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Mathematical Notation

Vectors are written as underlined lower-case characters, for instance .

Matrices are written as upper-case characters for instance .

A vector with a subscript as  means that the vector is defined in the coordinate 
system given the subscript (a).

A Direction Cosine Matrix (DCM) which transforms a vector from the coordinate 
system a to the coordinate system named b, is given ‘a’ as subscript and ‘b’ as 
superscript, . 

The rotation of the coordinate system a with respect to the coordinate system b 
expressed in the coordinate system b is denoted . 

The skew-symmetric equivalent of the rotation vector is denoted written as upper-case 
omega . 

The norm of a vector is written as  and is defined by 

The derivative of a vector or scalar with respect to time is written with as  and 
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1   Introduction

1.1 Position Acquisition Systems

The main goal of the project which this thesis is a part of, is to develop a system 
that can to track hand movements within a restricted area. The last few years has 
seen the development of several different relatively cheap systems with the ability 
to track position, velocity and heading of a device. These systems are usually 
based on ultrasound, electromagnetism or cameras with image recognition 
capabilities. The camera based systems can only function if there is a clear line of 
sight to all of the cameras. Ultrasonic systems also need line of sight between 
receiver and transmitter in order to achieve the wanted accuracy. The line-of-
sight problem can to some extent be solved by integrating inertial sensor 
components into the system. 

The inertial system can be used to improve the performance of the total system, and as 
an alternative in the ‘out-of-sight’ case. The data from the primary system then 
provides the initial position and velocity needed to integrate the acceleration data 
correctly.

The main problems with inertial systems are the high cost of the high accuracy systems 
and the low accuracy of the low-cost systems. The emerging micromachined inertial 
components, gyros and accelerometers, makes it reasonable to consider whether these 
components can be used in an inertial tracking system. Micromachined components of 
today still have a quite poor performance compared with conventional mechanical and 
optical components, but the accuracy is increasing and they are predicted to replace 
many of the systems using conventional mechanical components in the future (Barbour 
and Schmidt, 1998).

The main advantages of mass produced Micro Electro-Mechanical Devices (MEMS) 
are their relatively low cost and small size. Using low-cost MEMS devices in an 
Inertial Measurement Unit (IMU) would make the prize of the unit an order of 
magnitude lower than the systems that are considered low-cost today.

The sensor errors in an IMU can be modelled mathematically to a certain extent 
(Titterton and Weston, 1997) , and hence be compensated for if the errors are 
repeatable. One way to do this is to run each sensor trough a series of laboratory tests, 
to estimate the input-output characteristics of each sensor. This method may be 
complicated and time-consuming, but may increase the performance of the IMU 
significantly. The experimental tests may also provide more detailed information than 
the unit datasheets, which often are given for a wide temperature range and have 
conservative estimates of the errors.

The challenge is to develop experimental setups that can be used to test and 
characterize accelerometers. The experiments described in this thesis concentrates 
mainly on characterization of linear accelerometers, and characterization of 
micromachined gyros is left for later. The goal of the experiments is to obtain models 
of low-cost accelerometers. How much can be learned from the experiments? What 
errors are repeatable and can thus be compensated for? What errors have to be 
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modelled as random variables? Are the parameters constant over longer periods of 
time?

1.2 Inertial Navigation

The fundamental principle of inertial navigation is to measure the applied 
accelerations and integrate them twice to obtain the velocity and position, 

. The accelerations are measured with an Inertial Measurement Unit 
(IMU). In a strap-down solution, see section 2.3.2, the IMU measures the linear 
accelerations along three orthogonal axes and the rotations about the same axes. 
The measured accelerations then have to be transformed to a chosen reference 
frame to do the integration. 

Inertial navigation systems are used in fields like aviation, space travel, submarines, 
long range rockets and other systems that need to keep track of heading and position. 
These systems are usually more accurate and more expensive than the systems 
considered in this thesis.

Data from inertial navigation systems are often combined with data from other sources 
in an estimation algorithm, for instance a Kalman filter. Data from a global positioning 
system (GPS) is a common solution, as described by Farrel and Barth (1998) and Shin 
(2001). In the application considered in this thesis the data from the inertial system is 
combined with data from a local positioning system (LPS) as described in the next 
section.

An inertial system is an unstable system by nature because of the double integration 
needed to get the position from the measured acceleration. A small offset, often called 
bias, in the measured acceleration will be integrated twice and hence give error which 
is proportional to t2. An offset in one of the gyros could in worst case give an error in 
the estimated position proportional to t4 (Titterton and Weston, 1997). This means that 
the system can stay within a specified accuracy only for a limited period of time.

The theoretical background developed for global navigation applications given for 
instance by Titterton and Weston (1997) will be used in this thesis. The question is how 
the navigation equations described in the background literature best can implemented 
for this kind of system, a local coordinate system fixed relative to the earth. 

The scope is to choose a reference frame suitable for the application, solve the 
navigation equations and implement a discrete-time numerical solution in MATLAB. 
The state of the system does not have to be known in real time, which means that the 
data processing can start after the system has stopped logging the sensor outputs. The 
developed algorithms will then be used to do simulations using accelerometer models 
based on results from the conducted experiments. How do accelerometer errors 
influence the performance of an inertial navigation system? Can the performance be 
improved by extensive testing and modelling of each individual component?

If the development of micromachined inertial parts follows the development described 
by Barbour and Schmidt (1998), what performance can be achieved with future 
components? This thesis will focus on these questions.

a t( ) r·· t( )=
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1.3 Thesis Outline

Several different reference frames will be described, and one of them will be chosen 
for the application. The navigation equations will be listed and solved for the chosen 
reference frame, and some possible numerical implementations of the navigation 
equations will be outlined. 

Two different experimental setups will be tested, and used to characterize the low-cost 
ADXL105 accelerometer. One of the setups will measure the static specific force due 
to gravity to characterize the accelerometers, this procedure is called a multi-position 
tumble test. The second experimental setup will use dynamic accelerations in one 
direction and a capacitive position sensor to calculate the applied acceleration. 

The capacitive position sensor will also be used to do simulations of a one-dimensional 
local positioning system (LPS) consisting of an inertial system and a primary system, 
by using the position data to simulate a primary system with different specifications. 
The accelerometer output and the measurement updates from the primary system will 
be combined using a linear Kalman filter. These simulations which will be based on 
real accelerometer outputs, will also be used to model the variations in the 
accelerometer parameters as random processes.

A virtual environment will be constructed, using a numerical implementation of the 
navigation equations solved in chapter two. The accelerations and rotations sensed by 
an inertial measurement moving in a given path in a local reference frame will be 
calculated, and accelerometer error models will be used to simulate the output from a 
model of an IMU. The data will then be run through the navigation algorithms to 
measure the performance of the system.

