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Preface

This thesis might be regarded as a review over a subject that has a history
of active research of more than 100 years. However, it differs from many
other reviews in certain respects. I have made efforts to not only present the
results, but also how they were found. The hope is that this will be enough
to get a deeper understanding of the results, and that it might expose ways
to extend them. I also have made a serious effort to keep the mathematical
level as simple as possible without the loss of precision that often is associated
with such popularisations. My own contribution has mainly been to provide
my own interpretations, examples and some suggestions where appropriate.

There are three sections I want to mention especially: The first two are
those that cover two very recent results. One of those is the improved data
analysis of the gravity probe B experiment detailed in 3.3.3. The other is
Schmid’s result on linear perturbations on FRW-universes that is presented
in 4.1. Finally I would like to mention the section calculating dragging effects
in a simple galaxy model 2.3. While I am ever present throughout this thesis
in selecting, refining and commenting on works of others, this is the section
where I truly feel that T am presenting work that is entirely my own.

This text is probably best used as an introduction to the field in question,
or as a reading companion to the main articles presented in this thesis. It
may also be read more lightly as a simple overview of the history of the more
recent research on an engaging philosophical problem, or as a second point
of view for those already familiar with the field.

This thesis is arranged partially historically and partially based on com-
plexity. The first chapter is a simple introduction narrowing the focus of the
rest of the thesis while providing some horizons for further study. The second
chapter only examines the simplest deviations from special relativity theory.
The third chapter extends on this, going to more complicated systems, but
still keeping the Minkowski boundary. Finally in the fourth chapter the case
of entire universes are treated. The last chapter is just a short wrapping up
of the previous chapters.
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Most of this text should be possible to enjoy for anyone having lower
grade courses in basic mechanics and vector field theory. I also assume su-
perficial familiarity with the main concepts of the general relativity theory
like the metric tensor and the field equations. Full understanding will how-
ever demand some more advanced classical mechanics and familiarity with
certain analytic methods. The exception is the section on galaxy rotation
2.3. Here some numerical methods and programming is used. This section
is however not necessary for enjoying the rest of the thesis.

In order to be as useful as possible as a reading companion I have mostly
preserved the notation of the sources formulas are based from. Exceptions
are noted in the text. This will be explained in the relevant sections. I use a
few common conventions I would like to mention here: I use Einstein’s sum-
mation convention. g, is the metric tensor. 7" is the energy-momentum
tensor. The time like component is the O-component of tensors. Greek in-
dices represent all 4 dimensions, while Latin indices mark only the spatial
components.

Of particular note is it that there are different conventions on the gravi-
tational constant. Some use Newton’s, while others use that of Einstein. In
addition, it is quite common to use the convention that set the speed of light
and the gravitational constant (Newton’s) to unity.

I would like to thank my supervisor professor Qyvind Gregn for all his
help, and my family for support and feedback. Also a big thank to all those
books, articles and web pages that have served as inspiration and shaped my
view of this amazing subject. Not nearly all of them did find their way to
the bibliography, as they did not directly relate to any of the content.
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Chapter 1

Introduction

I will in this chapter give an introduction to the topic of this thesis, both
historically and conceptually. This I will do by starting at the parts of
the title and describing those in more detail, in addition to other possible
approaches to the problem at hand.

1.1 Mach’s principle

I will in this section give a short historical and philosophical introduction
to how the term "Mach’s principle" came to be, and give a short overview
of possible meanings. In the later sections I will narrow down the scope of
the rest of this thesis. This is necessary as Mach’s principle itself is a far to
broad concept for me to serve it justice to in the limited time and space of
a master thesis. The historical treatment is primarily based on Norton [37]
and Hoefer [23]

1.1.1 What Mach said

Mach’s principle is the name given to a very loosely defined concept that is
attributed to the physicist Ernst Mach. One of the key quotes from him that
has lead to this concept being attributed to him is a critique of Newton’s
bucket experiment. In this experiment Newton considers a bucket filled with
water, initially held at rest. He observes that the water has a flat surface.
He then starts to rotate the bucket around its horizontal axis. After a little
while the water is moving toward the edges, so that it is shallower in the
middle than toward the sides. This he explains by referring to a centrifugal
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effect that arises when the water in the bucket start to rotate with respect
to absolute space. Mach’s answer to this is [33]:

Newton’s experiment with the rotating vessel of water simply informs
us that the relative rotation of the water with respect to the sides of
the vessel produces no noticeable centrifugal forces, but that such forces
are produced by its relative rotation with respect to the mass of the
Earth and the other celestial bodies. No one is competent to say how
the experiment would turn out if the sides of the vessel increased in
thickness and mass till they were ultimately several leagues thick. The
one experiment only lies before us, and our business is, to bring it into
accord with the other facts known to us, and not with the arbitrary
fictions of our imagination.

This quote should be seen in the context that Mach in his text advocates
the view that all observations is of how different bodies relate to each other.
Hence it is problematic even to try to define a concept such as absolute space.

1.1.2 Interpretations of Mach

Exactly what Mach wanted to say with this quote has been up to some
speculation. One possibility seems to be that it is an emphasis of the point
that we can’t know anything about situations we can’t observe. In this case
the main message of Mach seems to be a call for a redescription of the physics
so that it only was described as how bodies move in relation to each other
with no reference to absolute space. This may actually be done even within
the framework of Newtonian physics under the simple assumption that the
universe itself is not rotating with respect to such a real absolute space. This
is for instance shown by Donald Lynden-Bell in [32].

A second way to read it is that he is proposing that there could be some-
thing other than absolute space that determines the outcome of Newton’s
bucket experiment. The problem is that if this is the case, he is giving little
suggestions as to what and how, except that it should have something to do
with how matter moves in relation to each other. One striking thing is that
if this interpretation is right, then he is very vague about it compared with
some of his contemporaries. For instance the brothers Imanuel and Benedict
Friedlaender presented a paper in 1896 describing an experiment that would
attempt to determine if the rotation of the Earth had any modifying effect
on the law of inertia. They were however unable to find any deviations from
Newton’s mechanics, considering their error margin.

But why should there be any reason to search for factors that might
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change the outcome of Newton’s bucket experiment? There are two im-
portant somewhat distinct lines of reasoning that classically seem to reach
the same conclusion, but in later times have turned out to give quite dif-
ferent ways to approach the problem. The first is an argument concerning
the aesthetics of causality: According to Newton’s mechanics - If you know
the relative distances and velocities of all bodies in the universe at some
time, you know almost enough to determine how the system will evolve at
all times. What is required to make the system completely determinable
seems ridiculously little compared with the huge amount of information you
have on the universe by then. One way is to put these bodies into a frame-
work like that of Newton. Another way is simply stating that the universe
is not rotating, or more general giving an axis and magnitude of rotation. It
should be possible to determine this axis by observation by observing a few
of the double-differentials of the relative positions of the matter. But even
when this extra information is available, a theory where this it wouldn’t be
necessary would seem cleaner than Newton’s.

The second line of reasoning is similar to that above, but stops before
observing the double-derivatives. One should rather note that this extra
needed information seems arbitrary. Why should it be so that a single axis
of rotation should be so important for being able to completely describe
nature? Could this rotation axis really be totally arbitrary, or is it possible
that it is actually determined by the relative distances and velocities of the
bodies in the universe?

There is one important observational fact that has been used to argue
that it is unlikely that what has been called absolute space is independent
of the masses of the universe: That such an absolute space seems to be
unaccelerated with respect to the "fixed stars". Consider Newton’s bucket
experiment. When we are standing on the Earth, nearly at rest relative to
the fixed stars, we observe the water climbing the edges while we are rotating
the bucket. We are prone to argue that the reason for this is that the water
in the bucket is rotating, and hence it experiences a centrifugal effect. If we
on the other hand sit inside the bucket, we still see the water being shallower
in the middle than farther out. But the water and the bucket is not moving
relatively to us in this case. It is simple to claim that we are experiencing
this because we are rotating ourselves, but how can we say? If you look up,
maybe you can see the stars racing around the sky at high speed. Wouldn’t
it then be plausible from your point of view to claim that the reason for the
water moving away from the centre actually is that the stars in the sky is
rotating around it?
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1.1.3 First usage of the term

Regardless of motivation, it is the last interpretation that has become the
main idea of what is today called Mach’s principle. When Mach was so little
clear about this himself one might wonder how this principle came to bear
his name? This is mostly attributed to Albert Einstein. He first used the
term in his paper on general relativity from 1918 [18]:

Das G-Feld ist restlos durch die Massen der Korper bestemmt. Da
Masse und Energie nach den Ergebnissen der speziellen Relativitétsthe-
orie das Gleiche sind und die Energie formal durch den symmetrichen
Energie-tensor (7)) beschrieben wird, so besagt dies, dass das G-Feld
durch den Energietensor der Materie bedingt und bestimmt sei.

This definition is however not standing very strong. It seems like Einstein
during the period 1912-1918 had some idea he attributed to Mach that he
really wanted the theory he was working on to satisfy. But his actual for-
mulation of this idea was changing over time. This definition doesn’t stand
much stronger when one considers that Einstein himself more or less gave up
the entire idea the summer 1918. The background for this was the finding of
the de Sitter space that was an empty-space solution with the cosmological
constant. As it is hard to argue that the G-field is then caused by some
matter distribution the general theory of relativity doesn’t seem to fulfil the
above given definition.

1.1.4 Present formulations

Even though Einstein’s formulation of 1918 isn’t very popular, the term
"Mach’s principle" has been much used in the literature with other meanings
since then. But there has been no common consensus as to what the precise
meaning of the term should be, and thus it has been used with quite a
few different meanings depending on the writer. Common is that it somehow
tries to grasp the ideas given by the second interpretation of the Mach quote.
Several attempts have been made to collect the different uses of the term,
for instance in [21], the index of [25] and in [7].

As several of these definitions fall outside the scope of this text I will
here only list those formulations of Mach’s principle I'll work with, for easy
reference. Common for all of them is that it tells us something about how
things far away have local effects.

e Formulation 1: The universe is spatially closed.
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e Formulation 2: There is nothing that acts that is not acted upon.

e Formulation 3: In the rest frame of any body the total gravitational
field on the body arising from all the other matter in the universe is
7€10.

e Formulation 4: Masses should somehow determine the inertial systems.

e Formulation 5/6: The inertial systems should be partially /completely
determined by the masses of the universe.

e Formulation 7: The axes of inertial frames are perfectly dragged around
by a weighted average of the motion of particles in the universe.

Finally T will add a formulation that I have not encountered anywhere,
but that will be considered briefly later by me as it seems to be a possible
interpretation.

Formulation x1: Mach’s principle says that the boundary conditions are
to be determined by local behaviour.

1.2 Alternatives to Rotation

In the previous section I considered Mach’s principle in general. Most of this
text will as the title suggests focus on rotational aspect of the principle, but I
will devote this section to a short overview of some other possible approaches
to Mach’s principle that doesn’t directly involve rotation.

1.2.1 Boundary conditions

When examining how things far away may affect local physics it may be
interesting to examine the case where "far away" goes to the limit of infinity.
In a theory governed by fields and differential field equations like the general
theory of relativity this translates to boundary-conditions of the equations.
According to 23] even Einstein himself tried this approach for some time in
1916-1917.

I can see major ways that the boundary-condition problem may be at-
tempted related to Mach’s principle. The first is to define Mach’s principle as
the boundary-conditions that give us the local behaviour we observe in this
universe. The other is to begin with some other formulation of Mach’s princi-
ple and see if that poses any limitations on what kind of boundary-conditions
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can be allowed. Neither of these approaches has proven very fruitful. I have
found no examples of the suggested definition in the literature. 1 can see
several possible reasons for that:

e [t doesn’t incorporate any relevance to things closer than infinity to
Mach’s principle, which breaks with the common idea attempted to
put into Mach’s principle.

e [t has little or no physical significance as more than a self-fulfilling
requirement to the boundary conditions.

e [t is hard to do the calculations involved with it, and it may come in
conflict with the desire of having continuity/convergence.

To find boundary conditions that fit an idea of Mach’s principle has also
proven most difficult or even impossible. A good illustration of how difficult
this seems is that one of the main formulations of Mach’s principle is that
the space is spatially closed. This formulation dates back to Albert Einstein
in 1917 [23|. In this case the need for boundary-conditions disappears. One
major argument for this definition is this property. And in certain frameworks
(most notably general relativity) this definition also turns out to directly lead
to several effects that are considered Machian. And even in other definitions
of Mach’s principle it is tempting to have spatial closure as a requirement to
avoid the boundary problems.

1.2.2 Requirement for determinability

In 1.1.2 it was argued that in Newton’s theory we need to know all relative
positions, velocities and something else at a given time in order to determine
how the system evolves indefinitely. I also provided a sketch of why this
something else was undesirable. To convert this notion to the general theory
of relativity proves difficult as it operates with fields, not particles, and there
are issues trying to define "a given time". It is thereby of interest to examine
what information you need in order to be able to determine the configuration
of the entire space-time.

One such formulation that can be considered important in relation to
Mach’s principle is the thin sandwich conjecture proposed in [3]. This con-
siders the intrinsic geometries of two space-like surfaces close to each other
(nearly alike). In this case the difference between these spaces behaves like a
derivative. In the general theory of relativity it turns out that this should be
enough to determine the geometry of the entire 4-space. This is very similar
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to the classically formulated wish that the physics should be determined by
relative positions and their first differentials alone, without any extra factor.

Julian Barbour and Bruno Bertoni develops this idea further in [4]. This is
nicely explained in [5]. Here it is not posed any compact definition of Mach’s
principle. The main difference from the above argument is however that the
terminology is sharpened and generalized. The required knowledge should
only be a point in a phase-space of geometries, and a direction. Appealing to
the thin sandwich conjecture it is claimed that general relativity is completely
Machian. One interesting idea that is proposed is that we only require the
thin sandwich conjecture to be applied locally, at every point, not globally.
This way it seems like one may avoid the problems related to boundary-
conditions even in universes that isn’t spatially closed.

1.2.3 Absolute elements

Another approach is to set the focus at the "absoluteness" of absolute space of
Newtonian theory that Mach seems to protest against. This is done in some
formality by Jiirgen Ehlers in [17]. Here he attempts a definition of Mach’s
principle going something along the line "There is nothing that acts that is
not acted upon". Newton’s absolute space is such a thing that determines
how things move, while nothing may change that space.

He then compares different theories with regard to what geometrical and
physical properties of a system it takes into account and governs. He shows a
general tendency that the general relativity theory has fewer "Absolute fields"
than the special relativity theory, and that the special relativity theory in
turn has fewer than Newton’s theory. Those fields that are no longer absolute
in the more general theories are found as dynamical fields that are intimately
connected with the other fields of the theory. In particular this involves the
metric and connection-fields, in addition to a conceivable "Ether field".

The definition of what may be considered a field in a theory, and how
to determine/define absoluteness is however not very well explained here. In
the discussion found in the proceedings after the paper [17], Karel Kuchar
points out a possible absolute element in the underlying geometry of the
general relativity theory. Ehlers acknowledges this, but says he feels there is
a fundamental difference between this and the elements he has considered in
his paper. He was however unable to formulate this difference. 1 have not
found any more recent treatment of this approach.

One extension of this idea is also to look at the constants of a theory.
Should these be considered fields of the theory? In this case, should they by
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Mach’s principle not be true constants, but somehow be determined by the
physical state? This and similar considerations have been raised and led to
several theories that claim to fit better with Mach’s principle than general
relativity. I will give these some treatment in the next section.

1.3 Alternatives to general relativity

There are lots of theories of gravitation that somehow addresses Mach’s prin-
ciple, and even the specific question of rotation related to it. Many of these
are intimately related to the general relativity theory as an extension, gen-
eralization or restriction of it. I will in the remaining chapters only consider
basic general relativity (and its standard lower order approximations). In
order to narrow down and specify the scope of what I will here consider, and
as I feel it deserves mentioning in a review regarding Mach’s principle, I will
here say a bit about some of the more profiled theories that I am not going
to cover in the later chapters.

1.3.1 Restrictions of solutions to field equations

Einstein’s field equations do have solutions that by some have been charac-
terized as "un-Machian". I will get into some of these in later chapters. A
way to deal with this could be to find some conditions that have to be ap-
plied in addition to the usual field equations that rule out such solutions. In
particular this could be related to setting boundary-conditions as mentioned
in the previous section.

Only allowing closed universes is also an example of this. As far as I know
only the restriction to closed universes has been somewhat successful, and
this has the major problem that it is an open question whether the universe
actually is closed. Some of the problems are directly related to the lack of any
strict definition of "Mach’s principle" and hence it is hard to agree on exactly
what solutions should be ruled out. Formulating boundary-conditions faces
similar problems, but is also made difficult by the mathematical complexity
involved.

I will in the remaining chapters use the full general relativity without
restrictions. This way I will also be able to study some of the more dubious
solutions seen from a Machian perspective and examine rotational effects in
them.
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1.3.2 Einstein-Cartan theory

Einstein-Cartan theory is the natural extension of general relativity to allow
for spinning masses. The basics are given in a review article from 1976 [22].
The theory owes its name in part to Elie Cartan who in the first half of the
1920s made some basic work on differential geometry related to torsion. But
as a full theory it was only developed later.

As a theory that allows for spin this theory could be highly interesting in
the context of investigating rotational phenomena. The fact that there is an
extension to general relativity allowing spinning masses shows that general
relativity operates with non-spinning masses. This I will use to pose some
qualitative suggestions on physical interpretation on some systems in 4.2.4.
To give a proper analysis of spin-effects would however require this framework
and hence fall outside the scope of this thesis.

1.3.3 Sciama

In his 1953 article [53] Sciama outlines a simplified theory that is based upon
the quite common view that Mach’s principle tells that inertia should be
determined by matter. This is made more accurate in this quote:

In the rest frame of any body the total gravitational field at the body
arising from all the other matter in the universe is zero.

He then sets out to demonstrate a toy-theory that shows how this might
get implemented. He assumes for simplicity that gravitation is governed by
a vector field in a Minkowski space. He points out that the gravitational
potential actually has to be a second rank tensor, and that this model thus
only is illustrative.

The result is a model with some similarities with electromagnetism. A
comparison between this and the gravitomagnetism described in the next
chapter could be interesting, but falls outside the scope of this text. There
is however one important result here, namely the relation:

Gpr? ~ 1 (1.1)

Where G is the gravitational constant, p is the density of the universe, and
7 is the age of the universe. The approximation should be considered very
"coarse" only meaning "in the order of".

