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PrefaeThis thesis might be regarded as a review over a subjet that has a historyof ative researh of more than 100 years. However, it di�ers from manyother reviews in ertain respets. I have made e�orts to not only present theresults, but also how they were found. The hope is that this will be enoughto get a deeper understanding of the results, and that it might expose waysto extend them. I also have made a serious e�ort to keep the mathematiallevel as simple as possible without the loss of preision that often is assoiatedwith suh popularisations. My own ontribution has mainly been to providemy own interpretations, examples and some suggestions where appropriate.There are three setions I want to mention espeially: The �rst two arethose that over two very reent results. One of those is the improved dataanalysis of the gravity probe B experiment detailed in 3.3.3. The other isShmid's result on linear perturbations on FRW-universes that is presentedin 4.1. Finally I would like to mention the setion alulating dragging e�etsin a simple galaxy model 2.3. While I am ever present throughout this thesisin seleting, re�ning and ommenting on works of others, this is the setionwhere I truly feel that I am presenting work that is entirely my own.This text is probably best used as an introdution to the �eld in question,or as a reading ompanion to the main artiles presented in this thesis. Itmay also be read more lightly as a simple overview of the history of the morereent researh on an engaging philosophial problem, or as a seond pointof view for those already familiar with the �eld.This thesis is arranged partially historially and partially based on om-plexity. The �rst hapter is a simple introdution narrowing the fous of therest of the thesis while providing some horizons for further study. The seondhapter only examines the simplest deviations from speial relativity theory.The third hapter extends on this, going to more ompliated systems, butstill keeping the Minkowski boundary. Finally in the fourth hapter the aseof entire universes are treated. The last hapter is just a short wrapping upof the previous hapters. iii



iv Most of this text should be possible to enjoy for anyone having lowergrade ourses in basi mehanis and vetor �eld theory. I also assume su-per�ial familiarity with the main onepts of the general relativity theorylike the metri tensor and the �eld equations. Full understanding will how-ever demand some more advaned lassial mehanis and familiarity withertain analyti methods. The exeption is the setion on galaxy rotation2.3. Here some numerial methods and programming is used. This setionis however not neessary for enjoying the rest of the thesis.In order to be as useful as possible as a reading ompanion I have mostlypreserved the notation of the soures formulas are based from. Exeptionsare noted in the text. This will be explained in the relevant setions. I use afew ommon onventions I would like to mention here: I use Einstein's sum-mation onvention. gµν is the metri tensor. T µν is the energy-momentumtensor. The time like omponent is the 0-omponent of tensors. Greek in-dies represent all 4 dimensions, while Latin indies mark only the spatialomponents.Of partiular note is it that there are di�erent onventions on the gravi-tational onstant. Some use Newton's, while others use that of Einstein. Inaddition, it is quite ommon to use the onvention that set the speed of lightand the gravitational onstant (Newton's) to unity.I would like to thank my supervisor professor Øyvind Grøn for all hishelp, and my family for support and feedbak. Also a big thank to all thosebooks, artiles and web pages that have served as inspiration and shaped myview of this amazing subjet. Not nearly all of them did �nd their way tothe bibliography, as they did not diretly relate to any of the ontent.
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Chapter 1IntrodutionI will in this hapter give an introdution to the topi of this thesis, bothhistorially and oneptually. This I will do by starting at the parts ofthe title and desribing those in more detail, in addition to other possibleapproahes to the problem at hand.1.1 Mah's prinipleI will in this setion give a short historial and philosophial introdutionto how the term "Mah's priniple" ame to be, and give a short overviewof possible meanings. In the later setions I will narrow down the sope ofthe rest of this thesis. This is neessary as Mah's priniple itself is a far tobroad onept for me to serve it justie to in the limited time and spae ofa master thesis. The historial treatment is primarily based on Norton [37℄and Hoefer [23℄1.1.1 What Mah saidMah's priniple is the name given to a very loosely de�ned onept that isattributed to the physiist Ernst Mah. One of the key quotes from him thathas lead to this onept being attributed to him is a ritique of Newton'sbuket experiment. In this experiment Newton onsiders a buket �lled withwater, initially held at rest. He observes that the water has a �at surfae.He then starts to rotate the buket around its horizontal axis. After a littlewhile the water is moving toward the edges, so that it is shallower in themiddle than toward the sides. This he explains by referring to a entrifugal1



2 CHAPTER 1. INTRODUCTIONe�et that arises when the water in the buket start to rotate with respetto absolute spae. Mah's answer to this is [33℄:Newton's experiment with the rotating vessel of water simply informsus that the relative rotation of the water with respet to the sides ofthe vessel produes no notieable entrifugal fores, but that suh foresare produed by its relative rotation with respet to the mass of theEarth and the other elestial bodies. No one is ompetent to say howthe experiment would turn out if the sides of the vessel inreased inthikness and mass till they were ultimately several leagues thik. Theone experiment only lies before us, and our business is, to bring it intoaord with the other fats known to us, and not with the arbitrary�tions of our imagination.This quote should be seen in the ontext that Mah in his text advoatesthe view that all observations is of how di�erent bodies relate to eah other.Hene it is problemati even to try to de�ne a onept suh as absolute spae.1.1.2 Interpretations of MahExatly what Mah wanted to say with this quote has been up to somespeulation. One possibility seems to be that it is an emphasis of the pointthat we an't know anything about situations we an't observe. In this asethe main message of Mah seems to be a all for a redesription of the physisso that it only was desribed as how bodies move in relation to eah otherwith no referene to absolute spae. This may atually be done even withinthe framework of Newtonian physis under the simple assumption that theuniverse itself is not rotating with respet to suh a real absolute spae. Thisis for instane shown by Donald Lynden-Bell in [32℄.A seond way to read it is that he is proposing that there ould be some-thing other than absolute spae that determines the outome of Newton'sbuket experiment. The problem is that if this is the ase, he is giving littlesuggestions as to what and how, exept that it should have something to dowith how matter moves in relation to eah other. One striking thing is thatif this interpretation is right, then he is very vague about it ompared withsome of his ontemporaries. For instane the brothers Imanuel and BeneditFriedlaender presented a paper in 1896 desribing an experiment that wouldattempt to determine if the rotation of the Earth had any modifying e�eton the law of inertia. They were however unable to �nd any deviations fromNewton's mehanis, onsidering their error margin.But why should there be any reason to searh for fators that might



1.1. MACH'S PRINCIPLE 3hange the outome of Newton's buket experiment? There are two im-portant somewhat distint lines of reasoning that lassially seem to reahthe same onlusion, but in later times have turned out to give quite dif-ferent ways to approah the problem. The �rst is an argument onerningthe aesthetis of ausality: Aording to Newton's mehanis - If you knowthe relative distanes and veloities of all bodies in the universe at sometime, you know almost enough to determine how the system will evolve atall times. What is required to make the system ompletely determinableseems ridiulously little ompared with the huge amount of information youhave on the universe by then. One way is to put these bodies into a frame-work like that of Newton. Another way is simply stating that the universeis not rotating, or more general giving an axis and magnitude of rotation. Itshould be possible to determine this axis by observation by observing a fewof the double-di�erentials of the relative positions of the matter. But evenwhen this extra information is available, a theory where this it wouldn't beneessary would seem leaner than Newton's.The seond line of reasoning is similar to that above, but stops beforeobserving the double-derivatives. One should rather note that this extraneeded information seems arbitrary. Why should it be so that a single axisof rotation should be so important for being able to ompletely desribenature? Could this rotation axis really be totally arbitrary, or is it possiblethat it is atually determined by the relative distanes and veloities of thebodies in the universe?There is one important observational fat that has been used to arguethat it is unlikely that what has been alled absolute spae is independentof the masses of the universe: That suh an absolute spae seems to beunaelerated with respet to the "�xed stars". Consider Newton's buketexperiment. When we are standing on the Earth, nearly at rest relative tothe �xed stars, we observe the water limbing the edges while we are rotatingthe buket. We are prone to argue that the reason for this is that the waterin the buket is rotating, and hene it experienes a entrifugal e�et. If weon the other hand sit inside the buket, we still see the water being shallowerin the middle than farther out. But the water and the buket is not movingrelatively to us in this ase. It is simple to laim that we are experieningthis beause we are rotating ourselves, but how an we say? If you look up,maybe you an see the stars raing around the sky at high speed. Wouldn'tit then be plausible from your point of view to laim that the reason for thewater moving away from the entre atually is that the stars in the sky isrotating around it?



4 CHAPTER 1. INTRODUCTION1.1.3 First usage of the termRegardless of motivation, it is the last interpretation that has beome themain idea of what is today alled Mah's priniple. When Mah was so littlelear about this himself one might wonder how this priniple ame to bearhis name? This is mostly attributed to Albert Einstein. He �rst used theterm in his paper on general relativity from 1918 [18℄:Das G-Feld ist restlos durh die Massen der Körper bestemmt. DaMasse und Energie nah den Ergebnissen der speziellen Relativitëtsthe-orie das Gleihe sind und die Energie formal durh den symmetrihenEnergie-tensor (Tµν) beshrieben wird, so besagt dies, dass das G-Felddurh den Energietensor der Materie bedingt und bestimmt sei.This de�nition is however not standing very strong. It seems like Einsteinduring the period 1912-1918 had some idea he attributed to Mah that hereally wanted the theory he was working on to satisfy. But his atual for-mulation of this idea was hanging over time. This de�nition doesn't standmuh stronger when one onsiders that Einstein himself more or less gave upthe entire idea the summer 1918. The bakground for this was the �nding ofthe de Sitter spae that was an empty-spae solution with the osmologialonstant. As it is hard to argue that the G-�eld is then aused by somematter distribution the general theory of relativity doesn't seem to ful�l theabove given de�nition.1.1.4 Present formulationsEven though Einstein's formulation of 1918 isn't very popular, the term"Mah's priniple" has been muh used in the literature with other meaningssine then. But there has been no ommon onsensus as to what the preisemeaning of the term should be, and thus it has been used with quite afew di�erent meanings depending on the writer. Common is that it somehowtries to grasp the ideas given by the seond interpretation of the Mah quote.Several attempts have been made to ollet the di�erent uses of the term,for instane in [21℄, the index of [25℄ and in [7℄.As several of these de�nitions fall outside the sope of this text I willhere only list those formulations of Mah's priniple I'll work with, for easyreferene. Common for all of them is that it tells us something about howthings far away have loal e�ets.
• Formulation 1: The universe is spatially losed.



1.2. ALTERNATIVES TO ROTATION 5
• Formulation 2: There is nothing that ats that is not ated upon.
• Formulation 3: In the rest frame of any body the total gravitational�eld on the body arising from all the other matter in the universe iszero.
• Formulation 4: Masses should somehow determine the inertial systems.
• Formulation 5/6: The inertial systems should be partially/ompletelydetermined by the masses of the universe.
• Formulation 7: The axes of inertial frames are perfetly dragged aroundby a weighted average of the motion of partiles in the universe.Finally I will add a formulation that I have not enountered anywhere,but that will be onsidered brie�y later by me as it seems to be a possibleinterpretation.Formulation x1: Mah's priniple says that the boundary onditions areto be determined by loal behaviour.1.2 Alternatives to RotationIn the previous setion I onsidered Mah's priniple in general. Most of thistext will as the title suggests fous on rotational aspet of the priniple, but Iwill devote this setion to a short overview of some other possible approahesto Mah's priniple that doesn't diretly involve rotation.1.2.1 Boundary onditionsWhen examining how things far away may a�et loal physis it may beinteresting to examine the ase where "far away" goes to the limit of in�nity.In a theory governed by �elds and di�erential �eld equations like the generaltheory of relativity this translates to boundary-onditions of the equations.Aording to [23℄ even Einstein himself tried this approah for some time in1916-1917.I an see major ways that the boundary-ondition problem may be at-tempted related to Mah's priniple. The �rst is to de�ne Mah's priniple asthe boundary-onditions that give us the loal behaviour we observe in thisuniverse. The other is to begin with some other formulation of Mah's prini-ple and see if that poses any limitations on what kind of boundary-onditions



6 CHAPTER 1. INTRODUCTIONan be allowed. Neither of these approahes has proven very fruitful. I havefound no examples of the suggested de�nition in the literature. I an seeseveral possible reasons for that:
• It doesn't inorporate any relevane to things loser than in�nity toMah's priniple, whih breaks with the ommon idea attempted toput into Mah's priniple.
• It has little or no physial signi�ane as more than a self-ful�llingrequirement to the boundary onditions.
• It is hard to do the alulations involved with it, and it may ome inon�it with the desire of having ontinuity/onvergene.To �nd boundary onditions that �t an idea of Mah's priniple has alsoproven most di�ult or even impossible. A good illustration of how di�ultthis seems is that one of the main formulations of Mah's priniple is thatthe spae is spatially losed. This formulation dates bak to Albert Einsteinin 1917 [23℄. In this ase the need for boundary-onditions disappears. Onemajor argument for this de�nition is this property. And in ertain frameworks(most notably general relativity) this de�nition also turns out to diretly leadto several e�ets that are onsidered Mahian. And even in other de�nitionsof Mah's priniple it is tempting to have spatial losure as a requirement toavoid the boundary problems.1.2.2 Requirement for determinabilityIn 1.1.2 it was argued that in Newton's theory we need to know all relativepositions, veloities and something else at a given time in order to determinehow the system evolves inde�nitely. I also provided a sketh of why thissomething else was undesirable. To onvert this notion to the general theoryof relativity proves di�ult as it operates with �elds, not partiles, and thereare issues trying to de�ne "a given time". It is thereby of interest to examinewhat information you need in order to be able to determine the on�gurationof the entire spae-time.One suh formulation that an be onsidered important in relation toMah's priniple is the thin sandwih onjeture proposed in [3℄. This on-siders the intrinsi geometries of two spae-like surfaes lose to eah other(nearly alike). In this ase the di�erene between these spaes behaves like aderivative. In the general theory of relativity it turns out that this should beenough to determine the geometry of the entire 4-spae. This is very similar



1.2. ALTERNATIVES TO ROTATION 7to the lassially formulated wish that the physis should be determined byrelative positions and their �rst di�erentials alone, without any extra fator.Julian Barbour and Bruno Bertoni develops this idea further in [4℄. This isniely explained in [5℄. Here it is not posed any ompat de�nition of Mah'spriniple. The main di�erene from the above argument is however that theterminology is sharpened and generalized. The required knowledge shouldonly be a point in a phase-spae of geometries, and a diretion. Appealing tothe thin sandwih onjeture it is laimed that general relativity is ompletelyMahian. One interesting idea that is proposed is that we only require thethin sandwih onjeture to be applied loally, at every point, not globally.This way it seems like one may avoid the problems related to boundary-onditions even in universes that isn't spatially losed.1.2.3 Absolute elementsAnother approah is to set the fous at the "absoluteness" of absolute spae ofNewtonian theory that Mah seems to protest against. This is done in someformality by Jürgen Ehlers in [17℄. Here he attempts a de�nition of Mah'spriniple going something along the line "There is nothing that ats that isnot ated upon". Newton's absolute spae is suh a thing that determineshow things move, while nothing may hange that spae.He then ompares di�erent theories with regard to what geometrial andphysial properties of a system it takes into aount and governs. He shows ageneral tendeny that the general relativity theory has fewer "Absolute �elds"than the speial relativity theory, and that the speial relativity theory inturn has fewer than Newton's theory. Those �elds that are no longer absolutein the more general theories are found as dynamial �elds that are intimatelyonneted with the other �elds of the theory. In partiular this involves themetri and onnetion-�elds, in addition to a oneivable "Ether �eld".The de�nition of what may be onsidered a �eld in a theory, and howto determine/de�ne absoluteness is however not very well explained here. Inthe disussion found in the proeedings after the paper [17℄, Karel Kuharpoints out a possible absolute element in the underlying geometry of thegeneral relativity theory. Ehlers aknowledges this, but says he feels there isa fundamental di�erene between this and the elements he has onsidered inhis paper. He was however unable to formulate this di�erene. I have notfound any more reent treatment of this approah.One extension of this idea is also to look at the onstants of a theory.Should these be onsidered �elds of the theory? In this ase, should they by



8 CHAPTER 1. INTRODUCTIONMah's priniple not be true onstants, but somehow be determined by thephysial state? This and similar onsiderations have been raised and led toseveral theories that laim to �t better with Mah's priniple than generalrelativity. I will give these some treatment in the next setion.1.3 Alternatives to general relativityThere are lots of theories of gravitation that somehow addresses Mah's prin-iple, and even the spei� question of rotation related to it. Many of theseare intimately related to the general relativity theory as an extension, gen-eralization or restrition of it. I will in the remaining hapters only onsiderbasi general relativity (and its standard lower order approximations). Inorder to narrow down and speify the sope of what I will here onsider, andas I feel it deserves mentioning in a review regarding Mah's priniple, I willhere say a bit about some of the more pro�led theories that I am not goingto over in the later hapters.1.3.1 Restritions of solutions to �eld equationsEinstein's �eld equations do have solutions that by some have been hara-terized as "un-Mahian". I will get into some of these in later hapters. Away to deal with this ould be to �nd some onditions that have to be ap-plied in addition to the usual �eld equations that rule out suh solutions. Inpartiular this ould be related to setting boundary-onditions as mentionedin the previous setion.Only allowing losed universes is also an example of this. As far as I knowonly the restrition to losed universes has been somewhat suessful, andthis has the major problem that it is an open question whether the universeatually is losed. Some of the problems are diretly related to the lak of anystrit de�nition of "Mah's priniple" and hene it is hard to agree on exatlywhat solutions should be ruled out. Formulating boundary-onditions faessimilar problems, but is also made di�ult by the mathematial omplexityinvolved.I will in the remaining hapters use the full general relativity withoutrestritions. This way I will also be able to study some of the more dubioussolutions seen from a Mahian perspetive and examine rotational e�ets inthem.



1.3. ALTERNATIVES TO GENERAL RELATIVITY 91.3.2 Einstein-Cartan theoryEinstein-Cartan theory is the natural extension of general relativity to allowfor spinning masses. The basis are given in a review artile from 1976 [22℄.The theory owes its name in part to Élie Cartan who in the �rst half of the1920s made some basi work on di�erential geometry related to torsion. Butas a full theory it was only developed later.As a theory that allows for spin this theory ould be highly interesting inthe ontext of investigating rotational phenomena. The fat that there is anextension to general relativity allowing spinning masses shows that generalrelativity operates with non-spinning masses. This I will use to pose somequalitative suggestions on physial interpretation on some systems in 4.2.4.To give a proper analysis of spin-e�ets would however require this frameworkand hene fall outside the sope of this thesis.1.3.3 SiamaIn his 1953 artile [53℄ Siama outlines a simpli�ed theory that is based uponthe quite ommon view that Mah's priniple tells that inertia should bedetermined by matter. This is made more aurate in this quote:In the rest frame of any body the total gravitational �eld at the bodyarising from all the other matter in the universe is zero.He then sets out to demonstrate a toy-theory that shows how this mightget implemented. He assumes for simpliity that gravitation is governed bya vetor �eld in a Minkowski spae. He points out that the gravitationalpotential atually has to be a seond rank tensor, and that this model thusonly is illustrative.The result is a model with some similarities with eletromagnetism. Aomparison between this and the gravitomagnetism desribed in the nexthapter ould be interesting, but falls outside the sope of this text. Thereis however one important result here, namely the relation:
Gρτ 2 ≈ 1 (1.1)Where G is the gravitational onstant, ρ is the density of the universe, and

τ is the age of the universe. The approximation should be onsidered very"oarse" only meaning "in the order of".In his paper he ontinuously refers to a "subsequent paper" where he issupposed to develop this theory in a muh more realisti manner. I havehowever been unable to �nd this referene, or anyone referring to suh an



10 CHAPTER 1. INTRODUCTIONartile. In 1964 Siama seems to be working in the framework of generalrelativity, with possible extensions and restritions [54℄. The equation 1.1still seemed to be entral in his idea of Mahianity then, however.1.3.4 Brans-Dike theoryThe Brans-Dike theory was �rst presented in a paper by Brans and Dike in1961 [11℄. This theory is based on the idea that the gravitational onstantould indeed be di�erent at di�erent plaes determined by the mass distri-bution. They give two important motivations for the gravitational onstantto be non-onstant.The �rst is the relation 1.1 somewhat rewritten: GM/Rc2 ≈ 1 where Mis the visible mass of the universe, R is the radius of the visible universe and
c is the speed of light. This relation if solved with respet to G gives an ideaof how this quantity ould be determined by the mass in the universe.The seond is the dimensionless number me(G/h̄c) where me is the ele-tron rest-mass. This has a size that is mathematially simply related to twoseemingly unrelated observed and varying numbers: The age of the universein atomi time units and the mass of the visible universe in proton masses.Wanting to keep me h̄ and c onstant the remaining fator that an be ad-justed to take this into onsideration is G.They thereby onstruted a theory formulated in similar terms as the gen-eral theory of relativity, but with a salar �eld not present in the other. Thistheory is also determined by a parameter that has to be set by observation.This makes it hard to falsify, but there has been set rather strit onstraintson the free parameter of the theory by the Casini-Hugens experiment [6℄.