Chapter two contains background theory needed to perform the experiments and 
simulations described in the thesis. Some specifications on the local positioning system 
are listed, and the navigation equations are derived and solved for a reference frame 
fixed relative to the earth. The next sections are theory on accelerometers and 
accelerometer characterization, and the last part of the chapter contains theoretical 
background on estimation and smoothing.

Chapter three describes the experiments conducted in order to characterize 
accelerometers and their errors. It contains descriptions of static and dynamic 
experiments, and of the performed simulations.

Chapter four contains a summary of the results obtained from the conducted 
experiments and simulations.

Chapter five discusses the results.

Chapter six contains the conclusion of the thesis, and points out possible future work.
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2   Background and Theory

This chapter contains theory and background knowledge needed to conduct and 
understand the simulations and experiments described in this thesis. 

The first section describes the aim of the project, and contains some information about 
possible technical solutions. A short description of several available local positioning 
systems is given to show possible technical solutions and for completion, but this thesis 
concentrates on inertial systems.

The second part is dedicated to inertial tracking and navigation. A reference frame will 
be chosen and the inertial navigation equations solved for that frame. The solution will 
in the next chapter be implemented numerically, and used in simulations. 

The following section describes some algorithms from the field of estimation which 
also will be implemented numerically in the next chapter. Optimal estimation using a 
Kalman filter is described, and also smoothing and Kalman smoothing. 

2.1  The Local Positioning System (LPS)

The local positioning system described in this thesis is a part of a project where a 
inertial navigation system is to be designed and implemented as a part of an LPS. The 
system should be able to track the absolute position, velocity and heading of a hand-
held device with relatively good accuracy.

The unit for which position and heading is to be kept track of is going to be hand-held. 
This makes several simplifications and generalizations possible. These are listed in 
section 2.1.1. The position and heading does not have to be known in real time, the 
trajectory and heading can be calculated after the run experiment, which makes further 
simplifications possible.

Several different technologies are used in local positioning systems, and the technical 
solutions for this system have not yet been chosen. It is possible to use a single system 
as a stand-alone solution, or more subsystems can be combined in a system, 
interpolating the results using a Kalman filter as described in section 2.5. For instance 
an ultrasonic system can be combined with an inertial system, which would be similar 
to combining GPS and inertial systems in global navigation applications as described 
by Farrel and Barth (1998) or Shin (2001). The theoretical background for this kind of 
systems are well developed and described in the literature.

Ultrasonic, camera-based systems and magnetic heading systems are described briefly 
in section 2.1.2. Models of these systems are described in section 2.1.5, and will be 
used in simulations later. 

2.1.1   Possible Assumptions and Simplifications on the System

Given the nature of the system, several simplifications can be made. These are listed 
below.
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Assumptions for a hand-held system

• The measured acceleration can be limited to [-2 g, 2 g], and the rotation of the unit 
can be limited to [-180 o/s,180 o/s]. The tracking unit cannot strike against any 
surfaces, which most likely would cause shocks where the acceleration will exceed 
these limits

• The hand will damp most vibrations. Vibration-induced errors can be ignored, and 
the vibration sensitivity of the inertial sensors does not have to be measured and 
modelled.

• The bandwidth of a wrist is normally below 12Hz. Components with higher 
frequencies in the signal may be filtered out.

Assumptions for a LPS without real-time processing

• All movement will be constricted to a local area. The longitude, latitude and altitude 
can be considered fixed and known in the system. Thus the Coriolis acceleration can 
be calculated with approximately the same geographical data, given by the system 
operator.

• The local gravity can be approximated as constant over the whole area

• The calculations do not have to be done real time, meaning that unlimited 
calculation power is available. All algorithms can be implemented at a high order.

• Kalman smoothing can be used to calculate the track and heading. This is described 
in the section ‘Estimation and Smoothing’.

2.1.2   Some primary Systems

Ultrasonic Systems

These system use the travelling time of ultrasound between a transmitter and a receiver 
to calculate the distance between them. This process is called trilateration. The position 
with more degrees of freedom can by found by interpolating the data from several 
receivers placed at different positions in the area. The phase difference between the 
signals can be used to calculate the position. 

Vision-based Systems

Camera based systems usually use image recognition systems, and calculate the 
distance to an object with a known size by measuring its image size. At the other end of 
the performance and price range are laser based systems, which can measure distance 
very accurately.

Magnetic Heading Systems

Systems based on the direction of a magnetic field functions basically like a compass. 
The direction is obtained either from the static magnetic field of the earth, or a 
generated stronger magnetic field, either static or dynamic. The main disadvantage 
with these systems is that the magnetic fields can be disturbed and changed by strong 
currents or metal objects nearby.



Background and Theory 6

2.1.3   Out-of-sight Problems

Both ultrasonic and vision-based systems described in the previous sections need to 
have a clear line of sight between the transmitter and the receiver. If this line is blocked 
by the operator or other objects, information is lost, and the system will not work. 

This puts great demands on how the system should be built, and restricts the operator 
movement. A secondary system is probably needed to get the heading in out-of -sight 
periods.

If the number of points which position has to be tracked is increased from one point to 
three as described in the next subsection, the line-of-sight problems will get worse. If 
two of the points are situated in the same plane as one of the cameras or receivers, they 
might obstruct each others line-of-sight.

2.1.4   Getting Heading Information with an Ultrasonic or Vision-based System

As long as there is a clear line of sight to the cameras or the ultrasonic receivers, the 
position of the system can be obtained from the position of one receiver. In order to 
calculate the heading of the system with six degrees of freedom, the position of three 
separate points has to be known. The heading can then be extracted as shown in figure 
2.1. The two vectors v1 and v2 define the heading of the system. With two points, the 
number of degrees of freedom is limited to five, but the calculations are simplified as 
only the direction of one single vector has to be kept track of.

In one dimension the heading error can crudely be approximated to be

(2.1)

where σ is the standard deviation in the measurement of one points position, and L is 
the distance between the point. If σ equals 1 cm and the distance between the points are 
10 cm, the error is given by atan(0.1)=11.3 degrees which is a relatively big error. 
Getting heading information with this method puts huge demands on the accuracy of 
the positioning system.

Figure 2.1: Heading information can be obtained by getting the position of three points.

ε 2σ
L

------ 
 atan=
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2.1.5   Model of Ultrasonic and Vision-systems

The primary position acquisition system can be modelled by the equation z=x+w, 
where z is the measured position of the device, x is the real position and w is the 
measurement noise. The process noise is estimated to be zero-mean and Gaussian for 
simplicity, and can be simulated with Monte Carlo analysis. In a ultrasonic system, the 
variance of the measurement noise may vary as a function of the distance between the 
receiver and the transmitter, but is estimated to be constant.

