
FINITE ELEMENT STUDIES OF
QUANTUM DOTS

by

Lene Norderhaug Drøsdal

THESIS
for the degree of

MASTER OF SCIENCE

(Master in Computational physics)

Faculty of Mathematics and Natural Sciences
University of Oslo

June 2009

Det matematisk- naturvitenskapelige fakultet
Universitetet i Oslo

Contents

1 Introduction 7

2 Introduction to quantum mechanics 9
2.1 Quantum mechanical postulates 9
2.2 Scaling to dimensionless units 11
2.3 The time-independent Schrödinger equation 12
2.4 The Schrödinger equation in spherical coordinates 12

2.4.1 Two dimensions . 13
2.4.2 Three dimensions . 14

2.5 Angular momentum and Spin 16
2.5.1 Angular momentum 16
2.5.2 Spin . 17
2.5.3 Two-particle systems 18

2.6 Interaction with the electromagnetic field 19

3 A mathematical model for quantum dots 23
3.1 Background on quantum dots 23
3.2 The mathematical model . 24
3.3 The single electron quantum dot 26

3.3.1 Two dimensions . 28
3.3.2 Three dimensions . 29

3.4 The two-electron quantum dot 31
3.4.1 Two dimensions . 34
3.4.2 Three dimensions . 35
3.4.3 Anti-symmetric wave functions for two particles 36

3.5 Summary . 36

4 Numerical methods 39
4.1 Finite difference method (FDM) 39

4.1.1 Richardson extrapolation 41
4.2 Finite element method (FEM) 42

3

4 CONTENTS

4.2.1 One dimensional finite element method 42
4.2.2 Element-by-element formulation 45
4.2.3 Local basis functions 47
4.2.4 Algorithm . 50
4.2.5 Higher dimensions . 51
4.2.6 Time-dependent problems 52

4.3 Solving partial differential equations in parallel 53
4.3.1 Parallel linear algebra operations 54
4.3.2 Grid partitioning . 55

4.4 Time evolution of the Schrödinger equation 56
4.4.1 Splitting of the Hamiltonian 57
4.4.2 Blanes-Moan method 58

4.5 Eigenvalue problems . 59
4.5.1 The ARPACK eigenvalue solver 60

5 Implementation of the numerical methods 61
5.1 Implementation of the radial equation 61

5.1.1 Finite difference equations 62
5.1.2 Finite element equations 63
5.1.3 Boundary conditions for eigenvalue problems 65

5.2 Program . 66
5.2.1 The Solver class . 67
5.2.2 The quantumdot class 70
5.2.3 Improvements to the program 71

5.3 Implementation of time evolution 73

6 Results of numerical simulations 75
6.1 Single electron quantum dot 75

6.1.1 Dependence on rmax 76
6.1.2 Analysis of results and methods 80

6.2 Relative coordinates equation 86

7 Concluding remarks 89

A Mathematical details 91
A.1 Analytic solutions of the single-electron harmonic oscillator . . 91
A.2 Particular solutions for the relative motion 94
A.3 Numerical integration . 95

CONTENTS 5

B Source code 97
B.1 Main program: class quantumdot 98

B.1.1 Input file “qd.inp” . 108
B.2 Solver.h . 108
B.3 Finite element Solver . 111
B.4 Finite difference Solver . 117
B.5 Eigenstates class . 120
B.6 Simple matrix class . 126

Chapter 1

Introduction

In this master thesis we study a two-dimensional quantum mechanical system
of two electrons in a harmonic oscillator potential and a magnetic field. This
is an approximation to the two-electron quantum dot. A quantum dot is
a semiconductor capable of confining a small number of free electrons. The
topic of quantum dots is very popular. Because of studies of double quantum
dots in quantum computing, the two-electron case is especially interesting.

The quantum mechanical system is described by the Schrödinger equa-
tion which is a partial differential equation. We solve the time-independent
Schrödinger equation numerically using the finite element method and the fi-
nite difference method. In this thesis we choose to focus on the finite element
method. This method is not commonly used in quantum mechanics, perhaps
because it is much more complicated to implement than the finite difference
method. However the finite element method gives us more possibilities. For
example, by introducing higher order basis functions, we can improve the
truncation error in the same implementation. Another advantage of the fi-
nite element method which we have not studied here, is the strength of the
method on complex geometries.

A great portion of the time spent on this thesis has been dedicated to de-
veloping a program which solves the time-independent Schrödinger equation.
For comparison we have implemented both the finite difference and the finite
element method in a similar structure. In this thesis we have focused on
problems with spherical symmetry, where the equations can be transformed
into one-dimensional radial equations.

We begin this thesis by giving a short introduction to quantum mechanics
in Chapter 2. This chapter gives the required background needed to study
the mathematical model for the quantum dot which we derive in Chapter 3.
In Chapter3 we first give a short introduction to quantum dots. Then we

7

8 CHAPTER 1. INTRODUCTION

introduce the mathematical model for the quantum dot, specialising on the
case of one and two electrons. The equations which we will solve numerically
are derived and we also study analytic solutions. We begin by deriving the
single-electron quantum dot. Then we show that the two-electron equation
can be separated into two independent single particle equations by introduc-
ing a new set of coordinates.

In Chapter 4 the numerical methods are described in detail. We focus
on the finite element method in one dimension. The implementation of the
numerical approximations and program structure is given in Chapter 5. For
the full source code, see Appendix B. The results of the numerical simula-
tions and a discussion of the methods are given in Chapter 6. Finally, we
summarise the thesis in Chapter 7.

I would like to thank my supervisors Morten Hjorth-Jensen and Xing Cai
for their helpful advice. I would also like to thank my family and friends for
their support, especially my boyfriend Hoa Binh for keeping me calm during
this very stressful time.

Chapter 2

Introduction to quantum
mechanics

In this chapter we give a short introduction to the basic ideas of quantum
mechanics. For more details we refer to general texts on quantum mechanics
[1, 2]. First we introduce the Schrödinger equation and the fundamental
postulates of quantum mechanics. Then we focus on some topics required to
derive the quantum dot equations in Chapter 3. The reader who is familiar
with quantum mechanics may skip this chapter.

2.1 Quantum mechanical postulates
Because of experiments that could not be explained by classical physics,
quantum mechanics was developed during the 20th century. We introduce
the quantum mechanical formalism using the Dirac bracket notation; There
is an abstract state vector |ψ〉, known as the “ket” vector, and its hermitian
conjugate the “bra” vector 〈ψ|. The inner product is defined as a bracket
〈ψ |ψ〉. Observables are associated with operators Â. In a given basis the
operators are represented by matrices. The mathematical language is linear
algebra. We define the commutator between to operators as[

Â, B̂
]

= ÂB̂ − B̂Â,

which is in general different from zero.

We list the postulates for the mathematical formulation of quantum me-
chanics [3]:

1. Each physical observable A is represented by a hermitian operator Â.

9

10 CHAPTER 2. INTRODUCTION TO QUANTUM MECHANICS

The measurable values of an observable are the eigenvalues an of Â

Â |n〉 = an |n〉 ,

where |n〉 are the corresponding eigenvectors. The energy of the system
is associated with the eigenvalues of the Hamiltonian operator Ĥ.

2. A quantum state is described by a state vector |ψ〉 in Hilbert space.
The state vector holds all observable properties of the quantum state.
Any state vector must be normalisable

〈ψ |ψ〉 = 1.

The expectation values of an observable is given by〈
Â

〉
= 〈ψ| Â |ψ〉 .

The state vector can be expanded in any complete set of basis vectors
|ai〉

|ψ〉 =
∑

i

ci |ai〉 ,

where ci = 〈ai |ψ〉 are the components of the vector in that basis. For
instance we have the coordinate basis

ψ(x) = 〈x |ψ〉 .

3. The time evolution of the state vector is governed by the Schrödinger
equation

i~
∂

∂t
|ψ(t)〉 = Ĥ |ψ(t)〉 , (2.1)

where Ĥ is the Hamiltonian representing the total energy of the system.
In general we have Ĥ = p̂2

2m
+ V̂ , where p̂ is the momentum operator

and V̂ is the potential energy.

For the rest of this thesis we use the coordinate basis. In the coordinate
basis the position and momentum operators are

x̂→ x,

p̂→ −i~ d

dx
.

2.2. SCALING TO DIMENSIONLESS UNITS 11

The normalisation is given by∫ ∞

−∞
ψ(x)∗ψ(x)dx, (2.2)

where x is a vector with the same dimensionality as the system. The expec-
tation value is also given as an integral〈

Â
〉

=

∫
ψ(x)∗Aψ(x)dx. (2.3)

The commutator between x̂ and p̂ is

[x̂, p̂] = i~. (2.4)

This is Heisenberg’s famous uncertainty principle. In fact this principle is
defined as the commutator between any pair of observables. If the com-
mutator is non-zero then the two observables cannot be observed sharply
simultaneously.

2.2 Scaling to dimensionless units
In quantum mechanics the equations are complicated by many constants.
To get rid of them we introduce a dimensionless scaling to so-called atomic
units. The scaling is given by

r = rcr =
4πε0~2

mee2
r = a0r,

E = EcE =
~2

mea2
0

E,

ω = ωcω =
~

mea2
0

ω,

B = BcB =
~
ea2

0

B.

The constants used here are: Planck’s constant ~, the mass of the electron
me, the elementary charge e (the electron has charge C = −e) and the
permittivity of space ε0. The values of these constants can be found in a
table of physical constants [4]. We define the scaling constant of r as the
Bohr radius a0 = 4πε0~2

mee2 . For the scaled equations we must also scale the
potentials. Here are some examples,

Harmonic oscillator: V =
1

2
meω

2r2 → V =
1

2
ω2r2, (2.5)

Hydrogen atom: V = − e2

4πεr
→ V = −1

r
. (2.6)

12 CHAPTER 2. INTRODUCTION TO QUANTUM MECHANICS

2.3 The time-independent Schrödinger equation
In coordinate basis the Schrödinger equation is given as

i~
∂Ψ

∂t
=HΨ (2.7)

=
p2

2m
Ψ + VΨ = − ~2

2m
∇2Ψ + VΨ.

When we have a time-independent potential V (x) we insert the ansatz Ψ(x, t) =
ψ(x)U(t) in the Schrödinger equation to get a time-dependent equation

∂U

∂t
= −iE

~
U, (2.8)

and a time-independent equation

− ~2

2m
∇2ψ + V ψ = Eψ, (2.9)

where E is the separation constant. The last equation is known as the time-
independent Schrödinger equation and the constant E is identified as the
total energy of the system.

To solve the time-independent Schrödinger equation we must specify the
potential V (x). The time-dependent equation has the solution

U(t) = e−iEt/~, (2.10)

where we define U(t) as the time evolution operator. The full wave function
is

Ψ(x, t) = ψ(x)e−iEt/~. (2.11)

Because U(t)∗U(t) = 1, the time-independent wave functions are stationary
states and the probability is given by

∫
Ψ∗Ψ =

∫
ψ∗ψ. in Chapter 4 we

discuss methods for solving the time-dependent Schrödinger equation.

2.4 The Schrödinger equation in spherical co-
ordinates

For a spherically symmetric potential V (r) we can separate the time-independent
Schrödinger equation (2.9) further into a radial equation and an angular equa-
tion and solve them separately. Because the angular equation is independent

2.4. THE SCHRÖDINGER EQUATION IN SPHERICAL COORDINATES13

of r we can solve it in general for any potential V (r). We define spherical
coordinates

r ≥ 0 distance from origin,
0 ≤ φ ≤ 2π angle from x-axis,
0 ≤ θ ≤ π angle from z-axis (3D).

2.4.1 Two dimensions

In two dimensions ∇2 is given by

∇2 =
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2

∂2

∂φ2
. (2.12)

We insert this in Equation (2.9) and use the ansatz of separation of variables
with

ψ(r, φ) = R(r)Y (φ), (2.13)

we also multiply by 2m
~2 r

2 to obtain

Y

[
r
∂

∂r

(
r
∂R

∂r

)
− 2m

~2
r2(E − V (r))

]
R +R

∂2

∂φ2
Y = 0.

For this equation to hold, each part must be equal to a separation constant.
We choose this constant to be m2 and get an angular equation

d2Y

dφ2
= −m2Y, (2.14)

and a radial equation

−1

r

d

dr

(
r
dR

dr

)
+
m2

r2
R +

2m

~2
(V (r)− E)R = 0. (2.15)

The angular equation (2.14) has the normalised solution

Y (φ) =
1√
2π
eimφ, (2.16)

where the quantum number m can take the values

m = 0,±1,±2,

14 CHAPTER 2. INTRODUCTION TO QUANTUM MECHANICS

For the solution R(r) to be normalisable we must require the boundary con-
ditions

R(0) = C and R(∞) = 0, where C is a constant. (2.17)

In the radial equation (2.15) we introduce the function

u(r) =
√
rR(r) → R(r) =

u(r)√
r
, (2.18)

to obtain

−d
2u

dr2
+

[
m2 − 1

4

r2
+

2me

~2
V

]
u =

2me

~2
Eu.

Finally, introducing dimensionless variables (denoted by r) as defined in Sec-
tion 2.2, we can rewrite this to

− d2u

dr2 +

[
m2 − 1

4

r2 + 2V

]
u = 2Eu. (2.19)

The boundary conditions (2.17) simplify to

u(0) = 0, u(∞) = 0. (2.20)

The total wave function is normalised by∫ 2π

0

∫ ∞

0

ψ∗(r, θ)ψ(r, θ)rdrdθ = 1.

Inserting ψ(r, θ) = 1√
2π
eimφ u(r)√

r
into this expression we have∫ ∞

0

u∗(r)u(r)dr = 1.

2.4.2 Three dimensions

Similarly, in three dimensions we have ∇2 given by

∇2 =
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

(
∂2

∂φ2

)
, (2.21)

We insert this is Equation (2.9) and use the ansatz

ψ(r, θ, φ) = R(r)Y (φ, θ),

2.4. THE SCHRÖDINGER EQUATION IN SPHERICAL COORDINATES15

to obtain

Y

[
d

dr

(
r2dR

dr

)
− 2mr2

~2
(V (r)− E)

]
R

+R
1

sin2 θ

[
sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
+
∂2Y

∂φ2

]
Y = 0,

We choose the separation constant l(l+1) and get an equation which depends
only on φ and θ

sin θ
∂

∂θ

(
sin θ

∂Y

∂θ

)
+
∂2Y

∂φ2
= −l(l + 1) sin2 θY, (2.22)

and a radial equation

d

dr

(
r2dR

dr

)
− 2mr2

~2
(V (r)− E)R = l(l + 1)R. (2.23)

The solution of the angular equation (2.22) is more complicated for the
three-dimensional case and we refer to texts in quantum mechanics for the
derivation, see for example [1]. The normalised angular wave functions are
the spherical harmonics

Y m
l (θ, φ) = ε

√
2l + 1

4π

(l − |m|)!
(l + |m|)!

eimφPm
l (cos θ), , (2.24)

ε = (−1)m for m ≥ 0, ε = 1 for m ≤ 0, (2.25)

where Pm
l are the associated Legendre polynomials [5] defined by

Pm
l (x) = (1− x2)

1
2
|m|

(
d

dx

)|m|

Pl(x),

Pl(x) =
1

2ll!

(
d

dx

)l

(x2 − 1)l.

The quantum numbers l and m are restricted by

l = 0, 1, 2 . . .

m = −l,−l + 1, . . . ,−1, 0, 1, . . . , l − 1, l.

In the three-dimensional case we introduce the function

u(r) = rR(r) → R(r) =
u(r)

r
, (2.26)

16 CHAPTER 2. INTRODUCTION TO QUANTUM MECHANICS

to obtain

−d
2u

dr2
+

[
l(l + 1)

r2
+

2me

~2
V

]
u =

2me

~2
Eu.

We introduce the dimensionless scaling of Section 2.2 to get

−d
2u

dr2 +

[
l(l + 1)

r2 + 2V

]
u = 2Eu. (2.27)

We have the same boundary conditions and normalisation as for the two-
dimensional case

u(0) = 0, u(∞) = 0, (2.28)∫ ∞

0

u∗(r)u(r)dr = 1. (2.29)

2.5 Angular momentum and Spin

2.5.1 Angular momentum

Classically, we define angular momentum as L = r × p in three dimensions.
If we use p = −i~∇, we have the quantum mechanical expression for L

Lx = ypz − zpy, Ly = zpx − xpz, Lz = xpy − ypx.

We choose to study L2 and Lz (we choose one of the components of L) and
search for the eigenstates. In spherical coordinates we have

L2 = −~2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

(
∂2

∂φ2

)]
, (2.30)

Lz = −i~ ∂

∂θ
. (2.31)

The spherical harmonics Ylm we defined in the previous section are also eigen-
functions of L2 and Lz. The eigenvalues are

L2Ylm = ~2l(l + 1)Ylm, LzYlm = ~mYlm.

Because they have the same eigenfunctions L2 and Lz, commute with the
Hamiltonian H

[H,L2] = [H,Lz] = 0.

2.5. ANGULAR MOMENTUM AND SPIN 17

2.5.2 Spin

All particles have a spin property, which is derived in relativistic quantum
mechanics. We define it in a similar way as the angular momentum

S2χms = ~2s(s+ 1)χms , Szχms = ~msχms . (2.32)

The eigenfunctions χms are called the eigenspinors, we define these for elec-
trons soon. The quantum number s can take integer (bosons) and half integer
(fermions) values

s = 0,
1

2
, 1,

3

2
. . . , ms = −s,−s+ 1, . . . , s− 1, s. (2.33)

In particular electrons have the property

s =
1

2
, ms = ±1

2
. (2.34)

Because electrons are the focus of this thesis we discuss this case further.
There are two eigenstates

spin up: ms = +
1

2
, |↑〉

spin down: ms = −1

2
, |↓〉

We define the spin state as the spinor

χ =

(
a
b

)
= aχ+ + bχ−, (2.35)

where
χ+ =

(
1
0

)
, χ− =

(
0
1

)
,

represent spin up and spin down states respectively. We define the spin
matrix by the Pauli matrix

S =
~
2
σ, (2.36)

where σ has the components

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (2.37)

These matrices have the property

σzχ+ = +χ+ → Szχ+ = +
~
2
, (2.38)

σzχ− = −χ− → Szχ− = −~
2
. (2.39)

18 CHAPTER 2. INTRODUCTION TO QUANTUM MECHANICS

2.5.3 Two-particle systems

When we have two spin 1
2

particles we denote the spin states by

↑↑, ↑↓, ↓↑, ↓↓,

where the first arrow represents the spin of the first particle and the second
arrow represents the other particle. For the two-particle states we use capital
letters for the quantum numbers S, M . We wish to group the spin states into
symmetric and antisymmetric spin states. We have three symmetric states
with S = 1 (triplet)

↑↑, M = 1,

1√
2

(↑↓ + ↓↑) , M = 0,

↓↓, M = −1,

and one antisymmetric state for S = 0 (singlet)

1√
2

(↑↓ − ↓↑) , M = 0.

Here we have M = m1 + m2 with values M = −S,−S + 1, . . . , S − 1, S as
we required for the spin quantum numbers.

Because we are dealing with a system of fermions we require the total
wave function to be anti-symmetric under the interchange of two particles

ψ(r1, r2) = −ψ(r2, r1).

If we construct a wave function of the form

ψ(r1, r2) = A [ψa(r1)ψb(r2)− ψa(r2)ψb(r1)] ,

the Pauli principle follows: Two identical fermions cannot occupy the same
state, because if ψa = ψb, then the wave function is zero.

For the full two-particle wave function we must require anti-symmetry
for fermions. To achieve this we combine a symmetric spatial wave function
to an anti-symmetric spin function (S = 0) and an anti-symmetric spatial
wave function to a symmetric spin function (S = 1). The two-particle spin
functions S = 0 and S = 1 were defined in the previous section.

2.6. INTERACTION WITH THE ELECTROMAGNETIC FIELD 19

2.6 Interaction with the electromagnetic field
In the quantum dot system, which we study in this thesis, we have an electro-
magnetic field. In this section we derive the equations for interaction with an
electromagnetic field in quantum mechanics. This derivation is taken from
[3]. We describe the magnetic field B, and the electric field E in terms of
potentials

E = −∇Φ, (2.40)
B = ∇×A, (2.41)
∇ ·B = 0, (2.42)

where A is a vector potential and Φ is a scalar potential.
In classical theory a charged particle is subject to the Lorentz force F =

e(E + v × B). In quantum mechanics we should reproduce this force in
the classical limit. To do this we need to incorporate the electromagnetic
field into the Schrödinger equation somehow. The electric field gives the
contribution V = eΦ, but what about the magnetic field?

For a given magnetic field B we can have many vector potentials A
which satisfy Equation (2.41). To show this we add a gradient to the vector
potential

A→ A′ = A+∇χ, (2.43)

where χ = χ(r) is a scalar function. This is called a gauge transformation.
The magnetic field stays the same

B → B′ = B +∇×∇χ = B, (2.44)

because ∇ × ∇ = 0. When we choose a specific A we choose a gauge. We
are allowed to do this because our equations are gauge invariant. A common
choice, which we will use in this thesis is the Coulomb gauge

∇ ·A = 0. (2.45)

We further choose to write the vector potential as

A =
1

2
B × r, (2.46)

which automatically fulfills the coulomb gauge (2.45). In fact so will any
vector potential A′ which transforms as (2.43). Further show we show that
by introducing a new Hamiltonian and a phase transformation on the wave
function we can always get back expression (2.46).

20 CHAPTER 2. INTRODUCTION TO QUANTUM MECHANICS

We introduce a modified Hamiltonian

H =
1

2m
(p− eA)2, (2.47)

where we have used the replacement p → p − eA. When we write out the
expression

(p− eA)2 =p2 − e (p ·A+A · p) + e2A2, (2.48)

and study p ·A acting on a wave function ψ , we see that when ∇ ·A = 0
(Coulomb gauge), p and A commute

p ·Aψ = −i~∇ · (Aψ) = −i~(∇ ·A+A · ∇ψ) = A · (−i~∇ψ). (2.49)

Inserting these expressions back in the Hamiltonian we have

H =
1

2m

(
p2 − 2ep ·A+ e2A2

)
. (2.50)

If we use the choice for A given in expression (2.46) we can write the Hamil-
tonian as

H =
1

2m

(
p2 − eB ·L+ e2A2

)
, (2.51)

where we have used (B × r) · p = B · (r × p) and recognised the angular
momentum as r × p = L .

We also introduce a phase transformation to the wave function

ψ(r) → ψ′(r) = eiθ(r)ψ(r). (2.52)

Acting on this wave function by p− eA we have the expressions

(p− eA)ψ′(r) = eiθ(r)(p+ ~∇θ(r)− eA)ψ(r),

(p− eA)2ψ′(r) = eiθ(r)(p+ ~∇θ(r)− eA)2ψ(r).

We now make a gauge transformation on A and choose the phase θ(r) =
(e/~)χ(r)

(p− eA′)2ψ′(r) = eiθ(r)(p+ ~∇θ(r)− eA− e∇χ)2ψ(r)

= eieχ(r)/~(p− eA)2ψ(r).

We have now made the Schrödinger equation gauge invariant because we
can compensate for a change in the vector potential A → A′ by a phase

2.6. INTERACTION WITH THE ELECTROMAGNETIC FIELD 21

transformation in the wave function ψ → ψ′. We have also introduced the
coupling to the magnetic field by p→ p− eA.

