare approximations to
the ground state of quantum dots with other techniques such as couple cluster (CC)
theory or density functional theory (DFT).

Moreover, a time-dependent study of quantum dots would give us more informa-
tion on their interaction with the environment which would be very instructive for
improving their current applications in modern electronics or in biology.
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Analytical expression of the

two-body Coulomb interaction

This function computes the exchange part in the anti-symmetrized Coulomb matrix
element 〈αβ|V |γδ〉as = 〈α(ri)β(rj)|V (rij)|γ(ri)δ(rj)〉as where the α, β, γ and δ
are four state indices and ri, rj the positions of particle i and j. Each state |k〉
can be rewritten in terms of its quantum numbers. In two dimensions, it reads
|k〉 = |nkmksk〉. For simplicity the angular momentum projection quantum number
ml will just be written as m in the following equations.

The complete anti-symmetrized Coulomb matrix element reads

〈αβ|V |γδ〉as = 〈αβ|V |γδ〉︸ ︷︷ ︸
direct
term

−〈αβ|V |γδ〉︸ ︷︷ ︸
exchange
term

, (A.1)

The exchange term 〈αβ|V |γδ〉 expands as follow

〈αβ|V |γδ〉 = δms1,ms4 δms2,ms3 〈(n1,m1), (n2,m2)|V |(n3,m3), (n4,m4)〉 (A.2)

= δms1,ms4 δms2,ms3 Vαβγδ, (A.3)

where we separate the spin part from the spatial part Vαβ|V |γδ.

Note that in our simulator, the function Anisimovas(n1,m1,n2,m2,n3,m3,n4,m4)
only computes V1234 where the numbers 1→ 4 are state indices similar to α, β, γ, δ.

According to Anisimovas [3] (the detail of the derivation is also reviewed by
Rontani [49]), the spatial part can be solved analytically when the basis set is built
upon the single harmonic oscillator orbitals.
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V1234 = δm1+m2,m3+m4

√√√√[ 4∏
i=1

ni!

(ni + |mi|!)

]

×
n1,...,n4∑

j1=0,...,j4=0

[
(−1)j1+j2+j3+j4

j1!j2!j3!j4!

[
4∏

k=1

(
nk + |mk|
nk − jk

)]
1

2
G+1

2

×
γ1=0,...,γ4=0∑
l1=0,...,l4=0

(
δl1,l2 δl3,l4 (−1)γ2+γ3−l2−l3

[
4∏
t=1

(
γt
lt

)]
Γ

(
1 +

Λ

2

)
Γ

(
G− Λ + 1

2

))]
,

(A.4)

where

γ1 = j1 + j4 +
|m1|+m1

2
+
|m4| −m4

2
,

γ2 = j2 + j3 +
|m2|+m2

2
+
|m3| −m3

2
,

γ3 = j3 + j2 +
|m3|+m3

2
+
|m2| −m2

2
,

γ4 = j4 + j1 +
|m4|+m4

2
+
|m1| −m1

2
,

G = γ1 + γ2 + γ3 + γ4,

Λ = l1 + l2 + l3 + l4.

As a note, our implementation of the function Anisimovas(. . . ) which computes
the spatial part of the exchange term, includes the following subfunctions:

� minusPower(int k) which computes (−1)k,

� LogFac(int n) which computes loge(n!),

� LogRatio1(int j1,int j2,int j3,int j4) which computes the loge of 1
j1!j2!j3!j4!

,

� LogRatio2(int G) which computes the loge of 1

2
G+1

2
,

� Product1 (int n1,int m1,int n2,int m2, int n3,int m3,int n4,int m4)

which computes the explicit (not the loge) product
√[∏4

i=1
ni!

(ni+|mi|!)

]
,

� LogProduct2(int n1,int m1,int n2,int m2, int n3,int m3,int n4,int

m4, int j1,int j2,int j3,int j4 ) which computes the loge of
∏4

k=1

(
nk + |mk|
nk − jk

)
,

� LogProduct3(int l1,int l2,int l3,int l4, int γ1,int γ2,int γ3,int γ4)

which computes the loge of
∏4

t=1

(
γt
lt

)
,

� lgamma(double x) which computes the loge [Γ(x)].
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The method of Lagrange Multipliers

In mathematical optimization, the method of Lagrange multipliers (named after
Joseph Louis Lagrange) provides a strategy for �nding the stationnary points of a
function (and among them maxima/minima if the derivative of the function is de�ned
for those points) subject to some constraints.