A Direction Cosine Matrix (DCM), described in section 2.2.3, can be made up from the 
vectors v1,v2 and the cross product of the two vectors, v3, as D=[v1,v2,v3] if the three 
vectors are orthonormal. The vectors will most likely neither be orthogonal nor normal 
due to the measurement errors, and will have to be orthogonalized and normalized 
through some kind of extrapolation algorithm. 

The estimated DCM can be written in terms of the true DCM and an error term as 
follows:

(2.2)

For small misalignment angles, the error matrix B can be approximated as a function of 
an identity matrix and a skew-symmetric matrix (Titterton and Weston, 1997):

(2.3)

(2.4)

The elements  and  corresponds to attitude errors with respect to the vertical, or 
tilt errors, while  represents the heading error. In simulations these variables can be 
modelled as zero-mean Gaussian random variables with variance given as  in 
equation (2.1). 

2.2 Inertial Tracking and Navigation

2.2.1   Main Principles and Applications

Inertial tracking and navigation is based on the concept that the acceleration equals the 

position twice differentiated, . In a Newtonian coordinate system, the 

position of a vehicle can then be found by measuring the initial position, velocity and 
the applied acceleration, and integrate it with respect to time as

 (2.5)

C̃ BC=

B I Ψ–( )=

Ψ
0 δγ– δβ
δγ 0 δα–
δβ– δα 0

=
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δγ

ε
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By using gyroscopes which measure the applied rotation, the heading of the vehicle 
can also be calculated. This is necessary in strap-down solutions, described in section 
2.3.2 in order to transform the measured acceleration from the body frame to the local 
coordinate system, see section 2.2.3.

Inertial navigation has developed since Newton formulated the laws of mechanics and 
gravity in the seventeenth century, and made several advances in the 1950’s and 1960’s 
as better sensors were made.The discipline has later been further developed and is now 
used in a wide range of military and civilian applications like long-range rocket 
systems, submarines, on ships and in aviation. These are for the most part high 
performance applications, and use high cost components. As mentioned in the 
introduction, this thesis will focus on low-performance, low-cost components.

It is chosen to distinguish between the terms inertial navigation and inertial tracking. 
The main goal of inertial navigation is to find or estimate the current position of the 
vehicle, while inertial tracking is concerned with calculating the path and heading after 
the vehicle or unit has finished running, making the assumptions listed in section 2.1.1 
valid. Inertial systems is chosen as a common name for both methods in this thesis.

2.2.2   Choosing a Coordinate System

A set of coordinates has to be defined in order to be able to follow paths and positions 
in space. The choice of coordinate system should be based on the nature of the given 
application. A satellite revolving around the sun, may use a coordinate system with 
origo in the mass centre of the solar system, while one orbiting around the earth may 
use ECEF coordinates as described in section 2.2.7.

The selection of an appropriate coordinate representation is a matter of finding a 
system suitable for the given application.

The following subsections shortly describe some frames commonly used in inertial 
navigation. The different frames are described in several different ways with varying 
names in the references, and the frames described here are a combination of the frames 
given by Titterton and Weston (1997), Farrel and Barth (1998) and Vik (2000). More 
information on different coordinate frames can be found in most of the literature on 
inertial navigation.

2.2.3   Vector Transformations between rotating Coordinate Systems

The acceleration of a device with the position rl, moving with velocity vl and 
acceleration vl relative to a local frame or coordinate system denoted l, expressed in a 
global frame or coordinate system with the name g is given by Coriolis law (Williams, 
1996):

(2.6)

The term a in equation (2.6) is the acceleration and could be expressed in both the 
chosen global farm or the local frame, R0 is the position of the origo of the local 

a
t2

2

d
d R0 al 2ωgl vl ωgl+× ωgl rl×( )× ω· gl rl×+ + +=
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coordinate system and  is the rotation of the coordinate system 
expressed in the local coordinate system.

The term  is the centripental acceleration sensed by the vehicle due to 

the rotation of the system, while the term  is the experienced Coriolis 
acceleration. The last term on the right hand side is called the Euler term, and is due to 
angular accelerations. 

The cross-product between the rotation vector and a vector can for small rotations be 
expressed as the product between a matrix  and the vector v as  
(Titterton and Weston, 1997). The matrix Ωr is the skew-symmetric matrix of the 
rotation vector ωr=[p, q, r]T defined as

  (2.7)

Equation (2.6) can then be rewritten as

(2.8)

Where the matrix  here is defined as the skew-symmetric matrix formed by the 

vector .

The transformation of points and vectors between two coordinate systems is usually 
done in one of three different ways, Euler angles, direction-cosine matrices (DCM) or 
quaternions. Transformation with Euler angles is usually not chosen because of 
singularities which appear at some angles, described by Farrel and Barth (1998). 

As discussed by Titterton and Weston (1997), using quaternions for coordinate-
transformations may increase the numerical precision in the solution of the navigation 
equations, and the number of variables that have to be stored is four compared to nine 
with DCMs. On the other hand, matrices are easier to handle since the mathematical 
operations on matrices are built into most mathematical utilities as for instance 
MATLAB. The method with DCMs is chosen in this thesis for simplicity, and as 
mentioned by Titterton and Weston (1997), it is possible in practice to implement the 
algorithms with the same accuracy as with quaternions.

If the direction information is stored in a DCM, vectors are transformed from the body 

frame to chosen global frame like  where  is the DCM from the local to 
the global coordinate system. 

A DCM is defined by

ωgl pu qv rw+ +=

ωgl ωgl rl×( )×

2ωgl vl×

Ω ωr v× Ωrv=

Ωr

0 r– q
r 0 p–
q– p 0

=

ag t

2

d
d R0 al Ωglvl ΩglΩgl rl+ Ω

·
gl rl+ + +=

Ω
·

gl

ω· gl

ag Dl
gal= Dl
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(2.9)

where notation  here means that vector  is a unit vector of the local coordinate 
system. The orientation of the system is also needed, and is stored in the DCM. The 
heading of the three local axes expressed in global coordinates, ,  and , can be 

found by using the equations: ,  and 

. Note that  equals the first column vector in ,  the second and 

 the third.

It is shown by Titterton and Weston (1997) that for a small angular rotation  the 
DCM propagates in time as

(2.10)

where the matrix  is the skew-symmetric matrix formed by . This result is later 
used to calculate the DCM as a function of time.

2.2.4   Output from Accelerometers in a Gravity Field

Accelerometers that use a proof mass to measure acceleration can not separate between 
true acceleration and attraction due to gravity. The output of a complete IMU is a 
function of gravity and acceleration as

(2.11)

This output is called specific force. To simplify expressions, 
 is often used in calculations, where g is the local plumb-

bob-gravity vector measured by a pendulum at rest. g is in the direction that is normally 

said to be ‘down’, as shown in figure 2.4, while the vector  is the 

gravity field directed to the centre of the earth.