In his paper he continuously refers to a "subsequent paper" where he is
supposed to develop this theory in a much more realistic manner. 1 have
however been unable to find this reference, or anyone referring to such an
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article. In 1964 Sciama seems to be working in the framework of general
relativity, with possible extensions and restrictions [54|. The equation 1.1
still seemed to be central in his idea of Machianity then, however.

1.3.4 Brans-Dicke theory

The Brans-Dicke theory was first presented in a paper by Brans and Dike in
1961 [11|. This theory is based on the idea that the gravitational constant
could indeed be different at different places determined by the mass distri-
bution. They give two important motivations for the gravitational constant
to be non-constant.

The first is the relation 1.1 somewhat rewritten: GM/Rc* =~ 1 where M
is the visible mass of the universe, R is the radius of the visible universe and
c is the speed of light. This relation if solved with respect to G gives an idea
of how this quantity could be determined by the mass in the universe.

The second is the dimensionless number m.(G/hc) where m, is the elec-
tron rest-mass. This has a size that is mathematically simply related to two
seemingly unrelated observed and varying numbers: The age of the universe
in atomic time units and the mass of the visible universe in proton masses.
Wanting to keep m,. h and c¢ constant the remaining factor that can be ad-
justed to take this into consideration is G.

They thereby constructed a theory formulated in similar terms as the gen-
eral theory of relativity, but with a scalar field not present in the other. This
theory is also determined by a parameter that has to be set by observation.
This makes it hard to falsify, but there has been set rather strict constraints
on the free parameter of the theory by the Casini-Hugens experiment [6].



Chapter 2

Gravitomagnetism

As said in the introduction, Mach’s principle concerns how objects far away
may affect certain experiments locally. One such example is Newton’s bucket.
In Newton’s theory, if you have a situation where the stars are rotating in
the universe around a bucket that stands still (relative to absolute space),
then the water in it stays flat. There are no centrifugal, or "inertial" forces
that give the result that the water moves up toward the wall. One may argue
that this situation should be equivalent to the situation where you have an
observer sitting inside a rotating bucket observing the universe. Hence we
should look for some effect that makes the water in the bucket curve in all
possible scenarios where the universe is rotating relative to it. Such an effect
may actually be found in general relativity and is gravitomagnetism. This
chapter will cover this phenomenon in simple local systems.

2.1 The fundamental formulas

I will in this section deduce the equations of gravitomagnetism from linearized
general relativity. [ will start by giving a simple argument from special
relativity that should motivate that there is such an effect. After that I will
go through the more detailed and accurate calculation of the equations for
gravitomagnetism in linearized general relativity.

2.1.1 Simple motivation

I will here present an argument that may motivate the existence of a gravita-
tional effect with similarity to electromagnetism in a relativistic theory. This

11
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is inspired by a description of electromagnetism attributed to E. M. Purcell
as described in [52]. In the given reference one considers a particle moving
along a wire carrying an electrical current, and argues that depending on the
frame of reference the forces acting on the particle may be seen upon as an
electric or a magnetic field. T will here simplify this to a less realistic system,
but one that is simpler to relate to the gravitational case.

Consider a negatively charged particle initially at rest beside an infinite
positively charged wire. In this case we know from classical electrostatics
that there is an attractive force between the particle and the charged wire.
If we however changes reference frame to one moving at a constant velocity
relative to the rest frame of the particle, parallel to the wire, the particle
is moving as an electrical current in the wire in the same direction as the
initial velocity of the particle. According to classical electromagnetism there
is then a magnetic force that pushes the particle away from the wire. As
the particle has to behave similarly in both frames of reference one needs
an effect that makes up for the effect of the magnetic force. Such an effect
can be found in the special relativity theory. The length contraction of the
wire in the moving reference system relative to the initial rest system of the
particle makes the charge density higher. Thus we get a stronger electric
force that cancels the effect of the magnetic force.

One can argue that this argument lacks several factors that may modify
the relation between the magnetic and the electric forces like relativistic
time dilation and mass increase. The key point that the length contraction
makes a net increase in electric force is better founded in Purcell’s original
treatment as it is there demonstrated how one may go from a frame with no
electrical, only magnetic forces, to a frame with no magnetic, only electrical
forces by a simple velocity transition. I would also like to mention the paper
[16] where an attempt is made to develop the entire electromagnetism in a
similar way from only special relativity and electrostatics, even though I have
been unable to verify whether this paper is trustworthy.

So, keeping in mind that Lorentz contraction may give frame dependent
forces I turn the attention to a similar gravitational model as the electromag-
netic case examined above. We now have an uncharged particle and a wire.
In the rest-frame we know that there is a certain gravitational force between
these. In a moving frame one may expect a stronger gravitational force as
the mass-density of the wire increases due to length contraction. Opposite
to the above case we then seek an effect that opposes this increased force in
the frame, and one might be tempted to suggest that there is a gravitational
counterpart to the magnetic field.
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To make any formal calculations on this is however of little interest. There
are several other effects that play into this picture. Most important is proba-
bly the special relativistic notion of increased inertial mass under high veloc-
ities that I suspect may be enough to give a complete explanation model of
the presented case without having to refer to any kind of "gravitomagnetic"
concept at all. In addition comes the question of how to formulate gravi-
tation in a relativistic framework, which is exactly what general relativity
does.

What I want to show in this section is however that it shouldn’t be very
surprising when it turns out that general relativity actually displays effects
very similar to electromagnetism, and point out one idea that might give a
understanding of how this difference from Newtonian physics might arise.

2.1.2 Linearized general relativity

The theory of gravity that we get by linearizing the general relativity theory
may be traced back to Einstein’s paper in 1916 according to for instance [21].
After that it has been treated in several works. I will here go through the
main points in the derivation from general relativity following the approach
given in [36].

Consider the situation where the metric may be written in the form

Y = Ny + Py (2.1)

where 7 is diagonal with signature — + 4+, that is the metric of the
Minkowski space in standard coordinates. We also assume for simplicity
that ¢ = 1. h is a small perturbation of this metric, with small derivatives
and second derivatives. This gives us a weak-field universe, that is without
any high densities or relativistic velocities.

The connection coefficients may then be written:

—_

1 v v
Fgﬁ = §gﬂ (gau,ﬁ + 98v,a — gaﬁ,u) ~ _nﬂ (hfau,ﬁ + h,@u,a - haﬁ,u) (22)

\)

In the approximation we have omitted products between the perturbation
and it’s derivatives, and used that n is constant.

As we are at least close to a coordinate frame we have for the Ricci tensor:

Ry, =10, —T0  +T5,I0, —T5,I0 (2.3)

j12NeY pov
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In the approximation the two last terms are neglected as second order terms.
The indices from 2.2 is raised using 7 instead of using the full metric g. This
is also done when calculating the Ricci scalar

R=¢"R,, =~n"R, (2.4)

It turns out that the field equations take a particularly nice form if we
introduce B;w = hyu, — %nw,h where h is the contraction of the corresponding
tensor. Then we may impose on the system the following condition due to
freedom of choice of coordinate system:

R =0 (2.5)

Fixing coordinates like this is called to impose a gauge condition and this con-
dition is analogous to the Lorenz gauge A“,, = 0 of electromagnetic theory.
The field equations then become

—0hy, = 26T, (2.6)

This equation along with the gauge and the expressions for the metric
and h forms the basis for the linearized theory of relativity.

2.1.3 Gravitomagnetic equations

According to [35], Einstein suspected a relation between his field equations
and Maxwell’s equations for electrodynamics. It is claimed in this reference
that Thirring did a paper on this in 1918, but I have unfortunately not been
able to get hold of this reference to see how far this was done. In a footnote in
the first article in this translation paper, he does however strongly suggest the
correspondences described in this section. It is worth to mention that there
are other approaches that give similar equations. In 1977 a general version
of Maxwellian relations was found in [10] that was based on parameterized
post-Newton formalism which is a formalism to describe a broad class of
theories that include general relativity. However, this falls outside the scope
of this text.

The approach I will take to show how one may relate the linearized equa-
tion with Maxwell’s equation is inspired by [21], [56], [34] and [57].

In electromagnetism we know that OA, = uoJ, along with the Lorenz
gauge, where A, is an electromagnetic four potential, gives us Maxwell’s
equations in standard form. I follow the same reasoning as in electrodynamics
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and restrict the attention to the hg, terms. This even give us directly the
correct ¢ dependency. We can define

= ! 7 dh;
Eq = —cVhy —
G 00 I
— / —
BG =V X h()i (28)
where hg; denotes the normal 3-vector corresponding to the usual vector
potential.

(2.7)

The field equations then take the familiar Maxwell-equation form:

V-By =0 (2.9)
V. Ey = KTy (2.10)
-/
. 1 dE
V x By = —2kTh + dtG (2.11)
-/
-/ dBG
VxEg =— 2.12
X Lg di ( )

Here pg.J, is replaced by —2xTp, from the standard expression.

We have here found some quantities related to general relativity that obey
an equivalent of Maxwell’s equations. However, apart from their counterparts
in electrodynamics, By, and Ef, don’t immediately have any simple physical
interpretation. They are here simply defined so that they behave in the
desired way. They are thus of little physical interest yet. The result above is
thus only to be seen as a step in a calculation that will eventually lead to a
physically interesting result.

We leave B, and Ef, for now and rather turn our attention to a simple
physical system. Consider the case where Bij = 0, that is all non-zero el-
ements of h can be found as hgy,. In this case we have from 2.6 that also
T;; = 0. This may be a reasonable model of a perfect fluid with no pressure
and low velocities. In this case T, = pu,u,. With uy &~ ¢ we have Ty ~ c2p
and Ty; =~ pcu; = cj; where j is corresponding to classical matter flow. The
products u;u; are considered vanishing as both terms are small.

We now consider the movement by a particle having low velocity in this
system. It will follow a geodetic curve given by

d?xt , dz® dzP

e T ey (2.13)

Ignoring second order spatial velocity terms, and using % = 1 and the sym-
metry in the lower indices of the connection coefficients allow us to simplify
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2.13 to ) '
d*x* , - dx?
S — T — 20y, =
dt? Jdt
We are thus interested in finding these connection-coefficients.

(2.14)

In order to keep the equations simple I again introduce ¢ = 1. By con-
tracting the equation h,, = Py + %nw,h we get in this case h = hS = hoo

which in turn gives hoo = %hoo otherwise ho3 = hag. Then we can use 2.2 to
calculate the connection coefficients in terms of A

. 1 - 1=
F(Z)o = 5(2’10@0 - ihOO,i)
; 1 - . O ~
Lo = §(h0i’j — hoji + ?Jhoo,o)

We now define the vector fields éG and EG by

EA = 2.15
o= (2 -5 (215
Bg = V X hy; (2.16)
This gives us a movement equation of the form:
i = FEg+ 7 x Bg + av (2.17)
where , ,
G _ o
dt dt?
1-
=—h
a 5 00,0

We see that in this case Eg and Bg are the fields that play exactly
the same role in the equations of motion in the case of gravitation as their
electromagnetic counterparts. In addition, the definition of these fields are
very similar to those of Ef, and Bj. The equivalent of the magnetic field is
the same. However the Eg term is not quite so nice. We see that the time
variation of the vector-potential plays a smaller role compared to the scalar
potential in determining the path of the particle than in the electromagnetic
case. I will here restrict attention to the stationary case, that is ﬁuy,o = 0.
In this case, we get precisely:

E,, = 4Eq

B}, = Bg
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Inserting this into the Maxwell equations 2.9-2.12 while ignoring time deriva-
tives give us after insertion of ¢ to make the units right:

V- B;=0 (2.18)
V. Eg = —47Gp (2.19)
. 1 S
V x B, — - 107G (2.20)
&
V x Eg=0 (2.21)

We see that the main differences from the stationary electromagnetic case
is that the forces behave oppositely relative to the currents, and that the
gravitomagnetic force that couples to movement is 4 times stronger than the
gravitoelectric compared to the corresponding electromagnetic case.

In summary, I have here compared two approaches at combining lin-
earized theory with classical electrodynamics. The first finds quantities in
general relativity that behave according to Maxwell’s equations. The second
examines the movement of particles and try to make it in a form comparable
to electrodynamics. There are some references where this inequivalence is
poorly stated. This include |31], |56] and [1]. The first two do state that
their Lorentz force law only holds in the stationary case, and the Wikipedia
article seems to be based upon the first of these due to the reference list. 1
added this clarification to the Wikipedia article at the stated retrieval date.

2.2 Examples

In this section, I will give some examples of simple systems where we may
use the above theory. I will also relate this to an idea of Mach’s principle.

2.2.1 Classical laws

From the Maxwell equations, we may immediately deduce two laws that are
important in stationary electrodynamical systems: Ampere’s Law, and the
law of Biot and Savart.

The equivalent of Ampere’s law is gotten by using Stokes’ theorem on

2.20. It becomes: L6
743} A= 2T (2.22)
c

where the integral is around a closed path and [ is the matter flow through
any surface having the path as edge.
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The equivalent of the law of Biot and Savart is trickier to deduce. It is
done in [57] so T will simply set up the main result here:

SiG)

LS

l ﬂ

v’ (2.23)

ﬁ\

F)—4G/’

Here it is usual in electromagnetism to make the substitution jdV’ = Idl
where [ is the current through a line element of a wire di. However, it
is worth noting that such a one-dimensional reduction of the gravitational
system is not without problems. The reason for this is the assumption of a
weak field in the linearizing of the gravitational theory. This means that we
need to have a limited mass-density, and current velocity. In this situation
the mass current [,; through the wire has to vanish in the limit of a one-
dimensional wire.

As the wire-form of the law of Biot and Savart is very useful, I will show
that it is a reasonable approximation if we are calculating the magnetic field
far from the "wire". Consider a 3-dimensional wire divided into surfaces S
that is normal to j. Assume further that 7 is constant on the surfaces and
parallel to the wire. In this case 2.23 becomes:

— —

—4G/7f ‘T_T, AT g5 (2.24)

r—r ¢

If the surfaces S are relatively small and far from the point we are evaluating
the magnetic field for we may assume 7 — 77 to be constant through the
integration. If we then set Lydl = dlfde, we get the familiar form of the
law of Biot and Savart:

Ba(r) = —

C

(2.25)

[ will add that the above argumentation may be used to calculate the
fields far from a small concentration of mass with velocity v, and total mass
M: ~

> 4G (7F—1") x Mv/c
Bo(r) = 8= 1) x MY/ (2.2

-
/

¢ ‘F—T

It is also worth noting that 2.19 is the same as the formula for the grav-
itational field in Newton’s theory of gravity, and hence we may use all the
results we know from there.
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2.2.2 Force strengths

I will here set up a model in order to try to compare the strength of the
gravitomagnetic effect compared to that of the familiar gravitoelectric. Con-
sider a small spherical gravitational source with mass M and speed v,,. We
then examine the behaviour of a test particle so far from this source that we
may consider the distance a constant r. From 2.26 we can see that we get
the strongest magnetic field if we assume that the test particle then is in the
plane normal to the velocity direction of the mass-concentration. In this case
the magnitude of the magnetic field become

N 4GMUM

Ba 5
rec

(2.27)

From 2.17 we see that the acceleration effect from the gravitomagnetic term
becomes greatest if the test particle has velocity normal to the field. So we
make this assumption, and set the speed to be v. Keep in mind that in
2.17 we have assumed ¢ = 1 so that in general units we have to divide the
velocity by ¢ in order to get the right units. Hence, the magnitude of the
gravitomagnetic effect to the acceleration of the test particle is at most

_ 4GMuyw

52 (2.28)

ap

We get the acceleration from the gravitoelectric term directly from Newtonian
mechanics:

_GM &

ap =

— 2.29
72 4vaaB ( )

From these equations alone, it might seem like there is a possibility for
the acceleration from the gravitomagnetic effect to become as large as 4 times
that of the gravitoelectric. However, from the weak field approximation done
in the linearizing we have that vy, << ¢, and from the deduction of 2.17 we
also used v << c¢. So indeed the gravitomagnetic acceleration is smaller
than traditional gravity in the second order of small velocities. Thus in most
applications it seem like this effect is too small to be worth any attention.
However, it leads to effects that is not found in Newtonian gravitational
theories, and it may turn out to be important at a universal scale. Just like
ordinary gravitation, it is a 72 law not "blocked" by anything and thus is
long-range.
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2.2.3 Gyroscopes

In the previous section, we saw that the gravitomagnetic effect of acceleration
seems to be hard to detect. In this section, I will examine the behaviour of
a gyroscope in a gravitomagnetic field. This is of particular interest, as we
know that Newtonian gravitation does not affect the direction of a gyroscope.
It turns out that the gravitomagnetic effect does. This may be used as a way
to detect the effect without having to worry so much that the much stronger
gravitoelectric effect will disturb the experiment.

Consider a right-handed Cartesian coordinate system with a gravitoelec-
tric field in the positive z direction. At the origin, there is a gyroscope
with angular momentum along the x-axis. We then see that in slightly pos-
itive z-direction it has a velocity in the negative y-direction. From 2.17 we
can conclude that it thus experiences an acceleration/force in the negative
x-direction. Similarly, in the slightly negative z-direction it experiences an
acceleration /force in the positive x-direction. This adds up to a torque in
the negative y-direction, and makes the angular momentum of the gyroscope
turn toward the negative y-direction. A similar argument holds whenever
the angular momentum is in the x-y plane, and we can conclude that the
gyroscope is precessing around the z-axis. This is equivalent to the Larmor
precession of electrodynamics.

The strength of the effect may be deduced from only 2.17 and classical
rotational mechanics as presented in for instance [58|. Using Newton’s second
law, the torque-formula, and the relation v = & x 7 we get that the total
torque on the system becomes:

7= [ 7 pl(@ % 7) x Ba)dv (2:30)

where the integral is over any volume containing the entire rotating body.
Using the Cartesian coordinates with & = (w,0,0), Bg = (0,0, Bg) and
7= (x,y, z) this evaluates to:

7_":///wag(O,—z2,zy)dxdydz (2.31)

We now apply the assumption that the gyroscope has its rotation-axis as
a symmetry axis. As it is then symmetric upon changing signs of z and y we
can conclude that the z-term of the torque cancels out under the integration.
Going to cylindrical coordinates so that r* = y2 + 2% and cosf = Z we get
for the magnitude of the torque:

R r2m
T = ng/ / /pr2 cos® Odx r df dr (2.32)
o Jo
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Using that p and r are independent of  due to rotational symmetry, and
that cos? @ is independent of x and r we may separate this integral into

I 27
T = wBG2—/ cos® 0df (2.33)

m™Jo

where [ is the ordinary moment of inertia around the x-axis given by
R 2w
I= / / /pera: r df dr (2.34)
0o Jo

The remaining integral in 2.33 is well known, and may be found in for
instance [46]. Tt evaluates to . As the system is rotating around a symmetry
axis we have 7 = [%. Further, I will assume a perfect gyroscope. As we
are working in a framework that depends on low velocities, the best way
to implement this would be to use a spherically symmetric distribution. In
this case the above argumentation holds at all times. The time derivative of
the angular velocity vector is always of magnitude %w, orthogonal to the
angular velocity itself and the z-axis. This means that the angular velocity

vector is itself rotating around the z-axis with an angular velocity:

Bg

0O~ —
¢ 2c

(2.35)
where the ¢ term is inserted to make the units right, and appears as c is
assumed to be 1 in 2.17. One may note that this agrees with the result
given in for instance [34] (up to a 2-factor due to different scaling of the
gravitomagnetic field). Here the result is also generalized to the situation that
the gyroscope having non-ortogonal angular momentum, with the result that
it is still precessing around the axis of the magnetic field. It is of particular
interest that this result is independent of w and the mass-distribution, as
long as the symmetry restrictions are satisfied.

