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Abstract

Many of the patterns that can be observed in nature or in experiments
are the result of surface instabilities. These structures typically arise
when an interface is forced to move due to fluxes of heat and/or mass
or because of a mechanical forcing that leads to a pressure gradient. A
small perturbation of the moving boundary will either grow unstably or
decay such that the boundary recovers its original shape. The stability
of such a perturbation is determined by the geometry of the surface
together with the thermodynamic and material properties relevant to the
specific problem. If the conditions are such that the moving boundary is
unstable, it will evolve into some kind of a pattern. The characteristics and
morphology of the final structure will also depend on the parameters that
determine the stability of the interface.

If the temperature, concentration or pressure field that controls the
process satisfy the Laplace equation, it belongs to an important category
of surface evolution processes called Laplacian growth problems. In
such problems, the interface velocity is a function of the gradient of the
Laplacian field. Laplacian growth is viewed as a fundamental model for
pattern formation [Bazant and Crowdy, 2005]. Both radial and directional
growth are considered in this thesis.

Laplacian growth problems can be solved by means of conformal
mapping techniques. Viscous fingering, electrochemical deposition and
the growth of bacterial colonies are examples of Laplacian growth
processes that often occur in radial geometry. There are many different
approaches to the study of these patterns, both discrete and continuous. In
order to obtain a conformally invariant boundary condition in the model,
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surface tension must be zero or constant. If no other regularisation is
introduced, this will lead to the formation of singularities on the boundary
in finite time.

The techniques used in radial geometry involve analytic solutions that
are harder to handle for directional growth. The Loewner differential
equation for conformal maps is therefore used to study these problems.
Examples of relevant processes are fluidisation experiments, channel
formation in dissolving rocks and other types of experiments or field
observations that involve fingered growth. Common for all of these
examples, and for the model, is that the growth of the interface is
concentrated at the tips of long, thin fingers. There is a growth competition
between the fingers, with the longer ones growing faster than the shorter
ones, leading to a broad distribution of finger lengths.
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Chapter 1

Introduction

Nature confronts us with patterns and pattern forming processes in a wide
variety of contexts, such as frost on the car glass, branching of river net-
works, cauliflower, bacterial colonies and dendritic crystals in rocks. Most
of these examples involve something irregular that has emerged (appar-
ently) spontaneously from an initially smooth configuration. Fascinated
by the beauty and complexity of these patterns, scientists have tried to
explain the process behind their formation for centuries. The fact that
most of the processes are non-equilibrium has complicated this work, but
following the development and invention of new mathematical tools in
physics, the patterns are continuously better understood. New models
have been proposed that resemble what is observed in nature in great de-
tail.

Hexagonal honeycomb and lamellar structures are examples of very
simple, regular patterns. These stand in contrast to the complex nature
of coastlines, dendrites and percolation patterns. Fascinatingly enough,
the complex patterns can have surprisingly simple explanations and
mechanisms behind them, and vice versa. The regular patterns are often
formed close to equilibrium, and can sometimes undergo a transition to
more complicated structures as the system is driven further away from
equilibrium. Some systems are extremely sensitive to changes in the
growth conditions, leading to a great diversity of patterns forming from
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CHAPTER 1. INTRODUCTION 2

Figure 1.1: Some examples of the variety of patterns that can be ob-
served in nature. Clockwise from top left: cross section of cauliflower,
manganese oxides in rock, a bacterial network and frost on glass (from
www.superstock.com; Rui Nunes, www.mindat.org; www.nd.edu/ mal-
ber; www.snowcrystals.com).
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the same main process.
Most patterns in nature are formed due to interactions between ther-

modynamic properties, instabilities and transport processes. Convection,
diffusion and advection will, in general, give different types of patterns.
Typically, convection is the dominating transport process. However, in
some well studied natural examples (such as mineral dendrites in rock
and ice crystals on glass) convection simply cannot occur, in which case
diffusion usually takes over control. The patterns that emerge by these
kinds of processes are well described by several models.

A nice example of a pattern emerging from an initially smooth
configuration is the snowflake. Starting out from a spherical frozen
water droplet, it evolves into a complex crystal on its way through the
atmosphere. The six branches forming due to the hexagonal structure
of ice are similar to each other, but never identical, which is neatly
illustrated in Fig. 1.2. The similarity arises because every branch
grows under the same overall conditions: the temperature, pressure and
humidity surrounding the crystal are the same at a particular instant. The
differences occur due to impurities on the surface, leading to instabilities
in the growth of the crystal at that point and subsequent evolution of
a structure that slightly deviates from the other branches. The theory
of solidification and pattern formation is an attempt to understand how
a pattern can emerge from a smooth initial condition, and why it is so
sensitive to microscopic impurities or perturbations.
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Figure 1.2: The photo shows how the six branches of an ice crys-
tal, grown under the same overall thermodynamic conditions, are sim-
ilar but not identical. The differences occur because of small impu-
rities and disturbances of the solid surface during the crystal growth
(www.snowcrystals.com).



Chapter 2

Moving-boundary processes

Many of the patterns observed in nature can be described in terms of a
surface that is moving due to external transport processes and properties
of the surface itself. In the most simple examples, this external transport
process can be described by a scalar field which satisfies the diffusion or
Laplace equation. The boundary as a whole is moving due to gradients
in this field, whereas a particular pattern is formed only if some of the
impurities on the surface are unstable under the ruling conditions. The
kinetics of the moving boundary are also sensitive to such impurities, and
play an important role for the resulting pattern.

2.1 Solidification

Solidification is one of the simplest examples of a pattern forming process
and is therefore well studied. It is controlled by the diffusion of either heat
or mass, or by a combination of these. In the case of thermal diffusion,
a solid is growing from a small seed particle that is immersed in an
undercooled melt of the pure material. In the chemical analogue, the seed
particle is growing from a supersaturated solution. Mathematically, both
processes are described by a dimensionless scalar field U that represents

5



CHAPTER 2. MOVING-BOUNDARY PROCESSES 6

the temperature or concentration. U satisfies the diffusion equation

D∇2U =
∂U
∂t

, (2.1)

where D is the diffusion constant relevant for the process.
In the heat controlled problem, the surface temperature is not equal

everywhere to the melting temperature Tm, due to some local thermody-
namic effects and surface geometry. To obtain a correct solution of the
problem, the thermodynamic boundary condition (frequently called the
Gibbs-Thomson relation) [Langer, 1980]

Teq = Tm(1− Υκ

L
) (2.2)

has to be used for the equilibrium temperature of the curved surface Teq.
Here, Υ is the surface tension, κ is the curvature of the surface and L is the
latent heat of solidification. These two equations introduce some of the
most important parameters that control the process: Υ andκ are properties
of the surface which are important for the pattern morphology. L and D
together describe the heat flow during the solidification: L is the amount
of heat generated at the phase boundary, whereas D decides how fast this
heat can be transported away from the surface, and hence at which speed
the solidification front can advance. If the phase transition produces much
more heat than what can be transported away, the temperature at the
phase boundary will increase and hence no more solidification will take
place until the excess heat has diffused away from the surface.

In the chemically controlled problem, in which U represents a concen-
tration field, a similar thermodynamic boundary condition needs to be
taken into account. The chemical potential at a curved solid interface is
higher than at a flat interface, leading to a solute concentration at the sur-
face

Cs = C0(1 +
ΥκV

RT
). (2.3)

Here, C0 is the concentration at equilibrium with a flat interface (for which
κ = 0), R is the gas constant, T is the temperature and V is the molar
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volume of the relevant material. The effect of this boundary condition is
analogous to what was discussed for the thermal case.

When it comes to practical situations in material science, most
processes of interest involve both thermal and chemical diffusion. One
example is solidification of impure materials: The growth is controlled
by the amount of heat generated at the phase boundary, and how fast
impurities can be transported away from the surface. It is worth noting
that thermal diffusion constants in general are much larger than chemical
ones, thus the two effects will be important on two different length- and
timescales.

The patterns that are formed in solidification processes are often
categorised as dendrites. A dentritic pattern is characterised by its tree-
like form with several generations of branching. The manganese oxides
and frost crystals in Fig. 1.1 are typical examples of dendritic structures.

2.2 Viscous fingering

The most common example of Laplacian growth is viscous fingering in
a Hele-Shaw cell, which is well studied and has contributed significantly
to the increasingly better understanding of pattern-forming processes. A
Hele-Shaw cell consists of two closely spaced parallel plates, usually made
of glass. It is very useful when doing experiments in a two-dimensional
geometry, either horizontally or vertically. Material can be added at one
or more sides of the cell or from inlets in the middle of the plates. The
motion of fluids in a Hele-Shaw cell is mathematically analogous to two-
dimensional flow in a porous medium, which is of importance in oil
industry.

Viscous fingering occurs when a horizontal Hele-Shaw cell is filled
with an incompressible viscous fluid, such as oil. A less viscous,
incompressible fluid (e.g water or air) is then added from an inlet in the
middle of one of the plates. The latter fluid will displace the oil and make
a pattern similar to the one seen in Fig. 2.1. The characteristics of the final
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Figure 2.1: An example of a viscous fingering experiment. The
image shows the characteristic morphology of such a pattern, to-
gether with the competition effect that will occur when the less
viscous fluid is added from two sources simultaneously. From
http://physics.unipune.ernet.in/∼agb/
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pattern will be dependent on the source flux and viscosity ratio of the two
fluids. Viscous fingering can be described in terms of the Saffman-Taylor
instability, which will be discussed in Sec. 6.2.

2.3 Electrochemical deposition

Electrochemical deposition (ECD) is a diffusion-limited process that takes
place during electrolysis. An electrolytic cell consists of two electrodes
immersed in an electrolyte, which usually is a solution of ions in water.
When an external voltage is applied to the electrodes, the ions in the
electrolyte will seek towards the electrodes, where redox reactions will
take place. The electrodes are called anode and cathode. The anode is the
one that attracts anions (negatively charged ions) and the cathode attracts
cations (positively charged ions). When an anion reaches the anode, it will
oxidize by depositing electron(s) there. This will lead to the formation
of a layer of oxidized anoins on the anode. Likewise, the cations will
be reduced by reacting with electrons at the cathode. This way, a metal
deposit may be formed at one or both of the electrodes, depending on the
properties of the electrolyte. Brady and Ball did experiments in which they
observed that the current between the electrodes was independent on the
applied voltage [Brady and Ball, 1984]. This led them to the conclusion
that the process is limited by diffusion and not controlled by any other
mechanism. As soon as ions have reacted at one of the electrodes, there
will be a concentration gradient in the electrolyte, leading to the diffusion
of new ions towards the electrodes.

During the first decade after the work of Brady and Ball, much work
was devoted to ECD experiments. It was considered a paradigm for the
studies of non-equilibrium growth phenomena, due to the wide variety of
morphologies that could be obtained [Kuhn and Argoul, 1994]. Different
types and concentrations of ions, current densities and cell geometries
would, in general, lead to structures of various characteristics. In order
to properly study the peculiarities of the patterns obtained for different
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(a) (b)

(c)

Figure 2.2: Two electrochemical deposition experiments. (a) shows the ag-
gregate formed when the electrolyte is a zinc sulfate solution. The positive
terminal is a circular loop centered at the point which is the negative termi-
nal. The thickness of the loop wire, 0.5 cm, is the vertical spatial restriction
of the experiment. The loop is of the order of centimeters in diameter. (b)
shows a close-up of one of the zinc dendrites formed in (a). It has sev-
eral generations of side branches, characteristic for dendritic structures.
(c) A lead dendrite formed in a directional thin-layer electrodeposition ex-
periment. Note how the morphology of these dendrites is qualitatively
different from what is observed in (b). http://polymer.bu.edu/ogaf/ and
http://www.qf.ub.es/d1/marta/morpho.html.
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parameters, such studies are usually done in two-dimensional settings,
which is obtained by sandwiching the electrolyte between two glass
plates. All the images shown in Fig. 2.2 are examples of such spatially
restricted experiments.

The most common ions used in ECD experiments are zinc, copper, tin,
lead and iron. These will, in general, give branched dendrites with a wide
range of different morphologies.

2.4 Bacterial colonies

The growth of bacterial colonies is another example of a diffusion-limited
process that can lead to a great diversity of patterns. The properties
of the final structure will be a function of the bacterial species and its
growth conditions such as nutrient concentration and cell mobility. The
classification of the colonies can be done in several different ways, but the
simplest may be to divide them into two groups:

• colonies grown under limited nutrient supply. The evolution is
controlled by the diffusion of nutrients towards the boundary of the
colony. There will be a competition for the incoming flux, leading to
a branched structure (Figs. 2.3(a) and 2.3(b)) with effective screening
of the innermost parts

• colonies that always grow with sufficient amounts of nutrients
available. Their growth is limited by how fast waste material
produced by the bacteria themselves can diffuse away from the
boundary. The results are different disc shaped structures, such as
the one seen in Fig. 2.3(c)

The advantage in using bacteria in the study of pattern formation is
that the growth conditions are easily varied and controlled, and the
response to these changes can be observed on reasonable time scales.
In contrast to other types of pattern formation experiments, growth of
bacterial colonies in the laboratory offers the opportunity to observe the
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(a) (b) (c)

Figure 2.3: The images show examples of colonies of the bacterium
Bacillus subtilis, grown under different conditions. (a) is a structure
obtained when the bacteria grow on a hard substrate (which leads to
limited cell motion and only local interaction between the cells) and with
limited availability of nutrients. The pattern is very similar to the ones
produced by the theoretical diffusion-limited aggregation (DLA) model,
presented in Sec. 7.3. The colony in (b) is grown with the same low
nutrient concentration but on a much softer substrate than in (a). The
cells have more freedom to move towards the nutrients, leading to a
more uniform density of branches. (c) shows the result of growth on a
hard substrate but with a high concentration of nutrients. The branches
in the pattern in (a) fuses into a compact disc shaped structure with a
rough surface. The cells are growing fast due to the lucrative nutrition
condutions, but are at the same time strongly bound to each other because
of the hard substrate, forming a dense structure. [Matsushita et al., 2004]

structure and motion of individual cells. The coupling between this
microscale behaviour and the macroscopic colony growth is important
for the understanding of pattern forming processes in general [Matsushita
et al., 2004].



Chapter 3

Fractals

When studying patterns, it soon becomes clear that classical Euclidian
geometry is not a useful tool to describe what is observed. In fact, this is
true for many of the shapes that surround us in nature. Benoît Mandelbrot
descriptively wrote that "clouds are not spheres, mountains are not cones,
coastlines are not circles" [Mandelbrot, 1982]. He then introduced the term
fractal to classify these structures that were so complicated and complex
that Eucledian geometry came up short in describing them.

The term fractal is constructed from the latin words for fragmented
and irregular. The shapes that Mandelbrot wanted to describe had these
two properties, and he found the expression useful for his purposes. As
a definition of the term, he stated that "a fractal is a set for which the
Hausdorff dimension strictly exceeds the topological dimension". This
definition is somewhat theoretical, and it turns out that fractals have many
other features in common that can be used to describe what they really are.
Despite the fact that they are irregular and fragmented and cannot easily
be described in terms of Euclidian geometry, they usually have a simple
and recursive definition. They are self-similar and have a fine structure at
arbitrary small scales. Furthermore, they can to a large extent be described
by statistics.
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Figure 3.1: The Koch curve is a nice example of an exact self-similar fractal
curve. It consists of straight lines of which the middle 1

3 is replaced by a hat
made out of two 1

3 -long line segments. Repeating this process indefinitely
produces the curve shown in the figure. Observe that if the leftmost 1

3
of the curve in the figure is magnified by a factor 3, the original curve is
reproduced exactly. This is true for any part of the curve and at any length
scale, which is the meaning of exact self-similarity.

