
Ma
h's prin
iple onrotating systems in general relativitybyRUNE VALLE
THESISfor the degree ofMASTER OF SCIENCE

Theoreti
al Physi
s Division, Department of Physi
sFa
ulty of Mathemati
s and Natural S
ien
esUniversity of OsloJune 2009



ii



Prefa
eThis thesis might be regarded as a review over a subje
t that has a historyof a
tive resear
h of more than 100 years. However, it di�ers from manyother reviews in 
ertain respe
ts. I have made e�orts to not only present theresults, but also how they were found. The hope is that this will be enoughto get a deeper understanding of the results, and that it might expose waysto extend them. I also have made a serious e�ort to keep the mathemati
allevel as simple as possible without the loss of pre
ision that often is asso
iatedwith su
h popularisations. My own 
ontribution has mainly been to providemy own interpretations, examples and some suggestions where appropriate.There are three se
tions I want to mention espe
ially: The �rst two arethose that 
over two very re
ent results. One of those is the improved dataanalysis of the gravity probe B experiment detailed in 3.3.3. The other isS
hmid's result on linear perturbations on FRW-universes that is presentedin 4.1. Finally I would like to mention the se
tion 
al
ulating dragging e�e
tsin a simple galaxy model 2.3. While I am ever present throughout this thesisin sele
ting, re�ning and 
ommenting on works of others, this is the se
tionwhere I truly feel that I am presenting work that is entirely my own.This text is probably best used as an introdu
tion to the �eld in question,or as a reading 
ompanion to the main arti
les presented in this thesis. Itmay also be read more lightly as a simple overview of the history of the morere
ent resear
h on an engaging philosophi
al problem, or as a se
ond pointof view for those already familiar with the �eld.This thesis is arranged partially histori
ally and partially based on 
om-plexity. The �rst 
hapter is a simple introdu
tion narrowing the fo
us of therest of the thesis while providing some horizons for further study. The se
ond
hapter only examines the simplest deviations from spe
ial relativity theory.The third 
hapter extends on this, going to more 
ompli
ated systems, butstill keeping the Minkowski boundary. Finally in the fourth 
hapter the 
aseof entire universes are treated. The last 
hapter is just a short wrapping upof the previous 
hapters. iii



iv Most of this text should be possible to enjoy for anyone having lowergrade 
ourses in basi
 me
hani
s and ve
tor �eld theory. I also assume su-per�
ial familiarity with the main 
on
epts of the general relativity theorylike the metri
 tensor and the �eld equations. Full understanding will how-ever demand some more advan
ed 
lassi
al me
hani
s and familiarity with
ertain analyti
 methods. The ex
eption is the se
tion on galaxy rotation2.3. Here some numeri
al methods and programming is used. This se
tionis however not ne
essary for enjoying the rest of the thesis.In order to be as useful as possible as a reading 
ompanion I have mostlypreserved the notation of the sour
es formulas are based from. Ex
eptionsare noted in the text. This will be explained in the relevant se
tions. I use afew 
ommon 
onventions I would like to mention here: I use Einstein's sum-mation 
onvention. gµν is the metri
 tensor. T µν is the energy-momentumtensor. The time like 
omponent is the 0-
omponent of tensors. Greek in-di
es represent all 4 dimensions, while Latin indi
es mark only the spatial
omponents.Of parti
ular note is it that there are di�erent 
onventions on the gravi-tational 
onstant. Some use Newton's, while others use that of Einstein. Inaddition, it is quite 
ommon to use the 
onvention that set the speed of lightand the gravitational 
onstant (Newton's) to unity.I would like to thank my supervisor professor Øyvind Grøn for all hishelp, and my family for support and feedba
k. Also a big thank to all thosebooks, arti
les and web pages that have served as inspiration and shaped myview of this amazing subje
t. Not nearly all of them did �nd their way tothe bibliography, as they did not dire
tly relate to any of the 
ontent.
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Chapter 1Introdu
tionI will in this 
hapter give an introdu
tion to the topi
 of this thesis, bothhistori
ally and 
on
eptually. This I will do by starting at the parts ofthe title and des
ribing those in more detail, in addition to other possibleapproa
hes to the problem at hand.1.1 Ma
h's prin
ipleI will in this se
tion give a short histori
al and philosophi
al introdu
tionto how the term "Ma
h's prin
iple" 
ame to be, and give a short overviewof possible meanings. In the later se
tions I will narrow down the s
ope ofthe rest of this thesis. This is ne
essary as Ma
h's prin
iple itself is a far tobroad 
on
ept for me to serve it justi
e to in the limited time and spa
e ofa master thesis. The histori
al treatment is primarily based on Norton [37℄and Hoefer [23℄1.1.1 What Ma
h saidMa
h's prin
iple is the name given to a very loosely de�ned 
on
ept that isattributed to the physi
ist Ernst Ma
h. One of the key quotes from him thathas lead to this 
on
ept being attributed to him is a 
ritique of Newton'sbu
ket experiment. In this experiment Newton 
onsiders a bu
ket �lled withwater, initially held at rest. He observes that the water has a �at surfa
e.He then starts to rotate the bu
ket around its horizontal axis. After a littlewhile the water is moving toward the edges, so that it is shallower in themiddle than toward the sides. This he explains by referring to a 
entrifugal1



2 CHAPTER 1. INTRODUCTIONe�e
t that arises when the water in the bu
ket start to rotate with respe
tto absolute spa
e. Ma
h's answer to this is [33℄:Newton's experiment with the rotating vessel of water simply informsus that the relative rotation of the water with respe
t to the sides ofthe vessel produ
es no noti
eable 
entrifugal for
es, but that su
h for
esare produ
ed by its relative rotation with respe
t to the mass of theEarth and the other 
elestial bodies. No one is 
ompetent to say howthe experiment would turn out if the sides of the vessel in
reased inthi
kness and mass till they were ultimately several leagues thi
k. Theone experiment only lies before us, and our business is, to bring it intoa

ord with the other fa
ts known to us, and not with the arbitrary�
tions of our imagination.This quote should be seen in the 
ontext that Ma
h in his text advo
atesthe view that all observations is of how di�erent bodies relate to ea
h other.Hen
e it is problemati
 even to try to de�ne a 
on
ept su
h as absolute spa
e.1.1.2 Interpretations of Ma
hExa
tly what Ma
h wanted to say with this quote has been up to somespe
ulation. One possibility seems to be that it is an emphasis of the pointthat we 
an't know anything about situations we 
an't observe. In this 
asethe main message of Ma
h seems to be a 
all for a redes
ription of the physi
sso that it only was des
ribed as how bodies move in relation to ea
h otherwith no referen
e to absolute spa
e. This may a
tually be done even withinthe framework of Newtonian physi
s under the simple assumption that theuniverse itself is not rotating with respe
t to su
h a real absolute spa
e. Thisis for instan
e shown by Donald Lynden-Bell in [32℄.A se
ond way to read it is that he is proposing that there 
ould be some-thing other than absolute spa
e that determines the out
ome of Newton'sbu
ket experiment. The problem is that if this is the 
ase, he is giving littlesuggestions as to what and how, ex
ept that it should have something to dowith how matter moves in relation to ea
h other. One striking thing is thatif this interpretation is right, then he is very vague about it 
ompared withsome of his 
ontemporaries. For instan
e the brothers Imanuel and Benedi
tFriedlaender presented a paper in 1896 des
ribing an experiment that wouldattempt to determine if the rotation of the Earth had any modifying e�e
ton the law of inertia. They were however unable to �nd any deviations fromNewton's me
hani
s, 
onsidering their error margin.But why should there be any reason to sear
h for fa
tors that might



1.1. MACH'S PRINCIPLE 3
hange the out
ome of Newton's bu
ket experiment? There are two im-portant somewhat distin
t lines of reasoning that 
lassi
ally seem to rea
hthe same 
on
lusion, but in later times have turned out to give quite dif-ferent ways to approa
h the problem. The �rst is an argument 
on
erningthe aestheti
s of 
ausality: A

ording to Newton's me
hani
s - If you knowthe relative distan
es and velo
ities of all bodies in the universe at sometime, you know almost enough to determine how the system will evolve atall times. What is required to make the system 
ompletely determinableseems ridi
ulously little 
ompared with the huge amount of information youhave on the universe by then. One way is to put these bodies into a frame-work like that of Newton. Another way is simply stating that the universeis not rotating, or more general giving an axis and magnitude of rotation. Itshould be possible to determine this axis by observation by observing a fewof the double-di�erentials of the relative positions of the matter. But evenwhen this extra information is available, a theory where this it wouldn't bene
essary would seem 
leaner than Newton's.The se
ond line of reasoning is similar to that above, but stops beforeobserving the double-derivatives. One should rather note that this extraneeded information seems arbitrary. Why should it be so that a single axisof rotation should be so important for being able to 
ompletely des
ribenature? Could this rotation axis really be totally arbitrary, or is it possiblethat it is a
tually determined by the relative distan
es and velo
ities of thebodies in the universe?There is one important observational fa
t that has been used to arguethat it is unlikely that what has been 
alled absolute spa
e is independentof the masses of the universe: That su
h an absolute spa
e seems to beuna

elerated with respe
t to the "�xed stars". Consider Newton's bu
ketexperiment. When we are standing on the Earth, nearly at rest relative tothe �xed stars, we observe the water 
limbing the edges while we are rotatingthe bu
ket. We are prone to argue that the reason for this is that the waterin the bu
ket is rotating, and hen
e it experien
es a 
entrifugal e�e
t. If weon the other hand sit inside the bu
ket, we still see the water being shallowerin the middle than farther out. But the water and the bu
ket is not movingrelatively to us in this 
ase. It is simple to 
laim that we are experien
ingthis be
ause we are rotating ourselves, but how 
an we say? If you look up,maybe you 
an see the stars ra
ing around the sky at high speed. Wouldn'tit then be plausible from your point of view to 
laim that the reason for thewater moving away from the 
entre a
tually is that the stars in the sky isrotating around it?



4 CHAPTER 1. INTRODUCTION1.1.3 First usage of the termRegardless of motivation, it is the last interpretation that has be
ome themain idea of what is today 
alled Ma
h's prin
iple. When Ma
h was so little
lear about this himself one might wonder how this prin
iple 
ame to bearhis name? This is mostly attributed to Albert Einstein. He �rst used theterm in his paper on general relativity from 1918 [18℄:Das G-Feld ist restlos dur
h die Massen der Körper bestemmt. DaMasse und Energie na
h den Ergebnissen der speziellen Relativitëtsthe-orie das Glei
he sind und die Energie formal dur
h den symmetri
henEnergie-tensor (Tµν) bes
hrieben wird, so besagt dies, dass das G-Felddur
h den Energietensor der Materie bedingt und bestimmt sei.This de�nition is however not standing very strong. It seems like Einsteinduring the period 1912-1918 had some idea he attributed to Ma
h that hereally wanted the theory he was working on to satisfy. But his a
tual for-mulation of this idea was 
hanging over time. This de�nition doesn't standmu
h stronger when one 
onsiders that Einstein himself more or less gave upthe entire idea the summer 1918. The ba
kground for this was the �nding ofthe de Sitter spa
e that was an empty-spa
e solution with the 
osmologi
al
onstant. As it is hard to argue that the G-�eld is then 
aused by somematter distribution the general theory of relativity doesn't seem to ful�l theabove given de�nition.1.1.4 Present formulationsEven though Einstein's formulation of 1918 isn't very popular, the term"Ma
h's prin
iple" has been mu
h used in the literature with other meaningssin
e then. But there has been no 
ommon 
onsensus as to what the pre
isemeaning of the term should be, and thus it has been used with quite afew di�erent meanings depending on the writer. Common is that it somehowtries to grasp the ideas given by the se
ond interpretation of the Ma
h quote.Several attempts have been made to 
olle
t the di�erent uses of the term,for instan
e in [21℄, the index of [25℄ and in [7℄.As several of these de�nitions fall outside the s
ope of this text I willhere only list those formulations of Ma
h's prin
iple I'll work with, for easyreferen
e. Common for all of them is that it tells us something about howthings far away have lo
al e�e
ts.
• Formulation 1: The universe is spatially 
losed.
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• Formulation 2: There is nothing that a
ts that is not a
ted upon.
• Formulation 3: In the rest frame of any body the total gravitational�eld on the body arising from all the other matter in the universe iszero.
• Formulation 4: Masses should somehow determine the inertial systems.
• Formulation 5/6: The inertial systems should be partially/
ompletelydetermined by the masses of the universe.
• Formulation 7: The axes of inertial frames are perfe
tly dragged aroundby a weighted average of the motion of parti
les in the universe.Finally I will add a formulation that I have not en
ountered anywhere,but that will be 
onsidered brie�y later by me as it seems to be a possibleinterpretation.Formulation x1: Ma
h's prin
iple says that the boundary 
onditions areto be determined by lo
al behaviour.1.2 Alternatives to RotationIn the previous se
tion I 
onsidered Ma
h's prin
iple in general. Most of thistext will as the title suggests fo
us on rotational aspe
t of the prin
iple, but Iwill devote this se
tion to a short overview of some other possible approa
hesto Ma
h's prin
iple that doesn't dire
tly involve rotation.1.2.1 Boundary 
onditionsWhen examining how things far away may a�e
t lo
al physi
s it may beinteresting to examine the 
ase where "far away" goes to the limit of in�nity.In a theory governed by �elds and di�erential �eld equations like the generaltheory of relativity this translates to boundary-
onditions of the equations.A

ording to [23℄ even Einstein himself tried this approa
h for some time in1916-1917.I 
an see major ways that the boundary-
ondition problem may be at-tempted related to Ma
h's prin
iple. The �rst is to de�ne Ma
h's prin
iple asthe boundary-
onditions that give us the lo
al behaviour we observe in thisuniverse. The other is to begin with some other formulation of Ma
h's prin
i-ple and see if that poses any limitations on what kind of boundary-
onditions
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an be allowed. Neither of these approa
hes has proven very fruitful. I havefound no examples of the suggested de�nition in the literature. I 
an seeseveral possible reasons for that:
• It doesn't in
orporate any relevan
e to things 
loser than in�nity toMa
h's prin
iple, whi
h breaks with the 
ommon idea attempted toput into Ma
h's prin
iple.
• It has little or no physi
al signi�
an
e as more than a self-ful�llingrequirement to the boundary 
onditions.
• It is hard to do the 
al
ulations involved with it, and it may 
ome in
on�i
t with the desire of having 
ontinuity/
onvergen
e.To �nd boundary 
onditions that �t an idea of Ma
h's prin
iple has alsoproven most di�
ult or even impossible. A good illustration of how di�
ultthis seems is that one of the main formulations of Ma
h's prin
iple is thatthe spa
e is spatially 
losed. This formulation dates ba
k to Albert Einsteinin 1917 [23℄. In this 
ase the need for boundary-
onditions disappears. Onemajor argument for this de�nition is this property. And in 
ertain frameworks(most notably general relativity) this de�nition also turns out to dire
tly leadto several e�e
ts that are 
onsidered Ma
hian. And even in other de�nitionsof Ma
h's prin
iple it is tempting to have spatial 
losure as a requirement toavoid the boundary problems.1.2.2 Requirement for determinabilityIn 1.1.2 it was argued that in Newton's theory we need to know all relativepositions, velo
ities and something else at a given time in order to determinehow the system evolves inde�nitely. I also provided a sket
h of why thissomething else was undesirable. To 
onvert this notion to the general theoryof relativity proves di�
ult as it operates with �elds, not parti
les, and thereare issues trying to de�ne "a given time". It is thereby of interest to examinewhat information you need in order to be able to determine the 
on�gurationof the entire spa
e-time.One su
h formulation that 
an be 
onsidered important in relation toMa
h's prin
iple is the thin sandwi
h 
onje
ture proposed in [3℄. This 
on-siders the intrinsi
 geometries of two spa
e-like surfa
es 
lose to ea
h other(nearly alike). In this 
ase the di�eren
e between these spa
es behaves like aderivative. In the general theory of relativity it turns out that this should beenough to determine the geometry of the entire 4-spa
e. This is very similar
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lassi
ally formulated wish that the physi
s should be determined byrelative positions and their �rst di�erentials alone, without any extra fa
tor.Julian Barbour and Bruno Bertoni develops this idea further in [4℄. This isni
ely explained in [5℄. Here it is not posed any 
ompa
t de�nition of Ma
h'sprin
iple. The main di�eren
e from the above argument is however that theterminology is sharpened and generalized. The required knowledge shouldonly be a point in a phase-spa
e of geometries, and a dire
tion. Appealing tothe thin sandwi
h 
onje
ture it is 
laimed that general relativity is 
ompletelyMa
hian. One interesting idea that is proposed is that we only require thethin sandwi
h 
onje
ture to be applied lo
ally, at every point, not globally.This way it seems like one may avoid the problems related to boundary-
onditions even in universes that isn't spatially 
losed.1.2.3 Absolute elementsAnother approa
h is to set the fo
us at the "absoluteness" of absolute spa
e ofNewtonian theory that Ma
h seems to protest against. This is done in someformality by Jürgen Ehlers in [17℄. Here he attempts a de�nition of Ma
h'sprin
iple going something along the line "There is nothing that a
ts that isnot a
ted upon". Newton's absolute spa
e is su
h a thing that determineshow things move, while nothing may 
hange that spa
e.He then 
ompares di�erent theories with regard to what geometri
al andphysi
al properties of a system it takes into a

ount and governs. He shows ageneral tenden
y that the general relativity theory has fewer "Absolute �elds"than the spe
ial relativity theory, and that the spe
ial relativity theory inturn has fewer than Newton's theory. Those �elds that are no longer absolutein the more general theories are found as dynami
al �elds that are intimately
onne
ted with the other �elds of the theory. In parti
ular this involves themetri
 and 
onne
tion-�elds, in addition to a 
on
eivable "Ether �eld".The de�nition of what may be 
onsidered a �eld in a theory, and howto determine/de�ne absoluteness is however not very well explained here. Inthe dis
ussion found in the pro
eedings after the paper [17℄, Karel Ku
harpoints out a possible absolute element in the underlying geometry of thegeneral relativity theory. Ehlers a
knowledges this, but says he feels there isa fundamental di�eren
e between this and the elements he has 
onsidered inhis paper. He was however unable to formulate this di�eren
e. I have notfound any more re
ent treatment of this approa
h.One extension of this idea is also to look at the 
onstants of a theory.Should these be 
onsidered �elds of the theory? In this 
ase, should they by



8 CHAPTER 1. INTRODUCTIONMa
h's prin
iple not be true 
onstants, but somehow be determined by thephysi
al state? This and similar 
onsiderations have been raised and led toseveral theories that 
laim to �t better with Ma
h's prin
iple than generalrelativity. I will give these some treatment in the next se
tion.1.3 Alternatives to general relativityThere are lots of theories of gravitation that somehow addresses Ma
h's prin-
iple, and even the spe
i�
 question of rotation related to it. Many of theseare intimately related to the general relativity theory as an extension, gen-eralization or restri
tion of it. I will in the remaining 
hapters only 
onsiderbasi
 general relativity (and its standard lower order approximations). Inorder to narrow down and spe
ify the s
ope of what I will here 
onsider, andas I feel it deserves mentioning in a review regarding Ma
h's prin
iple, I willhere say a bit about some of the more pro�led theories that I am not goingto 
over in the later 
hapters.1.3.1 Restri
tions of solutions to �eld equationsEinstein's �eld equations do have solutions that by some have been 
hara
-terized as "un-Ma
hian". I will get into some of these in later 
hapters. Away to deal with this 
ould be to �nd some 
onditions that have to be ap-plied in addition to the usual �eld equations that rule out su
h solutions. Inparti
ular this 
ould be related to setting boundary-
onditions as mentionedin the previous se
tion.Only allowing 
losed universes is also an example of this. As far as I knowonly the restri
tion to 
losed universes has been somewhat su

essful, andthis has the major problem that it is an open question whether the universea
tually is 
losed. Some of the problems are dire
tly related to the la
k of anystri
t de�nition of "Ma
h's prin
iple" and hen
e it is hard to agree on exa
tlywhat solutions should be ruled out. Formulating boundary-
onditions fa
essimilar problems, but is also made di�
ult by the mathemati
al 
omplexityinvolved.I will in the remaining 
hapters use the full general relativity withoutrestri
tions. This way I will also be able to study some of the more dubioussolutions seen from a Ma
hian perspe
tive and examine rotational e�e
ts inthem.