2.2.4 Inside ring

[ will here turn my attention to the situation at the centre of a rotating ring of
radius R and with a constant angular velocity w relative to the background
metric. ' We may choose cylindrical coordinates with z-axis orthogonal to
the plane spanned by the ring, and origin at the centre of the ring. Due
to symmetry we can conclude that there is no classical gravitational force
at the centre of the ring; Eg = 0. If we further assume that the cross-
section of the ring vanishes compared to R we may use 2.25 to calculate the
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gravitomagnetic field:
o 4G [ R x Iydl
Bg=— [ ——
c R3
We see that we only have non-zero z-components in this integral. We assume
that I, is constant, where I, = wRAp. Here A is the area of constant 6
cross-section of the ring and p is the mass density, both assumed constant.
As we are only working with orthogonal vectors, it is simple to calculate the
magnitude of the magnetic field:

(2.36)

‘ _ 8rGwAp

|Bo (2.37)
c

It is interesting to note that this expression is independent of the radius

of the ring. This may seem like a deviation from the standard result in

electromagnetism B = ’%[58]. However, in the standard electromagnetic

case it is practical to use the expressions for constant current I, while I here

hold the angular velocity w constant. This accounts for this difference.
If we now use 2.35 we see that in this case:

ArGAp

c2

0= w (2.38)

It is interesting to note that we get (¢ = w when
2

A p—
p e

= 10*°kg/m =~ py R, (2.39)

where py and R are the measured mass-density and radius of the observa-
tional universe. As there are huge uncertainties on these two quantities the
approximation is at best an "in the order of". (One may use for instance the
critical mass density of the order of 1072g/cm? and a radius of the order of
10 thousand million light years. These are in accord with [13])

Testing the direction of the precession, we find that it has the same sign
as the angular velocity of the ring. Hence we have that if the condition
2.39 is satisfied a gyroscope at the centre of the ring will constantly point
at the same point on the ring. For other values of Ap we still get that the
gyroscope is precessing in the same direction as the ring rotates relative to
the background. Thus, we say that the gyroscope is dragged by the ring.
2.39 is said to be a condition for this dragging to be perfect.

We may now turn our attention to freely moving particles. As mentioned
above there is no gravitoelectric effect, so that we only have to pay attention
to any gravitomagnetic effects. Particles moving parallel to the magnetic
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field will hence be unaccelerated, and locally move in a straight line. Particles
moving in the plane of the ring with velocity ¥ will experience an acceleration
in the ring-plane orthogonal to the velocity with magnitude Bgv, where
v = ‘i;‘ is normalized to be dimensionless. Comparing with the argument
in 2.2.3 we see that this means that if the particle had moved through a
constant field it’s velocity vector would rotate with a angular speed of 2Q.
This actually gives a nice connection between the movement of a gyroscope
and the movement of the free particle. Consider a gyroscope pointing in the
same direction as the initial velocity of the free particle. The initial position
of the gyroscope is the same as that of the particle, but the gyroscope is at
rest. During a short time ¢ we may assume the acceleration of the particle
to be constant. In this case we find that the particle after a short time is
at a distance r = vct, and has a deviation from the original gyroscope axis
fixed to the background metric of %BthQ. The gyroscope axis has however
changed by an angle § = Qst. This means that the point that the gyroscope
now points at, and that is a distance » = vct from the gyroscope, has to be
at a distance of vctsin Qgt ~ vet?Qa = %Bth2 from the original axis. This
is the same point as we found the free particle to be at. We can conclude
that the gyroscope is still pointing at the free particle.

From the above argument, we can conclude that in a local reference frame
at the origin with axes fixed by gyroscopes free particles are moving along
a straight line. This is the defining property of an inertial frame. It is here
we get the connection with Mach’s principle. Imagine a scientist living in
a box at the centre of this rotating ring. Using gyroscopes and watching
the motions of free particles close to him he finds that there is a certain
frame in which the gyroscopes keep a fixed direction that is hard to change,
and in which the particles move along a straight line. As he is unable to
determine any cause for this, he is prone just to take it as a fact of nature
that there is a "preferred" frame that happens to be as it is, and thus may be
explained by means of an absolute space. Assume further that the equation
for perfect dragging 2.39 is satisfied. If the walls of the box suddenly should
become transparent so that the scientist could see the ring of dust around
his laboratory, it should be easy to envision him wonder why this ring turns
out to be at rest relative to his inertial frame. Above we have reasoned that
this is no coincidence at all. No matter how the ring rotates (as long as it
is within the weak field approximation), the scientist’s frame would turn out
to not rotate relative to it.

This raises the question, could we be in a similar situation? From the
approach in this section, it would be natural to say that the result of the
experiments the boxed scientist used to determine his inertial frame was,
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at least in part, caused by the properties of the surrounding ring. Mach’s
principle may be interpreted as a statement that it is this kind of explanation
that is preferred, and even necessary. [ am thus ready to formulate the
main definition of Mach’s principle I will concentrate most of the remaining
treatment around:

The inertial systems should be partially /completely determined by the
masses of the universe.

2.2.5 Hollow infinite cylinder

I will here give a short presentation of a rotating hollow infinitely long cylin-
der. It might be an interesting system from a gravitomagnetic point of view,
but I have found little use for it regarding Mach’s principle. It will also later
be used to demonstrate the limitations of the simplifications used to arrive
at these equations for the gravitodynamics.

This situation may from a gravitomagnetic view be treated the same way
as the magnetic field of a solenoid as described in [58]. In this case, we use
Ampere’s law on a rectangle with one side inside the cylinder parallel to the
sides and the opposite side outside. The remaining sides are orthogonal to
the sides of the cylinder. The simplified idea is that due to symmetry the
magnetic field must be normal to the lines that pass through the cylinder.
The line outside the cylinder experiences no magnetic field. One way to argue
for this is that it may be as far away as we want showing that it at least
can be set to zero. Personally, I am more fond of an argument regarding
the magnetic field to be divergence less, hence its density must be the same
inside and outside the cylinder; but outside is infinitely bigger. Anyway, we
find that the only contribution to the path integral of Ampere’s law is along
the line inside the cylinder, and that the field is parallel to this. If we say
that the length of this line is L we get that 2.22 goes to

167G
BoL = ——=

LDpRw (2.40)

where D is the thickness of the cylinder, p is the mass-density, R is the radius
of it, and w is its angular velocity. L may be cancelled at both sides. We
find that we have a constant gravitomagnetic field inside the cylinder.

I have not found any treatment of the classical gravitation inside a cylin-
der, and in the electrodynamic case, the solenoid is usually considered neu-
tral. The following argument should however show that there is indeed no
gravitoelectric field inside the cylinder: Consider a closed finite cylinder in-
side the infinite cylinder. Its sides are parallel to that of the infinite one, and
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their centre axes coincide. As there are no gravitoelectric sources within it,
the gravitoelectric low should be zero. From symmetry, the gravitoelectric
field lines should go the same way through the sides of the cylinder. Again
due to symmetry we expect the top and bottom to not have any field lines
through them, as there is as much mass above them as below them (with a
theoretical extra infinitely far away from one of them, to account for the dif-
ference in position). Hence, we can conclude that there is no gravitoelectric
field components normal to the cylinder at any place. As this holds for all
cylinders inside, there cannot be any gravitoelectric field there.

I have been unable to confirm this directly either through other sources,
or numerically. However, there is an exact result on this system that partially
confirms this idea. It also clearly shows a flaw that could be considered major
in the result that the inside of an infinite hollow cylinder can be treated as
being an area with only a gravitomagnetic field. This drastically limits how
useful this model is compared to that of a solenoid in electromagnetism. The
detailed treatment of this is however better suited later in this text.

2.3 Rotating galaxy

In this section, I will make a rough numerical study of a simple galaxy
model within the framework presented earlier in this chapter. This section is
not necessary for the understanding of any of the later parts of the thesis, so it
may be skipped. It requires some knowledge of programming and numerical
methods to appreciate fully.

There is a well-known problem that the visible mass distribution of galax-
ies does not provide explanation for their rotational pattern. The most usual
solution to this is to introduce huge amounts of dark matter into the model of
the galaxy in order to stabilize it. However, these calculations of the predicted
movement pattern are based solely upon classical gravitational theory. The
idea is that the speed and density of the galactic matter is not high enough
for there to be any considerable relativistic effects.

In this section, I will try to determine how weak the relativistic effect
of gravitomagnetism actually is in this system. We expect the rotation of
the galaxy to set up a gravitomagnetic field orthogonal to the galaxy plane.
The rotating matter have a velocity relative to this, thus we expect a radial
gravitomagnetic force to work on the matter. The approximate strength of
this will be found, and compared to that necessary to describe the rotational
motion correctly.
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I am not aware of anyone having done this before apart from rough order
of magnitude estimates. It turns out that I won’t do much better myself,
but it stands as a computational confirmation on those order of magnitude
calculations, and may be used as a base for further research.

2.3.1 Method

I will use the following model for the galaxy: A cylinder with constant height
that is rotationally symmetric around the cylinder axis. Introducing cylin-
drical coordinates r, z and ¢ with origin in the centre of the cylinder, I also
demand that the system is independent of z-coordinate as long as it is inside
the cylinder. The velocity field has no r and z component.

Now consider a vector P representing the position of a point with coordi-
nates r = Ry, 2z = 0 and ¢ = 0. The last of these components we can assume
without loss of generality due to rotational symmetry. Now, the gravitomag-
netic effect on this point as a result of the movement at a point with position
vector P’ is from the law of Biot and Savart of the form 2.26 given by:

_ 4G (P - P) x Mv'
Bg:—( — )43 (2.41)
C ’P _p

where o' is the velocity at the source point, and M is the mass at that
point. In order to find the total gravitomagnetic field we have to sum over
all source points. Inserting the components into the equation, we then find
that any non-z component of the gravitomagnetic field caused by a source
is cancelled by that of the source with opposite z-coordinate. Thus the final
gravitomagnetic field has only a z-component. As we are summing over
infinitely many points, all with infinitely small mass, the sum turns to an
integral. The magnitude of the z component may then be found to be:

R Z 27 4 _
B, = / / / —Gp(r)v(r) r—focosé srdgdzdr
0 J=zJo € \/TQ—QTRO*COS¢+R%+Z2

(2.42)
Here v(r) is the magnitude of the velocity field normalised to ¢ = 1, and
p(r) is the density. R is the radius of the galaxy, while Z is half its height.
From the data given in [13] I gather that Z should be in the order of 0.1
kiloparcsec(kpc), while R may be taken to be about 20kpc This uses rough
data for the Milky way galaxy.

Be aware that I want to use this formula for Ry < R. This may seem
dubious by two reasons. The first is that in our linear field approximation
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assumed that we were far from the masses. Here we want to examine the
case where the point we are measuring the field at is inside the mass dis-
tribution. This objection may be rejected by arguing that we are working
inside relatively small densities, thus in effect there are no, or infinitesimally
small mass close to the point we are calculating the field for. Thus, we are
still calculating primarily the effect of masses that are far away. Then, the
weak field approximation is still fulfilled.

The second problem is related to the first. As the point we are calculating
for is inside our integration domain we get a singularity in our integrand at
this point. However, from dimensional analysis we find that this singularity
is only to the second order in distance, while we are integrating over three di-
mensions. From this it seem plausible that this singularity may be smoothed
out so that the integral still converges.

In order to find the velocity and mass distribution, I use the results of
a doctorate thesis from 1978 [8]. From these measurements it seem like the
velocity of the arms is approximately constant some distance away from the
galaxy core. As I will have primary interest of the situation in this area,
the further simplification that the velocity is the same constant also in the
core will not make a too big effect on these results. Thus I model v(r) = .
From the data of that thesis it seem like vy ~ 2/3000 is in the right order
(remember ¢ = 1). From this, he calculated the mass distribution needed for
the classical gravitational force to balance the centrifugal force. The total
mass seems to increase almost proportionally to the distance. Hence, we get
for the mass distribution on the disk:

R/
4’/TZ/ p(r)rdr = AR’ (2.43)
0

Here Z is still half the height of the disk, R’ is the radius of the disk taking
the total mass inside, and A is the proportionality factor of the total mass.
This clearly gives us the solution:

B A
- 4nZr

o(r) (2.44)
From the graphs of that paper I gather that A is in the order of 10'° solar
masses per kiloparsec.

When I insert this velocity and mass density into 2.42 I not get an integral
I do not know how to solve. I also attempted to use the commercial program
Mathematica to solve this exactly, but it was unable to do so. Therefore,
I decided to try to solve it numerically. Thus, I made a Phyton program
based upon Monte Carlo simulation. We will see that there will be some
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problems concerning the singularity in the integrand, thus making the result
rather fuzzy. I made some tests to determine the extent and nature of this
problem. This included testing two slightly different methods of setting up
the integration, and looking at the sensitivity to changes in the number of
points taken in the calculation.

The Monte Carlo method is based upon solving an integral by evaluating
the integrand at random points and summing it up in the end. In cylindrical
coordinates one have to pay heed to how to select these random points. If
one chooses points by taking an independent uniform distribution of the r,
z and ¢ coordinates one will find that one obtains a higher density of points
close to the centre than further out. This will affect the integral, and thus
is undesirable. I tried two ways to counter this. The first is to change the
probability distribution for the radial coordinate so that it is less likely to get
low values for the radius rather than high. This makes sense as the further
out you get the more points there is in the circle of that radius. The correct
distribution of radial coordinates that gives an even distribution of points
in the space is obtained by taking the square root of a numbers uniformly
selected between 0 and R2. The other way is to weight the selected points
in such a way that points further out counts more in the final sum than
points further in. This would be similar to choosing that each time you get
a random point you actually add it a number of times to the sum depending
on their distance from the centre. If the weight given to the point is equal to
it’s radius we find that when we use uniform distribution for r, we still get
the same distribution of effective number of points at each radius as we had
with distributing the points evenly in space.

The Monte Carlo method clearly depends on the number of random points
taken. The more points, the more accurate we expect the result to get. The
two ways to distribute the points described above are constructed so that
they should give the same result in the limit where you have infinitely many
points, but their behaviour at a finite number of points might differ. This
could especially affect the stability properties of the solutions. I have also
included a brief analysis of this. The commented Python source code may
be found in the appendix A.

In order to interpret the strength of the gravitomagnetic field, I compare
the acceleration induced by the mass moving through it, a,,,, with the total
acceleration a;,; we can find due to the particles of the galaxy moving in a
circular orbit with radius Ry:
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Another interesting quantity to compare with is the acceleration we can
attribute to the ordinary gravitation a.,. This turn out to have a quite simple
relation to a4, in our model:

M AR, GA

=G — =G—" ="
B A

* Qror =~ 1.08at0t (246)

The mass distribution was constructed in [8] to make these equal in the more
advanced model used there. I find the fact that this relation is still somewhat
conserved in the very simplified model studied here, as a sign that further
results should at least be of the same order of magnitude as the corresponding
values in the real world.

2.3.2 Results

I will here present the graphs resulting from of one running of the program.
I have tested the program several times with different values for M and N.
These test-runs have not provided any significant information other than that
presented here, apart from confirming the general tendencies of the system.
I work with 1000 points in the graph, which should be more than enough
resolution. 10 to 100 points would have given the same general results, but
with 1000 points, it become more statistically viable.

First the output from the Monte Carlo stability analysis is presented in
figure 2.1. This graph illustrates nicely the general tendency I found the
Monte Carlo simulation followed. As we would generally expect from Monte
Carlo simulations the general trend of the graph is to swing around some ill-
defined value. However, we see that in this case while it mostly moves rather
smoothly after this number of simulations, it do make some jumps. These
jumps I attribute to a random source point being selected very close to the
point we are calculating the field for. This gives us a very small number in
the denominator of our integrand resulting in a high contribution to the sum.
In the true integral, we can expect the effects of nearby masses to cancel out
as locally we are in a system where all particles are moving with roughly
the same velocity and direction. However, if only one random point is taken
in the local area then there is nothing to cancel the effect of this. Only by
taking more points we can hope to get other points locally that sums up to
cancel that effect. By the Monte Carlo method, we have no guarantee that
there will be a distribution of points making the local contribution cancel out.
This sensitivity to point distribution might have a physical interpretation as
well, more on this in the conclusions.
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Monte Carlo convergence
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Figure 2.1: Monte Carlo stability

These jumps might also lead to worries regarding the numerical precision
in the calculation. If the result from the integrand function is too high, the
result might drown out other points due to the difference being too small for
the computer to handle. A rough estimate on the size of the jumps when we
know that Python floats is 8 bytes, indicate that this is not a major problem.
This is also confirmed by observing that the graphs seem to have the same
general behaviour after such jumps as before.

The graph presented here suggests that the uniform distribution is some-
what more stable than the even distribution. Other test runs have indicated
that it might be a bit hasty to draw such a conclusion. Still I have seen no
clear indication that the uniform distribution in general behaves worse than
the even. I made the choice to settle with the uniform distribution due to
one important reason: I do then not need to divide by the radius at any
point. This I believe makes this method slightly faster than that of even dis-
tribution. It also might increase numerical stability, as there might become
division by zero problems if the source point is chosen close to the centre of
the galaxy.

These infrequent jumps in the graph also indicate that this method is
not very sensitive to an increase in the number of simulation points. While
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the accuracy in general becomes better, the probability for getting points
causing big jumps also increases. Still, at my computer from 2004 it turned
out that memory usage was the main limitation for how high I could set N.
I ended up using 3 million samples for the main calculations, which caused
Python to consume about 400MB of memory. The total running time of the
program was then a bit less than an hour.