3.1 Self-similarity

A self-similar structure shows similarities to itself, either exactly or
statistically, on all scales. Any part of the shape looks the same as the
whole shape. An example of an exact self-similar structure is the Koch
curve in Fig. 3.1. By picking out an arbitrary part of it and rescaling it to
the size of the whole curve, one reproduces something that looks exactly
like the original structure. This can be done infinitely many times. An
automatic consequence of this self-similar property is that all fractals have
a fine structure at arbitrary small scales.

Statistical self-similarity refers to structures that on average will look
the same when this rescaling is done. A common example is coastlines. A
whole coastline will have a certain coarseness in its statistical description.
If the whole coast of Norway is to be included in one image, only a certain
number of islands and fjords can be distinguished. Upon rescaling with an
arbitrary magnification factor, new islands and fjords will show up. Thus
any fraction of the coastline will have the same statistics on average as the
whole of it.
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Figure 3.2: The Cantor set is perhaps the simplest fractal structure
constructed by mathematicians. When going from one generation to the
next, the middle 1

3 of each line segment is removed. If the procedure is
continued such that n → ∞, the total length of the curve converges as
( 2

3)n → 0. This leads to a paradox: the curve has infinitely many line
segments, but the total length of all of these segments is zero.

Note that not all self-similar structures are fractals: the real line obeys
self-similarity in addition to having a simple and recursive description.
It is not very irregular though, and can easily be described in terms of
Euclidean geometry. Hence, it fails to be a fractal despite the fact that it
obeys some of the properties of fractals.

3.2 Fractal dimension

At the beginning of the 19th century, mathematicians realised that
fragmented and irregular structures could not be described satisfactorily
by the number of coordinates, which corresponds to the topological
dimension. The fractal or Hausdorff dimension was then introduced as
a way to describe to which extent a structure fills space. The Cantor set
in Fig. 3.2 has infinitely many infinitesimal segments as the generation
n → ∞. Topologically it has dimension zero, because the segments are
infinitesimal. But there are infinitely many of these segments, leading to
the fact that the set fills more of space than only a single point (which is
the topological meaning of dimension zero). As is seen in Fig. 3.2, the set
is a subset of a line, so it does not fill enough space to be one-dimensional.
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It will be shown that the Hausdorff dimension DH of the Cantor set is
log 2
log 3 ≈ 0.6309.

The same idea applies to Brownian motion, which is the random walk
that a particle will make when it is suspended in a fluid. The trace of a
random walker is a fractal curve: if the particle is allowed to walk around
in the fluid for an infinitely long time, it will eventually visit every point
in the body that contains the fluid. Its trace will then fill this space, and
the topologically one-dimensional curve will have a Hausdorff dimension
close to three. According to the definition given by Mandelbrot, it is
therefore a fractal.

The real line is, as already mentioned, not a fractal: both DH and
the topological dimension DT are equal to one. Any structure with non-
integer DH is a fractal, but there are examples of fractals with integer DH.

Depending on how the fractal is generated, the procedure for finding
the fractal dimension will be somewhat different. For deterministic
fractals as the Cantor set and the Koch curve, DH can be found analytically.
There are many ways to generate fractals though, and not all of them
are as easy to handle as these two examples. Fractals can also be the
result of stochastic processes, such as Brownian motion, and can be seen
everywhere in nature. If a deterministic description is lacking, the fractal
dimension has to be obtained empirically or numerically.

3.2.1 The Richardson approach

From empirical studies of the British coastline, L. F. Richardson found
the relation l(δ) ∼ δ1−DR for the length l of the coastline when it was
measured by a yardstick of length δ. This result was published in an
appendix to General Systems Yearbook in 1961. Mandelbrot adopted this
relation, and argued that for fractal curves the DR found by Richardson
corresponded to DH.

The Cantor set in Fig. 3.2 is a simple example. When going from
generation n to n + 1, each line segment is rescaled by a factor 1

3 , and the
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curve in n + 1 covers 2
3 of the curve in generation n:

l(
δ

3
) =

2
3

l(δ).

Now, inserting the relation found by Richardson leads to

(
δ

3
)1−DR =

2
3
δ1−DR

DR =
log 2
log 3

≈ 0.6309.

For the Koch curve, the same derivation yields

l(
δ

3
) =

4
3

l(δ)

DR =
log 4
log 3

≈ 1.2618.

3.2.2 The box-counting dimension

Another approach to obtaining the fractal dimension of a set is by the
box-counting method. The idea is similar to what Richardson did when
working on coastlines, but when using box-counting one is no longer
restricted to the one-dimensional yardstick. The fractal curve or set is
placed on an evenly spaced grid. The number N of grid cells or boxes
needed to cover the set is dependent on the grid spacing or box side
length δ. The box-counting dimension DB, which is also referred to as the
Minkowski-Bouligand dimension, is obtained from the relation N(δ) =
δ−DB . Strictly speaking, DB is found by studying the behaviour of N(δ) as
δ gets smaller, leading to the more formal definition

DB(δ) = lim
ε→0

log N(δ)
log 1

δ

.

The box-counting method is frequently used to calculate the fractal
dimension of computer-generated sets.
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3.2.3 Radius of gyration

The radius of gyration Rg is another useful tool for obtaining a fractal
dimension measurement for digitised structures. Rg is the root mean
square distance of the parts of a cluster from its center of gravity RC =
∑N

j=1 r j

N . r j is the position of the jth site or grid point of the digitised
structure, with respect to the origin. If the fractal was to be rotated around
an axis through RC, then the kinetic energy and angular momentum of
this motion would be the same as if all of the grid points were placed on a
circular ring of radius Rg centered at RC.

The radius of gyration can be computed by the two equivalent relations

R2
g =

∑N
j=1 |r j −RC|2

N
=

∑ j,i |r j − ri|2

2N2 , (3.1)

where the last is the average distance between two sites. Now it may be
shown [Stauffer, 1985] thatRg is related to the number of sites and a fractal
dimension Dg by

N ∼ RDg
g (3.2)

The Dg obtained from Eq. (3.2) is also used as a description of irregular
structures that are not self-similar and hence, strictly, are not fractals.
Examples are percolation clusters away from the percolation threshold.



Chapter 4

Mathematical description

Even though patterns arise due to a wide variety of physical processes
and thus can look very different, the framework of their mathematical
description is the same. The basic concepts and theoretical background
will be introduced here.

The discussion is restricted to two-dimensional processes, and in doing
so, the connection to the real world is not lost: frost on glass and ice
crystals growing in the atmosphere are examples of two-dimensional
patterns in nature, in addition to viscous fingering and other patterns
that can be constructed under spatial restrictions in the lab. The two-
dimensional mathematical description is convenient to work with, easy
to visualise, and even turns out to reproduce what is observed in nature.
In two dimensions a point can be represented by a complex number
z = x + iy, and all the techniques of complex analysis can be applied.
The close resemblence between complex function theory and geometrical
shapes is the key to the usefulness of complex numbers for these purposes.
The fact that the two-dimensional information (x, y) can be stored in
one variable z, without loss of information, makes complex numbers
especially convenient to work with.

19
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Figure 4.1: The graphing procedure of functions of complex variables uses
two planes to illustrate the correspondence between the four variables x =
Re(z), y =Im(z), u =Re(ω) and v =Im(ω). Both single points, curves and
domains can be mapped by the function ω = g(z).

4.1 Conformal maps

In real analysis, a function y = g(x) can be presented graphically in the
xy-plane, as g(x) assignes a y-value to every value of x. In complex
analysis, where every point is represented by the variable z = x + iy,
this graphing procedure is no longer applicable. The function ω =
u(x, y) + iv(x, y) = g(z) involves a correspondence between the four
variables x, y, u and v, and the conventional graphing procedure would
require using a four-dimensional space. To avoid the inconvenience this
would include, graphing in complex analysis is rather done using two
planes: the z-plane and the ω-plane. The procedure is illustrated in Fig.
4.1. The function ω = g(z) maps the points z = x + iy in the z-plane
onto the corresponding ω = u + iv in the ω-plane. Not only points, but
also curves as well as whole domains can be mapped between the z- and
ω-plane.

If the mapping ω = g(z) preserves angles, it belongs to a family called
conformal maps. More precisely, a map that is conformal at z0 preserves
the size and orientation of the angle between any two curves through z0.
It turns out that if g(z) is analytic in a domain D (which means that it has
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derivatives of all orders throughout D), then g(z) is conformal at every
point in D where its first derivative is not equal to zero. The nonzero
derivative implies that different points in D are mapped to different points
in the ω-plane. It can be shown that if a mapping is conformal at a point
z0, then it has a local inverse there.

4.2 Conformal invariance

The conformal invariance property of harmonic functions is the key to
why conformal maps are so useful in the study of moving-boundary
processes in Laplacian fields. Take the function ω = g(z) that maps
the domain Dz in the z-plane conformally onto the domain Dω in the ω-
plane. Let Φ(z) be harmonic in Dz, that is: ∆zΦ(z) = ∇z∇z∗Φ(z) = 0.
∇z = ∂

∂x + i ∂
∂y is the complex gradient in the z-plane, and ∇z∗ = ∂

∂x − i ∂
∂y

is its conjugate. When Φ(z) is mapped to Dω by g(z), it must satisfy

∂Φ(ω)
∂ω

=
∂Φ(g(z))

∂ω
=

∂Φ(g(z))
∂g(z)

∂g(z)
∂z

∂z
∂ω

=
∂Φ(z)

∂z

(
∂g
∂z

)−1

.

This can be used to show the relations

∂
∂z

∂
∂z∗

Φ(z) =
(

∂g
∂z

)(
∂g
∂z

)∗ ∂
∂ω

∂
∂ω∗Φ(ω);

∆zΦ(z) =
∣∣∣∣∂g
∂z

∣∣∣∣2∆ωΦ(ω). (4.1)

Now g(z) is a conformal map, which means that its derivative ∂g
∂z is

nonzero. Considering the fact that Φ(z) is harmonic in Dz, which means
that the left-hand side of Eq. (4.1) is zero, it follows that ∆ωΦ(ω) = 0.
In other words: if a domain can be reached by a conformal map of
another domain, then a function that is harmonic in one of the domains
automatically must be harmonic in both domains.

Many basic equations in physics involve harmonic functions, such
as electromagnetic and gravitational fields. The conformal invariance
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property makes conformal maps a useful tool in these applications.

4.3 The Riemann mapping theorem

The usefulness of conformal maps becomes even more evident when
introducing further properties: The Riemann mapping theorem states that
for any simply connected domain D (i.e. the boundary of the domain is a
single closed curve, and there are no points inside this curve that do not
belong to D) in the z-plane, which is not the entire z-plane, there exists a
unique conformal map ω = g(z) that brings D onto the unit disc, and that
transforms the boundary of D into the unit circle.

Even though not stated explicitly, the Riemann mapping theorem
implies that by combining conformal maps, it is possible to find the
map between any two domains that satisfy the restrictions given in the
theorem. This stems from the fact that when g(z) is conformal in D, it
is also invertible there. That is, if g1(z) maps the domain D1 onto the
unit disc, and g2(z) does the same to D2, then the composition g−1

2 (g1(z))
maps D1 directly onto D2 (g−1

2 is the inverse of g2, which means that
g−1

2 (g2(z)) = z). As a consequence, one is not restricted to the unit disc
or the physical plane when dealing with Laplacian fields. When working
with a problem that is described by an harmonic function, the treatment
may be complicated if its geometry is inconvenient in the physical plane.
If it is possible to find a domain where the geometry of the problem makes
it simpler to solve, then the Riemann mapping theorem guarantees that
there will be a conformal map that can take the harmonic function there.

The only restriction to take care of when mapping harmonic functions
between different domains, is that the boundary conditions must also be
conformally invariant. This is true if

• the value of the harmonic function Φ at the boundary, or eventually
the jump in its value across the boundary, is a constant

• the normal derivative of Φ at the boundary is zero.
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These are special cases of Dirichlet and Neumann boundary conditions,
respectively. Most other boundary conditions are not conformally
invariant [Bazant and Crowdy, 2005].

4.4 Laurent expansions

It has already been stated that a function which is analytic in a domain
D has derivatives of all orders there. This can be used to show that if
the function g(z) is analytic in D, then it can be written as the sum of a
convergent power series in a neighbourhood of each point z0 in D: g(z) =
∑∞

j=0 c j(z− z0) j. The coefficients c j are real numbers. This representation
only contains positive powers of z. A two-sided power series of the
form g(z) = ∑∞

j=−∞ c j(z − z0) j is valid if g(z) is analytic in an annulus
R1 < |z− z0| < R2. This representation is called a Laurent expansion and
can be useful when working in domains that contain the point at infinity.
The radius R1 cannot be zero, but R2 may be infinite. A conformal map
can therefore always be represented by a power series, either in positive
powers or as a Laurent series, depending on the domain in which it is
conformal. The series expansion is unique, and the coefficients c j are
determined by important properties such as the boundary conditions of
the map.

4.5 Conformal equivalence and the composition

property

In Sec. 4.3 it was shown that there exists a conformal mapping between
any two simply connected domains that are subsets of the complex plane.
If there exists a conformal mapping of D1 onto D2, then D1 and D2

are said to be conformally equivalent. That is, the conformal mapping
between the two must satisfy the usual axioms of an equivalence relation:
reflexivity, symmetry and transitivity. The transitive property implies that
the composition of two conformal mappings is also a conformal mapping.
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This property turns out to be especially useful when dealing with moving
boundaries and pattern forming processes, and it will be used thoroughly
in the Chapters 7 - 9. In fact, every conformal map is a composition of local
rotation, translation and magnification [Fogedby, 2007].

When applying conformal maps to moving boundaries, growing
domains and pattern forming processes, the idea goes like this: a reference
domain is chosen in such a way that the problem at hand is nice to handle
in that geometry. Examples of reference domains are the unit disc, the
exterior of the unit circle, or the upper half-plane. Then the conformal
map between the domain D in physical space (say, the z-plane, see Fig.
4.2) and the reference domain R (which lies in the mathematical ω-plane)
is found. Now the evolution of D can be studied by mapping it to R,
imposing controlled changes there, and then applying the inverse map
back to the z-plane to study what the real effects of the changes will be in
physical space. As an example, let ω = g(z) be the mapping of D onto
R, and let f (ω) be its inverse. If h(ω) represents a small perturbation or
growth of R, then f (h(ω)) is the composition of mappings that codes for
how these changes affect the domain in the z-plane.

Another technique uses instead a fixed reference domain. This requires
that the mapping g(z) and hence also f (ω) must change whenever
the structure in the z-plane changes. This is the idea behind Loewner
evolution, which is used in Chapters 8 and 9.

Both techniques have their positive and negative sides, and there is
typically a certain range of moving-boundary processes for which each of
them is particularly useful.
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Figure 4.2: An illustration of how a reference domain R can be used to
control and study the evolution of a structure D in physical space.



Chapter 5

Laplacian growth

Conformal maps can be used to study many of the moving-boundary
processes presented in Chapter 2. Conformal invariance combined with
the Riemann mapping theorem is the key to the usefulness of this
technique, as will be made clear throughout this section. However,
some important simplifications and approximations must be made before
conformal mapping methods can be applied.