2.2.5   The Body Frame 

In strap-down systems, see section 2.3.2, the body frame is the local coordinate system 
and follow the axes of the IMU, as shown in figure 2.2. The body frame follows the 
movement of the tracked point or vehicle. The three acceleration sensors, measures the 
specific force  along the axes u, v and w as given in figure 2.2. The 
gyros measure the rotational velocities (p, q, r) about the same axes. These axes are 
often called the roll-, pitch-, and jaw-axis. 

Dl
g
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=
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x̂ ŷ ẑ
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Vectors in the body frame are given the subscript b.

As described in section 2.2.4, non-optical accelerometers measures what is called 
specific force, f, because they are unable to separate between acceleration and mass 
attraction due to gravity. The measurement equation in the body frame is then given by:

(2.12)

 is here the mass attraction due to gravity transformed to body frame 

coordinates, and  is the acceleration relative to an inertial reference frame. 

The rotation rates provided by the gyros are used to keep track of the heading of the 
axes, so that the acceleration measured in the local system can be from the local 
coordinates, (au,av,aw), to global coordinates. 

Figure 2.2: The Inertial Measurement Unit (IMU) as the body frame

Figure 2.3:  The global frame and the body frame

fb r··ib G rb( )–=

G rb( )

r··ib
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If the applied acceleration and rotation is measured in the same point in space, defined 
as origo in the body coordinate system,  such that equation (2.6) 

gives . The measured local acceleration has to be transformed to the 

chosen global frame with a DCM which changes equation (2.12) to

(2.13)

In practical implementations of an IMU, there will always be a distance between the 
different sensors in the IMU such that , and thus there will be errors due to size-
effects. If the position of the sensors within the IMU are known, the size-effects can be 
calculated and possibly compensated for. 

2.2.6   The Earth-centred non-rotating Frame

This frame is called the inertial frame by Titterton and Weston (1997). The inertial 
frame has its origo fixed at the centre of the earth, with its axes fixed with respect to 
fix-stars. This system can be approximated to an inertial frame for periods much 
shorter than a year, although the frame rotates with respect to inertial space with a 
period of one year as the earth revolves around the sun. Vectors in the inertial frame are 
given the subscript ‘i’ in this thesis.

The inertial frame is by definition non-rotational, so that equation (2.13) can be applied 
directly

(2.14)

One problem with this method is the difficulty in calculating the attraction due to mass 
attraction  (Farrel and Barth, 1998), see figure 2.4. The mass-attraction vector 
does only coincide with the plumb-bob gravity vector g(ri) at the poles. The plumb-bob 
gravity vector is the position a plumb-bob pendulum would point at a given position on 
the surface of the earth. A position expressed in inertial coordinates over a long time is 
not very useful, as the earth rotates around itself and around the sun, which could make 
a simple path on the surface of the earth very complicated in inertial coordinates.

A commonly used result often used in later derivations is velocity and acceleration 
relative to the surface of the earth expressed in inertial coordinates. Given equation 
(2.6) the velocity relative to a point on the earth expressed in the inertial frame is given 
by

(2.15)

Differentiating this equation with respect to time, and using equation (2.14) gives:

(2.16)
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which when using the relationship

  (2.17)

equation (2.16) can be written as

(2.18)

The inertial frame is not commonly used in navigation implementations (Farrel and 
Barth, 1998), but the results are useful in following derivations.

2.2.7   Fixed Earth-based Frames

These frames are all fixed with respect to the earth. That means that they are rotating 
with respect to inertial space with a rotational velocity of approximately

 (2.19)

Using equation (2.6) combined with equation (2.13) and assuming that  is constant, 
gives

(2.20)

Using equation (2.17) again gives the following navigation equation for earth-fixed 
frames.

(2.21)

.

Figure 2.4: The plumb-bob gravity vector, g, is the sum of the mass attraction and the 
centripental acceleration
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One of these frames is the Earth Centred Earth Fixed frame (ECEF) which has its origo 
at the centre of the earth, and the x-axis at the Greenwich meridian. The z-axis is 
directed along the rotational axis of the earth, and the y-axis completes an orthogonal 
set of axes.

The shape of the earth can be approximated by an ellipsoid with semimajor axis 
a=6378137m and semiminor axis b=6356752m rotated around its semiminor axis. 
Another earth based frame use the set of coordinates , called geodetic 
coordinates. λ is the angle between the ellipsoid normal and the equatorial plane, ϕ is 
longitude and h is the height above the sea level.

The third earth-fixed coordinate system or frame mentioned here is what is chosen to 
call the local geographical frame which is described in the next section.

2.2.8   The Local Geographical Frame

This frame is called the geodetic frame by Farrel and Barth (1998). In this thesis 
vectors and points in the geodetic frame are given the subscript ‘n’. This frame is also 
sometimes called the north-east-down-frame, the NED frame. 

This frame is defined at a fixed point on the surface of the earth. The axes point 
towards geographical north, east and along the local plumb-bob gravity vector g(r) as 
shown on figure 2.1. This may be the best choice of coordinate system for the 
application considered in this thesis, as it is an intuitive description of the space in 
which this application will be used.

The direction of true north, the direction and value of the local gravity vector, the 
altitude above sea level and the latitude of the origin has to be known parameters.

Development of heading in the geodetic frame

A local geographical frame with latitude L rotates with respect to inertial space as

Figure 2.1: The local geographical frame, or the geodetical frame

λ ϕ h, ,( )
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 where . This is the 
rotation of the earth expressed in the local frame as a component one component up, 
and one component north. The location of the origo does not move or rotate relative to 
the earth. The rotation of the body frame with respect to the geodetic frame equals the 
difference between the body frames rotation with respect to inertial space expressed in 
the body frame and the rotation of the geodetic frame with respect to the inertial frame 

expressed in body coordinates, , which together with equation 
(2.10) gives (Titterton and Weston, 1997) 

 (2.22)

This equation is the last of the two navigation equations. The first is given in equation 
(2.21).

Equation (2.22) can be solved numerically by for instance using a fourth order Runge 
Kutta algorithm. Following Bortz (1971) Titterton and Weston (1997) suggests an 
alternative algorithm where the solution is split into two parts. 

The solution to this equation is given in two parts, where the discrete solution of the 
first term is given by:

(2.23)

The notation Ck+1 means the matrix C at time t=t0+k*dt. The solution to the second 
term is given by

, (2.24)

where the rotation angle is defined by

 (2.25)

 because the rotation is fixed in inertial space. 