The strength of the gravitomagnetic field is presented in figure 2.2 I have

Gravitomagnetic field in a galaxy
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Figure 2.2: Gravitomagnetic field strength

here set the axes so that the magnetic field at the centre is not shown. This
gravitomagnetic field may be if interest in other applications, but is of little
interest here as this model of the galaxy is quite inaccurate in this area.

As might be expected from the instability of the Monte Carlo method,
the graph is quite fuzzy. Still the general behaviour is quite obvious. Close
to the core, there is a relatively strong gravitomagnetic field. This decreases
the further from the core you come until it at about 15 out of 20 kpc turns
negative. This change from positive to negative may be intuitively expected.
Near the core most of the mass is swirling outside, hence we have a situation
similar to that inside a current loop. However, as we get further out we get
outside the rotating mass. Outside the galaxy, we have a situation similar
to that outside a current loop, and in this case the gravitomagnetic field
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is opposite to that inside. At some point inside the galaxy, we would then
expect those two effects to cancel out.

In order to interpret the strength of the field, I calculated how much this
gravitomagnetic field accelerates the masses of the galaxy compared with the
total acceleration. For this I used the formula 2.45. The result is illustrated
by figure 2.3. In this figure I have set no restrictions on the axes of the graph
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Figure 2.3: Gravitomagnetic effect, unconstrained axes

in order to show the magnitude of the spikes. Zooming in to get a better
look at the most concentrated part of the graph we get figure 2.4.

From these figures, we easily see that the gravitomagnetic effect is in the
order of a few parts of a millionth of the total acceleration on the galaxy
matter. Even the highest spike in this data set doesn’t get higher than
5% 1075, Tt is also here easier to see that the gravitomagnetic effect changes
sign about 15kpc away from the core. For this case, the positive direction
for the acceleration may be found to be toward the core.

2.3.3 Conclusions

The gravitomagnetic effect depends on the velocity both of the sources and
the body acted upon. The gravitoelectric effect on the other hand does not



2.3. ROTATING GALAXY 33

Part of total acceleration from gravitomagnetism
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Figure 2.4: Gravitomagnetic effect, constrained axes

depend on velocity at all. One may then quickly make the assumption that
the ratio between these will be in the order (v/c)?. There are however other
differences in the behaviour of gravitomagnetism that might separate it from
the gravitoelectric. For instance while the gravitoelectric effect only depends
on the masses inside the position it is calculated for, the gravitomagnetic
effect depends on all the masses in the galaxy wherever this is calculated.
The simulation performed here lend support to the idea that the first of these
differences is the most important when it comes to approximating the ratio
of the strength between those two fields. In this particular model, this even
is true at the core where the second difference intuitively should have given
zero gravitoelectric effect, with a non-zero gravitomagnetic. This I gather is
due to the model having infinite mass density in the core.

From this, it is easy to conclude that for instance the gravitomagnetic
effect is too weak to be used as an alternative solution to the dark mat-
ter problem. It is also probably not necessary to take into account when
performing most theoretical calculations on galaxy models. For numerical
simulations on the other hand, the magnitude of the effect calculated here is
big enough to possibly make a difference. Even if the desired relative preci-
sion of the final result is less than 107> the error from omitting this part in a



34 CHAPTER 2. GRAVITOMAGNETISM

simulation that goes over several steps may quickly accumulate quite grave
errors. This calls for an investigation of more precise methods of determining
the actual gravitomagnetic field.

A thorough analysis of possible methods to get trustworthy values for
the gravitomagnetic effect in numerical simulations will probably be better
suited in a larger work on numerical methods on galaxy models. Thus, I will
here restrict myself to give some ideas that might improve the method used
here. However, I will first give an argument that shows that such a reduction
of fuzziness might actually be undesirable.

As previously mentioned I attribute the spikes and fuzziness in the graph
to the choice of random points in the Monte Carlo method. If our model were
perfectly integrated, I would not expect any such effects. On the other hand,
real galaxies have not mass perfectly evenly distributed, and local velocity
differences are a matter of fact. This opens up the possible interpretation
that the randomness in the Monte Carlo distribution actually may work as
a model of these imperfections. In this case the fuzziness of the results
actually may be interpreted as a measure of how sensitive the strength of
the gravitomagnetism is to local behaviour. It may seem like this model
has the property that local differences from the perfect model may have a
stronger influence on the local gravitomagnetic field than the influence of the
galaxy as a whole. In order to find exactly how much of the gravitomagnetic
effect is determined by local behaviour we need knowledge of how big such
variations in mass and velocity inside galaxies typically are, and preferably
have a more realistic galaxy model. This is clearly outside the scope of this
thesis. However, for many body simulations this problem may be completely
removed as it is then natural to simply calculate the total gravitomagnetic
effect of all bodies on each body.

With the above paragraph in mind, if we still want to reduce the noise
in the gravitomagnetism, how may we do it? One obvious way is low-pass
filtering. I tried a few simple low-pass filtering solutions myself without much
effect, but in theory it should eventually smoothen out the curve. Another
way is to either remove or cap the results for sources that get closer to the
point we calculate the field for than a certain limit. The cap-method is
relatively easy to implement, but this raises the questions of where to set
the limit and how much this artificial change on the system will affect the
results. A third way is to use points in a symmetric grid as sources instead of
randomly chosen points. The grid should be made so that locally the effect
of the sources mostly cancels each other, while the grid points are evenly
distributed. There is a faint possibility that the grid chosen might have
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severe effects on the result, but this should be simple enough to detect and
avoid.
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Chapter 3

Asymptotically Minkowski spaces

Many of the general relativistic systems that have been studied are of the
asymptotically Minkowski type. I will devote this chapter to examine some
of these in regards to rotation and from a Machian perspective. Asymptoti-
cally Minkowski spaces are characterized by having a metric that goes to the
Minkowski metric in spatial infinity. In technical terms this can be stated
as gy — Nw as s — o0o. Here s is the interval between the point where the
metric tensor is evaluated, and the points of interest in the model. 7, is a
flat (Minkowski) metric. The examples studied in the previous chapter were
also asymptotically Minkowski. But in that chapter the focus was on the
effects of the linearized theory of gravitomagnetism. In this chapter we will
still keep these effects in mind, but only as a reference. The focus will be the
models that have asymptotically flatness as an important common feature.

3.1 Minkowski universe

The most obvious universe that is asymptotically Minkowski is the Minkowski
universe itself. This space is characterized by having a flat space metric; in
standard coordinates

ds* = —c*dt® + da* + dy* + d2* (3.1)

As this has zero curvature everywhere we can conclude from Einstein’s field
equations that the energy-momentum tensor also must vanish everywhere.
Hence we have a universe with no matter-content. Free particles move along
linear paths

z%(\) = o + A (3.2)

37
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where % is the coordinates traced out by the particle, A is a free parameter,
and z{ and v are constants characterizing the state of the particle.

3.1.1 Rotating observer

I will now examine how this space time may seem from the perspective of a
rotating observer. Assume that we have an observer that is translatory at
rest in the origin of the standard coordinate system of the Minkowski space.
This observer has a standard clock. This he uses to give a time label to
all points in the space time in the following manner: He sends light signals
that are reflected in an event. He records the time on his standard clock
of emission and reception of the light, and defines the time of the reflecting
event to be the arithmetic mean of these two values. Analysing this from
the framework of the standard coordinate-system it is simple to see that the
time label he sets on each point coincides with the time coordinate of the
standard coordinate-system; ¢’ = ¢t. Thus, he has sliced up the space-time in
slices that he through experiment can verify that is spatial and flat, as these
properties are independent, of the observer.

Then the observer turns his attention to an object he has nearby. It is
3 sticks connected together in a common end-point at rest. Studying it he
finds several fascinating properties of it: In any time slice it turns out that
the sticks are orthogonal to each other, and geodesic. And light sent from
their common edge reflecting of the other edges of the sticks return to their
common edge at the same time. Fascinated by this instrument, the observer
doesn’t dare to touch it. Knowing that flat space has Euclidean geometry
he concludes that it is excellent for making a complete Cartesian coordinate
system on his time slices. He defines each of the coordinate axes as the
extension of the geodesics of each of the sticks, and unit length along each
axis as the length of the corresponding stick. Armed with this coordinate
system, he sets out to map the behaviour of free test particles in it.

It is easy to verify that it is possible that the coordinates he found with
this method might actually be the standard coordinate-system. Just let the
common edge trace out the parameterized line (¢,0,0,0), the x-axis stick
trace out (t,1,0,0) etc. Also if the sticks are simply transported, changed
orientation or given a constant velocity the method will yield the same met-
ric in the new coordinate system (from special relativity). If on the other
hand the sticks are rotating rigidly we get a different result. We can from
symmetry assume that it rotates around the z-axis. The origin-edge and the
7-stick edge still trace out the same path as in the non-rotating situation.
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The x-stick do however trace out (¢, cos(wt),sin(wt),0) The y-axis trace out
(t, — sin(wt), cos(wt),0). Due to invariance the geodesics that make out the
axes of the new coordinate system are the geodesics in Minkowski space,
and thus we get a linear correspondence between the coordinates in the new
system and the standard system:

=t
7 =z

x' = cos(wt)z + sin(wt)y

~~ T~
S Ot = W
~— — ~— ~—

y' = cos(wt)y — sin(wt)zx

Inserting the equations 3.2 into these expressions gives nothing new for
the t and the 2’ coordinates. However, the movement in the x-y plane takes
the following form:

2’ = cos(wt') (zg + t'v") + sin(wt’) (yo + t'v¥) (3.7)
y' = cos(wt')(yo + t'vY) — sin(wt’)(zo + t'07) (3.8)
Here I have assumed v # 0 and used the freedom of parameterization to set

A =t = t'. Differentiating these equations once with respect to t' gives us
the following new equations:

2" = wy' + sin(wt)v¥ + cos(wt')v" (3.9)
y = wa’ — sin(wt')v” + cos(wt' )oY (3.10)

Here the dots denote derivatives with respect to ¢’ Repeating we find the
following nice expressions for the accelerations:

v = W’ + 2wy (3.11)
y = Wy — 2w (3.12)

Comparing these equations with 2.17 we find that in this situation we have

Eq = W (3.13)
Bg = 2wé., (3.14)

Where 7= (2/,y/,0) and €, = (0,0, 1). So the situation is that the observer
can see that the universe around him behave as if there is a gravitoelectric
field pointing away from him that becomes stronger the farther out he comes,
and a constant gravitomagnetic field. The puzzling thing is that he cannot
see any source that could give rise to such fields. One may imagine that this
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observer does indeed find that there is a simple coordinate-transformation
that gives nice linear paths, but consider this little more than a mathemat-
ical trick. Seeking an explanation for the behaviour of the particles in the
preferred frame of the marvellous sticks a search for hitherto unobserved
sources for the gravitomagnetic field commences. As the Minkowski universe
is open the search may continue forever, never reaching infinity. And as it can
never be confirmed observationally, who are we to claim that there indeed
isn’t anything out there?

In the perfect Minkowski model there is indeed no such source. Thus
the above reasoning is an indication of why this is a much used example to
show how general relativity does not fulfil Mach’s principle. As mentioned
in the introduction, these problems may have been instrumental in Einstein
himself abandoning the idea. The only real defence of Minkowski universe
as fulfilling Mach’s principle T have found is given in [5| and seem to take
advantage of a variant of the infinity-argument sketched at the end of the
last paragraph.

One question that naturally arises is if there actually may be a matter
source that might give the fields 3.13-3.147 If this is not the case, then a
search for such would surely be in vain. There are a few obvious problems
that stand in the way from finding such solutions. The calculation of those
fields were exact, and holds for any w. We also expect any sources to have
to be far away to not disturb the local observed flatness. Thus the weak
field approximation will at best be able to give indications of what kind of
distributions to look for. Still there might be one strong clue to work from:
The only observed systems that are approximately Minkowski do have a
source that might turn out to be able to explain their internal behaviour. The
one of the reasons that Minkowski and asymptotically Minkowski systems are
interesting to study is that this is a good approximation for space far from
gravitational sources; at least in our universe.

So if our observer from above crawled through space, found a veil of
galactic proportions, dragged it aside and saw a copy of our universe swirling
around his precious sticks, would he then be able to rest with the mysteries of
the strangely behaving free particles settled once and for all? This question
is deeply related to Mach’s principle, and I will not try to directly answer
it. It will however be a question that may be good to have in mind while
proceeding.
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3.2 Inside a hollow shell

In this section I will study some models of a mass shell in the limit that it is
infinitely thin. This model is relatively easy to analyse, and still gives some
interesting results. The historical approach T will be taking is based on [42]
and [45| unless otherwise noted.

This model was introduced by Einstein in 1912. At this time he used it
on a scalar approach to gravity. From this he calculated the approximate
behaviour of free particles inside a rigidly rotating shell. He repeated this
exercise in 1913 within the Entwurf theory, a tensor-theory that preceded
the final general theory. But the first known to have made such calculations
within the framework of the final gravitational theory was Hans Thirring.
This result was published in 1918. A translation of this paper may be found
in [35], along with the other papers by Thirring mentioned in this section.
A little later, he published a paper on the effects outside a rigidly rotating
sphere with Joseph Lense.

Later, all effects related to rotating bodies similar to those described in
the 1918 papers has been referred to as Lense-Thirring effects, even though
they are qualitatively very alike the results of Einstein in 1912, and parts of
their results have been outdated, as will be shown in this section.

3.2.1 Thirring

I will here go through Thirring’s treatment of the hollow sphere. 1T will not
include the lengthy expressions he got during the calculation. I will rather
focus on the approximations he use, and his results.

Equations 3.15-3.27 are all quotes from his article. Thus I will give a
few general remarks on the notation he uses that differs from the one I use
in this thesis: He denotes the time parameter as x4, not zy, and uses the
formalism where it is imaginary x4 = it. He further uses v, for what in 2.1
were written as h,,. For the gravitational constant x he uses .

His starting point is the linearized theory. He uses the following relation
that is a consequence of 2.6:

X [ Ta(@yzt—r)
27 R

Here z, y, and z are the coordinates of a point on the sphere. r is stated

to be the distance between the point under consideration and the centre of

the sphere, and R is the distance between this point and the integration

dvi (3.15)

/ p—
7;11/ -
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element. The integration goes over the volume of the sphere. According to
my understanding of the system, and [56| the r in 3.15 should actually have
been R to get the retarded potential right (this is assuming ¢ is the time at
the point the perturbation is evaluated for). As the system in question is
stationary, it is simple to see that this doesn’t matter anyway, and could be
a typo.

He then neglects any stresses and sets the energy momentum tensor to

dr,dx,  dx, dx,,(
Ods ds po drs dxy

That is that of perfect-fluid dust of density py. It later turned out that
neglecting the stresses in this way actually gives rise to an error of the mag-
nitude the calculation is done in. I will say more about this later. The first
equality in 3.16 is justified by the linear approximation, and that he is using
the imaginary time formalism.

A4y,
dx

T, =T" =p (3.16)

He then goes to polar coordinates a, v, ¢, with a being the radius of
the mass shell. He uses the following expressions for the rigidly rotating
mass-shell with angular velocity w:

d d

d—il = —id—f = jaw sin ¥ sin ¢ (3.17)
Z—Z - —1% = —jawsin® cos ¢ (3.18)
d

5 (3.19)
dl‘4

He now for simplicity considers the case where the coordinate-system is
chosen so that the point under consideration is situated in the Z-X plane. He
derives an expression for R? in polar coordinates. When justifying the use
of the linearized theory he stated that the test-point should be close to the
centre of the sphere. Now he uses this to justify dropping terms of higher
than second order in an expansion of % in terms of ~.

Then he sets out to examine terms of type (%4)3 as he had this in every

integral he now had managed to reduce 3.16 to. In an errata he explains
that this should actually be —i(%“)Q as he made a mistake regarding what
kind of volume element should be used in the integration. However, this
doesn’t change the approach. He makes liberal use of series expansions and
the approximation that he would ignore terms of higher order than w?a?.
From this he also argues that he could use an unperturbed expression for

the interval as starting point for his calculation. He thus gives the following
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equations:
ds* = —dr; ?—dry?—dxs ? —dxy? (3.20)
d82 . _1_da:12—|—d3722+d1’22 (3 21)
dl‘4 2 d.’£4 2 .
= —1+w?a?sin®¥ (3.22)
d 2.2
d—s = i1 - 2% sin? ) (3.23)
Ly
dry® 3
(% ) = il + Swasin ) (3.24)
S

When this is done, the rest is straight forward integration to get the
perturbation of the metric. The result he generalizes to the case where the
point is not in the X-Z-plane rotating the coordinate system around the z-axis
and finds the transformed metric tensor.

Then he uses the equivalent of 2.13 in a similar way that we did. This
includes ignoring terms of second order in velocity. In his initial paper he
made as mentioned above an error with regard to dxsds factors. In that
context, he also made a minor mistake regarding the definition of mass.
After correcting for these, he arrived at the following equations of motion:

8kM AkM

Po= - ' 3.25

v 30 YT T (3.25)
SEM 4kM

. . 5

Y + o wT + 15awy (3.26)
8kM

3 = w?z (3.27)

"~ 15a

where M = [ podVy, k = x /87 and dots represent time derivatives.

Comparing these with 3.11-3.12 we see that the gravitoelectric field in the
x-y plane here is only one fifth of what one would expect if the system inside
should behave like a rotating Minkowski space compared to the gravitomag-
netic field. The 7z component also shows this difference very clearly. As such
it is hard to use this as an argument in any strong formulation of Mach’s
principle. At the time it was however the first calculation to clearly show
that rotating masses indeed produced Coriolis and centrifugal-like forces. As
such effects seem to be necessary in order to describe rotational phenomena
in a Machian way, and such effects do not exist in Newton’s theory, it may be
seen as a step toward an understanding that might be in accord with Mach’s
principle. Thirring gives the increased effective mass in the equatorial plane
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as a result of having higher speed than the poles, and the Minkowski back-
ground as possible reasons for his result not giving the ordinary centrifugal
force.

If we now consider the behaviour of gyroscopes from 2.35 We get, using

c=1
AkM

Q= a5q (3.28)

So we see that gyroscopes are dragged along with the mass shell with a

frequency that increases by higher mass or smaller radius of the shell. Un-

fortunately the weak field approximation is only valid if M/a is small. If a

approaches the Schwartzschild radius of the mass R, = 2kM we clearly get

a strong field, comparable to that of a black hole.

As mentioned early on Thirring’s calculation was flawed by neglecting
stresses. This caused his energy-momentum tensor to not obey the law of
local conservation of energy-momentum; 7% = 0 A calculation that took
this into account was done by Honl in a paper from 1956 [24]. The end result
is equivalent to 3.25-3.27 with the exception that the "gravitoelectric" force
is only half as strong. So apart from this model turning out to be even further
from the ideal of fully describing our relatively Minkowski surroundings, there
are nothing really new in this.