Chapter 2GravitomagnetismAs said in the introdution, Mah's priniple onerns how objets far awaymay a�et ertain experiments loally. One suh example is Newton's buket.In Newton's theory, if you have a situation where the stars are rotating inthe universe around a buket that stands still (relative to absolute spae),then the water in it stays �at. There are no entrifugal, or "inertial" foresthat give the result that the water moves up toward the wall. One may arguethat this situation should be equivalent to the situation where you have anobserver sitting inside a rotating buket observing the universe. Hene weshould look for some e�et that makes the water in the buket urve in allpossible senarios where the universe is rotating relative to it. Suh an e�etmay atually be found in general relativity and is gravitomagnetism. Thishapter will over this phenomenon in simple loal systems.2.1 The fundamental formulasI will in this setion dedue the equations of gravitomagnetism from linearizedgeneral relativity. I will start by giving a simple argument from speialrelativity that should motivate that there is suh an e�et. After that I willgo through the more detailed and aurate alulation of the equations forgravitomagnetism in linearized general relativity.2.1.1 Simple motivationI will here present an argument that may motivate the existene of a gravita-tional e�et with similarity to eletromagnetism in a relativisti theory. This11



12 CHAPTER 2. GRAVITOMAGNETISMis inspired by a desription of eletromagnetism attributed to E. M. Purellas desribed in [52℄. In the given referene one onsiders a partile movingalong a wire arrying an eletrial urrent, and argues that depending on theframe of referene the fores ating on the partile may be seen upon as aneletri or a magneti �eld. I will here simplify this to a less realisti system,but one that is simpler to relate to the gravitational ase.Consider a negatively harged partile initially at rest beside an in�nitepositively harged wire. In this ase we know from lassial eletrostatisthat there is an attrative fore between the partile and the harged wire.If we however hanges referene frame to one moving at a onstant veloityrelative to the rest frame of the partile, parallel to the wire, the partileis moving as an eletrial urrent in the wire in the same diretion as theinitial veloity of the partile. Aording to lassial eletromagnetism thereis then a magneti fore that pushes the partile away from the wire. Asthe partile has to behave similarly in both frames of referene one needsan e�et that makes up for the e�et of the magneti fore. Suh an e�etan be found in the speial relativity theory. The length ontration of thewire in the moving referene system relative to the initial rest system of thepartile makes the harge density higher. Thus we get a stronger eletrifore that anels the e�et of the magneti fore.One an argue that this argument laks several fators that may modifythe relation between the magneti and the eletri fores like relativistitime dilation and mass inrease. The key point that the length ontrationmakes a net inrease in eletri fore is better founded in Purell's originaltreatment as it is there demonstrated how one may go from a frame with noeletrial, only magneti fores, to a frame with no magneti, only eletrialfores by a simple veloity transition. I would also like to mention the paper[16℄ where an attempt is made to develop the entire eletromagnetism in asimilar way from only speial relativity and eletrostatis, even though I havebeen unable to verify whether this paper is trustworthy.So, keeping in mind that Lorentz ontration may give frame dependentfores I turn the attention to a similar gravitational model as the eletromag-neti ase examined above. We now have an unharged partile and a wire.In the rest-frame we know that there is a ertain gravitational fore betweenthese. In a moving frame one may expet a stronger gravitational fore asthe mass-density of the wire inreases due to length ontration. Oppositeto the above ase we then seek an e�et that opposes this inreased fore inthe frame, and one might be tempted to suggest that there is a gravitationalounterpart to the magneti �eld.



2.1. THE FUNDAMENTAL FORMULAS 13To make any formal alulations on this is however of little interest. Thereare several other e�ets that play into this piture. Most important is proba-bly the speial relativisti notion of inreased inertial mass under high velo-ities that I suspet may be enough to give a omplete explanation model ofthe presented ase without having to refer to any kind of "gravitomagneti"onept at all. In addition omes the question of how to formulate gravi-tation in a relativisti framework, whih is exatly what general relativitydoes.What I want to show in this setion is however that it shouldn't be verysurprising when it turns out that general relativity atually displays e�etsvery similar to eletromagnetism, and point out one idea that might give aunderstanding of how this di�erene from Newtonian physis might arise.2.1.2 Linearized general relativityThe theory of gravity that we get by linearizing the general relativity theorymay be traed bak to Einstein's paper in 1916 aording to for instane [21℄.After that it has been treated in several works. I will here go through themain points in the derivation from general relativity following the approahgiven in [36℄.Consider the situation where the metri may be written in the form
gµν = ηµν + hµν (2.1)where η is diagonal with signature − + ++, that is the metri of theMinkowski spae in standard oordinates. We also assume for simpliitythat c = 1. h is a small perturbation of this metri, with small derivativesand seond derivatives. This gives us a weak-�eld universe, that is withoutany high densities or relativisti veloities.The onnetion oe�ients may then be written:

Γµ
αβ =

1

2
gµν(gαν,β + gβν,α − gαβ,ν) ≈

1

2
ηµν(hαν,β + hβν,α − hαβ,ν) (2.2)In the approximation we have omitted produts between the perturbationand it's derivatives, and used that η is onstant.As we are at least lose to a oordinate frame we have for the Rii tensor:

Rµν = Γα
µν,α − Γα

µα,ν + Γα
βαΓβ

µν − Γα
βνΓ

β
µα (2.3)



14 CHAPTER 2. GRAVITOMAGNETISMIn the approximation the two last terms are negleted as seond order terms.The indies from 2.2 is raised using η instead of using the full metri g. Thisis also done when alulating the Rii salar
R = gµνRµν ≈ ηµνRµν (2.4)It turns out that the �eld equations take a partiularly nie form if weintrodue h̄µν = hµν − 1

2
ηµνh where h is the ontration of the orrespondingtensor. Then we may impose on the system the following ondition due tofreedom of hoie of oordinate system:

h̄µα,α = 0 (2.5)Fixing oordinates like this is alled to impose a gauge ondition and this on-dition is analogous to the Lorenz gauge Aα,α = 0 of eletromagneti theory.The �eld equations then beome
−2h̄µν = 2κTµν (2.6)This equation along with the gauge and the expressions for the metriand h̄ forms the basis for the linearized theory of relativity.2.1.3 Gravitomagneti equationsAording to [35℄, Einstein suspeted a relation between his �eld equationsand Maxwell's equations for eletrodynamis. It is laimed in this referenethat Thirring did a paper on this in 1918, but I have unfortunately not beenable to get hold of this referene to see how far this was done. In a footnote inthe �rst artile in this translation paper, he does however strongly suggest theorrespondenes desribed in this setion. It is worth to mention that thereare other approahes that give similar equations. In 1977 a general versionof Maxwellian relations was found in [10℄ that was based on parameterizedpost-Newton formalism whih is a formalism to desribe a broad lass oftheories that inlude general relativity. However, this falls outside the sopeof this text.The approah I will take to show how one may relate the linearized equa-tion with Maxwell's equation is inspired by [21℄, [56℄, [34℄ and [57℄.In eletromagnetism we know that 2Aν = µ0Jν along with the Lorenzgauge, where Aν is an eletromagneti four potential, gives us Maxwell'sequations in standard form. I follow the same reasoning as in eletrodynamis



2.1. THE FUNDAMENTAL FORMULAS 15and restrit the attention to the h̄0α terms. This even give us diretly theorret c dependeny. We an de�ne
~EG

′
= −c∇h̄00 −

dh̄0i

dt
(2.7)

~BG

′
= ∇× h̄0i (2.8)where h̄0i denotes the normal 3-vetor orresponding to the usual vetorpotential.The �eld equations then take the familiar Maxwell-equation form:

∇ · ~BG

′
= 0 (2.9)

∇ · ~EG

′
= −c2κT00 (2.10)

∇× ~BG

′
= −2κT0i +

1

c2
d ~EG

′

dt
(2.11)

∇× ~EG

′
= −d

~BG

′

dt
(2.12)Here µ0Jν is replaed by −2κT0ν from the standard expression.We have here found some quantities related to general relativity that obeyan equivalent of Maxwell's equations. However, apart from their ounterpartsin eletrodynamis, B′

G and E ′
G don't immediately have any simple physialinterpretation. They are here simply de�ned so that they behave in thedesired way. They are thus of little physial interest yet. The result above isthus only to be seen as a step in a alulation that will eventually lead to aphysially interesting result.We leave B′

G and E ′
G for now and rather turn our attention to a simplephysial system. Consider the ase where h̄ij = 0, that is all non-zero el-ements of h̄ an be found as h̄0α. In this ase we have from 2.6 that also

Tij = 0. This may be a reasonable model of a perfet �uid with no pressureand low veloities. In this ase Tµν = ρuµuν . With u0 ≈ c we have T00 ≈ c2ρand T0i ≈ ρcui = cji where ~j is orresponding to lassial matter �ow. Theproduts uiuj are onsidered vanishing as both terms are small.We now onsider the movement by a partile having low veloity in thissystem. It will follow a geodeti urve given by
d2xµ

dt2
= −Γµ

αβ

dxα

dt

dxβ

dt
(2.13)Ignoring seond order spatial veloity terms, and using dx0

dt
= 1 and the sym-metry in the lower indies of the onnetion oe�ients allow us to simplify



16 CHAPTER 2. GRAVITOMAGNETISM2.13 to
d2xi

dt2
= −Γi

00 − 2Γi
0j

dxj

dt
(2.14)We are thus interested in �nding these onnetion-oe�ients.In order to keep the equations simple I again introdue c = 1. By on-trating the equation hµν = h̄µν + 1

2
ηµνh we get in this ase h = hα

α = h̄00whih in turn gives hαα = 1
2
h̄00 otherwise hαβ = h̄αβ . Then we an use 2.2 toalulate the onnetion oe�ients in terms of h̄

Γi
00 =

1

2
(2h̄0i,0 −

1

2
h̄00,i)

Γi
0j =

1

2
(h̄0i,j − h̄0j,i +

δij
2
h̄00,0)We now de�ne the vetor �elds ~BG and ~EG by

~EG = (
∇h̄00

4
− dh̄0i

dt
) (2.15)

~BG = ∇× h̄0i (2.16)This gives us a movement equation of the form:
~a = ~EG + ~v × ~BG + a~v (2.17)where

~ai =
d~vi

dt
=
d2xi

dt2

a =
1

2
h̄00,0We see that in this ase EG and BG are the �elds that play exatlythe same role in the equations of motion in the ase of gravitation as theireletromagneti ounterparts. In addition, the de�nition of these �elds arevery similar to those of E ′

G and B′
G. The equivalent of the magneti �eld isthe same. However the EG term is not quite so nie. We see that the timevariation of the vetor-potential plays a smaller role ompared to the salarpotential in determining the path of the partile than in the eletromagnetiase. I will here restrit attention to the stationary ase, that is h̄µν,0 = 0.In this ase, we get preisely:
E ′

G = 4EG

B′
G = BG



2.2. EXAMPLES 17Inserting this into the Maxwell equations 2.9-2.12 while ignoring time deriva-tives give us after insertion of  to make the units right:
∇ · ~BG = 0 (2.18)

∇ · ~EG = −4πGρ (2.19)
∇× ~BG = −16πG

c
~j (2.20)

∇× ~EG = 0 (2.21)We see that the main di�erenes from the stationary eletromagneti aseis that the fores behave oppositely relative to the urrents, and that thegravitomagneti fore that ouples to movement is 4 times stronger than thegravitoeletri ompared to the orresponding eletromagneti ase.In summary, I have here ompared two approahes at ombining lin-earized theory with lassial eletrodynamis. The �rst �nds quantities ingeneral relativity that behave aording to Maxwell's equations. The seondexamines the movement of partiles and try to make it in a form omparableto eletrodynamis. There are some referenes where this inequivalene ispoorly stated. This inlude [31℄, [56℄ and [1℄. The �rst two do state thattheir Lorentz fore law only holds in the stationary ase, and the Wikipediaartile seems to be based upon the �rst of these due to the referene list. Iadded this lari�ation to the Wikipedia artile at the stated retrieval date.2.2 ExamplesIn this setion, I will give some examples of simple systems where we mayuse the above theory. I will also relate this to an idea of Mah's priniple.2.2.1 Classial lawsFrom the Maxwell equations, we may immediately dedue two laws that areimportant in stationary eletrodynamial systems: Ampere's Law, and thelaw of Biot and Savart.The equivalent of Ampere's law is gotten by using Stokes' theorem on2.20. It beomes:
∮

~BG · d~l = −16πG

c
I (2.22)where the integral is around a losed path and I is the matter �ow throughany surfae having the path as edge.



18 CHAPTER 2. GRAVITOMAGNETISMThe equivalent of the law of Biot and Savart is trikier to dedue. It isdone in [57℄ so I will simply set up the main result here:
~BG(~r) = 4G

∫ ~r − ~r′
∣

∣

∣~r − ~r′
∣

∣

∣

3 ×
~j(~r′)

c
dV ′ (2.23)Here it is usual in eletromagnetism to make the substitution ~jdV ′ = Idlwhere I is the urrent through a line element of a wire dl. However, itis worth noting that suh a one-dimensional redution of the gravitationalsystem is not without problems. The reason for this is the assumption of aweak �eld in the linearizing of the gravitational theory. This means that weneed to have a limited mass-density, and urrent veloity. In this situationthe mass urrent IM through the wire has to vanish in the limit of a one-dimensional wire.As the wire-form of the law of Biot and Savart is very useful, I will showthat it is a reasonable approximation if we are alulating the magneti �eldfar from the "wire". Consider a 3-dimensional wire divided into surfaes Sthat is normal to ~j. Assume further that ~j is onstant on the surfaes andparallel to the wire. In this ase 2.23 beomes:

~BG(~r) = 4G
∫ ∮ ~r − ~r′

∣

∣

∣~r − ~r′
∣

∣

∣

3 ×
~j(~r′)

c
dSdl (2.24)If the surfaes S are relatively small and far from the point we are evaluatingthe magneti �eld for we may assume ~r − ~r′ to be onstant through theintegration. If we then set IMd~l = dl

∮ ~jdS, we get the familiar form of thelaw of Biot and Savart:
~BG(~r) =

4G

c

∫

(~r − ~r′) × IMd~l
∣

∣

∣~r − ~r′
∣

∣

∣

3 (2.25)I will add that the above argumentation may be used to alulate the�elds far from a small onentration of mass with veloity ~v, and total mass
M :

~BG(~r) =
4G

c

(~r − ~r′) ×M~v/c
∣

∣

∣~r − ~r′
∣

∣

∣

3 (2.26)It is also worth noting that 2.19 is the same as the formula for the grav-itational �eld in Newton's theory of gravity, and hene we may use all theresults we know from there.



2.2. EXAMPLES 192.2.2 Fore strengthsI will here set up a model in order to try to ompare the strength of thegravitomagneti e�et ompared to that of the familiar gravitoeletri. Con-sider a small spherial gravitational soure with mass M and speed vM . Wethen examine the behaviour of a test partile so far from this soure that wemay onsider the distane a onstant r. From 2.26 we an see that we getthe strongest magneti �eld if we assume that the test partile then is in theplane normal to the veloity diretion of the mass-onentration. In this asethe magnitude of the magneti �eld beome
BG =

4GMvM

r2c
(2.27)From 2.17 we see that the aeleration e�et from the gravitomagneti termbeomes greatest if the test partile has veloity normal to the �eld. So wemake this assumption, and set the speed to be v. Keep in mind that in2.17 we have assumed c = 1 so that in general units we have to divide theveloity by c in order to get the right units. Hene, the magnitude of thegravitomagneti e�et to the aeleration of the test partile is at most

aB =
4GMvMv

r2c2
(2.28)We get the aeleration from the gravitoeletri term diretly fromNewtonianmehanis:

aE =
GM

r2
=

c2

4vMv
aB (2.29)From these equations alone, it might seem like there is a possibility forthe aeleration from the gravitomagneti e�et to beome as large as 4 timesthat of the gravitoeletri. However, from the weak �eld approximation donein the linearizing we have that vM << c, and from the dedution of 2.17 wealso used v << c. So indeed the gravitomagneti aeleration is smallerthan traditional gravity in the seond order of small veloities. Thus in mostappliations it seem like this e�et is too small to be worth any attention.However, it leads to e�ets that is not found in Newtonian gravitationaltheories, and it may turn out to be important at a universal sale. Just likeordinary gravitation, it is a r−2 law not "bloked" by anything and thus islong-range.