To get the spin coupling to the magnetic field we must the Pauli Hamil-
tonian

H =
1

2m
(σ ·Π)2 , (2.53)

where p − eA = Π and σ are the Pauli spin matrices defined by Equation
(2.37) in Section 2.5.2. It can be shown that the Pauli matrices fulfill the
relation

(σ · a)(σ · b) = a · b+ iσ · (a× b).
Inserting this we have

(σ ·Π)2 = iσ · (Π×Π) + Π2. (2.54)

Here Π2 denotes the standard Hamiltonian. We calculate the cross product
using the Einstein’s summation convention

(Π×Π)i = εijkΠjΠk = [Πj,Πk] (2.55)
= −~2[∂j, ∂k] + ie~[∂j, Ak]− ie~[∂k, Aj] + e2[Aj, Ak],

where ∂i ≡ ∂
∂xi

. We calculate the commutators:

[∂j, ∂k] = 0,

[Aj, Ak] = 0,

[∂j, Ak] = (∂jAk),

[∂k, Aj] = (∂kAj).

We insert these relations in Equation (2.55) and obtain

(Π×Π)i = ie~ (∂jAk − ∂kAj) .

Comparing this with Bi = (∇×A)i = εijk∂jAk = ∂jAk − ∂kAj we see that
they are the same. This gives

(σ ·Π)2 = Π2 − e~σ ·B. (2.56)

Finally, we have the full Hamiltonian for a particle in a magnetic field

H =
1

2m
(p− eA)2 − e~

2m
σ ·B + eΦ. (2.57)

Here we have introduced the coupling of angular momentum to the magnetic
field by B ·L and the coupling of spin to the magnetic field by B · σ. This
is known as the Zeeman effect and gives a splitting of the energy levels. We
also have the purely quantum term A2.

Chapter 3

A mathematical model for
quantum dots

In this chapter we study the quantum quantum system of a quantum dot. We
begin by giving a short introduction to the field of quantum dots. Then we
derive the mathematical model used to describe them. We focus on the two
dimensional case, but will briefly mention the three dimensional equations
as well.

We study the time-independent Schrödinger equation, where we search
for the eigenstates of the system. These eigenstates can then be used as a
basis for computing the time evolution of the system. First, we derive the
single-electron quantum dot, which can be solved analytically. Then we show
that the equation for the two-electron quantum dot can be rewritten into two
independent single particle equations. This case only has particular analytic
solutions, so this is an interesting problem to solve numerically.

3.1 Background on quantum dots

The name "quantum dot" refers to a quantum system where electrons are
confined in space. Modern techniques allow confinement of only a few elec-
trons. This is achieved in a semiconductor structure. We will only give a
short introduction here, for a review article, see Reference [6].

Quantum dots are often called “artificial atoms” because they have many
similarities with atoms, this makes them very interesting to study. For these
"artificial atoms" we can find degenerate energy levels giving stable states and
a shell structure. Experiments have shown that for a quantum dot, electrons
can be added in a controlled way by tunneling [7]. The development in

23

24 CHAPTER 3. A MATHEMATICAL MODEL FOR QUANTUM DOTS

semiconductor technology toward smaller systems also make it important to
study such quantum systems.

The properties of a quantum dot can be controlled by changing the ge-
ometry, applying electrostatic gates or by applying a magnetic field. There
are several techniques for manufacturing quantum dots, but they will not
be explained here. In Reference [6] manufacturing techniques are explained.
The electrons are confined in a bowl shaped potential, we approximate this
potential by a harmonic oscillator.

A very interesting application is the use of quantum dots in quantum
computing. In Reference [8] two coupled quantum dots used as a two qubit
quantum gate. The quantum bit (qubit) is a two-level system realised by
the electron spin. By taking the advantage of the superposition principle
in quantum mechanics specialised algorithms can be created for the quan-
tum computer. For the coupled quantum dot the quantum gate operates by
tunneling between the two dots. Single qubit operations are performed by
applying local magnetic field. The model for this quantum gate is similar to
the model which we will derive except that it has a double harmonic oscillator
well.

Another application is the use of the optical properties of the quantum
dots. In the same way as atoms they can absorb and emit photons. Because
we can vary the properties of the quantum dot and therefore the energy levels
the wavelength of the emitted light can also be varied.This property may be
used in LED lights or lasers, but a much more interesting application is the
use of quantum dots in medical imaging. There have been experiments on
using quantum dots for cancer targeting and imaging. In Reference [9] such
experiments are described. They show promising features.

3.2 The mathematical model
We describe the quantum dot as a quantum mechanical system of electrons
in a harmonic oscillator well and in an external magnetic field. This quantum
system is governed by the Schrödinger equation. In this chapter we focus on
the time-independent case

HΨ(r) = EΨ(r). (3.1)

For a system of N electrons we have the Hamiltonian

H =
N∑

i=1

hi +
N∑

i=1

∑
j 6=i

e2

4πε0

1

|ri − rj|
, (3.2)

3.2. THE MATHEMATICAL MODEL 25

where hi are the single particle Hamiltonians. The last term is the electro-
static repulsion between two electrons.

In Section 2.6 we derived the single particle Hamiltonian for a particle in
an electromagnetic field

hi =
1

2m
(pi − eAi)

2 + eΦ− e~
2me

σ ·B + v(ri). (3.3)

In this thesis we use a constant magnetic field along the z-axis and zero
electric field

B = (0, 0, B0), (3.4)
E = 0. (3.5)

When we have no electric field the electric potential is a constant

E = −∇Φ → Φ = const.

In Section 2.6, we set the electromagnetic vector potential in Equation (2.46):

A =
1

2
B × r =

B0

2
(−y, x, 0). (3.6)

The harmonic oscillator potential is given by

V (r) =
1

2
meω

2
0r

2, (3.7)

where ω0 is the oscillator frequency describing the shape of the potential.
With this potential the single particle Hamiltonian for the quantum dot is

hi =
1

2m
(pi − eAi)

2 + eΦ− e~
2me

σ ·B +
1

2
meω

2
0r

2
i . (3.8)

We recall that σ is the Pauli spin matrix defined in Section 2.5.2 by Equation
(2.37).

If we disregard the electron-electron repulsion in Equation (3.2), we can
solve N independent single-particle eigenvalue problems given by

hiψi = Eiψi,

where the index i refer to electron i. Each particle has its own set of eigen-
states Eλ, ψλ. The total energy is given as the sum of the single particle
energies

E =
N∑

i=1

Ei,

26 CHAPTER 3. A MATHEMATICAL MODEL FOR QUANTUM DOTS

and the wave function is the product of the single particle wave functions.

Ψ =
N∏

i=1

ψi.

In the next section we study the single particle equation with the Hamiltonian
(3.8). Then we move on to study the two-particle case. In this case we also
have the electrostatic interaction between the two electrons and we will see
that this term is the source of complexity.

3.3 The single electron quantum dot
For N = 1 we have the Hamiltonian

H = h =
1

2m
(p− eA)2 + eΦ− e~

2me

σ ·B +
1

2
meω

2
0r

2. (3.9)

To separate out the spin part we use the ansatz

Ψ(r) = ψ(r)χ, (3.10)

where χ is the spin function defined by Equation (2.35) in Chapter 2. In-
serting this into the time-independent Schrödinger equation we can separate
it into a spatial part depending on r and a part which is independent of r

HΨ =χ

[
1

2m
(p− eA)2 +

1

2
meω

2
0r

2

]
ψ(r) (3.11)

+ ψ(r)− e~
2me

σ ·Bχ+ eΦψ(r)χ

= Eψ(r)χ.

To solve this equation for any function ψ, χ each term must be a constant
and the sum of the constants must be equal to the total energy

E = EΩ + Es + eΦ, (3.12)

where Ω denotes the spatial part and s denotes the spin part. The two
equations which must be solved are[

1

2m
(p− eA)2 +

1

2
meω

2
0r

2

]
ψ(r) =EΩψ(r) and (3.13)

− e~
2me

σ ·Bχ =Esχ. (3.14)

3.3. THE SINGLE ELECTRON QUANTUM DOT 27

We begin by solving the spin equation (3.14). With a constant magnetic
field in the z-direction (3.4) we have

−B0
e~

2me

σzχ = Esχ. (3.15)

From Section 2.5.2 we know that the eigenvalues and eigenvectors of σz are

+1, χ+ =

(
1
0

)
, (3.16)

−1, χ− =

(
0
1

)
. (3.17)

This gives

Es = −B0
e~
me

ms, ms = ±1

2
, (3.18)

using atomic units as defined in Section 2.2 we have

Es = B0ms. (3.19)

We focus on the spatial equation (3.13) from now

Hψ(r) =

[
1

2me

(p− eA)2 +
1

2
meω

2
0r

2

]
ψ(r) = Eψ(r). (3.20)

From Section 2.6 we know that

(p− eA)2 = p2 − eB ·L+ e2A2. (3.21)

Using the magnetic field (3.4) we have

B ·L = B0Lz = −i~B0
∂

∂θ
. (3.22)

Inserting this in Equation (3.20) we obtain the Hamiltonian

H =
1

2me

(
p2 + ei~B0

∂

∂θ
+ e2A2

)
+

1

2
meω

2
0r

2, (3.23)

which we study for the two-dimensional and three-dimensional case.

28 CHAPTER 3. A MATHEMATICAL MODEL FOR QUANTUM DOTS

3.3.1 Two dimensions

In two dimensions we have the Hamiltonian

H =− ~2

2me

[
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2

∂2

∂θ2
− i

B0e

~
∂

∂θ

]
ψ(r) (3.24)

+
1

2
me

[
B2

0e
2

4m2
e

+ ω2
0

]
r2ψ(r) = Eψ(r).

We define

ω2 = ω2
0 + ω2

B, ωB =
B0e

2me

, (3.25)

and make a substitution using the angular solution (2.16) from Chapter 2

ψ(r) = R(r)
1√
2π
eimθ,

to get a one-dimensional radial equation

− ~2

2me

[
1

r

d

dr

(
r
d

dr

)
− m2

r2
+
B0em

~

]
R(r) +

1

2
meω

2r2R(r) = ER(r).

We introduce the dimensionless variables of Section 2.2 and define

ε = 2E +B0m (3.26)

to obtain

−
[
1

r

d

dr

(
r
d

dr

)
− m2

r2

]
R(r) + ω2r2R(r) = εR(r), (3.27)

ω2 = ω2
0 +

B
2

0

4
. (3.28)

To get rid of the first derivative we make another substitution

R(r) =
u(r)√
r
,

to get [
− d2

dr2 +
m2 − 1

4

r2 + ω2r2

]
u(r) = εu(r). (3.29)

3.3. THE SINGLE ELECTRON QUANTUM DOT 29

From Chapter 2 we have the boundary conditions

u(0) = 0, u(∞) = 0,

and normalisation of the wave function given by

∫ ∞

0

u(r)∗u(r)dr = 0.

This is the single particle equation for the quantum dot. We observe that
this is just a harmonic oscillator potential where ω and E are shifted because
of the magnetic field. This equation has closed form solutions, which we can
use to test our algorithm.

We show the derivation of the analytic solutions for the two-dimensional
quantum dot in Appendix A.1. The solution is

ε = 2ω(|m|+ 1 + 2n).

From (3.63) we find the full energy

E =(|m|+ 1 + 2n)ω − 1

2
Bm. (3.30)

By studying the analytic solutions we see that the addition of a magnetic
fieldB give a splitting of the energy levels for ±m in addition to an increased
value of ω. The radial wave function is

R(r) =

√
2n!

(|m|+ n)!
ω(|m|+1)/2r|m|e−

1
2
ωr2

L|m|
n (ωr2), (3.31)

where L|m|
n are the associated Laguerre polynomials. The first three Laguerre

polynomials are given n Table A.1

3.3.2 Three dimensions

For the sake of completeness we also quickly set up the equations for the
single electron quantum dot in three dimensions. In three dimensions we

30 CHAPTER 3. A MATHEMATICAL MODEL FOR QUANTUM DOTS

have

Hψ(r) =
1

2me

(p− eA)2 +
1

2
meω

2
0r

2 (3.32)

=− ~2

2me

[
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

(
∂2

∂φ2

)
− i

B0e

~
∂

∂φ

]
ψ(r)

+
1

2
meω

2
0r

2ψ(r) +
1

2
me

B2
0e

2

4m2
e

(
x2 + y2

)
ψ(r)

=Eψ(r).

In chapter 2 we gave the angular solution of a spherically symmetric potential,
we insert this as ψ(r) = R(r)Ylml

, where Ylml
is given by (2.24). We recall

the definitions of L2 and Lz and its eigenvalues from Section 2.5.1

L2 = −~2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

(
∂2

∂φ2

)]
→ ~2l(l + 1), (3.33)

Lz = −i~ ∂

∂θ
→ ~m. (3.34)

We identify these in the Schrödinger equation (3.32) and insert their eigen-
values. We now have a one dimensional radial equation

HR(r) =− ~2

2me

[
1

r2

∂

∂r

(
r2 ∂

∂r

)
− l(l + 1)

r2
+
B0e

~
m

]
R(r)

+
1

2
meω

2
0r

2R(r) +
1

2
me

B2
0e

2

4m2
e

(
x2 + y2

)
R(r)

=ER(r).

In three dimensions we encounter a problem: We get a term A2 →
(x2 + y2). Because it has no z2 term we must require

ωx = ω0, ωy = ω0, ωz =

√
ω2

0 +
B2

0

4
,

in order to obtain spherical symmetry. Finally, we insert the substitution
R(r) = u(r)

r
and scale by atomic units[

− d2

dr2 +
l(l + 1)

r2 + ω2r2

]
u(r) = εu(r), (3.35)

3.4. THE TWO-ELECTRON QUANTUM DOT 31

where ω is defined in (3.28) and ε is defined in (3.26).
In the three dimensional case the analytic eigenvalues are

ε = 2(2n+ l +
3

2
)ω, (3.36)

E = (2n+ l +
3

2
)ω −mωB, (3.37)

and the radial wave functions are

R(r) =

√
2n+l+2n!√

π(2n+ 2l + 1)!!
ω(l+3/2)/2rle−ωr2/2L

l+ 1
2

n (ωr2), (3.38)

where Ll+ 1
2

n (x) are the Laguerre polynomials given in Appendix A.1.

3.4 The two-electron quantum dot
We begin by separating the spin equation in the same way as we did one the
single-particle case. This separation gives E = EΩ + 2eΦ +Es1 +Es2 , where
Esi

is given in Equation (3.18). We now focus on the spatial Hamiltonian as
we did for the two-dimensional case.For the two-electron case we also have
an electron-electron interaction term. The Hamiltonian is

H =
2∑

i=1

[
1

2me

(pi − eAi)
2 +

1

2
meω

2
0r

2
i

]
(3.39)

+
e2

4πε0

1

|r1 − r2|
.

To solve this two-particle problem it is convenient to introduce the coor-
dinates of the centre-of-mass

R =
1

2
(r1 + r2) , P = p1 + p2, (3.40)

and relative motion

r = r1 − r2, p =
1

2
(p1 − p2) . (3.41)

When the magnetic field is given as in Equation (3.6), we have

A(r) = A(r1)−A(r2), A(R) =
1

2
(A(r1) +A(r2)) .

32 CHAPTER 3. A MATHEMATICAL MODEL FOR QUANTUM DOTS

From these definition we calculate some useful relations

r2
1 + r2

2 =
1

2

(
4R2 + r2

)
, p2

1 + p2
2 =

1

2

(
4p2 + P 2

)
,

p1 ·A(r1) + p2 ·A(r2) = p ·A(r) + P ·A(R) and

A(r1)
2 + A(r2)

2 =
1

2
A(r)2 + 2A(R)2.

First we write out the Hamiltonian in original set of coordinates r1 and r2

H =
1

2me

(
p2

1 + p2
2 − 2e [p1 ·A(r1) + p2 ·A(r2)] + e2

[
A(r1)

2 + A(r2)
2
])

+
1

2
meω

2
0(r

2
1 + r2

2) +
e2

4πε0

1

|r1 − r2|
.

Inserting the new set of coordinates defined in Equations (3.40) and (3.41)
we have

H =
1

2me

(
2p2 +

1

2
P 2 − 2e [p ·A(r) + P ·A(R)] + e2

[
1

2
A(r)2 + 2A(R)2

])
+

1

2
meω

2
0(

1

2
r2 + 2R2) +

e2

4πε0

1

r
. (3.42)

In this equation we identify two independent parts

H = 2Hr +
1

2
HR, (3.43)

where Hr depends only on the relative coordinate

Hr =
1

2me

(
p2 − ep ·A(r) + e2

1

4
A(r)2

)
+

1

2
me

1

4
ω2

0r
2 +

1

2

e2

4πε0

1

r
, (3.44)

and HR depends only on the centre-of-mass coordinate

HR =
1

2me

(
P 2 − 2eP · 2A(R) + e24A(R)2

)
+

1

2
meω

2
04R

2. (3.45)

We now introduce the ansatz

ψ(r1, r2) = ψr(r)ψR(R). (3.46)

3.4. THE TWO-ELECTRON QUANTUM DOT 33

Using this we define two independent single particle equations

Hrψr = Erψr, (3.47)
HRψR = ERψR. (3.48)

The energy is given by

E = 2Er +
1

2
ER. (3.49)

To rewrite our equations in a form similar to the single particle equation
(3.20) we define

ωr =
1

2
ω0, ωR = 2ω0,

and

Ar =
1

2
A(r) → Br =

1

2
B0,

AR = 2A(R) → BR = 2B0.

Using these expressions we obtain

Hr =
1

2me

(p− eAr)
2 +

1

2
meω

2
rr

2 +
1

2

e2

4πε0

1

r
, (3.50)

HR =
1

2me

(P − eAR)2 +
1

2
meω

2
RR

2. (3.51)

We observe that the centre-of-mass equation (3.47) behaves just like the
single-electron equation (3.20). The relative motion equation (3.48) also has
a 1/r-term. Introducing Ω and K we set up a general Hamiltonian

H =
1

2me

(p− eA)2 +
1

2
meΩ

2
0r

2 +K
e2

4πε0

1

2r
, (3.52)

which represents the single-particle Hamiltonian (3.8),the centre-of-mass Hamil-
tonian (3.51) and the relative Hamiltonian (3.50), with constants given by

Single particle: Ω0 = ω0, K = 0, B = B0, (3.53)
Centre-of-mass: Ω0 = 2ω0, K = 0, B = 2B0 and (3.54)

Relative motion: Ω0 =
1

2
ω0, K = 1 B =

1

2
B0. (3.55)

34 CHAPTER 3. A MATHEMATICAL MODEL FOR QUANTUM DOTS

We want to solve the time-independent Schrödinger equation Hψ = Eψ
for the general Hamiltonian (3.52). For the magnetic potential defined in
Equation (2.46) it is

H =− ~2

2me

[
∇2 − i

eB0

~
∂

∂θ

]
(3.56)

+
1

2
me

B0
2e2

4me
2
(x2 + y2) +

1

2
meΩ0

2r2 +K
e

4πε0

1

2r
.

3.4.1 Two dimensions

For the two-dimensional case we use ψ(r) = 1√
2π

u(r)√
r
eimφ as we did for the

single-electron quantum dot. We also introduce the dimensionless variables
defined in Section 2.2 to obtain[

− d2

dr2 +
m2 − 1

4

r2 + Ω
2
r2 +

K

r

]
u(r) = εu(r), (3.57)

where we have defined

ε = 2E +Bm, (3.58)

Ω
2

= Ω
2

0 +
B

2

4
. (3.59)

From Reference [10] we have a set of analytic solutions. More details
about the derivation is given in Appendix A.2. Here we give a list of eigen-
values for m = 0 and m = 1 in Tables 3.1 and 3.2.

n 1/ωr εr/2
2 0.200000e+1 0.100000e+1
3 0.120000e+2 0.250000e+0
4 0.370880e+2 0.107852e+0
4 0.291199e+1 0.137363e+1
5 0.844674e+2 0.591944e-1
5 0.155326e+2 0.321903e+0
6 0.161253e+3 0.372085e-1
6 0.450281e+2 0.133250e+0
6 0.371853e+1 0.161354e+1

Table 3.1: Some corresponding values of ωr and εr for m=0. See Ref. [10]
for an extensive list.

3.4. THE TWO-ELECTRON QUANTUM DOT 35

n 1/ωr εr/2
2 0.600000e+1 0.500000e+0
3 0.280000e+2 0.142857e+0
4 0.725576e+2 0.689107e-1
4 0.744236e+1 0.671830e+0
5 0.146604e+3 0.409266e-1
5 0.333961e+2 0.179662e+0
6 0.257194e+3 0.272168e-1
6 0.840644e+2 0.832695e-1
6 0.874155e+1 0.800773e+0

Table 3.2: Corresponding values of ωr and εr for m=1. See Ref. [10] for more
values.

3.4.2 Three dimensions

Similarly, in three dimension we use ψ(r) = u(r)
r
Ylml

to get[
− d2

dr2 +
l(l + 1)

r2 + Ω
2
r2 +

K

r

]
u(r) = εu(r), (3.60)

with the same definitions for Ω and ε as for the two-dimensional case and the
requirement ωz =

√
ωo

2 + B0
2

4
. This requirement is necessary for spherical

symmetry, see Section 3.3.2. As for the two dimensional case only particular
analytic solutions may be found. See Reference [11] for a derivation. In table
3.3 we list some of these eigenvalues.

n 1/ωr εr/2
2 4 0.6250
3 20 0.1750
4 54.7386 0.0822

5.26137 0.8553
5 115.299 0.0477

24.7010 0.2227
6 208.803 0.0311

64.8131 0.1003
6.38432 1.0181

Table 3.3: Particular analytic solutions for the relative equation in three
dimensions for l = 0. Table taken from [11].

36 CHAPTER 3. A MATHEMATICAL MODEL FOR QUANTUM DOTS

3.4.3 Anti-symmetric wave functions for two particles

When we are working with fermions we require that the total wave function
is anti-symmetric under the interchange of two particles r1 ↔ r2. In our new
set of coordinates an interchange means that

R→ R, r → −r.

We observe that the centre-of-mass wave function is always symmetric. For
the relative coordinates in two dimensions, an interchange of particles gives

r → r, φ→ φ+ π.

The only part of the wave function that changes is eimφ. From this we have

eimφ → eimφeimπ = (−1)meimφ.

For even m the spatial wave function is symmetric, and we must use an
anti-symmetric spin function. When m is odd the spatial wave function is
anti-symmetric, and we must use a symmetric spin-function. In Section 2.5.2
we ordered the four spin states into symmetric (triplet) and anti-symmetric
(singlet) states.

3.5 Summary
We now summarise the equations we have derived in this chapter. From now
on we only use the dimensionless variables defined in Section 2.2. We remove
all the overline symbols for the variables and let r → r etc. From the general
equation defined by the Hamiltonian (3.52) we get a radial equation. In two
dimensions it is[

− d2

dr2
+
m2 − 1

4

r2
+ Ω2r2 +

K

r

]
u(r) = εu(r), (3.61)

and in three dimensions it has a similar form[
− d2

dr2
+
l(l + 1)

r2
+ Ω2r2 +

K

r

]
u(r) = εu(r). (3.62)

In both equations we have

ε = 2E +Bm, (3.63)

Ω2 = Ω2
0 +

B2

4
. (3.64)

3.5. SUMMARY 37

We can use these equations to solve the single-electron quantum dot, and the
centre-of-mass equation and the relative motion equation for the two-electron
quantum dot, where the constants must be defined for each problem by

Single particle: Ω0 = ω0, K = 0, B = B0, (3.65)
Centre-of-mass: Ω0 = 2ω0, K = 0, B = 2B0 and (3.66)

Relative motion: Ω0 =
1

2
ω0, K = 1 B =

1

2
B0. (3.67)

The total energy of the two-particle problem is

E = 2Er +
1

2
ER + 2Φ−BoMs, (3.68)

where Ms = ms1 +ms2 . The energy depend on the quantum numbers

nR = 0, 1, 2, . . . , nr = 0, 1, 2, . . . ,

ms1 = ±1

2
, ms2 = ±1

2
,

in two dimensions we also have

mR = 0,±1,±2, . . . , mr = 0,±1,±2, . . . ,

and in three dimensions

lR = 0, 1, 2, . . . , lr = 0, 1, 2, . . . ,

mR = 0,±1,±2, . . .± lR, mr = 0,±1,±2, . . .± lR.