3.2.2 Brill-Cohen

The next major step in the treatment of this model is attributed to a paper
from 1966 by Brill and Cohen [12|. They managed to find a solution for
the rotating shell without using the linear approximation. Thus it is also
valid for strong fields like we have if the radius of the shell approaches the
Schwarzschild radius. Unfortunately they had to sacrifice second-order terms
in the angular velocity of the shell in order to get this result.

The main trick they did to get their result was, as far as I can see, to
make the educated guess that the metric can be written in the form
ds® = Y*dr? + r?d6* 4 r?sin”® O(dp — Q(r)dt)?] — V2dt? (3.29)

with ¢,  and V functions of r. Initially they had studied the case where
Q(r) = 0 as a static base metric for this perturbation. The metric then has
standard Schwarzschild-form. Thus they argued that outside the shell the
parameters should have the form

Y = l+afr (3.30)
V = (r—a)/(r+a) (3.31)
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Inside the static spherical shell, space-time should be flat, so these functions
should be constant there. Requiring continuity, these constants should have
the value of the functions at the shell radius. This means that the equations
above should hold with the variable r replaced by the constant shell radius
ro. Using units so that G = ¢ = 1, « usually is interpreted as m/2, but they
also gave an explicit expression for it from the field equation for 7%:

a= 27T/ Tr* dr (3.32)
0

This equation helps giving a stringent definition of «, but is hard to use to
calculate it as ¢ depends on « itself. Hence we will quickly get a fifth order
equation if we tried. It will however be used later to define the mass m = 2a.

These expressions for ¢, V and « is kept in the perturbed case with non-
zero ). They argue that due to rotational symmetry they can always rotate
the coordinate system so that nothing is changed beside Q(r)" = Q(r) — Qo
So that they can set Q(oc) = 0. They don’t mention that this requires Q to
converge, but I believe this is uncontroversial given their background before
the perturbation.

They make their calculations within the natural Cartan orthonormal
frame one gets from the metric. They then get by calculating the com-
ponents of the Einstein-tensor, and using them in the field equations, that
T% (i=1,2,3) is independent of €.

They then argue that as the components 7% should vanish in the rest
frame of the shell, the stress-energy tensor must be of the form

3
T = putu” + > tijvé)vz’j) (3.33)
ij=1
where u is the four velocity, and v; are three orthogonal four-vectors orthogo-
nal to the velocity. They then make a choice of v; so that the system becomes
pretty simple. Due to symmetries they are then able to argue that the %
matrix is diagonal. They also get t* = T to the first order in w, — €2, where
ws is the angular velocity of the rigidly rotating shell. T would like to observe
that as long as (2 is between zero and w, this condition is weaker than limiting
ws to first order. When they restrict themselves to first order like this, they
get only 4 non-zero components of the stress-energy tensor, whereas only 7
depend on wy — 2 at all.

They then focus on the field equation for 7%. They use an expression
for the Einstein-tensor they get from the metric. First they solve the field
equations with regard to 2 using ¢ and V from the base metric for the
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vacuum cases inside and outside the shell. They then get the interesting
result that the only regular solution inside the shell is that {2 is constant.
They then set out to determine the integration constants that appeared in
their vacuum solutions by demanding {2 to be continuous across the shell,
and integrate the field equation across the shell. They here explicitly use the
approximation of an infinitely thin shell by using that a term in the integral
of the Einstein-tensor vanished (compared to the other terms) in this limit,
hence simplifying the integral.

This way they get a solution both for the interior and for the exterior
shell. Here, the interior solution is the one of interest. The interior solution
they got was:
wS

1+ [3(ro — a)/4m(1 + Go)]

where 3y = a/(2(rg — «)).

Interpreting €2 in the inside of the shell may be done like this: Consider
the change of coordinates to a frame rigidly rotating with respect to the
original with angular velocity 2. That will be the coordinate-transformation
¢ = ¢ — Qt. As Q) is constant in the interior the derivatives of this set into
the metric 3.29 will give us the standard form of the flat metric in polar
coordinates. Thus, experiments done locally inside the shell will be unable
to discern between this space and a "true" Minkowski universe fixed to this
coordinate system.

0= (3.34)

There are two interesting limits to this equation. The first is ry >> o =
m/2. In this case 3.34 may be simplified to Q &~ w4(4m/3ry). This is in per-
fect agreement with Thirring’s result 3.28 (remember we set G = k = 1).
On the other hand if we let rp = a we get perfect dragging 2 = w;.
This was interpreted in the paper as if the radius of the shell approached
the Schwarzschild-radius, the inside metric was somehow shielded from the
Minkowski background at infinity. Nevertheless, they stress that such an
interpretation may be naive as the asymptotically Minkowski boundary con-
dition did enter their calculations. They also claimed that such a shell with
radius equal to its Schwarzschild radius often had been taken as an idealized
model of our universe, but they doesn’t give any references to this. Anyway,
this might lend hand to the suggestion that our local inertial systems indeed
have to be non-rotational with respect to the fixed stars.

While they through a combination of metric-guessing and solving field
equations from the mass-energy tensor managed to find a combination of
metric and mass-energy that perfectly fits any choice of ry and m, they did
so by sacrificing second order terms in angular velocity (or more precisely
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ws — €, but this only might matter for o near rg). Thus, this result is not fit
to make any strong arguments regarding centrifugal forces, as we have seen
that this is a second order effect of angular velocity.

In the same paper, they also presents some results connected to collapsing
shell of dust. This is a somewhat more realistic model. However, I do not
find anything specific in there of much interest to this thesis.

3.2.3 Pfister and Braun

In 1985 Pfister and Braun released a paper [43| where they further analysed
the model of a rotating shell. Their main idea was to find the conditions
where you have flat interior inside the shell. A motivation for this may be
just the situation previously studied with the observer that locally finds his
surroundings to be flat, but possibly rotating, space, and set out to find what
kind of mass distribution that might explain this situation.

They use the following form for the metric of the rotationally symmetric
system:

ds® = —eVdt* + V[ (dr® + r?d6*) + W2 (dg — wAdt)?) (3.35)

In order to fix the inside of the metric to be flat they demand U, K and A
to be constant, and W = efrsin . The Minkowski boundary condition they
set even stricter, by demanding that U, K and A is zero, W having the same
form as inside.

Having stated these basic properties of the system they will examine,
they go forth and state the quite complicated exact expressions of the field
equations when calculating the Einstein tensors from 3.35. By linear combi-
nations of these, they get two new equations so that they are able to solve
the system in a cascading and recursive way like this: Assume that the equa-
tions are solved up to a certain order, and we want to find the solution to a
higher order. First, they only consider the exterior vacuum solution. There
is an expression for W alone that can be solved to the order one is striving
for. This result, along with lower order results for A may be put into a
second equation that can then be solved to the correct order for U. With
these known K and A each has an equation that can now be solved to the
correct order. Having the exterior solution the rest is an exercise in fixing
integration constants by matching it with an interior solution so that the
metric is continuous and the boundary between these regions have an energy
momentum tensor that represents a rotating shell of mass M, radius R and
angular velocity w.
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Using this technique to zeroth order in w, that is for a static shell, they
got, the standard Schwartzschild solution with flat interior as expected. To
first order they reconstruct the result from Brill and Cohen. However, the
new result is that they become able to extend the analysis to second order.
In order to do this they use a result argued for in [20]. This is that to second
order in rotation U, K, W/sinf and A only has P, and P, terms when
expanded in P;(cosf) Where P, is the I-th Legendre polynomial. Connected
with this is an observation that these variables only depend on even orders
of w, this because of the symmetry across the equatorial plane. Seeing that
A is multiplied with w in the metric 3.35, we can conclude that there will be
no new correction to the metric in second order rising from A.

They then perform the integral procedure as described above, stopping
before solving for K. Five constants of integration were introduced. One
was eliminated by requiring that U had to fall off faster than r=! as r — oo
in order to make sure the total mass of the shell doesn’t change. Two are

eliminated by a previously unused field-equation.

Then it turns out that there is not enough freedom in the system to be
able to make a continuous connection between the inside and the outside
metric. However, they find that if they allow the shell to not be perfectly
spherical, but rather have a 6 dependent radius it will be possible. From
their knowledge of the system, they attempt the following radius:

rs = R(1+ w’fsin?0) (3.36)

where f is a parameter describing how far from a sphere the shell has to be.
They are now able to derive equations that gives the remaining integration
constants in terms of K and f only from the continuity conditions. Also from
the continuity conditions they are able to now generate inhomogeneous linear
differential equations for Ky and f. It all turns out to be interconnected in
a quite complicated way, so they only give the expression for f in the end.

Using the abbreviation x = R/a they have that the value of f/R? that
allows flat interior solutions of the mass shell to second order in w is uniquely
determined by z is (quote):

oo 16(z+ 1)*(2x — 1)?
R? 3x4(3z — 1)?
( 2z + (22 + 1) log[(z — 1)/(z + 1)] B 3(x? + 6z + 1))
2¢(2? + 1) + (z* + 222 + 1) log[(z — 1) /(z + 1)] 3222

(v is still given by 3.32)
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In a paper one year later [44| they extend their work to the third order.
As mentioned above U, K, W/sinf and A all only has even order terms in
w. Hence from the form of the metric, only the second order term of the A
parameter will give a third order contribution to the metric. Thus they only
have to solve the equation for A. This still is quite complicated, as they now
must use the second order results of the other variables in order to get the
correct third order result in the metric. They use some pages to list through
the integration steps they have to use to get the expressions they use. When
the time comes to match their solution with the energy-momentum tensor of
a rotating shell they stumble upon the problem that there is a 8 dependence
in their expressions for A that is not compatible with a rigidly rotating shell.
They solve this by still demanding that the body at all points has a purely
axial rotation, but they then argue that the angular velocity has to have the
form

w = w(l+w?R%esin®0) (3.37)

where e is a parameter determined by the radius and mass of the shell (not
to be confused with Euler’s number). Due to the complexity of the equations
involved they only give the solution for e in terms of derivatives of two other
complicated functions they have gotten explicit solutions for earlier, so I
won’t quote it here.

Their conclusion is that there in general may not be possible to find a
rigidly rotating shell keeping the interior flat with given mass, mean radius
and angular velocity of the interior with respect to the asymptotic infinity.
However, they argue that given the restrictions they have set, there is to all
(finite) orders one unique solution that gives a Minkowski background. For
each new order, they have to add corrections to the shell geometry and rota-
tion to the order they are going for. They show the form of these corrections
and counts up that the free parameters in these are just enough to allow the
system to be solvable. To actually carry out this integration would be very
hard due to appearances of terms involving quadrates of logarithms in the
differential equations.

As they have given up spherical symmetry and rigid rotation, it may be
in order to review the restrictions they have set on the system. They do not
do it themselves, but as far as I can see the critical parts are the following: A
surface dividing space-time in two parts with axial and equatorial symmetry,
spherical in the limit w — 0. All velocities are parallel to the equatorial
plane, and it is a stationary system.

In an article of 1989 [41] Pfister does some examination on easing up these
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restrictions. I will not go into dept in this as he does not get any definite
results, except that for a certain small deviation from spherical shell in the
static limit, there are no first order solutions with flat interior.

So, how does these results relate to Mach’s principle? Thinking back to
our thought experiment in 3.1.1, we see that we now have found a class of
simple models where the masses of the universe can give the impression that
one locally exist in a Minkowski frame at rest, even though one from the
Minkowski infinity observes the frame as rotating. This is an argument for
questioning the notion of any absolute rotation. That this solution is unique
also serves as a demonstration that the local inertial frames really do depend
in a real way on the masses.

The limit where the radius of the mass shell goes to the Schwarzschild
radius of the mass also turns out to be highly interesting. While the system
constants f and e above generally is respectively negative and positive, both
of these goes to zero in this limit. Remembering back to the first order result
that the dragging coefficient went to 1 in this limit as well, we see that at least
to third order the rigidly rotating sphere completely screens away the effects
of the outside Minkowski limit. This screening is such that it is impossible
for an observer inside it to determine how it rotates only by observing the
inside of the shell and the shell itself. Even though it is then tempting to
argue that the inside metric is completely determined by the mass-shell, it
may be worth keeping in mind that we here hasn’t seen on the possibility of
other boundary conditions than the Minkowski at infinity.

3.2.4 Revisiting the rotating cylinder

I will here briefly revisit the case of a rotating infinite cylinder from 2.2.5. It
turns out that the interior of such a system has to be flat. This result was
found by Davies and Caplan in [14|. They started out with a general form
for the metric in a stationary rotating system with axial symmetry found
by Levy and Robinson in [30]. They implement the rotating cylinder by
demanding that the solution should be z-independent, and that the interior
is vacuum. They then solved the field equations in the inside, demanding
that there should be no infinite parameters there. Finally they presented a
coordinate transformation from the initial coordinates to a new coordinate
system where the metric got the standard form of a flat space in cylindrical
coordinates.

This result is exact. Comparing with the result in 2.2.5 we see that the
linear approximation taken in that section clearly falls short in this case. The
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approximations taken there lead us to leave out the "centrifugal force" that
is a second order effect in the angular velocity. This could be considered a
gravitoelectric force, and our conclusion from that section that there is no
such in the system fails in the exact case. Thus we see that the Maxwellian
approximation is not suited for study of centrifugal-like effects, and reminds
us to not put too much faith in zero-results found in that framework.

Unfortunately, it is hard to apply this result in any Machian argumenta-
tion. One reason is that it does not model our universe very well. Another
thing to be aware of is that this is not asymptotically Minkowski. This is
most clearly seen as the boundary of the rotating cylinder stretches out to
infinity, hence breaking the vacuum necessary for having Minkowski solution.
However, the necessarily infinite total mass of the cylinder in order for it not
to have zero mass-(surface)-density also makes the behaviour at infinity in
other directions problematic. These things also make it hard to compare
with Pfisters aproach. Another thing that makes this result of limited value
is that it only shows that the interior is flat, but not anything about how
for instance its rotational state is with respect to the masses making out the
cylinder.

3.3 Outside rotating bodies

We have previously seen on the situation inside rotating shells. Here I will
concentrate on what is going out on the outside. This is of relatively little
interest to the question of how the universe at large affects us, as we are
inside the universe. However, it turns out that effects critical to common
interpretations of Mach’s principle is easiest to test in systems outside ro-
tating bodies. Most importantly because the universe at large is very "well
behaved" while we are close to a certain easy to access rotating body: Earth.

3.3.1 Approximate solutions

The case of a field outside a rotating body was investigated to some extent
by de Sitter as early as 1916 in the linearized theory [15]. Lense and Thirring
extended upon this in a paper from 1921 that is also translated in [35]. They
did this in a similar way as Thirring had used in the inside of the mass shell,
but only going to first order in the rotation. They also used this to calculate
the magnitude of these effects for some of the bodies of the solar system.
The most important effect they found was the effect of the rotating planets
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on the rotation axes of their moons.

However, I will here concentrate on the work of Schiff from 1960. His
main results are presented briefly in [48|, and a more detailed treatment was
given in [47]. The reason to empathize this is that he arrived at a form of
the effects that lend it neatly to laboratory experiments. This is also the
approximation that has been used as the basis for the work on the recent
gravity probe B satellite experiment that I will come to later.

Schiff’s approach is based upon a paper of Papapetrou from 1951 [40]. In
that paper a method for finding the equations of motion for a certain kind
of test particles were presented. This is based upon the continuity relation
17" = 0 alone. The kind of test particles considered have the properties
that they do not themselves change the metric. Further, it is assumed that
they are limited to a thin time-like tube in space-time. In order to track
the position of the particle, they use a line inside the tube with coordinates
X* in a way so that the space coordinates X could be regarded a function
of either X° or the proper time s along it. The main characteristic of the
particle is that [ T*dv and [(x* — X*)T*dv is non-zero. Here the integrals
is over the space slices with constant coordinate time; that is over the points
x'. Integrals with higher order products of the distance differences are zero.
These particles are thus termed di-poles. Single-poles have only [ T*dv non-
zero, while higher-poles have non-zero integrals with the distances to higher
orders.

Now one can write the continuity equations in terms of partial deriva-
tives and Christoffel symbols instead of covariant derivative, and restrict our
attention to the time-derivative. Then insert the Taylor-expansion of the
Christoffel symbols around X*. Now by integrating the equations over the
space, and keeping in mind that it is only a dipole as defined above, all
higher than first order derivatives of the Christoffel symbols disappear from
the equations. From this it was possible to find equations of motion fully
specifying the state of the particle, with an exception of three degrees of
freedom. However, these seem to be due to freedom in exactly where in the
tube the X* line is chosen to be, and thus may be chosen away quite simply
through physical arguments on the system.

The general equation is quite complicated compared with that of the
single pole case that is simply the geodesic equation. This is because the spin
of the dipole particle also appears as an important property of the particle
in addition to its position and velocity. The spin is defined by the tensor:

g — / (2 — XV)T"dy — / (" — X" Tdo (3.38)
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I will remark that (2% — X©) here is zero as the integrals is over the constant
coordinate-time slices.

Schiff essentially took this result, and applied it to the Schwarzschild
metric modified by the off-diagonal elements found by de Sitter and Lense
and Thirring for the outside of a rotating body in linear approximation. In
order to get a nicely interpretable result he also made the following impor-
tant and non-trivial coordinate transformation: Assume the test particle is
a gyroscope moving around a rotating body. A perfect gyroscope will be an
example of such a dipole particle. Then create the coordinate system of an
observer that is moving with the gyroscope made by standard measuring rods
at his position, but where the orientation of the axes still are parallel to those
of the standard Schwarzschild Cartesian coordinates used when considering
the system from the point of view of the central mass.

To simplify this coordinate transformation he takes advantage of the ap-
proximation that the distance to the massive object creating the field is large
compared with it’s Schwarzschild radius, so that he may work to first order
in m/r. He also assumes that the ordinary space-velocity v of the test par-
ticle relative to the central body is low compared to the speed of light, thus
only working to second order in v. In this new frame, clearly the particle
is not moving. It is also natural to let the points X* be so that X? trace
out the space location of the centre of mass of the gyroscope. This condition
completes the equations of motion. Given the symmetries of the system, it
is simple to see from the definition that the components involving time of
the spin tensor disappear. The only non-zero components then correspond
to the classical spin vector in the following way:

S = (5%, 8% 512 (3.39)

Thus he arrives at the following equations of motion:

(dS/dt) =Q x § (3.40)
Q = (3m/2r3) (7 x T) + (I/r3)[(37/r2)(& - 7) — &] (3.41)

Here all vectors except S is as measured in the standard isotropic Schwarzschild
coordinate frame with the source in the origin. 7 is made of the space-like
components of the position coordinates, and r is as usual the length of this. ¢
is the space-part of the four-velocity of the test particle and & is the angular
velocity of the central body (usually taken to be along the z-axis). m is the
mass of the central body. [ is the moment of inertia of the central body, for
instance a homogenous sphere with radius R I = 2mR?*/5. These equations
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also use the convention that sets the speed of light and the gravitational
constant to unity.