20 CHAPTER 2. GRAVITOMAGNETISM2.2.3 GyrosopesIn the previous setion, we saw that the gravitomagneti e�et of aelerationseems to be hard to detet. In this setion, I will examine the behaviour ofa gyrosope in a gravitomagneti �eld. This is of partiular interest, as weknow that Newtonian gravitation does not a�et the diretion of a gyrosope.It turns out that the gravitomagneti e�et does. This may be used as a wayto detet the e�et without having to worry so muh that the muh strongergravitoeletri e�et will disturb the experiment.Consider a right-handed Cartesian oordinate system with a gravitoele-tri �eld in the positive z diretion. At the origin, there is a gyrosopewith angular momentum along the x-axis. We then see that in slightly pos-itive z-diretion it has a veloity in the negative y-diretion. From 2.17 wean onlude that it thus experienes an aeleration/fore in the negativex-diretion. Similarly, in the slightly negative z-diretion it experienes anaeleration/fore in the positive x-diretion. This adds up to a torque inthe negative y-diretion, and makes the angular momentum of the gyrosopeturn toward the negative y-diretion. A similar argument holds wheneverthe angular momentum is in the x-y plane, and we an onlude that thegyrosope is preessing around the z-axis. This is equivalent to the Larmorpreession of eletrodynamis.The strength of the e�et may be dedued from only 2.17 and lassialrotational mehanis as presented in for instane [58℄. Using Newton's seondlaw, the torque-formula, and the relation ~v = ~ω × ~r we get that the totaltorque on the system beomes:
~τ =

∫

~r × ρ((~ω × ~r) × ~BG)dV (2.30)where the integral is over any volume ontaining the entire rotating body.Using the Cartesian oordinates with ~ω = (ω, 0, 0), ~BG = (0, 0, BG) and
~r = (x, y, z) this evaluates to:

~τ =
∫ ∫ ∫

ωρBG(0,−z2, zy)dxdydz (2.31)We now apply the assumption that the gyrosope has its rotation-axis asa symmetry axis. As it is then symmetri upon hanging signs of z and y wean onlude that the z-term of the torque anels out under the integration.Going to ylindrial oordinates so that r2 = y2 + z2 and cos θ = z
r
we getfor the magnitude of the torque:

τ = ωBG

∫ R

0

∫ 2π

0

∫

ρr2 cos2 θdx r dθ dr (2.32)



2.2. EXAMPLES 21Using that ρ and r are independent of θ due to rotational symmetry, andthat cos2 θ is independent of x and r we may separate this integral into
τ = ωBG

I

2π

∫ 2π

0
cos2 θdθ (2.33)where I is the ordinary moment of inertia around the x-axis given by

I =
∫ R

0

∫ 2π

0

∫

ρr2dx r dθ dr (2.34)The remaining integral in 2.33 is well known, and may be found in forinstane [46℄. It evaluates to π. As the system is rotating around a symmetryaxis we have ~τ = I d~ω
dt
. Further, I will assume a perfet gyrosope. As weare working in a framework that depends on low veloities, the best wayto implement this would be to use a spherially symmetri distribution. Inthis ase the above argumentation holds at all times. The time derivative ofthe angular veloity vetor is always of magnitude BG

2
ω, orthogonal to theangular veloity itself and the z-axis. This means that the angular veloityvetor is itself rotating around the z-axis with an angular veloity:

ΩG =
BG

2c
(2.35)where the c term is inserted to make the units right, and appears as  isassumed to be 1 in 2.17. One may note that this agrees with the resultgiven in for instane [34℄ (up to a 2-fator due to di�erent saling of thegravitomagneti �eld). Here the result is also generalized to the situation thatthe gyrosope having non-ortogonal angular momentum, with the result thatit is still preessing around the axis of the magneti �eld. It is of partiularinterest that this result is independent of ω and the mass-distribution, aslong as the symmetry restritions are satis�ed.2.2.4 Inside ringI will here turn my attention to the situation at the entre of a rotating ring ofradius R and with a onstant angular veloity ω relative to the bakgroundmetri. We may hoose ylindrial oordinates with z-axis orthogonal tothe plane spanned by the ring, and origin at the entre of the ring. Dueto symmetry we an onlude that there is no lassial gravitational foreat the entre of the ring; ~EG = 0. If we further assume that the ross-setion of the ring vanishes ompared to R we may use 2.25 to alulate the



22 CHAPTER 2. GRAVITOMAGNETISMgravitomagneti �eld:
~BG =

4G

c

∫ ~R × IMd~l

R3
(2.36)We see that we only have non-zero z-omponents in this integral. We assumethat IM is onstant, where IM = ωRAρ. Here A is the area of onstant θross-setion of the ring and ρ is the mass density, both assumed onstant.As we are only working with orthogonal vetors, it is simple to alulate themagnitude of the magneti �eld:

∣

∣

∣

~BG

∣

∣

∣ =
8πGωAρ

c
(2.37)It is interesting to note that this expression is independent of the radiusof the ring. This may seem like a deviation from the standard result ineletromagnetism B = µ0I

2R
[58℄. However, in the standard eletromagnetiase it is pratial to use the expressions for onstant urrent I, while I herehold the angular veloity ω onstant. This aounts for this di�erene.If we now use 2.35 we see that in this ase:

Ω =
4πGAρ

c2
ω (2.38)It is interesting to note that we get ΩG = ω when

Aρ =
c2

4πG
= 1026kg/m ≈ ρUR

2
U (2.39)where ρU and R2

U are the measured mass-density and radius of the observa-tional universe. As there are huge unertainties on these two quantities theapproximation is at best an "in the order of". (One may use for instane theritial mass density of the order of 10−29g/cm3 and a radius of the order of10 thousand million light years. These are in aord with [13℄)Testing the diretion of the preession, we �nd that it has the same signas the angular veloity of the ring. Hene we have that if the ondition2.39 is satis�ed a gyrosope at the entre of the ring will onstantly pointat the same point on the ring. For other values of Aρ we still get that thegyrosope is preessing in the same diretion as the ring rotates relative tothe bakground. Thus, we say that the gyrosope is dragged by the ring.2.39 is said to be a ondition for this dragging to be perfet.We may now turn our attention to freely moving partiles. As mentionedabove there is no gravitoeletri e�et, so that we only have to pay attentionto any gravitomagneti e�ets. Partiles moving parallel to the magneti



2.2. EXAMPLES 23�eld will hene be unaelerated, and loally move in a straight line. Partilesmoving in the plane of the ring with veloity ~v will experiene an aelerationin the ring-plane orthogonal to the veloity with magnitude BGv, where
v = |~v|

c
is normalized to be dimensionless. Comparing with the argumentin 2.2.3 we see that this means that if the partile had moved through aonstant �eld it's veloity vetor would rotate with a angular speed of 2ΩG.This atually gives a nie onnetion between the movement of a gyrosopeand the movement of the free partile. Consider a gyrosope pointing in thesame diretion as the initial veloity of the free partile. The initial positionof the gyrosope is the same as that of the partile, but the gyrosope is atrest. During a short time t we may assume the aeleration of the partileto be onstant. In this ase we �nd that the partile after a short time isat a distane r = vct, and has a deviation from the original gyrosope axis�xed to the bakground metri of 1

2
BGvt

2. The gyrosope axis has howeverhanged by an angle θ = ΩGt. This means that the point that the gyrosopenow points at, and that is a distane r = vct from the gyrosope, has to beat a distane of vct sin ΩGt ≈ vct2ΩG = 1
2
BGvt

2 from the original axis. Thisis the same point as we found the free partile to be at. We an onludethat the gyrosope is still pointing at the free partile.From the above argument, we an onlude that in a loal referene frameat the origin with axes �xed by gyrosopes free partiles are moving alonga straight line. This is the de�ning property of an inertial frame. It is herewe get the onnetion with Mah's priniple. Imagine a sientist living ina box at the entre of this rotating ring. Using gyrosopes and wathingthe motions of free partiles lose to him he �nds that there is a ertainframe in whih the gyrosopes keep a �xed diretion that is hard to hange,and in whih the partiles move along a straight line. As he is unable todetermine any ause for this, he is prone just to take it as a fat of naturethat there is a "preferred" frame that happens to be as it is, and thus may beexplained by means of an absolute spae. Assume further that the equationfor perfet dragging 2.39 is satis�ed. If the walls of the box suddenly shouldbeome transparent so that the sientist ould see the ring of dust aroundhis laboratory, it should be easy to envision him wonder why this ring turnsout to be at rest relative to his inertial frame. Above we have reasoned thatthis is no oinidene at all. No matter how the ring rotates (as long as itis within the weak �eld approximation), the sientist's frame would turn outto not rotate relative to it.This raises the question, ould we be in a similar situation? From theapproah in this setion, it would be natural to say that the result of theexperiments the boxed sientist used to determine his inertial frame was,



24 CHAPTER 2. GRAVITOMAGNETISMat least in part, aused by the properties of the surrounding ring. Mah'spriniple may be interpreted as a statement that it is this kind of explanationthat is preferred, and even neessary. I am thus ready to formulate themain de�nition of Mah's priniple I will onentrate most of the remainingtreatment around:The inertial systems should be partially/ompletely determined by themasses of the universe.2.2.5 Hollow in�nite ylinderI will here give a short presentation of a rotating hollow in�nitely long ylin-der. It might be an interesting system from a gravitomagneti point of view,but I have found little use for it regarding Mah's priniple. It will also laterbe used to demonstrate the limitations of the simpli�ations used to arriveat these equations for the gravitodynamis.This situation may from a gravitomagneti view be treated the same wayas the magneti �eld of a solenoid as desribed in [58℄. In this ase, we useAmpere's law on a retangle with one side inside the ylinder parallel to thesides and the opposite side outside. The remaining sides are orthogonal tothe sides of the ylinder. The simpli�ed idea is that due to symmetry themagneti �eld must be normal to the lines that pass through the ylinder.The line outside the ylinder experienes no magneti �eld. One way to arguefor this is that it may be as far away as we want showing that it at leastan be set to zero. Personally, I am more fond of an argument regardingthe magneti �eld to be divergene less, hene its density must be the sameinside and outside the ylinder; but outside is in�nitely bigger. Anyway, we�nd that the only ontribution to the path integral of Ampere's law is alongthe line inside the ylinder, and that the �eld is parallel to this. If we saythat the length of this line is L we get that 2.22 goes to
BGL = −16πG

c
LDρRω (2.40)where D is the thikness of the ylinder, ρ is the mass-density, R is the radiusof it, and ω is its angular veloity. L may be anelled at both sides. We�nd that we have a onstant gravitomagneti �eld inside the ylinder.I have not found any treatment of the lassial gravitation inside a ylin-der, and in the eletrodynami ase, the solenoid is usually onsidered neu-tral. The following argument should however show that there is indeed nogravitoeletri �eld inside the ylinder: Consider a losed �nite ylinder in-side the in�nite ylinder. Its sides are parallel to that of the in�nite one, and



2.3. ROTATING GALAXY 25their entre axes oinide. As there are no gravitoeletri soures within it,the gravitoeletri �ow should be zero. From symmetry, the gravitoeletri�eld lines should go the same way through the sides of the ylinder. Againdue to symmetry we expet the top and bottom to not have any �eld linesthrough them, as there is as muh mass above them as below them (with atheoretial extra in�nitely far away from one of them, to aount for the dif-ferene in position). Hene, we an onlude that there is no gravitoeletri�eld omponents normal to the ylinder at any plae. As this holds for allylinders inside, there annot be any gravitoeletri �eld there.I have been unable to on�rm this diretly either through other soures,or numerially. However, there is an exat result on this system that partiallyon�rms this idea. It also learly shows a �aw that ould be onsidered majorin the result that the inside of an in�nite hollow ylinder an be treated asbeing an area with only a gravitomagneti �eld. This drastially limits howuseful this model is ompared to that of a solenoid in eletromagnetism. Thedetailed treatment of this is however better suited later in this text.2.3 Rotating galaxy. In this setion, I will make a rough numerial study of a simple galaxymodel within the framework presented earlier in this hapter. This setion isnot neessary for the understanding of any of the later parts of the thesis, so itmay be skipped. It requires some knowledge of programming and numerialmethods to appreiate fully.There is a well-known problem that the visible mass distribution of galax-ies does not provide explanation for their rotational pattern. The most usualsolution to this is to introdue huge amounts of dark matter into the model ofthe galaxy in order to stabilize it. However, these alulations of the preditedmovement pattern are based solely upon lassial gravitational theory. Theidea is that the speed and density of the galati matter is not high enoughfor there to be any onsiderable relativisti e�ets.In this setion, I will try to determine how weak the relativisti e�etof gravitomagnetism atually is in this system. We expet the rotation ofthe galaxy to set up a gravitomagneti �eld orthogonal to the galaxy plane.The rotating matter have a veloity relative to this, thus we expet a radialgravitomagneti fore to work on the matter. The approximate strength ofthis will be found, and ompared to that neessary to desribe the rotationalmotion orretly.



26 CHAPTER 2. GRAVITOMAGNETISMI am not aware of anyone having done this before apart from rough orderof magnitude estimates. It turns out that I won't do muh better myself,but it stands as a omputational on�rmation on those order of magnitudealulations, and may be used as a base for further researh.2.3.1 MethodI will use the following model for the galaxy: A ylinder with onstant heightthat is rotationally symmetri around the ylinder axis. Introduing ylin-drial oordinates r, z and φ with origin in the entre of the ylinder, I alsodemand that the system is independent of z-oordinate as long as it is insidethe ylinder. The veloity �eld has no r and z omponent.Now onsider a vetor ~P representing the position of a point with oordi-nates r = R0, z = 0 and φ = 0. The last of these omponents we an assumewithout loss of generality due to rotational symmetry. Now, the gravitomag-neti e�et on this point as a result of the movement at a point with positionvetor ~P ′ is from the law of Biot and Savart of the form 2.26 given by:
~Bg =

4G

c

(~P − ~P ′) ×M~v′
∣

∣

∣

~P − ~P ′
∣

∣

∣

3 (2.41)where ~v′ is the veloity at the soure point, and M is the mass at thatpoint. In order to �nd the total gravitomagneti �eld we have to sum overall soure points. Inserting the omponents into the equation, we then �ndthat any non-z omponent of the gravitomagneti �eld aused by a soureis anelled by that of the soure with opposite z-oordinate. Thus the �nalgravitomagneti �eld has only a z-omponent. As we are summing overin�nitely many points, all with in�nitely small mass, the sum turns to anintegral. The magnitude of the z omponent may then be found to be:
Bz =

∫ R

0

∫ Z
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∫ 2π

0

4G

c
ρ(r)v(r)

r − R0 cos φ
√

r2 − 2rR0 ∗ cos φ+R2
0 + z2

3 rdφdzdr(2.42)Here v(r) is the magnitude of the veloity �eld normalised to c = 1, and
ρ(r) is the density. R is the radius of the galaxy, while Z is half its height.From the data given in [13℄ I gather that Z should be in the order of 0.1kiloparse(kp), while R may be taken to be about 20kpc This uses roughdata for the Milky way galaxy.Be aware that I want to use this formula for R0 < R. This may seemdubious by two reasons. The �rst is that in our linear �eld approximation



2.3. ROTATING GALAXY 27assumed that we were far from the masses. Here we want to examine thease where the point we are measuring the �eld at is inside the mass dis-tribution. This objetion may be rejeted by arguing that we are workinginside relatively small densities, thus in e�et there are no, or in�nitesimallysmall mass lose to the point we are alulating the �eld for. Thus, we arestill alulating primarily the e�et of masses that are far away. Then, theweak �eld approximation is still ful�lled.The seond problem is related to the �rst. As the point we are alulatingfor is inside our integration domain we get a singularity in our integrand atthis point. However, from dimensional analysis we �nd that this singularityis only to the seond order in distane, while we are integrating over three di-mensions. From this it seem plausible that this singularity may be smoothedout so that the integral still onverges.In order to �nd the veloity and mass distribution, I use the results ofa dotorate thesis from 1978 [8℄. From these measurements it seem like theveloity of the arms is approximately onstant some distane away from thegalaxy ore. As I will have primary interest of the situation in this area,the further simpli�ation that the veloity is the same onstant also in theore will not make a too big e�et on these results. Thus I model v(r) = v0.From the data of that thesis it seem like v0 ≈ 2/3000 is in the right order(remember c = 1). From this, he alulated the mass distribution needed forthe lassial gravitational fore to balane the entrifugal fore. The totalmass seems to inrease almost proportionally to the distane. Hene, we getfor the mass distribution on the disk:
4πZ

∫ R′

0
ρ(r)rdr = AR′ (2.43)Here Z is still half the height of the disk, R' is the radius of the disk takingthe total mass inside, and A is the proportionality fator of the total mass.This learly gives us the solution:

ρ(r) =
A

4πZr
(2.44)From the graphs of that paper I gather that A is in the order of 1010 solarmasses per kiloparse.When I insert this veloity and mass density into 2.42 I not get an integralI do not know how to solve. I also attempted to use the ommerial programMathematia to solve this exatly, but it was unable to do so. Therefore,I deided to try to solve it numerially. Thus, I made a Phyton programbased upon Monte Carlo simulation. We will see that there will be some



28 CHAPTER 2. GRAVITOMAGNETISMproblems onerning the singularity in the integrand, thus making the resultrather fuzzy. I made some tests to determine the extent and nature of thisproblem. This inluded testing two slightly di�erent methods of setting upthe integration, and looking at the sensitivity to hanges in the number ofpoints taken in the alulation.The Monte Carlo method is based upon solving an integral by evaluatingthe integrand at random points and summing it up in the end. In ylindrialoordinates one have to pay heed to how to selet these random points. Ifone hooses points by taking an independent uniform distribution of the r,
z and φ oordinates one will �nd that one obtains a higher density of pointslose to the entre than further out. This will a�et the integral, and thusis undesirable. I tried two ways to ounter this. The �rst is to hange theprobability distribution for the radial oordinate so that it is less likely to getlow values for the radius rather than high. This makes sense as the furtherout you get the more points there is in the irle of that radius. The orretdistribution of radial oordinates that gives an even distribution of pointsin the spae is obtained by taking the square root of a numbers uniformlyseleted between 0 and R2. The other way is to weight the seleted pointsin suh a way that points further out ounts more in the �nal sum thanpoints further in. This would be similar to hoosing that eah time you geta random point you atually add it a number of times to the sum dependingon their distane from the entre. If the weight given to the point is equal toit's radius we �nd that when we use uniform distribution for r, we still getthe same distribution of e�etive number of points at eah radius as we hadwith distributing the points evenly in spae.The Monte Carlo method learly depends on the number of random pointstaken. The more points, the more aurate we expet the result to get. Thetwo ways to distribute the points desribed above are onstruted so thatthey should give the same result in the limit where you have in�nitely manypoints, but their behaviour at a �nite number of points might di�er. Thisould espeially a�et the stability properties of the solutions. I have alsoinluded a brief analysis of this. The ommented Python soure ode maybe found in the appendix A.In order to interpret the strength of the gravitomagneti �eld, I omparethe aeleration indued by the mass moving through it, amg, with the totalaeleration atot we an �nd due to the partiles of the galaxy moving in airular orbit with radius R0:

amg

atot

= Bz ∗ v0 ∗ c/
(cv0)

2

R0
=
Bz

c

R0

v0
(2.45)



2.3. ROTATING GALAXY 29Another interesting quantity to ompare with is the aeleration we anattribute to the ordinary gravitation aeg. This turn out to have a quite simplerelation to atot in our model:
aeg = G

M

R2
0

= G
AR0

R2
0

=
GA

v2
0

∗ atot ≈ 1.08atot (2.46)The mass distribution was onstruted in [8℄ to make these equal in the moreadvaned model used there. I �nd the fat that this relation is still somewhatonserved in the very simpli�ed model studied here, as a sign that furtherresults should at least be of the same order of magnitude as the orrespondingvalues in the real world.2.3.2 ResultsI will here present the graphs resulting from of one running of the program.I have tested the program several times with di�erent values for M and N.These test-runs have not provided any signi�ant information other than thatpresented here, apart from on�rming the general tendenies of the system.I work with 1000 points in the graph, whih should be more than enoughresolution. 10 to 100 points would have given the same general results, butwith 1000 points, it beome more statistially viable.First the output from the Monte Carlo stability analysis is presented in�gure 2.1. This graph illustrates niely the general tendeny I found theMonte Carlo simulation followed. As we would generally expet from MonteCarlo simulations the general trend of the graph is to swing around some ill-de�ned value. However, we see that in this ase while it mostly moves rathersmoothly after this number of simulations, it do make some jumps. Thesejumps I attribute to a random soure point being seleted very lose to thepoint we are alulating the �eld for. This gives us a very small number inthe denominator of our integrand resulting in a high ontribution to the sum.In the true integral, we an expet the e�ets of nearby masses to anel outas loally we are in a system where all partiles are moving with roughlythe same veloity and diretion. However, if only one random point is takenin the loal area then there is nothing to anel the e�et of this. Only bytaking more points we an hope to get other points loally that sums up toanel that e�et. By the Monte Carlo method, we have no guarantee thatthere will be a distribution of points making the loal ontribution anel out.This sensitivity to point distribution might have a physial interpretation aswell, more on this in the onlusions.
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Figure 2.1: Monte Carlo stabilityThese jumps might also lead to worries regarding the numerial preisionin the alulation. If the result from the integrand funtion is too high, theresult might drown out other points due to the di�erene being too small forthe omputer to handle. A rough estimate on the size of the jumps when weknow that Python �oats is 8 bytes, indiate that this is not a major problem.This is also on�rmed by observing that the graphs seem to have the samegeneral behaviour after suh jumps as before.The graph presented here suggests that the uniform distribution is some-what more stable than the even distribution. Other test runs have indiatedthat it might be a bit hasty to draw suh a onlusion. Still I have seen nolear indiation that the uniform distribution in general behaves worse thanthe even. I made the hoie to settle with the uniform distribution due toone important reason: I do then not need to divide by the radius at anypoint. This I believe makes this method slightly faster than that of even dis-tribution. It also might inrease numerial stability, as there might beomedivision by zero problems if the soure point is hosen lose to the entre ofthe galaxy.These infrequent jumps in the graph also indiate that this method isnot very sensitive to an inrease in the number of simulation points. While