Chapter 4

Numerical methods

In this chapter we give the numerical methods used in this thesis. The main
focus is on solving partial differential equations. We first have a short section
about the finite difference method and the finite element method, where we
focus on the finite element method. We also discuss the of parallelisation of
differential equations. In this thesis we will solve a one-dimensional equation,
therefore we focus on the one-dimensional cases in these methods. In Sec-
tion 4.4 we give a special numerical method for solving the time-dependent
Schrödinger equation, the Blanes-Moan method. The last part of this chapter
give a short introduction to eigenvalue problems and the ARPACK software.

4.1 Finite difference method (FDM)

In the finite difference method we partition the domain into a grid with N
nodes x0, x1, . . . xN−1. On this grid we search for an approximation ui to the
exact solution u(xi) on each node. If the number of nodes is N , then the
distance between the nodes is

h =
xmax − xmin

N − 1
.

The first derivative is approximated by

dui

dx
≈ ui+1 − ui−1

2h
. (4.1)

39

40 CHAPTER 4. NUMERICAL METHODS

Using this approximation we calculate the second derivative

d2ui

dx2
≈
u′i+1/2 − u′i−1/2

h
(4.2)

=
ui+1 − ui

h2
− ui − ui−1

h2

=
ui+1 − 2ui + ui−1

h2
.

The truncation error can be calculated by a Taylor expansion of u around
xi±1

ui±1 = ui ± hu′ +
h2u′′

2
± h3u′′′

6
+

Using this in Equation 4.2 we have

ui+1 − 2ui + ui−1

h2
= u′′ +

h2u(4)

12
+
h4u(6)

360
+O(h6), (4.3)

which gives

d2ui

dx2
=
ui+1 − 2ui + ui−1

h2
+O(h2). (4.4)

The finite difference method approximates the differential equation at the
nodes. For a differential operator D we get a matrix: Du→ Au, where u is a
vector consisting of all the ui in the domain. For simple boundary conditions
of the form u(xk) = f , we write uk = f . Another type of boundary condition
involving the derivative u′(xk) = g, can be implemented by the discretisation
of the first derivative (4.1) as uk+1 − uk−1 = g, or by another first derivative
discertisation. The boundary conditions are implemented directly on the
linear system, we see show this in the example below.

Example: The Poisson equation

For the Poisson equation

− d2

dx2
u(x) = f(x), x ∈ (0, 1), (4.5)

u(0) = 0, u(1) = 0,

we discretise the interior points by

−ui−1 + 2ui − ii+1 = h2f(xi), i = 1, . . . i = N − 2, (4.6)

4.1. FINITE DIFFERENCE METHOD (FDM) 41

and set the boundary conditions as

u0 = 0, uN−1 = 0.

We get a tridiagonal linear system

Au = b,

where

A =


1 0 0 0 . . . 0 0
−1 2 −1 0 . . . 0 0
0 −1 2 −1 0 . . . 0
. .
0 2 −1
0 0 1

 ,

and

b = h2



0
f1

f2
...

fN−2

0


.

4.1.1 Richardson extrapolation

The approximation to the second derivative given above is on the form

T (h) = T (0) + a1h
2 + a2h

4...,

where T (0) is the solution when h→ 0, and a1, a2 . . . are constants indepen-
dent of h. For an approximation like this, we can use Richardsons extrapo-
lation [12]. The Richardson extrapolations consists of doing approximations
for different step lengths h, and using these approximations to eliminate error
terms. For example in we calculate T (h) and T (h

2
) we can eliminate a1 by

4T (h
2
)− T (h)

3
= T (0)− 1

4
a2h

4 +

We can obtain the formula

T (k)
m = T

(k+1)
m−1 +

T
(k+1)
m−1 − T

(k)
m−1

4m − 1
, m > 0 (4.7)

=
4mT

(k+1)
m−1 − T

(k)
m−1

4m − 1
,

42 CHAPTER 4. NUMERICAL METHODS

where T (k)
0 = T (h

2k), which results in an improved error

T (k)
m = T (0) + ak,m

m+1h
2(m+1) + ak,m

m+2h
2(m+2) + . . . (4.8)

= T (0) +O(h2(m+1)). (4.9)

4.2 Finite element method (FEM)
The finite element method (FEM) is more complicated to implement than
the finite difference method, but it provides a more flexible method to ap-
proximate differential equations. For example, the finite element method
can easily be extended to higher order approximations and can be used for
complex geometries. We provide a short introduction here, focusing on the
one-dimensional case. For a good introductory text to the finite element
method see for example Computational Partial Differential Equations [13],
or see Reference [14].

4.2.1 One dimensional finite element method

We introduce the finite element method by the following steps:

1. Divide the domain Ω into M non-overlapping elements,

Ωe, e = 1, . . . ,M.

Each element has ne nodes, where the global nodes are denoted by

x[i], i = 1, . . . , N.

The total number of nodes is N = M(ne − 1) + 1 because two neigh-
bouring elements share one node. The size of each element he is the
distance between the two boundary nodes of the element.

2. We write our differential equation as

L(u(x)) = 0,

where L is a differential operator specific to our problem.

3. We approximate the function u(x) by:

u(x) ≈ û =
N∑

j=1

ujNj(x), (4.10)

where uj are the unknowns and Nj(x) are basis functions.

4.2. FINITE ELEMENT METHOD (FEM) 43

4. We minimise the residual L(û) by∫
Ω

L(û)NidΩ = 0, i = 1, . . . , N. (4.11)

5. The basis functions Ni are simple piecewise polynomials which are non-
zero only for a few elements that contain the node x[i]. For linear basis
functions û is a piecewise linear function.

x[i]

Ωi

Ni

�
�

�@
@

@

Ni+1

�
�

�@
@

@

Ni−1

�
�

�@
@

@ �
�

�@
@

@

{

Figure 4.1: Linear basis functions over four elements.

For the basis functionsNi we require:

1. Ni is a polynomial over each element uniquely defined by its values at
the nodes in the element

2. Ni(x
[j]) = δij → û(x[j]) = uj

The simplest case is the one dimensional element with two nodes placed
at the boundaries and Ni given as piecewise linear polynomials. Then we
have element e given by

Ωe =
[
x[e], x[e+1]

]
, he = x[e+1] − x[e].

The basis functions can be calculated using the property Ni(x
j) = δij, see

Figure 4.1. We will not set up the basis functions here, but note that they
only give contribution to the two closest neighbours. For quadratic polyno-
mials we have three nodes per element, two at the boundaries and one in the
centre of the element. The basis functions are piecewise quadratic functions.
We discuss the basis functions further for local elements in the next section.
For linear elements we get a piecewise linear approximation û(x) like we have
shown in Figure 4.2. For higher order basis function, we have the same order
approximation.

44 CHAPTER 4. NUMERICAL METHODS

���
�

�
�

HHH

Figure 4.2: Piecewise linear basis functions give a piecewise linear approxi-
mation û(x).

Boundary conditions

For boundary conditions of the form u(xk) = f , we introduce uk = f directly
into the linear system as we did for the finite difference method. The other
type involving the derivative u′(xk) = g is implemented in an elegant way
using partial integration on û′′,∫

Ω

NiN
′′
j dΩuj = −

∫
Ω

N ′
i(x)N

′
j(x)dΩuj +Ni(xmax)û

′(xmax)−Ni(xmin)û′(xmin).

We can now set Nk(xk)û
′(xk) = g.

Example: Poisson equation

For a simple example we study the Poisson equation as we did for the finite
difference method

− d2

dx2
u(x) = f(x), x ∈ (0, 1), (4.12)

u(0) = 0, u(1) = 0. (4.13)

This expression gives

L(u(x)) = − d2

dx2
u(x)− f(x).

Inserting this into Equation (4.11) we get

−
N∑

j=1

∫
Ω

Ni(x)N
′′
j (x)dΩuj −

∫
Ω

f(x)Ni(x) = 0, i = 1, . . . , N.

4.2. FINITE ELEMENT METHOD (FEM) 45

For expressions of the form Ni(x)N
′′
j (x) we use integration by parts

N∑
j=1

∫
Ω

N ′
i(x)N

′
j(x)dΩuj −Ni(xmax)û

′(xmax) +Ni(xmin)û′(xmin)

−
∫

Ω

f(x)Ni(x) = 0, i = 1, . . . , N.

The boundary integral terms always give zero contribution for i = 2, . . . , N−
1. For our set of boundary conditions (4.13) we also get zero contribution for
i = 0 and i = N . We use linear elements. Because of the properties of the
basis functions we only get contributions to the sums for j = (i− 1, i, i+ 1)

i+1∑
j=i−1

∫
Ω

N ′
i(x)N

′
j(x)dΩuj −

∫
Ω

f(x)Ni(x) = 0, i = 2, . . . , N − 1.

The result is a tridiagonal linear system

i+1∑
j=i−1

Aijuj = bi,

where

Aij =

∫
Ω

N ′
i(x)N

′
j(x)dΩ, bi =

∫
Ω

f(x)Ni(x).

In addition we must impose the boundary conditions u1 = 0 and uN = 0
directly in this linear system. Here we have set up the linear system for this
specific problem, but a similar construction can be set up for any problem.
In general an operator L working on a function u gives a matrix, while a
function independent of u (like f(x)) gives a vector. In this example we end
up with a linear system of equations, but we will see in Chapter 5 that for
eigenvalue problems we end up with a generalised eigenvalue problem. For a
one dimensional problem the matrix will have a bandwidth of 2ne− 1, where
ne is the number of nodes per element. For higher dimensions this may not
be the case.

4.2.2 Element-by-element formulation

In this section we introduce the element-by-element formulation. By intro-
ducing local coordinates we can generalise the elements regardless of the size

46 CHAPTER 4. NUMERICAL METHODS

and shape of the elements to standard boundaries. Following the example
from the previous section we write a sum over each element e

Aij =
M∑

e=1

A
(e)
ij , A

(e)
ij =

∫
Ωe

N ′
iN

′
jdΩ and (4.14)

bi =
M∑

e=1

b
(e)
i , b

(e)
i =

∫
Ωe

NifdΩ. (4.15)

We define the matrix A
(e)
ij as an element matrix, and b

(e)
i as an element

vector, note that the integrals above depend on the problem we are solving.
In element e, A(e)

ij is different from zero only for the nodes that belong to this
element. Therefore the element matrix/vector has the size ne.

We now define local coordinates and numbering of nodes. We choose the
local coordinate

ξ ∈ [−1, 1],

and define local node numbers

r, s = 1, . . . , ne,

that map to the global node numbers i, j by i = q(e, r) and j = q(e, s). For
the one-dimensional case we have the simple expression

q(e, r) =(ne − 1)(e− 1) + r, (4.16)
e = 1, . . . ,M, r = 1, . . . , ne, q = 1, . . . , N,

but for higher dimensions we generally have a more complex geometry and
must set up a table for q(e, r). Now all basis functions will be equal in local
coordinates. One element is drawn in Figure 4.3, where the basis functions
Ni are linear and are defined by the property Ni(ξj) = δij. Calculations and
expressions for linear and quadratic basis functions are given further down.

r1 r2
-1 0 1 ξ

N1
@

@
@

@
@

@

N2

�
�

�
�

�
�

Figure 4.3: One element in local coordinates with linear basis functions.

4.2. FINITE ELEMENT METHOD (FEM) 47

We map from global coordinates x to local coordinates ξ by

x(e)(ξ) =
ne∑

r=1

Ñr(ξ)x
q(e,r), (4.17)

where Ñr(ξ) are the basis functions defined for local coordinates (expressions
are given on the next page). The derivatives transform as

dNi

dx
=
dÑr

dξ

dξ

dx
= J−1dÑr

dξ
, (4.18)

dNj

dx
=
dÑs

dξ

dξ

dx
= J−1dÑs

dξ
, (4.19)

where r, s are local node numbers corresponding to i = q(e, r) and j = q(e, s).
The integral is given by ∫ x[e+1]

x[e]

dx =

∫ 1

−1

detJdξ, (4.20)

where J is defined as
Ji,j =

∂xj

∂ξj
,

in the case of one-dimensional piecewise linear basis functions J has the
simple form J = he

2
.

After calculating the integrals each element will have it’s own ne × ne

element matrix and element vector of size ne given by A(e) with matrix el-
ements A(e)

rs , and element vector b(e) with b
(e)
r . We assemble the element

matrices/vectors by adding them to the global system using i = q(e, r) to
find the correct global nodes

Aq(e,r),q(e,s)+ = A(e)
r,s ,

bq(e,r)+ = b(e)r .

For the matrix case this is shown in Figure 4.4. For the one dimensional case
we see that we get an overlap of matrix element A(e+1)

11 and A(e)
nene . The same

goes for the element vectors, we get an overlap of b(e+1)
1 and b(e)ne .

4.2.3 Local basis functions

Basis functions for linear polynomials

In Figure 4.3 we drew the linear basis functions in local coordinates. We
now give the mathematical expressions. For linear polynomials the local

48 CHAPTER 4. NUMERICAL METHODS

Figure 4.4: The global matrix is assembled for the element matrices. In a
one-dimensional problem they are added along the diagonal with overlap of
matrix element A(e+1)

11 and A(e)
nene . Figure taken from [13].

basis functions are

Ñ1(ξ) =
1

2
(1− ξ), (4.21)

Ñ2(ξ) =
1

2
(1 + ξ), (4.22)

and the mapping to global coordinates are given by

q(e, r) = e− 1 + r.

When we have equally spaced nodes expression (4.17) results in

x(e)(ξ) =
1

2

(
x[e] + x[e+1]

)
+ ξ

1

2

(
x[e+1] − x[e]

)
=

1

2

(
x[e] + x[e+1]

)
+ ξ

1

2
h (4.23)

Basis functions for quadratic polynomials

For quadratic basis functions we have three nodes per element, ne = 3. Two
nodes are placed at the boundary of the element

Ωe = [x[2e−1], x[2e+1]],

and one is placed at the centre x[2e].

4.2. FINITE ELEMENT METHOD (FEM) 49

The local basis functions are

Ñ1(ξ) =
1

2
ξ(ξ − 1), (4.24)

Ñ2(ξ) = (1 + ξ)(1− ξ), (4.25)

Ñ3(ξ) =
1

2
ξ(1 + ξ), (4.26)

and the mapping to global coordinates are given by

q(e, r) = 2(e− 1) + r.

When we have equally spaced nodes expression (4.17) results in

x(e)(ξ) = x[2e] + ξ
1

2

(
x[2e+1] − x[2−+1]

)
= x[2e] + ξ

1

2
h. (4.27)

The quadratic basis functions are given in Figure 4.5.

−1 −0.5 0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

N1
N2
N3

Figure 4.5: Quadratic basis functions.

50 CHAPTER 4. NUMERICAL METHODS

Calculation of local basis functions

We require that the basis functions have the property Ni(ξj) = δij. For the
first linear basis function we have

Ni(ξ) = aξ + b,

N1(−1) = 1 = −a+ b,

N1(1) = 0 = a+ b,

which gives the linear system for a and b[
−1 1
1 1

] [
a
b

]
=

[
1
0

]
.

Compactly, we write the two linear systems for N1 and N2 as[
−1 1
1 1

] [
a
b

]
=

[
δi1
δi2

]
.

The solution for the basis functions are

N1(ξ) =
1

2
− 1

2
ξ,

N2(ξ) =
1

2
+

1

2
ξ.

Similarly, for quadratic elements we have the linear systems 1 −1 1
0 0 1
1 1 1

 a
b
c

 δi1
δi2
δi3


We now have three linear systems to solve, resulting in (4.24) - (4.26). The
same procedure can be done for higher order polynomials.

4.2.4 Algorithm

To get an overview of a finite element algorithm we set it up for the Poisson
example (4.12) here. However this algorithm can be generalised using other
element vectors/matrices than br and Ars. For example in the quantum dot
equation we get two element matrices and no element vector.

4.2. FINITE ELEMENT METHOD (FEM) 51

FINITE ELEMENT ALGORITHM
Initialise grid
set global and element matrices/vectors = 0
for e=1, . . . ,m LOOP OVER ALL ELEMENTS

for r,s=1, . . . , ne LOOP OVER LOCAL NODES
Calculate the integrals for the local element matrices/vectors (Ars and br)

Set essential boundary conditons
Add the local element matrix A(e) and vector b(e) to the global system

Solve the resulting linear system

4.2.5 Higher dimensions

In this thesis we are dealing with one-dimensional equations, and will not
focus on higher dimensions, we just give an idea of how the finite element
method works for higher dimensions. For more information, we refer to [13].
In higher dimensions the strength of the method is the flexibility in the grid.
The grid can be a complex structure, but by the element formalism the local
elements have simple shapes. An example of this is given in Figure 4.6.

Figure 4.6: Here we have a mapping of an element with complex shape, in
local coordinates it is mapped to the [−1, 1] × [−1, 1] square. Figure taken
from [13].

In higher dimensions we can calculate new basis functions using the prop-
erty Ni(x

[j]) = δij or we generalise the one-dimensional basis functions. For
example in two dimensions we have bilinear basis functions defined over the

52 CHAPTER 4. NUMERICAL METHODS

rectangle [−1, 1]× [−1, 1] by

Ñ1(ξ1, ξ2) = Ñ1(ξ1)Ñ1(ξ2),

Ñ2(ξ1, ξ2) = Ñ2(ξ1)Ñ1(ξ2),

Ñ3(ξ1, ξ2) = Ñ1(ξ1)Ñ2(ξ2),

Ñ4(ξ1, ξ2) = Ñ2(ξ1)Ñ2(ξ2).

The assembly of the global linear system for higher dimensions is more com-
plicated and we have to make sure to add the contribution to a node from
all the elements containing that node.

4.2.6 Time-dependent problems

For time-dependent problems it is most common to use the finite element
method for discretisation in space and the finite difference method for dis-
cretisation in time. If we denote the time step as ul = u(x, tl) we discretise
the time derivative by a finite difference scheme and then apply the finite
element discretisation

ul(x) ≈ ûl =
N∑

j=1

ul
jNj(x). (4.28)

We show this on a simple example

du

dt
= Lu.

We discertise this using the Euler method in time du
dt
≈ ul+1−ul

∆t
and get

ul+1 = ul + ∆tLul.

We now introduce the discretisation (4.28) and obtain∫
Ω

NiNjdΩu
l+1
j =

∫
Ω

NiNjdΩu
l
j + ∆t

∫
Ω

NiLNjdΩu
l
j, (4.29)

→ Aul+1 = Aul + ∆tBul, (4.30)

when we write out the matrices. This gives a linear system to be solved for
each time step. We discuss some special numerical methods for the evolution
of the time-dependent Schrödinger equation in 4.4.

4.3. SOLVING PARTIAL DIFFERENTIAL EQUATIONS IN PARALLEL53

4.3 Solving partial differential equations in par-
allel

The capacity of single processors can no longer keep up with the demand for
larger and faster simulations in scientific computing. To meet these increasing
demands we need parallel computing. In parallel computing we divide the
work among a number of processors to run larger and faster simulations.
The memory on a multiple processor computer can be organised in several
ways. The most common way is the distributed memory system, where each
processor has its own memory. For such systems data must be exchanged
explicitly by message passing. MPI - “message passing interface” is a useful
library which provides functions for communication between processors.This
must be provided by the programmer. Because of communication cost due
to message passing a parallel program will not acquire full speed-up

S(P) =
T (1)

T (P)
≤ P. (4.31)

Here T (i) is the time spent using i processors and P is the number of proces-
sors in parallel. The partitioning of the work is dependent on the algorithm.
For an efficient parallel algorithm the work load should be evenly distributed
to avoid idle time, and the communication cost should be minimised. In this
thesis we focus on parallelisation of partial differential equations (PDE).

When solving a PDE there are two time consuming parts: building the
matrices/vectors in the system and solving this system (linear system or
eigenvalue problem). The first step is to partition the data among the pro-
cessors. In most cases the spatial grid is divided into P sub grids. Each
processor only has access to its own sub grid data. On this sub grid the pro-
cessor applies operations in the same way as a sequential solver. In addition
we provide communication between neighbouring sub grids. After reviewing
the linear system and linear algebra operations we give more details of the
partitioning of finite difference grid and finite element grids.

To solve a linear system or an eigenvalue problem in parallel we must
use iterative solvers. Iterative solvers generally rely on the linear algebra
operations: matrix-vector product, vector addition and the inner product.
The task of parallelising an iterative solver thus consists of parallelising these
operations according to the partitioning of the matrices and vectors.

54 CHAPTER 4. NUMERICAL METHODS

4.3.1 Parallel linear algebra operations

In a matrix the rows are partitioned

A =


A11 A12 · · · A1P

A21 A22 · · · A2P
...

...
AP1 AP2 · · · APP

 , (4.32)

where Aij are block matrices. Processor p holds the blocks Aip. The lines
divide the matrix/vector among the processors. For a vector we have

b =


b1

b2

...
bP

 . (4.33)

From this partitioning we set up the linear algebra operations:

Vector addition

The vector addition w = x+ y is given by local vector additions

wp = xp + yp, p = 1, . . . , P. (4.34)

This operation requires no communication.

Inner product

The inner product s = x · y is calculated locally on each processor p by

sp = xp · yp. (4.35)

All the local inner products sp are sent to a master node where the full
inner product is calculated s =

∑P
1 sp (or distributed to all processors using

MPI_ALLREDUCE with MPI_SUM).

Matrix-vector product

The matrix-vector product w = Ab requires communication between all
processors for a full matrix A. However when we discretise a PDE, the
matrix is sparse. By using a smart partitioning, many of the block matrices
are zero and we only need communication between a few processors.

4.3. SOLVING PARTIAL DIFFERENTIAL EQUATIONS IN PARALLEL55

Using the definitions above the result should be

w =


w1 = A11b1 + A12b2 + . . . A1PbP

w2 = A21b1 + A22b2 + . . . A2PbP

...
wP = AP1b1 + AP2b2 + . . . APPbP

 .
From these expressions we see that we can calculate local matrix-vector prod-
ucts. The local result Appbp is stored in wp, while the array Apqbq is sent to
processor q and added to the vector wq.

4.3.2 Grid partitioning

Partitioning of finite difference grids

On a finite difference grid we divide the grid by planes that are perpendic-
ular to the coordinate axes. Special attention must be paid to the internal
boundaries along these planes. For example if we study the second deriva-
tive operator (ui−1 − 2ui + ui+1), we see that at the boundaries we need
information from a grid point in the next sub grid. To handle this problem
we set up ghost points along the internal boundaries. See Figure 4.7 for a
one-dimensional partitioned grid with ghost points. The values of the ghost
points are not set by the finite difference scheme, but are received from the
neighbouring grid after it has been updated there.

b b b b b br rb b b b b br b b b b b br
Figure 4.7: A one dimensional grid, with sub grid computational points (◦)
and ghost points (•).

Partitioning of finite element grids

For the finite element method we must divide the elements among the pro-
cessors. When we are working with a one-dimensional problem, the task of
dividing the elements is simple. However for complex grids this is a difficult
challenge and we must use partitioning algorithms, see [15]. Each processor
works on its own group of elements and sets up its linear system as if it was
a standard sequential solver. We refer to the “global” matrix for processor p
as Ap and the vector as bp. For a finite element grid the interior boundary

56 CHAPTER 4. NUMERICAL METHODS

points are shared between two (or more in higher dimensions) sub grids, be-
cause of this Ap and bp will not be equal to A and b at the interior boundary
nodes. For a vector bi we sum the values at the shared boundary nodes, so
that all the boundary nodes have the correct (and same) value. This special
construction affects the linear algebra operations.

The vector addition is the same. For the finite element method the bound-
ary nodes are duplicated and local inner product must be adjusted by

ci = ci −
∑

k

ok − 1

ok

ukvk, (4.36)

where k runs over all internal boundary nodes and ok is the number of sub
grids sharing this node. In the one-dimensional case each internal boundary
node belong to two processors and have ok = 2. The matrix-vector product
is simplified. First we calculate the local matrix vector products wi = Aiui.
To get the correct values and the internal boundaries we add the contribution
from all the neighbouring sub grids for wi.