1.3. ALTERNATIVES TO GENERAL RELATIVITY 91.3.2 Einstein-Cartan theoryEinstein-Cartan theory is the natural extension of general relativity to allowfor spinning masses. The basi
s are given in a review arti
le from 1976 [22℄.The theory owes its name in part to Élie Cartan who in the �rst half of the1920s made some basi
 work on di�erential geometry related to torsion. Butas a full theory it was only developed later.As a theory that allows for spin this theory 
ould be highly interesting inthe 
ontext of investigating rotational phenomena. The fa
t that there is anextension to general relativity allowing spinning masses shows that generalrelativity operates with non-spinning masses. This I will use to pose somequalitative suggestions on physi
al interpretation on some systems in 4.2.4.To give a proper analysis of spin-e�e
ts would however require this frameworkand hen
e fall outside the s
ope of this thesis.1.3.3 S
iamaIn his 1953 arti
le [53℄ S
iama outlines a simpli�ed theory that is based uponthe quite 
ommon view that Ma
h's prin
iple tells that inertia should bedetermined by matter. This is made more a

urate in this quote:In the rest frame of any body the total gravitational �eld at the bodyarising from all the other matter in the universe is zero.He then sets out to demonstrate a toy-theory that shows how this mightget implemented. He assumes for simpli
ity that gravitation is governed bya ve
tor �eld in a Minkowski spa
e. He points out that the gravitationalpotential a
tually has to be a se
ond rank tensor, and that this model thusonly is illustrative.The result is a model with some similarities with ele
tromagnetism. A
omparison between this and the gravitomagnetism des
ribed in the next
hapter 
ould be interesting, but falls outside the s
ope of this text. Thereis however one important result here, namely the relation:
Gρτ 2 ≈ 1 (1.1)Where G is the gravitational 
onstant, ρ is the density of the universe, and

τ is the age of the universe. The approximation should be 
onsidered very"
oarse" only meaning "in the order of".In his paper he 
ontinuously refers to a "subsequent paper" where he issupposed to develop this theory in a mu
h more realisti
 manner. I havehowever been unable to �nd this referen
e, or anyone referring to su
h an
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le. In 1964 S
iama seems to be working in the framework of generalrelativity, with possible extensions and restri
tions [54℄. The equation 1.1still seemed to be 
entral in his idea of Ma
hianity then, however.1.3.4 Brans-Di
ke theoryThe Brans-Di
ke theory was �rst presented in a paper by Brans and Dike in1961 [11℄. This theory is based on the idea that the gravitational 
onstant
ould indeed be di�erent at di�erent pla
es determined by the mass distri-bution. They give two important motivations for the gravitational 
onstantto be non-
onstant.The �rst is the relation 1.1 somewhat rewritten: GM/Rc2 ≈ 1 where Mis the visible mass of the universe, R is the radius of the visible universe and
c is the speed of light. This relation if solved with respe
t to G gives an ideaof how this quantity 
ould be determined by the mass in the universe.The se
ond is the dimensionless number me(G/h̄c) where me is the ele
-tron rest-mass. This has a size that is mathemati
ally simply related to twoseemingly unrelated observed and varying numbers: The age of the universein atomi
 time units and the mass of the visible universe in proton masses.Wanting to keep me h̄ and c 
onstant the remaining fa
tor that 
an be ad-justed to take this into 
onsideration is G.They thereby 
onstru
ted a theory formulated in similar terms as the gen-eral theory of relativity, but with a s
alar �eld not present in the other. Thistheory is also determined by a parameter that has to be set by observation.This makes it hard to falsify, but there has been set rather stri
t 
onstraintson the free parameter of the theory by the Casini-Hugens experiment [6℄.



Chapter 2GravitomagnetismAs said in the introdu
tion, Ma
h's prin
iple 
on
erns how obje
ts far awaymay a�e
t 
ertain experiments lo
ally. One su
h example is Newton's bu
ket.In Newton's theory, if you have a situation where the stars are rotating inthe universe around a bu
ket that stands still (relative to absolute spa
e),then the water in it stays �at. There are no 
entrifugal, or "inertial" for
esthat give the result that the water moves up toward the wall. One may arguethat this situation should be equivalent to the situation where you have anobserver sitting inside a rotating bu
ket observing the universe. Hen
e weshould look for some e�e
t that makes the water in the bu
ket 
urve in allpossible s
enarios where the universe is rotating relative to it. Su
h an e�e
tmay a
tually be found in general relativity and is gravitomagnetism. This
hapter will 
over this phenomenon in simple lo
al systems.2.1 The fundamental formulasI will in this se
tion dedu
e the equations of gravitomagnetism from linearizedgeneral relativity. I will start by giving a simple argument from spe
ialrelativity that should motivate that there is su
h an e�e
t. After that I willgo through the more detailed and a

urate 
al
ulation of the equations forgravitomagnetism in linearized general relativity.2.1.1 Simple motivationI will here present an argument that may motivate the existen
e of a gravita-tional e�e
t with similarity to ele
tromagnetism in a relativisti
 theory. This11



12 CHAPTER 2. GRAVITOMAGNETISMis inspired by a des
ription of ele
tromagnetism attributed to E. M. Pur
ellas des
ribed in [52℄. In the given referen
e one 
onsiders a parti
le movingalong a wire 
arrying an ele
tri
al 
urrent, and argues that depending on theframe of referen
e the for
es a
ting on the parti
le may be seen upon as anele
tri
 or a magneti
 �eld. I will here simplify this to a less realisti
 system,but one that is simpler to relate to the gravitational 
ase.Consider a negatively 
harged parti
le initially at rest beside an in�nitepositively 
harged wire. In this 
ase we know from 
lassi
al ele
trostati
sthat there is an attra
tive for
e between the parti
le and the 
harged wire.If we however 
hanges referen
e frame to one moving at a 
onstant velo
ityrelative to the rest frame of the parti
le, parallel to the wire, the parti
leis moving as an ele
tri
al 
urrent in the wire in the same dire
tion as theinitial velo
ity of the parti
le. A

ording to 
lassi
al ele
tromagnetism thereis then a magneti
 for
e that pushes the parti
le away from the wire. Asthe parti
le has to behave similarly in both frames of referen
e one needsan e�e
t that makes up for the e�e
t of the magneti
 for
e. Su
h an e�e
t
an be found in the spe
ial relativity theory. The length 
ontra
tion of thewire in the moving referen
e system relative to the initial rest system of theparti
le makes the 
harge density higher. Thus we get a stronger ele
tri
for
e that 
an
els the e�e
t of the magneti
 for
e.One 
an argue that this argument la
ks several fa
tors that may modifythe relation between the magneti
 and the ele
tri
 for
es like relativisti
time dilation and mass in
rease. The key point that the length 
ontra
tionmakes a net in
rease in ele
tri
 for
e is better founded in Pur
ell's originaltreatment as it is there demonstrated how one may go from a frame with noele
tri
al, only magneti
 for
es, to a frame with no magneti
, only ele
tri
alfor
es by a simple velo
ity transition. I would also like to mention the paper[16℄ where an attempt is made to develop the entire ele
tromagnetism in asimilar way from only spe
ial relativity and ele
trostati
s, even though I havebeen unable to verify whether this paper is trustworthy.So, keeping in mind that Lorentz 
ontra
tion may give frame dependentfor
es I turn the attention to a similar gravitational model as the ele
tromag-neti
 
ase examined above. We now have an un
harged parti
le and a wire.In the rest-frame we know that there is a 
ertain gravitational for
e betweenthese. In a moving frame one may expe
t a stronger gravitational for
e asthe mass-density of the wire in
reases due to length 
ontra
tion. Oppositeto the above 
ase we then seek an e�e
t that opposes this in
reased for
e inthe frame, and one might be tempted to suggest that there is a gravitational
ounterpart to the magneti
 �eld.



2.1. THE FUNDAMENTAL FORMULAS 13To make any formal 
al
ulations on this is however of little interest. Thereare several other e�e
ts that play into this pi
ture. Most important is proba-bly the spe
ial relativisti
 notion of in
reased inertial mass under high velo
-ities that I suspe
t may be enough to give a 
omplete explanation model ofthe presented 
ase without having to refer to any kind of "gravitomagneti
"
on
ept at all. In addition 
omes the question of how to formulate gravi-tation in a relativisti
 framework, whi
h is exa
tly what general relativitydoes.What I want to show in this se
tion is however that it shouldn't be verysurprising when it turns out that general relativity a
tually displays e�e
tsvery similar to ele
tromagnetism, and point out one idea that might give aunderstanding of how this di�eren
e from Newtonian physi
s might arise.2.1.2 Linearized general relativityThe theory of gravity that we get by linearizing the general relativity theorymay be tra
ed ba
k to Einstein's paper in 1916 a

ording to for instan
e [21℄.After that it has been treated in several works. I will here go through themain points in the derivation from general relativity following the approa
hgiven in [36℄.Consider the situation where the metri
 may be written in the form
gµν = ηµν + hµν (2.1)where η is diagonal with signature − + ++, that is the metri
 of theMinkowski spa
e in standard 
oordinates. We also assume for simpli
itythat c = 1. h is a small perturbation of this metri
, with small derivativesand se
ond derivatives. This gives us a weak-�eld universe, that is withoutany high densities or relativisti
 velo
ities.The 
onne
tion 
oe�
ients may then be written:

Γµ
αβ =

1

2
gµν(gαν,β + gβν,α − gαβ,ν) ≈

1

2
ηµν(hαν,β + hβν,α − hαβ,ν) (2.2)In the approximation we have omitted produ
ts between the perturbationand it's derivatives, and used that η is 
onstant.As we are at least 
lose to a 
oordinate frame we have for the Ri

i tensor:

Rµν = Γα
µν,α − Γα

µα,ν + Γα
βαΓβ

µν − Γα
βνΓ

β
µα (2.3)



14 CHAPTER 2. GRAVITOMAGNETISMIn the approximation the two last terms are negle
ted as se
ond order terms.The indi
es from 2.2 is raised using η instead of using the full metri
 g. Thisis also done when 
al
ulating the Ri

i s
alar
R = gµνRµν ≈ ηµνRµν (2.4)It turns out that the �eld equations take a parti
ularly ni
e form if weintrodu
e h̄µν = hµν − 1

2
ηµνh where h is the 
ontra
tion of the 
orrespondingtensor. Then we may impose on the system the following 
ondition due tofreedom of 
hoi
e of 
oordinate system:

h̄µα,α = 0 (2.5)Fixing 
oordinates like this is 
alled to impose a gauge 
ondition and this 
on-dition is analogous to the Lorenz gauge Aα,α = 0 of ele
tromagneti
 theory.The �eld equations then be
ome
−2h̄µν = 2κTµν (2.6)This equation along with the gauge and the expressions for the metri
and h̄ forms the basis for the linearized theory of relativity.2.1.3 Gravitomagneti
 equationsA

ording to [35℄, Einstein suspe
ted a relation between his �eld equationsand Maxwell's equations for ele
trodynami
s. It is 
laimed in this referen
ethat Thirring did a paper on this in 1918, but I have unfortunately not beenable to get hold of this referen
e to see how far this was done. In a footnote inthe �rst arti
le in this translation paper, he does however strongly suggest the
orresponden
es des
ribed in this se
tion. It is worth to mention that thereare other approa
hes that give similar equations. In 1977 a general versionof Maxwellian relations was found in [10℄ that was based on parameterizedpost-Newton formalism whi
h is a formalism to des
ribe a broad 
lass oftheories that in
lude general relativity. However, this falls outside the s
opeof this text.The approa
h I will take to show how one may relate the linearized equa-tion with Maxwell's equation is inspired by [21℄, [56℄, [34℄ and [57℄.In ele
tromagnetism we know that 2Aν = µ0Jν along with the Lorenzgauge, where Aν is an ele
tromagneti
 four potential, gives us Maxwell'sequations in standard form. I follow the same reasoning as in ele
trodynami
s



2.1. THE FUNDAMENTAL FORMULAS 15and restri
t the attention to the h̄0α terms. This even give us dire
tly the
orre
t c dependen
y. We 
an de�ne
~EG

′
= −c∇h̄00 −

dh̄0i

dt
(2.7)

~BG

′
= ∇× h̄0i (2.8)where h̄0i denotes the normal 3-ve
tor 
orresponding to the usual ve
torpotential.The �eld equations then take the familiar Maxwell-equation form:

∇ · ~BG

′
= 0 (2.9)

∇ · ~EG

′
= −c2κT00 (2.10)

∇× ~BG

′
= −2κT0i +

1

c2
d ~EG

′

dt
(2.11)

∇× ~EG

′
= −d

~BG

′

dt
(2.12)Here µ0Jν is repla
ed by −2κT0ν from the standard expression.We have here found some quantities related to general relativity that obeyan equivalent of Maxwell's equations. However, apart from their 
ounterpartsin ele
trodynami
s, B′

G and E ′
G don't immediately have any simple physi
alinterpretation. They are here simply de�ned so that they behave in thedesired way. They are thus of little physi
al interest yet. The result above isthus only to be seen as a step in a 
al
ulation that will eventually lead to aphysi
ally interesting result.We leave B′

G and E ′
G for now and rather turn our attention to a simplephysi
al system. Consider the 
ase where h̄ij = 0, that is all non-zero el-ements of h̄ 
an be found as h̄0α. In this 
ase we have from 2.6 that also

Tij = 0. This may be a reasonable model of a perfe
t �uid with no pressureand low velo
ities. In this 
ase Tµν = ρuµuν . With u0 ≈ c we have T00 ≈ c2ρand T0i ≈ ρcui = cji where ~j is 
orresponding to 
lassi
al matter �ow. Theprodu
ts uiuj are 
onsidered vanishing as both terms are small.We now 
onsider the movement by a parti
le having low velo
ity in thissystem. It will follow a geodeti
 
urve given by
d2xµ

dt2
= −Γµ

αβ

dxα

dt

dxβ

dt
(2.13)Ignoring se
ond order spatial velo
ity terms, and using dx0

dt
= 1 and the sym-metry in the lower indi
es of the 
onne
tion 
oe�
ients allow us to simplify
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d2xi

dt2
= −Γi

00 − 2Γi
0j

dxj

dt
(2.14)We are thus interested in �nding these 
onne
tion-
oe�
ients.In order to keep the equations simple I again introdu
e c = 1. By 
on-tra
ting the equation hµν = h̄µν + 1

2
ηµνh we get in this 
ase h = hα

α = h̄00whi
h in turn gives hαα = 1
2
h̄00 otherwise hαβ = h̄αβ . Then we 
an use 2.2 to
al
ulate the 
onne
tion 
oe�
ients in terms of h̄

Γi
00 =

1

2
(2h̄0i,0 −

1

2
h̄00,i)

Γi
0j =

1

2
(h̄0i,j − h̄0j,i +

δij
2
h̄00,0)We now de�ne the ve
tor �elds ~BG and ~EG by

~EG = (
∇h̄00

4
− dh̄0i

dt
) (2.15)

~BG = ∇× h̄0i (2.16)This gives us a movement equation of the form:
~a = ~EG + ~v × ~BG + a~v (2.17)where

~ai =
d~vi

dt
=
d2xi

dt2

a =
1

2
h̄00,0We see that in this 
ase EG and BG are the �elds that play exa
tlythe same role in the equations of motion in the 
ase of gravitation as theirele
tromagneti
 
ounterparts. In addition, the de�nition of these �elds arevery similar to those of E ′

G and B′
G. The equivalent of the magneti
 �eld isthe same. However the EG term is not quite so ni
e. We see that the timevariation of the ve
tor-potential plays a smaller role 
ompared to the s
alarpotential in determining the path of the parti
le than in the ele
tromagneti

ase. I will here restri
t attention to the stationary 
ase, that is h̄µν,0 = 0.In this 
ase, we get pre
isely:
E ′

G = 4EG

B′
G = BG



2.2. EXAMPLES 17Inserting this into the Maxwell equations 2.9-2.12 while ignoring time deriva-tives give us after insertion of 
 to make the units right:
∇ · ~BG = 0 (2.18)

∇ · ~EG = −4πGρ (2.19)
∇× ~BG = −16πG

c
~j (2.20)

∇× ~EG = 0 (2.21)We see that the main di�eren
es from the stationary ele
tromagneti
 
aseis that the for
es behave oppositely relative to the 
urrents, and that thegravitomagneti
 for
e that 
ouples to movement is 4 times stronger than thegravitoele
tri
 
ompared to the 
orresponding ele
tromagneti
 
ase.In summary, I have here 
ompared two approa
hes at 
ombining lin-earized theory with 
lassi
al ele
trodynami
s. The �rst �nds quantities ingeneral relativity that behave a

ording to Maxwell's equations. The se
ondexamines the movement of parti
les and try to make it in a form 
omparableto ele
trodynami
s. There are some referen
es where this inequivalen
e ispoorly stated. This in
lude [31℄, [56℄ and [1℄. The �rst two do state thattheir Lorentz for
e law only holds in the stationary 
ase, and the Wikipediaarti
le seems to be based upon the �rst of these due to the referen
e list. Iadded this 
lari�
ation to the Wikipedia arti
le at the stated retrieval date.2.2 ExamplesIn this se
tion, I will give some examples of simple systems where we mayuse the above theory. I will also relate this to an idea of Ma
h's prin
iple.2.2.1 Classi
al lawsFrom the Maxwell equations, we may immediately dedu
e two laws that areimportant in stationary ele
trodynami
al systems: Ampere's Law, and thelaw of Biot and Savart.The equivalent of Ampere's law is gotten by using Stokes' theorem on2.20. It be
omes:
∮

~BG · d~l = −16πG

c
I (2.22)where the integral is around a 
losed path and I is the matter �ow throughany surfa
e having the path as edge.



18 CHAPTER 2. GRAVITOMAGNETISMThe equivalent of the law of Biot and Savart is tri
kier to dedu
e. It isdone in [57℄ so I will simply set up the main result here:
~BG(~r) = 4G

∫ ~r − ~r′
∣

∣

∣~r − ~r′
∣

∣

∣

3 ×
~j(~r′)

c
dV ′ (2.23)Here it is usual in ele
tromagnetism to make the substitution ~jdV ′ = Idlwhere I is the 
urrent through a line element of a wire dl. However, itis worth noting that su
h a one-dimensional redu
tion of the gravitationalsystem is not without problems. The reason for this is the assumption of aweak �eld in the linearizing of the gravitational theory. This means that weneed to have a limited mass-density, and 
urrent velo
ity. In this situationthe mass 
urrent IM through the wire has to vanish in the limit of a one-dimensional wire.As the wire-form of the law of Biot and Savart is very useful, I will showthat it is a reasonable approximation if we are 
al
ulating the magneti
 �eldfar from the "wire". Consider a 3-dimensional wire divided into surfa
es Sthat is normal to ~j. Assume further that ~j is 
onstant on the surfa
es andparallel to the wire. In this 
ase 2.23 be
omes:

~BG(~r) = 4G
∫ ∮ ~r − ~r′

∣

∣

∣~r − ~r′
∣

∣

∣

3 ×
~j(~r′)

c
dSdl (2.24)If the surfa
es S are relatively small and far from the point we are evaluatingthe magneti
 �eld for we may assume ~r − ~r′ to be 
onstant through theintegration. If we then set IMd~l = dl

∮ ~jdS, we get the familiar form of thelaw of Biot and Savart:
~BG(~r) =

4G

c

∫

(~r − ~r′) × IMd~l
∣

∣

∣~r − ~r′
∣

∣

∣

3 (2.25)I will add that the above argumentation may be used to 
al
ulate the�elds far from a small 
on
entration of mass with velo
ity ~v, and total mass
M :

~BG(~r) =
4G

c

(~r − ~r′) ×M~v/c
∣

∣

∣~r − ~r′
∣

∣

∣

3 (2.26)It is also worth noting that 2.19 is the same as the formula for the grav-itational �eld in Newton's theory of gravity, and hen
e we may use all theresults we know from there.



2.2. EXAMPLES 192.2.2 For
e strengthsI will here set up a model in order to try to 
ompare the strength of thegravitomagneti
 e�e
t 
ompared to that of the familiar gravitoele
tri
. Con-sider a small spheri
al gravitational sour
e with mass M and speed vM . Wethen examine the behaviour of a test parti
le so far from this sour
e that wemay 
onsider the distan
e a 
onstant r. From 2.26 we 
an see that we getthe strongest magneti
 �eld if we assume that the test parti
le then is in theplane normal to the velo
ity dire
tion of the mass-
on
entration. In this 
asethe magnitude of the magneti
 �eld be
ome
BG =

4GMvM

r2c
(2.27)From 2.17 we see that the a

eleration e�e
t from the gravitomagneti
 termbe
omes greatest if the test parti
le has velo
ity normal to the �eld. So wemake this assumption, and set the speed to be v. Keep in mind that in2.17 we have assumed c = 1 so that in general units we have to divide thevelo
ity by c in order to get the right units. Hen
e, the magnitude of thegravitomagneti
 e�e
t to the a

eleration of the test parti
le is at most

aB =
4GMvMv

r2c2
(2.28)We get the a

eleration from the gravitoele
tri
 term dire
tly fromNewtonianme
hani
s:

aE =
GM

r2
=

c2

4vMv
aB (2.29)From these equations alone, it might seem like there is a possibility forthe a

eleration from the gravitomagneti
 e�e
t to be
ome as large as 4 timesthat of the gravitoele
tri
. However, from the weak �eld approximation donein the linearizing we have that vM << c, and from the dedu
tion of 2.17 wealso used v << c. So indeed the gravitomagneti
 a

eleration is smallerthan traditional gravity in the se
ond order of small velo
ities. Thus in mostappli
ations it seem like this e�e
t is too small to be worth any attention.However, it leads to e�e
ts that is not found in Newtonian gravitationaltheories, and it may turn out to be important at a universal s
ale. Just likeordinary gravitation, it is a r−2 law not "blo
ked" by anything and thus islong-range.
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opesIn the previous se
tion, we saw that the gravitomagneti
 e�e
t of a

elerationseems to be hard to dete
t. In this se
tion, I will examine the behaviour ofa gyros
ope in a gravitomagneti
 �eld. This is of parti
ular interest, as weknow that Newtonian gravitation does not a�e
t the dire
tion of a gyros
ope.It turns out that the gravitomagneti
 e�e
t does. This may be used as a wayto dete
t the e�e
t without having to worry so mu
h that the mu
h strongergravitoele
tri
 e�e
t will disturb the experiment.Consider a right-handed Cartesian 
oordinate system with a gravitoele
-tri
 �eld in the positive z dire
tion. At the origin, there is a gyros
opewith angular momentum along the x-axis. We then see that in slightly pos-itive z-dire
tion it has a velo
ity in the negative y-dire
tion. From 2.17 we
an 
on
lude that it thus experien
es an a

eleration/for
e in the negativex-dire
tion. Similarly, in the slightly negative z-dire
tion it experien
es ana

eleration/for
e in the positive x-dire
tion. This adds up to a torque inthe negative y-dire
tion, and makes the angular momentum of the gyros
opeturn toward the negative y-dire
tion. A similar argument holds wheneverthe angular momentum is in the x-y plane, and we 
an 
on
lude that thegyros
ope is pre
essing around the z-axis. This is equivalent to the Larmorpre
ession of ele
trodynami
s.The strength of the e�e
t may be dedu
ed from only 2.17 and 
lassi
alrotational me
hani
s as presented in for instan
e [58℄. Using Newton's se
ondlaw, the torque-formula, and the relation ~v = ~ω × ~r we get that the totaltorque on the system be
omes:
~τ =

∫

~r × ρ((~ω × ~r) × ~BG)dV (2.30)where the integral is over any volume 
ontaining the entire rotating body.Using the Cartesian 
oordinates with ~ω = (ω, 0, 0), ~BG = (0, 0, BG) and
~r = (x, y, z) this evaluates to:

~τ =
∫ ∫ ∫

ωρBG(0,−z2, zy)dxdydz (2.31)We now apply the assumption that the gyros
ope has its rotation-axis asa symmetry axis. As it is then symmetri
 upon 
hanging signs of z and y we
an 
on
lude that the z-term of the torque 
an
els out under the integration.Going to 
ylindri
al 
oordinates so that r2 = y2 + z2 and cos θ = z
r
we getfor the magnitude of the torque:

τ = ωBG

∫ R

0

∫ 2π

0

∫

ρr2 cos2 θdx r dθ dr (2.32)



2.2. EXAMPLES 21Using that ρ and r are independent of θ due to rotational symmetry, andthat cos2 θ is independent of x and r we may separate this integral into
τ = ωBG

I

2π

∫ 2π

0
cos2 θdθ (2.33)where I is the ordinary moment of inertia around the x-axis given by

I =
∫ R

0

∫ 2π

0

∫

ρr2dx r dθ dr (2.34)The remaining integral in 2.33 is well known, and may be found in forinstan
e [46℄. It evaluates to π. As the system is rotating around a symmetryaxis we have ~τ = I d~ω
dt
. Further, I will assume a perfe
t gyros
ope. As weare working in a framework that depends on low velo
ities, the best wayto implement this would be to use a spheri
ally symmetri
 distribution. Inthis 
ase the above argumentation holds at all times. The time derivative ofthe angular velo
ity ve
tor is always of magnitude BG

2
ω, orthogonal to theangular velo
ity itself and the z-axis. This means that the angular velo
ityve
tor is itself rotating around the z-axis with an angular velo
ity:

ΩG =
BG

2c
(2.35)where the c term is inserted to make the units right, and appears as 
 isassumed to be 1 in 2.17. One may note that this agrees with the resultgiven in for instan
e [34℄ (up to a 2-fa
tor due to di�erent s
aling of thegravitomagneti
 �eld). Here the result is also generalized to the situation thatthe gyros
ope having non-ortogonal angular momentum, with the result thatit is still pre
essing around the axis of the magneti
 �eld. It is of parti
ularinterest that this result is independent of ω and the mass-distribution, aslong as the symmetry restri
tions are satis�ed.2.2.4 Inside ringI will here turn my attention to the situation at the 
entre of a rotating ring ofradius R and with a 
onstant angular velo
ity ω relative to the ba
kgroundmetri
. We may 
hoose 
ylindri
al 
oordinates with z-axis orthogonal tothe plane spanned by the ring, and origin at the 
entre of the ring. Dueto symmetry we 
an 
on
lude that there is no 
lassi
al gravitational for
eat the 
entre of the ring; ~EG = 0. If we further assume that the 
ross-se
tion of the ring vanishes 
ompared to R we may use 2.25 to 
al
ulate the
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 �eld:
~BG =

4G

c

∫ ~R × IMd~l

R3
(2.36)We see that we only have non-zero z-
omponents in this integral. We assumethat IM is 
onstant, where IM = ωRAρ. Here A is the area of 
onstant θ
ross-se
tion of the ring and ρ is the mass density, both assumed 
onstant.As we are only working with orthogonal ve
tors, it is simple to 
al
ulate themagnitude of the magneti
 �eld:

∣

∣

∣

~BG

∣

∣

∣ =
8πGωAρ

c
(2.37)It is interesting to note that this expression is independent of the radiusof the ring. This may seem like a deviation from the standard result inele
tromagnetism B = µ0I

2R
[58℄. However, in the standard ele
tromagneti

ase it is pra
ti
al to use the expressions for 
onstant 
urrent I, while I herehold the angular velo
ity ω 
onstant. This a

ounts for this di�eren
e.If we now use 2.35 we see that in this 
ase:

Ω =
4πGAρ

c2
ω (2.38)It is interesting to note that we get ΩG = ω when

Aρ =
c2

4πG
= 1026kg/m ≈ ρUR

2
U (2.39)where ρU and R2

U are the measured mass-density and radius of the observa-tional universe. As there are huge un
ertainties on these two quantities theapproximation is at best an "in the order of". (One may use for instan
e the
riti
al mass density of the order of 10−29g/cm3 and a radius of the order of10 thousand million light years. These are in a

ord with [13℄)Testing the dire
tion of the pre
ession, we �nd that it has the same signas the angular velo
ity of the ring. Hen
e we have that if the 
ondition2.39 is satis�ed a gyros
ope at the 
entre of the ring will 
onstantly pointat the same point on the ring. For other values of Aρ we still get that thegyros
ope is pre
essing in the same dire
tion as the ring rotates relative tothe ba
kground. Thus, we say that the gyros
ope is dragged by the ring.2.39 is said to be a 
ondition for this dragging to be perfe
t.We may now turn our attention to freely moving parti
les. As mentionedabove there is no gravitoele
tri
 e�e
t, so that we only have to pay attentionto any gravitomagneti
 e�e
ts. Parti
les moving parallel to the magneti




2.2. EXAMPLES 23�eld will hen
e be una

elerated, and lo
ally move in a straight line. Parti
lesmoving in the plane of the ring with velo
ity ~v will experien
e an a

elerationin the ring-plane orthogonal to the velo
ity with magnitude BGv, where
v = |~v|

c
is normalized to be dimensionless. Comparing with the argumentin 2.2.3 we see that this means that if the parti
le had moved through a
onstant �eld it's velo
ity ve
tor would rotate with a angular speed of 2ΩG.This a
tually gives a ni
e 
onne
tion between the movement of a gyros
opeand the movement of the free parti
le. Consider a gyros
ope pointing in thesame dire
tion as the initial velo
ity of the free parti
le. The initial positionof the gyros
ope is the same as that of the parti
le, but the gyros
ope is atrest. During a short time t we may assume the a

eleration of the parti
leto be 
onstant. In this 
ase we �nd that the parti
le after a short time isat a distan
e r = vct, and has a deviation from the original gyros
ope axis�xed to the ba
kground metri
 of 1

2
BGvt

2. The gyros
ope axis has however
hanged by an angle θ = ΩGt. This means that the point that the gyros
openow points at, and that is a distan
e r = vct from the gyros
ope, has to beat a distan
e of vct sin ΩGt ≈ vct2ΩG = 1
2
BGvt

2 from the original axis. Thisis the same point as we found the free parti
le to be at. We 
an 
on
ludethat the gyros
ope is still pointing at the free parti
le.From the above argument, we 
an 
on
lude that in a lo
al referen
e frameat the origin with axes �xed by gyros
opes free parti
les are moving alonga straight line. This is the de�ning property of an inertial frame. It is herewe get the 
onne
tion with Ma
h's prin
iple. Imagine a s
ientist living ina box at the 
entre of this rotating ring. Using gyros
opes and wat
hingthe motions of free parti
les 
lose to him he �nds that there is a 
ertainframe in whi
h the gyros
opes keep a �xed dire
tion that is hard to 
hange,and in whi
h the parti
les move along a straight line. As he is unable todetermine any 
ause for this, he is prone just to take it as a fa
t of naturethat there is a "preferred" frame that happens to be as it is, and thus may beexplained by means of an absolute spa
e. Assume further that the equationfor perfe
t dragging 2.39 is satis�ed. If the walls of the box suddenly shouldbe
ome transparent so that the s
ientist 
ould see the ring of dust aroundhis laboratory, it should be easy to envision him wonder why this ring turnsout to be at rest relative to his inertial frame. Above we have reasoned thatthis is no 
oin
iden
e at all. No matter how the ring rotates (as long as itis within the weak �eld approximation), the s
ientist's frame would turn outto not rotate relative to it.This raises the question, 
ould we be in a similar situation? From theapproa
h in this se
tion, it would be natural to say that the result of theexperiments the boxed s
ientist used to determine his inertial frame was,



24 CHAPTER 2. GRAVITOMAGNETISMat least in part, 
aused by the properties of the surrounding ring. Ma
h'sprin
iple may be interpreted as a statement that it is this kind of explanationthat is preferred, and even ne
essary. I am thus ready to formulate themain de�nition of Ma
h's prin
iple I will 
on
entrate most of the remainingtreatment around:The inertial systems should be partially/
ompletely determined by themasses of the universe.2.2.5 Hollow in�nite 
ylinderI will here give a short presentation of a rotating hollow in�nitely long 
ylin-der. It might be an interesting system from a gravitomagneti
 point of view,but I have found little use for it regarding Ma
h's prin
iple. It will also laterbe used to demonstrate the limitations of the simpli�
ations used to arriveat these equations for the gravitodynami
s.This situation may from a gravitomagneti
 view be treated the same wayas the magneti
 �eld of a solenoid as des
ribed in [58℄. In this 
ase, we useAmpere's law on a re
tangle with one side inside the 
ylinder parallel to thesides and the opposite side outside. The remaining sides are orthogonal tothe sides of the 
ylinder. The simpli�ed idea is that due to symmetry themagneti
 �eld must be normal to the lines that pass through the 
ylinder.The line outside the 
ylinder experien
es no magneti
 �eld. One way to arguefor this is that it may be as far away as we want showing that it at least
an be set to zero. Personally, I am more fond of an argument regardingthe magneti
 �eld to be divergen
e less, hen
e its density must be the sameinside and outside the 
ylinder; but outside is in�nitely bigger. Anyway, we�nd that the only 
ontribution to the path integral of Ampere's law is alongthe line inside the 
ylinder, and that the �eld is parallel to this. If we saythat the length of this line is L we get that 2.22 goes to
BGL = −16πG

c
LDρRω (2.40)where D is the thi
kness of the 
ylinder, ρ is the mass-density, R is the radiusof it, and ω is its angular velo
ity. L may be 
an
elled at both sides. We�nd that we have a 
onstant gravitomagneti
 �eld inside the 
ylinder.I have not found any treatment of the 
lassi
al gravitation inside a 
ylin-der, and in the ele
trodynami
 
ase, the solenoid is usually 
onsidered neu-tral. The following argument should however show that there is indeed nogravitoele
tri
 �eld inside the 
ylinder: Consider a 
losed �nite 
ylinder in-side the in�nite 
ylinder. Its sides are parallel to that of the in�nite one, and
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entre axes 
oin
ide. As there are no gravitoele
tri
 sour
es within it,the gravitoele
tri
 �ow should be zero. From symmetry, the gravitoele
tri
�eld lines should go the same way through the sides of the 
ylinder. Againdue to symmetry we expe
t the top and bottom to not have any �eld linesthrough them, as there is as mu
h mass above them as below them (with atheoreti
al extra in�nitely far away from one of them, to a

ount for the dif-feren
e in position). Hen
e, we 
an 
on
lude that there is no gravitoele
tri
�eld 
omponents normal to the 
ylinder at any pla
e. As this holds for all
ylinders inside, there 
annot be any gravitoele
tri
 �eld there.I have been unable to 
on�rm this dire
tly either through other sour
es,or numeri
ally. However, there is an exa
t result on this system that partially
on�rms this idea. It also 
learly shows a �aw that 
ould be 
onsidered majorin the result that the inside of an in�nite hollow 
ylinder 
an be treated asbeing an area with only a gravitomagneti
 �eld. This drasti
ally limits howuseful this model is 
ompared to that of a solenoid in ele
tromagnetism. Thedetailed treatment of this is however better suited later in this text.2.3 Rotating galaxy. In this se
tion, I will make a rough numeri
al study of a simple galaxymodel within the framework presented earlier in this 
hapter. This se
tion isnot ne
essary for the understanding of any of the later parts of the thesis, so itmay be skipped. It requires some knowledge of programming and numeri
almethods to appre
iate fully.There is a well-known problem that the visible mass distribution of galax-ies does not provide explanation for their rotational pattern. The most usualsolution to this is to introdu
e huge amounts of dark matter into the model ofthe galaxy in order to stabilize it. However, these 
al
ulations of the predi
tedmovement pattern are based solely upon 
lassi
al gravitational theory. Theidea is that the speed and density of the gala
ti
 matter is not high enoughfor there to be any 
onsiderable relativisti
 e�e
ts.In this se
tion, I will try to determine how weak the relativisti
 e�e
tof gravitomagnetism a
tually is in this system. We expe
t the rotation ofthe galaxy to set up a gravitomagneti
 �eld orthogonal to the galaxy plane.The rotating matter have a velo
ity relative to this, thus we expe
t a radialgravitomagneti
 for
e to work on the matter. The approximate strength ofthis will be found, and 
ompared to that ne
essary to des
ribe the rotationalmotion 
orre
tly.



26 CHAPTER 2. GRAVITOMAGNETISMI am not aware of anyone having done this before apart from rough orderof magnitude estimates. It turns out that I won't do mu
h better myself,but it stands as a 
omputational 
on�rmation on those order of magnitude
al
ulations, and may be used as a base for further resear
h.2.3.1 MethodI will use the following model for the galaxy: A 
ylinder with 
onstant heightthat is rotationally symmetri
 around the 
ylinder axis. Introdu
ing 
ylin-dri
al 
oordinates r, z and φ with origin in the 
entre of the 
ylinder, I alsodemand that the system is independent of z-
oordinate as long as it is insidethe 
ylinder. The velo
ity �eld has no r and z 
omponent.Now 
onsider a ve
tor ~P representing the position of a point with 
oordi-nates r = R0, z = 0 and φ = 0. The last of these 
omponents we 
an assumewithout loss of generality due to rotational symmetry. Now, the gravitomag-neti
 e�e
t on this point as a result of the movement at a point with positionve
tor ~P ′ is from the law of Biot and Savart of the form 2.26 given by:
~Bg =

4G

c

(~P − ~P ′) ×M~v′
∣

∣

∣

~P − ~P ′
∣

∣

∣

3 (2.41)where ~v′ is the velo
ity at the sour
e point, and M is the mass at thatpoint. In order to �nd the total gravitomagneti
 �eld we have to sum overall sour
e points. Inserting the 
omponents into the equation, we then �ndthat any non-z 
omponent of the gravitomagneti
 �eld 
aused by a sour
eis 
an
elled by that of the sour
e with opposite z-
oordinate. Thus the �nalgravitomagneti
 �eld has only a z-
omponent. As we are summing overin�nitely many points, all with in�nitely small mass, the sum turns to anintegral. The magnitude of the z 
omponent may then be found to be:
Bz =

∫ R

0

∫ Z

−Z

∫ 2π

0

4G

c
ρ(r)v(r)

r − R0 cos φ
√

r2 − 2rR0 ∗ cos φ+R2
0 + z2

3 rdφdzdr(2.42)Here v(r) is the magnitude of the velo
ity �eld normalised to c = 1, and
ρ(r) is the density. R is the radius of the galaxy, while Z is half its height.From the data given in [13℄ I gather that Z should be in the order of 0.1kilopar
se
(kp
), while R may be taken to be about 20kpc This uses roughdata for the Milky way galaxy.Be aware that I want to use this formula for R0 < R. This may seemdubious by two reasons. The �rst is that in our linear �eld approximation



2.3. ROTATING GALAXY 27assumed that we were far from the masses. Here we want to examine the
ase where the point we are measuring the �eld at is inside the mass dis-tribution. This obje
tion may be reje
ted by arguing that we are workinginside relatively small densities, thus in e�e
t there are no, or in�nitesimallysmall mass 
lose to the point we are 
al
ulating the �eld for. Thus, we arestill 
al
ulating primarily the e�e
t of masses that are far away. Then, theweak �eld approximation is still ful�lled.The se
ond problem is related to the �rst. As the point we are 
al
ulatingfor is inside our integration domain we get a singularity in our integrand atthis point. However, from dimensional analysis we �nd that this singularityis only to the se
ond order in distan
e, while we are integrating over three di-mensions. From this it seem plausible that this singularity may be smoothedout so that the integral still 
onverges.In order to �nd the velo
ity and mass distribution, I use the results ofa do
torate thesis from 1978 [8℄. From these measurements it seem like thevelo
ity of the arms is approximately 
onstant some distan
e away from thegalaxy 
ore. As I will have primary interest of the situation in this area,the further simpli�
ation that the velo
ity is the same 
onstant also in the
ore will not make a too big e�e
t on these results. Thus I model v(r) = v0.From the data of that thesis it seem like v0 ≈ 2/3000 is in the right order(remember c = 1). From this, he 
al
ulated the mass distribution needed forthe 
lassi
al gravitational for
e to balan
e the 
entrifugal for
e. The totalmass seems to in
rease almost proportionally to the distan
e. Hen
e, we getfor the mass distribution on the disk:
4πZ

∫ R′

0
ρ(r)rdr = AR′ (2.43)Here Z is still half the height of the disk, R' is the radius of the disk takingthe total mass inside, and A is the proportionality fa
tor of the total mass.This 
learly gives us the solution:

ρ(r) =
A

4πZr
(2.44)From the graphs of that paper I gather that A is in the order of 1010 solarmasses per kiloparse
.When I insert this velo
ity and mass density into 2.42 I not get an integralI do not know how to solve. I also attempted to use the 
ommer
ial programMathemati
a to solve this exa
tly, but it was unable to do so. Therefore,I de
ided to try to solve it numeri
ally. Thus, I made a Phyton programbased upon Monte Carlo simulation. We will see that there will be some
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on
erning the singularity in the integrand, thus making the resultrather fuzzy. I made some tests to determine the extent and nature of thisproblem. This in
luded testing two slightly di�erent methods of setting upthe integration, and looking at the sensitivity to 
hanges in the number ofpoints taken in the 
al
ulation.The Monte Carlo method is based upon solving an integral by evaluatingthe integrand at random points and summing it up in the end. In 
ylindri
al
oordinates one have to pay heed to how to sele
t these random points. Ifone 
hooses points by taking an independent uniform distribution of the r,
z and φ 
oordinates one will �nd that one obtains a higher density of points
lose to the 
entre than further out. This will a�e
t the integral, and thusis undesirable. I tried two ways to 
ounter this. The �rst is to 
hange theprobability distribution for the radial 
oordinate so that it is less likely to getlow values for the radius rather than high. This makes sense as the furtherout you get the more points there is in the 
ir
le of that radius. The 
orre
tdistribution of radial 
oordinates that gives an even distribution of pointsin the spa
e is obtained by taking the square root of a numbers uniformlysele
ted between 0 and R2. The other way is to weight the sele
ted pointsin su
h a way that points further out 
ounts more in the �nal sum thanpoints further in. This would be similar to 
hoosing that ea
h time you geta random point you a
tually add it a number of times to the sum dependingon their distan
e from the 
entre. If the weight given to the point is equal toit's radius we �nd that when we use uniform distribution for r, we still getthe same distribution of e�e
tive number of points at ea
h radius as we hadwith distributing the points evenly in spa
e.The Monte Carlo method 
learly depends on the number of random pointstaken. The more points, the more a

urate we expe
t the result to get. Thetwo ways to distribute the points des
ribed above are 
onstru
ted so thatthey should give the same result in the limit where you have in�nitely manypoints, but their behaviour at a �nite number of points might di�er. This
ould espe
ially a�e
t the stability properties of the solutions. I have alsoin
luded a brief analysis of this. The 
ommented Python sour
e 
ode maybe found in the appendix A.In order to interpret the strength of the gravitomagneti
 �eld, I 
omparethe a

eleration indu
ed by the mass moving through it, amg, with the totala

eleration atot we 
an �nd due to the parti
les of the galaxy moving in a
ir
ular orbit with radius R0:

amg

atot

= Bz ∗ v0 ∗ c/
(cv0)

2

R0
=
Bz

c

R0

v0
(2.45)



2.3. ROTATING GALAXY 29Another interesting quantity to 
ompare with is the a

eleration we 
anattribute to the ordinary gravitation aeg. This turn out to have a quite simplerelation to atot in our model:
aeg = G

M

R2
0

= G
AR0

R2
0

=
GA

v2
0

∗ atot ≈ 1.08atot (2.46)The mass distribution was 
onstru
ted in [8℄ to make these equal in the moreadvan
ed model used there. I �nd the fa
t that this relation is still somewhat
onserved in the very simpli�ed model studied here, as a sign that furtherresults should at least be of the same order of magnitude as the 
orrespondingvalues in the real world.2.3.2 ResultsI will here present the graphs resulting from of one running of the program.I have tested the program several times with di�erent values for M and N.These test-runs have not provided any signi�
ant information other than thatpresented here, apart from 
on�rming the general tenden
ies of the system.I work with 1000 points in the graph, whi
h should be more than enoughresolution. 10 to 100 points would have given the same general results, butwith 1000 points, it be
ome more statisti
ally viable.First the output from the Monte Carlo stability analysis is presented in�gure 2.1. This graph illustrates ni
ely the general tenden
y I found theMonte Carlo simulation followed. As we would generally expe
t from MonteCarlo simulations the general trend of the graph is to swing around some ill-de�ned value. However, we see that in this 
ase while it mostly moves rathersmoothly after this number of simulations, it do make some jumps. Thesejumps I attribute to a random sour
e point being sele
ted very 
lose to thepoint we are 
al
ulating the �eld for. This gives us a very small number inthe denominator of our integrand resulting in a high 
ontribution to the sum.In the true integral, we 
an expe
t the e�e
ts of nearby masses to 
an
el outas lo
ally we are in a system where all parti
les are moving with roughlythe same velo
ity and dire
tion. However, if only one random point is takenin the lo
al area then there is nothing to 
an
el the e�e
t of this. Only bytaking more points we 
an hope to get other points lo
ally that sums up to
an
el that e�e
t. By the Monte Carlo method, we have no guarantee thatthere will be a distribution of points making the lo
al 
ontribution 
an
el out.This sensitivity to point distribution might have a physi
al interpretation aswell, more on this in the 
on
lusions.
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Figure 2.1: Monte Carlo stabilityThese jumps might also lead to worries regarding the numeri
al pre
isionin the 
al
ulation. If the result from the integrand fun
tion is too high, theresult might drown out other points due to the di�eren
e being too small forthe 
omputer to handle. A rough estimate on the size of the jumps when weknow that Python �oats is 8 bytes, indi
ate that this is not a major problem.This is also 
on�rmed by observing that the graphs seem to have the samegeneral behaviour after su
h jumps as before.The graph presented here suggests that the uniform distribution is some-what more stable than the even distribution. Other test runs have indi
atedthat it might be a bit hasty to draw su
h a 
on
lusion. Still I have seen no
lear indi
ation that the uniform distribution in general behaves worse thanthe even. I made the 
hoi
e to settle with the uniform distribution due toone important reason: I do then not need to divide by the radius at anypoint. This I believe makes this method slightly faster than that of even dis-tribution. It also might in
rease numeri
al stability, as there might be
omedivision by zero problems if the sour
e point is 
hosen 
lose to the 
entre ofthe galaxy.These infrequent jumps in the graph also indi
ate that this method isnot very sensitive to an in
rease in the number of simulation points. While
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ura
y in general be
omes better, the probability for getting points
ausing big jumps also in
reases. Still, at my 
omputer from 2004 it turnedout that memory usage was the main limitation for how high I 
ould set N.I ended up using 3 million samples for the main 
al
ulations, whi
h 
ausedPython to 
onsume about 400MB of memory. The total running time of theprogram was then a bit less than an hour.The strength of the gravitomagneti
 �eld is presented in �gure 2.2 I have
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Figure 2.2: Gravitomagneti
 �eld strengthhere set the axes so that the magneti
 �eld at the 
entre is not shown. Thisgravitomagneti
 �eld may be if interest in other appli
ations, but is of littleinterest here as this model of the galaxy is quite ina

urate in this area.As might be expe
ted from the instability of the Monte Carlo method,the graph is quite fuzzy. Still the general behaviour is quite obvious. Closeto the 
ore, there is a relatively strong gravitomagneti
 �eld. This de
reasesthe further from the 
ore you 
ome until it at about 15 out of 20 kp
 turnsnegative. This 
hange from positive to negative may be intuitively expe
ted.Near the 
ore most of the mass is swirling outside, hen
e we have a situationsimilar to that inside a 
urrent loop. However, as we get further out we getoutside the rotating mass. Outside the galaxy, we have a situation similarto that outside a 
urrent loop, and in this 
ase the gravitomagneti
 �eld