The solution of the first term is a bit more complex depending on the direction of the 
rotation of the body. If the rotation is fixed or approximately fixed in inertial space, the 
solution is very similar to equation (2.24), with A replaced by the expression for the 
matrix B. If this not is the case, rotation correction has to be implemented.
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If direction of the rotation vector is approximated to be constant in space during the 
update interval, the term can be approximated to be

 (2.26)

where σ is the rotation vector with direction and magnitude such that a rotation about 
the vector with the magnitude of the vector would rotate the frame at k to the frame at 
k+1. The complete solution of equation (2.22) is given by

(2.27)

where θ is defined as in equation (2.25). Bk can be implemented at a slower 
computation rate than Ck and Ak, but as described in section 2.1.1, the computation 
powers available makes this unnecessary. 

When not fixed in space, the rotation vector is given by the solution of

(2.28)

which shown by Titterton and Weston (1997) can be approximated by the calculations

(2.29)

Accelerometer resolution and integration

The gathered data from the IMU can now be gathered and integrated as:

(2.30)

where . The DCM at time k is denoted Ck. Using the results 

obtained in equation (2.27) the previous expression is now

(2.31)
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This can be implemented in for instance MATLAB and solved numerically. The 
Coriolis term can be solved by

(2.32)

(2.33)

The position can then be found by integrating the velocity,

(2.34)

These are all the basis equations needed to process the data from the IMU and calculate 
the wanted information. 

2.3 Implementations of an Inertial System

The main component in an inertial system is the Inertial Measurement Unit (IMU), 
which measures the applied acceleration, and in addition the applied rotation if a strap-
down solution is chosen. There are two different ways to implement an IMU. The first 
and oldest kind of systems are called platform systems. Technological development 
and ever increasing computational power has pushed the development towards strap-
down systems eliminating the complex mechanical structures of the platform system. 
A description of Platform-based Systems is given in the next section for completion, 
but the strap-down technology is chosen as a basis in this thesis.

2.3.1   Platform-based Systems

In a platform system, the whole system is mounted on a structure with gimbal rings. A 
gyro is used to keep the direction of three accelerometers fixed in inertial space. The 
measured acceleration can then be measured directly to find the velocity and the 
position of the platform. This kind of systems requires expensive and complex 
mechanical structures with bearings, slip rings and torque motors.

An additional system is needed to keep track of the heading of the vehicle, while a 
strap-down system can keep track of both heading and position.

Some of the advantages of these systems are that they can self align by the use of gyro 
compassing, and that they tolerate high vehicle turning rates, greater than 1000 deg/s 
(Lawrence, 1998).
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The accuracy of platform systems can be made better than the accuracy of strap-down 
systems, and will also be the choice in the future when high accuracy is needed 
(Barbour and Schmidt, 1998). The systems used on nuclear submarines are reported to 
drift as low as one nautical mile in 24 hours (Titterton and Weston, 1997).

2.3.2   Strap-down Systems

The inertial system in a strap-down solution follows the movement of the vehicle. The 
IMU now has to measure the acceleration along three axes, and the rotation rates 
around the same axes. 

The IMU defines a local coordinate system with three axes, usually named (u,v,w). The 
measured acceleration vector has to be transformed to the chosen coordinate system in 
order to integrate the vector. This means that the heading of the IMU has to be stored, 
usually in a DCM or with quaternions, see section 2.2.3.

The strap-down system has the advantage that it can be constructed from relatively 
cheap and easily available MEMS devices. It is also smaller and have lower power 
consumption than platform systems. The need for more computational power is not 
usually a problem in applications without real-time-processing, because the collected 
data can be stored and processed after the experiment.

2.4 Accelerometer Characterization

The aim is to obtain models of the accelerometers, given the system specifications in 
section 2.1.1. The following subsection contains some different accelerometer models 
and a short explanation of the terms in the equations. 

In addition to obtaining values of the parameters in the model equations, one of the 
goals is to look at variations in the parameters, like run-to-run differences and long 
time variations. Any correlations between temperature and changes in accelerometer 
parameters are also important. If the changes are repeatable, they can be measured and 
compensated for, thus avoiding the need for any external temperature control system. 

2.4.1   Accelerometer Models

A common way to model the accelerometer output in acceleration units as function of 
the input acceleration or specific force is as follows

(2.35)

E is the accelerometer output, usually with units Volts.  is the input acceleration, or 
more correctly the input specific force defined by equation (2.11). The units of the 
input is g or m/s2.  is the scale factor of the accelerometer and has units Volt/g or 
Volt/(m/s2). The term  is called bias and is defined as accelerometer output not is 

correlated with input. The bias has units g or m/s2.  and  are higher order 

nonlinear parameters and have units V/(m/s2)2 and V/(m/s2)3. The coefficients  and 
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 are the sensitivities of the accelerometer for accelerations normal to the input axis. 

 is the sensitivity to accelerations along the principle axis, and  is the sensitivity 

to accelerations along the output axis. They both have units V/(m/s2)2. The input-, 
output- and principle-axis are defined as a right hand coordinate system as shown in 
figure 2.1. The directions of the principle- and the output- axis relative to the input axis 
are determined by the mechanical structure of the accelerometer.  is unmodelled 
errors and accelerometer noise and has units m/s2.  

The complete IEEE accelerometer model equation from the IEEE linear accelerometer 
testing standard (IEEE Std 1293-1999) is listed in appendix D. Several terms in this 
equation are often omitted in the modelling, and will thus bias the other terms. For 
instance Titterton and Weston (1997) use the model

(2.36)

where Sx is scale factor error, My and Mz are called cross-axis coupling factors which 
are named misalignment in the IEEE standard (IEEE Std 1293-1999). Bf are called 
vibro-pendulous error coefficient while nx is random bias.

The model may also be adapted to the accelerometer which is to be tested. For instance 
a capacitive open-loop micromachined capacitive accelerometer is said to have mainly 
nonlinearities of even order (IEEE Std 1293-1999). Thus K3 could be estimated to be 
zero. Knowledge about the accelerometer prior to testing could ease the modelling 
process.

In this thesis, a modified version of the IEEE model equation in appendix D is used. It 
was chosen to model the electric output as function of input acceleration, instead of 
estimated acceleration as a function of accelerometer input. To achieve this, the scale 
factor is multiplied with the coefficients inside the delimiters on the right hand side of 
equation (2.35). The new equation is then defined by   

(2.37)

Figure 2.1: The axes of an accelerometer
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where the new coefficients are defined by , , , 

, ,  and . The parameter O now has 
units Volts and is called the accelerometer offset. The scale factor has the same units, 
and is still called the scale factor. The rest of the coefficients changes units, but they are 
called the same as the corresponding coefficients in the original IEEE model equation. 
The complete modified equation with parameter names and units is also listed in 
appendix D. Only this model will be used in the rest of this thesis, and the mark on the 
symbols will not be used. The equation will be written as follows in the rest of the 
thesis.