For growth problems that involve diffusion of temperature or mass in
a fluid, the Péclet number Pe is an important parameter. It is defined as

Pe =
LV
D ,

where L is a characteristic length and V is the velocity of the moving
interface. D represents either the thermal diffusivity or the mass diffusion
constant, depending on the process at hand. The Péclet number is
proportional to the Reynolds number, and is a measurement of the
stationarity of the growth. In the limit Pe � 1, the diffusion field
is allowed to adjust to the changing shape of the interface, making
the process quasistationary. This means that the time derivative in the
diffusion equation can be omitted such that the growth is governed by
the Laplace equation. This typically happens at low growth velocities,
which in the solidification case is experienced at low undercooling or low
supersaturation.

26



CHAPTER 5. LAPLACIAN GROWTH 27

Viscous fingering is an example of a moving-boundary process that is
governed by a pressure field rather than diffusion of heat or mass. Under
certain circumstances, such processes can also be governed by a Laplacian
field, which will be shown in Sec. 5.1.

Such processes fall into a category called Laplacian growth problems.
Laplacian growth is viewed as a fundamental model for pattern formation.
Its usefulness stems from the fact that the harmonic field that controls
the growth is conformally invariant, which means that it can be mapped
from the growing structure onto any other simply-connected reference
domain. The solution of the Laplace equation may easily be found in this
mathematical reference domain, and hence the growth can be studied in a
simple way, as described already in Sec. 4.5.

5.1 The Darcy flow law

In Laplacian growth problems, the relationship between the interface
velocity and the harmonic field is described by Darcy’s law. This
fundamental law was proposed by Henri Darcy as an empirical relation
describing fluid flow in a porous medium. It has later been derived from
the Navier-Stokes equation, and shown to be applicable to other types of
fluid flow aswell. Here, the equation will be derived for two immiscible
viscous fluids, analogous to the viscous fingering example.

If the flow in the fluids has a very low Reynolds number, Re � 1,
advective inertial forces are negligible compared to viscous forces. This
happens for very small displacements, low fluid velocities v or very high
viscosities µ. Under these circumstances, the Navier-Stokes equation can
be simplified to

µ∇2v + f−∇p = 0, (5.1)

which is called Stokes flow. p is the pressure in the fluids, whereas
f represents the sum of all body forces and will be set to zero in this
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derivation. Under the assumption that the fluids are incompressible:

∇ · v = 0, (5.2)

then Eq. (5.1) simplifies to the Laplace equation for the pressure:

∆p = 0. (5.3)

Let the two immiscible fluids be trapped in a horisontal Hele-Shaw cell
with plate spacing b, where one of the fluids is a circular inclusion in the
other (when the less viscous fluid is the inclusion, this is exactly the setup
for viscous fingering). Choose coordinates in such a way that the fluids lie
in the xy-direction, and the thickness of the cell is in the z-direction, with
the fluids confined to the space between z = 0 and z = b.

Eqs. (5.2) and (5.3) are valid for three dimensions and are not
automatically satisfied in this quasi-two-dimensional geometry. If one
assumes that the velocity of the fluids vanish at the plates, that is: vz = 0
at z = 0 and z = b, gap-averaging the incompressibility equation (5.2)
across the plate spacing b gives

1
b

∫ b

0
∇ · v dz =

∂v̂x

∂x
+

∂v̂y

∂y
+

vz(b)− vz(0)
b

=
∂v̂x

∂x
+

∂v̂y

∂y
. (5.4)

v̂x and v̂y are the gap averages of the velocitiy components in the x-
and y-directions, respectively. Eq. (5.4) shows that the incompressibility
assumption translates to the gap-averaged velocities such that Eq. (5.3) is
valid also for this approxiamtion.

Assume further that the velocity components vx(x, y, z) and vy(x, y, z)
have a parabolic dependence in the z-direction:

vi(x, y, z) = −νiz(z− b), (5.5)

for i = x, y, where νi denotes a gap-averaged strength. This can be used
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to find the gap averages of each component:

v̂i =
1
b

∫ b

0
vi(x, y, z) dz = −1

b

∫ b

0
νiz(z− b) dz = νi

b2

6
. (5.6)

In the next step, one may assume that ∂2vi
∂ j2 � ∂2vi

∂z2 for j = x, y, such that
Eq. (5.1) simplifies to

µ
∂2v
∂z2 = ∇p. (5.7)

By inserting Eq. (5.5) into Eq. (5.7) and finally using Eq. (5.6), one arrives
at the result

ν = − 1
2µ
∇p,

v̂ = − b2

12µ
∇p, (5.8)

which is valid in the directions parallel to the cell plates.
Note that this derivation does not take the effect of gravity into

account, because the gravitational forces are directed in the z-direction and
therefore does not affect the velocities in the x- and y-directions. For flow
in a vertical Hele-Shaw cell, placed in the xz-plane, the derivation yields
an equation similar to Eq. (5.8):

v̂ = − b2

12µ
∇(p + ρgz). (5.9)

A gravity term has been added, in which ρ is the fluid density and g is the
gravitational acceleration constant.

5.2 Surface tension

The Darcy law in Eq. (5.8) was derived for one special example. More
generalised, the Laplacian growth model assumes that the normal velocity
of the interface, Vn, is proportional to the field gradient at the interface to
some exponent η:

Vn ∼ |∇U|η. (5.10)
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U is a Laplacian field that can represent pressure, temperature, mass
or some other quantity, depending on the problem studied. If one
assumes zero surface tension, the boundary condition at the interface is
conformally invariant and conformal mapping techniques can be used to
solve the problem.

Surface tension is introduced by the boundary condition U(zb) = Υκ

for the points zb at the interface between the two liquids. This boundary
condition is not conformally invariant, which complicates the analysis
considerably. Surface tension is only significant in the case of high
curvature, i.e. for narrow fingers and sharp tips. From electromagnetism
it is well known that the (harmonic) electrostatic potential around a sharp
tip is infinitely strong. This is also true for the field U in Eq. (5.10).
The growth velocity around thin fingers will therefore be very high, and
surface tension is the only stabilising force that can oppose the rapid
growth of the parts of the interface with high curvature. Saffman and
Taylor showed that the effect of surface tension in Hele-Shaw cells was to
limit instabilities in the growth to the fingers having a curvature smaller
than a certain limit [Saffman and Taylor, 1958]. This has important effects
on the final pattern, and it seems that the surface tension essentially selects
the finger width. The Saffman-Taylor problem is presented in Sec. 6.2.



Chapter 6

Instabilities

An important ingredient in the study of pattern formation is the stability
of the moving interface. The competition between stabilising and
destabilising effects on the evolving boundary is important for the pattern
selection and the emergence of a characteristic length scale of the structure.
Finger width, branching and tip splitting, and interface morphology are
characteristics that can be understood in terms of stability analysis. The
basic idea is to determine the stability of the dynamical equation of the
moving boundary with respect to a shape perturbation. Both Saffman and
Taylor [Saffman and Taylor, 1958] and Mullins and Sekerka [Mullins and
Sekerka, 1963], [Mullins and Sekerka, 1964] did pioneering work on linear
stability analysis. Saffman and Taylor studied fluid-fluid interfaces and
their results are relevant to classical problems such as viscous fingering.
Mullins and Sekerka worked with solidification fronts and considered
both spherical and planar surfaces undergoing growth controlled by
thermal or chemical diffusion fields. Even though these simple, theoretical
models are now superseded, they still represent a general approach
to gaining basic insight into several different types of pattern-forming
processes.

31
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6.1 Mullins-Sekerka instability on a circle

The derivation of the stability of a slightly perturbed circle can be applied
to problems such as Diffusion-Limited Aggregation (DLA, to be discussed
in Sec. 7.3) [Witten and Sander, 1983], and moving solidification fronts
controlled by the diffusion of heat or mass. This derivation treats one
special case, but with some changes in boundary conditions it can be
applied to other diffusional growth problems.

Consider a circular surface that is growing in a Laplacian field U,
which in this example represents concentration. The normal velocity of the
surface is proportional to the gradient of the local field, according to Eq.
(5.10) (using η = 1). The circle has an original radius R0, and is deformed
by a small perturbation ε cos(mθ), m ≥ 1, such that the equation for the
local radius R(θ) of the circle reads

R(θ) = R0 +ε cos(mθ), (6.1)

where the amplitude of the perturbation is time dependent, ε = ε(t),
and initially small enough that second- and higher order terms can be
neglected.

The equilibrium concentration Us(θ) on the surface R(θ) is given by
Eq. (2.3) and reads US(θ) = U0

[
1 + ΥCκ(θ)

]
, where the capillary constant

ΥC = ΥV
RT has been introduced as an abbreviation. The curvature of an arc

s(θ) that is parameterised in polar coordinates is given by

κ(θ) =
s2(θ) + 2( ∂s

∂θ )2 − s(θ) ∂2s
∂θ2(

s2(θ) + ( ∂s
∂θ )2

) 3
2

[do Carmo, 1976], which in the current example leads to

κ(θ) =
R0 + (m2 − 1)ε cos(mθ)

R2
0

. (6.2)
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The boundary condition at the surface R(θ) then reads

Us(θ) = U0

(
1 +

ΥC

R2
0

[
R0 + (m2 − 1)ε cos(mθ)

])
. (6.3)

With r the distance from the center of the circle, the expression

U(r,θ) = A log r +
Bε cos(mθ)

rm (6.4)

is a solution of the Laplace equation, satisfying the boundary condition
that the flux at infinity should be unaffected by the perturbation. The
field around an unperturbed circle behaves like U(r) ∼ log |r|, which is
therefore also how U(r,θ) in Eq. (6.4) must behave as r → ∞. At the
surface R(θ), Eq. (6.4) reads

U(R(θ)) = A logR0 +ε cos(mθ)
[

A
R0

+
B
Rm

0

]
, (6.5)

which must be equal to Eq. (6.3). A and B are determined by equating the
coefficients of like harmonics in this boundary condition expression. The
final result for the field U reads

U(r,θ) =
log r

logR0
U0

(
1 +

ΥC

R0

)
(6.6)

+
ε cos(mθ)Rm−2

0 U0

rm

(
ΥC(m2 − 1)− ΥC +R0

logR0

)
.

The normal velocity of the interface is proportional to the gradient of
Eq. (6.6). For small perturbations it is sufficient to consider the radial
derivative of U(r,θ), which leads to

Vn =
dR0

dt
+

dε
dt

cos(mθ) =
∂U(r,θ)

∂r

∣∣∣∣
r=R(θ)

.

By again equating the coefficients of like harmonics, expressions for dR0
dt
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and dε
dt are found:

dR0

dt
=

U0(R0 + ΥC)
R2

0 logR0
=

UR
R0 logR0

, (6.7)

1
ε

dε
dt

=
UR(m− 1)
R2

o logR0
− U0ΥC

R3
0

(m3 −m). (6.8)

UR = U0(1 + ΥC
R0

) is the equilibrium concentration on an unperturbed
circle, for which the curvature reads κ = 1

R0
.

Eq. (6.8) is the growth rate of the perturbation amplitude and consists
of two parts: the last term is the capillary effect and the other is the
gradient term. The capillary effect is proportional to ΥC and the surface
tension. It is negative and therefore it favours a decay of the perturbation.
The gradient term is always positive and proportional to UR and favours
growth. In the absence of surface tension, the capillary effect vanishes and
there is nothing to stabilise the surface. From Eq. (6.3) it is understood
that the surface then takes on a uniform concentration, regardless of the
shape. At the same time, it is known that the concentration at infinity
is unaffected by any irregularities on the interface. This means that the
change in concentration between the interface and infinity is everywhere
the same, such that isoconcentration lines must be more densely packed
above buldges than at depressions, as is illustrated in Fig. 6.1. This
gives a steeper concentration gradient and larger surface velocity at
protuberances, which causes buldges to grow unstably. This is the action
of the gradient term.

Whenever surface tension is present, the capillary effect is opposing
this instability. The curvature is positive for protuberances and negative
for depressions, and it is larger in absolute value for small buldges than
for large ones. From Eq. (6.3) it is clear that the concentration at the
interface is nonuniform as long as ΥC is nonzero, and that it is larger at
buldges than at depressions. This will lead to a flow of material, within
the solid, from protuberances and into depressions. Hence the amplitude
of the perturbation will shrink, and the surface will reattain its original,
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Figure 6.1: An il-
lustration of how a
buldge on the inter-
face lead to a denser
packing of the isocon-
centration lines and
thus a steeper field
gradient.

circular and undistorted shape. This process is a part of nature’s struggle
towards a reduction in surface area and energy.

In general both effects will be present, and the stability of the surface
will be determined by the competition between them.

6.2 Saffman-Taylor fingering

In 1958, Saffman and Taylor presented their pioneering work on the
stability of fluid-fluid interfaces and it has since stood as the classical
description of viscous fingering patterns [Saffman and Taylor, 1958]. Fig.
6.2 shows the result of a computer simulation of the equations they
developed. They considered the setup where two fluids are confined to
the narrow gap between a pair of closely spaced vertical plates, with one
of the fluids displacing the other without mixing. The interface between
the fluids moves with a constant velocity V vertically upwards. The
coordinate system is chosen such that the plane z = 0 coincides with the
moving unperturbed surface, whereas x is the horisontal coordinate along
the interface. Now the fluid-fluid interface is perturbed by a function of
the form z = h(x, t) = εeimx+w(m)t. The fluid below the interface (fluid
1) is displacing the other (fluid 2), hence the velocity at the interface is
goverened by gravity and a pressure field. For incompressible fluids, the
fluid velocity v is assumed to be controlled by the Darcy law in Eq. (5.9),
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Figure 6.2: The figure
shows the result of a
computer simulation
of the Saffman-Taylor
instability, which is
an attempt to describe
viscous fingering
patterns. Indeed, the
structure is similar
to the experimental
viscous fingering
pattern shown in Fig.
2.1. (adapted from J.
Comp. Phys, 212, pp.
1-5 (2006)).

and is thus related to a Laplacian scalar field U by

v = −K
µ
∇(p + ρgz) = ∇U, (6.9)

where K replaces b2

12 as the fluid permeability of the Hele-Shaw cell.
µi
Ki

Ui = p + ρigz is called the hydraulic potential of fluid i.
For the purpose of the analysis, it is assumed that the fluids are divided

by a sharp interface, in contrast to an ill-defined transition region which
more likely is the case. The effect of surface tension is neglected, such that
the velocity and the pressure are continuous across the interface. It follows
that at the interface z = h(x, t), the condition

∂U1

∂z
=

∂U2

∂z
= V +εw(m)eimx+w(m)t (6.10)

must be satisfied. The solutions of the Laplace equation that satisfy this
boundary condition, in addition to the requirement that the field at infinity
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should be unaffected by the perturbation, read

U1 = Vz− εw(m)
m

eimx−mz+w(m)t, (6.11)

U2 = Vz +
εw(m)

m
eimx+mz+w(m)t, (6.12)

where the subscripts indicate to which fluid the potentials belong. The
pressures, p1 = −µ1

K1
U1 − ρ1gz and p2 = −µ2

K2
U2 − ρ2gz, must also be

equal at the interface z = h(x, t), leading to the relation

w(m)
m

(µ1

K1
+

µ2

K2

)
= g(ρ1 − ρ2) + V

(µ1

K1
− µ2

K2

)
. (6.13)

The permeabilities, viscosities and m are always positive, which means
that the sign of the right hand side of Eq. (6.13) codes for the sign of
w(m) and hence for the stability of the interface. If w(m) is positive
the perturbation will grow exponentially in time and the surface will
be unstable to even small disturbances. On the other hand, if w(m) is
negative, any perturbation of the surface will exhibit an exponential decay
and thus the interface will be stable. From the form of Eq. (6.13) it may be
concluded that for sufficiently high velocities, the stability of the surface
depends on whether the motion is towards or away from the less viscous
fluid. If the less viscous fluid is displacing the more viscous one, then
µ2 > µ1, w(m) is negative and the interface will be unstable.