32 CHAPTER 2. GRAVITOMAGNETISMis opposite to that inside. At some point inside the galaxy, we would thenexpe
t those two e�e
ts to 
an
el out.In order to interpret the strength of the �eld, I 
al
ulated how mu
h thisgravitomagneti
 �eld a

elerates the masses of the galaxy 
ompared with thetotal a

eleration. For this I used the formula 2.45. The result is illustratedby �gure 2.3. In this �gure I have set no restri
tions on the axes of the graph
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Figure 2.3: Gravitomagneti
 e�e
t, un
onstrained axesin order to show the magnitude of the spikes. Zooming in to get a betterlook at the most 
on
entrated part of the graph we get �gure 2.4.From these �gures, we easily see that the gravitomagneti
 e�e
t is in theorder of a few parts of a millionth of the total a

eleration on the galaxymatter. Even the highest spike in this data set doesn't get higher than
5 ∗ 10−5. It is also here easier to see that the gravitomagneti
 e�e
t 
hangessign about 15kp
 away from the 
ore. For this 
ase, the positive dire
tionfor the a

eleration may be found to be toward the 
ore.2.3.3 Con
lusionsThe gravitomagneti
 e�e
t depends on the velo
ity both of the sour
es andthe body a
ted upon. The gravitoele
tri
 e�e
t on the other hand does not
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Figure 2.4: Gravitomagneti
 e�e
t, 
onstrained axesdepend on velo
ity at all. One may then qui
kly make the assumption thatthe ratio between these will be in the order (v/c)2. There are however otherdi�eren
es in the behaviour of gravitomagnetism that might separate it fromthe gravitoele
tri
. For instan
e while the gravitoele
tri
 e�e
t only dependson the masses inside the position it is 
al
ulated for, the gravitomagneti
e�e
t depends on all the masses in the galaxy wherever this is 
al
ulated.The simulation performed here lend support to the idea that the �rst of thesedi�eren
es is the most important when it 
omes to approximating the ratioof the strength between those two �elds. In this parti
ular model, this evenis true at the 
ore where the se
ond di�eren
e intuitively should have givenzero gravitoele
tri
 e�e
t, with a non-zero gravitomagneti
. This I gather isdue to the model having in�nite mass density in the 
ore.From this, it is easy to 
on
lude that for instan
e the gravitomagneti
e�e
t is too weak to be used as an alternative solution to the dark mat-ter problem. It is also probably not ne
essary to take into a

ount whenperforming most theoreti
al 
al
ulations on galaxy models. For numeri
alsimulations on the other hand, the magnitude of the e�e
t 
al
ulated here isbig enough to possibly make a di�eren
e. Even if the desired relative pre
i-sion of the �nal result is less than 10−5 the error from omitting this part in a



34 CHAPTER 2. GRAVITOMAGNETISMsimulation that goes over several steps may qui
kly a

umulate quite graveerrors. This 
alls for an investigation of more pre
ise methods of determiningthe a
tual gravitomagneti
 �eld.A thorough analysis of possible methods to get trustworthy values forthe gravitomagneti
 e�e
t in numeri
al simulations will probably be bettersuited in a larger work on numeri
al methods on galaxy models. Thus, I willhere restri
t myself to give some ideas that might improve the method usedhere. However, I will �rst give an argument that shows that su
h a redu
tionof fuzziness might a
tually be undesirable.As previously mentioned I attribute the spikes and fuzziness in the graphto the 
hoi
e of random points in the Monte Carlo method. If our model wereperfe
tly integrated, I would not expe
t any su
h e�e
ts. On the other hand,real galaxies have not mass perfe
tly evenly distributed, and lo
al velo
itydi�eren
es are a matter of fa
t. This opens up the possible interpretationthat the randomness in the Monte Carlo distribution a
tually may work asa model of these imperfe
tions. In this 
ase the fuzziness of the resultsa
tually may be interpreted as a measure of how sensitive the strength ofthe gravitomagnetism is to lo
al behaviour. It may seem like this modelhas the property that lo
al di�eren
es from the perfe
t model may have astronger in�uen
e on the lo
al gravitomagneti
 �eld than the in�uen
e of thegalaxy as a whole. In order to �nd exa
tly how mu
h of the gravitomagneti
e�e
t is determined by lo
al behaviour we need knowledge of how big su
hvariations in mass and velo
ity inside galaxies typi
ally are, and preferablyhave a more realisti
 galaxy model. This is 
learly outside the s
ope of thisthesis. However, for many body simulations this problem may be 
ompletelyremoved as it is then natural to simply 
al
ulate the total gravitomagneti
e�e
t of all bodies on ea
h body.With the above paragraph in mind, if we still want to redu
e the noisein the gravitomagnetism, how may we do it? One obvious way is low-pass�ltering. I tried a few simple low-pass �ltering solutions myself without mu
he�e
t, but in theory it should eventually smoothen out the 
urve. Anotherway is to either remove or 
ap the results for sour
es that get 
loser to thepoint we 
al
ulate the �eld for than a 
ertain limit. The 
ap-method isrelatively easy to implement, but this raises the questions of where to setthe limit and how mu
h this arti�
ial 
hange on the system will a�e
t theresults. A third way is to use points in a symmetri
 grid as sour
es instead ofrandomly 
hosen points. The grid should be made so that lo
ally the e�e
tof the sour
es mostly 
an
els ea
h other, while the grid points are evenlydistributed. There is a faint possibility that the grid 
hosen might have
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ts on the result, but this should be simple enough to dete
t andavoid.
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Chapter 3Asymptoti
ally Minkowski spa
esMany of the general relativisti
 systems that have been studied are of theasymptoti
ally Minkowski type. I will devote this 
hapter to examine someof these in regards to rotation and from a Ma
hian perspe
tive. Asymptoti-
ally Minkowski spa
es are 
hara
terized by having a metri
 that goes to theMinkowski metri
 in spatial in�nity. In te
hni
al terms this 
an be statedas gµν → ηµν as s → ∞. Here s is the interval between the point where themetri
 tensor is evaluated, and the points of interest in the model. ηµν is a�at (Minkowski) metri
. The examples studied in the previous 
hapter werealso asymptoti
ally Minkowski. But in that 
hapter the fo
us was on thee�e
ts of the linearized theory of gravitomagnetism. In this 
hapter we willstill keep these e�e
ts in mind, but only as a referen
e. The fo
us will be themodels that have asymptoti
ally �atness as an important 
ommon feature.3.1 Minkowski universeThe most obvious universe that is asymptoti
ally Minkowski is the Minkowskiuniverse itself. This spa
e is 
hara
terized by having a �at spa
e metri
; instandard 
oordinates
ds2 = −c2dt2 + dx2 + dy2 + dz2 (3.1)As this has zero 
urvature everywhere we 
an 
on
lude from Einstein's �eldequations that the energy-momentum tensor also must vanish everywhere.Hen
e we have a universe with no matter-
ontent. Free parti
les move alonglinear paths

xα(λ) = xα
0 + λvα (3.2)37
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oordinates tra
ed out by the parti
le, λ is a free parameter,and xα
0 and vα are 
onstants 
hara
terizing the state of the parti
le.3.1.1 Rotating observerI will now examine how this spa
e time may seem from the perspe
tive of arotating observer. Assume that we have an observer that is translatory atrest in the origin of the standard 
oordinate system of the Minkowski spa
e.This observer has a standard 
lo
k. This he uses to give a time label toall points in the spa
e time in the following manner: He sends light signalsthat are re�e
ted in an event. He re
ords the time on his standard 
lo
kof emission and re
eption of the light, and de�nes the time of the re�e
tingevent to be the arithmeti
 mean of these two values. Analysing this fromthe framework of the standard 
oordinate-system it is simple to see that thetime label he sets on ea
h point 
oin
ides with the time 
oordinate of thestandard 
oordinate-system; t′ = t. Thus, he has sli
ed up the spa
e-time insli
es that he through experiment 
an verify that is spatial and �at, as theseproperties are independent of the observer.Then the observer turns his attention to an obje
t he has nearby. It is3 sti
ks 
onne
ted together in a 
ommon end-point at rest. Studying it he�nds several fas
inating properties of it: In any time sli
e it turns out thatthe sti
ks are orthogonal to ea
h other, and geodesi
. And light sent fromtheir 
ommon edge re�e
ting of the other edges of the sti
ks return to their
ommon edge at the same time. Fas
inated by this instrument, the observerdoesn't dare to tou
h it. Knowing that �at spa
e has Eu
lidean geometryhe 
on
ludes that it is ex
ellent for making a 
omplete Cartesian 
oordinatesystem on his time sli
es. He de�nes ea
h of the 
oordinate axes as theextension of the geodesi
s of ea
h of the sti
ks, and unit length along ea
haxis as the length of the 
orresponding sti
k. Armed with this 
oordinatesystem, he sets out to map the behaviour of free test parti
les in it.It is easy to verify that it is possible that the 
oordinates he found withthis method might a
tually be the standard 
oordinate-system. Just let the
ommon edge tra
e out the parameterized line (t, 0, 0, 0), the x-axis sti
ktra
e out (t, 1, 0, 0) et
. Also if the sti
ks are simply transported, 
hangedorientation or given a 
onstant velo
ity the method will yield the same met-ri
 in the new 
oordinate system (from spe
ial relativity). If on the otherhand the sti
ks are rotating rigidly we get a di�erent result. We 
an fromsymmetry assume that it rotates around the z-axis. The origin-edge and thez-sti
k edge still tra
e out the same path as in the non-rotating situation.
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k do however tra
e out (t, cos(ωt), sin(ωt), 0) The y-axis tra
e out
(t,− sin(ωt), cos(ωt), 0). Due to invarian
e the geodesi
s that make out theaxes of the new 
oordinate system are the geodesi
s in Minkowski spa
e,and thus we get a linear 
orresponden
e between the 
oordinates in the newsystem and the standard system:

t′ = t (3.3)
z′ = z (3.4)

x′ = cos(ωt)x+ sin(ωt)y (3.5)
y′ = cos(ωt)y − sin(ωt)x (3.6)Inserting the equations 3.2 into these expressions gives nothing new forthe t′ and the z′ 
oordinates. However, the movement in the x-y plane takesthe following form:

x′ = cos(ωt′)(x0 + t′vx) + sin(ωt′)(y0 + t′vy) (3.7)
y′ = cos(ωt′)(y0 + t′vy) − sin(ωt′)(x0 + t′vx) (3.8)Here I have assumed vt 6= 0 and used the freedom of parameterization to set

λ = t = t′. Di�erentiating these equations on
e with respe
t to t′ gives usthe following new equations:
ẋ′ = ωy′ + sin(ωt′)vy + cos(ωt′)vx (3.9)
ẏ′ = ωx′ − sin(ωt′)vx + cos(ωt′)vy (3.10)Here the dots denote derivatives with respe
t to t′ Repeating we �nd thefollowing ni
e expressions for the a

elerations:

ẍ′ = ω2x′ + 2ωẏ′ (3.11)
ÿ′ = ω2y′ − 2ωẋ′ (3.12)Comparing these equations with 2.17 we �nd that in this situation we have

~EG = ω2~r (3.13)
~BG = 2ω~ez (3.14)Where ~r = (x′, y′, 0) and ~ez = (0, 0, 1). So the situation is that the observer
an see that the universe around him behave as if there is a gravitoele
tri
�eld pointing away from him that be
omes stronger the farther out he 
omes,and a 
onstant gravitomagneti
 �eld. The puzzling thing is that he 
annotsee any sour
e that 
ould give rise to su
h �elds. One may imagine that this



40 CHAPTER 3. ASYMPTOTICALLY MINKOWSKI SPACESobserver does indeed �nd that there is a simple 
oordinate-transformationthat gives ni
e linear paths, but 
onsider this little more than a mathemat-i
al tri
k. Seeking an explanation for the behaviour of the parti
les in thepreferred frame of the marvellous sti
ks a sear
h for hitherto unobservedsour
es for the gravitomagneti
 �eld 
ommen
es. As the Minkowski universeis open the sear
h may 
ontinue forever, never rea
hing in�nity. And as it 
annever be 
on�rmed observationally, who are we to 
laim that there indeedisn't anything out there?In the perfe
t Minkowski model there is indeed no su
h sour
e. Thusthe above reasoning is an indi
ation of why this is a mu
h used example toshow how general relativity does not ful�l Ma
h's prin
iple. As mentionedin the introdu
tion, these problems may have been instrumental in Einsteinhimself abandoning the idea. The only real defen
e of Minkowski universeas ful�lling Ma
h's prin
iple I have found is given in [5℄ and seem to takeadvantage of a variant of the in�nity-argument sket
hed at the end of thelast paragraph.One question that naturally arises is if there a
tually may be a mattersour
e that might give the �elds 3.13-3.14? If this is not the 
ase, then asear
h for su
h would surely be in vain. There are a few obvious problemsthat stand in the way from �nding su
h solutions. The 
al
ulation of those�elds were exa
t, and holds for any ω. We also expe
t any sour
es to haveto be far away to not disturb the lo
al observed �atness. Thus the weak�eld approximation will at best be able to give indi
ations of what kind ofdistributions to look for. Still there might be one strong 
lue to work from:The only observed systems that are approximately Minkowski do have asour
e that might turn out to be able to explain their internal behaviour. Theone of the reasons that Minkowski and asymptoti
ally Minkowski systems areinteresting to study is that this is a good approximation for spa
e far fromgravitational sour
es; at least in our universe.So if our observer from above 
rawled through spa
e, found a veil ofgala
ti
 proportions, dragged it aside and saw a 
opy of our universe swirlingaround his pre
ious sti
ks, would he then be able to rest with the mysteries ofthe strangely behaving free parti
les settled on
e and for all? This questionis deeply related to Ma
h's prin
iple, and I will not try to dire
tly answerit. It will however be a question that may be good to have in mind whilepro
eeding.



3.2. INSIDE A HOLLOW SHELL 413.2 Inside a hollow shellIn this se
tion I will study some models of a mass shell in the limit that it isin�nitely thin. This model is relatively easy to analyse, and still gives someinteresting results. The histori
al approa
h I will be taking is based on [42℄and [45℄ unless otherwise noted.This model was introdu
ed by Einstein in 1912. At this time he used iton a s
alar approa
h to gravity. From this he 
al
ulated the approximatebehaviour of free parti
les inside a rigidly rotating shell. He repeated thisexer
ise in 1913 within the Entwurf theory, a tensor-theory that pre
ededthe �nal general theory. But the �rst known to have made su
h 
al
ulationswithin the framework of the �nal gravitational theory was Hans Thirring.This result was published in 1918. A translation of this paper may be foundin [35℄, along with the other papers by Thirring mentioned in this se
tion.A little later, he published a paper on the e�e
ts outside a rigidly rotatingsphere with Joseph Lense.Later, all e�e
ts related to rotating bodies similar to those des
ribed inthe 1918 papers has been referred to as Lense-Thirring e�e
ts, even thoughthey are qualitatively very alike the results of Einstein in 1912, and parts oftheir results have been outdated, as will be shown in this se
tion.3.2.1 ThirringI will here go through Thirring's treatment of the hollow sphere. I will notin
lude the lengthy expressions he got during the 
al
ulation. I will ratherfo
us on the approximations he use, and his results.Equations 3.15-3.27 are all quotes from his arti
le. Thus I will give afew general remarks on the notation he uses that di�ers from the one I usein this thesis: He denotes the time parameter as x4, not x0, and uses theformalism where it is imaginary x4 = it. He further uses γ′µν for what in 2.1were written as h̄µν . For the gravitational 
onstant κ he uses χ.His starting point is the linearized theory. He uses the following relationthat is a 
onsequen
e of 2.6:
γ′µν = − χ

2π

∫

Tµν(x, y, z, t− r)

R
dV0 (3.15)Here x, y, and z are the 
oordinates of a point on the sphere. r is statedto be the distan
e between the point under 
onsideration and the 
entre ofthe sphere, and R is the distan
e between this point and the integration



42 CHAPTER 3. ASYMPTOTICALLY MINKOWSKI SPACESelement. The integration goes over the volume of the sphere. A

ording tomy understanding of the system, and [56℄ the r in 3.15 should a
tually havebeen R to get the retarded potential right (this is assuming t is the time atthe point the perturbation is evaluated for). As the system in question isstationary, it is simple to see that this doesn't matter anyway, and 
ould bea typo.He then negle
ts any stresses and sets the energy momentum tensor to
Tµν = T µν = ρ0

dxµ

ds

dxν

ds
= ρ0

dxµ

dx4

dxν

dx4

(
dx4

dx
)2 (3.16)That is that of perfe
t-�uid dust of density ρ0. It later turned out thatnegle
ting the stresses in this way a
tually gives rise to an error of the mag-nitude the 
al
ulation is done in. I will say more about this later. The �rstequality in 3.16 is justi�ed by the linear approximation, and that he is usingthe imaginary time formalism.He then goes to polar 
oordinates a, ϑ, ϕ, with a being the radius ofthe mass shell. He uses the following expressions for the rigidly rotatingmass-shell with angular velo
ity ω:

dx1

dx4
= −idx

dt
= iaω sin ϑ sinφ (3.17)

dx2

dx4
= −idy

dt
= −iaω sinϑ cosφ (3.18)

dx3

dx4

= 0 (3.19)He now for simpli
ity 
onsiders the 
ase where the 
oordinate-system is
hosen so that the point under 
onsideration is situated in the Z-X plane. Hederives an expression for R2 in polar 
oordinates. When justifying the useof the linearized theory he stated that the test-point should be 
lose to the
entre of the sphere. Now he uses this to justify dropping terms of higherthan se
ond order in an expansion of 1
R
in terms of r

a
.Then he sets out to examine terms of type (dx4

ds
)3 as he had this in everyintegral he now had managed to redu
e 3.16 to. In an errata he explainsthat this should a
tually be −i(dx4

ds
)2 as he made a mistake regarding whatkind of volume element should be used in the integration. However, thisdoesn't 
hange the approa
h. He makes liberal use of series expansions andthe approximation that he would ignore terms of higher order than ω2a2.From this he also argues that he 
ould use an unperturbed expression forthe interval as starting point for his 
al
ulation. He thus gives the following
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ds2 = −dx1

2 − dx2
2 − dx3

2 − dx4
2 (3.20)

ds2

dx4
2

= −1 − dx1
2 + dx2

2 + dx2
2

dx4
2

(3.21)
= −1 + ω2a2 sin2 ϑ (3.22)

ds

dx4
= i(1 − ω2a2

2
sin2 ϑ) (3.23)

(
dx4

ds

3

) = i(1 +
3

2
ω2a2 sin2 ϑ) (3.24)When this is done, the rest is straight forward integration to get theperturbation of the metri
. The result he generalizes to the 
ase where thepoint is not in the X-Z-plane rotating the 
oordinate system around the z-axisand �nds the transformed metri
 tensor.Then he uses the equivalent of 2.13 in a similar way that we did. Thisin
ludes ignoring terms of se
ond order in velo
ity. In his initial paper hemade as mentioned above an error with regard to dx4ds fa
tors. In that
ontext, he also made a minor mistake regarding the de�nition of mass.After 
orre
ting for these, he arrived at the following equations of motion:

ẍ = −8kM

3a
ωẏ +

4kM

15a
ω2x (3.25)

ÿ = +
8kM

3a
ωẋ+

4kM

15a
ω2y (3.26)

z̈ = −8kM

15a
ω2z (3.27)where M =

∫

ρ0dV0, k = χ/8π and dots represent time derivatives.Comparing these with 3.11-3.12 we see that the gravitoele
tri
 �eld in thex-y plane here is only one �fth of what one would expe
t if the system insideshould behave like a rotating Minkowski spa
e 
ompared to the gravitomag-neti
 �eld. The z 
omponent also shows this di�eren
e very 
learly. As su
hit is hard to use this as an argument in any strong formulation of Ma
h'sprin
iple. At the time it was however the �rst 
al
ulation to 
learly showthat rotating masses indeed produ
ed Coriolis and 
entrifugal-like for
es. Assu
h e�e
ts seem to be ne
essary in order to des
ribe rotational phenomenain a Ma
hian way, and su
h e�e
ts do not exist in Newton's theory, it may beseen as a step toward an understanding that might be in a

ord with Ma
h'sprin
iple. Thirring gives the in
reased e�e
tive mass in the equatorial plane