 (2.38)

Other terms from the complete modified equation listed in appendix D may be added to 
the equation as well.

To model the accelerometer output directly in electrical units simplifies the estimation 
process, as the offset can be measured directly. The estimation of the scale factor is also 
eased in this was, as there is no need to use a nominal scale factor and a scale factor 
error as described in the IEEE standard (IEEE Std 1293-1999). 

2.4.2   Noise Modelling

The error term  in equation (2.38) should also be modelled in order to use the model 
of the accelerometer in a inertial system. As given in the IEEE accelerometer testing 
standard, having correct noise models in the guidance and navigation model leads to 
better performance for the calibration, alignment and guidance Kalman filters.

The characteristic noise from an accelerometer run trough a power spectral density 
analysis looks somewhat like the plot on figure 2.2.

The white noise given in the figure is the white process noise, and has by definition 
constant PSD over all frequencies and thus a 0 slope on the log-log plot. The 

Figure 2.2: Noise model of an accelerometer

O K1K0= K K1= K2' K1K2=

K3' K1K3= Kip' K1Kip= Kio' K1Kio= ε' K1ε=

E O Kai K2ai
2 K3ai

3 Kipaiap Kioaiao ε+ + + + + +=

ε



Background and Theory 21

quantification noise is due to discretization during measurement of the signal, and can 
be moved to the right by increasing the sampling frequency and removed by applying 
analog and digital filtering. The flicker noise and random walk is due to temperature or 
other environmental changes and long time changes in the instrument because of stress, 
aging and so on. 

Selected Noise Models

Several different Gauss-Markov processes useful for modelling errors are listed in the 
following subsections. The models are taken from Gelb (1974).

• Random constants are described by the differential equation 

(2.39)

• Random walk is characterised by 

(2.40)

where w is zero mean white Gaussian noise.

• Random Ramp. Signals that exhibit a time-growing behaviour can be approximated 
by a random ramp. A random ramp is characterized by the equations.

(2.41)

• First-order Gauss-Markov processes. A random quantity with the autocorrelation 
function

 (2.42)

is called a first-order Gauss-Markov process, and is often used to describe a band-
limited signal, whose spectral density is flat over a finite bandwidth (Gelb, 1974). The 
differential equation for the state variable is

(2.43)

• Periodic random quantities.Variables with periodic behaviour can have an 
autocorrelation function which looks like 

(2.44)

These systems are represented by differential equation system

(2.45)
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The spectral density of the white noise w is given by .

Empirical noise modelling

The method suggested by Gelb (1974), is to implement an ideal smoother, calculate the 
initial condition, and adjust the noise models in order to minimize the calculated 
residuals. 

Gelb (1974) suggests the calculated autocorrelation of the noise signal as an initial 
guess. Several different techniques are listed to obtain the autocorrelation of a sampled 
signal.

The IEEE document (IEEE Std 1293-1999) describes a method based on calculating 
the PSD of the acquired signal, and how to identify different noise models from the 
power spectrum. It also describes a second method using Allan variance.

The third method mentioned in the document is model fitting via the Kalman filter. 
Instead of minimizing the residuals, a method using the maximum likelihood function 
is briefly described.

Bias model

Bar-Shalom et al. (2001) operates with the following way to model the accelerometer 
bias. The accelerometer bias  is here modelled as the sum of two distinct Markov 
processes and  with exponential autocorrelations and with different time 
constants.

(2.46)

Which of these models which are chosen has to be considered later after experiments 
on real components and simulations. 

2.5 Estimation and Smoothing

2.5.1   State Space Models

The state of a continuous system is defined by Farrel and Barth (1998) as the smallest 
set of numbers at a known time t0 that together with knowledge of the input of the 
system input for t>=t0, is sufficient to determine the system response for all t>t0. If the 
state  is the state of the system, then X is referred to as the state-space of the 
system.

The system is expressed by a number of differential equations. A system described in 
state-space form is described in the time domain instead of the frequency plane. This is 
an advantage because a lot of statistical features can be added to the system.
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 A general linear system on state space form is given by

(2.47)

A general system which may not necessarily be linear on state space form is given by:

(2.48)

For instance the equation for the NED frame defined in the equations (2.21) and (2.22) 
described on this form is given by equation (2.49).

(2.49)

2.5.2   Estimation and Kalman Filters

Estimation is the process of getting the best possible estimate of the system state from 
the measurement data. If the process noise and measurement noise is Gaussian and the 
measurement is linear, the Kalman filter can be shown to be the optimal estimator 
(Gelb, 1974).

A linear continuous-discrete dynamic system can be described as equation (2.50), 
where x(t) is the state vector, u(t) is the system input and v(t) is the process noise. Hk is 
the measurement matrix at time k, while w is the measurement noise of the system.  
is the measurement update to the filter. The noise vectors are defined by their 

autocorrelations as shown in equation (2.50).  is the spectral density matrix of the 
process noise, and  is the covariance matrix of the measurement noise. 
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The Kalman filter solution of this dynamic system is given by equation (2.51).  is the 

estimated stated after a measurement update, while  is the predicted value of the 

state vector.  is the state covariance matrix after a measure update, while  is the 
predicted covariance matrix. 

(2.51)

The discrete form of equation (2.50) is given by the following system.

(2.52)

The matrix  is now the covariance matrix of the process noise. The rest of the 
correlation expressions are defined as in equation (2.50). The Kalman filter solution to 
the discrete state equation is given by

(2.53)

2.5.3   Linear Fixed Interval Smoothing

The Rauch-Tung-Striebel formulation of the optimal smoother will be used in this 
thesis. The backward filter for a time invariant system is given by (Gelb, 1974)
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The smoothed estimates of the state vector and the covariance matrix are given by  

and , the forward estimate obtained with the linear Kalman filter from equation 

(2.53) is given by 

2.5.4   Least Squares Estimation

Using linear least squares estimation (Gelb, 1974), the goal is to minimize the sum of 
the square of the deviations from the model of the process, or minimize

(2.55)

If the measurements have different standard deviations, the least squares estimation 
can be implemented with a weighting matrix or

(2.56)

where R is a symmetric positive definite weighting matrix. z is the vector of 
measurements, H is the system model matrix and x is the vector of inputs. If R is a 
diagonal matrix with the measurement standard deviation wj on the diagonal, the 
expression can be reformulated as 

(2.57)

In order to find the optimal estimation of the parameter vector k we use 

(2.58)

It can be shown (IEEE Std 1293-1999) that least squares estimation is a maximum 
likelihood estimator if the measurement errors have Gaussian probability distributions. 
These equations will be used later to estimate parameters from static multi-point 
tumble tests, see section 3.5.