Chapter 7

Growth models in radial
geometry

Many of the examples of growth processes have been studied in radial
geometries, such as viscous fingering (Fig. 2.1), electrochemical deposition
(Figs. 2.2(a) and 2.2(b)) and bacterial colonies (Fig. 2.3). A radial
growth problem is convenient to work with as it is fairly simple to handle
analytically when using complex analysis. Therefore, such problems have
been studied thoroughly for several years. Some well established growth
models are presented, together with a derivation of a well known problem
using a less established approach.

7.1 Continuous Laplacian growth

The first model considers Laplacian growth of a nearly circular domain in
the absence of surface tension. If a perfectly circular domain is growing
in a harmonic field U with an equally large gradient at all points of the
domain boundary, then the boundary will grow equally fast at all points
and hence the circular shape will be preserved. This is not a very relevant
example to study because nature itself never provides anything that is
perfectly circular. A seemingly circular inlet in viscous fingering will,
in practice, provide an initial influx which is not exactly the same in all

38
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directions. This leads to a starting configuration for the pattern evolution
which is only nearly circular. A seed particle in solidification experiments
will always have some irregularities in the packing at molecular levels,
leading to tiny bumps on the surface. What is interesting to know is which
effects such irregularities in the initial configuration will have on the final
shape.

The model considers a nearly circular domain; more precisely, the unit
circle which is perturbed by a function h(θ) = ε cos(mθ), introducing m
protruberances of amplitude ε around the rim of the unit disc. This is
exactly the same starting configuration as for the Mullins-Sekerka stability
analysis in Sec. 6.1. The question is how the boundary of this nearly
circular domain will evolve in time when it is growing in a Laplacian
field U. For simplicity, surface tension is not included in the model.
This gives the conformally invariant boundary condition U(zb) = 0 at
the points zb of the boundary of the growing domain, which allows for
the use of conformal mapping techniques. Eq. (6.8) for the growth rate
of the amplitude ε predicts that the perturbation will be unstable when
ΥC ∝ Υ = 0.

The basic idea behind the use of conformal maps in the study of
boundary evolution was presented in Sec. 4.5. In this example, the exterior
of the unit circle is a suitable reference domain. The evolution of the
boundary is dependent on the Laplacian field between the boundary and
infinity, hence this will be the region in which the Laplace equation needs
to be solved. In Appendix A, a conformal map z = f (ω) = ω +εω−m+1

(Eq. (A.17)) from the complement of the unit disc onto the exterior of a
slightly distorted unit circle is derived. In order to study the evolution of
the boundary r(θ) = 1 + h(θ) of the perturbed domain with respect to
the unit circle, a dynamical equation for the map f (ω) is needed. Time
dependency in the mapping is introduced by the parameters α(t) and
β(t), such that

f (ω, t) = α(t)ω + β(t)ω−m+1. (7.1)

The initial conditions α(0) = 1 and β(0) = ε ensure that f (ω, 0) =
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ω +εω−m+1, consistent with Eq. (A.17)
Every harmonic function U(z) can be written as the real part of an

analytic function: U(z) = Re V(z), where V(x + iy) = U(x, y) + iW(x, y)
is called the complex potential. Since V(z) is analytic, it must satisfy
∂V
∂x = ∂V

∂(iy) , which leads to the Cauchy-Riemann equations:

∂U
∂x

=
∂W
∂y

(7.2)

∂W
∂x

= −∂U
∂y

. (7.3)

This can be used to relate the complex potential to the field gradient in Eq.
(5.10):

∇zU(z) =
∂U
∂x

+ i
∂U
∂y

=
∂U
∂x

− i
∂W
∂x

=
(

∂V
∂x

)∗
=
(

∂V
∂z

)∗
, (7.4)

in which the asterisk denotes the complex conjugate.
In the exterior of the unit circle, the complex potential will be on the

form V(ω) = log(ω), which will read V(z) = log( f−1(z, t)) in the z-
plane. The normal boundary velocity Vn in the z-plane may then be related
to the mapping f (ω, t) through Darcy’s law and Eq. (7.4). Using the
exponent η = 1, the result is

Vn ∼
(

∂V
∂z

)∗
=

1
ω∗ f ′(ω, t)∗

, (7.5)

where f ′(ω, t) = ∂ f
∂ω . Another expression for the normal velocity of the

surface is found from the time derivative of the mapping z = f (ω, t):

Vn =
d
dt

f (ω, t) =
∂ f
∂t

+
∂ f
∂ω

∂ω
∂θ

∂θ
∂t

.

These two equations for Vn together give the dynamical equation for the
map:

ω∗ ∂ f
∂ω

∗ ∂ f
∂t

+ i
∣∣∣ω ∂ f

∂ω

∣∣∣2 ∂θ
∂t

= 1;



CHAPTER 7. GROWTH MODELS IN RADIAL GEOMETRY 41

Figure 7.1: The evo-
lution of finite-time
singularities from
the unit circle, ob-
tained by numerical
integration of the
Eqs. (7.7) and (7.8),
for m = 3 and initial
conditions α(0) = 1
and β(0) = 0.24.

Re
(
ω∗ ∂ f

∂ω

∗ ∂ f
∂t

)
= 1. (7.6)

By inserting Eq. (7.1) in Eq. (7.6), a set of differential equations for α(t)
and β(t) are found:

dα
dt

=
α(t)

α2(t)− (m− 1)2β2(t)
(7.7)

dβ

dt
=

(m− 1)β(t)
α2(t)− (m− 1)2β2(t)

. (7.8)

The set is solved by numerical integration, and the evolution of the
boundary is illustrated in Fig. 7.1.

7.2 Pole dynamics

Shraiman and Bensimon showed that the solutions of Eq. (7.6) develop
singularities in finite time [Shraiman and Bensimon, 1984]. Due to the
relation Vn = 1

ω∗ f ′(ω,t)∗ , there will be a singularity whenever the derivative
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f ′(ω, t)∗ is zero. As explained in Sec. 4.1, the derivatives of f (ω, t) can
never be zero within the domain in which it is conformal. In this example
f (ω, t) is conformal in the complement of the unit disc, which means that
the singularities or poles must lie inside the unit circle.

If f (ω, t) has the form of Eq. (7.1), its derivative will be an mth
order polynomial, and the expression Vn = 1

|α(t)+(1−m)β(t)ω−m| has m
singularities. These singularities correspond to the number of cusps that
are formed on the growing surface. The dynamical equation (7.6) codes
not only for the evolution of the perturbed unit circle, but also for the
dynamics of the poles lying inside it. This is visualised in Fig. 7.2.

The positions of the poles are given by ω = rmeiθm =
(

α(t)
(m−1)β(t)

) 1
m

:
the distance rm from the origin will change, but the angle θm with respect
to the positive real axis remains the same. These θm correspond to the
angles at which the surface has the highest normal growth velocity. The
interface is moving away from the origin, and so are the poles. At the

instant when
∣∣∣( α(t)

(m−1)β(t)

) 1
m
∣∣∣ = 1, the poles hit the rim of the unit disc and

enter the domain in which f (ω, t) is analytic. As a consequence, the cusps
on the growing surface develop sharp tips. If the growth is continued,
the tips will twist and the mapping loses its invertibility. The cusps are
a type of Mullins-Sekerka instability that arise because surface tension is
not included in the model. Under these circumstances, there is no force
stabilising the infinitely large growth velocities at the thin tips.

7.3 Diffusion-Limited Aggregation

Diffusion-Limited Aggregation (DLA) was first introduced by Witten and
Sander in 1981 as a model for random, irreversible aggregation [Witten
and Sander, 1981]. It was a discrete version of the dendritic growth models
that were already known. It soon turned out that the concept of DLA has
applications spanning far away from what was originally intended (see
e.g. [Halsey, 2000]).

The model tries to visualise particles that are moving randomly in a
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Figure 7.2: An illustration of the pole dynamics for the moving interface
obtained from the set of Eqs. (7.21) and (7.22) (to be derived in Sec. 7.6)
for m = 3. As the surface grows, the poles move away from the origin in
the radial direction. The cusps develop sharp tips as the poles hit the rim
of the unit circle.

liquid due to Brownian motion. Upon collision, the particles will stick to
each other irreversibly, leading to (a) growing cluster(s). An important
detail of the model is that the density of particles is low, such that one can
assume that only one collision happens at the same instant. This process
can be modeled by placing a fixed seed particle in the middle of a lattice,
and then releasing a randomly walking particle from somewhere far away
from this position. The random walker will either escape to infinity or
hit the seed particle. In the case of collision, the random walker will stick
to the seed particle and become a part of the cluster. As soon as the first
walking particle is out of the game, a second one is released, following the
same procedure. This algorithm leads to highly branched clusters with
fractal structure. The fractal property arises because the tips shield the
other parts of the cluster from incoming particles, and are therefore hit
more often and hence grow faster than the inner parts of the stucture.

One example of a structure obtained using this algorithm is presented
in Fig. 7.3, which shows clear similarities to the Saffman-Taylor fingering
pattern in Fig. 6.2. The Saffman-Taylor problem is an example of a
Laplacian growth model. Indeed, this model and DLA have quite similar
mathematical descriptions: Saffman-Taylor fingering is controlled by a
pressure field that satisfies the Laplace equation, and which is constant at
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Figure 7.3: The
figure shows an
example of Diffusion-
Limited Aggregation,
which is a discrete,
stochastic model for
colloidal aggregation.
The pattern shows
similarities to the
structure obtained
by viscous finger-
ing in Fig 2.1 (from
http://classes.yale.edu/
by Michael Frame and
Benoit B. Mandelbrot)

the boundary between the two liquids. The interface moves at a velocity
proportional to the pressure gradient. In DLA the probability density of
random walkers satisfies the Laplace equation, with constant probability
density at the surface of the cluster. Here, the probability of growth at
the boundary is proportional to the gradient of the probability density.
Therefore, DLA can be thought of as the discrete, stochastic analogue of
Saffman-Taylor fingering.

The main difference between these two models is that Laplacian
growth without surface tension is ill-posed, as was already seen in Sec.
7.1 and Fig. 7.1: the interface is unstable and evolves into singular
cusps within finite time. Surface tension or some other regularising effect
needs to be intruduced in order to control the singularities and keep the
boundary stable. In DLA, these singularity effects are avoided because the
particles that are added to the cluster in every growth step have finite size,
which acts as a regularisation.
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7.4 Iterated maps

Hastings and Levitov showed that iterated conformal maps can be used
to study Laplacian growth [Hastings and Levitov, 1998]. After they
introduced the idea, it has been applied to many different kinds of growth
processes, turning out to be a useful tool. In Sec. 7.1 continuous Laplacian
growth governed by Eq. (7.6) was considered. This section concentrates
on how to model the same growth discretely. Iterated maps are also often
used to produce DLA clusters.

Imagine a structure in physical space that has evolved from a seed
particle in discrete growth steps. The goal is to follow the evolution
of the mapping fn(ω), that maps the exterior of the unit circle in the
mathematical ω-plane onto the complement of this structure in the
physical z-plane after n growth steps. In order to construct fn(ω), the
elementary mapping ϕλn ,θn(ω) is introduced. This mapping adds a small
bump of linear size

√
λn to the unit circle, at the angle θn around the rim

(see Fig. 7.4).
Assume now that the shape of the structure after n growth steps is

known and that one wants to find out how it will look after the next
step. If the structure is very complex, such as the DLA pattern in Fig.
7.3, then the mapping directly from one growth step to the next in the z-
plane will be extremely complicated, even if the changes are very small. A
simpler procedure is to make use of the elementary mappings ϕλn ,θn(ω)
in the mathematical plane. This only requires the knowledge of one single
mapping fn(ω), which may then be used to study the further growth: if
fn(ω) maps the unit circle onto the nth step structure in the z-plane, then
fn(ϕλn+1 ,θn+1(ω)) maps the unit circle with a bump onto the (n + 1)th step
structure. The image of fn(ϕλn+1 ,θn+1(ω)) is the nth step structure with
a bump added. The procedure is illustrated in Fig. 7.4. This way the
elementary maps can be used to impose controlled changes and growth
to the structure in the z-plane, without the hassle of computing new
complicated mappings every time the structure changes.

The function fn(ω) is practically a composition of n elementary
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Figure 7.4: The figure illustrates the iterated mapping technique. Mapping
directly from one growth step to the next in the physical plane (between
the two clusters on the top) gives very complicated expressions as the
structure grows and attains a complex shape. A simpler method is to use
the mapping fn−1(ω) between the structure in physical space and the unit
circle in the mathematical representation (bottom). The bump map ϕλ,θ
adds a semicircular bump of linear size λ to the unit circle at the angle
θ. After adding the bump, this nearly circular boundary can be mapped
back to the physical space by z = fn−1(ϕλ,θ(ω)). This adds a bump to the
structure in the z-plane, which is a simple and convenient way to represent
growth in the physical plane. Courtesy of Joachim Mathiesen.
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mappings ϕλn ,θn :
fn(ω) = fn−1(ϕλn ,θn(ω)). (7.9)

A recursive relation that can be used to construct fn(ω) reads

fn(ω) = ϕλ1 ,θ1 ◦ϕλ2 ,θ2 ◦ · · · ◦ϕλn ,θn(ω). (7.10)

From this it may be concluded that the knowledge of a possibly
complicated fn(ω) as a starting point for the iteration is never necessary.
If desired, the decomposition into elementary mappings can be brought
all the way back to n = 1, and then letting the initial condition f1(ω) be
very simple.

The exact way of applying the iterated mapping technique will vary
for different growth processes [Barra et al., 2001a]. For DLA, λn has to
be chosen in such a way that all the particles added in the z-plane are
of the same size. The particles are added to the physical boundary with
random probability according to the harmonic measure. The probability
for a particle to hit the boundary at a certain point is proportional to
the gradient of the probability field locally at that point, which again is
dependent on the surface shape: the tips are more likely to be hit than the
inner parts of the fjords. The harmonic measure is uniform around the
unit circle eiθ in the ω-plane, such that the probability P(θ)dθ = dθ

2π for a
particle to hit a part dθ of the unit circle is everywhere the same. With s
an arc-length parameterisation of the boundary of the cluster, the uniform
measure P(θ) can be translated to the measure P(s) in the z-plane, using
the mapping z(s) = fn(eiθ). In Sec. 7.1 the complex potential for radial
growth was found to be V(z) = log f−1

n (z). The harmonic measure in the
z-plane then reads

P(s)ds ∼ |∇V(s)|ds =
1
| f ′n|

ds

[Jensen et al., 2002], [Davidovitch et al., 1999], which in other words
expresses the probability that a particle will hit the boundary along an
arc ds centered at z(s).