2.3. ROTATING GALAXY 31the auray in general beomes better, the probability for getting pointsausing big jumps also inreases. Still, at my omputer from 2004 it turnedout that memory usage was the main limitation for how high I ould set N.I ended up using 3 million samples for the main alulations, whih ausedPython to onsume about 400MB of memory. The total running time of theprogram was then a bit less than an hour.The strength of the gravitomagneti �eld is presented in �gure 2.2 I have
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Figure 2.2: Gravitomagneti �eld strengthhere set the axes so that the magneti �eld at the entre is not shown. Thisgravitomagneti �eld may be if interest in other appliations, but is of littleinterest here as this model of the galaxy is quite inaurate in this area.As might be expeted from the instability of the Monte Carlo method,the graph is quite fuzzy. Still the general behaviour is quite obvious. Closeto the ore, there is a relatively strong gravitomagneti �eld. This dereasesthe further from the ore you ome until it at about 15 out of 20 kp turnsnegative. This hange from positive to negative may be intuitively expeted.Near the ore most of the mass is swirling outside, hene we have a situationsimilar to that inside a urrent loop. However, as we get further out we getoutside the rotating mass. Outside the galaxy, we have a situation similarto that outside a urrent loop, and in this ase the gravitomagneti �eld



32 CHAPTER 2. GRAVITOMAGNETISMis opposite to that inside. At some point inside the galaxy, we would thenexpet those two e�ets to anel out.In order to interpret the strength of the �eld, I alulated how muh thisgravitomagneti �eld aelerates the masses of the galaxy ompared with thetotal aeleration. For this I used the formula 2.45. The result is illustratedby �gure 2.3. In this �gure I have set no restritions on the axes of the graph
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Figure 2.3: Gravitomagneti e�et, unonstrained axesin order to show the magnitude of the spikes. Zooming in to get a betterlook at the most onentrated part of the graph we get �gure 2.4.From these �gures, we easily see that the gravitomagneti e�et is in theorder of a few parts of a millionth of the total aeleration on the galaxymatter. Even the highest spike in this data set doesn't get higher than
5 ∗ 10−5. It is also here easier to see that the gravitomagneti e�et hangessign about 15kp away from the ore. For this ase, the positive diretionfor the aeleration may be found to be toward the ore.2.3.3 ConlusionsThe gravitomagneti e�et depends on the veloity both of the soures andthe body ated upon. The gravitoeletri e�et on the other hand does not
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Figure 2.4: Gravitomagneti e�et, onstrained axesdepend on veloity at all. One may then quikly make the assumption thatthe ratio between these will be in the order (v/c)2. There are however otherdi�erenes in the behaviour of gravitomagnetism that might separate it fromthe gravitoeletri. For instane while the gravitoeletri e�et only dependson the masses inside the position it is alulated for, the gravitomagnetie�et depends on all the masses in the galaxy wherever this is alulated.The simulation performed here lend support to the idea that the �rst of thesedi�erenes is the most important when it omes to approximating the ratioof the strength between those two �elds. In this partiular model, this evenis true at the ore where the seond di�erene intuitively should have givenzero gravitoeletri e�et, with a non-zero gravitomagneti. This I gather isdue to the model having in�nite mass density in the ore.From this, it is easy to onlude that for instane the gravitomagnetie�et is too weak to be used as an alternative solution to the dark mat-ter problem. It is also probably not neessary to take into aount whenperforming most theoretial alulations on galaxy models. For numerialsimulations on the other hand, the magnitude of the e�et alulated here isbig enough to possibly make a di�erene. Even if the desired relative prei-sion of the �nal result is less than 10−5 the error from omitting this part in a



34 CHAPTER 2. GRAVITOMAGNETISMsimulation that goes over several steps may quikly aumulate quite graveerrors. This alls for an investigation of more preise methods of determiningthe atual gravitomagneti �eld.A thorough analysis of possible methods to get trustworthy values forthe gravitomagneti e�et in numerial simulations will probably be bettersuited in a larger work on numerial methods on galaxy models. Thus, I willhere restrit myself to give some ideas that might improve the method usedhere. However, I will �rst give an argument that shows that suh a redutionof fuzziness might atually be undesirable.As previously mentioned I attribute the spikes and fuzziness in the graphto the hoie of random points in the Monte Carlo method. If our model wereperfetly integrated, I would not expet any suh e�ets. On the other hand,real galaxies have not mass perfetly evenly distributed, and loal veloitydi�erenes are a matter of fat. This opens up the possible interpretationthat the randomness in the Monte Carlo distribution atually may work asa model of these imperfetions. In this ase the fuzziness of the resultsatually may be interpreted as a measure of how sensitive the strength ofthe gravitomagnetism is to loal behaviour. It may seem like this modelhas the property that loal di�erenes from the perfet model may have astronger in�uene on the loal gravitomagneti �eld than the in�uene of thegalaxy as a whole. In order to �nd exatly how muh of the gravitomagnetie�et is determined by loal behaviour we need knowledge of how big suhvariations in mass and veloity inside galaxies typially are, and preferablyhave a more realisti galaxy model. This is learly outside the sope of thisthesis. However, for many body simulations this problem may be ompletelyremoved as it is then natural to simply alulate the total gravitomagnetie�et of all bodies on eah body.With the above paragraph in mind, if we still want to redue the noisein the gravitomagnetism, how may we do it? One obvious way is low-pass�ltering. I tried a few simple low-pass �ltering solutions myself without muhe�et, but in theory it should eventually smoothen out the urve. Anotherway is to either remove or ap the results for soures that get loser to thepoint we alulate the �eld for than a ertain limit. The ap-method isrelatively easy to implement, but this raises the questions of where to setthe limit and how muh this arti�ial hange on the system will a�et theresults. A third way is to use points in a symmetri grid as soures instead ofrandomly hosen points. The grid should be made so that loally the e�etof the soures mostly anels eah other, while the grid points are evenlydistributed. There is a faint possibility that the grid hosen might have



2.3. ROTATING GALAXY 35severe e�ets on the result, but this should be simple enough to detet andavoid.
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Chapter 3Asymptotially Minkowski spaesMany of the general relativisti systems that have been studied are of theasymptotially Minkowski type. I will devote this hapter to examine someof these in regards to rotation and from a Mahian perspetive. Asymptoti-ally Minkowski spaes are haraterized by having a metri that goes to theMinkowski metri in spatial in�nity. In tehnial terms this an be statedas gµν → ηµν as s → ∞. Here s is the interval between the point where themetri tensor is evaluated, and the points of interest in the model. ηµν is a�at (Minkowski) metri. The examples studied in the previous hapter werealso asymptotially Minkowski. But in that hapter the fous was on thee�ets of the linearized theory of gravitomagnetism. In this hapter we willstill keep these e�ets in mind, but only as a referene. The fous will be themodels that have asymptotially �atness as an important ommon feature.3.1 Minkowski universeThe most obvious universe that is asymptotially Minkowski is the Minkowskiuniverse itself. This spae is haraterized by having a �at spae metri; instandard oordinates
ds2 = −c2dt2 + dx2 + dy2 + dz2 (3.1)As this has zero urvature everywhere we an onlude from Einstein's �eldequations that the energy-momentum tensor also must vanish everywhere.Hene we have a universe with no matter-ontent. Free partiles move alonglinear paths

xα(λ) = xα
0 + λvα (3.2)37



38 CHAPTER 3. ASYMPTOTICALLY MINKOWSKI SPACESwhere xα is the oordinates traed out by the partile, λ is a free parameter,and xα
0 and vα are onstants haraterizing the state of the partile.3.1.1 Rotating observerI will now examine how this spae time may seem from the perspetive of arotating observer. Assume that we have an observer that is translatory atrest in the origin of the standard oordinate system of the Minkowski spae.This observer has a standard lok. This he uses to give a time label toall points in the spae time in the following manner: He sends light signalsthat are re�eted in an event. He reords the time on his standard lokof emission and reeption of the light, and de�nes the time of the re�etingevent to be the arithmeti mean of these two values. Analysing this fromthe framework of the standard oordinate-system it is simple to see that thetime label he sets on eah point oinides with the time oordinate of thestandard oordinate-system; t′ = t. Thus, he has slied up the spae-time inslies that he through experiment an verify that is spatial and �at, as theseproperties are independent of the observer.Then the observer turns his attention to an objet he has nearby. It is3 stiks onneted together in a ommon end-point at rest. Studying it he�nds several fasinating properties of it: In any time slie it turns out thatthe stiks are orthogonal to eah other, and geodesi. And light sent fromtheir ommon edge re�eting of the other edges of the stiks return to theirommon edge at the same time. Fasinated by this instrument, the observerdoesn't dare to touh it. Knowing that �at spae has Eulidean geometryhe onludes that it is exellent for making a omplete Cartesian oordinatesystem on his time slies. He de�nes eah of the oordinate axes as theextension of the geodesis of eah of the stiks, and unit length along eahaxis as the length of the orresponding stik. Armed with this oordinatesystem, he sets out to map the behaviour of free test partiles in it.It is easy to verify that it is possible that the oordinates he found withthis method might atually be the standard oordinate-system. Just let theommon edge trae out the parameterized line (t, 0, 0, 0), the x-axis stiktrae out (t, 1, 0, 0) et. Also if the stiks are simply transported, hangedorientation or given a onstant veloity the method will yield the same met-ri in the new oordinate system (from speial relativity). If on the otherhand the stiks are rotating rigidly we get a di�erent result. We an fromsymmetry assume that it rotates around the z-axis. The origin-edge and thez-stik edge still trae out the same path as in the non-rotating situation.



3.1. MINKOWSKI UNIVERSE 39The x-stik do however trae out (t, cos(ωt), sin(ωt), 0) The y-axis trae out
(t,− sin(ωt), cos(ωt), 0). Due to invariane the geodesis that make out theaxes of the new oordinate system are the geodesis in Minkowski spae,and thus we get a linear orrespondene between the oordinates in the newsystem and the standard system:

t′ = t (3.3)
z′ = z (3.4)

x′ = cos(ωt)x+ sin(ωt)y (3.5)
y′ = cos(ωt)y − sin(ωt)x (3.6)Inserting the equations 3.2 into these expressions gives nothing new forthe t′ and the z′ oordinates. However, the movement in the x-y plane takesthe following form:

x′ = cos(ωt′)(x0 + t′vx) + sin(ωt′)(y0 + t′vy) (3.7)
y′ = cos(ωt′)(y0 + t′vy) − sin(ωt′)(x0 + t′vx) (3.8)Here I have assumed vt 6= 0 and used the freedom of parameterization to set

λ = t = t′. Di�erentiating these equations one with respet to t′ gives usthe following new equations:
ẋ′ = ωy′ + sin(ωt′)vy + cos(ωt′)vx (3.9)
ẏ′ = ωx′ − sin(ωt′)vx + cos(ωt′)vy (3.10)Here the dots denote derivatives with respet to t′ Repeating we �nd thefollowing nie expressions for the aelerations:

ẍ′ = ω2x′ + 2ωẏ′ (3.11)
ÿ′ = ω2y′ − 2ωẋ′ (3.12)Comparing these equations with 2.17 we �nd that in this situation we have

~EG = ω2~r (3.13)
~BG = 2ω~ez (3.14)Where ~r = (x′, y′, 0) and ~ez = (0, 0, 1). So the situation is that the observeran see that the universe around him behave as if there is a gravitoeletri�eld pointing away from him that beomes stronger the farther out he omes,and a onstant gravitomagneti �eld. The puzzling thing is that he annotsee any soure that ould give rise to suh �elds. One may imagine that this



40 CHAPTER 3. ASYMPTOTICALLY MINKOWSKI SPACESobserver does indeed �nd that there is a simple oordinate-transformationthat gives nie linear paths, but onsider this little more than a mathemat-ial trik. Seeking an explanation for the behaviour of the partiles in thepreferred frame of the marvellous stiks a searh for hitherto unobservedsoures for the gravitomagneti �eld ommenes. As the Minkowski universeis open the searh may ontinue forever, never reahing in�nity. And as it annever be on�rmed observationally, who are we to laim that there indeedisn't anything out there?In the perfet Minkowski model there is indeed no suh soure. Thusthe above reasoning is an indiation of why this is a muh used example toshow how general relativity does not ful�l Mah's priniple. As mentionedin the introdution, these problems may have been instrumental in Einsteinhimself abandoning the idea. The only real defene of Minkowski universeas ful�lling Mah's priniple I have found is given in [5℄ and seem to takeadvantage of a variant of the in�nity-argument skethed at the end of thelast paragraph.One question that naturally arises is if there atually may be a mattersoure that might give the �elds 3.13-3.14? If this is not the ase, then asearh for suh would surely be in vain. There are a few obvious problemsthat stand in the way from �nding suh solutions. The alulation of those�elds were exat, and holds for any ω. We also expet any soures to haveto be far away to not disturb the loal observed �atness. Thus the weak�eld approximation will at best be able to give indiations of what kind ofdistributions to look for. Still there might be one strong lue to work from:The only observed systems that are approximately Minkowski do have asoure that might turn out to be able to explain their internal behaviour. Theone of the reasons that Minkowski and asymptotially Minkowski systems areinteresting to study is that this is a good approximation for spae far fromgravitational soures; at least in our universe.So if our observer from above rawled through spae, found a veil ofgalati proportions, dragged it aside and saw a opy of our universe swirlingaround his preious stiks, would he then be able to rest with the mysteries ofthe strangely behaving free partiles settled one and for all? This questionis deeply related to Mah's priniple, and I will not try to diretly answerit. It will however be a question that may be good to have in mind whileproeeding.



3.2. INSIDE A HOLLOW SHELL 413.2 Inside a hollow shellIn this setion I will study some models of a mass shell in the limit that it isin�nitely thin. This model is relatively easy to analyse, and still gives someinteresting results. The historial approah I will be taking is based on [42℄and [45℄ unless otherwise noted.This model was introdued by Einstein in 1912. At this time he used iton a salar approah to gravity. From this he alulated the approximatebehaviour of free partiles inside a rigidly rotating shell. He repeated thisexerise in 1913 within the Entwurf theory, a tensor-theory that preededthe �nal general theory. But the �rst known to have made suh alulationswithin the framework of the �nal gravitational theory was Hans Thirring.This result was published in 1918. A translation of this paper may be foundin [35℄, along with the other papers by Thirring mentioned in this setion.A little later, he published a paper on the e�ets outside a rigidly rotatingsphere with Joseph Lense.Later, all e�ets related to rotating bodies similar to those desribed inthe 1918 papers has been referred to as Lense-Thirring e�ets, even thoughthey are qualitatively very alike the results of Einstein in 1912, and parts oftheir results have been outdated, as will be shown in this setion.3.2.1 ThirringI will here go through Thirring's treatment of the hollow sphere. I will notinlude the lengthy expressions he got during the alulation. I will ratherfous on the approximations he use, and his results.Equations 3.15-3.27 are all quotes from his artile. Thus I will give afew general remarks on the notation he uses that di�ers from the one I usein this thesis: He denotes the time parameter as x4, not x0, and uses theformalism where it is imaginary x4 = it. He further uses γ′µν for what in 2.1were written as h̄µν . For the gravitational onstant κ he uses χ.His starting point is the linearized theory. He uses the following relationthat is a onsequene of 2.6:
γ′µν = − χ

2π

∫

Tµν(x, y, z, t− r)

R
dV0 (3.15)Here x, y, and z are the oordinates of a point on the sphere. r is statedto be the distane between the point under onsideration and the entre ofthe sphere, and R is the distane between this point and the integration



42 CHAPTER 3. ASYMPTOTICALLY MINKOWSKI SPACESelement. The integration goes over the volume of the sphere. Aording tomy understanding of the system, and [56℄ the r in 3.15 should atually havebeen R to get the retarded potential right (this is assuming t is the time atthe point the perturbation is evaluated for). As the system in question isstationary, it is simple to see that this doesn't matter anyway, and ould bea typo.He then neglets any stresses and sets the energy momentum tensor to
Tµν = T µν = ρ0

dxµ

ds

dxν

ds
= ρ0

dxµ

dx4

dxν

dx4

(
dx4

dx
)2 (3.16)That is that of perfet-�uid dust of density ρ0. It later turned out thatnegleting the stresses in this way atually gives rise to an error of the mag-nitude the alulation is done in. I will say more about this later. The �rstequality in 3.16 is justi�ed by the linear approximation, and that he is usingthe imaginary time formalism.He then goes to polar oordinates a, ϑ, ϕ, with a being the radius ofthe mass shell. He uses the following expressions for the rigidly rotatingmass-shell with angular veloity ω:

dx1

dx4
= −idx

dt
= iaω sin ϑ sinφ (3.17)

dx2

dx4
= −idy

dt
= −iaω sinϑ cosφ (3.18)

dx3

dx4

= 0 (3.19)He now for simpliity onsiders the ase where the oordinate-system ishosen so that the point under onsideration is situated in the Z-X plane. Hederives an expression for R2 in polar oordinates. When justifying the useof the linearized theory he stated that the test-point should be lose to theentre of the sphere. Now he uses this to justify dropping terms of higherthan seond order in an expansion of 1
R
in terms of r

a
.Then he sets out to examine terms of type (dx4

ds
)3 as he had this in everyintegral he now had managed to redue 3.16 to. In an errata he explainsthat this should atually be −i(dx4

ds
)2 as he made a mistake regarding whatkind of volume element should be used in the integration. However, thisdoesn't hange the approah. He makes liberal use of series expansions andthe approximation that he would ignore terms of higher order than ω2a2.From this he also argues that he ould use an unperturbed expression forthe interval as starting point for his alulation. He thus gives the following



3.2. INSIDE A HOLLOW SHELL 43equations:
ds2 = −dx1

2 − dx2
2 − dx3

2 − dx4
2 (3.20)

ds2

dx4
2

= −1 − dx1
2 + dx2

2 + dx2
2

dx4
2

(3.21)
= −1 + ω2a2 sin2 ϑ (3.22)

ds

dx4
= i(1 − ω2a2

2
sin2 ϑ) (3.23)

(
dx4

ds

3

) = i(1 +
3

2
ω2a2 sin2 ϑ) (3.24)When this is done, the rest is straight forward integration to get theperturbation of the metri. The result he generalizes to the ase where thepoint is not in the X-Z-plane rotating the oordinate system around the z-axisand �nds the transformed metri tensor.Then he uses the equivalent of 2.13 in a similar way that we did. Thisinludes ignoring terms of seond order in veloity. In his initial paper hemade as mentioned above an error with regard to dx4ds fators. In thatontext, he also made a minor mistake regarding the de�nition of mass.After orreting for these, he arrived at the following equations of motion:

ẍ = −8kM

3a
ωẏ +

4kM

15a
ω2x (3.25)

ÿ = +
8kM

3a
ωẋ+

4kM

15a
ω2y (3.26)

z̈ = −8kM

15a
ω2z (3.27)where M =

∫

ρ0dV0, k = χ/8π and dots represent time derivatives.Comparing these with 3.11-3.12 we see that the gravitoeletri �eld in thex-y plane here is only one �fth of what one would expet if the system insideshould behave like a rotating Minkowski spae ompared to the gravitomag-neti �eld. The z omponent also shows this di�erene very learly. As suhit is hard to use this as an argument in any strong formulation of Mah'spriniple. At the time it was however the �rst alulation to learly showthat rotating masses indeed produed Coriolis and entrifugal-like fores. Assuh e�ets seem to be neessary in order to desribe rotational phenomenain a Mahian way, and suh e�ets do not exist in Newton's theory, it may beseen as a step toward an understanding that might be in aord with Mah'spriniple. Thirring gives the inreased e�etive mass in the equatorial plane



44 CHAPTER 3. ASYMPTOTICALLY MINKOWSKI SPACESas a result of having higher speed than the poles, and the Minkowski bak-ground as possible reasons for his result not giving the ordinary entrifugalfore.If we now onsider the behaviour of gyrosopes from 2.35 We get, using
c = 1

Ω =
4kM

3a
ω (3.28)So we see that gyrosopes are dragged along with the mass shell with afrequeny that inreases by higher mass or smaller radius of the shell. Un-fortunately the weak �eld approximation is only valid if M/a is small. If aapproahes the Shwartzshild radius of the mass Rs = 2kM we learly geta strong �eld, omparable to that of a blak hole.As mentioned early on Thirring's alulation was �awed by negletingstresses. This aused his energy-momentum tensor to not obey the law ofloal onservation of energy-momentum; T µ