4.4 Time evolution of the Schrödinger equation
The time-dependent Schrödinger equation is

i~
∂

∂t
ψ(t) = H(t)ψ(t), (4.37)

where ψ is also a function of the spatial coordinates, but for simplicity we
just write the time coordinate here. We define the time evolution operator
U by

ψ(t2) = U(t2, t1)ψ(t1), ψ(t) = U(t, 0)ψ(0), (4.38)

and rewrite the Schrödinger equation into an equation for U

i~
∂

∂t
U(t) = H(t)U(t). (4.39)

For a time-independent Hamiltonian the time evolution operator is U(t) =
e−iEt/~, where E is a diagonal matrix with the eigenvalues along the diagonal.
To avoid working with imaginary numbers we can use imaginary time t = iτ ,
we also use atomic units as defined in Section 2.2. The equation for U is then

∂

∂τ
U(τ) = H(τ)U(τ) (4.40)

4.4. TIME EVOLUTION OF THE SCHRÖDINGER EQUATION 57

Using a simple Euler scheme we have

∂

∂τ
≈ ul+1 − ul

∆τ
, (4.41)

→ ul+1 =
[
1 + ∆τH l

]
ul, (4.42)

with ul = U(τ) and H l = H(τ). A more accurate finite difference scheme is
the Runge-Kutta method. It has an accuracy of O(h5), where h is the step
length. The next time step is calculated by

k1 = hH lul, (4.43)

k2 = hH l(ul +
1

2
k1), (4.44)

k3 = hH l(ul +
1

2
k2), (4.45)

k4 = hH l(ul + k3), (4.46)

ul+1 = ul +
1

6
(k1 + 2k2 + 2k3 + k4). (4.47)

Here ki are also vectors of the same size as u.

4.4.1 Splitting of the Hamiltonian

We write the Hamiltonian on the form

H = H0 +H1(t), (4.48)

where H0 is time-independent. If we solve the time-independent Schrödinger
equation for H0, as we have done for the quantum dot in Chapter 3, we can
do a change of basis

H0 = PEP †, (4.49)

where E is a diagonal matrix with the eigenvalues of H0 on the diagonal,
and P is a unitary matrix where the columns are the eigenvectors. We also
define

d(t) = P †u(t) and W (t) = P †H1(t)P. (4.50)

If we apply P † on H lul we have

P †H lul = P †H0u
l + P †H l

1u
l (4.51)

= EP †ul +W lP †ul (4.52)
=

[
E +W l

]
dl. (4.53)

58 CHAPTER 4. NUMERICAL METHODS

4.4.2 Blanes-Moan method

When we have a separable Hamiltonian we can use the Blanes-Moan method
described in [16]. In this article another splitting is defined, but we use the
splitting defined in Equation (4.48). We approximate the time evolution
operator by discretising the total time interval (0, t) into Nt steps

U(t, 0) =U(t1, t0)U(t2, t1) · · ·U(tNt , tNt−1) (4.54)

=
Nt−1∏
n=0

U(tn + ∆t, tn), (4.55)

where

∆t =
t

Nt

, tn = n∆τ, n = 0 . . . , Nt − 1. (4.56)

For a separable Hamiltonian H = A + B the solution can be approximated
by

U = eA1∆t/2e
B 1

2
∆t
eA0∆t/2 +O(∆t3), (4.57)

Ak = −iA(tn + k∆t), B 1
2

= −iB(tn +
1

2
∆t), k = 1, 2. (4.58)

If we choose to use the basis we defined above and set A = E and B = W
we have

U = e−iE∆t/2e−i∆tW (tn+ 1
2
∆t)e−iE∆t/2 +O(∆t3), (4.59)

where the expressions are simplified because E is independent of time. The
exponential e−iE∆t/2 is diagonal because E is a diagonal matrix.

A higher precision formula is also defined in [16], where U as approximated
by

U = eH(1)

eH(0)

e−H(1)

+O(∆t5), (4.60)

H(k) = − i

∆tk

∫ tn+∆t

tn

[
s−

(
tn +

1

2
∆t

)]k

H(s)ds, k = 1, 2. (4.61)

Writing out the integrals we have

H(0) = −i
∫ tn+∆t

tn

H(s)ds, (4.62)

H(1) = − i

∆t

∫ tn+∆t

tn

[
s− tn −

1

2
∆t

]
H(s)ds

=
i

∆t

[
tn +

1

2
∆t

] ∫ tn+∆t

tn

H(s)ds− i

∆t

∫ tn+∆t

tn

sH(s)ds. (4.63)

4.5. EIGENVALUE PROBLEMS 59

Here we also use the splitting of the Hamiltonian H = E+W (t) for H(k).
This simplify the integrals because E is time-independent and go outside the
integrals.∫ tn+∆t

tn

H(s)ds = E∆t+

∫ tn+∆t

tn

W (s)ds, (4.64)∫ tn+∆t

tn

sH(s)ds = E∆t

(
tn +

1

2
∆t

)
+

∫ tn+∆t

tn

sW (s)ds. (4.65)

4.5 Eigenvalue problems
The time-dependent Schrödinger equation is a differential equation which
must be solved as an eigenvalue problem. We are searching for the eigenstates
of the Hamiltonian which is a differential operator

Hψ = Eψ. (4.66)

In the previous sections we have discussed the discretisation of differential
equations. When discretising (4.66) we get a matrix eigenvalue problem. For
the finite difference method we have a standard eigenvalue problem

Au = λu, (4.67)

and for the finite element method we have a generalised eigenvalue problem

Au = λBu. (4.68)

The reason that we get Bu on the right side is that for the finite element
method a vector give u→ Bu.

In the special case where B is a symmetric positive definite matrix we
can reduce the generalised eigenvalue problem to a standard one. We do a
Cholesky decomposition of B

B = LLT ,

and rewrite our problem to(
L−1AL−T

) (
LTu

)
= λ

(
LTu

)
→ Cy = λy,

which is a standard eigenvalue problem.
The standard way to solve eigenvalue problems is by solving the equation

det(A− λI) = 0, (4.69)

60 CHAPTER 4. NUMERICAL METHODS

for λ and solving the linear systems

(A− λiI)xi, (4.70)

for the eigenvectors xi. However this method is not suitable for large prob-
lems.

4.5.1 The ARPACK eigenvalue solver

There are several numerical methods for solving a standard eigenvalue prob-
lem, such as the Jacobi method, see for example Reference [17]. We will how-
ever use the ARPACK software [18]. The ARPACK library provides solvers
for both the standard eigenvalue problem and the generalised eigenvalue
problem. There is also a parallel extension: P_ARPACK. The ARPACK
software uses the implicitly restarted Arnoldi method. It is an iterative
solver which requires the computation of matrix-vector products. For more
details about the software package, see the ARPACK user guide [18], and for
numerical methods, see Reference [19]. We will discuss how this package is
implemented in Chapter 5.

Chapter 5

Implementation of the numerical
methods

In this chapter we discuss the implementation of the numerical methods.
First we focus on the time-independent Schrödinger equation

H0ψ = Eψ. (5.1)

In Section 5.1 we give the finite element and finite difference discretisations
of the quantum dot equations. We have built a general solver using these
methods. Details about the program are given in Section 5.2. Then, in
Section 5.3, we move on to the time-dependent Schrödinger equation where
the Hamiltonian is given by

H = H0 +H1(t), (5.2)

whereH0 is the time-independent Hamiltonian which has already been solved
andH1(t) is a time-dependent perturbation. We use the Blanes-Moan method,
which was described in Section 4.4. Because we already have a set of eigenval-
ues and eigenvectors for H0 we use them as a basis to simplify the equations.

5.1 Implementation of the radial equation
In Chapter 3 we discussed the quantum system for the one-electron and
the two-electron quantum dot. There we derived a general one-dimensional
equation which describes this system. We choose to write it in a more general
form as

− d2u(r)

dr2
+ Y (r)u(r) = εu(r), (5.3)

61

62CHAPTER 5. IMPLEMENTATION OF THE NUMERICAL METHODS

where Y (r) = D
r2 + 2V includes both the potential and the constants from

the angular equation

2D: Y (r) =
m2 − 1

4

r2
+ 2V , (5.4)

3D: Y (r) =
l(l + 1)

r2
+ 2V . (5.5)

For the quantum dot the potential is

2V = Ω2r2 +
K

r
, (5.6)

where the constants depend on the problem to be solved: single-electron
quantum dot (3.65); two-electron centre-of-mass (3.66); two-electron relative-
coordinates (3.67).

The boundary conditions are

u(0) = 0, u(∞) = 0. (5.7)

We must approximate ∞ by a finite value rmax. This value must be large
enough to not influence the results. This is further described in Section 5.2.

After we have discretised the Schrödinger equation using either the finite
element method or the finite difference method, we get an eigenvalue problem

Au = εBu, (5.8)

where A and B (B=I for FDM) are matrices. We are searching for the eigen-
values ε and eigenvectors u(r). Implementation of boundary conditions for
eigenvalue problem are more complicated than for a standard linear system,
this is discussed in Section 5.1.3. The eigenvalue problems are solved using
ARPACK++[18].

5.1.1 Finite difference equations

We discretise the grid by

ri = ih ui = ψ(ri) h =
1

N − 1
i = 0, 1, ...N − 1,

where N is the number of points. For the second derivative we have

∂2

∂r2
ui '

ui−1 − 2ui + ui+1

h2
+O(h2).

5.1. IMPLEMENTATION OF THE RADIAL EQUATION 63

Using this approximation in Equation (5.3) we get a tridiagonal matrix eigen-
value problem for the interior points and simple boundary conditions

−ui−1 + ui

(
2 + Y (ih)h2

)
− ui+1 = εh2ui, i = 1..N − 2, (5.9)

u0 = 0, (5.10)
uN−1 = 0. (5.11)

For the two-dimensional quantum dot we have for interior points

− ui−1 + ui

(
2 +

m2 − 1
4

i2
+
Kh

i
+ ω2i2h4

)
(5.12)

− ui+1 = εh2ui, i = 1, . . . , i = N − 2.

The finite difference method is simple to implement. We build a tridiag-
onal matrix

A =


2 + Y1 −1 0 0 . . . 0 0
−1 2 + Y2 −1 0 . . . 0 0
0 −1 2 + Y3 −1 0 . . . 0
. .
0 2 + YN−3 −1
0 −1 2 + YN−2

 ,

where Yi = Y (ih)h2 =
m2− 1

4

i2
+ Kh

i
+ω2i2h4. The implementation of boundary

conditions are described in Section 5.1.3. The eigenvalue problem is

Au = εh2u. (5.13)

5.1.2 Finite element equations

We use the flexible element-by-element formulation of the finite element
method as described in Section 4.2.2. Here we give the mathematical cal-
culations, in Section 5.2 we give more details about how the algorithm is
implemented in the program.

For the general Equation (5.3), we set up local elements. The second
derivative term gives

−d
2u(r)

dr2
→−

N∑
j=1

∫ rmax

0

Ni(r)
d2

dr2
Nj(r)druj =

N∑
j=1

∫ rmax

0

dNi

dr

dNj

dr
druj

The element matrix T (e) arising from this term is

T (e)
rs =

2

he

∫ 1

−1

dNr

dξ

dNs

dξ
dξ. (5.14)

64CHAPTER 5. IMPLEMENTATION OF THE NUMERICAL METHODS

Here we have omitted the boundary terms arising from the partial integration
because of the boundary conditions u(0) = 0 and u(rmax) = 0. For this
expression and the following r, s = 1, . . . ne and T

(e)
rs are the elements of the

ne × ne matrix T (e). The potential term Y (r) gives

Y (r)u(r) →
N∑

j=1

∫ rmax

0

NiY (r)Njdr, (5.15)

which gives another element matrix contribution Y (e)

Y (e)
rs =

he

2

∫ 1

−1

NrY (r(ξ))Nsdξ, (5.16)

where we must use r(ξ) as defined in (4.17) for Y (r(ξ)). For the global
mapping we have q(e, s) = (ne − 1)(e − 1) + s, which gives the positions of
the global nodes as

rq = rmin + (q − 1)
h

ne − 1

= rmin + (e− 1)h+
s− 1

ne − 1
h, (5.17)

q = 1, . . . , N, s = 1, . . . , ne, e = 1, . . .M.

Knowing this expression we calculate r(ξ) as in (4.17). On the right side we
have

εu(r) → ε
N∑

j=1

∫ rmax

0

NiNjdr, (5.18)

which also gives an element matrix M (e)

εM (e)
rs = ε

he

2

∫ 1

−1

NrNsdξ. (5.19)

The global matrices are built by adding up the element matrices as de-
scribed in Section 4.2.2. Building the global system we get a generalised
eigenvalue problem

N∑
e=1

(
T (e) + V (e)

)
u = ε

N∑
e=1

M (e)u (5.20)

(Au = εBu) ,

5.1. IMPLEMENTATION OF THE RADIAL EQUATION 65

where A and B are the global matrices defined by

A =
N∑

e=1

(
T (e) + V (e)

)
, B =

N∑
e=1

M (e). (5.21)

Boundary conditions and eigenvalue solvers are discussed in the next section.
In the one-dimensional case the matrices are banded with bandwidth 2ne−1.

5.1.3 Boundary conditions for eigenvalue problems

To impose boundary conditions on an eigenvalue problem is more complicated
that for a simple linear system of equations, which arise from a standard
discretisation of a differential equation. The generalised eigenvalue problem
is

Au = λBu. (5.22)

For the finite difference method we have B = I, which reduces the problem
to a standard eigenvalue problem. We define a projection matrix P

P : Cn → Cn−c,

where c is the number of boundary conditions and P is a (n− c)× n matrix
which is identical to the identity matrix In with row number j removed for
boundary nodes xj. The transformation due to P on a vector and a matrix
is given by

v = Pu,

X̃ = PXP T .

The effect of this transformation is that the boundary nodes are removed
from the vector u to form v, and the boundary rows/columns are removed
from X. The reduced eigenvalue problem is

Ãv = λB̃v. (5.23)

This derivation is taken from [20].
For the boundary conditions in our problem we remove the first and last

columns/row from the matrices, giving a (N−2)×(N−2) eigenvalue problem.
If we want to use the full vector we simply add a zero entry before and after
the calculated eigenvector, the missing eigenvalues have the value λ = 0.

For the finite difference method this is simple to implement when we set
up the matrix because we can omit the boundary nodes from the loop and
directly set up a (N − 2)× (N − 2) matrix. For the finite element method it
is more complicated. We first build the full global matrices and then remove
the rows/columns from the matrices.

66CHAPTER 5. IMPLEMENTATION OF THE NUMERICAL METHODS

5.2 Program
The program for solving the quantum dot equations is built to solve the
general time-independent radial equation (5.3). When we use this general
equation we have generalised the method to any spherically symmetric po-
tential V (r), we can also use the same equation to solve the equations for
the two-electron quantum dot as described in Chapter 3.

quantumdot Solver

− FEM

− FDM

Eigen

eigenvaluesolver

ARPACK

Figure 5.1: Class diagram for the quantum dot solver.

The program is implemented in C++ using object-oriented programming.
Here we give some details about the program, see Appendix B for the full
source code. A class diagram is drawn in Figure 5.1.

The main part of the code is the Solver class and its subclasses FDM and
FEM. Here the equations from Sections 5.1.1 and 5.1.2 are implemented, and
an ARPACK++ eigenvalue solver is called to solve the resulting eigenvalue
problem. By using subclasses we get a similar interface to the two methods,
the only difference is the constructors. The most simple solver may be called
as:

FEM quantumdot (M, n_e , h) ;
//or FDM quantumdot (N, h) ;
quantumdot . s e t_poten t i a l (dim , qn , omega2 , K) ;
quantumdot . s o l v e (num) ;
quantumdot . s o l u l t i o n . show_eigenvalues () ;

We give more details about the solvers in Section 5.2.1. The arguments for
these functions are given in Table 5.1. For the finite element method basis
functions for linear and quadratic elements are implemented; n_e can take
the values (2,3). Higher order basis functions may also be implemented, see
5.2.3. The Solver returns the eigenstates (ελ,uλ) in an Eigenstates object.

The class Eigenstates, stores all the eigenstates of a system, it is also re-
sponsible manipulating the eigenstates, and provide output. Because we solve
for ε, we have a function which calculates E = 1

2
ε−1

2
Bm; Eigen::scale_shift(...).

We also provide functions for normalising and orthogonalising the eigenvec-

5.2. PROGRAM 67

constructor
M number of elements
n_e number of nodes per element
N number of nodes
h step length
set_potential
dim dimensions (2,3)
qn quantum number (m in 2D, l in 3D)
ω2 scaled oscillator frequency
K strength of electron-electron interaction term
solve
num number of eigenvalues to be found

Table 5.1: Input variable for the solver class.

tors. Some of the available functions are given in Table 5.2. A simple matrix
class has also been implemented.

show_eigenvalues() prints the eigenvalues to screen
print(filename, m, omega) print to file for the matlab script on file.m
scale(scale), scales the eigenvalues (E = 1

2
ε)

shift(shift), shifts the eigenvalues (E = ε− 1
2
Bm)

scale_shift(scale, shift) scales/shifts the eigenvalues (E = 1
2
ε− 1

2
Bm)

normalise() normalise all the eigenvectors
orthogonalise_set() orthonormalise the eigenvectors

Table 5.2: Available functions in the Eigenstates class. The functions ma-
nipulate the set of eigenstates and print information. These functions are
called in the quantumdot class.

The class quantumdot is a code where we call the Solver. As explained
earlier the solver can be called using only the small code bit above, but here
we have implemented some more features: input from file, variation over
rmax, etc. More information about this class is given in Section 5.2.2.

5.2.1 The Solver class

The general structure of the Solver classes FDM and FEM is:

• Constructors: Parameters are set from the arguments, matrices and
pointers are initialised, for FEM the integration points and weights are
also set.

68CHAPTER 5. IMPLEMENTATION OF THE NUMERICAL METHODS

• set_potential: The function Y (r) is set.

• make_system: We build the matrices A (and B) with boundary con-
ditions.

• solve_system: We call the ARPACK++ solvers.

For simplicity we have set up a function Solver::solve(){make_system();
solve_system();}. We focus on the make_system() function. For the FEM
class we have:

void FEM: : make system () {
for (int e=1; e<=M; e++){ // loop over a l l e lements

// b u i l d the element matr ices
calc_element (e , e lement_le f t , e lement_right) ;
for (int i =0; i<n_e ; i++){
for (int j =0; j<n_e ; j++){

// f i l l t he g l o b a l matrix
l e f t [(n_e−1)∗(e−1)+i] [(n_e−1)∗(e−1)+j]+=

element_le f t [i] [j] ;
r i g h t [(n_e−1)∗(e−1)+i] [(n_e−1)∗(e−1)+j]+=

element_right [i] [j] ;
}

}
}

bc () ;
}

This functions loops over all elements, calculates the element matrices and
adds them to the global system. The calculation of the element matrices is
done by:

void FEM: : ca lc_element (int e , matrix &e l e f t , matrix &
er i gh t) {

for (int i =0; i<n_e ; i++){
for (int j =0; j<n_e ; j++){

for (int k=0; k<int_N ; k++){
M_ij=h/2.0∗N_i(i , x i [k]) ∗N_i(j , x i [k]) ;
i n t1 [k]=M_ij∗ po t e n t i a l [e−1] [k]+ 2 .0/h∗dN_i(i , x i

[k]) ∗dN_i(j , x i [k]) ;
i n t2 [k]=M_ij ;

}
e l e f t [i] [j]= i n t e g r a t e (i n t1) ;

5.2. PROGRAM 69

e r i g h t [i] [j]= i n t e g r a t e (i n t2) ;
}

}
}

The integration is done by Gaussian quadrature, using Legendre polynomials,
see Appendix A.3. The integrate function takes in an array of function
values f(xi) and multiplies them by a predefined set of weights. In the FDM
class building the matrix is very simple:

void FDM: : make system () {
for (int i =2; i<N; i++){

bm[i −1] [i −1]=2 +po t en t i a l [i −1] ;
bm[i −1] [i]=bm[i −1] [i −2]=−1;

}
bm[0] [0]=2 +po t en t i a l [0] ;
bm[N−1] [N−1]=2 +po t en t i a l [N−1] ;
bm[0] [1]= bm[N−1] [N−2]=−1;

ARPACK++ eigenvalue solver

In solve_system the eigenvalue problems are solved using the library ARPACK++,
which is a C++ extension of ARPACK [18]. Because ARPACK++ comes
with a suitable banded matrix class we pass our matrices to this class and call
the eigenvalue solver. Below we show an example for a standard eigenvalue
solver

// t r i d i a g o n a l matrix −> arpack s t r u c t u r e
double∗ a_array=bm. get_array_symb (N, 2) ;
ARbdSymMatrix<double> amat (N, n_e−1, a_array) ;

// e i g enva l u e s o l v e r o b j e c t : nev=number o f e i g enva lue s ,
‘ ‘SM ’ ’ = search f o r sma l l e s t e i g en va l u e s

ARluSymStdEig<double > e i g en s o l v e r 1 (nev , amat , "SM" ,
0 , 0 . 0 , 0 , r e s i d , true) ;

// s o l v e by f o r example
e i g e n s o l v e r . F indEigenvectors () ;

The variable nev is important, if this value is to low, we may not find any
eigenstates. In our program this is checked and nev is increased automati-
cally.

70CHAPTER 5. IMPLEMENTATION OF THE NUMERICAL METHODS

Name Description Default Allowed values
type Which solver is used 2 1=FDM, 2=FEM
problem change variables to fit problem 0 1=single, 2=relative,

3=com, 4=hydrogen,
0=no change

dim dimension of the problem 2 2, 3
omega harmonic oscillator frequency 1 omega > 0
B strength of magnetic field 0 B ≥ 0
m quantum number m 1 (0, 1, 2, . . .)
l quantum number l 1 (0, 1, 2, . . .)
rmax initial value of rmax 0 rmax>0
h step size/element size 0.1 h>0
n_e number of nodes per element 2 2,3
num_eigen number of eigenstates 10
all calculate a full set eigenstates false true, false
rich Richardson extrapolation order 0 0, 1, . . .
maxit max. iterations over rmax 10 0, 1, . . .

Table 5.3: Input read from the quantumdot class that may be given in qd.inp.
The default value is chosen if no value is specified. Note that input parame-
ters should be given in atomic units.

5.2.2 The quantumdot class

The quantumdot class is not necessary to call the Solver, but adds some
new features which we will discuss in this section. From this class we call
the functions of the Eigenstates class given in Table 5.2. After a set of
eigenstates is obtained using the Solver, the function orthogonalise_set()
is called to make the eigenvectors othogonal and normalised. To calculate E
from Equation (3.63) we call solution.scale_shift(0.5, 0.5*B*m). We
also print information to screen and to file. In particular we have set up a
function for printing table to latex which is used in Chapter 6.

In the initialise() function we read the variables from the file qd.inp
using the configuration file manager [21]. In Table 5.3 we provide a list of
variables and their default values.

The main function in this class is the loop over rmax: rm_loop(...).
In this function we increase rmax and calculate a new set of eigenvalues for
each value of rmax. We start with an initial value and increase rmax until the
difference a number of the lowest eigenvalues is lower than a set limit. This is
to ensure that the eigenvalues are not influenced by the value of rmax, which
should be ∞, but is cut off in the computations. We refer to Appendix B for

5.2. PROGRAM 71

the code.
We have also implemented the Richardson extrapolation as described in

Section 4.1.1. As the number of eigenvalues increases when h decreases we
extrapolate on a fixed number of eigenvalues. Equation 4.7 is implemented
as:

Eigenstates Rich (int j , Eigenstates a , Eigenstates b)
{

Eigenstates out (num, 0 ,1) ;
for (int i =0; i<num; i++){

out . e i g enva lue [i]=(pow (4 . 0 , j)∗a . e i g enva lue [i]−b .
e i g enva lue [i]) /(pow (4 . 0 , j)−1) ;

}
return out ;

}

This functions calculates T k
m in Equation (4.7) with T

(k+1)
m−1 (identified as

Eigenstates a) and T
(k)
m−1 (identified as Eigenstates b). The order of ex-

trapolation m is given as j.