CHAPTER 7. GROWTH MODELS IN RADIAL GEOMETRY 48

In Laplacian growth, a layer rather than a single particle is added in
every iteration. A layer can be represented by j nonoverlapping bumps
that are added simultaneously at the positions {θi}

j
i=1. The boundary

is divided into j segments and in every iteration a bump of linear size
proportional to the local value of |∇U| is added to each of them. Using
this kind of growth regime, fn needs to be updated every time a whole
layer consisting of j bumps has been added to the structure. Using
a composition of j different maps ϕλn+i ,θn+i , this can be done with the
formula

fn+ j(ω) = fn ◦ϕλn+1 ,θn+1x ◦ · · · ◦ϕλn+ j ,θn+ j(ω)

[Barra et al., 2001b]. The procedure is illustrated in Fig. 7.5.
The choice of {λn+i}

j
i=1 and {θn+i}

j
i=1 is not trivial in this case; each

λn+i is proportional to the local field, which again depends on the shape
of the surface at the corresponding position θn+i. Fig. 7.5 illustrates how
the bumps that are added at protuberances on the surface are larger than
the ones added at depressions. The tips are more available to incoming
flux of e.g. heat or mass, and thus tend to grow faster than the more
screened parts of the surface. The field gradient is therefore much larger
around a sharp tip than at a flat surface, and hence the bump size λi

must also follow this rule. Simultaneously, {θi}
j
i=1 is no longer uniformly

distributed on the unit circle, as was the case for DLA, because one must
avoid overlaps. When a new layer of particles has been added, the new
shape of the cluster leads to a change in the field such that the mapping
needs to be updated. This involves a reparameterization of the unit circle,
which means that {θn+i}

j
i=1 must also be updated each time a new layer

of particels is added. The effect of this reparameterisation is to make sure
that there is a correct relationship between the sizes and positions of the j
particles that are added in the next layer. Without this, the changing shape
of the surface could eventually lead to the gradual displacement of the
particles in each growth step, such that after a while small particles end
up at the tips whereas larger ones are added in fjords.
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Figure 7.5: An illustration of how iterated maps can be used to represent
Laplacian growth. In this situation a layer rather than a single particle
is to be added to the boundary in each growth step, which can be done
by adding several nonoverlapping bumps. A certain number of bumps
are added to the unit circle in each iteration, before mapping back to the
z-plane. The figure is modified from [Barra et al., 2001b].
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7.5 Conformal radius and fractal dimension

The conformal map f (ω) is analytic in the exterior of the unit circle, which
allows it to be represented by a Laurent series: f (ω) = ...F2ω

2 + F1ω +
F0 + F−1ω

−1 + F−2ω
−2 + ... By the Riemann mapping theorem, f is the

unique mapping of the exterior of the unit circle onto the complement of
some simply-connected domain D. It must therefore be linear in ω when
ω → ∞, and hence the coefficients of the second and higher order terms
in the expansion must be zero. F1 must be nonzero, due to the fact that
the mapping is conformal at infinity and thus needs a nonzero derivative
there. The expansion can therefore be written as

f (ω) = F1ω + F0 + F−1ω
−1 + . . . (7.11)

f (ω) maps ∞ to ∞, which requires that F1 > 0. F1 is called the conformal
radius of D, and F0 is its conformal center.

There are a number of theorems regarding the Laurent coefficients of
univalent functions, among them is the Koebe one-quarter theorem. If the
unit circle is mapped to the z-plane by a function of the form of Eq. (7.11),
the image will be a closed curve: more precisely it will be the boundary of
the domain D. The Koebe theorem can be used to show that this curve
must be contained within a circle of radius 4F1. Hence the first order
coefficient of the Laurent expansion of the conformal map will scale as the
size of the cluster which is the image of the mapping. This can be used to
obtain an estimate of the fractal dimension DF of the cluster, by comparing
the area A of the cluster to its maximum radius: A ∼ (4F1)DF .

The area theorem is another rule for univalent functions. It states that
if the exterior of the unit circle is mapped to the exterior of a simply-
connected domain D by a function of the form of Eq. (7.11), then the area
of D is related to the Laurent coefficients of the mapping by

A = |F1|2 −
∞
∑
j=1

j|F− j|2.
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If the growing structure is the image of a mapping of the form of Eq.
(7.1), this may be a useful way of estimating its area and hence its fractal
dimension. If the structure is the result of an iteration of many elementary
maps, such as the mapping in Eq. (7.10), its area may be found from easier
considerations. Recall that the elementary map ϕλn ,θn adds a bump of
linear size

√
λn to the cluster. The unit circle is then mapped onto the

boundary of a cluster of n particles of roughly the same linear size
√

λ0.
The area An of this cluster is therefore approximated by An ∼ nλ0.

7.6 Iterated maps in the continuous limit

Both continuous and discrete Laplacian growth has been presented in this
chapter. The continuous case is based on a dynamical equation derived
from Darcy’s law and the time derivative of the mapping of the surface.
The discrete version considers iterated conformal maps. This section
introduces a new approach to the well known problem: the derivation
of continuous time dependency of the parameters of the mapping, using
some of the ideas from iterated conformal maps.

Start once again from Eq. (A.17), z = f (ω) = ω + εω−m+1, which
maps the unit circle ω = eiθ onto the structure in the z-plane. In Sec. 7.4 it
was stated that Laplacian growth can be modeled by adding a thin layer to
the boundary of the structure in each iteration step. It was explained how
the use of bump maps ϕλ,θ(ω) to add this layer gets quite complicated
because of the nontriviality that lies in picking the correct parameters λ

and θ in each step. The derivation in this section is based on the idea that
the whole layer can be added in one single iteration: the mapping ϕ(ω)
adds a thin layer to the unit disc ω through

ϕ(ω) = |ω|+ |dω|. (7.12)

In other words, the boundary ω of the unit disc is now time dependent:
ω = ω(t). The changes that this introduces in the mathematical plane
is what makes the structure in the z-plane change, through f (ω(t)) =
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ω(t) +εω(t)−m+1.
The normal velocity Vn of the boundary of the structure in the z-plane

is
Vn =

dz
dt

=
df (ω)

dω

dω

dt
= f ′(ω)

dω

dt
.

Combined with Eq. (7.5) found from Darcy’s law in Sec. 7.1, this gives the
expression

dω

dt
=

1
ω∗ f ′(ω)∗ f ′(ω)

=
ω

| f ′(ω)|2

for how ω chages in time. This can be used to rewrite Eq. (7.12) into

ϕ(ω) = |ω|+
∣∣∣ ω dt
| f ′(ω)|2

∣∣∣ = 1 +
dt

| f ′(ω)|2 .

Now ϕ(ω) is just another way of representing the nearly circular domain
with boundary r(θ) = 1 + h(θ), which is discussed in Sec. 7.1 and
in Appendix A. Appendix A contains a derivation of an equation for a
mapping from the unit circle onto such a perturbed domain (Eq. (A.16)).
With |dω| = h(θ) = dt

| f ′(ω)|2 , this equation now reads

ϕ(ω) = ω +
ω

2π

∫ 2π

0

e−iφ + ω

e−iφ −ω

dt
| f ′(e−iφ)|2 dφ. (7.13)

As long as |dω| is small, the expansion f (ϕ(ω)) ≈ f (ω) + df
dω

[ϕ(ω)−ω]
can be made. In combination with Eq. (7.13), the change of f (ω) in time is
found from

f (ϕ(ω))− f (ω)
dt

=
d
dt

f (ω) =
df (ω)

dω

ω

2π

∫ 2π

0

e−iφ + ω

e−iφ −ω

1
| f ′(e−iφ)|2 dφ.

It is about time to transfer the time dependency from ω(t) and into the
function f (ω) itself. This is done by replacing f (ω) by Eq. (7.1), exactly
as in Sec. 7.1. f (ω(t)) is not linear in ω(t), but as the mapping is applied
repeatedly, the time parameter can be withdrawn from ω(t) and put into
the parameters α(t) and β(t) in Eq. (7.1).

The equation of motion for the growing interface in the z-plane now
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reads

∂ f (ω, t)
∂t

=
∂ f (ω, t)

∂ω
ω

2π

∫ 2π

0

e−iφ + ω

e−iφ −ω

dt
| f ′(e−iφ, t)|2 dφ. (7.14)

Eq. (7.14) is now used to derive a set of differential equations for α(t) and
β(t):

dα
dt

ω +
dβ

dt
ω−m+1 =

(
α(t) + (1−m)β(t)ω−m

)
· ω
2π

∫ 2π

0

e−iφ + ω

e−iφ −ω

dφ[
α(t) + (1−m)β(t)e−imφ

][
α(t) + (1−m)β(t)eimφ

] .

Introduce the abbreviation I(ω) = ϕ(ω)−ω, and let k1 = α2(t) + (1 −
m)2β2(t), k2 = α(t)(1−m)β(t)

k1
and ω̃ = eiφ; then

I(ω) =
ω

2πk1

∫ 2π

0

ω̃−1 + ω

ω̃−1 −ω

1[
1 + k2(ω̃m + ω̃−m)

] dω̃

iω̃
. (7.15)

The polynomial in the denominator can be rewritten as ω̃m + k2ω̃
2m +

k2 = (ω̃m − c1)(ω̃m − c2), where c1 = − 1
2k2

−
√

1
4k2

2
− 1 and c2 = − 1

2k2
+√

1
4k2

2
− 1. The integral then reads

I(ω) =
ω

2π ik1

∫ 2π

0

ω̃−1 + ω

ω̃−1 −ω

ω̃m

(ω̃m − c1)(ω̃m − c2)
dω̃

ω̃
.

The product of the two poles of the general quadratic equation Ax2 + Bx +
C is −B+

√
B2−4AC

2A
−B−

√
B2−4AC

2A = C
A . In this example this means that the

product c1c2 = 1, from which it can be concluded that one of the roots
c1 or c2 lies inside the unit circle, and the other one outside. Since k2 is a
small, positive number, c2 must lie closer to the origin than c1. Therefore,
only c1 lies inside the integration area.

The exact solution of I(ω) is a sum of the residues of the (m+1) poles
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within the integration area:

I(ω) =
−2ω−m+1

k1(ω−m − c1)(ω−m − c2)
(7.16)

+
ω

k1(c1 − c2)

m−1

∑
j=0

e
−2π i j

m + ωc
1
m
1(

1−ωc
1
m
1 e

2π i j
m

) j−1

∏
n=0

(
e

2π i j
m − e

2π in
m

) m−1

∏
n= j+1

(
e

2π i j
m − e

2π in
m

) .

Obviously, the exact solution does not straight-forwardly lead to expres-
sions for α(t) and β(t). As a simplification, the special case m = 3 can be
considered, such that the result can be compared to what was obtained in
Sec. 7.1 and by [Barra et al., 2001b]. Computing the sum for m = 3 gives
the expression

Im=3(ω) =
−2ω−2

k1(ω−3 − c1)(ω−3 − c2)
− ω

2k1

√
1

4k2
2
− 1

1 + ω3c1

(1−ω3c1)
. (7.17)

A series expansion around infinity of the product ∂ f (ω,t)
∂t Im=3(ω) gives

expressions for the modes ω and ω−2 which can be put equal to the left-
hand side of Eq. (7.14), giving the equation set

dα
dt

=
α(t)k2

k1

√
1− 4k2

2

(7.18)

dβ

dt
=

2k2

k1

√
1− 4k2

2

(
α(t)

c1
−β(t)

)
− 2α(t)

k1
(7.19)

The equations cannot be solved analytically. By numerical integration,
using the fourth order Runge-Kutta method, the same behaviour as in Fig.
7.1 is obtained.

In order to obtain analytic solutions of α(t) and β(t) for any m,
the integral in Eq. (7.15) must be simplified. This is done by using
the expansion 1

1+k2(ω̃m+ω̃−m) ≈ 1 − k2(ω̃m + ω̃−m). The result of the
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integration now reads

Iaprx(ω) =
1
k1

ω− 2k2

k1
ω−m+1.

Inserting Iaprx(ω) into Eq. (7.14) and collecting powers of ω leads to a new
set of differential equations:

dα
dt

=
α(t)

k1
dβ

dt
=

β(t)(1−m)
k1

− 2k2α(t)
k1

(7.20)

2k2β(t)(1−m) = 0.

The derivation is based on a small perturbation amplitude, and therefore it
can be assumed that β(t) � α(t). The simplifitacion of setting all second-
and higher order terms of β(t) to zero is therefore valid. With k1 = α2(t)
and k2 = β(t)(1−m)

α(t) , the solutions read

α(t) =
√

α(0)2 + 2t (7.21)

β(t) = β(0)

(
α(t)
α(0)

)(m−1)

. (7.22)

Once again, the solution reproduces what is seen in Fig. 7.1 for m = 3.
Eqs. (7.21) - (7.22) are used to produce the pole dynamics plot in Fig. 7.2.



Chapter 8

Loewner evolution

Charles Loewner developed another technique for studying pattern
growth by means of conformal maps [Löwner, 1923]. The motivation
for his work was the Bieberbach conjecture, which states a necessary
condition on a holomorphic function g(z) to injectively map the open unit
disc in the complex plane to the entire complex plane. The condition is
that the coefficients of the Taylor expansion g(z) = ∑n≥2 cnzn must satisfy
|cn| ≤ n for all n ≥ 2. Loewner developed a differential equation for
conformal maps, and used it to prove that c3 ≤ 3.

However, the result of Loewner’s work has many other applications.
In 2001, Carleson and Makarov showed that the Loewner differential
equation could be used to study growth and aggregation processes, using
DLA and Laplacian growth without surface tension in a Hele-Shaw cell
as examples [Carleson and Makarov, 2001]. Later, the method has been
applied to many different examples of growth, such as fingered growth
in channels, random walks and Brownian motion (see e.g. [Bauer and
Bernard, 2006] or [Gubiec and Szymczak, 2008]).

8.1 The Loewner equation

The derivation of the Loewner equation uses compositions of conformal
maps, combined with some theories from complex analysis and statistical
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Figure 8.1: Illustration of how the map gt absorbs the growing structure
Ht in successive steps. The mapping gt+τ is a composition of many small
steps gτ .

physics. Let the upper half-plane be the reference domain R, whereas a
shape growing from the real axis and into the upper half-plane in physical
space is called Ht. The boundary of Ht and the remainder of the real axis
together make up the boundary of a domain D in the z-plane, which is
simply the upper half-plane with Ht subtracted: D = R\Ht. A conformal
transformation gt(z) maps D onto R, and brings the boundary of D onto
the real axis. Here t represents a time parameterization that corresponds
to the t in Ht. At time t +τ an increment Hτ has been added to the shape in
the z-plane, such that it has grown into Ht+τ = Ht + Hτ . Ht+τ contains Ht,
and the transformation gt+τ maps the now smaller D onto R. This means
that as Ht evolves with time, the mapping gt(z) must also change in order
to at any instant be able to map D onto the reference domain R. Note that
the composition property can be very useful when working with this kind
of evolution: At time t + τ the shape Ht+τ can be mapped to the reference
domain in two ways: either by gt+τ(z) or by gτ(gt(z)) (see Fig. 8.1). Since
gt+τ(z) = gτ(gt(z)) it follows that gt(z) = g−1

τ (gt+τ(z)). By letting τ → 0,
this can be used to derive a differential equation for the map gt(z). One
way of presenting this equation is obtained from [Fogedby, 2007]:

dgt(z)
dt

=
1
π

∫
ρt(ω) dω

gt(z)−ω
, (8.1)
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where ρt(ω) is called the Loewner density and is the parameter that really
controls the growth.

Eq. (8.1) can be simplified in the special case where the growth takes
place at a single point, which implies that Ht essentially is a curve growing
into the upper half-plane. The growth happens at the point a(t) on this
curve, and it may be shown that the density ρt(ω) is concentrated in this
point, such that ρt(ω) = 2πδ(ω− a(t))1 . Making this substitution in Eq.
(8.1), one lands at the Loewner equation:

dgt(z)
dt

=
2

gt(z)− a(t)
. (8.2)

a(t) is always real valued, and is called the driving function. From its
coupling to ρt(ω) it is easy to see that this is the parameter that controls
the growth of the curve. The initial condition g0(z) = z of Eq. (8.2) implies
that the z-plane is mapped into itself by gt(z) when t = 0. The boundary
condition at infinity is that gt is the identity map: gt(z) = z + o( 1

z ) as
z → ∞.