44 CHAPTER 3. ASYMPTOTICALLY MINKOWSKI SPACESas a result of having higher speed than the poles, and the Minkowski ba
k-ground as possible reasons for his result not giving the ordinary 
entrifugalfor
e.If we now 
onsider the behaviour of gyros
opes from 2.35 We get, using
c = 1

Ω =
4kM

3a
ω (3.28)So we see that gyros
opes are dragged along with the mass shell with afrequen
y that in
reases by higher mass or smaller radius of the shell. Un-fortunately the weak �eld approximation is only valid if M/a is small. If aapproa
hes the S
hwartzs
hild radius of the mass Rs = 2kM we 
learly geta strong �eld, 
omparable to that of a bla
k hole.As mentioned early on Thirring's 
al
ulation was �awed by negle
tingstresses. This 
aused his energy-momentum tensor to not obey the law oflo
al 
onservation of energy-momentum; T µ

ν;µ = 0 A 
al
ulation that tookthis into a

ount was done by Honl in a paper from 1956 [24℄. The end resultis equivalent to 3.25-3.27 with the ex
eption that the "gravitoele
tri
" for
eis only half as strong. So apart from this model turning out to be even furtherfrom the ideal of fully des
ribing our relatively Minkowski surroundings, thereare nothing really new in this.3.2.2 Brill-CohenThe next major step in the treatment of this model is attributed to a paperfrom 1966 by Brill and Cohen [12℄. They managed to �nd a solution forthe rotating shell without using the linear approximation. Thus it is alsovalid for strong �elds like we have if the radius of the shell approa
hes theS
hwarzs
hild radius. Unfortunately they had to sa
ri�
e se
ond-order termsin the angular velo
ity of the shell in order to get this result.The main tri
k they did to get their result was, as far as I 
an see, tomake the edu
ated guess that the metri
 
an be written in the form
ds2 = ψ4[dr2 + r2dθ2 + r2 sin2 θ(dφ− Ω(r)dt)2] − V 2dt2 (3.29)with ψ, Ω and V fun
tions of r. Initially they had studied the 
ase where

Ω(r) = 0 as a stati
 base metri
 for this perturbation. The metri
 then hasstandard S
hwarzs
hild-form. Thus they argued that outside the shell theparameters should have the form
ψ = 1 + α/r (3.30)
V = (r − α)/(r + α) (3.31)
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 spheri
al shell, spa
e-time should be �at, so these fun
tionsshould be 
onstant there. Requiring 
ontinuity, these 
onstants should havethe value of the fun
tions at the shell radius. This means that the equationsabove should hold with the variable r repla
ed by the 
onstant shell radius
r0. Using units so that G = c = 1, α usually is interpreted as m/2, but theyalso gave an expli
it expression for it from the �eld equation for T 00:

α = 2π
∫ ∞

0
T 00r2ψ5dr (3.32)This equation helps giving a stringent de�nition of α, but is hard to use to
al
ulate it as ψ depends on α itself. Hen
e we will qui
kly get a �fth orderequation if we tried. It will however be used later to de�ne the mass m = 2α.These expressions for ψ, V and α is kept in the perturbed 
ase with non-zero Ω. They argue that due to rotational symmetry they 
an always rotatethe 
oordinate system so that nothing is 
hanged beside Ω(r)′ = Ω(r) − Ω0So that they 
an set Ω(∞) = 0. They don't mention that this requires Ω to
onverge, but I believe this is un
ontroversial given their ba
kground beforethe perturbation.They make their 
al
ulations within the natural Cartan orthonormalframe one gets from the metri
. They then get by 
al
ulating the 
om-ponents of the Einstein-tensor, and using them in the �eld equations, that

T ii (i=1,2,3) is independent of Ω.They then argue that as the 
omponents T i0 should vanish in the restframe of the shell, the stress-energy tensor must be of the form
T µν = ρuµuν +

3
∑

i,j=1

tijvµ
(i)v

ν
(j) (3.33)where u is the four velo
ity, and vi are three orthogonal four-ve
tors orthogo-nal to the velo
ity. They then make a 
hoi
e of vi so that the system be
omespretty simple. Due to symmetries they are then able to argue that the tijmatrix is diagonal. They also get tii = T ii to the �rst order in ωs −Ω, where

ωs is the angular velo
ity of the rigidly rotating shell. I would like to observethat as long as Ω is between zero and ωs this 
ondition is weaker than limiting
ωs to �rst order. When they restri
t themselves to �rst order like this, theyget only 4 non-zero 
omponents of the stress-energy tensor, whereas only T 03depend on ωs − Ω at all.They then fo
us on the �eld equation for T 03. They use an expressionfor the Einstein-tensor they get from the metri
. First they solve the �eldequations with regard to Ω using ψ and V from the base metri
 for the
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uum 
ases inside and outside the shell. They then get the interestingresult that the only regular solution inside the shell is that Ω is 
onstant.They then set out to determine the integration 
onstants that appeared intheir va
uum solutions by demanding Ω to be 
ontinuous a
ross the shell,and integrate the �eld equation a
ross the shell. They here expli
itly use theapproximation of an in�nitely thin shell by using that a term in the integralof the Einstein-tensor vanished (
ompared to the other terms) in this limit,hen
e simplifying the integral.This way they get a solution both for the interior and for the exteriorshell. Here, the interior solution is the one of interest. The interior solutionthey got was:
Ω =

ωs

1 + [3(r0 − α)/4m(1 + β0)]
(3.34)where β0 = α/(2(r0 − α)).Interpreting Ω in the inside of the shell may be done like this: Considerthe 
hange of 
oordinates to a frame rigidly rotating with respe
t to theoriginal with angular velo
ity Ω. That will be the 
oordinate-transformation

φ′ = φ− Ωt. As Ω is 
onstant in the interior the derivatives of this set intothe metri
 3.29 will give us the standard form of the �at metri
 in polar
oordinates. Thus, experiments done lo
ally inside the shell will be unableto dis
ern between this spa
e and a "true" Minkowski universe �xed to this
oordinate system.There are two interesting limits to this equation. The �rst is r0 >> α =
m/2. In this 
ase 3.34 may be simpli�ed to Ω ≈ ωs(4m/3r0). This is in per-fe
t agreement with Thirring's result 3.28 (remember we set G = k = 1).On the other hand if we let r0 = α we get perfe
t dragging Ω = ωs.This was interpreted in the paper as if the radius of the shell approa
hedthe S
hwarzs
hild-radius, the inside metri
 was somehow shielded from theMinkowski ba
kground at in�nity. Nevertheless, they stress that su
h aninterpretation may be naive as the asymptoti
ally Minkowski boundary 
on-dition did enter their 
al
ulations. They also 
laimed that su
h a shell withradius equal to its S
hwarzs
hild radius often had been taken as an idealizedmodel of our universe, but they doesn't give any referen
es to this. Anyway,this might lend hand to the suggestion that our lo
al inertial systems indeedhave to be non-rotational with respe
t to the �xed stars.While they through a 
ombination of metri
-guessing and solving �eldequations from the mass-energy tensor managed to �nd a 
ombination ofmetri
 and mass-energy that perfe
tly �ts any 
hoi
e of r0 and m, they didso by sa
ri�
ing se
ond order terms in angular velo
ity (or more pre
isely
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ωs −Ω, but this only might matter for α near r0). Thus, this result is not �tto make any strong arguments regarding 
entrifugal for
es, as we have seenthat this is a se
ond order e�e
t of angular velo
ity.In the same paper, they also presents some results 
onne
ted to 
ollapsingshell of dust. This is a somewhat more realisti
 model. However, I do not�nd anything spe
i�
 in there of mu
h interest to this thesis.3.2.3 P�ster and BraunIn 1985 P�ster and Braun released a paper [43℄ where they further analysedthe model of a rotating shell. Their main idea was to �nd the 
onditionswhere you have �at interior inside the shell. A motivation for this may bejust the situation previously studied with the observer that lo
ally �nds hissurroundings to be �at, but possibly rotating, spa
e, and set out to �nd whatkind of mass distribution that might explain this situation.They use the following form for the metri
 of the rotationally symmetri
system:

ds2 = −e2Udt2 + e2U [e2K(dr2 + r2dθ2) +W 2(dφ− ωAdt)2] (3.35)In order to �x the inside of the metri
 to be �at they demand U,K and Ato be 
onstant, and W = eKr sin θ. The Minkowski boundary 
ondition theyset even stri
ter, by demanding that U,K and A is zero, W having the sameform as inside.Having stated these basi
 properties of the system they will examine,they go forth and state the quite 
ompli
ated exa
t expressions of the �eldequations when 
al
ulating the Einstein tensors from 3.35. By linear 
ombi-nations of these, they get two new equations so that they are able to solvethe system in a 
as
ading and re
ursive way like this: Assume that the equa-tions are solved up to a 
ertain order, and we want to �nd the solution to ahigher order. First, they only 
onsider the exterior va
uum solution. Thereis an expression for W alone that 
an be solved to the order one is strivingfor. This result, along with lower order results for A may be put into ase
ond equation that 
an then be solved to the 
orre
t order for U . Withthese known K and A ea
h has an equation that 
an now be solved to the
orre
t order. Having the exterior solution the rest is an exer
ise in �xingintegration 
onstants by mat
hing it with an interior solution so that themetri
 is 
ontinuous and the boundary between these regions have an energymomentum tensor that represents a rotating shell of mass M , radius R andangular velo
ity ω.
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hnique to zeroth order in ω, that is for a stati
 shell, theygot the standard S
hwartzs
hild solution with �at interior as expe
ted. To�rst order they re
onstru
t the result from Brill and Cohen. However, thenew result is that they be
ome able to extend the analysis to se
ond order.In order to do this they use a result argued for in [20℄. This is that to se
ondorder in rotation U , K, W/ sin θ and A only has P0 and P2 terms whenexpanded in Pl(cos θ) Where Pl is the l-th Legendre polynomial. Conne
tedwith this is an observation that these variables only depend on even ordersof ω, this be
ause of the symmetry a
ross the equatorial plane. Seeing that
A is multiplied with ω in the metri
 3.35, we 
an 
on
lude that there will beno new 
orre
tion to the metri
 in se
ond order rising from A.They then perform the integral pro
edure as des
ribed above, stoppingbefore solving for K. Five 
onstants of integration were introdu
ed. Onewas eliminated by requiring that U had to fall o� faster than r−1 as r → ∞in order to make sure the total mass of the shell doesn't 
hange. Two areeliminated by a previously unused �eld-equation.Then it turns out that there is not enough freedom in the system to beable to make a 
ontinuous 
onne
tion between the inside and the outsidemetri
. However, they �nd that if they allow the shell to not be perfe
tlyspheri
al, but rather have a θ dependent radius it will be possible. Fromtheir knowledge of the system, they attempt the following radius:

rS = R(1 + ω2f sin2 θ) (3.36)where f is a parameter des
ribing how far from a sphere the shell has to be.They are now able to derive equations that gives the remaining integration
onstants in terms of K and f only from the 
ontinuity 
onditions. Also fromthe 
ontinuity 
onditions they are able to now generate inhomogeneous lineardi�erential equations for K0 and f . It all turns out to be inter
onne
ted ina quite 
ompli
ated way, so they only give the expression for f in the end.Using the abbreviation x = R/α they have that the value of f/R2 thatallows �at interior solutions of the mass shell to se
ond order in ω is uniquelydetermined by x is (quote):
f

R2
= −16(x+ 1)4(2x− 1)2

3x4(3x− 1)2

×
(

2x+ (x2 + 1) log[(x− 1)/(x+ 1)]

2x(x2 + 1) + (x4 + 2
3
x2 + 1) log[(x− 1)/(x+ 1)]

− 3(x2 + 6x+ 1)

32x2

)(α is still given by 3.32)



3.2. INSIDE A HOLLOW SHELL 49In a paper one year later [44℄ they extend their work to the third order.As mentioned above U , K, W/ sin θ and A all only has even order terms in
ω. Hen
e from the form of the metri
, only the se
ond order term of the Aparameter will give a third order 
ontribution to the metri
. Thus they onlyhave to solve the equation for A. This still is quite 
ompli
ated, as they nowmust use the se
ond order results of the other variables in order to get the
orre
t third order result in the metri
. They use some pages to list throughthe integration steps they have to use to get the expressions they use. Whenthe time 
omes to mat
h their solution with the energy-momentum tensor ofa rotating shell they stumble upon the problem that there is a θ dependen
ein their expressions for A that is not 
ompatible with a rigidly rotating shell.They solve this by still demanding that the body at all points has a purelyaxial rotation, but they then argue that the angular velo
ity has to have theform

ω̄ = ω(1 + ω2R2e sin2 θ) (3.37)where e is a parameter determined by the radius and mass of the shell (notto be 
onfused with Euler's number). Due to the 
omplexity of the equationsinvolved they only give the solution for e in terms of derivatives of two other
ompli
ated fun
tions they have gotten expli
it solutions for earlier, so Iwon't quote it here.Their 
on
lusion is that there in general may not be possible to �nd arigidly rotating shell keeping the interior �at with given mass, mean radiusand angular velo
ity of the interior with respe
t to the asymptoti
 in�nity.However, they argue that given the restri
tions they have set, there is to all(�nite) orders one unique solution that gives a Minkowski ba
kground. Forea
h new order, they have to add 
orre
tions to the shell geometry and rota-tion to the order they are going for. They show the form of these 
orre
tionsand 
ounts up that the free parameters in these are just enough to allow thesystem to be solvable. To a
tually 
arry out this integration would be veryhard due to appearan
es of terms involving quadrates of logarithms in thedi�erential equations.As they have given up spheri
al symmetry and rigid rotation, it may bein order to review the restri
tions they have set on the system. They do notdo it themselves, but as far as I 
an see the 
riti
al parts are the following: Asurfa
e dividing spa
e-time in two parts with axial and equatorial symmetry,spheri
al in the limit ω → 0. All velo
ities are parallel to the equatorialplane, and it is a stationary system.In an arti
le of 1989 [41℄ P�ster does some examination on easing up these
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tions. I will not go into dept in this as he does not get any de�niteresults, ex
ept that for a 
ertain small deviation from spheri
al shell in thestati
 limit, there are no �rst order solutions with �at interior.So, how does these results relate to Ma
h's prin
iple? Thinking ba
k toour thought experiment in 3.1.1, we see that we now have found a 
lass ofsimple models where the masses of the universe 
an give the impression thatone lo
ally exist in a Minkowski frame at rest, even though one from theMinkowski in�nity observes the frame as rotating. This is an argument forquestioning the notion of any absolute rotation. That this solution is uniquealso serves as a demonstration that the lo
al inertial frames really do dependin a real way on the masses.The limit where the radius of the mass shell goes to the S
hwarzs
hildradius of the mass also turns out to be highly interesting. While the system
onstants f and e above generally is respe
tively negative and positive, bothof these goes to zero in this limit. Remembering ba
k to the �rst order resultthat the dragging 
oe�
ient went to 1 in this limit as well, we see that at leastto third order the rigidly rotating sphere 
ompletely s
reens away the e�e
tsof the outside Minkowski limit. This s
reening is su
h that it is impossiblefor an observer inside it to determine how it rotates only by observing theinside of the shell and the shell itself. Even though it is then tempting toargue that the inside metri
 is 
ompletely determined by the mass-shell, itmay be worth keeping in mind that we here hasn't seen on the possibility ofother boundary 
onditions than the Minkowski at in�nity.3.2.4 Revisiting the rotating 
ylinderI will here brie�y revisit the 
ase of a rotating in�nite 
ylinder from 2.2.5. Itturns out that the interior of su
h a system has to be �at. This result wasfound by Davies and Caplan in [14℄. They started out with a general formfor the metri
 in a stationary rotating system with axial symmetry foundby Levy and Robinson in [30℄. They implement the rotating 
ylinder bydemanding that the solution should be z-independent, and that the interioris va
uum. They then solved the �eld equations in the inside, demandingthat there should be no in�nite parameters there. Finally they presented a
oordinate transformation from the initial 
oordinates to a new 
oordinatesystem where the metri
 got the standard form of a �at spa
e in 
ylindri
al
oordinates.This result is exa
t. Comparing with the result in 2.2.5 we see that thelinear approximation taken in that se
tion 
learly falls short in this 
ase. The
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entrifugal for
e" thatis a se
ond order e�e
t in the angular velo
ity. This 
ould be 
onsidered agravitoele
tri
 for
e, and our 
on
lusion from that se
tion that there is nosu
h in the system fails in the exa
t 
ase. Thus we see that the Maxwellianapproximation is not suited for study of 
entrifugal-like e�e
ts, and remindsus to not put too mu
h faith in zero-results found in that framework.Unfortunately, it is hard to apply this result in any Ma
hian argumenta-tion. One reason is that it does not model our universe very well. Anotherthing to be aware of is that this is not asymptoti
ally Minkowski. This ismost 
learly seen as the boundary of the rotating 
ylinder stret
hes out toin�nity, hen
e breaking the va
uum ne
essary for having Minkowski solution.However, the ne
essarily in�nite total mass of the 
ylinder in order for it notto have zero mass-(surfa
e)-density also makes the behaviour at in�nity inother dire
tions problemati
. These things also make it hard to 
omparewith P�sters aproa
h. Another thing that makes this result of limited valueis that it only shows that the interior is �at, but not anything about howfor instan
e its rotational state is with respe
t to the masses making out the
ylinder.3.3 Outside rotating bodiesWe have previously seen on the situation inside rotating shells. Here I will
on
entrate on what is going out on the outside. This is of relatively littleinterest to the question of how the universe at large a�e
ts us, as we areinside the universe. However, it turns out that e�e
ts 
riti
al to 
ommoninterpretations of Ma
h's prin
iple is easiest to test in systems outside ro-tating bodies. Most importantly be
ause the universe at large is very "wellbehaved" while we are 
lose to a 
ertain easy to a

ess rotating body: Earth.3.3.1 Approximate solutionsThe 
ase of a �eld outside a rotating body was investigated to some extentby de Sitter as early as 1916 in the linearized theory [15℄. Lense and Thirringextended upon this in a paper from 1921 that is also translated in [35℄. Theydid this in a similar way as Thirring had used in the inside of the mass shell,but only going to �rst order in the rotation. They also used this to 
al
ulatethe magnitude of these e�e
ts for some of the bodies of the solar system.The most important e�e
t they found was the e�e
t of the rotating planets



52 CHAPTER 3. ASYMPTOTICALLY MINKOWSKI SPACESon the rotation axes of their moons.However, I will here 
on
entrate on the work of S
hi� from 1960. Hismain results are presented brie�y in [48℄, and a more detailed treatment wasgiven in [47℄. The reason to empathize this is that he arrived at a form ofthe e�e
ts that lend it neatly to laboratory experiments. This is also theapproximation that has been used as the basis for the work on the re
entgravity probe B satellite experiment that I will 
ome to later.S
hi�'s approa
h is based upon a paper of Papapetrou from 1951 [40℄. Inthat paper a method for �nding the equations of motion for a 
ertain kindof test parti
les were presented. This is based upon the 
ontinuity relation
T µν

;ν = 0 alone. The kind of test parti
les 
onsidered have the propertiesthat they do not themselves 
hange the metri
. Further, it is assumed thatthey are limited to a thin time-like tube in spa
e-time. In order to tra
kthe position of the parti
le, they use a line inside the tube with 
oordinates
Xµ in a way so that the spa
e 
oordinates X i 
ould be regarded a fun
tionof either X0 or the proper time s along it. The main 
hara
teristi
 of theparti
le is that ∫ T µνdv and ∫ (xi −X i)T µνdv is non-zero. Here the integralsis over the spa
e sli
es with 
onstant 
oordinate time; that is over the points
xi. Integrals with higher order produ
ts of the distan
e di�eren
es are zero.These parti
les are thus termed di-poles. Single-poles have only ∫ T µνdv non-zero, while higher-poles have non-zero integrals with the distan
es to higherorders.Now one 
an write the 
ontinuity equations in terms of partial deriva-tives and Christo�el symbols instead of 
ovariant derivative, and restri
t ourattention to the time-derivative. Then insert the Taylor-expansion of theChristo�el symbols around Xµ. Now by integrating the equations over thespa
e, and keeping in mind that it is only a dipole as de�ned above, allhigher than �rst order derivatives of the Christo�el symbols disappear fromthe equations. From this it was possible to �nd equations of motion fullyspe
ifying the state of the parti
le, with an ex
eption of three degrees offreedom. However, these seem to be due to freedom in exa
tly where in thetube the Xµ line is 
hosen to be, and thus may be 
hosen away quite simplythrough physi
al arguments on the system.The general equation is quite 
ompli
ated 
ompared with that of thesingle pole 
ase that is simply the geodesi
 equation. This is be
ause the spinof the dipole parti
le also appears as an important property of the parti
lein addition to its position and velo
ity. The spin is de�ned by the tensor:

Sµν =
∫

(xν −Xν)T µ0dv −
∫

(xµ −Xµ)T ν0dv (3.38)



3.3. OUTSIDE ROTATING BODIES 53I will remark that (x0 −X0) here is zero as the integrals is over the 
onstant
oordinate-time sli
es.S
hi� essentially took this result, and applied it to the S
hwarzs
hildmetri
 modi�ed by the o�-diagonal elements found by de Sitter and Lenseand Thirring for the outside of a rotating body in linear approximation. Inorder to get a ni
ely interpretable result he also made the following impor-tant and non-trivial 
oordinate transformation: Assume the test parti
le isa gyros
ope moving around a rotating body. A perfe
t gyros
ope will be anexample of su
h a dipole parti
le. Then 
reate the 
oordinate system of anobserver that is moving with the gyros
ope made by standard measuring rodsat his position, but where the orientation of the axes still are parallel to thoseof the standard S
hwarzs
hild Cartesian 
oordinates used when 
onsideringthe system from the point of view of the 
entral mass.To simplify this 
oordinate transformation he takes advantage of the ap-proximation that the distan
e to the massive obje
t 
reating the �eld is large
ompared with it's S
hwarzs
hild radius, so that he may work to �rst orderin m/r. He also assumes that the ordinary spa
e-velo
ity v of the test par-ti
le relative to the 
entral body is low 
ompared to the speed of light, thusonly working to se
ond order in v. In this new frame, 
learly the parti
leis not moving. It is also natural to let the points Xµ be so that X i tra
eout the spa
e lo
ation of the 
entre of mass of the gyros
ope. This 
ondition
ompletes the equations of motion. Given the symmetries of the system, itis simple to see from the de�nition that the 
omponents involving time ofthe spin tensor disappear. The only non-zero 
omponents then 
orrespondto the 
lassi
al spin ve
tor in the following way:
~S = (S23, S31, S12) (3.39)Thus he arrives at the following equations of motion:
(d~S/dt) = ~Ω × ~S (3.40)