5.2.3 Improvements to the program

Here give som guidelines in expanding the program. We focus on the im-
plementation of the finite element solver as the finite difference case is very
simple.

Higher order basis functions

We have only implemented linear and quadratic basis functions in the pro-
gram. To implement higher order basis functions the expressions for Ni

need to be calculated. This can be done using the property Ni(xj) = δij,
see Section 4.2.3. In the program only small changes need to be made to
the functions N_i(...) and dN_i(...), where the basis functions and its
derivatives are calculated, see Appendix B for the code. A small change in
the constructor should also be made allowing higher values of ne. As the or-
der of the basis functions increase there may be a need to implement better
numerical integration rules.

Potentials

The program can be used for any spherically symmetric potential V (r) or
a two-particle potential which may be transformed as described in Section

72CHAPTER 5. IMPLEMENTATION OF THE NUMERICAL METHODS

3.4: V (r1, r2) → V (r)+V (R). The program is set up to handle potentials of
the form V (r) = Ar2 + B

r
, but by changing the set_potential function this

potential may have another form. Note that this functionality must also be
added to the FDM class in the same way.

Uneven step length

We may choose to vary the size of the elements h → he. To implement this
we need to calculate the node positions xq. An array of element sizes he must
also be implemented. This improvement can be used to improve the accuracy
close to r = 0 where the wave functions change more rapidly. To implement
this the uneven step length must also be implemented in class Eigenstates
for correct normalisation.

General time optimisation

The code could be more optimised in order to run faster, however the most
time consuming part is the eigenvalue solver, which was not made as a part
of this thesis.

Parallelisation

The parallelisation of a program like this is a complicated task, we must first
partition the data and then use a parallel eigenvalue solver. For the parallel
solver we tried to use P_ARPACK [18], which seemed to be a good solver,
however we were not able to install the library. For the first part we could use
the FEM and FDM class as they are implemented with a few changes. To use
the sequential code to build local matrices, we must first divide the elements
(or nodes for the finite difference method), and set a local rmin value. For
P processors we can define the local number of elements m_i. If we have M
total element to divide among P processors we can divide the elements by
the code:

int m_i=M/P;
int r e s t=M%P;
i f (my_rank>0 && my_rank<=r e s t) m_i++;

The value rmin must also be calculated, this can be dine by calculating rmax =
h ∗mi on processor i and passing it to rmin on processor i+ 1. Then we call
the solvers as before to build local matrices. Changes must also be made to
the structure of class eigenstates, and we need to implement changes to
the linear algebra operations as explained in Section 4.3.

5.3. IMPLEMENTATION OF TIME EVOLUTION 73

5.3 Implementation of time evolution
The Hamiltonian is split into a time-dependent part and a time-independent
part

H = H0 +H1(t). (5.24)

For H0 we calculate a full set of orthogonal eigenvectors u and corresponding
eigenvalues E using the radial solver. Using these eigenfunctions we define
an eigenvector basis as we explained in Section 4.4. We use the Blanes-Moan
method, see Equations (4.60)-(4.65) in Section 4.4.

We have set up the time evolution in a matlab script. The script reads
the solutions for H0 from file and sets up the eigenvector matrix P and a
diagonal matrix E of the eigenvalues. The step length ∆t and total time T
must be given.

We must also set an initial state d(0) = P Tc(0) given in the eigenvector
basis. Here c is the state vector in coordinate basis and d is the state vector
in the eigenvector basis. The time-independent Hamiltonian H0 gives the
diagonal matrix E in the eigenvector basis.

We use the function H1(t) = W sin(ft) as the time-dependent perturba-
tion and calculate the integrals analytically for now. The constants f and
W must also be given, if W = 0 there is no time perturbation and we can
compare to analytic results. The analytic expressions for the integrals are∫

sin(ft)dt = − 1

f
cos(ft), (5.25)∫

t sin(ft)dt =
1

f 2
[sin(ft)− tf cos(ft)] . (5.26)

For a spatially independent H1(t), H(k) is just the identity matrix times a
scalar which is calculated from the integrals above. If H1(t) also depends on
r we must transform it in the same basis, and we get a matrix.

For each time step we calculate c(t+∆t) = U(t+∆t, t)c(t) using Equation
(4.60). To calculate the expression w = eMu, where M is a matrix, we use
the function expv from Expokit [22] in matlab.

Chapter 6

Results of numerical simulations

We begin by studying the single-electron quantum dot in two and three
dimensions. We compare the results to known analytic results, in order to
verify our solver. Then we move to the relative coordinates equation of the
two-electron case and study the special analytic solutions from References
[10] and [11].

6.1 Single electron quantum dot

In Chapter 3 we simplified the single particle equation to

2D: − d2u

dr2
+

[
m2 − 1

4

r2
+ Ω2r2+

]
u = εu, (6.1)

3D: − d2u

dr2
+

[
l(l + 1)

r2
+ Ω2r2+

]
u = εu. (6.2)

This is the equation for both the single particle equation and the centre-of-
mass equation for the two-particle problem (when the constants are scaled
as in Equation (3.66)). However the scaling is not important for the nu-
merical algorithm. The analytic solutions are given in Section 3.3. In two
dimemensions they are

ε

2Ω
= (|m|+ 1 + 2n), (6.3)

u(r) =

√
n!

π(m+ n)!
ω(|m|+1)/2r|m|+ 1

2 e−
1
2
Ωr2

L|m|
n (Ωr2). (6.4)

75

76 CHAPTER 6. RESULTS OF NUMERICAL SIMULATIONS

In three dimensions the solutions are
ε

2Ω
= (2n+ l +

3

2
), (6.5)

u(r) =

√
2n+l+2n!√

π(2n+ 2l + 1)!!
ω(l+3/2)/2rl+1e−ωr2/2L

l+ 1
2

n (ωr2). (6.6)

For the simulations we only use positive values for m because Equation (6.1)
is only dependent on |m|. First we study the dependency on the variable
rmax.

6.1.1 Dependence on rmax

The solution domain for Equation (6.1) is r ∈ (0,∞). In the numerically
simulation we have to cut off this domain to r ∈ (0, rmax). We wish to set this
cut-off to a value which will not influence our results. For a chosen number
of wanted eigenvalues we increase the value of rmax until the difference in
this set of eigenvalues is small.

We set the variables: (m = 1, Ω = 1, h = 0.05) and run simulations
for both the finite difference method and for the finite element method using
linear elements. We vary the number of eigenvalues we request.. The value of
rmax which was found is given in Table 6.1. From this table we observe that
when we increase the number of required eigenvalues, we must also increase
rmax. In Figure 6.1 a plot of the wave functions are given, from this we see
that the higher energy wave functions stretch further out towards rmax. The
two methods give approximately the same results for rmax.

We also do a comparison between two values of rmax where we search for
all the eigenvalues in the set. The results are given in Table 6.3 and 6.4.
We observe that the lowest eigenvalues are the same for both sets, while for
higher eigenvalues the results depend on the value of rmax. When we increase
rmax we also increase the size of the system N = rmax

h
+1. Because of this we

will never be able to find accurate values for all N eigenvalues, but we can
choose the number of accurate eigenvalues we need.

For the oscillator frequency Ω we do a similar examination of rmax. The
results are given in Table 6.2. From the analytic wave functions in Equation
(6.4) we see that the term e−

1
2
Ωr2 will make the wave functions stretch further

out for lower values of Ω. Another way to explain this is to look directly
Equation (6.1). For the single-electron quantum dot we can introduce a new
scaling r′ =

√
Ωr. Using a scaling like this we should be able to solve one

equation and scale the result to fit for and Ω. From this formula rmax should
behave as we see in Table 6.2; When Ω decreases, we must increase rmax and
then r′max =

√
Ωrmax stays the same. The variable h, ne do not affect rmax.

6.1. SINGLE ELECTRON QUANTUM DOT 77

Number of rmax

eigenvalues FDM FEM
5 8 8
10 9 9
20 12 12
50 17 17
100 22 23
200 30 32

Table 6.1: For a given number a wanted eigenvalues, we increase rmax until
the difference in the set is small and we say that the eigenvalues are indepen-
dent of rmax. The final value for rmax is given. These simulations are done
for the single-electron case in two-dimensions, using both the finite element
method (linear basis functions) and the finite difference method. We have
set the other variables to m = 1, h = 0.05, Ω = 1.

Ω
rmax

FDM FEM
5 5 5
2 7 7
1 9 9

0.5 12 12
0.25 17 17
0.1 25 25

Table 6.2: For different values of the oscillator frequency Ω we calculate the
value of rmax required for the 10 lowest eigenvalues to be independent of rmax.
Simulations are run using the finite element method, with linear elements for
the single-electron problem intwo-dimensions. The other variables are m = 1
and h = 0.05.

78 CHAPTER 6. RESULTS OF NUMERICAL SIMULATIONS

Numerical Analytic Relative error = |a-n|/a
2.0010167 2 5.08363586e-04
4.0030369 4 7.59216691e-04
6.0062741 6 1.04568301e-03
8.010737 8 1.34212308e-03
10.016429 10 1.64292139e-03

...
64.13828 60 6.89713358e-02
67.186421 62 8.36519481e-02
70.357684 64 9.93388138e-02

...
2413.2751 394 5.12506380e+00
2421.611 396 5.11517936e+00
2433.0098 398 5.11309004e+00

Table 6.3: Selected eigenvalues of the single-electron quantum dot in two
dimensions. Calculated using the finite element method with linear elements
and variables m = 1, h = 0.05, rmax = 10 and Ω = 1.

Numerical Analytic Relative error = |a-n|/a
2.0010167 2 5.08363587e-04
4.0030369 4 7.59216691e-04
6.0062741 6 1.04568301e-03
8.010737 8 1.34212308e-03
10.016429 10 1.64292139e-03

...
60.557721 60 9.29534841e-03
62.595228 62 9.60045048e-03
64.633945 64 9.90538985e-03

...
461.0907 394 1.70280971e-01
464.95678 396 1.74133274e-01
468.85346 398 1.78023771e-01

...

Table 6.4: Selected eigenvalues of the single-electron quantum dot in two
dimensions. Calculated using the finite element method with linear elements
and variables m = 1, h = 0.05, rmax = 25 and Ω = 1.

6.1. SINGLE ELECTRON QUANTUM DOT 79

0 1 2 3 4 5 6 7 8
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Wave functions for m = 1

r [a
0
]

u(
r)

analytic n=0
numerical n=0
analytic n=1
numerical n=1
analytic n=2
numerical n=2
analytic n=3
numerical n=3

Figure 6.1: Radial wave functions u(r) =
√

rR(r) for the single-electron quantum
dot with m = 1 in two dimensions. Calculated using the finite element method
with linear basis functions and h = 0.0125, rmax = 8, Ω = 1.

0 1 2 3 4 5 6 7 8
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Wave functions for m = 0

r [a
0
]

u(
r)

analytic n=0
numerical n=0
analytic n=1
numerical n=1
analytic n=2
numerical n=2
analytic n=3
numerical n=3

Figure 6.2: Radial wave functions u(r) =
√

rR(r) for the single-electron quantum
dot with m = 0 in two dimensions. Calculated using the finite element method
with linear basis functions and h = 0.0125, rmax = 8, Ω = 1.

80 CHAPTER 6. RESULTS OF NUMERICAL SIMULATIONS

6.1.2 Analysis of results and methods

We begin by studying the two-dimensional case. For m = 0 and m = 1 we
provide a list of eigenvalues in Tables 6.6 and 6.5. The four lowest eigenfunc-
tions are given in Figures 6.2 and 6.1. For m = 1 the results in Table 6.5
show that all methods give good results, we also see that the wave functions
fit perfectly in Figure 6.1. In fact for |m| > 0 we always have good results.
We also observe that the quadratic elements give the best results as we would
expect. However for the special value m = 0 we encounter problems. From
Table 6.6 and Figure 6.2 we see that the results are poor. We have the same
problem for both the finite difference method and the finite element method.
In particular we have the strange result that the results are (almost) not im-
proved when moving from linear basis functions to quadratic basis functions.
Increasing the step length h does not help this problem much either. We will
discuss this problem soon, first we study the three-dimensional equation.

The results for the single-electron case in three dimensions is given for
l = 0 in Table 6.7 and Figure 6.3. For l = 5 they are given in Table 6.8 and
Figure 6.4. For all values of l we have good results, actually the relative error
is improved for the quadratic elements compared to the two-dimensional case.

We now focus on the special case when m = 0. Because we know the
analytic results for this problem we can study the analytic wave function,
see Equation (6.4). From this expression we have u(r) ∼ r|m|+1/2 and u′(r) ∼
r|m|−1/2. When m = 0, we see that u′(r) ∼ r−1/2 → ∞ when r → 0.
Because of this property in the wave function we cannot expect our methods
to converge. For the three dimensional case we have u′(r) ∼ rl, which does
not cause any problems.

We now focus on the other cases where we do not have this problem.
For the finite difference method and the finite element method with linear
elements the error in the eigenvalues are of the same order, while for quadratic
elements we have a better approximations as we would expect.We observe
that the relative error increases for higher energy eigenvalues, as can be from
various Tables.This also contributes to the fact that we will not find a set
of N accurate eigenvalues. However for a quantum system the lower energy
eigenstates are most important, and in the time evolution they have the
largest contribution (e−iEkt).

For the eigenvectors we sometimes encounter the problem they they have
the opposite sign of the analytic eigenvectors. However for an eigenvalue
problem, if u is an eigenvector then so is −u.

For the finite element method h is the element size, so for quadratic
elements the distance between to nodes is actually h/2. You may wonder
if this is the source of the improved accuracy. To study this we run two

6.1. SINGLE ELECTRON QUANTUM DOT 81

Finite difference method
Numerical Analytic Relative error = |a-n|/a
1.9999304 2 3.47758683e-05
3.999798 4 5.04927300e-05
5.9995893 6 6.84482795e-05
7.9993037 8 8.70403792e-05
9.9989408 10 1.05918082e-04
11.998501 12 1.24954233e-04
13.997983 14 1.44089955e-04
15.997387 16 1.63292947e-04
17.996715 18 1.82527496e-04
19.99597 20 2.01487059e-04
21.995237 22 2.16520650e-04
23.995294 24 1.96085047e-04

Finite element method, linear basis functions
Numerical Analytic Relative error = |a-n|/a
2.0000738 2 3.68779263e-05
4.0002104 4 5.25921498e-05
6.0004233 6 7.05436101e-05
8.000713 8 8.91300995e-05
10.00108 10 1.08000658e-04
12.001524 12 1.27028126e-04
14.002046 14 1.46153668e-04
16.002646 16 1.65346374e-04
18.003323 18 1.84604560e-04
20.004084 20 2.04213976e-04
22.005013 22 2.27854615e-04
24.006899 24 2.87477627e-04

Finite element method, quadratic basis functions
Numerical Analytic Relative error = |a-n|/a
2.0000014 2 7.01871725e-07
4.0000028 4 7.02921632e-07
6.0000042 6 7.04262228e-07
8.0000056 8 7.05923273e-07
10.000007 10 7.07912093e-07
12.000009 12 7.10229793e-07
14.00001 14 7.12900898e-07
16.000011 16 7.16620426e-07
18.000013 18 7.38405358e-07
20.000021 20 1.07439392e-06
22.000119 22 5.38998160e-06
24.00109 24 4.54314891e-05

Table 6.5: We list the lowest eigenvalues of the single-electron quantum dot in
two dimensions. Calculated using both the finite difference method and the finite
element method. The variable in these simulations are m = 1, Ω = 1, h = 0.0125
and rmax = 10.

82 CHAPTER 6. RESULTS OF NUMERICAL SIMULATIONS

Finite difference method
Numerical Analytic Relative error = |a-n|/a
1.1450401 1 1.45040144e-01
3.1552631 3 5.17543540e-02
5.1609823 5 3.21964607e-02
7.1649492 7 2.35641675e-02
9.1679422 9 1.86602497e-02
11.170294 11 1.54812904e-02
13.172179 13 1.32445427e-02
15.1737 15 1.15799859e-02

17.174923 17 1.02895684e-02
19.175895 19 9.25761816e-03
21.176678 21 8.41324150e-03
23.177626 23 7.72285566e-03

Finite element method, linear basis functions
Numerical Analytic Relative error = |a-n|/a
1.1235395 1 1.23539516e-01
3.1312205 3 4.37401785e-02
5.1356745 5 2.71349045e-02
7.1389755 7 1.98536484e-02
9.1417016 9 1.57446263e-02
11.144098 11 1.30997947e-02
13.146291 13 1.12531734e-02
15.148357 15 9.89048040e-03
17.150344 17 8.84374927e-03
19.152285 19 8.01501981e-03
21.154234 21 7.34449168e-03
23.156529 23 6.80563029e-03

Finite element method, quadratic basis functions
Numerical Analytic Relative error = |a-n|/a
1.1055834 1 1.05583420e-01
3.1111093 3 3.70364246e-02
5.1141641 5 2.28328200e-02
7.1163118 7 1.66159786e-02
9.1179824 9 1.31091550e-02
11.119356 11 1.08505884e-02
13.120528 13 9.27135242e-03
15.121551 15 8.10337047e-03
17.12246 17 7.20355747e-03
19.123283 19 6.48857029e-03
21.124062 21 5.90772829e-03
23.125122 23 5.44007452e-03

Table 6.6: We list the lowest eigenvalues of the single-electron quantum dot in
two dimensions. Calculated using both the finite difference method and the finite
element method. The variable in these simulations are m = 0, Ω = 1, h = 0.0125
and rmax = 10.

6.1. SINGLE ELECTRON QUANTUM DOT 83

0 1 2 3 4 5 6 7 8
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Wave functions for l = 0

r [a
0
]

u(
r)

analytic n=0
numerical n=0
analytic n=1
numerical n=1
analytic n=2
numerical n=2
analytic n=3
numerical n=3

Figure 6.3: Radial wave functions u(r) = rR(r) for the single electron quantum
dot with l = 0 in three dimensions. Calculated using the finite element method
with linear basis functions and h = 0.0125, rmax = 8, Ω = 1.

0 1 2 3 4 5 6 7 8
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Wave functions for l = 5

r [a
0
]

u(
r)

analytic n=0
numerical n=0
analytic n=1
numerical n=1
analytic n=2
numerical n=2
analytic n=3
numerical n=3

Figure 6.4: Radial wave functions u(r) = rR(r) for the single electron quantum
dot with l = 5 in three dimensions. Calculated using the finite element method
with linear basis functions and h = 0.0125, rmax = 8, Ω = 1.

84 CHAPTER 6. RESULTS OF NUMERICAL SIMULATIONS

Finite difference method
Numerical Analytic Relative error = |a-n|/a
1.4999756 1.5 1.62763277e-05
3.4998779 3.5 3.48784722e-05
5.4997021 5.5 5.41577864e-05
7.4994482 7.5 7.35731453e-05
9.4991161 9.5 9.30391081e-05
11.498706 11.5 1.12529671e-04
13.498218 13.5 1.32034232e-04
15.497651 15.5 1.51547364e-04
17.497006 17.5 1.71058302e-04
19.496287 19.5 1.90414747e-04
21.495537 21.5 2.07589502e-04
23.495220 23.5 2.03391544e-04

Finite element method, linear basis functions
Numerical Analytic Relative error = |a-n|/a
1.5000244 1.5 1.62758245e-05
3.5001221 3.5 3.48760605e-05
5.5002978 5.5 5.41519410e-05
7.5005517 7.5 7.35623400e-05
9.5008837 9.5 9.30218168e-05
11.501294 11.5 1.12504367e-04
13.501782 13.5 1.31999406e-04
15.502348 15.5 1.51502107e-04
17.502993 17.5 1.71017734e-04
19.503719 19.5 1.90696789e-04
21.504571 21.5 2.12588001e-04
23.506019 23.5 2.56126019e-04

Finite element method, quadratic basis functions
Numerical Analytic Relative error = |a-n|/a
1.5000000 1.5 1.47114321e-10
3.5000000 3.5 5.72095768e-10
5.5000000 5.5 1.33481654e-09
7.5000000 7.5 2.43728143e-09
9.5000000 9.5 3.87768133e-09
11.500000 11.5 5.65745479e-09
13.500000 13.5 7.78466582e-09
15.500000 15.5 1.05605527e-08
17.500000 17.5 2.19973765e-08
19.500004 19.5 1.93495943e-07
21.500055 21.5 2.56298974e-06
23.500621 23.5 2.64429919e-05

Table 6.7: We list the lowest eigenvalues of the single-electron quantum dot in
three dimensions calculated using both the finite difference method and the finite
element method. The variable in these simulations are l = 0, Ω = 1, h = 0.0125
and rmax = 8.

6.1. SINGLE ELECTRON QUANTUM DOT 85

Finite difference method
Numerical Analytic Relative error = |a-n|/a
6.4999785 6.5 3.30079248e-06
8.4998968 8.5 1.21388049e-05
10.499737 10.5 2.50510850e-05
12.499499 12.5 4.00823503e-05
14.499183 14.5 5.63560713e-05
16.498789 16.5 7.34198565e-05
18.498317 18.5 9.09959390e-05
20.497775 20.5 1.08551731e-04
22.497269 22.5 1.21364539e-04
24.497791 24.5 9.01533094e-05
26.505445 26.5 2.05464543e-04
28.543458 28.5 1.52484023e-03

Finite element method, linear basis functions
Numerical Analytic Relative error = |a-n|/a
6.5000215 6.5 3.30074116e-06
8.5001032 8.5 1.21381462e-05
10.500263 10.5 2.50487599e-05
12.500501 12.5 4.00770768e-05
14.500817 14.5 5.63465136e-05
16.501211 16.5 7.34063445e-05
18.501684 18.5 9.10218285e-05
20.502243 20.5 1.09415055e-04
22.502996 22.5 1.33140178e-04
24.504941 24.5 2.01666020e-04
26.514235 26.5 5.37184126e-04
28.554294 28.5 1.90506711e-03

Finite element method, quadratic basis functions
Numerical Analytic Relative error = |a-n|/a
6.5000000 6.5 4.62243577e-11
8.5000000 8.5 2.31825435e-10
10.500000 10.5 6.51294130e-10
12.500000 12.5 1.35557300e-09
14.500000 14.5 2.39091677e-09
16.500000 16.5 4.62762725e-09
18.500001 18.5 2.95981328e-08
20.500009 20.5 4.54655861e-07
22.500133 22.5 5.91820972e-06
24.501367 24.5 5.57949383e-05
26.509841 26.5 3.71370387e-04
28.548878 28.5 1.71500277e-03

Table 6.8: We list the lowest eigenvalues of the single-electron quantum dot in
three dimensions calculated using both the finite difference method and the finite
element method. The variable in these simulations are l = 5, Ω = 1, h = 0.0125
and rmax = 8.

86 CHAPTER 6. RESULTS OF NUMERICAL SIMULATIONS

simulations. First linear basis functions for h/ then quadratic basis functions
with h. The results are given in Table 6.9. From this we observe that the
quadratic elements give a better approximation. In this spesific test the
improvement is of the order h.

6.2 Relative coordinates equation
The relative motion equation for the two-electron quantum dot is

2D: − d2u

dr2
+

[
m2 − 1

4

r2
+ Ω2r2 +

1

r

]
u = εu, (6.7)

3D: − d2u

dr2
+

[
l(l + 1)

r2
+ Ω2r2+

]
u = 2Eu. (6.8)

For this problem we only have limited analytic solutions to compare with, see
Section A.2 and References [10] and [11]. We use these to test our method.