Observe that Eq. (8.2) has a singularity when gt(z) = a(t). The fact that
a(t) is real and therefore sits on the boundary of R implies that the critical
points z = g−1

t (a(t)) = γt must belong to the boundary of D. γt is the
tip of the curve Γt that grows into the upper half-plane, and this curve is
actually a trace of the singularities of Eq. (8.2). The composition property
of conformal maps implies that if a point is in the trace at some time t,
then it will remain a part of it for all subsequent times. This means that all
growth takes place at the tip of the curve.

A continuous driving function will yield a continuous trace, whereas
jumps in the driving function will result in a discontinuous trace. It
can be shown that if a(t) is smooth enough, such that it is everywhere
differentiable, then the trace never intersects itself. A complex driving
function will give a more complex trace Γt. The trace can intersect itself if
a(t) is sufficiently singular. Moreover, if the driving function is periodic

1δ is the Kronecker Delta.
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the trace will be a self-similar curve [Gruzberg and Kadanoff, 2004]. Fig.
8.2 shows some examples of traces for different driving functions.

8.2 Example: a growing stick

Consider now the simple example when Ht is a straight line growing
into the upper half-plane from the origin, perpendicularly to the real axis.
More precisely, it is a curve or trace Γt to which a small increment is added
at the tip in every time step. This configuration is obtained by using the
driving function a(t) = 0. Solving Eq. (8.2) then yields the expression

gt(z) =
√

z2 + 4t

for the map. The inverse ft(ω) of ω = gt(z) reads ft(ω) =
√

ω2 − 4t.
By inspection of the two maps, it can be concluded that gt(z) maps the
upper half-plane minus a line segment Γt from 0 to 2i

√
t onto the entire

upper half-plane. The right hand side of the line segment is mapped to
the interval from 0 to 2

√
t on the real axis, whereas the left hand side is

mapped to the part between −2
√

t and 0, as illustrated in Fig. 8.3
Using instead a constant a(t) = c when solving Eq. (8.2), the solution

gt(z) = c +
√

(z− c)2 + 4t (8.3)

is obtained. The growing structure in the z-plane is now a curve from
z = c to z = c + 2i

√
t, which is mapped to the segment between c − 2

√
t

and c + 2
√

t on the real axis in the reference domain by gt(z).

8.3 Numerical procedure

The numerical method used to find the trace of γt = g−1
t (a(t)) in the

Loewner evolution follows the idea of iterated elementary maps. Under
time discretisation, the trace will be a set of points, and the curve Γt will be
the line connecting these points. In the limit of infinitesimally small time
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(a) (b)

(c) (d)

Figure 8.2: Examples of the trace of the Loewner evolution for different
driving functions: (a) a(t) = sin(π t), (b) a(t) = t sin(π t), (c) a(t) = t, and
(d) a(t) = 2

√
6(1− t) for t ∈ (0, 1) and a(t) = 0 for t ≥ 1. In (d), the trace

starts growing from a point close to 5 on the real axis, then grows in an arc
to the left until it touches the real axis again when t = 1. For t > 1, the
trace once again grows up into the upper half-plane.
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Figure 8.3: A simple example of Loewner evolution: a stick is growing in
the z-plane, with the end point C moving further into the upper half-plane
with increasing time. At any instant, the corresponding time dependent
mapping gt maps the domain D, which is the upper half-plane minus the
growing stick, onto the entire upper half-plane R. The evolution of gt is
coded by the Loewner equation.

φ

a(t+τ)a(t)

a(t)+i(2τ)½

γ γ
t

t+τ

Γt+τ

t+τt gg

Figure 8.4: An illustra-
tion of how the conformal
map gt that satisfies the
Loewner equation (8.2) is a
composition of elementary
slit maps φ. A new line
segment is added at the tip
of the curve Γt in each time
step τ . γt is the tip of Γt
at time t. The map gt+τ

must consist of the map gt
that takes the old tip γt
to the real axis, composed
with the slit mapping φ

that maps the line segment
from γt to γt+τ to the real
axis.
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steps τ , Γt will be a smooth curve. This leads to the idea that the trace can
be drawn as a composition of many short, straight line segments. In each
time step, a new line segment is added to the tip of the existing curve Γt.

The map gt is constructed by the composition gt+τ = φ ◦ gt where φ is
the slit mapping

φ(z) = a(t) +
√

(z− a(t))2 + 4τ . (8.4)

The slit mapping φ is similar to the mapping in Eq. (8.3) and has more or
less the same effect: it maps the straight line between the points a(t) and
a(t) + 2i

√
τ (the slit) onto the real axis, and takes the tip of the slit to the

point a(t + τ). The method is illustrated in Fig. 8.4. The figure shows that
gt will map the tip of the growing curve Γt to the point a(t) on the real
axis at any time t. When the trace Γt grows from time t to t + τ , gt maps
the segment between the real axis and γt to the real axis, whereas the slit
mapping φ takes the part that has been added at the tip, between γt and
γt+τ , to the real axis.

In most applications of the Loewner equation, one wants to find the
trace Γt for a given driving function a(t). This means that not gt, but
rather its inverse ft is of interest. A differential equation for ft may be
derived using the same approach as for gt. However, both the derivation
and the resulting equations will be more complicated than for gt (Eqs.
(8.1) and (8.2)). ft is instead found by inverting the composition relation
gt+τ = φ ◦ gt, giving

ft+τ = ft ◦ϕ (8.5)

where ϕ = φ−1 = a(t) +
√

(ω− a(t))2 − 4τ .
Eq. (8.5) shows that an explicit knowledge of the mapping ft itself is

never required, because it is a composition of elementary mappingsϕ with
the initial condition f0(ω) = ω, such that ft(ω) = ϕτ ◦ϕ2τ ◦ ... ◦ϕt(ω).
In the limit τ → 0, the points mapped by the ϕ’s trace out a smooth curve.

The behaviour of the trace is very sensitive to the sign of the term
ω − a(t) in ϕ. If ϕ is computed using the equation ϕ = a(t) +√

(ω− a(t))2 − 4τ , this sign is supressed as the term is raised to the
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second power inside the square root. If the equation is rewritten as ϕ =
a(t) + (ω− a(t))

√
1− 4τ

(ω−a(t))2 , the correct sign is maintained throughout
the iterations. However, when ϕ is on this form an exception must
be included to the algorithm whenever ω = a(t), to ensure that the
imaginary part of ϕ correctly equals 2

√
τ when this equality occurs.

8.4 The Loewner equation for radial Laplacian

growth

Radial Laplacian growth was studied in Chapter 7, and in Sec. 7.6 the
growth process was modeled in discrete time by the addition of a thin
layer |dω| to the unit disc in every time step. Eq. (7.14) was derived
to describe how the mapping of the growing structure would change
as an effect of the addition of this layer. This is a differential equation
for a conformal map, and as such it represents an example of Loewner
evolution. With the time parameterisation notation the equation can be
written as

d
dt

ft(ω) = ω f ′t (ω)
1

2π i

∮
ω + u
ω− u

du
u| f ′t (u)|2 . (8.6)

The term 1
| f ′t (u)|2 was derived from Darcy’s law and is the Loewner density

ρt(u) for radial Laplacian growth.
Loewner evolution may be used to study other types of radial growth

aswell. To derive a generalised version of the Loewner equation for radial
growth, Eq. (8.6) is rewritten as

d
dt ft(ω)
ω f ′t (ω)

=
1

2π i

∮
ω + u
ω− u

ρt(u)
u

du. (8.7)

Observe that this equation can be regarded as the solution of a boundary

value problem on the unit circle:
d
dt ft(ω)
ω f ′t (ω) is the function which is analytic

in the exterior of the unit circle, and whose real part on the unit circle is

Re
{

d
dt ft(ω)
ω f ′t (ω)

}
= ρt(u).
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ft(ω) maps the unit circle onto the boundary of the growing domain.
The normal velocity of this boundary can be expressed as

Vn = | f ′t (ω)| Re
{ d

dt ft(ω)
ω f ′t (ω)

}
(8.8)

[Bauer and Bernard, 2006]. As long as the boundary velocity in a growth
process is known, it can be linked to the Loewner density by Eq. (8.8). This
admits the growth problem to be solved using the Loewner equation for
radial growth processes, Eq. (8.7).



Chapter 9

Fingered growth

Surface instabilities can lead to the formation of fingerlike structures.
Examples can be observed in nature on different scales, and has also been
found both numerically and experimentally.

Whorm-like channels can be formed dy dissolution in porous or
fractured rock, governed by the coupling between fluid flow and chemical
reactions at the rock surface [Szymczak and Ladd, 2006]. The channels
will compete for the available flow, and the longer ones will have access
to more chemical reactants than the shorter ones. Thus only the longer
channels survive the competition, and the number of actively growing
channels will decrease with time. Szymczak and Ladd used a resistor
network model to study this interaction [Szymczak and Ladd, 2006].

When dendrites are formed by solidification from an undercooled
solution, the advancing tip will have a stable parabolic shape. However,
protrusions on its side walls will be unstable and grow into long fingers
[Couder et al., 2005]. The evolution of these side-branches is deterministic,
but the growth rate and length of a branch will depend on the size of
the initial protrusion, and its position with respect to the neighbours. A
screening effect by the longer branches will lead to a decay and eventually
also stagnation in growth of the shorter ones. An example is shown in Fig.
9.1(b).

Recall from Sec. 2.3 that ECD experiments can be done with different
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concentrations and a wide variety of chemical components, leading to
patterns of diverse morphologies. Some experimental setups will lead to
the formation of distinct, needlelike crystals of unlike lengths.

Zik and Moses did combustion experiments in Hele-Shaw geometry,
with controlled amounts of fuel, oxidants and heat available to the flame
[Zik and Moses, 1999]. In the regime of low oxidant flux, the initially flat
combustion front will not propagate as a whole, but rather evolve into a
number of fingers that will compete for the incoming flux. Fig. 9.1(a) is
a nice illustration of the development of the interface. Once again, it is
observed that when a finger grows slightly longer than its neighbours, it
will have better growing conditions and therefore win the local contest.

Fluidisation experiments can be done by injecting air from the bottom
of a vertical Hele-Shaw cell filled with glass beads [Nermoen, 2009]. If
the granules are of different sizes, pipelike structures may be formed due
to the sedimantation of bigger beads in the fluidised zones. An effective
coarsening of the pattern lets only a few chimneys grow all the way to the
top of the cell, see Fig. 9.1(c).

9.1 A model for fingered growth

These are just new examples of growth processes that may be modeled
in terms of Laplacian growth. They all involve an initially planar or
flat interface that evolves into a fingered pattern under the control of
an harmonic field. The very first steps of this development will be the
formation of small bumps or protrusions on the surface, nicely illustrated
in Fig. 9.1(a). These shapes are well described in terms of linear (Mullins-
Sekerka) stability analysis. However, when the initial bumps later grow
into long fingers, this linear approximation is no longer valid.

The combustion, fluidisation, solidification and ECD experiments
were all performed in Hele-Shaw cells or other quasi-two-dimensional
geometries, which means that conformal mapping techniques may be
used to study the observed interface evolutions. The models presented in
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(a)

(b)

(c)

Figure 9.1: The images show examples of fingered growth in experiments.
(a) shows how a combustion front evolves in time, starting out as a flat
interface between flame and fuel and developing into a fingered pattern.
From [Zik and Moses, 1999]. (b) illustrates how side-branches of dendrites
have different lengths, depending on their position with respect to long
and short neighbours [Couder et al., 2005]. (c) is a photograph of chimneys
formed in fluidisation experiments where air is blown into a vertical Hele-
Shaw cell filled with glass beads of different sizes (by [Nermoen, 2009]).
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Chapter 7 were all based on the same idea: map the growing boundary
onto the boundary of a mathematical reference domain, which has a
geometry simple enough that the Laplace equation can easily be solved
there. When using this method, one needs to keep close track of the
evolution of the boundary, in order to at any instant be able to map it
correctly to the reference domain. This involves quite a lot of analytics,
which is why a nonlinear problem such as fingered growth is not easily
handeled in this way. Therefore, a different model is used when studying
this kind of surface evolution.

It is observed that the growth takes place mainly or only at the finger
tips. This is an important simplification which implies that Loewner
evolution could be a useful tool for solving this problem. Loewner’s
differential equation offers the opportunity to keep track of the evolution
of the mapping of the boundary instead of the evolution of the boundary
itself. This procedure keeps the analytics on an acceptable level.

Such a model was proposed by Selander in [Selander, 1999]. It assumes
that a number of fingers are formed on the boundary due to a small
initial perturbation. Once the fingers are formed, the further growth of
the boundary takes place only at the finger tips. The system is totally
deterministic: the initial positions of the finger tips code for their positions
at any later time in the development. The competition between fingers
that is observed in experiments is well described by the model. The
gradient around the tip of a long finger will be larger than for a shorter
one. Therefore longer fingers will grow faster and supress the growth of
shorter, neighbouring fingers. The model assumes that all of the fingers
have the same (small) width. The possibility of tip splitting or merging of
fingers is neglected.

The model considers n (infinitely thin) fingers Γi(t); i = 1, .., n, that
grow from the boundary and into the interior of a domain R. R can be e.g.
the exterior of the unit circle, the upper half-plane, or an infinitely long
channel. The parameter t represents the time, and the fingers are evolving
in such a way that Γi(t1) ⊂ Γi(t2) for t2 > t1. D denotes the domain
R with the fingers subtracted, similar to what was described in Sec. 8.1.
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Figure 9.2: The figure is an illustration of the effect of the time dependent
mapping gt and its inverse ft. The fingers Γ1(t) and Γ2(t) are growing into
the interior of the reference domain. gt map the finger tips to the points
a1(t) and a2(t), respectively, on the boundary of the empty reference
domain. The figure is obtained from [Selander, 1999].

When the fingers grow, the domain D will get smaller. As the fingers are
infinitely thin, they actually coincide with the boundary of D. This is why
it is enough to keep track of this boundary in order to model the finger
growth.

The growth is controlled by the Laplacian field U, which satisfies the
conformally invariant boundary condition U = 0 on the boundary of D;
that is, on the boundary of R and along the fingers. Let gt be a conformal
map from D onto R, that maps the boundary of D onto the boundary of
R. The inverse of gt is denoted by ft. gt is constructed in such a way
that the tip γi(t) of the finger Γi(t) is mapped to the point ai(t) in R by
ai(t) = gt(γi(t)). The finger tip γi(t) lies on the boundary of D, and
hence ai(t) must lie on the boundary of R. The effect of the mappings
gt and ft is illustrated for n = 2 in Fig. 9.2. Furthermore, the boundary
condition ∂U

∂y → 1 as y → ∞ is included, which ensures that there will be a
constant flux at infinity. This flux should not be affected by the boundary
movements, which means that the restriction lim

z→∞ gt(z)− z = 0 must be
added to gt.

When the fingers grow, their tips will move around in space. gt must
therefore change in time in order to at any instant be able to map the finger
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tips to the correct points on the boundary of R. gt satisfies the Loewner
differential equation, Eq. (8.2), which codes for this time change. Recall
from Sec. 8.1 that the point z = g−1

t (ai(t)) = γi(t) is the singularity
of Eq. (8.2), and that the corresponding finger Γi(t) is the trace of these
singularities through time. gt maps all the n fingers to the boundary of
R simultaneously. Each finger Γi(t) has its own set of values of ai(t) that
controls its growth.

By using Darcy’s law on the form of Eq. (5.10), it may be shown that
the velocity Vi(t) at each finger tip γi is related to the second derivative of
the mapping ft by

Vi(t) ∼ | f ′′t (ai(t))|−
η
2 (9.1)

[Gubiec and Szymczak, 2008]. The interaction and competition between
fingers will be dependent on the value of η and the geometry of R.