~Ω = (3m/2r3)(~r × ~v) + (I/r3)[(3~r/r2)(~ω · ~r) − ~ω] (3.41)Here all ve
tors ex
ept ~S is as measured in the standard isotropi
 S
hwarzs
hild
oordinate frame with the sour
e in the origin. ~r is made of the spa
e-like
omponents of the position 
oordinates, and r is as usual the length of this. ~vis the spa
e-part of the four-velo
ity of the test parti
le and ~ω is the angularvelo
ity of the 
entral body (usually taken to be along the z-axis). m is themass of the 
entral body. I is the moment of inertia of the 
entral body, forinstan
e a homogenous sphere with radius R I = 2mR2/5. These equations
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onvention that sets the speed of light and the gravitational
onstant to unity.Interpreting the �rst of these equations is quite simple, but still yields animportant result: As the time derivative of the spin has to be orthogonal tothe spin, so its magnitude will not 
hange. This assures that the gyros
ope iswell behaved in a 
ertain way, so that it may a
tually be used as a standard
lo
k. The �rst term in the se
ond equation is independent of the rotationof the 
entral body. It is 
laimed that it 
an arise from an extension of thespe
ial relativity theory only in
orporating the equivalen
e prin
iple. It alsois most usually found by a se
ond order approximation of the theory. These
ond term on the other hand is a pure general relativisti
 e�e
t. It 
learlyshows how the spin axis of the gyros
ope is a�e
ted by the rotation of the
entral body.Also pay attention to the fa
t that the last term is identi
al to the stan-dard equation for a magneti
 dipole with dipole momentum along ~ω. This
learly shows the relation between the Maxwellian analogy treated previ-ously and this 
ase. Another potential analogy is that this term shows thatrotating masses somehow drag all other free parti
les along in their rotation.Thus, also the inertial frames are dragged in a 
ertain way. This is mosteasily seen in the 
ase above the poles. Here the term will be
ome 2I~ω/r3,thus dragging all gyros
opes in the same dire
tion as the rotating body. Onthe other hand above equator it will be
ome −I~ω/r3 thus making the inertialframes spanned out by the gyros
opes rotating in the opposite dire
tion asthe planet. This might at �rst glan
e seem to oppose the idea that framesare dragged along with the 
entral body. This 
on
ern is addressed by point-ing out that this is due to the redu
tion of the e�e
t, as the distan
es growlarger.A major part of the paper is also devoted to 
omparing two approa
hesto 
hoose the three free variables of the system, and examining how su
h testparti
les behave when in�uen
ed by non-gravitational for
es. This last wouldbe important if attempting a laboratory experiment on the earth surfa
e, asthe for
es keeping the experiment on the surfa
e would have to be taken intoa

ount. The primary 
hange found was that the equation 3.41 would haveto be 
orre
ted by a term of 1/2(~f × ~v). This result is of little interest forthe 
urrent thesis so I will not delve further into this.I will return to this equation when I 
ome to the spe
i�
 
ase of thegravity probe B experiment. More detailed approximations are made, forinstan
e as a side e�e
t by the 
al
ulations of Cohen and Brill, and by P�sterand Braun as presented earlier. None of these pays mu
h attention to the
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onne
tion. Thisbe
ause the approximation given here is as good as one 
an test with today'ste
hnology, and that it is of little theoreti
al interest as one a
tually have anexa
t solution for this system as we are about to show now.3.3.2 The Kerr metri
In 1963, Kerr presented a paper [26℄ in whi
h he des
ribed a metri
 he hadderived from 
ertain mathemati
al properties. One of these was that it had tobe a va
uum everywhere, ex
ept at any singularities. This original formula-tion is now mostly of histori
al value, as it has later been found formulationsthat make this easier to interpret 
orre
tly. Even though it was found onlythrough mathemati
al 
onsiderations, he 
ould see from the form that itprobably 
ould be the exterior solution of a rotating obje
t.A quite popular representation for the Kerr metri
 is 
alled Boyer-Lindquist
oordinates. This is named after Boyer and Lindquist who in a paper from1967 [9℄ presented it as a "S
hwarzs
hild like" form of the Kerr metri
. Thatthis form got to bear their name seem somewhat strange, as it was in theirpaper only a middle step for what they 
onsidered their main result of thatpaper. However, it has a few neat properties.The metri
 is given as
ds2 = Σ(dr2/∆ + dθ2) + (r2 + a2) sin2 θdφ2 − dt2 + 2mr/Σ(a sin2 θdφ+ dt)2(3.42)where

∆ = r2 − 2mr + a2 (3.43)
Σ = r2 + a2 cos2 θ (3.44)

a andm is free parameters in the mathemati
al problem whose physi
al inter-pretation turns out to 
oin
ide with that of the rotation and mass propertiesof a 
entral obje
t.One important property of this 
oordinate system is that it be
omes thestandard S
hwarzs
hild 
oordinates when we set a = 0, and in this 
ase it iseasy to see that m represents the standard mass of the obje
t. Lower orderapproximations of this solution also exhibits that the parameter a makesthe metri
 behave like the Thirring system where a is 
orresponding to theangular momentum per unit mass along the θ = 0 axis.Further physi
al interpretation turns out to be quite 
ompli
ated. Whilethe Boyer-Lindquist 
oordinates have some 
ommon features with S
hwarzs
hild



56 CHAPTER 3. ASYMPTOTICALLY MINKOWSKI SPACESand lower approximations of rotating bodies, it does not present any obviousway to build up the 
oordinate system from physi
al experiments. With thisin mind, I will mention one property with the Kerr metri
 in Boyer-Lindquist
oordinates that is often mentioned in that 
onne
tion, and that 
an be re-lated to frame dragging. This is partially following the treatment on the Kerrmetri
 in the book by Grøn and Hervik [56℄. Observe that
gtt = 2mr/Σ − 1 (3.45)We �nd that this quantity be
omes positive if

r2 + a2 cos2 θ − 2mr < 0 (3.46)Observe that the surfa
e ∆ = 0 
learly has to be inside this region of spa
efrom r2 + a2 cos2 θ − 2mr = ∆ − a2(1 − cos2 θ) <= 0. The ∆ = 0 surfa
eis signi�
ant as this gives an in�nite grr and thus plays the same role as theevent horizon in the S
hwarzs
hild metri
. The gtt > 0 region is howeverinteresting as this marks the area where physi
al parti
les moving alongtimelike ds < 0 paths 
an have 
onstant r, φ and θ 
oordinates. Examiningthe metri
 we �nd that the only way to get a negative interval is to have dφnegative. Thus one might say that this region plays the same role for framedragging as the area inside the event horizon plays for ordinary gravitation.The area with this extreme dragging, outside the ∆ = 0 boundary is namedthe ergosphere.Another way to see the e�e
t of frame dragging in this 
oordinate systemis to examine the path of a free parti
le initially at rest far from the sour
e.This is relatively simple to analyze using Lagrangian formalism, but as thisis somehow outside the s
ope of this thesis, I will not go into the details.The main idea is that the Lagrangian for the system be
omes independentof φ, hen
e there is a 
orresponding 
onstant of motion pφ. One �nds thata non-moving parti
le far from the sour
e has approximately pφ = 0. Thisgives us the following result for the angular velo
ity of the parti
le in the
oordinate system:
dφ

dt
=

a(r2 + a2 − ∆)

(r2 + a2)2 − ∆a2 sin2 θ
(3.47)This isn't an easy expression, but inserting for ∆ it is a
tually quite easy tosee that if we ignore all but the �rst order produ
ts of a we arrive at

dφ

dt
≈ 2ma

r3
(3.48)Thus showing that for at least small angular velo
ities, we have a 
lear ten-den
y that the parti
le is dragged along in the same dire
tion as the 
entral
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t be
omes stronger as one get 
loser. Iwould like to mention that this approximation also demands that r is large
ompared to a, as else one 
annot justify keeping the r3 term, and not higherorder a terms. The exa
t solution is not very 
ompli
ated, but gives us lit-tle new qualitative information, ex
ept that the dragging e�e
t is relativelysomewhat weaker for high a.The ∆ = 0 limit is also easy to 
al
ulate, but hard to interpret:
dφ

dt
=

a

r2 + a2
=

a

2mr
=

a

2m(m+
√
m2 − a2)

(3.49)I have been unable to �nd any 
oordinate independent interpretation ofthese dragging-e�e
ts found here. Nevertheless, from the simple form of themetri
 it seems unlikely that one 
an be able to get 
ompletely rid of it.The Kerr-metri
 and its generalisations have been subje
t to mu
h resear
h,and have many interesting properties. However, I believe I have now brie�y
overed those results that are most interesting in regard to Ma
hian rotatione�e
ts.3.3.3 Gravity probe B, This se
tion is mainly based upon the NASA �nal report of the GravityProbe B experiment [2℄. Gravity probe B is a satellite experiment that hasbeen under development at Stanford University sin
e the 1960s. On 20 April2004 the satellite were �nally laun
hed, and it produ
ed data until 29thSeptember 2005. However, the data-analysis has proven quite 
ompli
ated,and it is still not 
ompleted. The results I base this se
tion on were presentedin the 
ontext of NASA no longer providing funds for the proje
t.The theoreti
al foundation for the experiment is the approximation foundby S
hi� as presented in 3.3.1. The idea was to send a satellite in an orbitover the poles with gyros
opes initially pointing toward a suitable heavenlybody. This body should be so that when the satellite is over the equatorthe dire
tion to that body from the gyros
ope is either away of through the
entre of the earth. This setup has several ni
e qualities. Looking ba
k tothe equation for the pre
ession of gyros
opes 3.41 we see that in this 
ase the�rst term in the equation will always be orthogonal to the plane the satellitemove in, thus giving a pure North-South pre
ession. This 
ontribution to thepre
ession will also thus be orthogonal to the spin-dire
tion of the gyros
ope,hen
e giving a maximal total displa
ement. The se
ond term might be a bitmore di�
ult, but integrating around the entire orbit it be
omes 
lear from
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tion of that pre
ision 
ontribution will sum up tobe along the axis of rotation of the Earth. Hen
e, this pre
ession will de�e
tthe gyros
ope in a purely East-West dire
tion. Again, this de�e
tion is aslarge as it 
an, as the pre
ession is orthogonal to the spin.Even though the experiment then in prin
iple is easy, there were manypra
ti
al and te
hni
al di�
ulties 
onne
ted to doing this experiment. Onething is to �nd su�
iently a

urate orbit information. Fa
tors su
h as howoblate the Earth is had to be taken into a

ount. This was ne
essary in orderto obtain the right values for the position ve
tor needed in the formulas. Itwas also ne
essary for some 
alibrating issues.Finding a suitable heavenly body to use for referen
e was also important.It had to have a known, small velo
ity relative to the ba
kground of distantbodies, while being su�
iently strong to be possible to be tra
ked easily andbe dis
erned from the surroundings. In addition 
omes the above-mentionedlo
ation requirement that it had to be above the equator. The 
hoi
e fell onthe star IM Pegasi.For the required pre
ision of this experiment, the teles
ope required fortra
king IM Pegasi on board the satellite also had to severely push te
hno-logi
al limits.However, the requirements for the gyros
opes 
ould almost be 
onsidereds
ien
e �
tion. In order for the drift rate of these to be as low as requiredthere were several te
hni
al di�
ulties to over
ome. One thing is that itneeds to be almost perfe
tly spheri
al. However, it also needed to be veryhomogenous. This was in order to make sure the geometri
 and mass 
en-tre was as 
lose as possible to ea
h other. Even in spa
e, external for
eslike for instan
e radiation pressure 
ould have made making a su�
ientlyhomogenous sphere all but impossible. Only by applying motor boosters tothe satellite 
ompensating for this drift was a su�
iently homogeneity withinrea
h. In addition, they had to use super
ondu
ting 
oating and advan
ed
oolers in order to be able to make measurements on the spin of the sphere.Magneti
 shielding, being able to spin the gyros
ope up and avoiding possi-ble 
hange of shape of the apparatus over time were also major 
on
erns, allwhi
h were intimately 
onne
ted by keeping it all 
old. The �nal satellite was
omprised of four gyros
opes, two rotating in one dire
tion, and the othertwo in the opposite dire
tion, thus doing the same experiment more or lessindependently of ea
h other.After the data were 
olle
ted, one major problem showed up that drasti-
ally 
ompli
ated the analysis of data. Simply put it turned out that ele
tri-
al e�e
ts 
onne
ted to the 
rystals of the material the spheri
al gyros
opes
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hasings they were made of were large enough to 
ause signi�
antNewtonian disturban
es to their data. These disturban
es entered throughthe set up of a 
ru
ial 
alibration s
heme, an asso
iated torque, and anotherunforeseen resonan
e e�e
t with the rotation of the satellite 
asing. Thelast essentially sometimes made the spin dire
tions the gyros
opes to makea jump over some days independent of the others.Fortunately, even though it was not intended, they a
tually had obtaineddata that 
ould be used to map the 
riti
al ele
tri
al distribution inside thegyros
opes. Through this, they were able to drasti
ally redu
e the s
atteringof the results. A 
ontinuously greater understanding of the resonan
e e�e
talso helped tremendously.At the end of 2008, the main limitation on the results was that of 
om-putation power. Their results were based upon analysis of means over dailydata, while they are striving for high-speed 
omputational methods allowinganalysis of data of every 2 se
onds.For the North-South dire
tion, they 
al
ulated that the drift due to themovement around the earth would be 6606 milliar
se
onds per year (mar
-s/yr). In addition to the e�e
t of the Earth, the e�e
t of the motion aroundthe sun 
orresponding to the �rst term in 3.41 and the e�e
t of the motionthrough spa
e of the star had to be taken into a

ount when 
al
ulating thetheoreti
al result of the experiment. Thus they arrived at a theoreti
al driftof 6571±1 mar
-s/yr. Combining the result from all four gyros
opes theyarrived at a drift of 6550±14.0 mar
-s/yr. This they 
onsider a very good
on�rmation to that e�e
t.The East-West e�e
t of the rotation of the earth was 
al
ulated to bejust 39 mar
-s/yr. That is 
onsiderably less than that of the �rst e�e
t, andexplains why the need for su
h high pre
ision on the experiment. Taking intoa

ount the other signi�
ant fa
tors the expe
ted measurement ended up tobe 75±1mar
-s/yr. The 
ombined measurements yielded a result of 69.1±5.8mar
-s/yr. They stress however that these results is without systemati
 erroror model sensitivity analysis in
luded. Therefore, even though the theoreti
alresult is outside their estimated error, they state that they 
onsider the framedragging e�e
t to be 
on�rmed with only 15% un
ertainty. This may beintuitively justi�ed by observing that the measured drift is 
loser to that ofthe theoreti
al result with frame dragging than that without.So why is this experiment of interest to this thesis? This experimentstands as the best experimental 
on�rmation of the e�e
t that seem to bethe main basis for arguments tying Ma
h's prin
iple to general relativity,namely gravitomagnetism/frame dragging. Without su
h an e�e
t it is hard
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ts dire
tly a�e
t lo
al systems. Evenwith this e�e
t it is still not obvious that it is possible to �nd any relation that
onne
ts general relativity with any strong formulation of Ma
h's prin
iple,but the possibility seem to be there.



Chapter 4Universe modelsMa
h's prin
iple 
on
erns bodies far away. As su
h it makes sense thatattempting to restri
t attention to a small portion of the universe as is usuallyassumed in the asymptoti
ally Minkowski 
ase won't give us the full pi
ture.All masses in the universe may play a role. Therefore, the need to turn to the�eld of 
osmology in order to examine this fully seems to be evident. As thisis a potentially huge subje
t, I will restri
t my attention to two importantways 
osmology has been seen in 
onne
tion with Ma
h's prin
iple. FirstI will present a re
ent result. This shows that the universe models that ismost used for our universe - Friedmann-Robertson-Walker (FRW) universes,do have a very important "Ma
hian" property. Se
ondly I will present a
ouple of universe models that I have often seen referred to as exploiting ala
k of Ma
hianity in general relativity, and some ideas as how one mightunderstand them without having to let go of Ma
h's prin
iple.4.1 FRW/S
hmidIn this se
tion, I will present a re
ent result that 
an be 
onsidered quiteimportant from a Ma
hian point of view. It was found by Christoph S
hmid,and is presented in detail for �at universes in [49℄, and expanded to 
urveduniverses in [50℄. It states that for a linear perturbation of a FRW universethe orientation of the inertial frames is exa
tly dragged by a weighted meanof the rotation of the masses around them. Said in a di�erent way it tellsus that the rotational states of inertial frames are perfe
tly determined in arelatively simple way by the state of the universe. A 
ompa
t and stru
turedpresentation of the path to the result is already available as notes from thepro
eedings of a presentation held in 43rd Ren
ontres de Moriond [51℄. Thus,61
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us on the theoreti
al foundations not presented there.4.1.1 FRW universesThe Friedmann-Robertson-Walker metri
 is named after three s
ientists whoindependently found important properties of the metri
. Sometimes the nameLemaître is also in
luded, and sometimes some of the names are ex
luded.The histori
al reasons for this la
k of any strong naming-
onvention may beread from for instan
e Gravitation [36℄. It turns out that Friedmann wasthe �rst to dis
over the metri
 in 1922, but it was independently dis
overedby Lemaître in 1927. It was however �rst when Robertson and Walker in-dependently found that these universes are the only spatially homogenousand isotropi
 universes in general relativity in 1935 that the model got areal breakthrough. The assumptions that the universe at large 
an be sli
edinto spatial hypersurfa
es so that where you are on it won't a�e
t the ob-servations (spatial homogeneity), and that you observe essentially the samewhatever dire
tion you observe in (isotropy) �ts so well to our universe thatthey has been named the 
osmologi
al prin
iples. Thus FRW universes areoften one of the �rst universe models en
ountered in textbooks on 
osmology,for instan
e that by Grøn and Hervik [56℄.The metri
 of this model has a quite simple form. In Robertson-Walkerform it be
omes:
ds2 = −dt2 + a(t)2(

dr2

1 −Kr2
+ r2(dθ2 + sin2 θdφ)) (4.1)Here K is a true 
onstant determining the geometry of the spa
e. It 
an bes
aled by 
oordinate transformations, but never made to 
hange sign. This
oordinate transformation is essentially to draw the absolute value of K into

a. By that reason in theoreti
al appli
ations a dimensionless parameter k isintrodu
ed and is set to be ±1 or 0, ea
h of these 
ases representing quitedi�erent geometries. If K > 0 the universe is said to be 
losed, and k = 1.If K = 0 it is �at and k = 0. Finally, if K < 0 it is open and k = −1. a(t)is a time-dependent s
ale fa
tor. Both K and a is to be determined by thematter-distribution through Einstein's �eld equations.Some words on notation. S
hmid uses K in the same way as I here use
k. I will stay with the standard notation. This avoids 
onfusion with Kneeding to have dimension that 
an
els r2. If r is �xed to be dimensionlessby 
oordinate 
hoi
e, k might have substituted K. However, S
hmid laterwill use k for 
ertain eigenvalues. I will here adopt the more 
ommon notation
λ for these eigenvalues.