ν;µ = 0 A alulation that tookthis into aount was done by Honl in a paper from 1956 [24℄. The end resultis equivalent to 3.25-3.27 with the exeption that the "gravitoeletri" foreis only half as strong. So apart from this model turning out to be even furtherfrom the ideal of fully desribing our relatively Minkowski surroundings, thereare nothing really new in this.3.2.2 Brill-CohenThe next major step in the treatment of this model is attributed to a paperfrom 1966 by Brill and Cohen [12℄. They managed to �nd a solution forthe rotating shell without using the linear approximation. Thus it is alsovalid for strong �elds like we have if the radius of the shell approahes theShwarzshild radius. Unfortunately they had to sari�e seond-order termsin the angular veloity of the shell in order to get this result.The main trik they did to get their result was, as far as I an see, tomake the eduated guess that the metri an be written in the form
ds2 = ψ4[dr2 + r2dθ2 + r2 sin2 θ(dφ− Ω(r)dt)2] − V 2dt2 (3.29)with ψ, Ω and V funtions of r. Initially they had studied the ase where

Ω(r) = 0 as a stati base metri for this perturbation. The metri then hasstandard Shwarzshild-form. Thus they argued that outside the shell theparameters should have the form
ψ = 1 + α/r (3.30)
V = (r − α)/(r + α) (3.31)



3.2. INSIDE A HOLLOW SHELL 45Inside the stati spherial shell, spae-time should be �at, so these funtionsshould be onstant there. Requiring ontinuity, these onstants should havethe value of the funtions at the shell radius. This means that the equationsabove should hold with the variable r replaed by the onstant shell radius
r0. Using units so that G = c = 1, α usually is interpreted as m/2, but theyalso gave an expliit expression for it from the �eld equation for T 00:

α = 2π
∫ ∞

0
T 00r2ψ5dr (3.32)This equation helps giving a stringent de�nition of α, but is hard to use toalulate it as ψ depends on α itself. Hene we will quikly get a �fth orderequation if we tried. It will however be used later to de�ne the mass m = 2α.These expressions for ψ, V and α is kept in the perturbed ase with non-zero Ω. They argue that due to rotational symmetry they an always rotatethe oordinate system so that nothing is hanged beside Ω(r)′ = Ω(r) − Ω0So that they an set Ω(∞) = 0. They don't mention that this requires Ω toonverge, but I believe this is unontroversial given their bakground beforethe perturbation.They make their alulations within the natural Cartan orthonormalframe one gets from the metri. They then get by alulating the om-ponents of the Einstein-tensor, and using them in the �eld equations, that

T ii (i=1,2,3) is independent of Ω.They then argue that as the omponents T i0 should vanish in the restframe of the shell, the stress-energy tensor must be of the form
T µν = ρuµuν +

3
∑

i,j=1

tijvµ
(i)v

ν
(j) (3.33)where u is the four veloity, and vi are three orthogonal four-vetors orthogo-nal to the veloity. They then make a hoie of vi so that the system beomespretty simple. Due to symmetries they are then able to argue that the tijmatrix is diagonal. They also get tii = T ii to the �rst order in ωs −Ω, where

ωs is the angular veloity of the rigidly rotating shell. I would like to observethat as long as Ω is between zero and ωs this ondition is weaker than limiting
ωs to �rst order. When they restrit themselves to �rst order like this, theyget only 4 non-zero omponents of the stress-energy tensor, whereas only T 03depend on ωs − Ω at all.They then fous on the �eld equation for T 03. They use an expressionfor the Einstein-tensor they get from the metri. First they solve the �eldequations with regard to Ω using ψ and V from the base metri for the



46 CHAPTER 3. ASYMPTOTICALLY MINKOWSKI SPACESvauum ases inside and outside the shell. They then get the interestingresult that the only regular solution inside the shell is that Ω is onstant.They then set out to determine the integration onstants that appeared intheir vauum solutions by demanding Ω to be ontinuous aross the shell,and integrate the �eld equation aross the shell. They here expliitly use theapproximation of an in�nitely thin shell by using that a term in the integralof the Einstein-tensor vanished (ompared to the other terms) in this limit,hene simplifying the integral.This way they get a solution both for the interior and for the exteriorshell. Here, the interior solution is the one of interest. The interior solutionthey got was:
Ω =

ωs

1 + [3(r0 − α)/4m(1 + β0)]
(3.34)where β0 = α/(2(r0 − α)).Interpreting Ω in the inside of the shell may be done like this: Considerthe hange of oordinates to a frame rigidly rotating with respet to theoriginal with angular veloity Ω. That will be the oordinate-transformation

φ′ = φ− Ωt. As Ω is onstant in the interior the derivatives of this set intothe metri 3.29 will give us the standard form of the �at metri in polaroordinates. Thus, experiments done loally inside the shell will be unableto disern between this spae and a "true" Minkowski universe �xed to thisoordinate system.There are two interesting limits to this equation. The �rst is r0 >> α =
m/2. In this ase 3.34 may be simpli�ed to Ω ≈ ωs(4m/3r0). This is in per-fet agreement with Thirring's result 3.28 (remember we set G = k = 1).On the other hand if we let r0 = α we get perfet dragging Ω = ωs.This was interpreted in the paper as if the radius of the shell approahedthe Shwarzshild-radius, the inside metri was somehow shielded from theMinkowski bakground at in�nity. Nevertheless, they stress that suh aninterpretation may be naive as the asymptotially Minkowski boundary on-dition did enter their alulations. They also laimed that suh a shell withradius equal to its Shwarzshild radius often had been taken as an idealizedmodel of our universe, but they doesn't give any referenes to this. Anyway,this might lend hand to the suggestion that our loal inertial systems indeedhave to be non-rotational with respet to the �xed stars.While they through a ombination of metri-guessing and solving �eldequations from the mass-energy tensor managed to �nd a ombination ofmetri and mass-energy that perfetly �ts any hoie of r0 and m, they didso by sari�ing seond order terms in angular veloity (or more preisely



3.2. INSIDE A HOLLOW SHELL 47
ωs −Ω, but this only might matter for α near r0). Thus, this result is not �tto make any strong arguments regarding entrifugal fores, as we have seenthat this is a seond order e�et of angular veloity.In the same paper, they also presents some results onneted to ollapsingshell of dust. This is a somewhat more realisti model. However, I do not�nd anything spei� in there of muh interest to this thesis.3.2.3 P�ster and BraunIn 1985 P�ster and Braun released a paper [43℄ where they further analysedthe model of a rotating shell. Their main idea was to �nd the onditionswhere you have �at interior inside the shell. A motivation for this may bejust the situation previously studied with the observer that loally �nds hissurroundings to be �at, but possibly rotating, spae, and set out to �nd whatkind of mass distribution that might explain this situation.They use the following form for the metri of the rotationally symmetrisystem:

ds2 = −e2Udt2 + e2U [e2K(dr2 + r2dθ2) +W 2(dφ− ωAdt)2] (3.35)In order to �x the inside of the metri to be �at they demand U,K and Ato be onstant, and W = eKr sin θ. The Minkowski boundary ondition theyset even striter, by demanding that U,K and A is zero, W having the sameform as inside.Having stated these basi properties of the system they will examine,they go forth and state the quite ompliated exat expressions of the �eldequations when alulating the Einstein tensors from 3.35. By linear ombi-nations of these, they get two new equations so that they are able to solvethe system in a asading and reursive way like this: Assume that the equa-tions are solved up to a ertain order, and we want to �nd the solution to ahigher order. First, they only onsider the exterior vauum solution. Thereis an expression for W alone that an be solved to the order one is strivingfor. This result, along with lower order results for A may be put into aseond equation that an then be solved to the orret order for U . Withthese known K and A eah has an equation that an now be solved to theorret order. Having the exterior solution the rest is an exerise in �xingintegration onstants by mathing it with an interior solution so that themetri is ontinuous and the boundary between these regions have an energymomentum tensor that represents a rotating shell of mass M , radius R andangular veloity ω.



48 CHAPTER 3. ASYMPTOTICALLY MINKOWSKI SPACESUsing this tehnique to zeroth order in ω, that is for a stati shell, theygot the standard Shwartzshild solution with �at interior as expeted. To�rst order they reonstrut the result from Brill and Cohen. However, thenew result is that they beome able to extend the analysis to seond order.In order to do this they use a result argued for in [20℄. This is that to seondorder in rotation U , K, W/ sin θ and A only has P0 and P2 terms whenexpanded in Pl(cos θ) Where Pl is the l-th Legendre polynomial. Connetedwith this is an observation that these variables only depend on even ordersof ω, this beause of the symmetry aross the equatorial plane. Seeing that
A is multiplied with ω in the metri 3.35, we an onlude that there will beno new orretion to the metri in seond order rising from A.They then perform the integral proedure as desribed above, stoppingbefore solving for K. Five onstants of integration were introdued. Onewas eliminated by requiring that U had to fall o� faster than r−1 as r → ∞in order to make sure the total mass of the shell doesn't hange. Two areeliminated by a previously unused �eld-equation.Then it turns out that there is not enough freedom in the system to beable to make a ontinuous onnetion between the inside and the outsidemetri. However, they �nd that if they allow the shell to not be perfetlyspherial, but rather have a θ dependent radius it will be possible. Fromtheir knowledge of the system, they attempt the following radius:

rS = R(1 + ω2f sin2 θ) (3.36)where f is a parameter desribing how far from a sphere the shell has to be.They are now able to derive equations that gives the remaining integrationonstants in terms of K and f only from the ontinuity onditions. Also fromthe ontinuity onditions they are able to now generate inhomogeneous lineardi�erential equations for K0 and f . It all turns out to be interonneted ina quite ompliated way, so they only give the expression for f in the end.Using the abbreviation x = R/α they have that the value of f/R2 thatallows �at interior solutions of the mass shell to seond order in ω is uniquelydetermined by x is (quote):
f

R2
= −16(x+ 1)4(2x− 1)2

3x4(3x− 1)2

×
(

2x+ (x2 + 1) log[(x− 1)/(x+ 1)]

2x(x2 + 1) + (x4 + 2
3
x2 + 1) log[(x− 1)/(x+ 1)]

− 3(x2 + 6x+ 1)

32x2

)(α is still given by 3.32)



3.2. INSIDE A HOLLOW SHELL 49In a paper one year later [44℄ they extend their work to the third order.As mentioned above U , K, W/ sin θ and A all only has even order terms in
ω. Hene from the form of the metri, only the seond order term of the Aparameter will give a third order ontribution to the metri. Thus they onlyhave to solve the equation for A. This still is quite ompliated, as they nowmust use the seond order results of the other variables in order to get theorret third order result in the metri. They use some pages to list throughthe integration steps they have to use to get the expressions they use. Whenthe time omes to math their solution with the energy-momentum tensor ofa rotating shell they stumble upon the problem that there is a θ dependenein their expressions for A that is not ompatible with a rigidly rotating shell.They solve this by still demanding that the body at all points has a purelyaxial rotation, but they then argue that the angular veloity has to have theform

ω̄ = ω(1 + ω2R2e sin2 θ) (3.37)where e is a parameter determined by the radius and mass of the shell (notto be onfused with Euler's number). Due to the omplexity of the equationsinvolved they only give the solution for e in terms of derivatives of two otherompliated funtions they have gotten expliit solutions for earlier, so Iwon't quote it here.Their onlusion is that there in general may not be possible to �nd arigidly rotating shell keeping the interior �at with given mass, mean radiusand angular veloity of the interior with respet to the asymptoti in�nity.However, they argue that given the restritions they have set, there is to all(�nite) orders one unique solution that gives a Minkowski bakground. Foreah new order, they have to add orretions to the shell geometry and rota-tion to the order they are going for. They show the form of these orretionsand ounts up that the free parameters in these are just enough to allow thesystem to be solvable. To atually arry out this integration would be veryhard due to appearanes of terms involving quadrates of logarithms in thedi�erential equations.As they have given up spherial symmetry and rigid rotation, it may bein order to review the restritions they have set on the system. They do notdo it themselves, but as far as I an see the ritial parts are the following: Asurfae dividing spae-time in two parts with axial and equatorial symmetry,spherial in the limit ω → 0. All veloities are parallel to the equatorialplane, and it is a stationary system.In an artile of 1989 [41℄ P�ster does some examination on easing up these



50 CHAPTER 3. ASYMPTOTICALLY MINKOWSKI SPACESrestritions. I will not go into dept in this as he does not get any de�niteresults, exept that for a ertain small deviation from spherial shell in thestati limit, there are no �rst order solutions with �at interior.So, how does these results relate to Mah's priniple? Thinking bak toour thought experiment in 3.1.1, we see that we now have found a lass ofsimple models where the masses of the universe an give the impression thatone loally exist in a Minkowski frame at rest, even though one from theMinkowski in�nity observes the frame as rotating. This is an argument forquestioning the notion of any absolute rotation. That this solution is uniquealso serves as a demonstration that the loal inertial frames really do dependin a real way on the masses.The limit where the radius of the mass shell goes to the Shwarzshildradius of the mass also turns out to be highly interesting. While the systemonstants f and e above generally is respetively negative and positive, bothof these goes to zero in this limit. Remembering bak to the �rst order resultthat the dragging oe�ient went to 1 in this limit as well, we see that at leastto third order the rigidly rotating sphere ompletely sreens away the e�etsof the outside Minkowski limit. This sreening is suh that it is impossiblefor an observer inside it to determine how it rotates only by observing theinside of the shell and the shell itself. Even though it is then tempting toargue that the inside metri is ompletely determined by the mass-shell, itmay be worth keeping in mind that we here hasn't seen on the possibility ofother boundary onditions than the Minkowski at in�nity.3.2.4 Revisiting the rotating ylinderI will here brie�y revisit the ase of a rotating in�nite ylinder from 2.2.5. Itturns out that the interior of suh a system has to be �at. This result wasfound by Davies and Caplan in [14℄. They started out with a general formfor the metri in a stationary rotating system with axial symmetry foundby Levy and Robinson in [30℄. They implement the rotating ylinder bydemanding that the solution should be z-independent, and that the interioris vauum. They then solved the �eld equations in the inside, demandingthat there should be no in�nite parameters there. Finally they presented aoordinate transformation from the initial oordinates to a new oordinatesystem where the metri got the standard form of a �at spae in ylindrialoordinates.This result is exat. Comparing with the result in 2.2.5 we see that thelinear approximation taken in that setion learly falls short in this ase. The



3.3. OUTSIDE ROTATING BODIES 51approximations taken there lead us to leave out the "entrifugal fore" thatis a seond order e�et in the angular veloity. This ould be onsidered agravitoeletri fore, and our onlusion from that setion that there is nosuh in the system fails in the exat ase. Thus we see that the Maxwellianapproximation is not suited for study of entrifugal-like e�ets, and remindsus to not put too muh faith in zero-results found in that framework.Unfortunately, it is hard to apply this result in any Mahian argumenta-tion. One reason is that it does not model our universe very well. Anotherthing to be aware of is that this is not asymptotially Minkowski. This ismost learly seen as the boundary of the rotating ylinder strethes out toin�nity, hene breaking the vauum neessary for having Minkowski solution.However, the neessarily in�nite total mass of the ylinder in order for it notto have zero mass-(surfae)-density also makes the behaviour at in�nity inother diretions problemati. These things also make it hard to omparewith P�sters aproah. Another thing that makes this result of limited valueis that it only shows that the interior is �at, but not anything about howfor instane its rotational state is with respet to the masses making out theylinder.3.3 Outside rotating bodiesWe have previously seen on the situation inside rotating shells. Here I willonentrate on what is going out on the outside. This is of relatively littleinterest to the question of how the universe at large a�ets us, as we areinside the universe. However, it turns out that e�ets ritial to ommoninterpretations of Mah's priniple is easiest to test in systems outside ro-tating bodies. Most importantly beause the universe at large is very "wellbehaved" while we are lose to a ertain easy to aess rotating body: Earth.3.3.1 Approximate solutionsThe ase of a �eld outside a rotating body was investigated to some extentby de Sitter as early as 1916 in the linearized theory [15℄. Lense and Thirringextended upon this in a paper from 1921 that is also translated in [35℄. Theydid this in a similar way as Thirring had used in the inside of the mass shell,but only going to �rst order in the rotation. They also used this to alulatethe magnitude of these e�ets for some of the bodies of the solar system.The most important e�et they found was the e�et of the rotating planets



52 CHAPTER 3. ASYMPTOTICALLY MINKOWSKI SPACESon the rotation axes of their moons.However, I will here onentrate on the work of Shi� from 1960. Hismain results are presented brie�y in [48℄, and a more detailed treatment wasgiven in [47℄. The reason to empathize this is that he arrived at a form ofthe e�ets that lend it neatly to laboratory experiments. This is also theapproximation that has been used as the basis for the work on the reentgravity probe B satellite experiment that I will ome to later.Shi�'s approah is based upon a paper of Papapetrou from 1951 [40℄. Inthat paper a method for �nding the equations of motion for a ertain kindof test partiles were presented. This is based upon the ontinuity relation
T µν

;ν = 0 alone. The kind of test partiles onsidered have the propertiesthat they do not themselves hange the metri. Further, it is assumed thatthey are limited to a thin time-like tube in spae-time. In order to trakthe position of the partile, they use a line inside the tube with oordinates
Xµ in a way so that the spae oordinates X i ould be regarded a funtionof either X0 or the proper time s along it. The main harateristi of thepartile is that ∫ T µνdv and ∫ (xi −X i)T µνdv is non-zero. Here the integralsis over the spae slies with onstant oordinate time; that is over the points
xi. Integrals with higher order produts of the distane di�erenes are zero.These partiles are thus termed di-poles. Single-poles have only ∫ T µνdv non-zero, while higher-poles have non-zero integrals with the distanes to higherorders.Now one an write the ontinuity equations in terms of partial deriva-tives and Christo�el symbols instead of ovariant derivative, and restrit ourattention to the time-derivative. Then insert the Taylor-expansion of theChristo�el symbols around Xµ. Now by integrating the equations over thespae, and keeping in mind that it is only a dipole as de�ned above, allhigher than �rst order derivatives of the Christo�el symbols disappear fromthe equations. From this it was possible to �nd equations of motion fullyspeifying the state of the partile, with an exeption of three degrees offreedom. However, these seem to be due to freedom in exatly where in thetube the Xµ line is hosen to be, and thus may be hosen away quite simplythrough physial arguments on the system.The general equation is quite ompliated ompared with that of thesingle pole ase that is simply the geodesi equation. This is beause the spinof the dipole partile also appears as an important property of the partilein addition to its position and veloity. The spin is de�ned by the tensor:

Sµν =
∫

(xν −Xν)T µ0dv −
∫

(xµ −Xµ)T ν0dv (3.38)



3.3. OUTSIDE ROTATING BODIES 53I will remark that (x0 −X0) here is zero as the integrals is over the onstantoordinate-time slies.Shi� essentially took this result, and applied it to the Shwarzshildmetri modi�ed by the o�-diagonal elements found by de Sitter and Lenseand Thirring for the outside of a rotating body in linear approximation. Inorder to get a niely interpretable result he also made the following impor-tant and non-trivial oordinate transformation: Assume the test partile isa gyrosope moving around a rotating body. A perfet gyrosope will be anexample of suh a dipole partile. Then reate the oordinate system of anobserver that is moving with the gyrosope made by standard measuring rodsat his position, but where the orientation of the axes still are parallel to thoseof the standard Shwarzshild Cartesian oordinates used when onsideringthe system from the point of view of the entral mass.To simplify this oordinate transformation he takes advantage of the ap-proximation that the distane to the massive objet reating the �eld is largeompared with it's Shwarzshild radius, so that he may work to �rst orderin m/r. He also assumes that the ordinary spae-veloity v of the test par-tile relative to the entral body is low ompared to the speed of light, thusonly working to seond order in v. In this new frame, learly the partileis not moving. It is also natural to let the points Xµ be so that X i traeout the spae loation of the entre of mass of the gyrosope. This onditionompletes the equations of motion. Given the symmetries of the system, itis simple to see from the de�nition that the omponents involving time ofthe spin tensor disappear. The only non-zero omponents then orrespondto the lassial spin vetor in the following way:
~S = (S23, S31, S12) (3.39)Thus he arrives at the following equations of motion:
(d~S/dt) = ~Ω × ~S (3.40)