Interpreting the first of these equations is quite simple, but still yields an
important result: As the time derivative of the spin has to be orthogonal to
the spin, so its magnitude will not change. This assures that the gyroscope is
well behaved in a certain way, so that it may actually be used as a standard
clock. The first term in the second equation is independent of the rotation
of the central body. It is claimed that it can arise from an extension of the
special relativity theory only incorporating the equivalence principle. It also
is most usually found by a second order approximation of the theory. The
second term on the other hand is a pure general relativistic effect. It clearly
shows how the spin axis of the gyroscope is affected by the rotation of the
central body.

Also pay attention to the fact that the last term is identical to the stan-
dard equation for a magnetic dipole with dipole momentum along . This
clearly shows the relation between the Maxwellian analogy treated previ-
ously and this case. Another potential analogy is that this term shows that
rotating masses somehow drag all other free particles along in their rotation.
Thus, also the inertial frames are dragged in a certain way. This is most
easily seen in the case above the poles. Here the term will become 214 /73,
thus dragging all gyroscopes in the same direction as the rotating body. On
the other hand above equator it will become —I&/r? thus making the inertial
frames spanned out by the gyroscopes rotating in the opposite direction as
the planet. This might at first glance seem to oppose the idea that frames
are dragged along with the central body. This concern is addressed by point-
ing out that this is due to the reduction of the effect, as the distances grow
larger.

A major part of the paper is also devoted to comparing two approaches
to choose the three free variables of the system, and examining how such test
particles behave when influenced by non-gravitational forces. This last would
be important if attempting a laboratory experiment on the earth surface, as
the forces keeping the experiment on the surface would have to be taken into
account. The primary change found was that the equation 3.41 would have
to be corrected by a term of 1/2(f x @). This result is of little interest for
the current thesis so I will not delve further into this.

I will return to this equation when I come to the specific case of the
gravity probe B experiment. More detailed approximations are made, for
instance as a side effect by the calculations of Cohen and Brill, and by Pfister
and Braun as presented earlier. None of these pays much attention to the
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external solution, and they are of limited value in this connection. This
because the approximation given here is as good as one can test with today’s
technology, and that it is of little theoretical interest as one actually have an
exact solution for this system as we are about to show now.

3.3.2 The Kerr metric

In 1963, Kerr presented a paper [26| in which he described a metric he had
derived from certain mathematical properties. One of these was that it had to
be a vacuum everywhere, except at any singularities. This original formula-
tion is now mostly of historical value, as it has later been found formulations
that make this easier to interpret correctly. Even though it was found only
through mathematical considerations, he could see from the form that it
probably could be the exterior solution of a rotating object.

A quite popular representation for the Kerr metric is called Boyer-Lindquist
coordinates. This is named after Boyer and Lindquist who in a paper from
1967 [9] presented it as a "Schwarzschild like" form of the Kerr metric. That
this form got to bear their name seem somewhat strange, as it was in their
paper only a middle step for what they considered their main result of that
paper. However, it has a few neat properties.

The metric is given as

ds® = S(dr* /A + d6?) + (r* + a®) sin® 0d¢® — dt* + 2mr /Y (asin® Odp + dt)*

(3.42)

where
A = 7 =2mr+a (3.43)
Y = r’+a*cos’d (3.44)

a and m is free parameters in the mathematical problem whose physical inter-
pretation turns out to coincide with that of the rotation and mass properties
of a central object.

One important property of this coordinate system is that it becomes the
standard Schwarzschild coordinates when we set @ = 0, and in this case it is
easy to see that m represents the standard mass of the object. Lower order
approximations of this solution also exhibits that the parameter a makes
the metric behave like the Thirring system where a is corresponding to the
angular momentum per unit mass along the § = 0 axis.

Further physical interpretation turns out to be quite complicated. While
the Boyer-Lindquist coordinates have some common features with Schwarzschild
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and lower approximations of rotating bodies, it does not present any obvious
way to build up the coordinate system from physical experiments. With this
in mind, I will mention one property with the Kerr metric in Boyer-Lindquist
coordinates that is often mentioned in that connection, and that can be re-
lated to frame dragging. This is partially following the treatment on the Kerr
metric in the book by Gren and Hervik [56]. Observe that

Gt = 2mr /¥ — 1 (3.45)
We find that this quantity becomes positive if
r* + a® cos® 6 — 2mr < 0 (3.46)

Observe that the surface A = 0 clearly has to be inside this region of space
from r? + a?cos?6 — 2mr = A — a*(1 — cos®#) <= 0. The A = 0 surface
is significant as this gives an infinite g, and thus plays the same role as the
event horizon in the Schwarzschild metric. The g; > 0 region is however
interesting as this marks the area where physical particles moving along
timelike ds < 0 paths can have constant r, ¢ and 6 coordinates. Examining
the metric we find that the only way to get a negative interval is to have d¢
negative. Thus one might say that this region plays the same role for frame
dragging as the area inside the event horizon plays for ordinary gravitation.
The area with this extreme dragging, outside the A = 0 boundary is named
the ergosphere.

Another way to see the effect of frame dragging in this coordinate system
is to examine the path of a free particle initially at rest far from the source.
This is relatively simple to analyze using Lagrangian formalism, but as this
is somehow outside the scope of this thesis, I will not go into the details.
The main idea is that the Lagrangian for the system becomes independent
of ¢, hence there is a corresponding constant of motion p,. One finds that
a non-moving particle far from the source has approximately p, = 0. This
gives us the following result for the angular velocity of the particle in the

coordinate system:
d a(r?* +a* - A
do ___al )_ (3.47)
dt  (r?+a?)? — Aa®sin”6
This isn’t an easy expression, but inserting for A it is actually quite easy to
see that if we ignore all but the first order products of a we arrive at

do _ 2ma

dt = 3
Thus showing that for at least small angular velocities, we have a clear ten-
dency that the particle is dragged along in the same direction as the central

(3.48)
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body is spinning, and that this effect becomes stronger as one get closer. I
would like to mention that this approximation also demands that r is large
compared to a, as else one cannot justify keeping the r® term, and not higher
order a terms. The exact solution is not very complicated, but gives us lit-
tle new qualitative information, except that the dragging effect is relatively
somewhat weaker for high a.

The A = 0 limit is also easy to calculate, but hard to interpret:

do a a

a
dt  r2+a® 2mr 2m(m + vm? — a?)

(3.49)

I have been unable to find any coordinate independent interpretation of
these dragging-effects found here. Nevertheless, from the simple form of the
metric it seems unlikely that one can be able to get completely rid of it.
The Kerr-metric and its generalisations have been subject to much research,
and have many interesting properties. However, I believe I have now briefly
covered those results that are most interesting in regard to Machian rotation
effects.

3.3.3 Grayvity probe B

, This section is mainly based upon the NASA final report of the Gravity
Probe B experiment [2]. Gravity probe B is a satellite experiment that has
been under development at Stanford University since the 1960s. On 20 April
2004 the satellite were finally launched, and it produced data until 29th
September 2005. However, the data-analysis has proven quite complicated,
and it is still not completed. The results I base this section on were presented
in the context of NASA no longer providing funds for the project.

The theoretical foundation for the experiment is the approximation found
by Schiff as presented in 3.3.1. The idea was to send a satellite in an orbit
over the poles with gyroscopes initially pointing toward a suitable heavenly
body. This body should be so that when the satellite is over the equator
the direction to that body from the gyroscope is either away of through the
centre of the earth. This setup has several nice qualities. Looking back to
the equation for the precession of gyroscopes 3.41 we see that in this case the
first term in the equation will always be orthogonal to the plane the satellite
move in, thus giving a pure North-South precession. This contribution to the
precession will also thus be orthogonal to the spin-direction of the gyroscope,
hence giving a maximal total displacement. The second term might be a bit
more difficult, but integrating around the entire orbit it becomes clear from
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the symmetry that the direction of that precision contribution will sum up to
be along the axis of rotation of the Earth. Hence, this precession will deflect
the gyroscope in a purely East-West direction. Again, this deflection is as
large as it can, as the precession is orthogonal to the spin.

Even though the experiment then in principle is easy, there were many
practical and technical difficulties connected to doing this experiment. One
thing is to find sufficiently accurate orbit information. Factors such as how
oblate the Earth is had to be taken into account. This was necessary in order
to obtain the right values for the position vector needed in the formulas. It
was also necessary for some calibrating issues.

Finding a suitable heavenly body to use for reference was also important.
It had to have a known, small velocity relative to the background of distant
bodies, while being sufficiently strong to be possible to be tracked easily and
be discerned from the surroundings. In addition comes the above-mentioned
location requirement that it had to be above the equator. The choice fell on
the star IM Pegasi.

For the required precision of this experiment, the telescope required for
tracking IM Pegasi on board the satellite also had to severely push techno-
logical limits.

However, the requirements for the gyroscopes could almost be considered
science fiction. In order for the drift rate of these to be as low as required
there were several technical difficulties to overcome. One thing is that it
needs to be almost perfectly spherical. However, it also needed to be very
homogenous. This was in order to make sure the geometric and mass cen-
tre was as close as possible to each other. Even in space, external forces
like for instance radiation pressure could have made making a sufficiently
homogenous sphere all but impossible. Only by applying motor boosters to
the satellite compensating for this drift was a sufficiently homogeneity within
reach. In addition, they had to use superconducting coating and advanced
coolers in order to be able to make measurements on the spin of the sphere.
Magnetic shielding, being able to spin the gyroscope up and avoiding possi-
ble change of shape of the apparatus over time were also major concerns, all
which were intimately connected by keeping it all cold. The final satellite was
comprised of four gyroscopes, two rotating in one direction, and the other
two in the opposite direction, thus doing the same experiment more or less
independently of each other.

After the data were collected, one major problem showed up that drasti-
cally complicated the analysis of data. Simply put it turned out that electri-
cal effects connected to the crystals of the material the spherical gyroscopes
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and the chasings they were made of were large enough to cause significant
Newtonian disturbances to their data. These disturbances entered through
the set up of a crucial calibration scheme, an associated torque, and another
unforeseen resonance effect with the rotation of the satellite casing. The
last essentially sometimes made the spin directions the gyroscopes to make
a jump over some days independent of the others.

Fortunately, even though it was not intended, they actually had obtained
data that could be used to map the critical electrical distribution inside the
gyroscopes. Through this, they were able to drastically reduce the scattering
of the results. A continuously greater understanding of the resonance effect
also helped tremendously.

At the end of 2008, the main limitation on the results was that of com-
putation power. Their results were based upon analysis of means over daily
data, while they are striving for high-speed computational methods allowing
analysis of data of every 2 seconds.

For the North-South direction, they calculated that the drift due to the
movement around the earth would be 6606 milliarcseconds per year (marc-
s/yr). In addition to the effect of the Earth, the effect of the motion around
the sun corresponding to the first term in 3.41 and the effect of the motion
through space of the star had to be taken into account when calculating the
theoretical result of the experiment. Thus they arrived at a theoretical drift
of 6571+1 marc-s/yr. Combining the result from all four gyroscopes they
arrived at a drift of 65504+14.0 marc-s/yr. This they consider a very good
confirmation to that effect.

The East-West effect of the rotation of the earth was calculated to be
just 39 marc-s/yr. That is considerably less than that of the first effect, and
explains why the need for such high precision on the experiment. Taking into
account the other significant factors the expected measurement ended up to
be 75+1marc-s/yr. The combined measurements yielded a result of 69.1+5.8
marc-s/yr. They stress however that these results is without systematic error
or model sensitivity analysis included. Therefore, even though the theoretical
result is outside their estimated error, they state that they consider the frame
dragging effect to be confirmed with only 15% uncertainty. This may be
intuitively justified by observing that the measured drift is closer to that of
the theoretical result with frame dragging than that without.

So why is this experiment of interest to this thesis? This experiment
stands as the best experimental confirmation of the effect that seem to be
the main basis for arguments tying Mach’s principle to general relativity,
namely gravitomagnetism/frame dragging. Without such an effect it is hard
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to see how one may argue that far objects directly affect local systems. Even
with this effect it is still not obvious that it is possible to find any relation that
connects general relativity with any strong formulation of Mach’s principle,
but the possibility seem to be there.



Chapter 4

Universe models

Mach’s principle concerns bodies far away. As such it makes sense that
attempting to restrict attention to a small portion of the universe as is usually
assumed in the asymptotically Minkowski case won’t give us the full picture.
All masses in the universe may play a role. Therefore, the need to turn to the
field of cosmology in order to examine this fully seems to be evident. As this
is a potentially huge subject, I will restrict my attention to two important
ways cosmology has been seen in connection with Mach’s principle. First
I will present a recent result. This shows that the universe models that is
most used for our universe - Friedmann-Robertson-Walker (FRW) universes,
do have a very important "Machian" property. Secondly I will present a
couple of universe models that I have often seen referred to as exploiting a
lack of Machianity in general relativity, and some ideas as how one might
understand them without having to let go of Mach’s principle.

4.1 FRW/Schmid

In this section, I will present a recent result that can be considered quite
important from a Machian point of view. It was found by Christoph Schmid,
and is presented in detail for flat universes in [49], and expanded to curved
universes in [50]. It states that for a linear perturbation of a FRW universe
the orientation of the inertial frames is exactly dragged by a weighted mean
of the rotation of the masses around them. Said in a different way it tells
us that the rotational states of inertial frames are perfectly determined in a
relatively simple way by the state of the universe. A compact and structured
presentation of the path to the result is already available as notes from the
proceedings of a presentation held in 43rd Rencontres de Moriond [51]|. Thus,
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I will focus on the theoretical foundations not presented there.

4.1.1 FRW universes

The Friedmann-Robertson-Walker metric is named after three scientists who
independently found important properties of the metric. Sometimes the name
Lemaitre is also included, and sometimes some of the names are excluded.
The historical reasons for this lack of any strong naming-convention may be
read from for instance Gravitation [36]. It turns out that Friedmann was
the first to discover the metric in 1922, but it was independently discovered
by Lemaitre in 1927. It was however first when Robertson and Walker in-
dependently found that these universes are the only spatially homogenous
and isotropic universes in general relativity in 1935 that the model got a
real breakthrough. The assumptions that the universe at large can be sliced
into spatial hypersurfaces so that where you are on it won’t affect the ob-
servations (spatial homogeneity), and that you observe essentially the same
whatever direction you observe in (isotropy) fits so well to our universe that
they has been named the cosmological principles. Thus FRW universes are
often one of the first universe models encountered in textbooks on cosmology,
for instance that by Gren and Hervik |56].

The metric of this model has a quite simple form. In Robertson-Walker
form it becomes:

dr?

1— Kr?
Here K is a true constant determining the geometry of the space. It can be
scaled by coordinate transformations, but never made to change sign. This
coordinate transformation is essentially to draw the absolute value of K into
a. By that reason in theoretical applications a dimensionless parameter k is
introduced and is set to be £1 or 0, each of these cases representing quite
different geometries. If K > 0 the universe is said to be closed, and k£ = 1.
If K =0 itis flat and £ = 0. Finally, if K < 0 it is open and k = —1. a(t)
is a time-dependent scale factor. Both K and a is to be determined by the
matter-distribution through Einstein’s field equations.

ds® = —dt* + a(t)*( + r%(df* + sin® 0d¢)) (4.1)

Some words on notation. Schmid uses K in the same way as I here use
k. T will stay with the standard notation. This avoids confusion with K
needing to have dimension that cancels 2. If r is fixed to be dimensionless
by coordinate choice, £ might have substituted K. However, Schmid later
will use k for certain eigenvalues. I will here adopt the more common notation
A for these eigenvalues.
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to come are the following:
ds = —dt + a(t)*(dx* + R(x)*(d0* + sin*0d¢?)) (4.2)

Where R(x) = sin(x) if £ = 1, R(x) = x if £ = 0 and R(x) = sinh(y) if
k=-—1.

An important quantity often met in the treatment of FRW-universes is
the Hubble parameter defined by H = a/a where a = da/dt.

It may also be interesting to note that if one set £ = 0 and a = 1 one get
the standard Minkowski metric. This shows that Minkowski is a special case
of FRW. The result of Schmid will turn out to open up for an interesting
interpretation of this that I strangely enough have not seen mentioned before.

It may also be worth to mention that these universes have the property
that gyroscopes follow the matter flow, always pointing along the same line
of matter. This may be intuitively confirmed from the isotropy condition,
as any precession of the gyroscope relatively to the matter around it would
make the precession axis stand out as a "favoured" direction.

4.1.2 Linear perturbation on FRW

Perturbation theory is the theory of what happens if you take a system
and make small changes to it. The initial system is called the metric and
is usually chosen in a way so that it has particularly simple or desirable
properties. The new, changed system is called the perturbed system. As
our universe seems to be well described as something not far from perfectly
spatially homogenous and isotropic it makes sense to use FRW universe as a
background when studying our universe.

One particular problem when it comes to all perturbations is the one of
gauge freedom. A gauge is a relation that tells us what point in the perturbed
system corresponds to what point in the unperturbed. To illustrate this,
imagine a circle in the Euclidean plane. This plane is covered by a standard
polar coordinate system with the origin in the centre of the circle. Use this
as the background system. Then make a slight change/perturbation of it so
that instead of being a circle we have an ellipse. Where should we put the
origin, corresponding to the centre of the circle in this new system? Both
foci, and the centre of those, present themselves as possibilities. Therefore,
it is possible to introduce a standard coordinate system having any of these
as centres mapping points in the background to the ellipse. In addition, one
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might want to keep a correspondence between the circle and elliptic curve.
In that case, a kind of polar coordinate system where the radius-coordinate
is constant for all points in the ellipse could be introduced. Knowing the
metric of this coordinate system, it would still be evident that the perturbed
system represented an ellipse. This freedom in mapping is referred to as
gauge freedom. Thus, clearly defining gauges or working with quantities
that is gauge invariant quantities is important, and I will come back to that
issue later.