4.1. FRW/SCHMID 63Another 
ommon form for the metri
 that will prove useful in the se
tionsto 
ome are the following:
ds = −dt+ a(t)2(dχ2 +R(χ)2(dθ2 + sin2θdφ2)) (4.2)Where R(χ) = sin(χ) if k = 1, R(χ) = χ if k = 0 and R(χ) = sinh(χ) if

k = −1.An important quantity often met in the treatment of FRW-universes isthe Hubble parameter de�ned by H = ȧ/a where ȧ = da/dt.It may also be interesting to note that if one set k = 0 and a = 1 one getthe standard Minkowski metri
. This shows that Minkowski is a spe
ial 
aseof FRW. The result of S
hmid will turn out to open up for an interestinginterpretation of this that I strangely enough have not seen mentioned before.It may also be worth to mention that these universes have the propertythat gyros
opes follow the matter �ow, always pointing along the same lineof matter. This may be intuitively 
on�rmed from the isotropy 
ondition,as any pre
ession of the gyros
ope relatively to the matter around it wouldmake the pre
ession axis stand out as a "favoured" dire
tion.4.1.2 Linear perturbation on FRWPerturbation theory is the theory of what happens if you take a systemand make small 
hanges to it. The initial system is 
alled the metri
 andis usually 
hosen in a way so that it has parti
ularly simple or desirableproperties. The new, 
hanged system is 
alled the perturbed system. Asour universe seems to be well des
ribed as something not far from perfe
tlyspatially homogenous and isotropi
 it makes sense to use FRW universe as aba
kground when studying our universe.One parti
ular problem when it 
omes to all perturbations is the one ofgauge freedom. A gauge is a relation that tells us what point in the perturbedsystem 
orresponds to what point in the unperturbed. To illustrate this,imagine a 
ir
le in the Eu
lidean plane. This plane is 
overed by a standardpolar 
oordinate system with the origin in the 
entre of the 
ir
le. Use thisas the ba
kground system. Then make a slight 
hange/perturbation of it sothat instead of being a 
ir
le we have an ellipse. Where should we put theorigin, 
orresponding to the 
entre of the 
ir
le in this new system? Bothfo
i, and the 
entre of those, present themselves as possibilities. Therefore,it is possible to introdu
e a standard 
oordinate system having any of theseas 
entres mapping points in the ba
kground to the ellipse. In addition, one
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orresponden
e between the 
ir
le and ellipti
 
urve.In that 
ase, a kind of polar 
oordinate system where the radius-
oordinateis 
onstant for all points in the ellipse 
ould be introdu
ed. Knowing themetri
 of this 
oordinate system, it would still be evident that the perturbedsystem represented an ellipse. This freedom in mapping is referred to asgauge freedom. Thus, 
learly de�ning gauges or working with quantitiesthat is gauge invariant quantities is important, and I will 
ome ba
k to thatissue later.For the FRW-ba
kground there is an important result presented for in-stan
e by Kodoma and Sasaki in [28℄. To explain it I want to introdu
e thenotion of "pure" s
alar, ve
tor and tensor �elds. Any s
alar �eld is automat-i
ally "pure". A ve
tor �eld may be de
omposed into a s
alar and a pureve
tor �eld where the purity of the ve
tor �eld is de�ned by it being diver-gen
eless. Similarly, any (symmetri
) se
ond rank tensor quantity may bede
omposed into pure tensor, ve
tor and s
alar �elds, where the pure tensor�eld is both tra
eless and divergen
eless.Consider an equation involving s
alar, ve
tor and/or tensor �elds de�nedon the hypersurfa
es of homogeneity in the FRW-universe with the followingproperties:
• It is 
ovariant with respe
t to 
oordinate transformations in the hyper-surfa
e
• It is linear in unknown geometri
al quantities
• If it is a di�erential equation it is at most of se
ond orderIt turns out that su
h an equation 
an then be de
omposed into a groupof equations where ea
h only 
ontains pure s
alars, ve
tor or tensor �elds.The linear approximation to Einstein's �eld equations with FRW-ba
kgroundhas these properties. Thus, the e�e
t of any small perturbation may haveits e�e
ts analysed independently in the s
alar, ve
tor and tensor se
tor.The pure s
alar-�eld part of the perturbation is sometimes also referred toas irrotational or density perturbation. The pure ve
tor part is sometimesreferred to as rotational or vorti
ity perturbations. The pure tensor part issometimes referred to as gravitational wave perturbation.The possibility to make su
h de
omposition is 
riti
al for the approa
hmade by S
hmid. Thus, it 
ould be interesting to examine if it 
an be done forother universes than FRW as well. After the proof of this result, Kodoma andSasaki stress that the ba
kground hypersurfa
e having 
onstant 
urvature
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riti
al part of the proof. One possible de�ning property of 
onstant
urvature is that
Rαβγδ = K(gαγgβδ − gαδgβγ) (4.3)where K is 
onstant. This poses a potentially severe restri
tion on the modelsfor whi
h this method may be used. FRW universes are the only universemodels I have found to have been used as an example for this.4.1.3 Eigen�elds of Lapla
ianIn order to 
arry out the integrals required to arrive at his results, S
hmidfound a 
ertain set of eigenfun
tions for a Lapla
e operator. The Lapla
eoperator in question S
hmid refers to as the de Rham-Hodge Lapla
ian (∆) inorder to separate it from what he refers to as the rough Lapla
ian. Strangely,I have found no standard naming 
onvention for these, so I will sti
k withhis terminology. The rough Lapla
ian is de�ned by ∇a∇a. The de Rham-Hodge Lapla
ian is originally only de�ned on di�erential forms, but by goingto the 
orresponding ve
tor where ne
essary it may make sense to use it onve
tor �elds as well. Instead of giving the full de�nition that would requirea degree of mathemati
s than I don't want to assume in this thesis, I willsimply state the two main properties that was ne
essary for S
hmid to arriveat his �nal result: For s
alar �elds the rough and de Rham-Hodge Lapla
ianis equivalent, and for divergen
eless (pure) ve
tor �elds ∆ ~A = curl(curl( ~A)).He starts out by investigating the s
alar eigen�elds of the Lapla
ian. Asthe ba
kground is spheri
ally symmetri
, he 
an separate those into a radialand an angular part. The angular eigenfun
tions of the lapla
ian is a set ofwell-known fun
tions known as spheri
al harmoni
s. The standard notationfor these are Ylm(θ, φ) where l andm are integers 
hara
terizing the fun
tion.He then solved the radial part in terms of the 
oordinate system des
ribedby the metri
 4.2. By demanding it to be regular in the origin, he arrived atthe following fun
tion:

J̃ (k)
q l(χ) = Rl(− 1

R

d

qdχ
)l(

sin qχ

qR
) (4.4)Remember that R is a 
ertain fun
tion of χ. This is not marked expli
it inthis formula to avoid 
onfusion with the parenthesises for the terms to be themultiplied. l is the same as for the spheri
al harmoni
s, showing what radialfun
tions 
an be used together with what angular eigenfun
tions. In orderto make a 
leaner notation q was introdu
ed and is de�ned as q2 = λ2 + k.Here λ is the eigenvalue 
orresponding to the radial fun
tion, and k is the
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urvature-parameter. As mentioned earlier this notation di�ers fromthat used by S
hmid. Instead of lambda he uses k, and he uses K for whatI here note as k.
J̃ is then re
ognized as a generalisation of another well-known family offun
tions: the Bessel fun
tions. From knowledge of these he are qui
kly ableto determine the eigenfun
tions that is not regular at χ = 0 as well. I wouldlike to remark that the form of the posible fun
tions R was important inderiving the relatively simple expression 4.4. Thus expanding this result toother universes than FRW-universes may be problemati
.Then we may turn our attention to the ve
tor �elds. As there may bemore than one ve
tor �eld with a 
ertain eigenvalue there may exist bases ofve
tor �elds that one 
an 
onstru
t all other eigenve
tor �elds from. Thereis a 
ertain degree of freedom asso
iated with the 
hoi
e of this basis. Thismotivates trying to �nd ve
tor �elds that 
an be used as basis elements withparti
ularly ni
e properties.S
hmid 
hooses to examine the following set of sets of �elds spanning thethree dimensions:

~X+
lm = R~∇Ylm (4.5)
~X−

lm = ~eχ × ~X+
lm (4.6)

~eχYlm (4.7)These �elds have some quite ni
e properties. All of them are eigenfun
tionsof the total angular momentum operators J2 and Jz with values l(l+ 1) and
m (we will later see why this is a good thing). If one examines the sign ofthe �elds on 
hanging sign on all 
oordinates one �nd the parity. The parityof all X− is P = (−1)l+1. For all the other �elds the party is P = (−1)l.Finally, they are all orthogonal to surfa
es with 
onstant radius. This lastproperty tells us that all ve
tor �elds 
an be de
omposed uniquely into a sumof these �elds at ea
h shell of 
onstant radius (that is, if these �elds makea 
omplete set, whi
h I believe follows dire
tly from them spanning threedimensions and Ylm being 
omplete).There is also the freedom of multiplying these �elds by 
ertain s
alarradial fun
tions. This is explored to some extent. Divergen
eless �elds arealso 
onstru
ted this way, ex
ept for the X+ �elds. In order to get thesedivergen
eless a �eld of the Ylmeχ had to be added. However there are thenstill no mixing with the X− elements. Finally, it is shown that the following�elds are eigen�elds of the de Rham-Hodge Lapla
ian:

J̃
(k)
ql (χ) ~X−

lm(θ, φ) (4.8)
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tion as before. The eigenvalue in this
ase is exa
tly −q2. The other possible eigen�elds with X i as angular partmay be gotten by 
hanging J̃ with one of the other previously mentioneds
alar radial eigenfun
tions of the Lapla
ian. It turns out that the eigen�eldsinvolving the other basis �elds are of no interest in this 
ontext.4.1.4 Perfe
t dragging in perturbed FRWNow we are �nally ready to have a brief look on the physi
s around the resultthat indi
ates perfe
t dragging in FRW-universes. Take a FRW-ba
kgroundwith standard Robertson-Walker 
oordinates (r as radius, not χ). Thenapply a pure ve
tor perturbation on it, keeping the universe at in�nity un-perturbed. A result from perturbation theory is that in this 
ase we may keepour old time 
oordinate without any gauge problems. This is be
ause 
hang-ing the time-stru
ture between hypersurfa
es of homogeneity would requires
alar perturbation. Another interesting result is that the intrinsi
 geometryof ea
h sli
e of 
onstant time remains un
hanged by the perturbation. Itis then possible to 
hose a gauge so that the perturbed universe is 
overedby a 
oordinate-system in a way so that the metri
 is identi
al to the ba
k-ground metri
, with the ex
eption of the 
omponents g0i = βi. And as theperturbation is purely ve
tor, the ve
tor �eld ~β must be divergen
eless.In this universe, 
onsider the following setup: At ea
h point is an ob-server moving so that his 
oordinates remain 
onstant. Ea
h observer has
onstru
ted a lo
al orthonormal frame. These frames have their orientation�xed so that they are part of geodesi
s between the observer and 
onstantheavenly bodies at in�nity at the same time 
oordinate. As the intrinsi
 ge-ometry of the surfa
es is un
hanged and there is no perturbation at in�nity,these dire
tions are well-de�ned, as they are well-de�ned in the ba
kground.Ea
h of these observers has a set of gyros
opes. By observing the movementand pre
ession of these, they are able to observationally de�ne gravitomag-neti
 and ele
tri
 �elds in their orthonormal frame.Now the question we would like to ask is, how do the gyros
opes pre
ess?The pre
ession of the gyros
opes de�nes the orientation of the lo
al inertialframes. We want to examine how this orientation is a�e
ted by the �ow of themasses of the universe. Thus, we are only interested in the gravitomagneti
�eld.This turn out to be very similar to what was done earlier in this thesisfor the Minkowski ba
kground. And as one might expe
t also in this 
aseone a
tually gets the equivalent of 2.15-2.16 with h̄00 
onstant, and h̄0i = βi.



68 CHAPTER 4. UNIVERSE MODELSThe �eld equations do be
ome similar as well, but with a very importantdi�eren
e.S
hmid is using Cartan's equations to arrive at the �eld equations forthe perturbed metri
. This involves working on lo
ally orthonormal framesas opposed to the 
oordinate frames. He keeps it to �rst order in ~β. Inthis 
ase he 
an restri
t attention to the 0̂̂i 
omponents of the equations.Here α̂ is used to empathise that we are working with the 
omponents in anorthonormal frame, not those in the 
oordinate basis. The equations be
ome:
(−δ + µ2)~β = −16πG~Jǫ (4.9)where G is Newton's gravitational 
onstant, and ~Jǫ is given by the 
ompo-nents J î

ǫ = T 0̂î. That the energy-momentum tensor is given in an orthonor-mal frame is important as that means that this quantity 
an be measuredby lo
al observers without any knowledge of any overall 
oordinate metri
.Apart from this, it is identi
al to the �eld equation we had for Minkowski-perturbation with 
onstant g00, with the ex
eption of the µ2 term. µ isde�ned by (µ/2)2 = −(dH/dt). We 
an 
on�rm that this term disappears asone 
ould expe
t in the non-expanding Minkowski 
ase.Now we are only interested in the pre
ession of a gyros
ope at one point,let that be the 
entre of our 
oordinate system. Now the pre
ession turnsout to be a rotation that has to have total angular momentum and paritygiven by JP = 1+. The only ve
tor �elds of those presented in equations 4.5- 4.7 is a
tually ~X−
1m; For these eigenfun
tions of J l has to be 1, and we sawthat in this 
ase ~X− was the only one that 
ould have positive parity.We a
tually get the huge simpli�
ation that the only 
omponents weneed to be 
on
erned about of ~Ag are those that are produ
ts between radials
alar fun
tions andX−

1m. It even follows from angular momentum and parityproperties of the rotation that neither s
alar nor tensor perturbation 
ana�e
t it, as none of those 
an generate the right kind of �eld. Thus, therestri
tion to ve
tor perturbations turn out to be no real restri
tion at all.Turning our attention ba
k to 4.9, we se that if the right hand side is zeroit a
tually be
omes an eigen�eld-equation for the Lapla
e-operator. Andwe know the eigen�elds for the Lapla
e-operation for �elds of the form X−
1m.This invites use of the method of Green fun
tions. This method essentially isbased on �rst dividing the spa
e into surfa
es, and then to solve the equationfor the 
ase that the right hand side is zero everywhere ex
ept at one of thesurfa
es. Finally, we are to sum up the result. Su
h summation methodsusually do not work for the exa
t �eld equations in general relativity due totheir non-linearity. Thanks to the linear approximation, this �eld equation
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tually works.In this 
ase, it is natural to 
hoose the surfa
es to use in the methodspheres given by the surfa
es of 
onstant radius. Now the orthonormality ofthe ve
tor �elds given in 4.5 - 4.7 over these spheres is useful. This allowsus to for ea
h sphere de
ompose ~Jǫ so that we only have to mind the X−
1m
omponent of this ve
tor �eld as well. With l = 1 m may only have thevalues 0 and 1. Examining the properties of these ve
tor �elds one �nds thatthe sum of those on a surfa
e represent rigidly rotating shells, and that anysu
h shell may be made from it. As m = 0 represent rotation around thez-axis it is possible to only �nd the solution for this 
ase, and 
orre
t for thedire
tion di�eren
es later.This 
an be solved with the help of knowledge of the relevant eigenfun
-tions. For k = 0 and k = −1 the radial eigenfun
tion used outside the shellis determined by the openness into in�nity. Summing up and analysing theresulting pre
ession on the gyros
ope one �nds the main result of his paper:

~Ωgyro =
∫ ∞

0
dr~Ω

equivmatter(r)W (r) (4.10)
W (r) =

1

3
16πG(ρ+ p)R3Yµ(r) (4.11)

Yµ(r) =
−d
dr

[

1

r
exp(−µr)

] (4.12)Here ~Ωgyro is the pre
ession observed by the lo
al observer of the gyros
ope.
~Ω
equivmatter(r) is the angular velo
ity of the rigidly rotating shell-portion of thematter �ow at distan
e r. ρ and p is the mass density and pressure in theba
kground.The �rst of these equations has the form of a weighted average. But inorder for it to a
tually be su
hW must be normalized to 1. S
hmid examinedwhether this was the 
ase, and 
on
luded that it was.For k = 1 a slightly di�erent radial eigenfun
tion had to be used outsidethe shell taking into a

ount the �nite size of the 
losed universe. The resultwas exa
tly the same as the one presented above with the ex
eption that

exp(−µχ) had to be repla
ed by sinh− 1(µπ) sinh(µ(π − χ)).4.1.5 Summary and 
on
lusionsI will before leaving this result tie it to Ma
h's prin
iple and make some
omments on possible extensions. The main result here tells us that there
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k fa
tor needed to understand why the inertial framesbehave as it does. They do it only be
ause of how the matter of the universearound them behaves. It also depends on it in a maybe surprisingly simpleway. The angular velo
ity of the inertial frame is perfe
tly de
ided by theangular momentum of all rigidly rotating shells around it. All other motionsof bodies that are not part of the rigidly rotating 
omponent simply are
haoti
 �u
tuations that 
an
el ea
h other. Thanks to the exponential 
ut-o� in the Yµ fa
tor we also do not have to worry too mu
h about thingsextremely far out. This is espe
ially ni
e when having to worry about theevent-horizon. Thus it seems like at least for our universe Ma
h's prin
ipleis very well, maybe even perfe
tly, satis�ed.As promised, I will say some word about the Minkowski 
ase. As men-tioned before this is a spe
ial 
ase of the FRW-universe. Unfortunately, itmay seem like the result found by S
hmid 
annot be dire
tly applied to this
ase. This may be seen from the (p+ ρ) fa
tor in the weight fun
tion, givinga zero 
ontribution of all perturbations. This makes sense as all ve
tor per-turbations here would not have any masses to move, and 
reation of masseswould be a s
alar perturbation. The normalization of the weight fun
tionmight however still be defended by observing that in this 
ase the integralover Yµ(r) diverge, as µ = 0, and thus there is no exponential 
ut of. How-ever, as this result 
laims validity for all linear perturbations, this resultmight a
t as a support for another theory regarding Minkowski spa
es: Thata (FRW-kind of) Minkowski universe is unstable in a way so that if you putany mass in su
h an universe it will 
ollapse in a way so that for instan
e allgyros
opes pointing at it will keep pointing at it. There is no mass outsideto keep it Minkowski at in�nity.While it turns out that the result may be hard to interpret for universeswith p + ρ = 0, is there any 
on
eivable way to extend it? In parti
ular,is there any other universe models than the FRW-ones that may be treatedin a similar way? Unfortunately, this seems to me to be quite unlikely. Ihave already mentioned the property of 
onstant 
urvature that is 
riti
al tothe ability to be able to restri
t attention to the vorti
ity se
tor. The gaugesimpli�
ation, and 
omplete disappearan
e of higher than �rst order tensorswould be hard to do without. In addition, all of the work on the ve
tor basis�elds in the eigen�eld se
tion was based upon spheri
al symmetry. Withoutthis, the entire argumentation allowing us to redu
e attention to only twoof these would fall apart. Again, it would be hard to imagine reprodu
ingthis result without use of these symmetry properties. Examples of other ni
eproperties with the FRW-ba
kground that one may not take for granted inother universes are:
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• Having a ni
e ba
kground of matter at in�nity to point observer's axestoward
• Having the gyros
opes ni
ely following the initial matter �ow
• Being able to sli
e the spa
e time into spatial sli
es
• Giving su
h a ni
e eigen�eld-like equationAll of these are properties that somehow enter into the pro
ess of arriving atthis result.While it seems to be hard to �nd other suitable universe models to applythis method to, what about going to higher order than linear? The answeris that this is maybe harder than �nding other universe models. Also in this
ase, the de
omposition into s
alar, ve
tor and tensor perturbations breakdown. This as it had as a requirement that the unknowns in the equation tobe de
omposed were only linearly dependent. This will naturally not be the
ase in higher orders. The �eld equation will also probably no longer be ofa form where any form for Green fun
tion method may be used, as this alsodepends on linearity of the system. The ve
tor �eld results should howeverstill hold, and thus maybe be used in other approa
hes.An extension that S
hmid himself states that he is working at is to extendhis result to the movement and a

eleration properties of inertial systems.This absolutely is interesting from a Ma
hian point of view, but falls outsidethe s
ope of this thesis as it does not relate to rotation.4.2 Rotating universesPreviously we saw how FRW universes have the property that all inertialaxes follow the matter �ow. Even in the 
ase of linear perturbation, we sawthat there still was a 
lose 
onne
tion between the �ow of matter and thegyros
ope axes. The 
onne
tion simply being a 
ertain weighted average. Iwill in this se
tion present a 
ouple of universe models where there seem tobe no su
h 
onne
tion. In these, we will �nd that gyros
opes everywhereare rotating with respe
t to the �ow of the nearby matter. Su
h universesare referred to as rotating. I will also tie these to the question of Ma
h'sprin
iple. It might seem at �rst glan
e like they are defying this prin
iple,but there are some suggestions to how even these might be interpreted in aMa
hian way.



72 CHAPTER 4. UNIVERSE MODELS4.2.1 Goedel UniverseIn an arti
le from 1949 [19℄ Kurt Gödel presented a universe model that weresurprisingly simple, but still had quite a few important qualities. The metri
is given by:
ds2 = a2(−dx2

0 + dx2
1 − (e2x1/2)dx2

2 + dx2
3 + 2ex1dx0dx2) (4.13)This metri
 represent a dust-�lled universe where the dust is moving alongthe 
urves with 
onstant xi. In addition, there is a 
osmologi
al 
onstant.Thus, the energy-momentum tensor be
omes:

Tµν = 8πκρuµuν + λgµν (4.14)where uµ is the 
omponents of the velo
ity of the dust parti
les, ρ is themass density and λ is the 
osmologi
al 
onstant. In this 
oordinate systemonly the 0-
omponent of uµ is non-zero. Solving the �eld equations give us
λ = 1/2a2 = 4πκρ.One interesting property of this solution is that it is 
ompletely homoge-nous. That is that every 
oordinate-independent result found for one pointwill automati
ally be satis�ed at every other point. With this in mind themost important result in our 
ontext of this metri
 is that one may showthat the inertial systems have to rotate with an angular velo
ity of 2