For m = 0 and m = 1 we calculate the eigenvalues for special values of
Ω. The results are given in Tables 6.11 and 6.10 along with the analytic
solutions from Section A.2. Comparing these results to the analytic ones, we
observe the same behaviour as for the single-particle problem; the results are
good for |m| > 0, but for m = 0 we have the same problem. We repeat this
analysis for the analytic eigenvalues in three dimensions. The result for l = 0
is given in Table 6.12. The results are good also for the three-dimensional
case.

6.2. RELATIVE COORDINATES EQUATION 87

Finite element method, linear basis functions, element size h
Numerical Analytic Relative error = |a-n|/a
2.0000738 2 3.68779258e-05
4.0002104 4 5.25921499e-05
6.0004233 6 7.05436101e-05
8.0007130 8 8.91300999e-05
10.001080 10 1.08000658e-04
12.001524 12 1.27028126e-04
14.002046 14 1.46153647e-04
16.002646 16 1.65345613e-04
18.003323 18 1.84585253e-04
20.004077 20 2.03860578e-04
22.004910 22 2.23163496e-04
24.005820 24 2.42488304e-04
26.006808 26 2.61830841e-04
28.007873 28 2.81187987e-04
30.009017 30 3.00557420e-04

Finite element method, quadratic basis functions, element size h/2
Numerical Analytic Relative error = |a-n|/a
2.0000056 2 2.81644890e-06
4.0000113 4 2.83224441e-06
6.0000171 6 2.85279791e-06
8.0000230 8 2.87846745e-06
10.000029 10 2.90935622e-06
12.000035 12 2.94551250e-06
14.000042 14 2.98696317e-06
16.000049 16 3.03372603e-06
18.000056 18 3.08581283e-06
20.000063 20 3.14323227e-06
22.000071 22 3.20599036e-06
24.000079 24 3.27409180e-06
26.000087 26 3.34754030e-06
28.000096 28 3.42633824e-06
30.000105 30 3.51048782e-06

Table 6.9: Comparison of finite element with linear basis functions with
h to quadratic basis functions with h/2 for the single electron case in two
dimensions. We have used h = 0.0125. The other variables are kept constant,
m = 1, h = 0.0125, rmax=10.

88 CHAPTER 6. RESULTS OF NUMERICAL SIMULATIONS

1/Ω Analytic ε/2 Numerical ε/2 Relative error n′

0.600000e+1 0.500000e+0 0.50000097e+0 1.9482e-6 0
0.280000e+2 0.142857e+0 0.14285717e+0 1.9987e-7 0
0.725576e+2 0.689107e-1 0.68910763e-1 9.0844e-7 0
0.744236e+1 0.671830e+0 0.67183231e+0 3.4361e-6 1
0.146604e+3 0.409266e-1 0.40926587e-1 3.1662e-7 0
0.333961e+2 0.179662e+0 0.17965263e+0 5.2167e-5 1
0.257194e+3 0.272168e-1 0.27216809e-1 3.4746e-7 0
0.840644e+2 0.832695e-1 0.83269499e-1 1.2104e-8 1
0.874155e+1 0.800773e+0 0.80077731e+0 5.3849e-6 2

Table 6.10: Results for the relative motion equation for the two-electron
quantum dot in two dimensions with m = 1. The numerical simulation is
run for specific values of Ω as given in Table 3.2 in order to find the analytic
eigenvalues. For the numerical eigenvalues n′ is the order of the eigenvalue.
Simulations are run with h = 0.0125.

1/Ω Analytic ε/2 Numerical ε/2 Relative error n′

0.200000e+1 0.100000e+1 0.10123751e+1 0.0124 0
0.120000e+2 0.250000e+0 0.25023028e+0 9.2111e-4 0
0.370880e+2 0.107852e+0 0.10804700e+1 0.0018 0
0.291199e+1 0.137363e+1 0.13851445e+1 0.0084 1

Table 6.11: Results for the relative motion equation for the two-electron
quantum dot in two dimensions with m = 0. The numerical simulation is
run for specific values of Ω as given in Table 3.2 in order to find the analytic
eigenvalues. For the numerical eigenvalues n′ is the order of the eigenvalue.
Simulations are run with h = 0.0125.

1/ωr Analytic εr/2 Numerical ε/2 Relative error n′

4.00000 0.6250 0.62500112e+0 1.7973e-6 0
20.0000 0.1750 0.17500005e+0 2.6018e-7 0
54.7386 0.0822 0.82208891e-1 1.0816e-4 0
5.26137 0.8553 0.85529407e+0 6.9324e-6 1
115.299 0.0477 0.47702062e-1 4.3232e-5 0
24.7010 0.2227 0.22266321e+0 1.6521e-4 1
208.803 0.0311 0.31129841e-1 9.5953e-4 0
64.8131 0.1003 0.10028838e+0 1.1590e-4 1
6.38432 1.0181 0.10181255e+1 2.5004e-5 2

Table 6.12: Results for the relative motion in three dimensions with l = 0
for selected values of Ω as given in Table 3.3. For the numerical eigenvalues
n′ is the order of the eigenvalue. Simulations are run with h = 0.0125.

Chapter 7

Concluding remarks

The study in this thesis has been two-fold; it has been a study of the inter-
esting quantum system of two-electrons in a quantum dot, but also a study
of the finite element method for solving the time-independent Schrödinger
equation.

After giving a background to quantum mechanics we gave an overview of
quantum dots, focusing on the mathematical model. Note that this model is
just an approximation to a quantum dot. We showed that the one-electron
quantum dot can be described by a modified harmonic oscillator, which is a
known quantum mechanical problem with analytic solutions. For the two-
electron quantum dot we introduced centre-of-mass and relative motion co-
ordinates and showed that the two-particle equation can be rewritten as two
independent single particle equations. The centre-of-mass equation is also a
modified harmonic oscillator equation, while the relative coordinates equa-
tion is more complicated.

The other main topic of this thesis was the use of numerical methods
for solving differential equations. We gave a thorough introduction to the
finite element method in one dimension and also mentioned the finite differ-
ence method. Both methods were implemented in a program for solving the
time-independent Schrödinger equation for a spherically symmetric poten-
tial. This program were then used to study the one-electron and two-electron
quantum dot. We would have liked to parallelise this program as well, how-
ever we had big problems making the P_ARPACK [18] library work.

After studying the results in Chapter 6 we see that our program give good
results except for the special case when m = 0 in two dimensions where we
discovered that we have a divergence u′(r) ∼ r−1/2 → ∞. Compared to the
finite difference method the finite element method give results with approx-
imately the same relative error for linear elements, however for quadratic

89

90 CHAPTER 7. CONCLUDING REMARKS

elements we get a better approximation. It is possible to extend the program
with higher order basis functions, see Section 5.2.3. A disadvantage of the fi-
nite element method is that we end up with a generalised eigenvalue problem
instead of a standard eigenvalue problem. Fortunately the arpack++ library
has implemented this. However this may be more time consuming to solve,
but this has not been studied in this thesis.

A very interesting problem is the double quantum dot, consisting of two
coupled quantum dots. This system is similar to the potential we have stud-
ied. Unfortunately for us this problem breaks the spherical symmetry and
can not be studied by our model. To study this a two-dimensional (or three-
dimensional) solver must be constructed.

Appendix A

Mathematical details

A.1 Analytic solutions of the single-electron har-
monic oscillator

Here we derive the analytic solutions for the two-dimensional harmonic os-
cillator. We begin with Equation (3.27) from Chapter 3

−
[
1

r

d

dr

(
r
d

dr

)
− m2

r2

]
R(r) +

(
ω2r2 − ε

)
R(r) = 0. (A.1)

First we study the limits r → 0 and r → ∞. For r → 0 the m2/r2 term
dominates and we have

−
[
1

r

d

dr

(
r
d

dr

)
− m2

r2

]
R(r) = 0,

which has the solution
R(r) = r|m|.

For r →∞ the r2 term dominates

−
[
1

r

d

dr

(
r
d

dr

)]
R(r) + ω2r2R(r) = 0,

and we have the solution
R(r) = e−

1
2
ωr2/2.

Now we insert a solution of the form

R(r) = r|m|e−
1
2
ωr2

g(r), (A.2)

91

92 APPENDIX A. MATHEMATICAL DETAILS

into (A.1) to get

−d
2g

dr2
−

(
2|m| − 2ωr2 + 1

) 1

r

dg

dr
+ 2ω (|m|+ 1) g − εg = 0.

We can simplify further by changing variables to

y = ωr2,

which gives us

y
d2g

dy2
+ (|m|+ 1− y)

dg

dy
− 1

2

(
|m|+ 1− ε

2ω

)
g = 0. (A.3)

We can rewrite this as

yg′′ + (|m|+ 1− y) g′ + λg = 0, (A.4)

λ = −1

2

(
|m|+ 1− ε

2ω

)
. (A.5)

This equation is known as the associated Laguerre differential equation.
We try a solution of the form

g(y) =
∞∑

n=0

any
n, (A.6)

with the derivatives given by

g(y) =
∞∑

n=0

nany
n−1,

g(y) =
∞∑

n=0

n(n− 1)any
n−2.

Inserting this in (A.4) we get

y

∞∑
n=0

n(n− 1)any
n−2 + (|m|+ 1− y)

∞∑
n=0

nany
n−1 + λ

∞∑
n=0

any
n = 0,

multiplying by y and shifting terms we have

→
∞∑

n=0

n(n− 1)any
n + (|m|+ 1)

∞∑
n=0

nany
n

−
∞∑

n=0

nany
n+1 + λ

∞∑
n=0

any
n+1 = 0.

A.1. ANALYTIC SOLUTIONS OF THE SINGLE-ELECTRON HARMONIC OSCILLATOR93

In the first two sums we shift the index n→ n + 1 (the lower limit can still
be set to 0 because this term equals 0) and divide by the entire expression
by y to get

∞∑
n=0

[(n+ 1)(|m|+ 1 + n)an+1 − (n− λ)an] yn = 0.

From this we can find a recursive relation for an+1 from an

an+1 =
(n− λ)

(n+ 1)(|m|+ 1 + n)
an.

We can now write Equation (A.6) as

g(y) =

[
1− λ

(|m|+ 1)
y − λ(1− λ)

(|m|+ 1)(|m|+ 2)2
y2 − . . .

]
a0. (A.7)

For convergence we must requite λ ≥ 0. This expansion is cut off when
n = λ, because all terms after that will be zero. This property is important
for the function to be normalisable.We set λ in (A.5) to n giving

ε = 2ω(|m|+ 1 + 2n).

The solution for g(y) is the Laguerre polynomials L|m|
n and radial wave

function R(r) is

R(r) = r|m|e−
1
2
ωr2

L|m|
n (ωr2), (A.8)

and with normalisation we have

R(r) =

√
2n!

(|m|+ n)!
ω(|m|+1)/2r|m|e−

1
2
ωr2

L|m|
n (ωr2). (A.9)

The Rodrigues representation for the associated Laguerre polynomials
[23] is

L|m|
n (y) =

eyy−|m|

n!

dn

dyn

(
yn+|m|e−y

)
, (A.10)

=
n∑

j=0

(−1)m (n+ |m|)!
(n− j)!(|m|+ j)!j!

xj, (A.11)

and the first four Laguerre polynomials are given in Table A.1.

94 APPENDIX A. MATHEMATICAL DETAILS

n L
|m|
n (y)

0 1
1 −y + |m|+ 1
2 1

2
[y2 − 2(|m|+ 2)y + (|m|+ 1)(|m|+ 2)]

3 1
6
[−y3 + 3(|m|+ 3)y2 − 3(|m|+ 2)(|m|+ 3)y

+(|m|+ 1)(|m|+ 2)(|m|+ 3)]

Table A.1: The first four associated Laguerre polynomials L|m|
n .

A.2 Particular solutions for the relative motion
For the relative equation in the two-electron quantum dot, there is no general
closed form solution. However we can find particular solutions. In Ref. [10]
such solutions are derived. It is shown that for particular values of n and m
we can find a value for ω which gives a closed form solution. The criteria for
finding such solutions is fulfilled when

F (|m|, n, ε′′, ωr) = 0 and (A.12)
ε′′ = 2(|m|+ n), (A.13)

where F is defined by a recursion relation

aν = F (|m|, ν, ε′′, ωr)a0, (A.14)

aν =
1

ν(ν + 2|m|)

{
1
√
ωr

aν−1 + [2(ν + |m| − 1)− ε′′]aν−2

}
, (A.15)

a1 =
1

2(|m|+ 1
2
)

1√
ωr

a0, a0 6= 0 (A.16)

and

ε′′ =
εr
ωr

→ εr = 2ωr(|m|+ n). (A.17)

Note that the definitions of symbols in this thesis are different from Reference
[10]. For n = 2 we calculate

ωr =
1

2(2|m|+ 1)
. (A.18)

Similarly, for n = 3 we have

ωr =
1

4(4|m|+ 3)
. (A.19)

A.3. NUMERICAL INTEGRATION 95

m ωr εr
0 1/2 2
1 1/6 1
2 1/10 4/5
3 1/14 5/7

Table A.2: Calculations of ωr and εr for n=2. Calculated from Equations
(A.17) and (A.18).

m ωr εr
0 1/12 1/2
1 1/28 2/7
2 1/44 5/22
3 1/60 1/5

Table A.3: Calculations of ωr and εr for n=3. Calculated from Equations
(A.17) and (A.18).

In Tables A.2 and A.2 we list some values for ωr and εr calculated by these
equations.

For m = 0 and m = 1 we list some of the eigenvalues in Table 3.1 and
Table 3.2, for an extensive list see Reference[10].

A.3 Numerical integration
In this section we summarise numerical integration methods [24]. The focus
is on Gaussian quadrature methods. Numerical integration formulas approx-
imate the integral by

I =

∫ b

a

f(x)dx ≈
N∑

i=1

ωif(xi), (A.20)

where N is the number of integration points and ω the weights. For the
trapezoidal rule the weights are

ω :

{
h

2
, h, h, . . . , h,

h

2

}
,

and for the Simpson’s rule we have

ω :

{
h

3
,
4h

3
,
2h

3
,
4h

3
, . . . ,

4h

3
,
h

3
,

}
.

96 APPENDIX A. MATHEMATICAL DETAILS

These methods are equal step methods, based on Taylor expansions. We may
obtain a higher precision if we use Gaussian quadrature where the integration
points are also determined. A Gaussian quadrature formula is given by

I =

∫ b

a

f(x) =

∫ b

a

W (x)g(x) ≈
N∑

i=1

ωig(xi),

where W (x) is the weight function and g(x) is a smooth function. The weight
function are given by an orthogonal polynomial. Gaussian quadrature is
known to integrate a polynomial p of degree 2N − 1 exactly. The error is
given by[24]∫ b

a

W (x)f(x)−
N∑

i=1

ωif(xi) =
f 2N(ξ)

(2N)!

∫
W (x)[qN(x)]2dx,

where qN(x) is the orthogonal polynomial and ξ is a number in the interval.
The mesh points xi are the zeros of the chosen orthogonal polynomial.

The weights are determined from the inverse matrix, see for example Ref.
[24].

We focus on the Legendre polynomials, which are defined in the interval
[−1, 1].The Legendre polynomials have the weighting function W (x) = 1.
The weights and mesh points for the Legendre polynomial is given in table
A.4.

n xi ωi

2 ±1
3

√
3 1

3 0 8
9

±1
5

√
15 5

9

4 ± 1
35

√
525− 70

√
30 1

36
(18 +

√
30)

± 1
35

√
525 + 70

√
30 1

36
(18−

√
30)

5 0 128
225

± 1
21

√
245− 14

√
70 1

900
(322 + 13

√
70)

± 1
21

√
245 + 14

√
70 1

900
(322− 13

√
70)

Table A.4: The weights and grid points for the Gauss-Legendre quadrature.
Taken from [25].

Appendix B

Source code

In this appendix we give the full source code. For more information about
the implementation see Chapter 5. The program can be compiled using a
variation of this Makefile.

Makefile

#MAKEFILE
HEADERDEST := / fy s /compphys/ inc lude
LAPACKLIB := −l l apa ck

qd : Solver . h FEM. o FDM. o Con f i gF i l e . o quantumdot . cpp
Eigen . h matrix . h

mpicxx
i c c −o qd quantumdot . cpp FEM. o FDM. o

Con f i gF i l e . o −O3 l i b / l i ba rpack . a l i b /
l i ba rpack++.a − l g f o r t r a n l i b / l i b b l a s . a −I$ (
HEADERDEST) $ (LAPACKLIB) −ans i −Wall −wd1572
−wd981 −wd383 −pg

FDM. o : FDM. cpp Solver . h Eigen . h matrix . h
g++ −c FDM. cpp −I / s i t e /compphys/ inc lude

FEM. o : FEM. cpp matrix . h Eigen . h Solver . h
g++ −c FEM. cpp −I / s i t e /compphys/ inc lude

Con f i gF i l e . o : Con f i gF i l e . cpp Con f i gF i l e . h
g++ −c Con f i gF i l e . cpp −pg

97

98 APPENDIX B. SOURCE CODE

c l ean :
rm −f qd . x ∗ . o ∗~ ∗#

B.1 Main program: class quantumdot

#include "FEM. h"
#include " Con f i gF i l e . h"
#include <st r ing >

class quantumdot{

private :
int M; //Number o f e lements
int N; //Number o f nodes
double h ; //FEM: s i z e o f element , FDM: d i s t ance

between nodes
bool f u l l_ s e t ; // are we search ing f o r a f u l l s e t

e i g e n s t a t e s
int n_eigenvalues ; //number o f e i g enva l u e s to be

found
int n_compare ;

int m, l ; //quantum numbers
double omega_0 , omega2 , omega ; // o s c i l l a t o r f requency
double B; //magnetic f i e l d
double K; // i n t e r a c t i o n term : K=1 fo r r e l a t i v e

equat ion

int dim ; // s p e c i f y 2D or 3D problem
int type ; // s p e c i f y FDM=1 or FEM=2
int problem ; // s p e c i f y which genera l problem to be

so l v ed ! ! !

double r_min ;
double r_max ;

Eigenstates s o l u t i o n ; // f i n a l s o l u t i o n i s s t o r ed

B.1. MAIN PROGRAM: CLASS QUANTUMDOT 99

int n_richardson ; // order o f the Richardson
e x t r a p o l a t i o n

int max_iterat ions ; //maximum number o f i t e r a t i o n s in
rmax

int n_e , n_int ; //number o f nodes per e lement and
i n t e g r a t i o n po in t s f o r FEM

char∗ path ;
char f i l e [8 0] ;
char run [5] ;

public :
quantumdot () {

i n i t i a l i s e () ; // read input from f i l e and s e t
v a r i a b l e s

// loop over in c r ea s in g r_max va l u e s
rm_loop (0 . 0001 , max_iterat ions) ;
s o l u t i o n . s c a l e_ sh i f t (0 . 5 , −0.5∗B∗m) ; // c a l c u l a t e s E

= 0.5 eps−0.5Bm

output_fi lename () ;
s i ng l e_ l a t ex (f i l e) ;

i f (K==0.0) {
e igenva lue_report () ;

}
else {

s o l u t i o n . show_eigenvalues () ;
}

s o l u t i o n . o r thogona l i s e_se t () ; // o r t h o gona l i s e
e i g en v e c t o r s

s o l u t i o n . p r i n t (f i l e , m, l , omega) ; // p r i n t
e i g e n s t a t e s to matlab f i l e f i l e .m

}

private :
// s imple FEM so l v e r
Eigenstates FEMsolve (bool vec) {

100 APPENDIX B. SOURCE CODE

cout << "FEM: " << "r_max = " << r_max << " , M =
" << M <<" , h = " << h <<endl ;

FEM x (M, n_e , n_int , h) ;

i f (dim==2) x . s e t_poten t i a l (2 ,m, omega2 ,K, r_min) ;
else i f (dim==3) x . s e t_poten t i a l (3 , l , omega2 ,K, r_min

) ;
x . s o l v e (n_eigenvalues , vec) ;
return x . s o l u t i o n ;

}

// s imple FDM so l v e r
Eigenstates FDMsolve (bool vec) {

cout << "FDM: " << "r_max = " << r_max << " , N =
" << M+1 << " , h = " << h <<endl ;

FDM x (M+1,h) ;

i f (dim==2) x . s e t_poten t i a l (2 ,m, omega2 ,K) ;
else i f (dim==3) x . s e t_poten t i a l (3 , l , omega2 ,K) ;
x . s o l v e (n_eigenvalues , vec) ;
return x . s o l u t i o n ;

}

// p r i n t a s e t o f e i g enva lue s , comparing the to
ana l y t i c s o l u t i o n s

void e igenva lue_report () { //assumes K=0!
double ana l y t i c ;
double numeric ;
double mag = 0.5∗B∗m;
double num;
i f (dim==2) num=abs (m)+1;
else i f (dim==3) num=l +1.5 ;

cout << "Numerical s o l u t i o n " << " Analyt ic
s o l u t i o n " << " Re la t i v e e r r o r | a−n | / a" <<endl ;

i f (omega==0) omega=1;
for (int i =0; i<n_eigenvalues ; i++){

numeric=s o l u t i o n . e i g enva lue [i] ;
a n a l y t i c=num∗omega−mag ;
cout << f i x ed << setw (15) << s e t p r e c i s i o n (8) <<

numeric ;

B.1. MAIN PROGRAM: CLASS QUANTUMDOT 101

cout << setw (15) << ana l y t i c ;
cout << s c i e n t i f i c << setw (30) << s e t p r e c i s i o n (8)

<< abs (ana ly t i c−numeric) / ana l y t i c ;
cout << endl ;
num+=2;

}
cout << "−−−−−−−−−−−−−−−" <<endl ;

}

// p r i n t a s e t o f e i g enva lue s , comparing the to
ana l y t i c s o l u t i o n s to f i l e . t e x

void s i ng l e_ l a t ex (char∗ f i l e i n) {
char∗ ext = " . tex " ;
char f i l e [8 0] ;
s t r cpy (f i l e , f i l e i n) ;
s t r c a t (f i l e , ext) ;

double ana l y t i c ;
double numeric ;
double mag = 0.5∗B∗m;
double num;
i f (dim==2) num=abs (m)+1;
else i f (dim==3) num=l +1.5 ;
// i f (omega==0) omega=1; // f j e r n denne senere

ofstream o f i l e ;
o f i l e . open (f i l e) ;
o f i l e << "\\ begin { tab l e } [hbp] " <<endl ;
o f i l e << "\\ c en t e r i ng " << endl ;
o f i l e << "\\ begin { tabu la r }{ ccc }" << endl ;
o f i l e << "Numerical & Analyt ic & Re la t i v e e r r o r = |

a−n | / a\\\\" <<endl ;
o f i l e << "\\ h l i n e " << endl ;
for (int i =0; i<n_eigenvalues ; i++){

numeric=s o l u t i o n . e i g enva lue [i] ;
a n a l y t i c=num∗omega−mag ;
o f i l e << setw (10) << s e t p r e c i s i o n (8) << numeric

<< " & " ;
o f i l e << setw (3) << ana l y t i c << " & " ;
o f i l e << s c i e n t i f i c << setw (16) << s e t p r e c i s i o n

(8) << abs (ana ly t i c−numeric) / ana l y t i c ;

102 APPENDIX B. SOURCE CODE

o f i l e << " \\\\ " <<endl ;
o f i l e . un s e t f (ios_base : : s c i e n t i f i c) ;
num+=2;

}
o f i l e << "\\end{ tabu la r }" <<endl ;
o f i l e << "\\ capt ion { " << "m=" << m << " , h=" << h

<< " , r_{max}=" << r_max ;
i f (type==1) o f i l e << " ,FDM, r i c h = " <<

n_richardson ;
else o f i l e <<" ,FEM, n_e=" << n_e << " , $n_{ in t }$

= " << n_int ;
o f i l e <<"}" <<endl ;
o f i l e << "\\ l a b e l {}" <<endl ;
o f i l e << "\\end{ tab l e }" <<endl ;
o f i l e . c l o s e () ;