As given in the IEEE report, the Fisher information matrix in the case of linear least 
squares estimation is given by the normal equations

(2.59)

or in the case with weighted measurement points:

(2.60)
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where the parameter vector is given by alpha. The covariance of the parameters is then 
given by this matrix inverted times the covariance of the measurement residuals The 
residuals are given by:

(2.61)

In the case of uniform measurement accuracy, wj=1.

(2.62)

or and the standard deviation of a parameter is given by

 (2.63)

The correlation between two parameter estimates is given by 

(2.64)

As mentioned in the IEEE report, because of small sample times and unmodelled 
effects the real error is better obtained from the repeatability between several tests.

2.5.5   The Savitzky-Golay filter

The Savitzky-Golay filter was invented by A. Savitzky and M. Golay and published in 
1964 (Savitzky and Golay, 1964). It’s main purposes are smoothing and differentiation 
of data with significant noise. In this application the filter is used to calculate the 
second derivative of the position data to obtain the acceleration, and to smooth the data 
from the accelerometer.

Figure 2.3: Savitzky-Golay smoothing of random function, nl=6, nr=5
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The operating principle of the filter is to use the method of least squares making a pol-
ynomial fit around each point on the curve. The polynomial can then be differentiated 
to obtain the n’th differentiated of the curve. The number of sampling points to be 
included in the smoothing is given as a parameter to the filter.

The number of points to be included in the smoothing to the left of the points is 
denoted nl, while the number of points to the right is nr. 

Numerical implementation

The implemented algorithm is based on an algorithm from ‘Numerical recipes in C’ 
(Flannery et al., 1992) in which the normalization constants are implemented some-
what differently than in the original article. During the implementation of the algorithm 
it was shown that a normalization constant had to be added in order to obtain the cor-
rect amplitude on the differentiated signal,

(2.65)

where d is the order of differentiation and  is the sample period of the data. For 
smoothing, d=0, N is set to one. The filter is implemented in the MATLAB function 
savgol ( ) listed in appendix A. 

The amplitude response of the filter

The filter was applied to a number of generated data patterns in order to check the filter 
response for different curves. As seen from figure 2.4 the filter differentiates a second 
order curve to a very high degree of accuracy. The noise seen in the figure is probably 
due to round-off errors, and has a standard deviation of 2.5756e-012. The amplitude 
response of the filter did not seem to be influenced much by the sampling period or the 
number of smoothing points in this case.

Figure 2.4: Differentiation of 0.5t2 using a second degree polynomial fit
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The accuracy of the filter is seen to decrease when the curve which is to be smoothed is 
different from a polynomial of degree 2. 

Testing and simulations showed us that the amplitude response change as a function of 
the number of sampling points, thus making the selection of number of points impor-
tant. It also changes as a function of sampling time. This means that the amplitude 
response has to be calculated for each sampling time, and number of sampling points. 
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3 Materials and Methods

3.1 The Accelerometers

3.1.1   ADXL105

This accelerometer is a one-axis device manufactured by Analog Devices. It is a 
capacitive MEMS accelerometer, and is packed in a surface mounted, ceramic leaded 
capsule. The package has to be mounted on some kind of circuit board to obtain 
electrical connection. 

It has a built in temperature sensor that can be used for calibration purposes.

Some information from the ADXL105 datasheets is listed in appendix C.

Five individual units of this type where available for testing, and they were numbered 
one to five and will be referred to by their number in this thesis.

Definition of axes

In chapter 2.4 a definition of the three axes of the accelerometer was described. The 
choice of these axes should probably be based on knowledge about the mechanical 
structure of the accelerometer. As no such information was available from Analog 
Devices, the output and principle axes were chosen as shown on figure 3.1.

Ratiometric test

As given by datasheets the accelerometers are ratiometric, and as mentioned by 
Lawrence (1998), one of the main challenges in inertial navigation systems was to find 
a power supply that was stable and able to withstand radioactive radiation.

Figure (3.1):  Definition of axes for the ADXL105



Materials and Methods 30

In order to determine the demands on the power supply, one simple test was conducted 
with an ADXL105 unit. The supply voltage VDD was varied around the nominal 5V, 
with the accelerometer in a fixed static position, and the outputs from the 
accelerometer and the temperature sensor were logged. The results are shown in figure 
3.2. 

The output voltage as a function of VDD varied as 0.5 V/V, meaning that a variation of 
10 mV in the supply voltage would give a 5 mV offset. Calculated with the nominal 
ADXL105 scale factor, 0.25 V/g, this would induce a bias of 2 mg. The corresponding 
dependence between VDD and the temperature output was 62 oC/V which gives that a 
10 mV change induces a 0.62 oC change in the temperature output. As a conclusion, 
the long time variations in the power supply should be in the order of 1 mV or lower.

The Linear Power Supply (LT1086)

The LT1086-CT5 was chosen to supply VDD=5 V to the accelerometers. It is packed 
in a TO220 package. The specifications in the datasheets specifies an output RMS 
noise of 0.003% or 0.15 mV. A test run over a 24 hours period, where the output was 
logged with a 16 bits ADC, showed that the output voltage was stable within 1 mV, as 
seen in figure 3.3. The data has been filtered with an equally weighted running average 
digital filter to obtain the long time trends.

3.1.2   Testing the Built-in Temperature Sensor

The built-in temperature sensor in the ADXL105 accelerometer is specified to be 
‘optimized for repeatability rather than accuracy’ in the datasheets and can have an 
systematic error relative to the real temperature up to   

. In addition there may be an error in the nominal 
temperatue sensor scale factor of 8 mV/oC.

Figure (3.2): Sensor and temperature output as function of VDD for a fixed static acceleration.

100mV 8mV Co⁄⁄± 12.5 Co±=
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The output from the sensor was logged for a period of 24 hours, together with the 
output from a AD592AN temperature transducer, which was considered to be a correct 
reference, at least regarding linearity and scale factor, . The experiment was 
done with the ADXL105 unit number 3. A running average filter has been applied to 
both the curves to eliminate noise. 

Figure (3.3): 24 Hours test of the output from the LT1086-5 linear regulator

Figure (3.4): Output from the AD592 temperature transducer and an ADXL05 temperature 
sensor at room temperature during 24 hours period with nominal scale factor for the 
ADXL105 temperature sensor.

1µV °K⁄
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The difference between the two sensors was not constant for the whole period, 
indicating an error in the nominal scale factor. A scale factor of 9 mV/oC gave an 
approximately constant difference of 0.94 oC with a standard deviation of 0.09 oC. The 
experiments showed that both the offset between the measured and the real temperature 
and the temperature scale factor had to be calibrated for each individual accelerometer.

The 0.1 oC standard deviation could be caused by short term variations in one of the 
two sensors, or in both of them, and possibly by noise from the signal transmission. 
The AD592 datasheets specifies a repeatability of 0.1 oC after a heating cycle from -25 
oC to 125 oC to the next cycle, but does not say anything about neither the repeatability 
for relatively small changes nor possible errors in the scale factor.