~Ω = (3m/2r3)(~r × ~v) + (I/r3)[(3~r/r2)(~ω · ~r) − ~ω] (3.41)Here all vetors exept ~S is as measured in the standard isotropi Shwarzshildoordinate frame with the soure in the origin. ~r is made of the spae-likeomponents of the position oordinates, and r is as usual the length of this. ~vis the spae-part of the four-veloity of the test partile and ~ω is the angularveloity of the entral body (usually taken to be along the z-axis). m is themass of the entral body. I is the moment of inertia of the entral body, forinstane a homogenous sphere with radius R I = 2mR2/5. These equations



54 CHAPTER 3. ASYMPTOTICALLY MINKOWSKI SPACESalso use the onvention that sets the speed of light and the gravitationalonstant to unity.Interpreting the �rst of these equations is quite simple, but still yields animportant result: As the time derivative of the spin has to be orthogonal tothe spin, so its magnitude will not hange. This assures that the gyrosope iswell behaved in a ertain way, so that it may atually be used as a standardlok. The �rst term in the seond equation is independent of the rotationof the entral body. It is laimed that it an arise from an extension of thespeial relativity theory only inorporating the equivalene priniple. It alsois most usually found by a seond order approximation of the theory. Theseond term on the other hand is a pure general relativisti e�et. It learlyshows how the spin axis of the gyrosope is a�eted by the rotation of theentral body.Also pay attention to the fat that the last term is idential to the stan-dard equation for a magneti dipole with dipole momentum along ~ω. Thislearly shows the relation between the Maxwellian analogy treated previ-ously and this ase. Another potential analogy is that this term shows thatrotating masses somehow drag all other free partiles along in their rotation.Thus, also the inertial frames are dragged in a ertain way. This is mosteasily seen in the ase above the poles. Here the term will beome 2I~ω/r3,thus dragging all gyrosopes in the same diretion as the rotating body. Onthe other hand above equator it will beome −I~ω/r3 thus making the inertialframes spanned out by the gyrosopes rotating in the opposite diretion asthe planet. This might at �rst glane seem to oppose the idea that framesare dragged along with the entral body. This onern is addressed by point-ing out that this is due to the redution of the e�et, as the distanes growlarger.A major part of the paper is also devoted to omparing two approahesto hoose the three free variables of the system, and examining how suh testpartiles behave when in�uened by non-gravitational fores. This last wouldbe important if attempting a laboratory experiment on the earth surfae, asthe fores keeping the experiment on the surfae would have to be taken intoaount. The primary hange found was that the equation 3.41 would haveto be orreted by a term of 1/2(~f × ~v). This result is of little interest forthe urrent thesis so I will not delve further into this.I will return to this equation when I ome to the spei� ase of thegravity probe B experiment. More detailed approximations are made, forinstane as a side e�et by the alulations of Cohen and Brill, and by P�sterand Braun as presented earlier. None of these pays muh attention to the



3.3. OUTSIDE ROTATING BODIES 55external solution, and they are of limited value in this onnetion. Thisbeause the approximation given here is as good as one an test with today'stehnology, and that it is of little theoretial interest as one atually have anexat solution for this system as we are about to show now.3.3.2 The Kerr metriIn 1963, Kerr presented a paper [26℄ in whih he desribed a metri he hadderived from ertain mathematial properties. One of these was that it had tobe a vauum everywhere, exept at any singularities. This original formula-tion is now mostly of historial value, as it has later been found formulationsthat make this easier to interpret orretly. Even though it was found onlythrough mathematial onsiderations, he ould see from the form that itprobably ould be the exterior solution of a rotating objet.A quite popular representation for the Kerr metri is alled Boyer-Lindquistoordinates. This is named after Boyer and Lindquist who in a paper from1967 [9℄ presented it as a "Shwarzshild like" form of the Kerr metri. Thatthis form got to bear their name seem somewhat strange, as it was in theirpaper only a middle step for what they onsidered their main result of thatpaper. However, it has a few neat properties.The metri is given as
ds2 = Σ(dr2/∆ + dθ2) + (r2 + a2) sin2 θdφ2 − dt2 + 2mr/Σ(a sin2 θdφ+ dt)2(3.42)where

∆ = r2 − 2mr + a2 (3.43)
Σ = r2 + a2 cos2 θ (3.44)

a andm is free parameters in the mathematial problem whose physial inter-pretation turns out to oinide with that of the rotation and mass propertiesof a entral objet.One important property of this oordinate system is that it beomes thestandard Shwarzshild oordinates when we set a = 0, and in this ase it iseasy to see that m represents the standard mass of the objet. Lower orderapproximations of this solution also exhibits that the parameter a makesthe metri behave like the Thirring system where a is orresponding to theangular momentum per unit mass along the θ = 0 axis.Further physial interpretation turns out to be quite ompliated. Whilethe Boyer-Lindquist oordinates have some ommon features with Shwarzshild



56 CHAPTER 3. ASYMPTOTICALLY MINKOWSKI SPACESand lower approximations of rotating bodies, it does not present any obviousway to build up the oordinate system from physial experiments. With thisin mind, I will mention one property with the Kerr metri in Boyer-Lindquistoordinates that is often mentioned in that onnetion, and that an be re-lated to frame dragging. This is partially following the treatment on the Kerrmetri in the book by Grøn and Hervik [56℄. Observe that
gtt = 2mr/Σ − 1 (3.45)We �nd that this quantity beomes positive if

r2 + a2 cos2 θ − 2mr < 0 (3.46)Observe that the surfae ∆ = 0 learly has to be inside this region of spaefrom r2 + a2 cos2 θ − 2mr = ∆ − a2(1 − cos2 θ) <= 0. The ∆ = 0 surfaeis signi�ant as this gives an in�nite grr and thus plays the same role as theevent horizon in the Shwarzshild metri. The gtt > 0 region is howeverinteresting as this marks the area where physial partiles moving alongtimelike ds < 0 paths an have onstant r, φ and θ oordinates. Examiningthe metri we �nd that the only way to get a negative interval is to have dφnegative. Thus one might say that this region plays the same role for framedragging as the area inside the event horizon plays for ordinary gravitation.The area with this extreme dragging, outside the ∆ = 0 boundary is namedthe ergosphere.Another way to see the e�et of frame dragging in this oordinate systemis to examine the path of a free partile initially at rest far from the soure.This is relatively simple to analyze using Lagrangian formalism, but as thisis somehow outside the sope of this thesis, I will not go into the details.The main idea is that the Lagrangian for the system beomes independentof φ, hene there is a orresponding onstant of motion pφ. One �nds thata non-moving partile far from the soure has approximately pφ = 0. Thisgives us the following result for the angular veloity of the partile in theoordinate system:
dφ

dt
=

a(r2 + a2 − ∆)

(r2 + a2)2 − ∆a2 sin2 θ
(3.47)This isn't an easy expression, but inserting for ∆ it is atually quite easy tosee that if we ignore all but the �rst order produts of a we arrive at

dφ

dt
≈ 2ma

r3
(3.48)Thus showing that for at least small angular veloities, we have a lear ten-deny that the partile is dragged along in the same diretion as the entral



3.3. OUTSIDE ROTATING BODIES 57body is spinning, and that this e�et beomes stronger as one get loser. Iwould like to mention that this approximation also demands that r is largeompared to a, as else one annot justify keeping the r3 term, and not higherorder a terms. The exat solution is not very ompliated, but gives us lit-tle new qualitative information, exept that the dragging e�et is relativelysomewhat weaker for high a.The ∆ = 0 limit is also easy to alulate, but hard to interpret:
dφ

dt
=

a

r2 + a2
=

a

2mr
=

a

2m(m+
√
m2 − a2)

(3.49)I have been unable to �nd any oordinate independent interpretation ofthese dragging-e�ets found here. Nevertheless, from the simple form of themetri it seems unlikely that one an be able to get ompletely rid of it.The Kerr-metri and its generalisations have been subjet to muh researh,and have many interesting properties. However, I believe I have now brie�yovered those results that are most interesting in regard to Mahian rotatione�ets.3.3.3 Gravity probe B, This setion is mainly based upon the NASA �nal report of the GravityProbe B experiment [2℄. Gravity probe B is a satellite experiment that hasbeen under development at Stanford University sine the 1960s. On 20 April2004 the satellite were �nally launhed, and it produed data until 29thSeptember 2005. However, the data-analysis has proven quite ompliated,and it is still not ompleted. The results I base this setion on were presentedin the ontext of NASA no longer providing funds for the projet.The theoretial foundation for the experiment is the approximation foundby Shi� as presented in 3.3.1. The idea was to send a satellite in an orbitover the poles with gyrosopes initially pointing toward a suitable heavenlybody. This body should be so that when the satellite is over the equatorthe diretion to that body from the gyrosope is either away of through theentre of the earth. This setup has several nie qualities. Looking bak tothe equation for the preession of gyrosopes 3.41 we see that in this ase the�rst term in the equation will always be orthogonal to the plane the satellitemove in, thus giving a pure North-South preession. This ontribution to thepreession will also thus be orthogonal to the spin-diretion of the gyrosope,hene giving a maximal total displaement. The seond term might be a bitmore di�ult, but integrating around the entire orbit it beomes lear from



58 CHAPTER 3. ASYMPTOTICALLY MINKOWSKI SPACESthe symmetry that the diretion of that preision ontribution will sum up tobe along the axis of rotation of the Earth. Hene, this preession will de�etthe gyrosope in a purely East-West diretion. Again, this de�etion is aslarge as it an, as the preession is orthogonal to the spin.Even though the experiment then in priniple is easy, there were manypratial and tehnial di�ulties onneted to doing this experiment. Onething is to �nd su�iently aurate orbit information. Fators suh as howoblate the Earth is had to be taken into aount. This was neessary in orderto obtain the right values for the position vetor needed in the formulas. Itwas also neessary for some alibrating issues.Finding a suitable heavenly body to use for referene was also important.It had to have a known, small veloity relative to the bakground of distantbodies, while being su�iently strong to be possible to be traked easily andbe diserned from the surroundings. In addition omes the above-mentionedloation requirement that it had to be above the equator. The hoie fell onthe star IM Pegasi.For the required preision of this experiment, the telesope required fortraking IM Pegasi on board the satellite also had to severely push tehno-logial limits.However, the requirements for the gyrosopes ould almost be onsideredsiene �tion. In order for the drift rate of these to be as low as requiredthere were several tehnial di�ulties to overome. One thing is that itneeds to be almost perfetly spherial. However, it also needed to be veryhomogenous. This was in order to make sure the geometri and mass en-tre was as lose as possible to eah other. Even in spae, external foreslike for instane radiation pressure ould have made making a su�ientlyhomogenous sphere all but impossible. Only by applying motor boosters tothe satellite ompensating for this drift was a su�iently homogeneity withinreah. In addition, they had to use superonduting oating and advanedoolers in order to be able to make measurements on the spin of the sphere.Magneti shielding, being able to spin the gyrosope up and avoiding possi-ble hange of shape of the apparatus over time were also major onerns, allwhih were intimately onneted by keeping it all old. The �nal satellite wasomprised of four gyrosopes, two rotating in one diretion, and the othertwo in the opposite diretion, thus doing the same experiment more or lessindependently of eah other.After the data were olleted, one major problem showed up that drasti-ally ompliated the analysis of data. Simply put it turned out that eletri-al e�ets onneted to the rystals of the material the spherial gyrosopes



3.3. OUTSIDE ROTATING BODIES 59and the hasings they were made of were large enough to ause signi�antNewtonian disturbanes to their data. These disturbanes entered throughthe set up of a ruial alibration sheme, an assoiated torque, and anotherunforeseen resonane e�et with the rotation of the satellite asing. Thelast essentially sometimes made the spin diretions the gyrosopes to makea jump over some days independent of the others.Fortunately, even though it was not intended, they atually had obtaineddata that ould be used to map the ritial eletrial distribution inside thegyrosopes. Through this, they were able to drastially redue the satteringof the results. A ontinuously greater understanding of the resonane e�etalso helped tremendously.At the end of 2008, the main limitation on the results was that of om-putation power. Their results were based upon analysis of means over dailydata, while they are striving for high-speed omputational methods allowinganalysis of data of every 2 seonds.For the North-South diretion, they alulated that the drift due to themovement around the earth would be 6606 milliarseonds per year (mar-s/yr). In addition to the e�et of the Earth, the e�et of the motion aroundthe sun orresponding to the �rst term in 3.41 and the e�et of the motionthrough spae of the star had to be taken into aount when alulating thetheoretial result of the experiment. Thus they arrived at a theoretial driftof 6571±1 mar-s/yr. Combining the result from all four gyrosopes theyarrived at a drift of 6550±14.0 mar-s/yr. This they onsider a very goodon�rmation to that e�et.The East-West e�et of the rotation of the earth was alulated to bejust 39 mar-s/yr. That is onsiderably less than that of the �rst e�et, andexplains why the need for suh high preision on the experiment. Taking intoaount the other signi�ant fators the expeted measurement ended up tobe 75±1mar-s/yr. The ombined measurements yielded a result of 69.1±5.8mar-s/yr. They stress however that these results is without systemati erroror model sensitivity analysis inluded. Therefore, even though the theoretialresult is outside their estimated error, they state that they onsider the framedragging e�et to be on�rmed with only 15% unertainty. This may beintuitively justi�ed by observing that the measured drift is loser to that ofthe theoretial result with frame dragging than that without.So why is this experiment of interest to this thesis? This experimentstands as the best experimental on�rmation of the e�et that seem to bethe main basis for arguments tying Mah's priniple to general relativity,namely gravitomagnetism/frame dragging. Without suh an e�et it is hard



60 CHAPTER 3. ASYMPTOTICALLY MINKOWSKI SPACESto see how one may argue that far objets diretly a�et loal systems. Evenwith this e�et it is still not obvious that it is possible to �nd any relation thatonnets general relativity with any strong formulation of Mah's priniple,but the possibility seem to be there.



Chapter 4Universe modelsMah's priniple onerns bodies far away. As suh it makes sense thatattempting to restrit attention to a small portion of the universe as is usuallyassumed in the asymptotially Minkowski ase won't give us the full piture.All masses in the universe may play a role. Therefore, the need to turn to the�eld of osmology in order to examine this fully seems to be evident. As thisis a potentially huge subjet, I will restrit my attention to two importantways osmology has been seen in onnetion with Mah's priniple. FirstI will present a reent result. This shows that the universe models that ismost used for our universe - Friedmann-Robertson-Walker (FRW) universes,do have a very important "Mahian" property. Seondly I will present aouple of universe models that I have often seen referred to as exploiting alak of Mahianity in general relativity, and some ideas as how one mightunderstand them without having to let go of Mah's priniple.4.1 FRW/ShmidIn this setion, I will present a reent result that an be onsidered quiteimportant from a Mahian point of view. It was found by Christoph Shmid,and is presented in detail for �at universes in [49℄, and expanded to urveduniverses in [50℄. It states that for a linear perturbation of a FRW universethe orientation of the inertial frames is exatly dragged by a weighted meanof the rotation of the masses around them. Said in a di�erent way it tellsus that the rotational states of inertial frames are perfetly determined in arelatively simple way by the state of the universe. A ompat and struturedpresentation of the path to the result is already available as notes from theproeedings of a presentation held in 43rd Renontres de Moriond [51℄. Thus,61



62 CHAPTER 4. UNIVERSE MODELSI will fous on the theoretial foundations not presented there.4.1.1 FRW universesThe Friedmann-Robertson-Walker metri is named after three sientists whoindependently found important properties of the metri. Sometimes the nameLemaître is also inluded, and sometimes some of the names are exluded.The historial reasons for this lak of any strong naming-onvention may beread from for instane Gravitation [36℄. It turns out that Friedmann wasthe �rst to disover the metri in 1922, but it was independently disoveredby Lemaître in 1927. It was however �rst when Robertson and Walker in-dependently found that these universes are the only spatially homogenousand isotropi universes in general relativity in 1935 that the model got areal breakthrough. The assumptions that the universe at large an be sliedinto spatial hypersurfaes so that where you are on it won't a�et the ob-servations (spatial homogeneity), and that you observe essentially the samewhatever diretion you observe in (isotropy) �ts so well to our universe thatthey has been named the osmologial priniples. Thus FRW universes areoften one of the �rst universe models enountered in textbooks on osmology,for instane that by Grøn and Hervik [56℄.The metri of this model has a quite simple form. In Robertson-Walkerform it beomes:
ds2 = −dt2 + a(t)2(

dr2

1 −Kr2
+ r2(dθ2 + sin2 θdφ)) (4.1)Here K is a true onstant determining the geometry of the spae. It an besaled by oordinate transformations, but never made to hange sign. Thisoordinate transformation is essentially to draw the absolute value of K into

a. By that reason in theoretial appliations a dimensionless parameter k isintrodued and is set to be ±1 or 0, eah of these ases representing quitedi�erent geometries. If K > 0 the universe is said to be losed, and k = 1.If K = 0 it is �at and k = 0. Finally, if K < 0 it is open and k = −1. a(t)is a time-dependent sale fator. Both K and a is to be determined by thematter-distribution through Einstein's �eld equations.Some words on notation. Shmid uses K in the same way as I here use
k. I will stay with the standard notation. This avoids onfusion with Kneeding to have dimension that anels r2. If r is �xed to be dimensionlessby oordinate hoie, k might have substituted K. However, Shmid laterwill use k for ertain eigenvalues. I will here adopt the more ommon notation
λ for these eigenvalues.