For the FRW-background there is an important result presented for in-
stance by Kodoma and Sasaki in [28]. To explain it T want to introduce the
notion of "pure" scalar, vector and tensor fields. Any scalar field is automat-
ically "pure". A vector field may be decomposed into a scalar and a pure
vector field where the purity of the vector field is defined by it being diver-
genceless. Similarly, any (symmetric) second rank tensor quantity may be
decomposed into pure tensor, vector and scalar fields, where the pure tensor
field is both traceless and divergenceless.

Consider an equation involving scalar, vector and /or tensor fields defined
on the hypersurfaces of homogeneity in the FRW-universe with the following
properties:

e [t is covariant with respect to coordinate transformations in the hyper-
surface

e [t is linear in unknown geometrical quantities

e If it is a differential equation it is at most of second order

It turns out that such an equation can then be decomposed into a group
of equations where each only contains pure scalars, vector or tensor fields.
The linear approximation to Einstein’s field equations with FRW-background
has these properties. Thus, the effect of any small perturbation may have
its effects analysed independently in the scalar, vector and tensor sector.
The pure scalar-field part of the perturbation is sometimes also referred to
as irrotational or density perturbation. The pure vector part is sometimes
referred to as rotational or vorticity perturbations. The pure tensor part is
sometimes referred to as gravitational wave perturbation.

The possibility to make such decomposition is critical for the approach
made by Schmid. Thus, it could be interesting to examine if it can be done for
other universes than FRW as well. After the proof of this result, Kodoma and
Sasaki stress that the background hypersurface having constant curvature
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is a critical part of the proof. One possible defining property of constant
curvature is that

Raﬁ'yé - K(ga'yg,@& - gaégﬂ"/) (4'3)

where K is constant. This poses a potentially severe restriction on the models
for which this method may be used. FRW universes are the only universe
models I have found to have been used as an example for this.

4.1.3 Eigenfields of Laplacian

In order to carry out the integrals required to arrive at his results, Schmid
found a certain set of eigenfunctions for a Laplace operator. The Laplace
operator in question Schmid refers to as the de Rham-Hodge Laplacian (A) in
order to separate it from what he refers to as the rough Laplacian. Strangely,
I have found no standard naming convention for these, so I will stick with
his terminology. The rough Laplacian is defined by V*V,. The de Rham-
Hodge Laplacian is originally only defined on differential forms, but by going
to the corresponding vector where necessary it may make sense to use it on
vector fields as well. Instead of giving the full definition that would require
a degree of mathematics than I don’t want to assume in this thesis, I will
simply state the two main properties that was necessary for Schmid to arrive
at his final result: For scalar fields the rough and de Rham-Hodge Laplacian
is equivalent, and for divergenceless (pure) vector fields AA = curl(curl(A)).

He starts out by investigating the scalar eigenfields of the Laplacian. As
the background is spherically symmetric, he can separate those into a radial
and an angular part. The angular eigenfunctions of the laplacian is a set of
well-known functions known as spherical harmonics. The standard notation
for these are Y;m(0, ¢) where [ and m are integers characterizing the function.

He then solved the radial part in terms of the coordinate system described
by the metric 4.2. By demanding it to be regular in the origin, he arrived at
the following function:

~ 1 d ., singyx
J®(x) = R{(—=—) 4.4
¢ 1) ( qux)( qR) (4.4)

Remember that R is a certain function of y. This is not marked explicit in
this formula to avoid confusion with the parenthesises for the terms to be the
multiplied. [ is the same as for the spherical harmonics, showing what radial
functions can be used together with what angular eigenfunctions. In order
to make a cleaner notation ¢ was introduced and is defined as ¢> = \? + k.
Here X is the eigenvalue corresponding to the radial function, and k is the
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usual curvature-parameter. As mentioned earlier this notation differs from
that used by Schmid. Instead of lambda he uses k, and he uses K for what
I here note as k.

J is then recognized as a generalisation of another well-known family of
functions: the Bessel functions. From knowledge of these he are quickly able
to determine the eigenfunctions that is not regular at y = 0 as well. T would
like to remark that the form of the posible functions R was important in
deriving the relatively simple expression 4.4. Thus expanding this result to
other universes than FRW-universes may be problematic.

Then we may turn our attention to the vector fields. As there may be
more than one vector field with a certain eigenvalue there may exist bases of
vector fields that one can construct all other eigenvector fields from. There
is a certain degree of freedom associated with the choice of this basis. This
motivates trying to find vector fields that can be used as basis elements with
particularly nice properties.

Schmid chooses to examine the following set of sets of fields spanning the
three dimensions:

X = RVY (4.5)
X = 5XXX1J7%

& Yim (4.7)

These fields have some quite nice properties. All of them are eigenfunctions
of the total angular momentum operators J? and J, with values (I + 1) and
m (we will later see why this is a good thing). If one examines the sign of
the fields on changing sign on all coordinates one find the parity. The parity
of all X~ is P = (—1)!"L. For all the other fields the party is P = (—1).
Finally, they are all orthogonal to surfaces with constant radius. This last
property tells us that all vector fields can be decomposed uniquely into a sum
of these fields at each shell of constant radius (that is, if these fields make
a complete set, which I believe follows directly from them spanning three
dimensions and Y}, being complete).

There is also the freedom of multiplying these fields by certain scalar
radial functions. This is explored to some extent. Divergenceless fields are
also constructed this way, except for the X fields. In order to get these
divergenceless a field of the Yj,,,e, had to be added. However there are then
still no mixing with the X~ elements. Finally, it is shown that the following
fields are eigenfields of the de Rham-Hodge Laplacian:

TP 00)X0(0,6) (4.8)
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Here J is the generalized Bessel function as before. The eigenvalue in this
case is exactly —g2. The other possible eigenfields with X? as angular part
may be gotten by changing J with one of the other previously mentioned
scalar radial eigenfunctions of the Laplacian. It turns out that the eigenfields
involving the other basis fields are of no interest in this context.

4.1.4 Perfect dragging in perturbed FRW

Now we are finally ready to have a brief look on the physics around the result
that indicates perfect dragging in FRW-universes. Take a FRW-background
with standard Robertson-Walker coordinates (r as radius, not x). Then
apply a pure vector perturbation on it, keeping the universe at infinity un-
perturbed. A result from perturbation theory is that in this case we may keep
our old time coordinate without any gauge problems. This is because chang-
ing the time-structure between hypersurfaces of homogeneity would require
scalar perturbation. Another interesting result is that the intrinsic geometry
of each slice of constant time remains unchanged by the perturbation. It
is then possible to chose a gauge so that the perturbed universe is covered
by a coordinate-system in a way so that the metric is identical to the back-
ground metric, with the exception of the components go; = ;. And as the
perturbation is purely vector, the vector field 5 must be divergenceless.

In this universe, consider the following setup: At each point is an ob-
server moving so that his coordinates remain constant. Each observer has
constructed a local orthonormal frame. These frames have their orientation
fixed so that they are part of geodesics between the observer and constant
heavenly bodies at infinity at the same time coordinate. As the intrinsic ge-
ometry of the surfaces is unchanged and there is no perturbation at infinity,
these directions are well-defined, as they are well-defined in the background.
Each of these observers has a set of gyroscopes. By observing the movement
and precession of these, they are able to observationally define gravitomag-
netic and electric fields in their orthonormal frame.

Now the question we would like to ask is, how do the gyroscopes precess?
The precession of the gyroscopes defines the orientation of the local inertial
frames. We want to examine how this orientation is affected by the flow of the
masses of the universe. Thus, we are only interested in the gravitomagnetic

field.

This turn out to be very similar to what was done earlier in this thesis
for the Minkowski background. And as one might expect also in this case
one actually gets the equivalent of 2.15-2.16 with hgg constant, and hg; = ;.
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The field equations do become similar as well, but with a very important
difference.

Schmid is using Cartan’s equations to arrive at the field equations for
the perturbed metric. This involves working on locally orthonormal frames
as opposed to the coordinate frames. He keeps it to first order in 5 In
this case he can restrict attention to the 0z components of the equations.
Here & is used to empathise that we are working with the components in an
orthonormal frame, not those in the coordinate basis. The equations become:

(=0 + 123 = —167G. (4.9)

where G is Newton’s gravitational constant, and j; is given by the compo-
nents J! = T%. That the energy-momentum tensor is given in an orthonor-
mal frame is important as that means that this quantity can be measured
by local observers without any knowledge of any overall coordinate metric.
Apart from this, it is identical to the field equation we had for Minkowski-
perturbation with constant g,0, with the exception of the p? term. p is
defined by (11/2)? = —(dH/dt). We can confirm that this term disappears as
one could expect in the non-expanding Minkowski case.

Now we are only interested in the precession of a gyroscope at one point,
let that be the centre of our coordinate system. Now the precession turns
out to be a rotation that has to have total angular momentum and parity
given by J¥ = 1*. The only vector fields of those presented in equations 4.5
- 4.7 is actually )?fm; For these eigenfunctions of J [ has to be 1, and we saw
that in this case X~ was the only one that could have positive parity.

We actually get the huge simplification that the only components we
need to be concerned about of A; are those that are products between radial
scalar functions and X7,,. It even follows from angular momentum and parity
properties of the rotation that neither scalar nor tensor perturbation can
affect it, as none of those can generate the right kind of field. Thus, the
restriction to vector perturbations turn out to be no real restriction at all.

Turning our attention back to 4.9, we se that if the right hand side is zero
it actually becomes an eigenfield-equation for the Laplace-operator. And
we know the eigenfields for the Laplace-operation for fields of the form X7,,,.
This invites use of the method of Green functions. This method essentially is
based on first dividing the space into surfaces, and then to solve the equation
for the case that the right hand side is zero everywhere except at one of the
surfaces. Finally, we are to sum up the result. Such summation methods
usually do not work for the exact field equations in general relativity due to
their non-linearity. Thanks to the linear approximation, this field equation
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has a form where this method actually works.

In this case, it is natural to choose the surfaces to use in the method
spheres given by the surfaces of constant radius. Now the orthonormality of
the vector fields given in 4.5 - 4.7 over these spheres is useful. This allows
us to for each sphere decompose J: so that we only have to mind the X ,
component of this vector field as well. With [ = 1 m may only have the
values 0 and 1. Examining the properties of these vector fields one finds that
the sum of those on a surface represent rigidly rotating shells, and that any
such shell may be made from it. As m = 0 represent rotation around the
z-axis it is possible to only find the solution for this case, and correct for the
direction differences later.

This can be solved with the help of knowledge of the relevant eigenfunc-
tions. For £ = 0 and k£ = —1 the radial eigenfunction used outside the shell
is determined by the openness into infinity. Summing up and analysing the
resulting precession on the gyroscope one finds the main result of his paper:

Ggyro = / ari3 ater (MW () (410)
W(r) = g167rG(p+p)R3Y() (4.11)
V) = 2 [ exp(-ur)] (4.12)

Here ngro is the precession observed by the local observer of the gyroscope.

ﬁ;?;tl,:;r(r) is the angular velocity of the rigidly rotating shell-portion of the

matter flow at distance r. p and p is the mass density and pressure in the
background.

The first of these equations has the form of a weighted average. But in
order for it to actually be such W must be normalized to 1. Schmid examined
whether this was the case, and concluded that it was.

For k =1 a slightly different radial eigenfunction had to be used outside
the shell taking into account the finite size of the closed universe. The result
was exactly the same as the one presented above with the exception that
exp(—px) had to be replaced by sinh™ 1(um) sinh(pu(m — x)).

4.1.5 Summary and conclusions

I will before leaving this result tie it to Mach’s principle and make some
comments on possible extensions. The main result here tells us that there
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is no unknown ad-hock factor needed to understand why the inertial frames
behave as it does. They do it only because of how the matter of the universe
around them behaves. It also depends on it in a maybe surprisingly simple
way. The angular velocity of the inertial frame is perfectly decided by the
angular momentum of all rigidly rotating shells around it. All other motions
of bodies that are not part of the rigidly rotating component simply are
chaotic fluctuations that cancel each other. Thanks to the exponential cut-
off in the Y, factor we also do not have to worry too much about things
extremely far out. This is especially nice when having to worry about the
event-horizon. Thus it seems like at least for our universe Mach’s principle
is very well, maybe even perfectly, satisfied.

As promised, T will say some word about the Minkowski case. As men-
tioned before this is a special case of the FRW-universe. Unfortunately, it
may seem like the result found by Schmid cannot be directly applied to this
case. This may be seen from the (p+ p) factor in the weight function, giving
a zero contribution of all perturbations. This makes sense as all vector per-
turbations here would not have any masses to move, and creation of masses
would be a scalar perturbation. The normalization of the weight function
might however still be defended by observing that in this case the integral
over Y, (r) diverge, as u = 0, and thus there is no exponential cut of. How-
ever, as this result claims validity for all linear perturbations, this result
might act as a support for another theory regarding Minkowski spaces: That
a (FRW-kind of) Minkowski universe is unstable in a way so that if you put
any mass in such an universe it will collapse in a way so that for instance all
gyroscopes pointing at it will keep pointing at it. There is no mass outside
to keep it Minkowski at infinity.

While it turns out that the result may be hard to interpret for universes
with p + p = 0, is there any conceivable way to extend it? In particular,
is there any other universe models than the FRW-ones that may be treated
in a similar way? Unfortunately, this seems to me to be quite unlikely. I
have already mentioned the property of constant curvature that is critical to
the ability to be able to restrict attention to the vorticity sector. The gauge
simplification, and complete disappearance of higher than first order tensors
would be hard to do without. In addition, all of the work on the vector basis
fields in the eigenfield section was based upon spherical symmetry. Without
this, the entire argumentation allowing us to reduce attention to only two
of these would fall apart. Again, it would be hard to imagine reproducing
this result without use of these symmetry properties. Examples of other nice
properties with the FRW-background that one may not take for granted in
other universes are:
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e Having a nice background of matter at infinity to point observer’s axes
toward

e Having the gyroscopes nicely following the initial matter flow
e Being able to slice the space time into spatial slices

e Giving such a nice eigenfield-like equation

All of these are properties that somehow enter into the process of arriving at
this result.

While it seems to be hard to find other suitable universe models to apply
this method to, what about going to higher order than linear? The answer
is that this is maybe harder than finding other universe models. Also in this
case, the decomposition into scalar, vector and tensor perturbations break
down. This as it had as a requirement that the unknowns in the equation to
be decomposed were only linearly dependent. This will naturally not be the
case in higher orders. The field equation will also probably no longer be of
a form where any form for Green function method may be used, as this also
depends on linearity of the system. The vector field results should however
still hold, and thus maybe be used in other approaches.

An extension that Schmid himself states that he is working at is to extend
his result to the movement and acceleration properties of inertial systems.
This absolutely is interesting from a Machian point of view, but falls outside
the scope of this thesis as it does not relate to rotation.

4.2 Rotating universes

Previously we saw how FRW universes have the property that all inertial
axes follow the matter flow. Even in the case of linear perturbation, we saw
that there still was a close connection between the flow of matter and the
gyroscope axes. The connection simply being a certain weighted average. |
will in this section present a couple of universe models where there seem to
be no such connection. In these, we will find that gyroscopes everywhere
are rotating with respect to the flow of the nearby matter. Such universes
are referred to as rotating. I will also tie these to the question of Mach’s
principle. It might seem at first glance like they are defying this principle,
but there are some suggestions to how even these might be interpreted in a
Machian way.
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4.2.1 Goedel Universe

In an article from 1949 [19] Kurt Gédel presented a universe model that were
surprisingly simple, but still had quite a few important qualities. The metric
is given by:

ds* = a*(—dx] + dx? — (2™ )2)dxs + daj + 2 drodry) (4.13)

This metric represent a dust-filled universe where the dust is moving along
the curves with constant z;. In addition, there is a cosmological constant.
Thus, the energy-momentum tensor becomes:

T, = 8TRrpu Uy, + A (4.14)

where u, is the components of the velocity of the dust particles, p is the
mass density and A is the cosmological constant. In this coordinate system

only the O-component of u, is non-zero. Solving the field equations give us
A =1/2a? = dkp.

One interesting property of this solution is that it is completely homoge-
nous. That is that every coordinate-independent result found for one point
will automatically be satisfied at every other point. With this in mind the
most important result in our context of this metric is that one may show
that the inertial systems have to rotate with an angular velocity of 2,/mkp
with respect to this coordinate system. This rotation has constant sign and
direction along the third coordinate axis. As the matter is at rest in the
original coordinate system one may conclude that if one change coordinates
to an inertial system one will find that the matter is rotating, at least locally,
with respect to this frame.

Extending this result from a local perspective to a global is far from
trivial. One of Gdodel’s stated motivations for studying this model was that
it is impossible to slice the space globally into spatial slices that is separated
by a timelike distance. This property may be intuitively understood from
the probably most quoted property of this universe: It has closed timelike
curves (CTLs). CTLs are curves that start a place, moves through space,
always in positive time direction, but still end up at the same place as it
started. The existence of CTLs is easily seen from the metric if one makes a
coordinate-change to a certain set of cylindrical-like coordinates:

ds?® = 4a®(—dt* +dr* + dy* — (sinh* r —sinh? r)d¢® — 2v/2 sinh? rdpdt) (4.15)

Here we clearly see that for sinh*r > sinh®r a particle moving along a
path with all coordinates constant except for ¢ will always have a timelike
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movement. This can be seen, as the square of the interval change is always
negative. However this coordinate transformation is constructed so that ¢ is
cyclical with a period of 2. Thus the particle will end up at the same point
as it started once it has had a total change of ¢ equal to this.

The existence of CTLs clearly shows that no global slicing of the space-
time into surfaces of constant time in an ordinary way is possible. As the
space is completely homogenous, there is neither any natural way to slice
it into hypersurfaces of homogeneity - all surfaces would do. I have not
found any simple form for the geodesics not simply being those of the x4
coordinate lines. This makes the physical interpretation and prediction of
large-scale observations also quite difficult. However, there is nothing that
suggests that there should be any effect working at long range that could
be observed and interpreted from an inertial frame as matter at a distance
rotating in an opposite direction than the matter locally. In addition, the
fact stands that there is a natural coordinate system with no movement of
matter where the gyroscopes is rotating. Seen from this coordinate system,
it seems impossible to explain this motion from the properties of the masses.
Thus, several ideas concerning Mach’s principle is put to a serious test.

There have been some objections to the Godel universe that might be
used to weaken its position as a counter-argument to some formulations of
Mach’s principle. One of them is that it is open. As the universe is open
the possibility of something further out than observed, or at infinity, may be
interfering is present. This is somewhat similar to the Minkowski solution of
demanding the view that there has to be some big masses at infinity to explain
the phenomena in that universe. However, there seems to be no extra reason
for wanting to introduce such infinity condition in the Gédel universe than
as an ad-hook solution to the Machian problem. In the Minkowski universe,
we had the argument that the observed Minkowski-like universe has masses
far away. In addition as briefly mentioned in the introduction there are
some theories regarding a solution needing to have a certain matter content
that can be used for justifying introducing extra-masses in the Minkowski
universe, | have not seen any similar arguments for the GGodel case.