}

// read input from f i l e us ing con f i g u r a t i on manager :
h t t p ://www−per sona l . umich . edu/~wagnerr/ Con f i gF i l e .
html

void i n i t i a l i s e () {
double temp ;
Con f i gF i l e c on f i g ("qd . inp ") ;
c on f i g . r eadInto (temp , "omegainv" , 0 . 0) ;
i f (temp!=0) omega_0=1.0/temp ;
else c on f i g . r eadInto (omega_0 , "omega" , 1 . 0) ;
c on f i g . r eadInto (B, "B" , 0 . 0) ;
c on f i g . r eadInto (m, "m" , 1) ;
c on f i g . r eadInto (l , " l " , 1) ;
c on f i g . r eadInto (K, "K" , 0 . 0) ;
c on f i g . r eadInto (h , "h" , . 1) ;
c on f i g . r eadInto (max_iterations , "maxit" , 10) ;

// read r_max from f i l e or c a l c u l a t e , s e t M
c on f i g . r eadInto (r_min , "r_min" , 0 . 0) ;
c on f i g . r eadInto (r_max , "r_max" , 0 . 0) ;
i f (r_max==0.0) r_max=init_rmax (omega) ;

M=(int) c e i l (r_max/h) ;

c on f i g . r eadInto (dim , "dim" , 2) ;
i f (dim!=3) dim =2;

B.1. MAIN PROGRAM: CLASS QUANTUMDOT 103

cout << dim <<endl ;
c on f i g . r eadInto (type , " type " , 2) ;
i f (type==2){

con f i g . r eadInto (n_e , "n_e" , 2) ;
i f (n_e>3) n_e=3;
c on f i g . r eadInto (n_int , "n_int" , 5) ;
N=M∗(n_e−1)+1;

}
else {

type=1;
c on f i g . r eadInto (n_richardson , " r i c h " , 0) ;
N=M+1;

}

// change cons tan t s f o r problem type
c on f i g . r eadInto (problem , "problem" , 0) ;
i f (problem==2) r e l a t i v e () ;
else i f (problem==3) com() ;
else i f (problem==1) s i n g l e () ;
else problem=0;

// inc l ude the magnetic f i e l d in omega
omega2=omega_0∗omega_0+0.25∗B∗B;
omega=sq r t (omega2) ;

c on f i g . r eadInto (fu l l_s e t , " a l l " , fa l se) ;
i f (! f u l l_ s e t) c on f i g . r eadInto (n_eigenvalues , "

num_eigenvalues" , 10) ;
i f (f u l l_ s e t) n_eigenvalues=N−2;
c on f i g . r eadInto (n_compare , "num_eigenvalues" , 10) ;

//Output i n f o to screen
cout << " So lv ing : −u ’ ’ + " ;
i f (dim==3) cout << " l (l +1)" ;
else cout << " (m^2−0.25)" ;
cout << "u/ r^2 + w^2r^2u" ;
i f (K!=0 .0) cout << "+" << K << " u/ r = eps u" ;
cout << " = eps u" ;
cout <<endl << "w = " << omega_0 << " , B = " << B;
i f (dim==3) cout << " , l = " << l ;

104 APPENDIX B. SOURCE CODE

cout << " ,m = " << m <<endl << "Using " ;
i f (type==1) cout << "FDM, with step l ength h = " <<

h << " Richardson ex t r apo l a t i on order = " <<
n_richardson <<endl ;

else cout <<"FEM, with element s i z e h = " << h << "
, us ing " << n_e << " nodes per element and " <<
n_int << " i n t e g r a t i o n po in t s "<<endl ;

}

// s e t up output f i l e
void output_fi lename () {

path= " . . / Tekst/Double/" ; //3d /";
s t r cpy (f i l e , path) ;

// s t r c a t (f i l e , " r ") ;
// s p r i n t f (run , "%04.0 f " ,r_max) ;
// s t r c a t (f i l e , run) ;
// s t r c a t (f i l e , "w") ;
// s p r i n t f (run , "%g" ,omega) ;
// s t r c a t (f i l e , run) ;

// s t r c a t (f i l e , "h") ;
// s p r i n t f (run , "%g" , h) ;
// s t r c a t (f i l e , run) ;

s t r c a t (f i l e , "B") ;
s p r i n t f (run , "%g" ,B) ;
s t r c a t (f i l e , run) ;

// s t r c a t (f i l e , "m") ;
// s p r i n t f (run , "%i " ,m) ;
// s t r c a t (f i l e , run) ;
// s t r c a t (f i l e , " l ") ;
// s p r i n t f (run , "%i " , l) ;
// s t r c a t (f i l e , run) ;

i f (type==1) s t r c a t (f i l e , "FDM") ;
else {

s t r c a t (f i l e , "FEM") ;
s p r i n t f (run , "%i " ,n_e) ;
s t r c a t (f i l e , run) ;

}

B.1. MAIN PROGRAM: CLASS QUANTUMDOT 105

cout << "Output to : " << f i l e << endl ;
}

// i n i t i a l i s e r_max i f not s e t
int init_rmax (double omega) {

double ep s i l o n =0.001;
i f (omega==0) return (int)−l og (e p s i l o n)+1;
else return (int) c e i l (s q r t (−2∗ l og (e p s i l o n) /omega))

;
}

// change v a r i a b l e s accord ing to problem
void r e l a t i v e () { K=1; omega_0∗=0.5; }
void com() { K=0; omega_0∗=2; }
void s i n g l e () { K=0;}

// s o l v e f o r i n c r ea s in g r_max u n t i l the a s topp ing
c r i t e r e a i s reached

// the Eigenva lues and Eigenvec tor o f the f i n a l r_max
i s s t o r ed

void rm_loop (double l im i t , int max_iterat ions) {

Eigenstates temp ;
int count=0;
double d i f f =1;
i f (max_iterations >0){

cout <<endl<< " Sta r t i ng loop over rmax" << endl ;
i f (type==1) {

i f (n_richardson==0) s o l u t i o n=FDMsolve (fa l se) ;
else s o l u t i o n=Richardson (n_richardson , fa l se) ;

}
i f (type==2) s o l u t i o n=FEMsolve (fa l se) ;

}
while (d i f f >l im i t && count<max_iterat ions) {

r_max++;
M=(int) c e i l (r_max/h) ;
i f (f u l l_ s e t) n_eigenvalues=N−2; // pass på f o r ne

! ! !

106 APPENDIX B. SOURCE CODE

i f (type==1) {
i f (n_richardson==0) temp=FDMsolve (fa l se) ;
else temp=Richardson (n_richardson , fa l se) ;

}
i f (type==2) temp=FEMsolve (fa l se) ;

d i f f=s o l u t i o n . compare_set (temp , n_compare) ;
cout << " D i f f e r e n c e in s e t = " << d i f f << endl ;
s o l u t i o n=temp ;
count++;

}
cout << "Done loop ing over rmax −> rmax = " <<

r_max << endl << endl ;
i f (max_iterations >0 && count == max_iterat ions)

cout << "Reached the maximum number o f
i t e r a t i o n s in r_max . " << endl ;

i f (type==1) {
i f (n_richardson==0) s o l u t i o n=FDMsolve (true) ;
else s o l u t i o n=Richardson (n_richardson , true) ;

}
i f (type==2) s o l u t i o n=FEMsolve (true) ;

}

//Richardson e x t r a p o l a t i o n s
Eigenstates Richardson (int R_it , bool vec) {

cout << "Richardsom I t e r a t i o n " << 0 << " : " ;
// cout << so l u t i o n . s t ep_leng th ;

Eigenstates∗ saved=new Eigenstates [R_it+1] ;
saved [0]=FDMsolve (vec) ;

Eigenstates temp ;
Eigenstates next ;

for (int i =0; i<R_it ; i++){
h∗=0.5;
M=(int) c e i l (r_max/h) ;
cout << "R I t e r a t i o n " << i+1 << " : " ;

B.1. MAIN PROGRAM: CLASS QUANTUMDOT 107

temp=FDMsolve (vec) ;
next=Rich (1 , temp , saved [0]) ;
saved [0]= temp ;

for (int j =1; j<=i ; j++){
temp=next ;
next=Rich (j +1, temp , saved [j]) ;
saved [j]=temp ;

}

saved [i +1]=next ;

}
h∗=pow (2 . 0 , R_it) ;
M=(int) c e i l (r_max/h) ;
// the l a s t c a l c u l a t e d e i g en v e c t o r s are s t o r ed in

saved [0] , the most accura te e i g enva l u e s are
s t o r ed in saved [0] , so we copy and re turn t h i s
as a s e t

Eigenstates f i n a l ;
f i n a l=saved [0] ;

for (int i =0; i<n_eigenvalues ; i++) f i n a l . e i g enva lue
[i]= saved [R_it] . e i g enva lue [i] ;

delete [] saved ;
return f i n a l ;

}

Eigenstates Rich (int j , Eigenstates a , Eigenstates b)
{

Eigenstates out (n_eigenvalues , 0 ,1) ;
for (int i =0; i<n_eigenvalues ; i++){

out . e i g enva lue [i]=(pow (4 . 0 , j)∗a . e i g enva lue [i]−b .
e i g enva lue [i]) /(pow (4 . 0 , j)−1) ;

}
return out ;

}

108 APPENDIX B. SOURCE CODE

} ;

int main (int argc , char∗∗ args) {
quantumdot qd ;

}

B.1.1 Input file “qd.inp”

type = 2 ; #1=FDM, 2=FEM
problem = 0 ; #1=s ing l e , 2=r e l a t i v e , 3=com , 0=input
dim=3 # 2 , 3
num_eigenvalues = 20
a l l = fa l se #ca l c u l a t e f u l l s e t o f e i g en s t a t e s−> se t

r_max f i r s t , maxit=0

m=1
l=0

omega=1
#omegainv=3
B=0
K=1

n_e=3
maxit=0

h=0.0125
r_min=0
r i c h=0
r_max=9

B.2 Solver.h

#include <cmath>
#include <iostream>
#include <iomanip>
#include <fstream>
#include "Eigen . h"

B.2. SOLVER.H 109

#include "matrix . h"
#include "arpack++/arbsmat . h"
using namespace std ;

class Solver{

public :
int N; // s i z e o f g l o b a l matrix
double h ; // s t ep_leng th / element s i z e
Eigenstates s o l u t i o n ; // s o l u t i o n

public :

void virtual s o l v e (int , bool) {} ;
void virtual s e t_poten t i a l (int , int , double , double)

{} ;
virtual ~Solver () {}

} ;

class FDM : public Solver {

public :

matrix bm;
FDM(double h , double min , double max) ;
FDM(int N, double h) ;
~FDM() ;

void s o l v e (int nev , bool vec to r s) {make_system () ;
solve_system (nev , v e c t o r s) ; } ;

void make_system () ;
void solve_system (int , bool) ;

void s e t_poten t i a l (int , int , double , double) ;
void matvec_product (double ∗ , double∗) ;

private :
double∗ po t e n t i a l ;

} ;

110 APPENDIX B. SOURCE CODE

class FEM : public Solver {

public :
int M; //number o f e lements
int n_e ; //number o f nodes per e lement
int int_N ; //number o f i n t e g r a t i o n po in t s

matrix l e f t ;
matrix r i g h t ;

matrix po t e n t i a l ;
double x_min ;

double∗ x i ;
double∗ weights ;

FEM() {} ;
~FEM() {delete [] x i ; delete [] we ights ; } ;
FEM(int elements , int l o c a l , int int_N , double h) ;

void s o l v e (int nev , bool vec to r s) {make_system () ;
solve_system (nev , v e c t o r s) ; } ;

double N_i(int , double) ;
double dN_i(int , double) ;

double i n t e g r a t e (double∗) ;
void calc_element (int e , matrix &l e f t , matrix &r i gh t)

;
void s e t_integ ra t i on_po int s () ;

void s e t_poten t i a l (int dim , int qn , double omega2 ,
double K, double x_min) ;

void test1D (double) ;
void make_system () ;
void solve_system (int , bool) ;
void bc () ;

} ;

B.3. FINITE ELEMENT SOLVER 111

B.3 Finite element Solver

#include " So lve r . h"
#include "arpack++/argsym . h"
#include "arpack++/arbgsym . h"

FEM: :FEM(int elements , int l o c a l , int int_N_in , double
step_length) {

n_e=l o c a l ;
i f (n_e>3) n_e=3;
else i f (n_e<2) n_e=2;
int_N=5;
//int_N=int_N_in ;
// i f (int_N!=2 | | int_N!=4 | | int_N!=5) int_N=5;

M=elements ;
N=M∗(n_e−1)+1;
h=step_length ;

l e f t=matrix (N,N, 0) ;
r i g h t=matrix (N,N, 0) ;

weights=new double [int_N] ;
x i=new double [int_N] ;

s e t_integ ra t i on_po int s () ;
p o t e n t i a l=matrix (N,N, 0) ;
}

void FEM: : s e t_poten t i a l (int dim , int qn , double omega2 ,
double K, double x_min) {

double x1 , x2 , nabla ;
this−>x_min=x_min ;
i f (dim==2) nabla=qn∗qn−0.25;
else i f (dim==3) nabla=qn∗(qn+1) ;
else { nabla=0; cout << " e r r o r in s e t_poten t i a l ! "<<

endl ; }

112 APPENDIX B. SOURCE CODE

double div=n_e−1;
for (int i =0; i<M; i++){

for (int j =0; j<int_N ; j++){
x1=0;
for (int s=0; s<n_e ; s++)

x1+=N_i(s , x i [j]) ∗(x_min+(s / div+i)∗h) ;
x2=x1∗x1 ;
p o t e n t i a l [i] [j]=nabla /x2 + K/x1+omega2∗x2 ;

}
}

}

void FEM: : bc () { // p a r a l l e l i s a t i o n : on ly boundary
e lements

l e f t . remove (N−1) ;
r i g h t . remove (N−1) ;
l e f t . remove (0) ;
r i g h t . remove (0) ;
N−=2;

}

double FEM: : N_i(int i , double x) { // b a s i s f unc t i on s
i f (n_e == 2) {

i f (i==0) return 0.5−0.5∗x ;
else i f (i==1) return 0.5+0.5∗x ;

} else i f (n_e == 3) {
i f (i==0) return 0 .5∗x∗(x−1) ;
else i f (i==1) return 1−x∗x ;
else i f (i==2) return 0 .5∗x∗(1+x) ;

}
}
double FEM: : dN_i(int i , double x) { // b a s i s f unc t i on s

i f (n_e == 2) {
i f (i==0) return −0.5;
else i f (i==1) return 0 . 5 ;

} else i f (n_e == 3) {
i f (i==0) return x−0.5 ;
else i f (i==1) return −2∗x ;

B.3. FINITE ELEMENT SOLVER 113

else i f (i==2) return x+0.5 ;
}

}

void FEM: : make_system () {
matrix e l ement_le f t=matrix (n_e , n_e) ;
matrix e lement_right=matrix (n_e , n_e) ;

for (int e=1; e<=M; e++){
calc_element (e , e lement_le f t , e lement_right) ;
for (int i =0; i<n_e ; i++){
for (int j =0; j<n_e ; j++){

l e f t [(n_e−1)∗(e−1)+i] [(n_e−1)∗(e−1)+j]+=
element_le f t [i] [j] ;

r i g h t [(n_e−1)∗(e−1)+i] [(n_e−1)∗(e−1)+j]+=
element_right [i] [j] ;

}
}

}
bc () ;

}

void FEM: : solve_system (int nev , bool vec to r s) {
double∗ temp=new double [N] ;
int nconv ;

double∗ a_array=l e f t . get_array_symb (N, n_e) ;
double∗ b_array=r i gh t . get_array_symb (N, n_e) ;

ARbdSymMatrix<double> amat (N, n_e−1, a_array) ;
ARbdSymMatrix<double> bmat(N, n_e−1, b_array) ;

double∗ r e s i d=new double [N] ;
for (int i =0; i<N; i++) r e s i d [i]=1;

i f (nev>N) nev=N;
i f (nev>N−1){ //number o f e i g enva l u e s are h i ghe r than

arpack can handle −> ca l c u l a t e in two c a l l s
int nev1=nev /2 ;
int nconv1 ;

114 APPENDIX B. SOURCE CODE

ARluSymGenEig<double > e i g en s o l v e r 1 (nev1 , amat ,
bmat , "SM" , 0 , 0 . 0 , 0 , r e s i d , true) ;

ARluSymGenEig<double > e i g en s o l v e r 2 (nev−nev1 , amat ,
bmat , "LM" , 0 , 0 . 0 , 0 , r e s i d , true) ;

i f (v e c t o r s) {
nconv1 = e i g en s o l v e r 1 . FindEigenvectors () ;
for (int i =0; i<N; i++) r e s i d [i]=1;
nconv = e i g en s o l v e r 2 . FindEigenvectors () ;
s o l u t i o n=Eigenstates (nev ,N, h/(n_e−1)) ;

for (int i =0; i<nconv1 ; i++){
for (int j =0; j<N; j++) {

temp [j]= e i g e n s o l v e r 1 . E igenvector (i , j) ;
}
s o l u t i o n . add_pair (i , e i g e n s o l v e r 1 . Eigenvalue (i)

, temp) ;
}
for (int i =0; i<nconv ; i++){

for (int j =0; j<N; j++) {

temp [j]= e i g e n s o l v e r 2 . E igenvector (i , j) ;
}
s o l u t i o n . add_pair (i+nconv1 , e i g e n s o l v e r 2 .

Eigenvalue (i) , temp) ;
}

} else {
nconv1 = e i g en s o l v e r 1 . FindEigenvalues () ;
for (int i =0; i<N; i++) r e s i d [i]=1;
nconv = e i g en s o l v e r 2 . FindEigenvalues () ;
s o l u t i o n=Eigenstates (nev , 0 , h/(n_e−1)) ;
for (int i =0; i<nconv1 ; i++) s o l u t i o n . e i g enva lue [i

]= e i g en s o l v e r 1 . Eigenvalue (nconv1−1− i) ;
for (int i =0; i<nconv ; i++) s o l u t i o n . e i g enva lue [i+

nconv1]= e i g en s o l v e r 2 . Eigenvalue (i) ;
}

} else {
ARluSymGenEig<double > e i g e n s o l v e r (nev , amat , bmat ,

"SM" , 0 , 0 . 0 , 0 , r e s i d , true) ;

i f (v e c t o r s) {

B.3. FINITE ELEMENT SOLVER 115

nconv = e i g e n s o l v e r . F indEigenvectors () ;
s o l u t i o n=Eigenstates (nconv ,N, h/(n_e−1)) ;
for (int i =0; i<nconv ; i++){

for (int j =0; j<N; j++) temp [j]= e i g e n s o l v e r .
E igenvector (i , j) ;

s o l u t i o n . add_pair (i , e i g e n s o l v e r . Eigenvalue (i) ,
temp) ;

}

} else {
nconv = e i g e n s o l v e r . FindEigenvalues () ;
s o l u t i o n=Eigenstates (nconv , 0 , h/(n_e−1)) ;
for (int i =0; i<nconv ; i++) s o l u t i o n . e i g enva lue [i

]= e i g e n s o l v e r . Eigenvalue (nconv−1− i) ;
}
i f (nconv<nev) {

cout << "nconv<num"<<endl ;
solve_system (nev+10, v e c t o r s) ;

}
}

delete [] r e s i d ;
delete [] temp ;
delete [] a_array ;
delete [] b_array ;

}

double FEM: : i n t e g r a t e (double∗ func) {
double sum=0;
for (int i =0; i<int_N ; i++){

sum+=weights [i]∗ func [i] ;
}
return sum ;

}

void FEM: : ca lc_element (int e , matrix &e l e f t , matrix &
er i gh t) {

double∗ i n t 1=new double [int_N] ;
double∗ i n t 2=new double [int_N] ;
double M_ij ;
double xp ;

116 APPENDIX B. SOURCE CODE

for (int i =0; i<n_e ; i++){
for (int j =0; j<n_e ; j++){

for (int k=0; k<int_N ; k++){
M_ij=h/2.0∗N_i(i , x i [k]) ∗N_i(j , x i [k]) ;
i n t1 [k]=M_ij∗ po t e n t i a l [e−1] [k]+ 2 .0/h∗dN_i(i , x i

[k]) ∗dN_i(j , x i [k]) ; ;
i n t 2 [k]=M_ij ;

}
e l e f t [i] [j]= i n t e g r a t e (i n t1) ;
e r i g h t [i] [j]= i n t e g r a t e (i n t2) ;

}
}

delete [] i n t1 ;
delete [] i n t2 ;

}

void FEM: : s e t_ integ ra t i on_po int s () {
// h t t p :// mathworld . wolfram . com/Legendre−

GaussQuadrature . html
i f (int_N==2){

x i [0] = −s q r t (1 . 0 / 3 . 0) ;
weights [0]= 1 ;
x i [1]=− x i [0] ;
we ights [1]=1 ;

}
else i f (int_N==4){

// gauss−l e g endre f o r po lynomia l o f 4 th order
x i [0]= −s q r t (525+70∗ s q r t (30)) / 3 5 . 0 ;
weights [0]= (18− s q r t (30)) / 3 6 . 0 ;
x i [1]=− s q r t (525−70∗ s q r t (30)) / 3 5 . 0 ;
weights [1]=(18+ sq r t (30)) / 3 6 . 0 ;
x i [2]=− x i [1] ;
we ights [2]= weights [1] ;
x i [3]=− x i [0] ;
we ights [3]= weights [0] ;

} else { // i f (int_N==5){
// gauss−l e g endre f o r po lynomia l o f 5 th order
x i [0]=− s q r t (245+14∗ s q r t (70)) / 2 1 . 0 ;

B.4. FINITE DIFFERENCE SOLVER 117

weights [0]=(322.0−13∗ s q r t (70)) / 900 . 0 ;
x i [1]=− s q r t (245−14∗ s q r t (70)) / 2 1 . 0 ;
weights [1]=(322.0+13∗ s q r t (70)) / 900 . 0 ;
x i [2]=0 ;
weights [2]=128 . 0 /225 . 0 ;
x i [3]=− x i [1] ;
we ights [3]= weights [1] ;
x i [4]=− x i [0] ;
we ights [4]= weights [0] ;

}
}

B.4 Finite difference Solver

#include " So lve r . h"
#include "arpack++/arssym . h"
#include "arpack++/arbssym . h"

FDM: :FDM(int num_points , double s tep) {
h=step ;
N=num_points−2;
p o t e n t i a l=new double [N] ;
bm = matrix (N,N, 0) ;

}

FDM: : ~FDM() {delete [] p o t e n t i a l ; }

void FDM: : s e t_poten t i a l (int dim , int qn , double omega2 ,
double K){

double h4=h∗h∗h∗h ;
double nabla ;
double h2=h∗h ;

i f (dim==2) nabla=qn∗qn−0.25;
else i f (dim==3) nabla=qn∗(qn+1) ;
else { nabla=0; cout << " e r r o r in s e t_poten t i a l ! "<<

endl ; }

for (int i =1; i<=N; i++)

118 APPENDIX B. SOURCE CODE

po t e n t i a l [i−1]=nabla /(i ∗ i)+omega2∗ i ∗ i ∗h4+ K∗h/ i ;
}

void FDM: : make_system () {
for (int i =2; i<N; i++){

bm[i −1] [i −1]=2 +po t en t i a l [i −1] ;
bm[i −1] [i]=bm[i −1] [i −2]=−1;

}
bm[0] [0]=2 +po t en t i a l [0] ;
bm[N−1] [N−1]=2 +po t en t i a l [N−1] ;
bm[0] [1]= bm[N−1] [N−2]=−1;

}
void FDM: : solve_system (int nev , bool vec to r s) {

double h2=h∗h ;
double∗ temp=new double [N] ;
int nconv ;

double∗ a_array=bm. get_array_symb (N, 2) ;
ARbdSymMatrix<double> amat (N, 1 , a_array) ;

double∗ r e s i d=new double [N] ;
for (int i =0; i<N; i++) r e s i d [i]=1;

i f (nev>N) nev=N;
i f (nev>N−1){

int nev1=nev /2 ;
int nconv1 ;
ARluSymStdEig<double > e i g en s o l v e r 1 (nev1 , amat , "

SM" , 0 , 0 . 0 , 0 , r e s i d , true) ;
ARluSymStdEig<double > e i g en s o l v e r 2 (nev−nev1 , amat ,

"LM" , 0 , 0 . 0 , 0 , r e s i d , true) ;

i f (v e c t o r s) {
nconv1 = e i g en s o l v e r 1 . FindEigenvectors () ;
for (int i =0; i<N; i++) r e s i d [i]=1;
nconv = e i g en s o l v e r 2 . FindEigenvectors () ;
s o l u t i o n=Eigenstates (nev ,N, h) ;

for (int i =0; i<nconv1 ; i++){
for (int j =0; j<N; j++) {

B.4. FINITE DIFFERENCE SOLVER 119

temp [j]= e i g e n s o l v e r 1 . E igenvector (i , j) ;
}
s o l u t i o n . add_pair (i , e i g e n s o l v e r 1 . Eigenvalue (i)

/h2 , temp) ;
}
for (int i =0; i<nconv ; i++){

for (int j =0; j<N; j++) {

temp [j]= e i g e n s o l v e r 2 . E igenvector (i , j) ;
}
s o l u t i o n . add_pair (i+nconv1 , e i g e n s o l v e r 2 .