4.1. FRW/SCHMID 63Another ommon form for the metri that will prove useful in the setionsto ome are the following:
ds = −dt+ a(t)2(dχ2 +R(χ)2(dθ2 + sin2θdφ2)) (4.2)Where R(χ) = sin(χ) if k = 1, R(χ) = χ if k = 0 and R(χ) = sinh(χ) if

k = −1.An important quantity often met in the treatment of FRW-universes isthe Hubble parameter de�ned by H = ȧ/a where ȧ = da/dt.It may also be interesting to note that if one set k = 0 and a = 1 one getthe standard Minkowski metri. This shows that Minkowski is a speial aseof FRW. The result of Shmid will turn out to open up for an interestinginterpretation of this that I strangely enough have not seen mentioned before.It may also be worth to mention that these universes have the propertythat gyrosopes follow the matter �ow, always pointing along the same lineof matter. This may be intuitively on�rmed from the isotropy ondition,as any preession of the gyrosope relatively to the matter around it wouldmake the preession axis stand out as a "favoured" diretion.4.1.2 Linear perturbation on FRWPerturbation theory is the theory of what happens if you take a systemand make small hanges to it. The initial system is alled the metri andis usually hosen in a way so that it has partiularly simple or desirableproperties. The new, hanged system is alled the perturbed system. Asour universe seems to be well desribed as something not far from perfetlyspatially homogenous and isotropi it makes sense to use FRW universe as abakground when studying our universe.One partiular problem when it omes to all perturbations is the one ofgauge freedom. A gauge is a relation that tells us what point in the perturbedsystem orresponds to what point in the unperturbed. To illustrate this,imagine a irle in the Eulidean plane. This plane is overed by a standardpolar oordinate system with the origin in the entre of the irle. Use thisas the bakground system. Then make a slight hange/perturbation of it sothat instead of being a irle we have an ellipse. Where should we put theorigin, orresponding to the entre of the irle in this new system? Bothfoi, and the entre of those, present themselves as possibilities. Therefore,it is possible to introdue a standard oordinate system having any of theseas entres mapping points in the bakground to the ellipse. In addition, one



64 CHAPTER 4. UNIVERSE MODELSmight want to keep a orrespondene between the irle and ellipti urve.In that ase, a kind of polar oordinate system where the radius-oordinateis onstant for all points in the ellipse ould be introdued. Knowing themetri of this oordinate system, it would still be evident that the perturbedsystem represented an ellipse. This freedom in mapping is referred to asgauge freedom. Thus, learly de�ning gauges or working with quantitiesthat is gauge invariant quantities is important, and I will ome bak to thatissue later.For the FRW-bakground there is an important result presented for in-stane by Kodoma and Sasaki in [28℄. To explain it I want to introdue thenotion of "pure" salar, vetor and tensor �elds. Any salar �eld is automat-ially "pure". A vetor �eld may be deomposed into a salar and a purevetor �eld where the purity of the vetor �eld is de�ned by it being diver-geneless. Similarly, any (symmetri) seond rank tensor quantity may bedeomposed into pure tensor, vetor and salar �elds, where the pure tensor�eld is both traeless and divergeneless.Consider an equation involving salar, vetor and/or tensor �elds de�nedon the hypersurfaes of homogeneity in the FRW-universe with the followingproperties:
• It is ovariant with respet to oordinate transformations in the hyper-surfae
• It is linear in unknown geometrial quantities
• If it is a di�erential equation it is at most of seond orderIt turns out that suh an equation an then be deomposed into a groupof equations where eah only ontains pure salars, vetor or tensor �elds.The linear approximation to Einstein's �eld equations with FRW-bakgroundhas these properties. Thus, the e�et of any small perturbation may haveits e�ets analysed independently in the salar, vetor and tensor setor.The pure salar-�eld part of the perturbation is sometimes also referred toas irrotational or density perturbation. The pure vetor part is sometimesreferred to as rotational or vortiity perturbations. The pure tensor part issometimes referred to as gravitational wave perturbation.The possibility to make suh deomposition is ritial for the approahmade by Shmid. Thus, it ould be interesting to examine if it an be done forother universes than FRW as well. After the proof of this result, Kodoma andSasaki stress that the bakground hypersurfae having onstant urvature



4.1. FRW/SCHMID 65is a ritial part of the proof. One possible de�ning property of onstanturvature is that
Rαβγδ = K(gαγgβδ − gαδgβγ) (4.3)where K is onstant. This poses a potentially severe restrition on the modelsfor whih this method may be used. FRW universes are the only universemodels I have found to have been used as an example for this.4.1.3 Eigen�elds of LaplaianIn order to arry out the integrals required to arrive at his results, Shmidfound a ertain set of eigenfuntions for a Laplae operator. The Laplaeoperator in question Shmid refers to as the de Rham-Hodge Laplaian (∆) inorder to separate it from what he refers to as the rough Laplaian. Strangely,I have found no standard naming onvention for these, so I will stik withhis terminology. The rough Laplaian is de�ned by ∇a∇a. The de Rham-Hodge Laplaian is originally only de�ned on di�erential forms, but by goingto the orresponding vetor where neessary it may make sense to use it onvetor �elds as well. Instead of giving the full de�nition that would requirea degree of mathematis than I don't want to assume in this thesis, I willsimply state the two main properties that was neessary for Shmid to arriveat his �nal result: For salar �elds the rough and de Rham-Hodge Laplaianis equivalent, and for divergeneless (pure) vetor �elds ∆ ~A = curl(curl( ~A)).He starts out by investigating the salar eigen�elds of the Laplaian. Asthe bakground is spherially symmetri, he an separate those into a radialand an angular part. The angular eigenfuntions of the laplaian is a set ofwell-known funtions known as spherial harmonis. The standard notationfor these are Ylm(θ, φ) where l andm are integers haraterizing the funtion.He then solved the radial part in terms of the oordinate system desribedby the metri 4.2. By demanding it to be regular in the origin, he arrived atthe following funtion:

J̃ (k)
q l(χ) = Rl(− 1

R

d

qdχ
)l(

sin qχ

qR
) (4.4)Remember that R is a ertain funtion of χ. This is not marked expliit inthis formula to avoid onfusion with the parenthesises for the terms to be themultiplied. l is the same as for the spherial harmonis, showing what radialfuntions an be used together with what angular eigenfuntions. In orderto make a leaner notation q was introdued and is de�ned as q2 = λ2 + k.Here λ is the eigenvalue orresponding to the radial funtion, and k is the



66 CHAPTER 4. UNIVERSE MODELSusual urvature-parameter. As mentioned earlier this notation di�ers fromthat used by Shmid. Instead of lambda he uses k, and he uses K for whatI here note as k.
J̃ is then reognized as a generalisation of another well-known family offuntions: the Bessel funtions. From knowledge of these he are quikly ableto determine the eigenfuntions that is not regular at χ = 0 as well. I wouldlike to remark that the form of the posible funtions R was important inderiving the relatively simple expression 4.4. Thus expanding this result toother universes than FRW-universes may be problemati.Then we may turn our attention to the vetor �elds. As there may bemore than one vetor �eld with a ertain eigenvalue there may exist bases ofvetor �elds that one an onstrut all other eigenvetor �elds from. Thereis a ertain degree of freedom assoiated with the hoie of this basis. Thismotivates trying to �nd vetor �elds that an be used as basis elements withpartiularly nie properties.Shmid hooses to examine the following set of sets of �elds spanning thethree dimensions:

~X+
lm = R~∇Ylm (4.5)
~X−

lm = ~eχ × ~X+
lm (4.6)

~eχYlm (4.7)These �elds have some quite nie properties. All of them are eigenfuntionsof the total angular momentum operators J2 and Jz with values l(l+ 1) and
m (we will later see why this is a good thing). If one examines the sign ofthe �elds on hanging sign on all oordinates one �nd the parity. The parityof all X− is P = (−1)l+1. For all the other �elds the party is P = (−1)l.Finally, they are all orthogonal to surfaes with onstant radius. This lastproperty tells us that all vetor �elds an be deomposed uniquely into a sumof these �elds at eah shell of onstant radius (that is, if these �elds makea omplete set, whih I believe follows diretly from them spanning threedimensions and Ylm being omplete).There is also the freedom of multiplying these �elds by ertain salarradial funtions. This is explored to some extent. Divergeneless �elds arealso onstruted this way, exept for the X+ �elds. In order to get thesedivergeneless a �eld of the Ylmeχ had to be added. However there are thenstill no mixing with the X− elements. Finally, it is shown that the following�elds are eigen�elds of the de Rham-Hodge Laplaian:

J̃
(k)
ql (χ) ~X−

lm(θ, φ) (4.8)



4.1. FRW/SCHMID 67Here J̃ is the generalized Bessel funtion as before. The eigenvalue in thisase is exatly −q2. The other possible eigen�elds with X i as angular partmay be gotten by hanging J̃ with one of the other previously mentionedsalar radial eigenfuntions of the Laplaian. It turns out that the eigen�eldsinvolving the other basis �elds are of no interest in this ontext.4.1.4 Perfet dragging in perturbed FRWNow we are �nally ready to have a brief look on the physis around the resultthat indiates perfet dragging in FRW-universes. Take a FRW-bakgroundwith standard Robertson-Walker oordinates (r as radius, not χ). Thenapply a pure vetor perturbation on it, keeping the universe at in�nity un-perturbed. A result from perturbation theory is that in this ase we may keepour old time oordinate without any gauge problems. This is beause hang-ing the time-struture between hypersurfaes of homogeneity would requiresalar perturbation. Another interesting result is that the intrinsi geometryof eah slie of onstant time remains unhanged by the perturbation. Itis then possible to hose a gauge so that the perturbed universe is overedby a oordinate-system in a way so that the metri is idential to the bak-ground metri, with the exeption of the omponents g0i = βi. And as theperturbation is purely vetor, the vetor �eld ~β must be divergeneless.In this universe, onsider the following setup: At eah point is an ob-server moving so that his oordinates remain onstant. Eah observer hasonstruted a loal orthonormal frame. These frames have their orientation�xed so that they are part of geodesis between the observer and onstantheavenly bodies at in�nity at the same time oordinate. As the intrinsi ge-ometry of the surfaes is unhanged and there is no perturbation at in�nity,these diretions are well-de�ned, as they are well-de�ned in the bakground.Eah of these observers has a set of gyrosopes. By observing the movementand preession of these, they are able to observationally de�ne gravitomag-neti and eletri �elds in their orthonormal frame.Now the question we would like to ask is, how do the gyrosopes preess?The preession of the gyrosopes de�nes the orientation of the loal inertialframes. We want to examine how this orientation is a�eted by the �ow of themasses of the universe. Thus, we are only interested in the gravitomagneti�eld.This turn out to be very similar to what was done earlier in this thesisfor the Minkowski bakground. And as one might expet also in this aseone atually gets the equivalent of 2.15-2.16 with h̄00 onstant, and h̄0i = βi.



68 CHAPTER 4. UNIVERSE MODELSThe �eld equations do beome similar as well, but with a very importantdi�erene.Shmid is using Cartan's equations to arrive at the �eld equations forthe perturbed metri. This involves working on loally orthonormal framesas opposed to the oordinate frames. He keeps it to �rst order in ~β. Inthis ase he an restrit attention to the 0̂̂i omponents of the equations.Here α̂ is used to empathise that we are working with the omponents in anorthonormal frame, not those in the oordinate basis. The equations beome:
(−δ + µ2)~β = −16πG~Jǫ (4.9)where G is Newton's gravitational onstant, and ~Jǫ is given by the ompo-nents J î

ǫ = T 0̂î. That the energy-momentum tensor is given in an orthonor-mal frame is important as that means that this quantity an be measuredby loal observers without any knowledge of any overall oordinate metri.Apart from this, it is idential to the �eld equation we had for Minkowski-perturbation with onstant g00, with the exeption of the µ2 term. µ isde�ned by (µ/2)2 = −(dH/dt). We an on�rm that this term disappears asone ould expet in the non-expanding Minkowski ase.Now we are only interested in the preession of a gyrosope at one point,let that be the entre of our oordinate system. Now the preession turnsout to be a rotation that has to have total angular momentum and paritygiven by JP = 1+. The only vetor �elds of those presented in equations 4.5- 4.7 is atually ~X−
1m; For these eigenfuntions of J l has to be 1, and we sawthat in this ase ~X− was the only one that ould have positive parity.We atually get the huge simpli�ation that the only omponents weneed to be onerned about of ~Ag are those that are produts between radialsalar funtions andX−

1m. It even follows from angular momentum and parityproperties of the rotation that neither salar nor tensor perturbation ana�et it, as none of those an generate the right kind of �eld. Thus, therestrition to vetor perturbations turn out to be no real restrition at all.Turning our attention bak to 4.9, we se that if the right hand side is zeroit atually beomes an eigen�eld-equation for the Laplae-operator. Andwe know the eigen�elds for the Laplae-operation for �elds of the form X−
1m.This invites use of the method of Green funtions. This method essentially isbased on �rst dividing the spae into surfaes, and then to solve the equationfor the ase that the right hand side is zero everywhere exept at one of thesurfaes. Finally, we are to sum up the result. Suh summation methodsusually do not work for the exat �eld equations in general relativity due totheir non-linearity. Thanks to the linear approximation, this �eld equation



4.1. FRW/SCHMID 69has a form where this method atually works.In this ase, it is natural to hoose the surfaes to use in the methodspheres given by the surfaes of onstant radius. Now the orthonormality ofthe vetor �elds given in 4.5 - 4.7 over these spheres is useful. This allowsus to for eah sphere deompose ~Jǫ so that we only have to mind the X−
1momponent of this vetor �eld as well. With l = 1 m may only have thevalues 0 and 1. Examining the properties of these vetor �elds one �nds thatthe sum of those on a surfae represent rigidly rotating shells, and that anysuh shell may be made from it. As m = 0 represent rotation around thez-axis it is possible to only �nd the solution for this ase, and orret for thediretion di�erenes later.This an be solved with the help of knowledge of the relevant eigenfun-tions. For k = 0 and k = −1 the radial eigenfuntion used outside the shellis determined by the openness into in�nity. Summing up and analysing theresulting preession on the gyrosope one �nds the main result of his paper:

~Ωgyro =
∫ ∞

0
dr~Ω

equivmatter(r)W (r) (4.10)
W (r) =

1

3
16πG(ρ+ p)R3Yµ(r) (4.11)

Yµ(r) =
−d
dr

[

1

r
exp(−µr)

] (4.12)Here ~Ωgyro is the preession observed by the loal observer of the gyrosope.
~Ω
equivmatter(r) is the angular veloity of the rigidly rotating shell-portion of thematter �ow at distane r. ρ and p is the mass density and pressure in thebakground.The �rst of these equations has the form of a weighted average. But inorder for it to atually be suhW must be normalized to 1. Shmid examinedwhether this was the ase, and onluded that it was.For k = 1 a slightly di�erent radial eigenfuntion had to be used outsidethe shell taking into aount the �nite size of the losed universe. The resultwas exatly the same as the one presented above with the exeption that

exp(−µχ) had to be replaed by sinh− 1(µπ) sinh(µ(π − χ)).4.1.5 Summary and onlusionsI will before leaving this result tie it to Mah's priniple and make someomments on possible extensions. The main result here tells us that there



70 CHAPTER 4. UNIVERSE MODELSis no unknown ad-hok fator needed to understand why the inertial framesbehave as it does. They do it only beause of how the matter of the universearound them behaves. It also depends on it in a maybe surprisingly simpleway. The angular veloity of the inertial frame is perfetly deided by theangular momentum of all rigidly rotating shells around it. All other motionsof bodies that are not part of the rigidly rotating omponent simply arehaoti �utuations that anel eah other. Thanks to the exponential ut-o� in the Yµ fator we also do not have to worry too muh about thingsextremely far out. This is espeially nie when having to worry about theevent-horizon. Thus it seems like at least for our universe Mah's prinipleis very well, maybe even perfetly, satis�ed.As promised, I will say some word about the Minkowski ase. As men-tioned before this is a speial ase of the FRW-universe. Unfortunately, itmay seem like the result found by Shmid annot be diretly applied to thisase. This may be seen from the (p+ ρ) fator in the weight funtion, givinga zero ontribution of all perturbations. This makes sense as all vetor per-turbations here would not have any masses to move, and reation of masseswould be a salar perturbation. The normalization of the weight funtionmight however still be defended by observing that in this ase the integralover Yµ(r) diverge, as µ = 0, and thus there is no exponential ut of. How-ever, as this result laims validity for all linear perturbations, this resultmight at as a support for another theory regarding Minkowski spaes: Thata (FRW-kind of) Minkowski universe is unstable in a way so that if you putany mass in suh an universe it will ollapse in a way so that for instane allgyrosopes pointing at it will keep pointing at it. There is no mass outsideto keep it Minkowski at in�nity.While it turns out that the result may be hard to interpret for universeswith p + ρ = 0, is there any oneivable way to extend it? In partiular,is there any other universe models than the FRW-ones that may be treatedin a similar way? Unfortunately, this seems to me to be quite unlikely. Ihave already mentioned the property of onstant urvature that is ritial tothe ability to be able to restrit attention to the vortiity setor. The gaugesimpli�ation, and omplete disappearane of higher than �rst order tensorswould be hard to do without. In addition, all of the work on the vetor basis�elds in the eigen�eld setion was based upon spherial symmetry. Withoutthis, the entire argumentation allowing us to redue attention to only twoof these would fall apart. Again, it would be hard to imagine reproduingthis result without use of these symmetry properties. Examples of other nieproperties with the FRW-bakground that one may not take for granted inother universes are:



4.2. ROTATING UNIVERSES 71
• Having a nie bakground of matter at in�nity to point observer's axestoward
• Having the gyrosopes niely following the initial matter �ow
• Being able to slie the spae time into spatial slies
• Giving suh a nie eigen�eld-like equationAll of these are properties that somehow enter into the proess of arriving atthis result.While it seems to be hard to �nd other suitable universe models to applythis method to, what about going to higher order than linear? The answeris that this is maybe harder than �nding other universe models. Also in thisase, the deomposition into salar, vetor and tensor perturbations breakdown. This as it had as a requirement that the unknowns in the equation tobe deomposed were only linearly dependent. This will naturally not be thease in higher orders. The �eld equation will also probably no longer be ofa form where any form for Green funtion method may be used, as this alsodepends on linearity of the system. The vetor �eld results should howeverstill hold, and thus maybe be used in other approahes.An extension that Shmid himself states that he is working at is to extendhis result to the movement and aeleration properties of inertial systems.This absolutely is interesting from a Mahian point of view, but falls outsidethe sope of this thesis as it does not relate to rotation.4.2 Rotating universesPreviously we saw how FRW universes have the property that all inertialaxes follow the matter �ow. Even in the ase of linear perturbation, we sawthat there still was a lose onnetion between the �ow of matter and thegyrosope axes. The onnetion simply being a ertain weighted average. Iwill in this setion present a ouple of universe models where there seem tobe no suh onnetion. In these, we will �nd that gyrosopes everywhereare rotating with respet to the �ow of the nearby matter. Suh universesare referred to as rotating. I will also tie these to the question of Mah'spriniple. It might seem at �rst glane like they are defying this priniple,but there are some suggestions to how even these might be interpreted in aMahian way.



72 CHAPTER 4. UNIVERSE MODELS4.2.1 Goedel UniverseIn an artile from 1949 [19℄ Kurt Gödel presented a universe model that weresurprisingly simple, but still had quite a few important qualities. The metriis given by:
ds2 = a2(−dx2

0 + dx2
1 − (e2x1/2)dx2

2 + dx2
3 + 2ex1dx0dx2) (4.13)This metri represent a dust-�lled universe where the dust is moving alongthe urves with onstant xi. In addition, there is a osmologial onstant.Thus, the energy-momentum tensor beomes:

Tµν = 8πκρuµuν + λgµν (4.14)where uµ is the omponents of the veloity of the dust partiles, ρ is themass density and λ is the osmologial onstant. In this oordinate systemonly the 0-omponent of uµ is non-zero. Solving the �eld equations give us
λ = 1/2a2 = 4πκρ.One interesting property of this solution is that it is ompletely homoge-nous. That is that every oordinate-independent result found for one pointwill automatially be satis�ed at every other point. With this in mind themost important result in our ontext of this metri is that one may showthat the inertial systems have to rotate with an angular veloity of 2

√
πκρwith respet to this oordinate system. This rotation has onstant sign anddiretion along the third oordinate axis. As the matter is at rest in theoriginal oordinate system one may onlude that if one hange oordinatesto an inertial system one will �nd that the matter is rotating, at least loally,with respet to this frame.Extending this result from a loal perspetive to a global is far fromtrivial. One of Gödel's stated motivations for studying this model was thatit is impossible to slie the spae globally into spatial slies that is separatedby a timelike distane. This property may be intuitively understood fromthe probably most quoted property of this universe: It has losed timelikeurves (CTLs). CTLs are urves that start a plae, moves through spae,always in positive time diretion, but still end up at the same plae as itstarted. The existene of CTLs is easily seen from the metri if one makes aoordinate-hange to a ertain set of ylindrial-like oordinates:

ds2 = 4a2(−dt2 +dr2+dy2−(sinh4 r−sinh2 r)dφ2−2
√

2 sinh2 rdφdt) (4.15)Here we learly see that for sinh4 r > sinh2 r a partile moving along apath with all oordinates onstant exept for φ will always have a timelike