Another objection to the Godel argument against Mach’s principle is
that the Gddel universe is unphysical. This is due to it having CTLs. It
seem however that whether CTLs should be allowed in physically significant
models is still a matter of taste, and that there are still being done some
research on that field. However, we shall see that there has been found a
model that both is closed and has no CTLs, but still poses the same problems
to Mach’s principle as the Gddel universe. Thus, it seems like one should be
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searching for a solution that covers that universe as well.

As a side note: While working on this thesis I examined the possibility of
finding a connection between Schmid’s result and the Gédel universe through
a certain parameterized family connecting the FRW and Gdédel universe [29).
I ended this pursuit as I found that this approach probably break down due
to the exponential dependency on spatial coordinates of the Gddel metric.
This makes even a small deviation from the FRW-case impossible to interpret
as a linear perturbation unperturbed at infinity.

4.2.2 Ozsvath and Schiicking

In 1962 Ozsvath and Schiicking presented a metric with some similar prop-
erties as the Godel metric, but being closed and without CTLs [39]. More
recently Ozsvath did some more examinations on it, and at the same time
presented the metric in a slightly more compact form than in the original pa-
per [38]. However, this last metric is with respect to differential forms, and
thus is more difficult to interpret than the original one that is with respect to
standard coordinate differences. I will thus here present the metric as in the
original to keep the mathematics somewhat simple, even though this form
should be considered slightly outdated:

ds® = dt* + R*k*aeldz’dt + e?vabeé’-dxidxj (4.16)

Here ef and ,, were given by their matrix representations:

—sina® sinazlcosz® 0
el = cosz® sinzlsina® 0 (4.17)
0 cos xt 1
R —(1 — kcosat) ksin ot 0
Yoo = (=) ksin ot —(1 4+ kcos at) 0 (4.18)
2 0 0 —(1+ 2k?)

Here a, R and k are constants that determine the solution, and have the
following constraints. R > 0, [k| < 1/2 and o = 2, /=5
that this metric describes a dust-filled universe with cosmological constant
where the motion of the dust is given by it having constant ¢ coordinates.
Thus, the coordinate system is commoving with the dust. The cosmological

constant A and density p are related to R and k by:

It turns out

1
A= ) (4.19)
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kp 2
— =1—-4k 4.20

It turns out that in this system the inertial frames defined by gyroscopes
also have a certain angular velocity w with respect to the matter motion
given by:

ak?
w= Vi (4.21)

As the metric is quite complicated, there is not any obvious global in-
terpretation of this system. I estimate trying to find such an interpretation
would consume more time than I have available, and still be of little or no use
due to the complexity of the problem. If someone would like to pursue this
matter further however, I believe a good starting point would be an article
from 1969 by Ozsvath and Schiicking. I have not gotten hold of this article
myself, but it is referred to as holding more details about the system in [38|.

Anyway, the main importance of this metric is that it serves as an ex-
ample of a spatially closed universe where the inertial frames are rotating
with respect to the (local) matter flow. This universe also is not prone to
the objections given for the Gddel universe, so other approaches need to be
considered if one is to try to save certain interpretations of Mach’s principle
inside the general framework of the relativity theory.

4.2.3 Gravitational waves solution

It seems to me like the most common opinion is that the Ozsvath-Schiicking
universe truly is an example that general relativity does admit solutions that
is incompatible with Mach’s principle. However, there are some paths that
might turn this around if studied more closely. I will cover two of them here.
The first is one taking into account gravitational waves. The other is a brief
sketch of an idea of my own that I strangely enough have not found anyone
mention in the literature.

The first idea is that somehow matter represented by the standard energy-
momentum tensor isn’t the only quantity that has to be taken into account
when discussing Machian ideas. Another candidate is that of gravitational
waves. [ will illustrate this path by a summary of the treatment of King in

27].

The main idea of King is to introduce an average background metric gl(f)

that is spatially homogenous and isotropic. It is worth noting that this back-
ground metric is chosen so that it does not need to fulfil the field equations.
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Thus other possibilities than the FRW-backgrounds are still present. In this
background metric there is then certain Killing-vector fields & that repre-
sent rotational symmetry. He further introduces a set of coordinates on this
background metric that makes each hypersurface of homogeneity labelled by
a time coordinate and the metric being diagonal with ggg = —1

He introduces the following notation representing a kind of average of a
scalar field:

1
< A>= —/ AdV (4.22)
Vv

where the first V' represents the total volume of the hypersurface at a given
time, the second V represents an integral over this volume, and dV is a
volume element on the surface. The total volume makes sense as the universe
is assumed to be spatially closed with finite volume.

"Ordinary" angular momentum of a stress-energy field 7"” may then be
defined as: A A
L,(t) = / TOEAV = —V < Tpél > (4.23)
1%

Here the integration is taken over a hypersurface of homogeneity in the back-
ground metric. We also may make use of the assumption that the universe is
spatially closed, so that we have a finite volume to integrate over. The last
identity takes advantage of the form of the chosen coordinate system.

His main result is that he finds a tensor that may represent gravitational
waves T and where he can h
0i prove that

< (13" + i e >= 0. (4.24)
Here TéiM) is the ordinary energy-momentum tensor of matter.

To understand the definition of TO(Z-G) we first have to introduce h,, =
I — gfjf). Then we expand the Einstein tensor of the real metric G, in a

power series in h,,, that is

Gu=GE+G0)+G2+- - (4.25)

iz

where Gfg) is the Einstein tensor of the background metric, that must co-
incide with the zero-order part of the real metric. This requirement on the
background metric was not explicitly mentioned by King, but it is possible
that it follows from the other restrictions he sets on the background metric
that I will come to later.

Now the tensor T‘ES) is defined by
1

TG —
e 8T

GO +G3 +-) (4.26)
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Here, and in the rest of the section we assume the gravitational constant to
be 1. How this might be seen upon as a kind of energy-momentum tensor for
gravitational waves may be seen from the following form of Einstein’s field
equation:

GO =8m(TH" + T — T (4.27)
Here Tigf) is the energy momentum tensor that would have been required
for the background metric to satisfy the ordinary form of Einstein’s field
equations, that is T;Ef) = Gg)/&r. Thus we see that T;Sf) plays a similar
role as the ordinary energy momentum tensor in this formulation of the field
equations. King states that this form of the field equation is called the field
theory approach to gravity, and that it usually had been used in the context

of a Minkowski background.

Now, the issue of an "average metric" has to be addressed. Near the
beginning of his treatment King points out that finding a good such average
is an unsolved problem. He avoids this problem by only requiring a few
conditions on the background, not determining it completely. He then argues
that there has to exist some backgrounds that satisfy this by giving a rough
outline for constructing such. The conditions are that the background and
real metric must have the following relations to each other (formulas given
by components in the given coordinate system):

e Measure the same proper time on average < goo — gég) >=10

e Measure the same spatial distances on average < gf — g,gB)k >=10

e Have no relative translation or rotation < (go; — g(gf))fi >=0

From these relations, and the observation that in the given coordinate
system TZ = 0 King claimed to be able to derive 4.24 for closed universes.
He refers to his doctoral thesis for the full proof, which I have not found
important enough to try to obtain.

This result seems neat. It removes the problem of the matter rotating with
respect to the gyroscopes in the Ozsvath-Schiicking universe by taking into
account a rotation of gravitational waves that goes in the opposite direction
cancelling the effect of the matter as seen from the inertial frames. This
serves as an explanation for the rotation of the inertial axes with respect to
the pure matter-field. However, I am not able to feel completely convinced
by this argumentation. The definition of the energy-momentum tensor for
the gravitational waves seems a kind of ad-hock. It is hard to find any
good physical interpretation for this tensor. It serves as a source term in
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an Einstein-like field equation. However, the left hand-side of this equation
is not the same geometrical term as in Einstein’s field equations, and hence
the physical meaning of the right hand-side is not a perfect analogy to the
ordinary energy-momentum with its usual physical interpretations.

I would like to focus on what makes this result different from simply
introducing any arbitrary tensor field with the property that its derived an-
gular momentum cancels that of the ordinary angular momentum. It must
be so that a certain set of fields used in connection with work on the general
relativity theory turns out to be a subset of those fields that has the wanted
property. The existence of this overlap might seem to be too good to be a
coincidence. Thus, it may work as a strong argument for the idea that it is
the field theory approach to gravity that is the most natural framework for
formulating a version of Mach’s principle that may hold.

However, the physical interpretation of this is still not clear. It is hard
to say whether this really is a physical result, or simply a well hidden math-
ematical consequence of the form of the field equation 4.27. The comments
on the reference I have used also sow doubt about the physical content of
this approach, and I have not found any further work on this. Nevertheless,
it still stands as an example of a way to approach the Machian problem of
the rotating universes.

4.2.4 Spinning particles solution

The other approach I will only present briefly is the interpretation of spin-
ning particles. As mentioned in the introduction, plain general relativity is
working with non-spinning particles. If one introduces spinning particles,
one has to use the Einstein-Cartan theory. However, this begs the question
- with respect to what is the particles non-spinning? I have been unable
to find any sources that address this question. I assume finding such would
require diving into more details of the Einstein-Cartan theory, and this was
outside the scope of this thesis. I will still give a quite simplified thought
experiment involving rotating particles.

Assume that dust particles in general relativity have to be rotationally
at rest in their inertial frame. This does not necessarily contradict a matter
flow that is not in rotational rest in the inertial frames. In a great scale,
we may regard each grain of dust as a point particle, and thus should the
rotational state of these would appear as spin, and not matter in rotation
in this perspective. This assumption may thus be regarded as a possible
alternative of the correct spin-free particle. Another alternative might be
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that the rotational state of the dust particles has to follow the general matter-
current in the region, but I have found no sources that explicitly favour this
interpretation.

Now regard the Godel universe in its standard coordinate system. Here all
the dust particles are at rest with respect to the coordinates, but the inertial
systems are rotating. This means that at every point, even though the matter
current is zero, there are particles rotating with respect to that coordinate
frame. If we now analyze the gravitomagnetic field in this coordinate frame,
we get a situation analogue to the situation inside a magnetized object. There
are many small spins that by being oriented the same way together form a
considerable magnetic field. Thus as we have several point-masses rotating
around the same axis in our coordinate frame, we can expect to experience
a significant gravitomagnetic field. As the masses are at rest in our frame,
this field will not affect the movement of these, but it is clear that it may
explain the rotation of the inertial frames!

To determine if the expected gravitomagnetic effect required to account
for the rotation of the inertial frames in the Gédel universe actually coincides
with that generated by particles rotationally at rest in this is however not
straight forward. The approach in 2 may not be used, as obviously neither
the Godel nor the Ozsvat-Schiicking universe is well approximated as a linear
perturbation of the Minkowski space. In addition, an approximate solution
would not be expected to arrive at the possible identity in this exact solution.

Further study of this approach should probably be done with the Einstein-
Cartan framework in mind. A good starting point for this may be an article
by Smalley [55|. Here Smalley presents some work on the Gddel universe
within this extended theory.
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Chapter 5

Concluding remarks

I have presented several results to some detail in the previous chapters. It
is now time to take a few steps back and look at the big picture. We see
that through the past hundred years, more and more accurate calculations
have been done with regard to systems that could shed light upon the status
of Mach’s principle in the general theory of relativity. We saw that the
rotating shell model confirmed frame-dragging effects to progressively higher
precision inside the theoretical framework of general relativity. Still, in order
to observe this effect we had to go to the exterior solutions of rotating bodies.
Only very recently was this effect confirmed observationally to some extent,
by the gravity probe B experiment.

At cosmological scales, it is striking that there are relatively simple con-
nections between the rotational state of inertial frames and that of the content
of the universe in two huge classes of universe models. For closed universes,
it enters through non-rotation with respect to matter and a form for gravita-
tional waves. For linearly perturbed FRW-universes, the connection is that
of a weighted average. Both of these owe to the concept of frame dragging
as described earlier for simpler systems. Historically the closed universe so-
lution has been the favoured in regard to Mach’s principle. The recent result
that FRW universes also have very Machian qualities might however be used
as an argument for shifting that balance. While there are little indications
that the universe is closed, its FRW-like nature is mostly uncontroversial.

We also have seen a couple of examples of universes that might be consid-
ered non-Machian in a certain way. Both of these may be solved by restricting
the validity of Mach’s principle to closed universes, and taking into account
gravitational wave effects. However, neither of these is very "FRW-like".
This means that asserting that universes should be "FRW-like" would ex-
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clude these as well. As our universe seems to be "FRW-like", this assumption
seems to be more practical than the assumption that it is closed. This do
however rise a host of new questions: Exactly how may one define "FRW-
like"? What properties must the universe have if it is rotational properties
are defined exactly as a kind of weighted average, and not only through lin-
ear perturbations? Is it possible to find a simpler and more precisely defined
principle than Mach’s principle that would clearly disallow universes of du-
bious Machian nature? All of these questions seem like possible avenues for
further work.

And even if it should turn out that our universe doesn’t obey Mach’s
principle perfectly it seem pretty clear that it may still serve a purpose.
It shares one important property with the absolute space it is said to be in
direct opposition to: It may be a useful tool. With the aid of the conceptually
simple and philosophically appealing principle we may quickly predict and
get a kind of intuitive feeling for some quite complicated systems in our
universe. This may range from frame dragging and light-shifting effects of
rotating black holes, to appreciation of the close connection between our
inertial frames and that of the heavenly bodies far away.



Appendix A

Source code for galaxy model

from scitools.all import *

# Initialising global parameters
G=4.786e-17 #Newton’s gravitational constant/c~2 in kpc/solar mass
v0=2./3000 #dimensionless

A=1.e10 #solar masses/kpc

Z=0.1 #kpc

R=20 #kpc

Rmin=0 #kpc, minimum radius to integrate over.

constR0=10  #kpc, the value for RO to use when examining stability

Nmax=4000000 #the maximum tested number of simulations
Nmin=1000000 #the least number of simulations before plotting results

N=3000000 #the number of random points for each Monte Carlo simulation
M=1000 #the number of points in the plots
volume=2%7Z*2*pi*R**2 #The volume of the galaxy in kpc~3

# define function for our integrand
def integrand(RO, r, z, phi)
returns r times the variable contribution to the gravitomagnetic field at
the point (RO, 0, 0) made by the matter at the point with
cylindrical coordinates (r, z, phi). This coinsides with the integrand
in our integral due to the r d\phi factor in cylindrical coordinates.
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Due to optimizing reasons 4xG*vOx*(A/(4*pi*Z)) should be multiplied to
this result after calling this function.
The dimension of the return value is distance™-2

return (r-cos(phi)*R0)/((sqrt (r**2-2*%r*R0O*cos(phi)+RO**2+zx*2)*%x3))

first compare the result for the gravitomagnetic field for
two different ways of handling the distribution properties

for cylindrical coordinates, with a given RO
nun

#Draw random numbers
Rbase=random.uniform(Rmin, R**2, size=Nmax)
z=random.uniform(-Z, Z, size=Nmax)
phi=random.uniform(0, 2*pi, size=Nmax)

#Calculate the gravitomagnetic fields

#weighted for uniform distribution of radial coordinates
ri=Rbase/R

BUniform=4x*G*v0* (A/ (4*pi*Z))*integrand(constRO, rl, z, phi)
#for even distribution of points in the cylinder

r2=sqrt (Rbase)

BEvenDisp=4*GxvO0* (A/ (4*pixZ))*integrand(constRO, r2, z, phi)/r2

# Performing the integral-summation and plotting.
# The integral is the mean of the contribution per volume times the volume
# For uniform distribution, remember that we have weighted values
Bmean=zeros (Nmax)
Bsum=0.
Rsum=0.
for i in range(Nmax):
Bsum+=BUniform[i]
Rsum+=r1[i]
Bmean[i]=Bsum/Rsum

points= range(Nmin, Nmax, (Nmax-Nmin)/M)

plot(points, Bmean[points]*volume)
legend ("Uniform distribution")
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#for the even distribution no special consideration needs to be taken
hold(’on’)
Bmean=zeros (Nmax)
Bsum=0
for i in range (Nmax):
Bsum+=BEvenDisp[i]
Bmean [i]=Bsum/ (i+1)

plot(points,Bmean[points]*volume)
legend("Even distribution")
title("Monte Carlo convergence')
xlabel ("Number of random points")
ylabel("Bg-field/c in kpc~-1")
hardcopy("Galaxyl.eps")
hold(’off’)

dummy=raw_input ("please press enter")

Drawing the gravitomagnetic field as function of distance from
the galaxy core. Using the uniform distribution method as I believe
it to be slightly faster.

#prepearing for going through the points from the centre
ROs=linspace(Rmin, R, M)

Bfield=zeros(M)

i=0

for RO in ROs:
#get new random coordinates
r=random.uniform(Rmin, R, size=N)
z=random.uniform(-Z, Z, size=N)
phi=random.uniform(0, 2*pi, size=N)

#calculating the raw data for the Bfield at distance RO

#I wait with multiplying in constants in order to speed up the program
Bcore=integrand(RO, r, z, phi)

Bfield[i]l=Bcore.sum()/r.sum()

i+=1
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#multiplying in the constants to the raw data
Bfield*=4*G*xvO* (A/ (4*pi*Z))*volume

#plot the gravitomagnetic field

plot (ROs, Bfield, \
title="Gravitomagnetic field in a galaxy", \
xlabel="Distance from core in kpc", \
ylabel="Bg-field/c in kpc~-1", \
axis=[0, R, -4e-10, 2e-9], \
hardcopy="Galaxy2.eps")

dummy=raw_input ("please press enter")

#plot the fraction of the acceleration that is given by gravitomagnetism
#first without axis restrictions to get the extremes
plot(ROs, Bfield*ROs/v0, \
title="Part of total acceleration from gravitomagnetism", \
xlabel="Distance from core in kpc", \
ylabel="Gravitomagnetic effect/" + \
"What is required to explain the motion", \
hardcopy="Galaxy3.eps")

dummy=raw_input ("please press enter")

#then focus on the part where there are most measurements
plot(ROs, Bfield*ROs/v0, \
title="Part of total acceleration from gravitomagnetism", \
xlabel="Distance from core in kpc", \
ylabel="Gravitomagnetic effect/" + \
"What is required to explain the motion", \
axis=[0, R, -be-6, 1.5e-5], \
hardcopy="Galaxy4.eps")
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