Eigenvalue (i) /h2 , temp) ;
}

} else {
nconv1 = e i g en s o l v e r 1 . FindEigenvalues () ;
for (int i =0; i<N; i++) r e s i d [i]=1;
nconv = e i g en s o l v e r 2 . FindEigenvalues () ;
s o l u t i o n=Eigenstates (nev , 0 , h) ;
for (int i =0; i<nconv1 ; i++) s o l u t i o n . e i g enva lue [i

]= e i g en s o l v e r 1 . Eigenvalue (nconv1−1− i) /h2 ;
for (int i =0; i<nconv ; i++) s o l u t i o n . e i g enva lue [i+

nconv1]= e i g en s o l v e r 2 . Eigenvalue (i) /h2 ;
}

} else {
ARluSymStdEig<double> e i g e n s o l v e r (nev , amat , "SM" ,

0 , 0 . 0 , 0 , r e s i d , true) ;
i f (v e c t o r s) {

nconv = e i g e n s o l v e r . F indEigenvectors () ;
s o l u t i o n=Eigenstates (nconv ,N, h) ;
for (int i =0; i<nconv ; i++){

for (int j =0; j<N; j++) temp [j]= e i g e n s o l v e r .
E igenvector (i , j) ;

s o l u t i o n . add_pair (i , e i g e n s o l v e r . Eigenvalue (i) /
h2 , temp) ;

}

} else {
nconv = e i g e n s o l v e r . FindEigenvalues () ;
s o l u t i o n=Eigenstates (nconv , 0 , h) ;

120 APPENDIX B. SOURCE CODE

for (int i =0; i<nconv ; i++) s o l u t i o n . e i g enva lue [i
]= e i g e n s o l v e r . Eigenvalue (nconv−1− i) /h2 ;

}
i f (nconv<nev) {

cout << " Inc r e a s e number o f e i g enva lu e s in search
f o r arpack . . . "<<endl ;

solve_system (nev+10, v e c t o r s) ;
}

}

delete [] r e s i d ;
delete [] temp ;
delete [] a_array ;

}

B.5 Eigenstates class

#include <iostream>
#include <cmath>
#include <fstream>
#include <st r ing >
using namespace std ;

class Eigenstates{

public :
int number ; //number o f e i g e n s t a t e s
int l ength ; // l en g t h o f e i g en v e c t o r s
double step_length ; // even s t ep_leng th

//quantum numbers?
int∗ n ;

double∗ e i g enva lue ;
double∗∗ e i g enve c t o r ;

void a l l o c a t e (int N, int l , double h) {
number=N;
l ength=l ;

B.5. EIGENSTATES CLASS 121

step_length=h ;

n=new int [number] ;
e i g enva lue=new double [number] ;
e i g enve c t o r=new double ∗ [number] ;
for (int i =0; i<number ; i++) {

e i g enve c t o r [i]=new double [l ength] ;
}

}

void d e a l l o c a t e () {
for (int i =0; i<number ; i++) {

delete [] e i g enve c t o r [i] ;
}
delete [] e i g enva lue ;
delete [] e i g enve c t o r ;
delete [] n ;

}

Eigenstates () { a l l o c a t e (1 , 1 , 1 . 0) ; }
Eigenstates (int N, int l , double h) { a l l o c a t e (N, l , h) ;

}
Eigenstates (const Eigenstates &in) {

a l l o c a t e (in . number , in . length , in . step_length) ;
for (int i =0; i<number ; i++){

e i g enva lue [i]= in . e i g enva lue [i] ;
for (int j =0; j<length ; j++) e i g enve c t o r [i] [j]= in .

e i g enve c t o r [i] [j] ;
}

}

~Eigenstates () { d e a l l o c a t e () ; }

Eigenstates& operator=(const Eigenstates& in) {
i f (this != &in) {

i f (number!= in . number | | l ength != in . l ength) {
d e a l l o c a t e () ;
a l l o c a t e (in . number , in . length , in . step_length) ;

}
for (int i =0; i<number ; i++){

e i g enva lue [i]= in . e i g enva lue [i] ;

122 APPENDIX B. SOURCE CODE

for (int j =0; j<length ; j++) e i g enve c t o r [i] [j]=
in . e i g enve c t o r [i] [j] ;

}
}
return ∗ this ;

}

void f ind_zeros () {
int z e r o s ;
for (int i =0; i<number ; i++){

ze ro s =0;
for (int j =1; j<length ; j++){

i f ((abs (e i g enve c t o r [i] [j]− e i g enve c t o r [i] [j −1])
>10e−8) && ((e i g enve c t o r [i] [j −1] >0 &&
e i g enve c t o r [i] [j]<0) | | (e i g enve c t o r [i] [j −1]
<0 && e i g enve c t o r [i] [j]>0))) {

z e r o s++;
}

}
n [i]= ze ro s ;

}
}

//add an e i g e n s t a t e to the s e t
void add_pair (int k , double val , double∗ vec) {

//assumes k<number , vec [l]
for (int i =0; i<length ; i++){

e i g enve c t o r [k] [i]=vec [i] ;
}
e i g enva lue [k]= va l ;

}

// p r i n t e i g en va l u e s to screen
void show_eigenvalues () {

show_eigenvalues (1) ;
}

// p r i n t e i g en va l u e s s c a l e d by omega to screen
void show_eigenvalues (double omega) {

i f (omega==0) omega=1;
cout << " Eigenva lues : " <<endl ;

B.5. EIGENSTATES CLASS 123

for (int i =0; i<number ; i++){
cout << e igenva lue [i] / omega << endl ;

}
cout << "−−−−−−−−−−−−−−−" <<endl ;

}

// p r i n t s e i g en v e c t o r s to screen , on ly u s e f u l f o r a
sma l l s e t !

void pr in t_e ig envec to r s () {
cout << " Eigenvector s " <<endl ;
for (int i =0; i<number ; i++){

for (int j =0; j<length ; j++){
cout <<e i g enve c t o r [i] [j] << " " ;

}
cout << endl <<endl ;

}
cout << "−−−−−−−−−−−−−−−" <<endl ;

}

// p r i n t s the s e t to a matlab s c r i p t
void pr in t (char ∗ f i l e i n , int m, int l , double omega)

{
char∗ ext = " .m" ;
char f i l e [8 0] ;
s t r cpy (f i l e , f i l e i n) ;
s t r c a t (f i l e , ext) ;

o f s tream o f i l e ;
o f i l e . open (f i l e) ;
o f i l e << "m = " << m << " ; " << endl ;
o f i l e << " l = " << l << " ; " << endl ;
o f i l e << "omega = " << omega << " ; " << endl ;
o f i l e << "h = " << step_length << " ; " << endl ;
o f i l e << "E = [" ;
for (int i =0; i<number ; i++) o f i l e << s c i e n t i f i c <<

s e t p r e c i s i o n (21) << setw (28) << e igenva lue [i] ;
o f i l e << "] ; " << endl ;

o f i l e << "V = [" <<endl ;
for (int j =0; j<length ; j++){

124 APPENDIX B. SOURCE CODE

for (int i =0; i<number ; i++) o f i l e << s c i e n t i f i c
<<s e t p r e c i s i o n (21) << setw (30) << e i g enve c t o r
[i] [j] ;

o f i l e << endl ;
}
o f i l e << "] ; " << endl ;
o f i l e . c l o s e () ;

}

// s h i f t a l l e i g enva l u e s : v a l=va l+s h i f t
void s h i f t (double s h i f t) {

for (int i =0; i<number ; i++){
e i g enva lue [i] += s h i f t ;

}
}

// s c a l e a l l e i g enva l u e s : v a l=va l ∗ s c a l e
void s c a l e (double s c a l e) {

for (int i =0; i<number ; i++){
e i g enva lue [i] ∗= s c a l e ;

}
}

// s h i f t and s c a l e a l l e i g en va l u e s va l=va l ∗ s c a l e+s h i f t
void s c a l e_ sh i f t (double s ca l e , double s h i f t) {

for (int i =0; i<number ; i++){
e i g enva lue [i] = s c a l e ∗ e i g enva lue [i]+ s h i f t ;

}
}

// dot product e i g env e c t o r (i)∗ e i g env e c t o r (j)
double dot (int i , int j) { // l e g g e t i l dim + r senere
double prod=0;

for (int k=0; k<length ; k++){ //u_0 , u_N = 0
prod+=e i g enve c t o r [i] [k]∗ e i g enve c t o r [j] [k] ;

}
prod∗=step_length ;
return prod ;

}

B.5. EIGENSTATES CLASS 125

// normal ise e i g env e c t o r (i)
void normalise_vec (int i) {
double norm=sq r t (dot (i , i)) ;
for (int j =0; j<length ; j++){

e i g enve c t o r [i] [j]= e i g enve c t o r [i] [j] / norm ;
}

}

// normal ise a l l e i g en v e c t o r s
void normal i se () {

for (int i =0; i<number ; i++){
normalise_vec (i) ;

}
}

// use the b a s i s o f e i g en v e c t o r s to c r ea t e an
or thogona l s e t

void o r thogona l i s e_se t () {
double d ;
normalise_vec (0) ;
for (int i =1; i<number ; i++){

for (int j =0; j<i ; j++){
d=dot (i , j) ;
for (int k=0; k<length ; k++){

e i g enve c t o r [i] [k]−=d∗ e i g enve c t o r [j] [k] ;
}
normalise_vec (i) ;

}
}

}

//compare the n_compare f i r s t e i g en va l u e s to s e t b ,
r e tu rn ing sum | a_i−b_i | , used i rm_loop i
quantumdot . cpp , compare a l go may be improved to
check the convergence o f e i g enva l u e (n_compare)

double compare_set (Eigenstates b , int n_compare) {
double e r r o r =0;
n_compare = min (min (n_compare , number) , b . number) ;
for (int i =0; i<n_compare ; i++){

e r r o r+=abs (e i g enva lue [i]−b . e i g enva lue [i]) ;
}

126 APPENDIX B. SOURCE CODE

return e r r o r ;
}

} ;

B.6 Simple matrix class

#include <iostream>
#include <iomanip>
using namespace std ;

class matrix{

public :
int rows ;
int c o l s ;
double∗∗ mat ;

matrix (int N, int M){ a l l o c a t e (N,M) ; }
matrix (int N, int M, double va l) {

a l l o c a t e (N,M) ;
for (int i =0; i<rows ; i++){

for (int j =0; j<c o l s ; j++){
mat [i] [j]= va l ;

}
}

}
matrix (int N){ a l l o c a t e (N,N) ; }
matrix () { rows=0; c o l s =0;}
virtual ~matrix () { d e a l l o c a t e () ; }

double∗ operator [] (int i) const{return mat [i] ; }

void a l l o c a t e (int N, int M){
rows=N;
c o l s=M;
mat=new double ∗ [rows] ;
for (int i =0; i<rows ; i++){

mat [i]=new double [c o l s] ;

B.6. SIMPLE MATRIX CLASS 127

for (int j =0; j<c o l s ; j++) mat [i] [j]=0;
}

}

void d e a l l o c a t e () {
for (int i =0; i<rows ; i++){

delete [] mat [i] ;
}
i f (rows>0)

delete [] mat ;
}

matrix (const matrix &in) {
a l l o c a t e (in . rows , in . c o l s) ;
for (int i =0; i<rows ; i++){

for (int j =0; j<c o l s ; j++){
mat [i] [j]= in [i] [j] ;

}
}

}

matrix& operator=(const matrix &in) {
d e a l l o c a t e () ;
a l l o c a t e (in . rows , in . c o l s) ;
for (int i =0; i<rows ; i++){

for (int j =0; j<c o l s ; j++){
mat [i] [j]= in [i] [j] ;

}
}
return ∗ this ;

}

void pr in t () { // cout
for (int i =0; i<rows ; i++){

for (int j =0; j<c o l s ; j++){
cout << setw (8) << s e t p r e c i s i o n (3) << mat [i] [j

] ;
}
cout <<endl ;

}
}

128 APPENDIX B. SOURCE CODE

void matvec (double∗ in , double∗ out) {
for (int i =0; i<rows ; i++){

out [i]=0;
for (int j =0; j<c o l s ; j++) out [i]+=mat [i] [j]∗

in [j] ;
}

}

double∗ get_array_symb (int s i z e , int bands) { //som
symmetrisk , bands= diag + upper
double∗ array= new double [s i z e ∗bands] ;
for (int i =0; i<s i z e ; i++){
for (int j=i ; j <(i+bands) ; j++){

array [i ∗(bands−1)+j] = mat [i] [j] ; // f y l l e r l i t t
u tenfor , men de t er i k k e minneproblemer

}
}
return array ;

}

void remove (int pos) { // removes column/row pos
double∗∗ copy=new double ∗ [rows −1] ;
for (int i =0; i<rows−1; i++) copy [i]=new double [c o l s

−1] ;
for (int i =0; i<pos ; i++){

for (int j =0; j<pos ; j++) copy [i] [j]=mat [i] [j] ;
for (int j=pos+1; j<c o l s ; j++) copy [i] [j−1]=mat [i

] [j] ;
}
for (int i=pos+1; i<rows ; i++){

for (int j =0; j<pos ; j++) copy [i −1] [j]=mat [i] [j] ;
for (int j=pos+1; j<c o l s ; j++) copy [i −1] [j−1]=mat [

i] [j] ;
}
mat=copy ;
rows−−;
c o l s −−;

}

B.6. SIMPLE MATRIX CLASS 129

} ;

clear
%for t e gnsprob l emer − ved supe rpo s i s j on

%read
e i g e n s e t ;
[l n]= s ize (V) ;
D=diag (E) ;
I=eye (l) ;
T=20;
t=0;
dt =0.25;
s t ep s=T/dt ;

W=1;
%wf=2;
f =1∗2∗pi/T;

r = linspace (h , l ∗h , l) ;

d=zeros (l , 1) ;
%d(wf)=1; %v e l g e h v i l k e n t i l s t a n d v i s t a r t e r i
d (1) =1;
d (6) =1;
d (4) =1;
d=d/norm(d) ;

d0=d ;
c=V∗d ;
p=conj (c) .∗ c ;
a=d0 ;

%p l o t ana l y t i c f o r W=0 −−
f igure (2)
plot (r , real (c) , ’ b ’) %rea l par t
hold on
plot (r , imag(c) , ’ r ’) %imaginary par t

plot (r , real (a) , ’b−− ’)
plot (r , imag(a) , ’ r−− ’)

130 APPENDIX B. SOURCE CODE

plot (r , p , ’ g ’) % c∗c
ylim ([−1 ,1]) ;
hold o f f
Movie (1)=getframe ;

for j =0: steps−1 %evo l v e from t j to t j+1

%H(s)
i n t 1=D∗dt+I∗−W∗(cos (f ∗(t+dt))−cos (f ∗ t)) / f ;
%sH(s)
i n t 2=D∗dt ∗(t +0.5∗dt)+I ∗W∗(sin (f ∗(t+dt))−t∗ f ∗cos (f ∗(t

+dt))−sin (f ∗dt)+t∗ f ∗cos (f ∗dt)) / f / f ;

H0=−i ∗ i n t 1 ;
H1=i /dt ∗ ((t +0.5∗dt)∗ int1−i n t 2) ;

d=expv(−1 , H1 , d) ;
d=expv (1 , H0 , d) ;
d=expv (1 , H1 , d) ;

t=t+dt ;
c=V∗d ;
p=conj (c) .∗ c ;

a=V∗diag (exp(− i ∗E∗ t))∗d0 ;
d i f f=c−a ;
sum(d i f f) ; %sammenlikne med ana l y t i s k f o r W=0

plot (r , real (c) , ’ b ’)
hold on
plot (r , imag(c) , ’ r ’)
plot (r , real (a) , ’b−− ’)
%hold on
plot (r , imag(a) , ’ r−− ’)
plot (r , p , ’ g ’)
text (10∗h , 0 . 8 , [’ t=’ , num2str(t)])
hold o f f
yl im ([−1 ,1]) ;
Movie (j +2)=getframe ;
%sin (f ∗ t)

B.6. SIMPLE MATRIX CLASS 131

end

%movie (Movie , 1 , 1)

Bibliography

[1] David j. Griffiths. Introduction to Quantum Mechanics. Pearson, 2005.

[2] R. Shankar. Principles of Quantum Mechanics. Plenum Press, 1994.

[3] Finn Ravndal. Notes on quantum mechanics. Lecture notes - FYS 3110.

[4] NIST (National Institute og Standards and Technology). Codata inter-
nationally recommended values of the fundamental physical constants.

[5] Eric W. Weisstein. Legendre polynomial. From MathWorld–A Wolfram
web resource http://mathworld.wolfram.com/LegendrePolynomial.
html.

[6] Stephanie M. Reimann and Matti Manninen. Electronic structure of
quantum dots. Rev. Mod. Phys, 74:1283, 2002.

[7] R. C. Ashoori. Electrons in artificial atoms. Nature, 379:413, 1996.

[8] Daniel Loss and David P. DiVincenzo. Quantum computation with
quantum dots. Phys. Rev. A, 57(1):120–126, Jan 1998.

[9] Xiaohu Gao, Yuanyuan Cui, Richard M. Levenson, Leland W K . Chung,
and Shuming Nie. In vivo cancer targeting and imaging with semicon-
ductor quantum dots. nature biotechnology, 22(8):969, August 2004.

[10] M. Taut. Two electrons in a homogeneous magnetic field: particular
analytical solutions. J. Phys. A: Math. Gen., 27:1045, 1994.

[11] M. Taut. Two electrons in an external oscillator potential: Particu-
lar analytic solutions of a coulomb correlation problem. Phys. Rev. A,
48(5):3561–3566, Nov 1993.

[12] Andreassen et al. Numeriske metoder. Tapir, 1986.

[13] H.P. Langtangen. Computational Partial Differential Equations: Nu-
merical Methods and Diffpack Programming. Springer, 2003.

133

http://mathworld.wolfram.com/LegendrePolynomial.html
http://mathworld.wolfram.com/LegendrePolynomial.html

134 BIBLIOGRAPHY

[14] L. Ramdas Ram-Mohan. Finite Element and Boundary Element Appli-
cations in Quantm Mechanics. Oxford University Press, 2002.

[15] H.P. Langtangen and A. Tveito. Advanced topics in computational par-
tial differential equations: numerical methods and diffpack programming.
Springer, 2003.

[16] S Blanes and P. C. Moan. Splitting methods for the time-dependent
Schrödinger equation. Physics Letters A, 265:35–42, 2000.

[17] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling. Nu-
merical Recipes in C++, The art of scientific Computing. Cambridge
University Press, 1999.

[18] Arpack software. http://www.caam.rice.edu/software/ARPACK/.

[19] G.H. Golub and C.F. Van Loan. Matrix Computations. John Hopkins
University Press, 1996.

[20] Simen. Kvaal. A critical study of the finite difference and finite element
methods for the time dependent Schrödinger equation. Master’s thesis,
University of Oslo, 2004.

[21] Rick Wagner. Configuration file reader for c++. http://
www-personal.umich.edu/~wagnerr/ConfigFile.html.

[22] Expokit - matrix exponential software package for dense and sparse ma-
trices. http://www.maths.uq.edu.au/expokit/.

[23] Eric W. Weisstein. Laguerre polynomial. From MathWorld–A Wolfram
web resource http://mathworld.wolfram.com/LaguerrePolynomial.
html.

[24] Morten. Hjorth-Jensen. Lecture notes on computational physics.
http://www.uio.no/studier/emner/matnat/fys/FYS3150/h08/
undervisningsmateriale/Lecture%20Notes/lecture2008.pdf,
2006. Lecture notes in FYS-3150 and FYS 4410.

[25] Eric W. Weisstein. Legendre-gauss quadrature. From MathWorld–
A Wolfram web resource http://mathworld.wolfram.com/
Legendre-GaussQuadrature.html.

http://www.caam.rice.edu/software/ARPACK/
http://www-personal.umich.edu/~wagnerr/ConfigFile.html
http://www-personal.umich.edu/~wagnerr/ConfigFile.html
http://www.maths.uq.edu.au/expokit/
http://mathworld.wolfram.com/LaguerrePolynomial.html
http://mathworld.wolfram.com/LaguerrePolynomial.html
http://www.uio.no/studier/emner/matnat/fys/FYS3150/h08/undervisningsmateriale/Lecture%20Notes/lecture2008.pdf
http://www.uio.no/studier/emner/matnat/fys/FYS3150/h08/undervisningsmateriale/Lecture%20Notes/lecture2008.pdf
http://mathworld.wolfram.com/Legendre-GaussQuadrature.html
http://mathworld.wolfram.com/Legendre-GaussQuadrature.html

	Introduction
	Introduction to quantum mechanics
	Quantum mechanical postulates
	Scaling to dimensionless units
	The time-independent Schrödinger equation
	The Schrödinger equation in spherical coordinates
	Two dimensions
	Three dimensions

	Angular momentum and Spin
	Angular momentum
	Spin
	Two-particle systems

	Interaction with the electromagnetic field

	A mathematical model for quantum dots
	Background on quantum dots
	The mathematical model
	The single electron quantum dot
	Two dimensions
	Three dimensions

	The two-electron quantum dot
	Two dimensions
	Three dimensions
	Anti-symmetric wave functions for two particles

	Summary

	Numerical methods
	Finite difference method (FDM)
	Richardson extrapolation

	Finite element method (FEM)
	One dimensional finite element method
	Element-by-element formulation
	Local basis functions
	Algorithm
	Higher dimensions
	Time-dependent problems

	Solving partial differential equations in parallel
	Parallel linear algebra operations
	Grid partitioning

	Time evolution of the Schrödinger equation
	Splitting of the Hamiltonian
	Blanes-Moan method

	Eigenvalue problems
	The ARPACK eigenvalue solver

	Implementation of the numerical methods
	Implementation of the radial equation
	Finite difference equations
	Finite element equations
	Boundary conditions for eigenvalue problems

	Program
	The Solver class
	The quantumdot class
	Improvements to the program

	Implementation of time evolution

	Results of numerical simulations
	Single electron quantum dot
	Dependence on rmax
	Analysis of results and methods

	Relative coordinates equation

	Concluding remarks
	Mathematical details
	Analytic solutions of the single-electron harmonic oscillator
	Particular solutions for the relative motion
	Numerical integration

	Source code
	Main program: class quantumdot
	Input file ``qd.inp''

	Solver.h
	Finite element Solver
	Finite difference Solver
	Eigenstates class
	Simple matrix class