4.2. ROTATING UNIVERSES 73movement. This an be seen, as the square of the interval hange is alwaysnegative. However this oordinate transformation is onstruted so that φ isylial with a period of 2π. Thus the partile will end up at the same pointas it started one it has had a total hange of φ equal to this.The existene of CTLs learly shows that no global sliing of the spae-time into surfaes of onstant time in an ordinary way is possible. As thespae is ompletely homogenous, there is neither any natural way to slieit into hypersurfaes of homogeneity - all surfaes would do. I have notfound any simple form for the geodesis not simply being those of the x4oordinate lines. This makes the physial interpretation and predition oflarge-sale observations also quite di�ult. However, there is nothing thatsuggests that there should be any e�et working at long range that ouldbe observed and interpreted from an inertial frame as matter at a distanerotating in an opposite diretion than the matter loally. In addition, thefat stands that there is a natural oordinate system with no movement ofmatter where the gyrosopes is rotating. Seen from this oordinate system,it seems impossible to explain this motion from the properties of the masses.Thus, several ideas onerning Mah's priniple is put to a serious test.There have been some objetions to the Gödel universe that might beused to weaken its position as a ounter-argument to some formulations ofMah's priniple. One of them is that it is open. As the universe is openthe possibility of something further out than observed, or at in�nity, may beinterfering is present. This is somewhat similar to the Minkowski solution ofdemanding the view that there has to be some big masses at in�nity to explainthe phenomena in that universe. However, there seems to be no extra reasonfor wanting to introdue suh in�nity ondition in the Gödel universe thanas an ad-hook solution to the Mahian problem. In the Minkowski universe,we had the argument that the observed Minkowski-like universe has massesfar away. In addition as brie�y mentioned in the introdution there aresome theories regarding a solution needing to have a ertain matter ontentthat an be used for justifying introduing extra-masses in the Minkowskiuniverse, I have not seen any similar arguments for the Gödel ase.Another objetion to the Gödel argument against Mah's priniple isthat the Gödel universe is unphysial. This is due to it having CTLs. Itseem however that whether CTLs should be allowed in physially signi�antmodels is still a matter of taste, and that there are still being done someresearh on that �eld. However, we shall see that there has been found amodel that both is losed and has no CTLs, but still poses the same problemsto Mah's priniple as the Gödel universe. Thus, it seems like one should be



74 CHAPTER 4. UNIVERSE MODELSsearhing for a solution that overs that universe as well.As a side note: While working on this thesis I examined the possibility of�nding a onnetion between Shmid's result and the Gödel universe througha ertain parameterized family onneting the FRW and Gödel universe [29℄.I ended this pursuit as I found that this approah probably break down dueto the exponential dependeny on spatial oordinates of the Gödel metri.This makes even a small deviation from the FRW-ase impossible to interpretas a linear perturbation unperturbed at in�nity.4.2.2 Ozsváth and ShükingIn 1962 Ozsváth and Shüking presented a metri with some similar prop-erties as the Gödel metri, but being losed and without CTLs [39℄. Morereently Ozsváth did some more examinations on it, and at the same timepresented the metri in a slightly more ompat form than in the original pa-per [38℄. However, this last metri is with respet to di�erential forms, andthus is more di�ult to interpret than the original one that is with respet tostandard oordinate di�erenes. I will thus here present the metri as in theoriginal to keep the mathematis somewhat simple, even though this formshould be onsidered slightly outdated:
ds2 = dt2 +R2k2αe3i dx

idt+ ea
i γabe

b
jdx

idxj (4.16)Here ea
i and γab were given by their matrix representations:
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− sin x3 sin x1 cos x3 0
cosx3 sin x1 sin x3 0

0 cos x1 1





 (4.17)
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−(1 − k cosαt) k sinαt 0
k sinαt −(1 + k cosαt) 0

0 0 −(1 + 2k2)





(4.18)Here α, R and k are onstants that determine the solution, and have thefollowing onstraints. R > 0, |k| < 1/2 and α = 2
R

√

2
1−4k2 . It turns outthat this metri desribes a dust-�lled universe with osmologial onstantwhere the motion of the dust is given by it having onstant xi oordinates.Thus, the oordinate system is ommoving with the dust. The osmologialonstant Λ and density ρ are related to R and k by:

Λ =
1

R2(1 − k2)
(4.19)
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κρ

2Λ
= 1 − 4k2 (4.20)It turns out that in this system the inertial frames de�ned by gyrosopesalso have a ertain angular veloity ω with respet to the matter motiongiven by:

ω =
αk2

√
1 − k2

(4.21)As the metri is quite ompliated, there is not any obvious global in-terpretation of this system. I estimate trying to �nd suh an interpretationwould onsume more time than I have available, and still be of little or no usedue to the omplexity of the problem. If someone would like to pursue thismatter further however, I believe a good starting point would be an artilefrom 1969 by Ozsváth and Shüking. I have not gotten hold of this artilemyself, but it is referred to as holding more details about the system in [38℄.Anyway, the main importane of this metri is that it serves as an ex-ample of a spatially losed universe where the inertial frames are rotatingwith respet to the (loal) matter �ow. This universe also is not prone tothe objetions given for the Gödel universe, so other approahes need to beonsidered if one is to try to save ertain interpretations of Mah's prinipleinside the general framework of the relativity theory.4.2.3 Gravitational waves solutionIt seems to me like the most ommon opinion is that the Ozsváth-Shükinguniverse truly is an example that general relativity does admit solutions thatis inompatible with Mah's priniple. However, there are some paths thatmight turn this around if studied more losely. I will over two of them here.The �rst is one taking into aount gravitational waves. The other is a briefsketh of an idea of my own that I strangely enough have not found anyonemention in the literature.The �rst idea is that somehow matter represented by the standard energy-momentum tensor isn't the only quantity that has to be taken into aountwhen disussing Mahian ideas. Another andidate is that of gravitationalwaves. I will illustrate this path by a summary of the treatment of King in[27℄.The main idea of King is to introdue an average bakground metri g(B)
µνthat is spatially homogenous and isotropi. It is worth noting that this bak-ground metri is hosen so that it does not need to ful�l the �eld equations.



76 CHAPTER 4. UNIVERSE MODELSThus other possibilities than the FRW-bakgrounds are still present. In thisbakground metri there is then ertain Killing-vetor �elds ξi that repre-sent rotational symmetry. He further introdues a set of oordinates on thisbakground metri that makes eah hypersurfae of homogeneity labelled bya time oordinate and the metri being diagonal with g00 = −1He introdues the following notation representing a kind of average of asalar �eld:
< A >=

1

V

∫

V
AdV (4.22)where the �rst V represents the total volume of the hypersurfae at a giventime, the seond V represents an integral over this volume, and dV is avolume element on the surfae. The total volume makes sense as the universeis assumed to be spatially losed with �nite volume."Ordinary" angular momentum of a stress-energy �eld T µν may then bede�ned as:

Lp(t) =
∫

V
T 0iξidV = −V < T0iξ

i > (4.23)Here the integration is taken over a hypersurfae of homogeneity in the bak-ground metri. We also may make use of the assumption that the universe isspatially losed, so that we have a �nite volume to integrate over. The lastidentity takes advantage of the form of the hosen oordinate system.His main result is that he �nds a tensor that may represent gravitationalwaves T (G)
0i and where he an prove that

< (T
(M)
0i + T

(G)
0i )ξi >= 0. (4.24)Here T (M)

0i is the ordinary energy-momentum tensor of matter.To understand the de�nition of T (G)
0i we �rst have to introdue hµν =

gµν − g(B)
µν . Then we expand the Einstein tensor of the real metri Gµν in apower series in hµν , that is

Gµν = G(B)
µν +G(1)

µν +G(2)
µν + · · · (4.25)where G(B)

µν is the Einstein tensor of the bakground metri, that must o-inide with the zero-order part of the real metri. This requirement on thebakground metri was not expliitly mentioned by King, but it is possiblethat it follows from the other restritions he sets on the bakground metrithat I will ome to later.Now the tensor T (G)
µν is de�ned by
T (G)

µν =
1

8π
(G(2)

µν +G(3)
µν + · · ·) (4.26)



4.2. ROTATING UNIVERSES 77Here, and in the rest of the setion we assume the gravitational onstant tobe 1. How this might be seen upon as a kind of energy-momentum tensor forgravitational waves may be seen from the following form of Einstein's �eldequation:
G(1)

µν = 8π(T (M)
µν + T (G)

µν − T (B)
µν ) (4.27)Here T (B)

µν is the energy momentum tensor that would have been requiredfor the bakground metri to satisfy the ordinary form of Einstein's �eldequations, that is T (B)
µν = G(B)

µν /8π. Thus we see that T (G)
µν plays a similarrole as the ordinary energy momentum tensor in this formulation of the �eldequations. King states that this form of the �eld equation is alled the �eldtheory approah to gravity, and that it usually had been used in the ontextof a Minkowski bakground.Now, the issue of an "average metri" has to be addressed. Near thebeginning of his treatment King points out that �nding a good suh averageis an unsolved problem. He avoids this problem by only requiring a fewonditions on the bakground, not determining it ompletely. He then arguesthat there has to exist some bakgrounds that satisfy this by giving a roughoutline for onstruting suh. The onditions are that the bakground andreal metri must have the following relations to eah other (formulas givenby omponents in the given oordinate system):

• Measure the same proper time on average < g00 − g
(B)
00 >= 0

• Measure the same spatial distanes on average < gk
k − g

(B)k
k >= 0

• Have no relative translation or rotation < (g0i − g
(B)
0i )ξi >= 0From these relations, and the observation that in the given oordinatesystem TB

0i = 0 King laimed to be able to derive 4.24 for losed universes.He refers to his dotoral thesis for the full proof, whih I have not foundimportant enough to try to obtain.This result seems neat. It removes the problem of the matter rotating withrespet to the gyrosopes in the Ozsváth-Shüking universe by taking intoaount a rotation of gravitational waves that goes in the opposite diretionanelling the e�et of the matter as seen from the inertial frames. Thisserves as an explanation for the rotation of the inertial axes with respet tothe pure matter-�eld. However, I am not able to feel ompletely onvinedby this argumentation. The de�nition of the energy-momentum tensor forthe gravitational waves seems a kind of ad-hok. It is hard to �nd anygood physial interpretation for this tensor. It serves as a soure term in



78 CHAPTER 4. UNIVERSE MODELSan Einstein-like �eld equation. However, the left hand-side of this equationis not the same geometrial term as in Einstein's �eld equations, and henethe physial meaning of the right hand-side is not a perfet analogy to theordinary energy-momentum with its usual physial interpretations.I would like to fous on what makes this result di�erent from simplyintroduing any arbitrary tensor �eld with the property that its derived an-gular momentum anels that of the ordinary angular momentum. It mustbe so that a ertain set of �elds used in onnetion with work on the generalrelativity theory turns out to be a subset of those �elds that has the wantedproperty. The existene of this overlap might seem to be too good to be aoinidene. Thus, it may work as a strong argument for the idea that it isthe �eld theory approah to gravity that is the most natural framework forformulating a version of Mah's priniple that may hold.However, the physial interpretation of this is still not lear. It is hardto say whether this really is a physial result, or simply a well hidden math-ematial onsequene of the form of the �eld equation 4.27. The ommentson the referene I have used also sow doubt about the physial ontent ofthis approah, and I have not found any further work on this. Nevertheless,it still stands as an example of a way to approah the Mahian problem ofthe rotating universes.4.2.4 Spinning partiles solutionThe other approah I will only present brie�y is the interpretation of spin-ning partiles. As mentioned in the introdution, plain general relativity isworking with non-spinning partiles. If one introdues spinning partiles,one has to use the Einstein-Cartan theory. However, this begs the question- with respet to what is the partiles non-spinning? I have been unableto �nd any soures that address this question. I assume �nding suh wouldrequire diving into more details of the Einstein-Cartan theory, and this wasoutside the sope of this thesis. I will still give a quite simpli�ed thoughtexperiment involving rotating partiles.Assume that dust partiles in general relativity have to be rotationallyat rest in their inertial frame. This does not neessarily ontradit a matter�ow that is not in rotational rest in the inertial frames. In a great sale,we may regard eah grain of dust as a point partile, and thus should therotational state of these would appear as spin, and not matter in rotationin this perspetive. This assumption may thus be regarded as a possiblealternative of the orret spin-free partile. Another alternative might be



4.2. ROTATING UNIVERSES 79that the rotational state of the dust partiles has to follow the general matter-urrent in the region, but I have found no soures that expliitly favour thisinterpretation.Now regard the Gödel universe in its standard oordinate system. Here allthe dust partiles are at rest with respet to the oordinates, but the inertialsystems are rotating. This means that at every point, even though the matterurrent is zero, there are partiles rotating with respet to that oordinateframe. If we now analyze the gravitomagneti �eld in this oordinate frame,we get a situation analogue to the situation inside a magnetized objet. Thereare many small spins that by being oriented the same way together form aonsiderable magneti �eld. Thus as we have several point-masses rotatingaround the same axis in our oordinate frame, we an expet to experienea signi�ant gravitomagneti �eld. As the masses are at rest in our frame,this �eld will not a�et the movement of these, but it is lear that it mayexplain the rotation of the inertial frames!To determine if the expeted gravitomagneti e�et required to aountfor the rotation of the inertial frames in the Gödel universe atually oinideswith that generated by partiles rotationally at rest in this is however notstraight forward. The approah in 2 may not be used, as obviously neitherthe Gödel nor the Ozsvát-Shüking universe is well approximated as a linearperturbation of the Minkowski spae. In addition, an approximate solutionwould not be expeted to arrive at the possible identity in this exat solution.Further study of this approah should probably be done with the Einstein-Cartan framework in mind. A good starting point for this may be an artileby Smalley [55℄. Here Smalley presents some work on the Gödel universewithin this extended theory.
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Chapter 5Conluding remarksI have presented several results to some detail in the previous hapters. Itis now time to take a few steps bak and look at the big piture. We seethat through the past hundred years, more and more aurate alulationshave been done with regard to systems that ould shed light upon the statusof Mah's priniple in the general theory of relativity. We saw that therotating shell model on�rmed frame-dragging e�ets to progressively higherpreision inside the theoretial framework of general relativity. Still, in orderto observe this e�et we had to go to the exterior solutions of rotating bodies.Only very reently was this e�et on�rmed observationally to some extent,by the gravity probe B experiment.At osmologial sales, it is striking that there are relatively simple on-netions between the rotational state of inertial frames and that of the ontentof the universe in two huge lasses of universe models. For losed universes,it enters through non-rotation with respet to matter and a form for gravita-tional waves. For linearly perturbed FRW-universes, the onnetion is thatof a weighted average. Both of these owe to the onept of frame draggingas desribed earlier for simpler systems. Historially the losed universe so-lution has been the favoured in regard to Mah's priniple. The reent resultthat FRW universes also have very Mahian qualities might however be usedas an argument for shifting that balane. While there are little indiationsthat the universe is losed, its FRW-like nature is mostly unontroversial.We also have seen a ouple of examples of universes that might be onsid-ered non-Mahian in a ertain way. Both of these may be solved by restritingthe validity of Mah's priniple to losed universes, and taking into aountgravitational wave e�ets. However, neither of these is very "FRW-like".This means that asserting that universes should be "FRW-like" would ex-81



82 CHAPTER 5. CONCLUDING REMARKSlude these as well. As our universe seems to be "FRW-like", this assumptionseems to be more pratial than the assumption that it is losed. This dohowever rise a host of new questions: Exatly how may one de�ne "FRW-like"? What properties must the universe have if it is rotational propertiesare de�ned exatly as a kind of weighted average, and not only through lin-ear perturbations? Is it possible to �nd a simpler and more preisely de�nedpriniple than Mah's priniple that would learly disallow universes of du-bious Mahian nature? All of these questions seem like possible avenues forfurther work.And even if it should turn out that our universe doesn't obey Mah'spriniple perfetly it seem pretty lear that it may still serve a purpose.It shares one important property with the absolute spae it is said to be indiret opposition to: It may be a useful tool. With the aid of the oneptuallysimple and philosophially appealing priniple we may quikly predit andget a kind of intuitive feeling for some quite ompliated systems in ouruniverse. This may range from frame dragging and light-shifting e�ets ofrotating blak holes, to appreiation of the lose onnetion between ourinertial frames and that of the heavenly bodies far away.



Appendix ASoure ode for galaxy modelfrom sitools.all import *# Initialising global parametersG=4.786e-17 #Newton's gravitational onstant/^2 in kp/solar massv0=2./3000 #dimensionlessA=1.e10 #solar masses/kpZ=0.1 #kpR=20 #kpRmin=0 #kp, minimum radius to integrate over.onstR0=10 #kp, the value for R0 to use when examining stabilityNmax=4000000 #the maximum tested number of simulationsNmin=1000000 #the least number of simulations before plotting resultsN=3000000 #the number of random points for eah Monte Carlo simulationM=1000 #the number of points in the plotsvolume=2*Z*2*pi*R**2 #The volume of the galaxy in kp^3# define funtion for our integranddef integrand(R0, r, z, phi) :"""returns r times the variable ontribution to the gravitomagneti field atthe point (R0, 0, 0) made by the matter at the point withylindrial oordinates (r, z, phi). This oinsides with the integrandin our integral due to the r d\phi fator in ylindrial oordinates.83



84 APPENDIX A. SOURCE CODE FOR GALAXY MODELDue to optimizing reasons 4*G*v0*(A/(4*pi*Z)) should be multiplied tothis result after alling this funtion.The dimension of the return value is distane^-2"""return (r-os(phi)*R0)/((sqrt(r**2-2*r*R0*os(phi)+R0**2+z**2)**3))"""first ompare the result for the gravitomagneti field fortwo different ways of handling the distribution propertiesfor ylindrial oordinates, with a given R0"""#Draw random numbersRbase=random.uniform(Rmin, R**2, size=Nmax)z=random.uniform(-Z, Z, size=Nmax)phi=random.uniform(0, 2*pi, size=Nmax)#Calulate the gravitomagneti fields#weighted for uniform distribution of radial oordinatesr1=Rbase/RBUniform=4*G*v0*(A/(4*pi*Z))*integrand(onstR0, r1, z, phi)#for even distribution of points in the ylinderr2=sqrt(Rbase)BEvenDisp=4*G*v0*(A/(4*pi*Z))*integrand(onstR0, r2, z, phi)/r2# Performing the integral-summation and plotting.# The integral is the mean of the ontribution per volume times the volume# For uniform distribution, remember that we have weighted valuesBmean=zeros(Nmax)Bsum=0.Rsum=0.for i in range(Nmax):Bsum+=BUniform[i℄Rsum+=r1[i℄Bmean[i℄=Bsum/Rsumpoints= range(Nmin, Nmax, (Nmax-Nmin)/M)plot(points, Bmean[points℄*volume)legend("Uniform distribution")



85#for the even distribution no speial onsideration needs to be takenhold('on')Bmean=zeros(Nmax)Bsum=0for i in range (Nmax):Bsum+=BEvenDisp[i℄Bmean[i℄=Bsum/(i+1)plot(points,Bmean[points℄*volume)legend("Even distribution")title("Monte Carlo onvergene")xlabel("Number of random points")ylabel("Bg-field/ in kp^-1")hardopy("Galaxy1.eps")hold('off')dummy=raw_input("please press enter")"""Drawing the gravitomagneti field as funtion of distane fromthe galaxy ore. Using the uniform distribution method as I believeit to be slightly faster."""#prepearing for going through the points from the entreR0s=linspae(Rmin, R, M)Bfield=zeros(M)i=0for R0 in R0s:#get new random oordinatesr=random.uniform(Rmin, R, size=N)z=random.uniform(-Z, Z, size=N)phi=random.uniform(0, 2*pi, size=N)#alulating the raw data for the Bfield at distane R0#I wait with multiplying in onstants in order to speed up the programBore=integrand(R0, r, z, phi)Bfield[i℄=Bore.sum()/r.sum()i+=1



86 APPENDIX A. SOURCE CODE FOR GALAXY MODEL#multiplying in the onstants to the raw dataBfield*=4*G*v0*(A/(4*pi*Z))*volume#plot the gravitomagneti fieldplot(R0s, Bfield, \title="Gravitomagneti field in a galaxy", \xlabel="Distane from ore in kp", \ylabel="Bg-field/ in kp^-1", \axis=[0, R, -4e-10, 2e-9℄, \hardopy="Galaxy2.eps")dummy=raw_input("please press enter")#plot the fration of the aeleration that is given by gravitomagnetism#first without axis restritions to get the extremesplot(R0s, Bfield*R0s/v0, \title="Part of total aeleration from gravitomagnetism", \xlabel="Distane from ore in kp", \ylabel="Gravitomagneti effet/" + \"What is required to explain the motion", \hardopy="Galaxy3.eps")dummy=raw_input("please press enter")#then fous on the part where there are most measurementsplot(R0s, Bfield*R0s/v0, \title="Part of total aeleration from gravitomagnetism", \xlabel="Distane from ore in kp", \ylabel="Gravitomagneti effet/" + \"What is required to explain the motion", \axis=[0, R, -5e-6, 1.5e-5℄, \hardopy="Galaxy4.eps")
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