√
πκρwith respe
t to this 
oordinate system. This rotation has 
onstant sign anddire
tion along the third 
oordinate axis. As the matter is at rest in theoriginal 
oordinate system one may 
on
lude that if one 
hange 
oordinatesto an inertial system one will �nd that the matter is rotating, at least lo
ally,with respe
t to this frame.Extending this result from a lo
al perspe
tive to a global is far fromtrivial. One of Gödel's stated motivations for studying this model was thatit is impossible to sli
e the spa
e globally into spatial sli
es that is separatedby a timelike distan
e. This property may be intuitively understood fromthe probably most quoted property of this universe: It has 
losed timelike
urves (CTLs). CTLs are 
urves that start a pla
e, moves through spa
e,always in positive time dire
tion, but still end up at the same pla
e as itstarted. The existen
e of CTLs is easily seen from the metri
 if one makes a
oordinate-
hange to a 
ertain set of 
ylindri
al-like 
oordinates:

ds2 = 4a2(−dt2 +dr2+dy2−(sinh4 r−sinh2 r)dφ2−2
√

2 sinh2 rdφdt) (4.15)Here we 
learly see that for sinh4 r > sinh2 r a parti
le moving along apath with all 
oordinates 
onstant ex
ept for φ will always have a timelike
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an be seen, as the square of the interval 
hange is alwaysnegative. However this 
oordinate transformation is 
onstru
ted so that φ is
y
li
al with a period of 2π. Thus the parti
le will end up at the same pointas it started on
e it has had a total 
hange of φ equal to this.The existen
e of CTLs 
learly shows that no global sli
ing of the spa
e-time into surfa
es of 
onstant time in an ordinary way is possible. As thespa
e is 
ompletely homogenous, there is neither any natural way to sli
eit into hypersurfa
es of homogeneity - all surfa
es would do. I have notfound any simple form for the geodesi
s not simply being those of the x4
oordinate lines. This makes the physi
al interpretation and predi
tion oflarge-s
ale observations also quite di�
ult. However, there is nothing thatsuggests that there should be any e�e
t working at long range that 
ouldbe observed and interpreted from an inertial frame as matter at a distan
erotating in an opposite dire
tion than the matter lo
ally. In addition, thefa
t stands that there is a natural 
oordinate system with no movement ofmatter where the gyros
opes is rotating. Seen from this 
oordinate system,it seems impossible to explain this motion from the properties of the masses.Thus, several ideas 
on
erning Ma
h's prin
iple is put to a serious test.There have been some obje
tions to the Gödel universe that might beused to weaken its position as a 
ounter-argument to some formulations ofMa
h's prin
iple. One of them is that it is open. As the universe is openthe possibility of something further out than observed, or at in�nity, may beinterfering is present. This is somewhat similar to the Minkowski solution ofdemanding the view that there has to be some big masses at in�nity to explainthe phenomena in that universe. However, there seems to be no extra reasonfor wanting to introdu
e su
h in�nity 
ondition in the Gödel universe thanas an ad-hook solution to the Ma
hian problem. In the Minkowski universe,we had the argument that the observed Minkowski-like universe has massesfar away. In addition as brie�y mentioned in the introdu
tion there aresome theories regarding a solution needing to have a 
ertain matter 
ontentthat 
an be used for justifying introdu
ing extra-masses in the Minkowskiuniverse, I have not seen any similar arguments for the Gödel 
ase.Another obje
tion to the Gödel argument against Ma
h's prin
iple isthat the Gödel universe is unphysi
al. This is due to it having CTLs. Itseem however that whether CTLs should be allowed in physi
ally signi�
antmodels is still a matter of taste, and that there are still being done someresear
h on that �eld. However, we shall see that there has been found amodel that both is 
losed and has no CTLs, but still poses the same problemsto Ma
h's prin
iple as the Gödel universe. Thus, it seems like one should be
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hing for a solution that 
overs that universe as well.As a side note: While working on this thesis I examined the possibility of�nding a 
onne
tion between S
hmid's result and the Gödel universe througha 
ertain parameterized family 
onne
ting the FRW and Gödel universe [29℄.I ended this pursuit as I found that this approa
h probably break down dueto the exponential dependen
y on spatial 
oordinates of the Gödel metri
.This makes even a small deviation from the FRW-
ase impossible to interpretas a linear perturbation unperturbed at in�nity.4.2.2 Ozsváth and S
hü
kingIn 1962 Ozsváth and S
hü
king presented a metri
 with some similar prop-erties as the Gödel metri
, but being 
losed and without CTLs [39℄. Morere
ently Ozsváth did some more examinations on it, and at the same timepresented the metri
 in a slightly more 
ompa
t form than in the original pa-per [38℄. However, this last metri
 is with respe
t to di�erential forms, andthus is more di�
ult to interpret than the original one that is with respe
t tostandard 
oordinate di�eren
es. I will thus here present the metri
 as in theoriginal to keep the mathemati
s somewhat simple, even though this formshould be 
onsidered slightly outdated:
ds2 = dt2 +R2k2αe3i dx

idt+ ea
i γabe

b
jdx

idxj (4.16)Here ea
i and γab were given by their matrix representations:
ea

i =







− sin x3 sin x1 cos x3 0
cosx3 sin x1 sin x3 0

0 cos x1 1





 (4.17)
γab = (

R

2
)2







−(1 − k cosαt) k sinαt 0
k sinαt −(1 + k cosαt) 0

0 0 −(1 + 2k2)





(4.18)Here α, R and k are 
onstants that determine the solution, and have thefollowing 
onstraints. R > 0, |k| < 1/2 and α = 2
R

√

2
1−4k2 . It turns outthat this metri
 des
ribes a dust-�lled universe with 
osmologi
al 
onstantwhere the motion of the dust is given by it having 
onstant xi 
oordinates.Thus, the 
oordinate system is 
ommoving with the dust. The 
osmologi
al
onstant Λ and density ρ are related to R and k by:

Λ =
1

R2(1 − k2)
(4.19)
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κρ

2Λ
= 1 − 4k2 (4.20)It turns out that in this system the inertial frames de�ned by gyros
opesalso have a 
ertain angular velo
ity ω with respe
t to the matter motiongiven by:

ω =
αk2

√
1 − k2

(4.21)As the metri
 is quite 
ompli
ated, there is not any obvious global in-terpretation of this system. I estimate trying to �nd su
h an interpretationwould 
onsume more time than I have available, and still be of little or no usedue to the 
omplexity of the problem. If someone would like to pursue thismatter further however, I believe a good starting point would be an arti
lefrom 1969 by Ozsváth and S
hü
king. I have not gotten hold of this arti
lemyself, but it is referred to as holding more details about the system in [38℄.Anyway, the main importan
e of this metri
 is that it serves as an ex-ample of a spatially 
losed universe where the inertial frames are rotatingwith respe
t to the (lo
al) matter �ow. This universe also is not prone tothe obje
tions given for the Gödel universe, so other approa
hes need to be
onsidered if one is to try to save 
ertain interpretations of Ma
h's prin
ipleinside the general framework of the relativity theory.4.2.3 Gravitational waves solutionIt seems to me like the most 
ommon opinion is that the Ozsváth-S
hü
kinguniverse truly is an example that general relativity does admit solutions thatis in
ompatible with Ma
h's prin
iple. However, there are some paths thatmight turn this around if studied more 
losely. I will 
over two of them here.The �rst is one taking into a

ount gravitational waves. The other is a briefsket
h of an idea of my own that I strangely enough have not found anyonemention in the literature.The �rst idea is that somehow matter represented by the standard energy-momentum tensor isn't the only quantity that has to be taken into a

ountwhen dis
ussing Ma
hian ideas. Another 
andidate is that of gravitationalwaves. I will illustrate this path by a summary of the treatment of King in[27℄.The main idea of King is to introdu
e an average ba
kground metri
 g(B)
µνthat is spatially homogenous and isotropi
. It is worth noting that this ba
k-ground metri
 is 
hosen so that it does not need to ful�l the �eld equations.
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kgrounds are still present. In thisba
kground metri
 there is then 
ertain Killing-ve
tor �elds ξi that repre-sent rotational symmetry. He further introdu
es a set of 
oordinates on thisba
kground metri
 that makes ea
h hypersurfa
e of homogeneity labelled bya time 
oordinate and the metri
 being diagonal with g00 = −1He introdu
es the following notation representing a kind of average of as
alar �eld:
< A >=

1

V

∫

V
AdV (4.22)where the �rst V represents the total volume of the hypersurfa
e at a giventime, the se
ond V represents an integral over this volume, and dV is avolume element on the surfa
e. The total volume makes sense as the universeis assumed to be spatially 
losed with �nite volume."Ordinary" angular momentum of a stress-energy �eld T µν may then bede�ned as:

Lp(t) =
∫

V
T 0iξidV = −V < T0iξ

i > (4.23)Here the integration is taken over a hypersurfa
e of homogeneity in the ba
k-ground metri
. We also may make use of the assumption that the universe isspatially 
losed, so that we have a �nite volume to integrate over. The lastidentity takes advantage of the form of the 
hosen 
oordinate system.His main result is that he �nds a tensor that may represent gravitationalwaves T (G)
0i and where he 
an prove that

< (T
(M)
0i + T

(G)
0i )ξi >= 0. (4.24)Here T (M)

0i is the ordinary energy-momentum tensor of matter.To understand the de�nition of T (G)
0i we �rst have to introdu
e hµν =

gµν − g(B)
µν . Then we expand the Einstein tensor of the real metri
 Gµν in apower series in hµν , that is

Gµν = G(B)
µν +G(1)

µν +G(2)
µν + · · · (4.25)where G(B)

µν is the Einstein tensor of the ba
kground metri
, that must 
o-in
ide with the zero-order part of the real metri
. This requirement on theba
kground metri
 was not expli
itly mentioned by King, but it is possiblethat it follows from the other restri
tions he sets on the ba
kground metri
that I will 
ome to later.Now the tensor T (G)
µν is de�ned by
T (G)

µν =
1

8π
(G(2)

µν +G(3)
µν + · · ·) (4.26)
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tion we assume the gravitational 
onstant tobe 1. How this might be seen upon as a kind of energy-momentum tensor forgravitational waves may be seen from the following form of Einstein's �eldequation:
G(1)

µν = 8π(T (M)
µν + T (G)

µν − T (B)
µν ) (4.27)Here T (B)

µν is the energy momentum tensor that would have been requiredfor the ba
kground metri
 to satisfy the ordinary form of Einstein's �eldequations, that is T (B)
µν = G(B)

µν /8π. Thus we see that T (G)
µν plays a similarrole as the ordinary energy momentum tensor in this formulation of the �eldequations. King states that this form of the �eld equation is 
alled the �eldtheory approa
h to gravity, and that it usually had been used in the 
ontextof a Minkowski ba
kground.Now, the issue of an "average metri
" has to be addressed. Near thebeginning of his treatment King points out that �nding a good su
h averageis an unsolved problem. He avoids this problem by only requiring a few
onditions on the ba
kground, not determining it 
ompletely. He then arguesthat there has to exist some ba
kgrounds that satisfy this by giving a roughoutline for 
onstru
ting su
h. The 
onditions are that the ba
kground andreal metri
 must have the following relations to ea
h other (formulas givenby 
omponents in the given 
oordinate system):

• Measure the same proper time on average < g00 − g
(B)
00 >= 0

• Measure the same spatial distan
es on average < gk
k − g

(B)k
k >= 0

• Have no relative translation or rotation < (g0i − g
(B)
0i )ξi >= 0From these relations, and the observation that in the given 
oordinatesystem TB

0i = 0 King 
laimed to be able to derive 4.24 for 
losed universes.He refers to his do
toral thesis for the full proof, whi
h I have not foundimportant enough to try to obtain.This result seems neat. It removes the problem of the matter rotating withrespe
t to the gyros
opes in the Ozsváth-S
hü
king universe by taking intoa

ount a rotation of gravitational waves that goes in the opposite dire
tion
an
elling the e�e
t of the matter as seen from the inertial frames. Thisserves as an explanation for the rotation of the inertial axes with respe
t tothe pure matter-�eld. However, I am not able to feel 
ompletely 
onvin
edby this argumentation. The de�nition of the energy-momentum tensor forthe gravitational waves seems a kind of ad-ho
k. It is hard to �nd anygood physi
al interpretation for this tensor. It serves as a sour
e term in



78 CHAPTER 4. UNIVERSE MODELSan Einstein-like �eld equation. However, the left hand-side of this equationis not the same geometri
al term as in Einstein's �eld equations, and hen
ethe physi
al meaning of the right hand-side is not a perfe
t analogy to theordinary energy-momentum with its usual physi
al interpretations.I would like to fo
us on what makes this result di�erent from simplyintrodu
ing any arbitrary tensor �eld with the property that its derived an-gular momentum 
an
els that of the ordinary angular momentum. It mustbe so that a 
ertain set of �elds used in 
onne
tion with work on the generalrelativity theory turns out to be a subset of those �elds that has the wantedproperty. The existen
e of this overlap might seem to be too good to be a
oin
iden
e. Thus, it may work as a strong argument for the idea that it isthe �eld theory approa
h to gravity that is the most natural framework forformulating a version of Ma
h's prin
iple that may hold.However, the physi
al interpretation of this is still not 
lear. It is hardto say whether this really is a physi
al result, or simply a well hidden math-emati
al 
onsequen
e of the form of the �eld equation 4.27. The 
ommentson the referen
e I have used also sow doubt about the physi
al 
ontent ofthis approa
h, and I have not found any further work on this. Nevertheless,it still stands as an example of a way to approa
h the Ma
hian problem ofthe rotating universes.4.2.4 Spinning parti
les solutionThe other approa
h I will only present brie�y is the interpretation of spin-ning parti
les. As mentioned in the introdu
tion, plain general relativity isworking with non-spinning parti
les. If one introdu
es spinning parti
les,one has to use the Einstein-Cartan theory. However, this begs the question- with respe
t to what is the parti
les non-spinning? I have been unableto �nd any sour
es that address this question. I assume �nding su
h wouldrequire diving into more details of the Einstein-Cartan theory, and this wasoutside the s
ope of this thesis. I will still give a quite simpli�ed thoughtexperiment involving rotating parti
les.Assume that dust parti
les in general relativity have to be rotationallyat rest in their inertial frame. This does not ne
essarily 
ontradi
t a matter�ow that is not in rotational rest in the inertial frames. In a great s
ale,we may regard ea
h grain of dust as a point parti
le, and thus should therotational state of these would appear as spin, and not matter in rotationin this perspe
tive. This assumption may thus be regarded as a possiblealternative of the 
orre
t spin-free parti
le. Another alternative might be
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les has to follow the general matter-
urrent in the region, but I have found no sour
es that expli
itly favour thisinterpretation.Now regard the Gödel universe in its standard 
oordinate system. Here allthe dust parti
les are at rest with respe
t to the 
oordinates, but the inertialsystems are rotating. This means that at every point, even though the matter
urrent is zero, there are parti
les rotating with respe
t to that 
oordinateframe. If we now analyze the gravitomagneti
 �eld in this 
oordinate frame,we get a situation analogue to the situation inside a magnetized obje
t. Thereare many small spins that by being oriented the same way together form a
onsiderable magneti
 �eld. Thus as we have several point-masses rotatingaround the same axis in our 
oordinate frame, we 
an expe
t to experien
ea signi�
ant gravitomagneti
 �eld. As the masses are at rest in our frame,this �eld will not a�e
t the movement of these, but it is 
lear that it mayexplain the rotation of the inertial frames!To determine if the expe
ted gravitomagneti
 e�e
t required to a

ountfor the rotation of the inertial frames in the Gödel universe a
tually 
oin
ideswith that generated by parti
les rotationally at rest in this is however notstraight forward. The approa
h in 2 may not be used, as obviously neitherthe Gödel nor the Ozsvát-S
hü
king universe is well approximated as a linearperturbation of the Minkowski spa
e. In addition, an approximate solutionwould not be expe
ted to arrive at the possible identity in this exa
t solution.Further study of this approa
h should probably be done with the Einstein-Cartan framework in mind. A good starting point for this may be an arti
leby Smalley [55℄. Here Smalley presents some work on the Gödel universewithin this extended theory.
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Chapter 5Con
luding remarksI have presented several results to some detail in the previous 
hapters. Itis now time to take a few steps ba
k and look at the big pi
ture. We seethat through the past hundred years, more and more a

urate 
al
ulationshave been done with regard to systems that 
ould shed light upon the statusof Ma
h's prin
iple in the general theory of relativity. We saw that therotating shell model 
on�rmed frame-dragging e�e
ts to progressively higherpre
ision inside the theoreti
al framework of general relativity. Still, in orderto observe this e�e
t we had to go to the exterior solutions of rotating bodies.Only very re
ently was this e�e
t 
on�rmed observationally to some extent,by the gravity probe B experiment.At 
osmologi
al s
ales, it is striking that there are relatively simple 
on-ne
tions between the rotational state of inertial frames and that of the 
ontentof the universe in two huge 
lasses of universe models. For 
losed universes,it enters through non-rotation with respe
t to matter and a form for gravita-tional waves. For linearly perturbed FRW-universes, the 
onne
tion is thatof a weighted average. Both of these owe to the 
on
ept of frame draggingas des
ribed earlier for simpler systems. Histori
ally the 
losed universe so-lution has been the favoured in regard to Ma
h's prin
iple. The re
ent resultthat FRW universes also have very Ma
hian qualities might however be usedas an argument for shifting that balan
e. While there are little indi
ationsthat the universe is 
losed, its FRW-like nature is mostly un
ontroversial.We also have seen a 
ouple of examples of universes that might be 
onsid-ered non-Ma
hian in a 
ertain way. Both of these may be solved by restri
tingthe validity of Ma
h's prin
iple to 
losed universes, and taking into a

ountgravitational wave e�e
ts. However, neither of these is very "FRW-like".This means that asserting that universes should be "FRW-like" would ex-81
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lude these as well. As our universe seems to be "FRW-like", this assumptionseems to be more pra
ti
al than the assumption that it is 
losed. This dohowever rise a host of new questions: Exa
tly how may one de�ne "FRW-like"? What properties must the universe have if it is rotational propertiesare de�ned exa
tly as a kind of weighted average, and not only through lin-ear perturbations? Is it possible to �nd a simpler and more pre
isely de�nedprin
iple than Ma
h's prin
iple that would 
learly disallow universes of du-bious Ma
hian nature? All of these questions seem like possible avenues forfurther work.And even if it should turn out that our universe doesn't obey Ma
h'sprin
iple perfe
tly it seem pretty 
lear that it may still serve a purpose.It shares one important property with the absolute spa
e it is said to be indire
t opposition to: It may be a useful tool. With the aid of the 
on
eptuallysimple and philosophi
ally appealing prin
iple we may qui
kly predi
t andget a kind of intuitive feeling for some quite 
ompli
ated systems in ouruniverse. This may range from frame dragging and light-shifting e�e
ts ofrotating bla
k holes, to appre
iation of the 
lose 
onne
tion between ourinertial frames and that of the heavenly bodies far away.



Appendix ASour
e 
ode for galaxy modelfrom s
itools.all import *# Initialising global parametersG=4.786e-17 #Newton's gravitational 
onstant/
^2 in kp
/solar massv0=2./3000 #dimensionlessA=1.e10 #solar masses/kp
Z=0.1 #kp
R=20 #kp
Rmin=0 #kp
, minimum radius to integrate over.
onstR0=10 #kp
, the value for R0 to use when examining stabilityNmax=4000000 #the maximum tested number of simulationsNmin=1000000 #the least number of simulations before plotting resultsN=3000000 #the number of random points for ea
h Monte Carlo simulationM=1000 #the number of points in the plotsvolume=2*Z*2*pi*R**2 #The volume of the galaxy in kp
^3# define fun
tion for our integranddef integrand(R0, r, z, phi) :"""returns r times the variable 
ontribution to the gravitomagneti
 field atthe point (R0, 0, 0) made by the matter at the point with
ylindri
al 
oordinates (r, z, phi). This 
oinsides with the integrandin our integral due to the r d\phi fa
tor in 
ylindri
al 
oordinates.83



84 APPENDIX A. SOURCE CODE FOR GALAXY MODELDue to optimizing reasons 4*G*v0*(A/(4*pi*Z)) should be multiplied tothis result after 
alling this fun
tion.The dimension of the return value is distan
e^-2"""return (r-
os(phi)*R0)/((sqrt(r**2-2*r*R0*
os(phi)+R0**2+z**2)**3))"""first 
ompare the result for the gravitomagneti
 field fortwo different ways of handling the distribution propertiesfor 
ylindri
al 
oordinates, with a given R0"""#Draw random numbersRbase=random.uniform(Rmin, R**2, size=Nmax)z=random.uniform(-Z, Z, size=Nmax)phi=random.uniform(0, 2*pi, size=Nmax)#Cal
ulate the gravitomagneti
 fields#weighted for uniform distribution of radial 
oordinatesr1=Rbase/RBUniform=4*G*v0*(A/(4*pi*Z))*integrand(
onstR0, r1, z, phi)#for even distribution of points in the 
ylinderr2=sqrt(Rbase)BEvenDisp=4*G*v0*(A/(4*pi*Z))*integrand(
onstR0, r2, z, phi)/r2# Performing the integral-summation and plotting.# The integral is the mean of the 
ontribution per volume times the volume# For uniform distribution, remember that we have weighted valuesBmean=zeros(Nmax)Bsum=0.Rsum=0.for i in range(Nmax):Bsum+=BUniform[i℄Rsum+=r1[i℄Bmean[i℄=Bsum/Rsumpoints= range(Nmin, Nmax, (Nmax-Nmin)/M)plot(points, Bmean[points℄*volume)legend("Uniform distribution")



85#for the even distribution no spe
ial 
onsideration needs to be takenhold('on')Bmean=zeros(Nmax)Bsum=0for i in range (Nmax):Bsum+=BEvenDisp[i℄Bmean[i℄=Bsum/(i+1)plot(points,Bmean[points℄*volume)legend("Even distribution")title("Monte Carlo 
onvergen
e")xlabel("Number of random points")ylabel("Bg-field/
 in kp
^-1")hard
opy("Galaxy1.eps")hold('off')dummy=raw_input("please press enter")"""Drawing the gravitomagneti
 field as fun
tion of distan
e fromthe galaxy 
ore. Using the uniform distribution method as I believeit to be slightly faster."""#prepearing for going through the points from the 
entreR0s=linspa
e(Rmin, R, M)Bfield=zeros(M)i=0for R0 in R0s:#get new random 
oordinatesr=random.uniform(Rmin, R, size=N)z=random.uniform(-Z, Z, size=N)phi=random.uniform(0, 2*pi, size=N)#
al
ulating the raw data for the Bfield at distan
e R0#I wait with multiplying in 
onstants in order to speed up the programB
ore=integrand(R0, r, z, phi)Bfield[i℄=B
ore.sum()/r.sum()i+=1



86 APPENDIX A. SOURCE CODE FOR GALAXY MODEL#multiplying in the 
onstants to the raw dataBfield*=4*G*v0*(A/(4*pi*Z))*volume#plot the gravitomagneti
 fieldplot(R0s, Bfield, \title="Gravitomagneti
 field in a galaxy", \xlabel="Distan
e from 
ore in kp
", \ylabel="Bg-field/
 in kp
^-1", \axis=[0, R, -4e-10, 2e-9℄, \hard
opy="Galaxy2.eps")dummy=raw_input("please press enter")#plot the fra
tion of the a

eleration that is given by gravitomagnetism#first without axis restri
tions to get the extremesplot(R0s, Bfield*R0s/v0, \title="Part of total a

eleration from gravitomagnetism", \xlabel="Distan
e from 
ore in kp
", \ylabel="Gravitomagneti
 effe
t/" + \"What is required to explain the motion", \hard
opy="Galaxy3.eps")dummy=raw_input("please press enter")#then fo
us on the part where there are most measurementsplot(R0s, Bfield*R0s/v0, \title="Part of total a

eleration from gravitomagnetism", \xlabel="Distan
e from 
ore in kp
", \ylabel="Gravitomagneti
 effe
t/" + \"What is required to explain the motion", \axis=[0, R, -5e-6, 1.5e-5℄, \hard
opy="Galaxy4.eps")
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