9.2 Fingered growth in the half-plane

The following model for n fingers growing in the upper half-plane was
derived in [Selander, 1999]. It represents a simple way to study directional
fingered growth, and it illustrates the competition between fingers for
different values of η. The upper half-plane is a subset of the complex
plane of coordinates z = x + iy, with the restriction Im z > 0. The model
provides a time dependent mapping ft of the entire upper half-plane onto
the half-plane with the fingers subtracted. The real axis (the boundary of
the half-plane) is mapped to itself and the growing fingers.

Consider first a single finger growing into the half-plane. Recall from
Sec. 8.3 that the discrete-time Loewner evolution of the conformal map
ft is represented by the composition ft+τ = ft ◦ϕ, where ϕ adds a small
increment to the finger tip in each time step. In this model the elementary
map ϕ is on the form

ϕ(ω) = a(t) +
√

(ω− a(t))2 − 2τd(t), (9.2)
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where d(t) is called the growth factor. From the discussion in Sec. 8.2 it
is clear that d(t) codes for how far the finger tip is moved parallel to the
imaginary axis in each iteration.

Every time ϕ is applied, the finger will increase in length by
approximately τd(t)| f ′′t (a(t))|. Thus the velocity at the finger tip will be
V(t) = d(t)| f ′′t (a(t))|, which can be linked to Eq. (9.1) to show that the
growth factor is given by

d(t) = | f ′′t (a(t))|−1− η
2 . (9.3)

For the n-finger case, each finger i has its own set of parameters ai and
di. Each time step includes a composition of n slit mappings ϕi, one for
each finger: ft+τ = ft ◦ϕ1 ◦ϕ2 ◦ ... ◦ϕn. This means that the position
γi(t) = ft(ai(t)) of the tip of one finger is dependent on the positions of
all the other finger tips.

Due to Darcy’s law, Vn ∼ |∇U|η, the fingers will always grow in the
direction of the field gradient at their tip. For n ≥ 2, ai(t) will be time
dependent because of the interaction between the fingers. The point ai(t)
is moved around on the real axis by all the elementary mappings ϕ j; j 6= i,
before it can code for the correct position γi(t) of the i-th finger. This leads
to a differential equation for the driving function:

d
dt

ai(t) =
n

∑
j=1
j 6=i

d j(t)
ai(t)− a j(t)

.

When n = 1, d
dt a(t) = 0 and a(t) = a(0) is a constant, which means

that the single finger is a straight line growing from the point a(0) on
the real axis. This follows naturally from symmetry arguments: With no
competing fingers to change the direction of the gradient line around the
single finger, it will always grow perpendicularly to the real axis.

For n ≥ 2, the behaviour of the fingers is very sensitive to the value
of the parameter η in Eq. (9.3). Gubiec and Szymczak claims that there
are three different regimes in the growth of the fingers: the growth is
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stable for low values of η and unstable for high values, in addition to an
intermediate metastable state [Gubiec and Szymczak, 2008]. Carleson and
Makarov studied a similar growth model and showed that the values of η

at which the transition between the regimes takes place is dependent on
the number of fingers [Carleson and Makarov, 2002]. The total number of
fingers is of importance in the model used here too, but it is observed
that the density of fingers seems to be significant for the local growth
behaviour for a wide range of values of η.

Stable growth means that there is little or no competition between the
fingers, such that they all grow with more or less the same speed. Note
that when η = −2, the growth factor in Eq. (9.3) is a constant. This
gives stable growth for any number of fingers, provided that they do not
grow too close to each other. Fig. 9.3(a) shows an example of stable
growth of two fingers in the half-plane: they have the same speed and
angle with respect to the real axis. In the metastable regime, some of the
fingers will grow faster than the others such that there will be a screening
effect. However, the screening is only partial and thus the ratio of the tip
velocities in metastable growth will converge towards a constant value.
Finally, in the unstable regime one or more of the fingers will soon grow
longer than its neighbours, and there will be a complete screening. In the
very end only one finger will survive. Fig. 9.3(b) shows an example of the
development of two fingers in the unstable regime.

Fig. 9.4 illustrates the step-by-step evolution of the fingers due to their
internal competition. The figure shows five fingers growing at η = 1,
and is a particularly nice example of how the density of fingers determine
which stability regime the local growth belongs to. Denote the fingers by
numbers, such that the leftmost one is finger 1 and the one to the very
right is finger 5. Concentrate first on finger 1 and 2: they are not much
affected by the three fingers on the right hand side. Their behaviour looks
almost as if they were growing isolated from the other ones (compare to
Fig. 9.4); only the slightly smaller angle between them gives away that
they are not growing alone. Their growth is an example of the metastable
state, where finger 1 clearly takes over control, but without killing finger
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(a) (b)

Figure 9.3: The figure shows two fingers growing in the half-plane for
different values of η. In (a), η = 1 and the growth is stable. The fingers
cooperate rather than compete, and bend away from each other such that
both of them have the most ideal conditions. The initial positions are
a1(0) = −0.5 and a2(0) = 0.5. (b) shows a comparison between stable
and unstable growth. The fingers plotted with a solid line are grown at
η = −1, whereas the ones in dashed lines belong to the unstable regime,
at η = 4. The unstable fingers have a larger influence on each other from
the very beginning, with a stronger repelling effect than for η = −1. At
the instant when one of the fingers gets slightly longer than the other (due
to numerical noise), its growth velocity will increase dramatically, and the
shorter finger will soon die out. The initial positions are a1(0) = −0.2 and
a2(0) = 0.2
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(a) (b) (c)

Figure 9.4: Five fingers growing in the half-plane for η = 1. The initial
positions are chosen randomly in the range [−2.5, 2.5]. The figure shows
how the fingers affect each other and how the local density of fingers is
important for their behaviour. The simulation starts at time t = 0, and the
plots are made at times ta, tb = 2ta and tc = 3ta.

2 completely. The three fingers on the right hand side are much closer
to each other, and their growth is unstable. There is a strong screening
which leads to a successive killing of the shortest fingers. The single
finger that finally remains is soon killed by its two neighbours to the
left. Somewhat surprising is the observation that finger 3, which wins
the internal competition between fingers 3, 4 and 5 (Fig. 9.4(c)), is not the
longest one of these in the beginning (Fig. 9.4(a)).

9.3 Fingered growth in channel geometry

Many of the experiments on finger growth are done in Hele-Shaw cells,
which means that the side walls of the cell will have an effect on the
evolution of the interface. The model for fingered growth in the half-plane
does not take this effect into account. A new model will be presented
in this section, in which the side walls and their boundary effects are
included. The model has only small modifications with respect to the one
by Gubiec and Szymczak, and the details of the derivation can be found
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in Ref. [Gubiec and Szymczak, 2008].
The growth now takes place in a channel with impenetrable and

reflecting side walls. The channel is a subset of the complex plane with
coordinates z = x + iy, and lies in the upper half-plane (Im (z) > 0)
between x = −1 and x = 1. As in the half-plane model, the boundary
condition at the bottom wall y = 0 is U = 0. It is supplied by the criterion
∂U
∂x = 0 at the side walls x = ±1. The goal is to derive a mapping ft from
the empty channel onto the channel with the growing fingers subtracted.

The side walls must remain fixed under the mapping ft, which means
that the slit map in the entire upper half-plane (Eq. (9.2)) must be
modified. The slit mapping ϕ in channel geometry has the form

ϕ(ω) =
2
π

arcsin

[
$ +

1
2

√[
ϕ̃− sin(

π

2
ω) + ϕ̃+ − 2$

]2
− 8τd′

]
,

with the abbreviations

d′ = d
π2

4
cos2(

π

2
a),

$ = (1 +
π2

4
τd) sin(

π

2
a),

ϕ̃− = ϕ̃(1)− ϕ̃(−1),

ϕ̃+ = ϕ̃(1) + ϕ̃(−1),

ϕ̃(x) = $ +

√[
sin(

π

2
x)−$

]2
+ 2τd′.

Also here, the n-finger case is analyzed by a composition of n slit
mappings ϕi, one for each finger i. The growth factor di(t) is independent
on the geometry and is therefore still related to η and the mapping
ft by di(t) = | f ′′t (ai(t))|−1− η

2 , exactly as in the half-plane. However,
as explained in the previous section, the driving functions ai(t) are
influenced by the elementary mappings ϕ j. As ϕ j is on another form
in this geometry than in the half-plane, the differential equation for ai(t)
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Figure 9.5: The shape of a sin-
gle finger in channel geom-
etry will be independent on
the value of η. The channel
has reflecting sidewalls, and
this effect makes the finger
grow towards the center of
the channel, regardless of its
initial position.

needs a modification. The new relation is

d
dt

ai = −π

4
di tan(

π

2
ai) +

π

2

n

∑
j=1
j 6=i

d j
cos(π

2 ai)
sin(π

2 ai)− sin(π
2 a j)

. (9.4)

When n = 1, only the self term d
dt a(t) = −π

4 d(t) tan(π
2 a(t)) of Eq. (9.4)

remains. It makes the derivative d
dt a(t) 6= 0 whenever a(t) 6= 0, which

means that a(t) is nonconstant as long as it is away from the center of the
channel. A nonconstant driving function will give a curved trace Γt. The
reflecting sidewalls will make the single finger grow towards the center of
the channel, and once it hits the centerline, d

dt a(t) = 0, and the finger will
continue its growth along the centerline. Fig. 9.5 shows this behaviour of
a single finger growing in channel geometry. When n ≥ 2, there will be
a competition between the fingers, and the self term now only acts on the
winning finger to attract it to the centerline when the growth of the losing
fingers has ceased.

For n = 1 it has already been shown that the shape of the finger is
independent on η. Only the velocity of the finger tip will be affected
when changing η, due to Eq. (9.1). For n ≥ 2 the value of η plays
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a significant role for the growth of the fingers also in this geometry. η

controls the interaction between the fingers in the same manner as in the
half-plane. Fig. 9.6 shows how the growth of two fingers will be modified
when tuning η. The three growth regimes that were discussed in Sec.
9.2 are observed also here. The left plot shows stable growth. The two
fingers repel each other with equal strength, such that they seek towards
the positions ±0.5. This behaviour admits both of them to have the best
possible growth conditions at the same time. The plot in the middle is an
example of metastable growth, where there is some competition between
the fingers. The winning finger grows towards the center of the channel
and pushes the other away, but the losing finger does not completely stop
growing. The plot to the right shows the unstable regime, where the
winning finger is attracted to the center of the channel once the other one
has been killed.

9.4 Comments on numerics

Writing the map of the finger tips as a composition of elementary maps is
in many ways a simplification with respect to a direct integration of the
Loewner differential equation. However, in these two models for fingered
growth, complications arise when it comes to computing the growth factor
di(t) = | f ′′t (ai(t))|−1− η

2 . If the second derivative of an iterated map is to
be found analytically, it requires a combination of the chain- and product
rule for differentiation. For n fingers at time t, this includes an intricate
combination of the first and second derivatives of n t

τ elementary maps
with individual parameters ai and di. A purely analytic algorithm for
finding the growth factor is therefore quite cumbersome to implement.
For simplicity, a combination of analytic and numeric differentiation is
used: the first derivative is computed analytically at the points ai(t) and
ai(t) + ε, and the results are then used to compute the second derivative
by f ′′t (ai(t)) = f ′t (ai(t)+ε)− f ′t (ai(t))

ε . The method is not very sophisticated,
but it is sufficient for these purposes.



CHAPTER 9. FINGERED GROWTH 78

−1 −0.5 0 0.5 1
0

1

2

3

4

5

6

7

−1 −0.5 0 0.5 1
0

1

2

3

4

5

6

7

−1 −0.5 0 0.5 1
0

1

2

3

4

5

6

7

Figure 9.6: The figure shows how the parameter η in Eqs. (9.1) and
(9.3) affects the competition between two fingers growing in a channel.
When η = −2 (left), the growth factor is a constant and the fingers do
not compete: they grow towards the position in the channel that gives
both of them as much influx as possible. For η = 0 (middle) and η = 1
(right), there is a competition between the fingers, and the winning finger
will grow towards the center of the channel, where most incoming flux is
available.
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The initial positions of the fingers are sometimes chosen randomly. The
random numbers are then generated from a uniform distribution, in the
channel between −1 and 1 and for n fingers in the half-plane between −n

2

and n
2 .

Slow fingers may generate numerical instabilities due to small number
computations. To avoid this, fingers growing slower than a certain
threshold value are killed. Slow fingers still affect its neighbours, and
must therefore remain in the computations. Killing a finger therefore only
means that its position in every new time step after the killing is set equal
to the last position it had before it was killed.



Chapter 10

Critical phenomena

The correlation function G(r,ξ), with the corresponding correlation length
ξ , is used as a description of the degree of order in a system. It describes
how strongly physical observables at different positions are related to each
other, as a function of the distance r between the positions. One might
think of this as a measure of the degree of order in a system. For a d-
dimensional system, the correlation function can be expressed as

G(r,ξ) =
1

rd−2+℘
e−

r
ξ

where ℘ is a critical exponent that is introduced to make sure that G(r,ξ)
shows the correct behaviour as ξ → ∞. ℘ can have different positive
values, dependent on the problem at hand.

The order or disorder in a system is usually dependent on the
temperature T. In this case the correlation length is given by ξ =
ξ0|T− Tc|−υ. At the critical temperature Tc the correlation length diverges,
and the system no longer possesses a characteristic length scale. When
the temperature passes through Tc, the system undergoes a second
order phase transition (i.e. a phase transition in which no latent heat
is involved). At this critical temperature, the system shows special
behaviours called critical phenomena.

80
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10.1 Scaling and universality

A common example of a system that exhibits temperature dependent
ordering and a second order phase transition at some critical temperature
is the Ising spin model. It is a lattice on which the spin σi at each lattice
point i can take one of the values σi = ±1. At T = 0, the system is
totally ordered: it takes on a ferromagnetic ground state with all the spins
aligned. As T increases the system remains ferromagnetic with long range
order: clusters of characteristic size ξ(T) have equally oriented spins, with
small intermediate islands of oppositely directed spins. As T approaches
Tc, observable physical properties behave as O(T) ∝ (T − Tc)υO , where
υO is an exponent characteristic for each observable. At the critical point
the correlation length and the observables diverge, meaning that this
description of the system breaks down. Above the critical point the system
is in a paramagnetic state without long range order, but with clusters of
characteristic size ξ(T) in which the spins are ordered. As T → ∞, ξ → 0,
and the system is totally disordered.

The diverging correlation length at Tc implies that the system becomes
scale invariant at the critical point. This means that the system will look
exactly the same at every length scale up to the system size: it is invariant
under rescaling. This property applies to both the system geometry and
to physical properties and measures on the system. It further implies that
the system has a fixed point at Tc. The geometric interpretation of scale
invariance is that clusters of equally aligned spins make up a self-similar
structure. Moreover, the scaling of the observables around Tc exhibit an
intriguing behaviour called universality: regardless of the specifications
of the system at hand, the exponents υo will take on the same value for
very different systems.

10.2 Conformal invariance

At the critical point, and at length scales much larger than the distance
between lattice points, the lattice representation of spins can be replaced
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by a continuum model. The spins are then described by a local field
Ψ(r) which is also scale invariant. This scale invariance has further
important implications for the system at the critical point. The geometry
in the continuum limit of a self-similar structure will be independent
on translation, rotation and magnification, which means that the system
is conformally invariant. The continuum theory therefore falls into the
category of conformal field theories.