B.0.8 General approach of the method

For example (see �gure B.1), consider the following optimization problem:

� maximize the functional f(x, y),

� subject to the constraint g(x, y) = c.

We introduce a new variable (λ) called a Lagrange multiplier, and study the
Lagrange function (or Lagrangian) de�ned by

Λ(x, y, λ) = f(x, y)− λ (g(x, y)− c) . (B.1)

If (x, y) is a maximum for the original constrained problem, then there exists
a λ such that (x, y, λ) is a stationary point for the Lagrange function (stationary
points are those points where the partial derivatives of Λ are zero). However, not

Figure B.1: Find x and y to maximize f(x, y) subject to a constraint (shown in red) g(x, y) = c.
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Figure B.2: Illustration of the constrained optimization problem.

all stationary points yield a solution of the original problem. Thus, the method
of Lagrange multipliers yields a necessary condition for optimality in constrained
problems.

B.0.9 Example

Let's use the method for a simple example:
Suppose you wish to maximize f(x, y) = x+y subject to the constraint x2+y2 = 1.

The constraint is the unit circle as shown on �gure B.2, and the level sets of f are
diagonal lines (with slope −1), so one can see graphically that the maximum occurs
at (
√

2 /2,
√

2 /2) (and the minimum occurs at (−√2 /2,−√2 /2))
Formally, we get from the constraint that g(x, y) − c = x2 + y2 − 1, and the

Lagrange function reads

Λ(x, y, λ) = f(x, y) + λ(g(x, y)− c) = x+ y + λ(x2 + y2 − 1). (B.2)

Set the derivative ∂Λ = 0, which yields the system of equations:

∂Λ

∂x
= 1 + 2λx = 0, (i)

∂Λ

∂y
= 1 + 2λy = 0, (ii)

∂Λ

∂λ
= x2 + y2 − 1 = 0, (iii)

(B.3)

As always, the ∂λ equation is the original constraint.
Combining the �rst two equations yields x = y (explicitly, λ 6= 0, otherwise (i)

yields 1 = 0, so one has x = −1/(2λ) = y).
Substituting into (iii) yields 2x2 = 1, so x = ±√2 /2 and the stationary points

are (
√

2 /2,
√

2 /2) and (−√2 /2,−√2 /2). Evaluating the objective function f on
these yields f(

√
2 /2,

√
2 /2) =

√
2 and f(−√2 /2,−√2 /2) = −√2 ,
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thus the maximum is
√

2 , which is attained at (
√

2 /2,
√

2 /2) and the minimum
is −√2 , which is attained at (−√2 /2,−√2 /2).
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Appendix C

Results of variational Monte-Carlo

simulations

In order to produce the variational Monte Carlo energies for di�erent quantum dots,
we used the simulator developed by R. Albrigtsen detailled in his thesis [2]. The
simulator is able to compute the energy of a system in two or three dimension of
quantum dots modelled by an harmonic oscillator con�ning potential identical in two
dimension to our potential. Several parameters can be tuned in order to get accurate
results in a reasonnable amount of time, and it is possible to use an optimizer that
will �nd the best input parameters (α and β) before launching the production run.

Input parameters for optimization Output parameters
nb. α{xyz} β nb. therma. nb. Monte nb. α{xyz} β

electrons cycles Carlo cycles iterations

2 0.9 0.5 104 104 100 0.990855 0.403824
6 0.9 0.6 104 104 100 0.927269 0.565266
12 0.9 0.6 104 104 100 0.878028 0.653256

Table C.1: Results of the optimizaton of the VMC parameters for quantum dots with 2, 6 and 12
particles in two dimensions (dt = 0.01).

Input parameters for production run Blocking param. Results
nb. α{xyz} β nb. therma. nb. Monte nb. block block Energy σ2

electrons cycles Carlo cycles proc. size sample [a.u.] [a.u.]

2 0.99086 0.40382 106 107 3 20000 5000 3.00025 ±1.2 10−4

6 0.92727 0.56527 106 107 3 20000 5000 20.19099 ±1.2 10−3

6 0.92727 0.56527 107 108 3 20000 5000 20.1909 ±3.6 10−4

12 0.87803 0.65326 106 107 3 20000 5000 65.79 ±1.9 10−3

Table C.2: Approximations to the ground state energy of quantum dots with 2, 6 and 12 particles
using the variational Monte-Carlo method with dt = 0.01.
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