The behaviour of the Ising model at the critical point is not unique. It
can be shown that many other statistical mechanics lattice models, such as
percolation and random walks, also have these properties.

The conformal invariance is valid not only for the geometry of the
system, but also for probability measures. Consider a lattice model in
the continuum limit theory, and let D1 and D2 be two domains on the
lattice. The curve ` connects two points on the boundary of D1, and the
probability measure on ` is PD1(`). By the Riemann mapping theorem,
D1 can be mapped conformally onto D2 by means of a transformation
g(D1), and it follows that the curve on the interface maps to g(`). The
scale invariance that leads to conformal invariance then states that the
probability measure is invariant under this transformation, i.e PD1(`) =
PD2(g(`)).

10.3 Stochastic Loewner Evolution

In 2000, Oded Schramm took Loewner evolution one step further by
introducing a stochastic driving function a(t) in Eq. (8.2) [Schramm, 2000].
As was seen in Sec. 8.2, a continuous driving function yields a continuous
trace γt in the z-plane. Scramm realised that if a(t) is a continuous
random function then the trace will be a random curve. The study of the
Loewner equation with a stochastic driving function is called Stochastic
Loewner Evolution (SLE). It can be used to study two-dimensional critical
phenomena.
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In SLE, the driving function is given by a Gaussian distribution

P(a, t) =
1√
2π t

e−
a2
2ℵt

satisfying the correlations

〈(a(t)− a(ζ))2〉 = ℵ|t−ζ |,

where the braces denote the variance. ℵ is a dimensionless parameter
that is very important for the behaviour of the trace γt. Schramm showed
that if a(t) further satisfies the restrictions of Brownian motion, then SLE
would produce a conformally invariant, fractal trace γt.

For 0 < ℵ ≤ 4 the trace is a simple random curve that does not intersect
itself nor the real line. Different examples of critical phenomena can be
connected to special values of ℵ. As an example, ℵ = 3 yields a trace that
has been conjectured to correspond to the spin cluster boundaries of the
Ising model at the critical temperature Tc [Gruzberg and Kadanoff, 2004].
For 4 < ℵ < 8, the trace starts intersecting itself. This leads to "holes"
in the domain D, which violates the Riemann mapping theorem which is
applicable to simply connected domains only. Thus, each time the trace
intersects itself the enclosed hull is removed from D. There are theorems
stating that also these hulls can be used to describe different properties
of critical phenomena. When ℵ ≥ 8 the trace fills a whole region.
Fig. 10.1 shows examples of boundary curves in critical phenomena that
correspond to SLE traces for ℵ = 2 and ℵ = 8.

It was shown in [Rohde and Schramm, 2005] that the Hausdorff
dimension DH of the curve generated by SLE is dependent on ℵ through

DH = 1 +
ℵ
8

for 0 ≤ ℵ ≤ 8.

For ℵ ≥ 8 the curve fills a part of the plane and DH locks onto 2.
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(a) (b)

Figure 10.1: Examples of conformally invariant paths that correspond to
SLE traces for different values of ℵ. (a) is a uniform spanning tree Peano
curve. The curve is space filling, and converges to an SLE with ℵ = 8. (b)
shows a loop-erased random walk from the center to the rim of a disc, and
has been shown to represent SLE with ℵ = 2. The figures are obtained
from [Schramm, 2006].



Chapter 11

Summary

Much work has been devoted to the study of non-equilibrium growth
phenomena, and the effort has lead to the establishment of a variety
of growth models. Laplacian growth represents a very simple model
that can be used to study surprisingly complex, fractal structures. As a
fundamental model it may be used as a tool to gain further insight into
many different problems; both well known and newer ones. Due to the
invention of new modeling techniques and the exploration of previously
unknown phenomena in physics, new applications of the model steadily
appear.

The Loewner equation has recently been connected to Laplacian
growth in order to easily study directional fingered growth, which is
complicated to solve with the classical conformal mapping techniques.
The iterated conformal maps technique has already been used to study
different types of boundary evolution, and is the key to why the Loewner
equation can be applied to the fingered growth phenomenon. This is
indeed an ingenious way to reproduce many of the fingered patterns that
can be observed in experiments and in the field. However, the model as it
is presented here has some weaknesses and needs to be improved before
it can be tied up to any of these examples.

The Loewner equation has applications far beyond solving boundary
evolution problems. It was introduced in 1923 to solve the Bieberbach
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conjecture, and reentered the research frontier when Schramm coupled it
to Brownian motion in 2000. Many of the conjectures made on SLE in
connection to critical phenomena are still not proven.

The aim of this thesis has been to tie together some well established
and newer approaches to the study of Laplacian growth. Non-equilibrium
growth phenomena on unstable surfaces has been the red line, and this
will represent a current research topic as long as the fascination for the
structures that it produces is still alive.



Appendix A

Derivation of the conformal map
f (ω)

The mapping f (ω) of the exterior of the unit circle onto a nearly circular
domain, perturbed by the function h(θ) = ε cos(mθ), was an important
ingredient in the study of growth phenomena in radial geometry. This is a
summary of a derivation of f (ω), obtained from [Nehari, 1982].

A.1 Gauss‘ theorem

Let D be a domain bounded by a piecewise smooth curve Λ, and take two
functions p(x, y) and q(x, y) that both are continuous and have continuous
first partial derivatives in D. Gauss‘theorem then states that

∫∫
D

[
∂p
∂x

+
∂q
∂y

]
dx dy =

∫
Λ

[
p(x, y)dy− q(x, y)dx

]
(A.1)

If u(x, y) and v(x, y) are functions with continuous first and second partial
derivatives in D and Λ, then

p(x, y) = u
∂v
∂x

and q(x, y) = u
∂v
∂y
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satisfy the requirements of Gauss‘ theorem. Eq. (A.1) can then be rewritten
as∫∫

D

[
∂u
∂x

∂v
∂x

+ u
∂2v
∂x2 +

∂u
∂y

∂v
∂y

+ u
∂2v
∂y2

]
dxdy =

∫
Λ

u
[∂v

∂x
dy− ∂v

∂y
dx
]
. (A.2)

The line integral in Eq. (A.2) can be simplified by introducing differentia-
tion in the direction of the outward pointing normal of Λ:

∂v
∂n

=
∂v
∂x

cos(x, n) +
∂v
∂y

cos(y, n),

where (x, n) and (y, n) are the angles between the normal and the positive
x− and y−axis, respectively. By using the direction cosines of the tangent
corresponding to the normal, it can be shown that cos(x, n) = dy

ds and
cos(y, n) = − dx

ds , where s is the arc-length parameterisation of Λ. The
relation

∂v
∂n

ds =
∂v
∂x

dy− ∂v
∂y

dx

is then obtained. This, together with the fact that ∇2v = ∆v = ∂2v
∂x2 + ∂2v

∂y2 ,
brings Eq. (A.2) onto the form

∫∫
D

u∆v dx dy +
∫∫
D

[
∂u
∂x

∂v
∂x

+
∂u
∂y

∂v
∂y

]
dxdy =

∫
Λ

u
∂v
∂n

ds, (A.3)

which is called Green‘s first formula. Swapping u and v in Eq. (A.3),
then subtracting the two equations from eachother, gives us Green‘s second
formula: ∫∫

D

(u∆v− v∆u) dx dy =
∫

Λ

(
u

∂v
∂n

− v
∂u
∂n

)
ds. (A.4)

Observe that if both u(x, y) and v(x, y) are harmonic, then

∫
Λ

(
u

∂v
∂n

− v
∂u
∂n

)
ds = 0. (A.5)
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A.2 The Green‘s Function

Let the function w(x, y) be harmonic in D and have continuous first
partial derivatives in D and Λ. Take a point (κ, ι) inside D; then the
distance between (x, y) and (κ, ι) is ri =

√
(x−κ)2 + (y− ι)2 and log ri

is harmonic in D and Λ except at the point (κ, ι). Then the function

k(x, y) = w(x, y)− log ri

will also be harmonic exactly where log ri is. Since k(x, y) is not harmonic
at the point (κ, ι) in D, introduce the new domain Dε, which is bounded
by Λ and a circle Cε of radius ε with center at (κ, ι). If u(x, y) is harmonic
in D, then Eq. (A.5) becomes

∫
Λ

(
u

∂k
∂n

− k
∂u
∂n

)
ds−

∫
Cε

(
u

∂k
∂n

− k
∂u
∂n

)
ds = 0. (A.6)

as the boundary of Dε is to be traversed in such a way that the interior
always stays on ones left side. With Cε being a circle, one can conviniently
write the rightmost integral in Eq. (A.6) in polar coordinates ((x, y) →
(r,θ)):

∫
Cε

(
u

∂k
∂n

− k
∂u
∂n

)
ds =

∫
Cε

[
u
(∂w

∂r
− 1

r

)
− (w− log ri)

∂u
∂r

]
rdθ

= −
∫ 2π

0
udθ +ε

∫ 2π

0

(
u

∂w
∂r

− w
∂u
∂r

)
dθ +ε logε

∫ 2π

0

∂u
∂r

.

In the limit ε → 0 the two last integrals vanish. The remaining integral
equals 2πu(κ, ι), by the mean value theorem. Eq. (A.6) then becomes
Green‘s third formula:

∫
Λ

(
u

∂k
∂n

− k
∂u
∂n

)
ds + 2πu(κ, ι) = 0. (A.7)
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The usefulness of this formula is obvious when k(x, y) is replaced by the
Green‘s function of the domain, which has the form

G(x, y; κ, ι) = G̃(x, y; κ, ι)− log ri, (A.8)

where ri =
√

(x−κ)2 + (y− ι)2 and G̃ is harmonic in D. When (x, y)
tends to Λ, then the Green‘s function tends to zero.

As Eq. (A.7) is a line integral over the boundary of D, the right hand
term in the integral wanishes due to the properties of the Green‘s function.
What remains is

u(κ, ι) = − 1
2π

∫
Λ

u
∂G
∂n

ds. (A.9)

This means that if the Green‘s function of a domain (and its derivative) is
known, all you need is the boundary values of the function u(x, y), and
thereby you can compute the values of u in any other point in the domain.

A.3 The Green‘s function of a circle

Let now D be the circle CR of radiusR and with center at the origin. Using
polar coordinates (r,θ), the Green‘s function of this domain with respect
to the point (ν, ϑ);ν < R reads

GCR(x, y; κ, ι) =
1
2

log
R2 − 2νr cos(θ− ϑ) + ν2r2

R2

r2 − 2νr cos(θ− ϑ) + ν2 (A.10)

To verify this formula, rewrite it as

G(x, y; κ, ι) = − log r1 + log r2 + log
ν

R

where
r2

1 = r2 − 2νr cos(θ− ϑ) + ν2

is the distance from the point (x, y) to (κ, ι) and

r2
2 = r2 − 2

R2r
ν

cos(θ− ϑ) +
R4

ν2
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is the distance from (x, y) to the point inverse to (κ, ι) with respect to the
boundary of CR, having the polar coordinates (R

2

ν , ϑ).
It is easy to show that when ri is the distance between two points (x, y)

and (κ, ι) in D, then log ri is harmonic in D except at (x, y) = (κ, ι).
Therefore, G(x, y; κ, ι) is also harmonic in D except at (κ, ι). Set r = R
in Eq. (A.10) to verify that it is zero on the boundary of the domain; all the
requirements of the Green‘s function are satisfied.

A.4 The variation formula

Let D be subject to a small perturbation h that changes it into the new
domain Dh. The Green‘s function and boundary of Dh are denoted by
Gh(x, y; κ, ι) and Λh, respectively. Recall that s is the arc-length parameter
for Λ. Construct a normal at every point z(s) along Λ; the distance along
the normal from z(s) until its intersection point zh(s) with Λh is denoted
by δn(s). Let ε be a small number; then δn(s) = εĥ(s) = h(s) satisfies the
requirement that the perturbation be small.

It can be shown that the variation of the Green‘s function due to the
perturbation is expressed by

δG(x, y; κ, ι) = Gh(x, y; κ, ι)− G(x, y; κ, ι)

=
1

2π

∫
Λ

∂G(χ,ζ ; x, y)
∂n

∂G(χ,ζ ; κ, ι)
∂n

δn(s) ds + o(ε). (A.11)

Using this variation formula and Eq. (A.10), the Green‘s function of a nearly
circular domain can be found. Changing again into polar coordinates,
where (x, y) → (r,θ), (κ, ι) → (ν, ϑ) and (χ,ζ) → (ξ ,φ), gives

δG(x, y; κ, ι) =
(r2 −R2)(ν2 −R2)

2πR∫ 2π

0

δn(φ) dφ
(R2 − 2rR cos(φ−θ) + r2)(R2 − 2νR cos(φ− ϑ) + ν2)

+ o(ε)

Let (κ, ι) be the origin; then ν = 0 and Eq. (A.10) simlifies to log R
r , and
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the Green‘s function of the nearly circular domain, whose boundary is
determined by the equation R+ h(θ), reads

Gh
CR(x, y; 0, 0) = GCR(x, y; 0, 0) + δGh(θ)(x, y; 0, 0)

= log
R
r

+
(R2 − r2)

2πR

∫ 2π

0

εĥ(φ) dφ
R2 − 2rR cos(φ−θ) + r2 + o(ε) (A.12)

A.5 Green‘s functions and maps

It can be shown that if the function g(x, y; κ, ι) maps the domain D onto
the unit circle, and brings the point (κ, ι) to the origin, then

G(x, y; κ, ι) = −Re
[

log
(

g(x, y; κ, ι)
)]

= − log |g(x, y; κ, ι)| (A.13)

is the Green‘s function of D. We already found an expression for the
Green‘s function of both a circle and a nearly circular, perturbed domain.
Then we are able to find an explicit expression for the map between them,
using Eq. (A.13).

Let now D be a simply-connected, nearly circular domain with
boundary r = 1 + εĥ(θ). ĥ(θ) is a bounded and piecewise continuous
function, and ε is a small, positive parameter, small enough that second
order terms can be neglected. Introduce z = reiθ; then Eq. (A.12) can be
rewritten as

Gh
C1

(x, y; 0, 0) = − log |z|+ (1− r2)
2π

∫ 2π

0

εĥ(φ) dφ
1− 2r cos(φ−θ) + r2 + o(ε)

= Re

(
− log z +

ε

2π

∫ 2π

0

eiφ + z
eiφ − z

ĥ(φ) dφ

)
+ o(ε).

Relating this to Eq. (A.13) gives the final formula for the map:

g(z) = z− εz
2π

∫ 2π

0

eiφ + z
eiφ − z

ĥ(φ) dφ + o(ε) (A.14)
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Now that the map ω = g(z) onto the unit circle is found, it is desirable
to compute its inverse; z = f (ω); the mapping from the unit circle onto
a nearly circular domain. g(z) has the more generalized form g(z) =
z−εĥ(z) + o(ε), so assume that f (ω) looks like f (ω) = ω +εk̂(ω) + o(ε).
Inserting one into the other shows that ĥ = k̂, and the inverse function
must be

f (ω) = ω +
εω

2π

∫ 2π

0

eiφ + ω

eiφ −ω
ĥ(φ) dφ + o(ε) (A.15)

Eq. (A.15) maps the interior of the unit circle onto the perturbed domain.
We want instead to consider the exterior, which means that the integration
is to be done around infinity, and not around the origin:

f (ω) = ω +
εω

2π

∫ 2π

0

e−iφ + ω

e−iφ −ω
ĥ(−φ) dφ + o(ε) (A.16)

Let the perturbation h(θ) = ε cos(mθ); then Eq. (A.16) simplifies to

f (ω) = ω +εω−m+1. (A.17)
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