3.1.3   Mounting the Accelerometer

During all of the experiments accelerometer was soldered to Sunhyato ICB-010 
SO-carrier circuit card to obtain electrical connection to the components. Two holes 
were drilled in the card in order to attach it to any surface, using two screws as shown 
on figure 3.5. The note ‘Mounting Considerations for ADXL Series Accelerometers’ 
by Shuster et al., recommends using a small drop of epoxy to attach the seating plane 
of the accelerometer’s package to the board in order to avoid resonance at high 
frequencies. The movements performed during the experiments described in this thesis 
were in a frequency area way below the possible resonance frequency, making the 
epoxy superfluous.

During the dynamic experiments described in section 3.6 and during some of the multi-
point tumble tests about two axes, see section 3.5, the accelerometer was placed inside 
a small aluminium box. The box was kept at ground potential and thus acting like a 
Faraday-cage to shield the system from electrical noise. It also served as a part of the 
temperature control systems described in the following subsection.

The accelerometer was attached to the bottom of the box using two plastic screws. The 
cable running from the accelerometer to the DAQ system went trough a PG nipple. The 

Figure (3.5): Schematic drawing of the mounting of the accelerometer mounted on the chip-
carrier board
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purpose of the PG nipple was to keep the cables inside the box in a fixed position, and 
to minimize vibrations transferring from the cable to the accelerometer.

Heat leading pasta was applied between the lid and the rest of the box in order to 
ensure thermal conductivity and minimize temperature gradients. 

3.1.4   Crossbow CLX02TG3

The Crossbow CLX02TG3 is a high-accuracy three axis accelerometer. It has a built in 
temperature sensor, and is packed in a aluminium box with dimensions (2.49cm x 
5.68cm x 3.65cm). 

It has a defined set of input axes x, y and z which was a natural basis of axis for the 
multi-position tumble tests in section 3.5.

This accelerometer was out of the price range for the accelerometers considered in this 
thesis, about 2000 US dollars pr august 2002. The main purpose of the tests done with 
the Crossbow unit, was to test and verify the experimental setup and methods. 

Some information from the datasheets is listed in appendix C.

3.2 Temperature Control Systems

3.2.1   Heat Boxes

Two different heat boxes were used for temperature control. One of them, produced by 
Binder, had heating capability, while the other which was produced by Weiss Technik 
had both cooling and heating functionality. The specifications of both the heat boxes 
promised a long term stability of better than 0.1 oC. Both of the boxes had fans to 
circulate air inside the box, which had to be switched off during measurements because 
of the vibration generated by the rotating fan.

The heat box without cooling functionality was used to heat up the accelerometer to a 
relatively high temperature. The power was then turned off, letting the system cool 

Figure (3.6): Cross section of the mounting of the accelerometer inside the aluminium box
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down. The accelerometer was packed in aluminium foil to slow down the cooling 
process. Continuously monitoring the temperature of the accelerometer, the output was 
logged when the system reached the selected temperatures.The cooling was considered 
to be slow enough so that the temperature was constant during the measurement period, 
~15s. 

As opening the door of the box was impossible without influencing the temperature, a 
cooling series was run for each position in the multi position tumble test in section 3.5. 
The slowly decreasing temperature caused a large time span between the first and last 
measurement in each experiment. 

The ability to lower the temperature inside the box, made it possible to speed up the 
process using the other heat box. The heat box could then be adjusted to the wanted 
temperature, and the output from the accelerometer could be logged when the system 
had reached a stable temperature.

The heat closet both had the disadvantages that they were too large, in the order of 100 
litres. A lot of air and a large metal structure had to be heated, making them slow, and 
difficult to control. In addition they both had fans to circulate air, which had to be 
turned of during the measurement period in order to minimize vibrations. The manual 
adjustment of the input angle of the rotation stage, see section 3.5.2, was very 
cumbersome to do inside the box. The systems described in the next subsection were 
better suited for the applications in this thesis.

3.2.2   Systems using a Peltier Element

Two different systems used a Peltier element to control the temperature of the 
accelerometers. A 5.3W element from Melcor Systems was used, the CP1.0-31-08L. 
The Peltier element was placed on top of the aluminium box, which was described in 
section 3.1.3, leading heat to or from the box. 

A cooling rib was placed on top of the Peltier element, functioning as a heat sink. The 
direction of the current in the Peltier element decided the direction of the heat flow. 
Heat leading pasta was applied on both sides of the Peltier element. The box was 

Figure (3.7): Peltier element and cooling rib attached to the aluminium box.
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attached to a slab of epoxy to isolate it thermally and electrically. A photo of the setup 
can be seen in figure 3.7.

MPT5000

The MPT5000 is PID (Proportional Integrate Derivative) temperature controller with 
an adjustable proportional gain, produced by Wavelength Electronics. Temperature 
feedback to the controller was taken from an Analog Devices AD592AN temperature 
transducer which was glued to the inside of the lid of the aluminium box. The 
transducer has a proportional current output, named Ir on figure 3.8.

The specifications of the MPT5000 gives a short time stability of 0.005 oC or better, 
but was measured by the built-in ADXL105 sensor to be 0.15 oC, or 0.1 oC when the 
system had been allowed to stabilize for a while, typically an hour. The apparent lower 
performance may because of short time variations in the built-in temperature sensor or 
temperature differences between the box and the accelerometer because of heat leakage 
trough the electrical wires. It may also have been caused by short time variations in the 
AD592 transducer output. A short time stability of 0.1 oC was anyway considered good 
enough for the experiments in this thesis.

The long time stability was limited by variations in room temperature, as proves of heat 
leakage trough the electrical wires to the accelerometer was found. This could have 
been improved by stopping the leakage by using thin wires, or by making some kind of 
thermal contact between the accelerometer and the box. The long time stability of the 
temperature was not important in the experiments where this temperature regulator was 
used.

The setpoint of the proportional gain had to be set to the lowest level, one, to keep the 
system stable.

The unit was driven by a separate power supply, an Oltronik B502D, as testing 
revealed that a linear power supply gave more stable temperature, as also specified in 
the datasheets.

The setpoint of the commercial temperature control unit, was shown to vary as a 
function of the temperature of the unit. Thus the temperature of the unit had to be kept 

Figure (3.8): The MPT5000 temperature controller wiring
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as stable as possible, which was done by mounting the box on a cooling rib which was 
supplied with a constant air flow from a fan.

PI regulator

A PI (Proportional Integral) regulator was designed to control the current to the Peltier 
element. A block diagram of the total system is given in figure 3.9. This regulator used 
the same Peltier element as the MPT5000, but the temperature feedback was taken 
from the built-in ADXL105 temperature sensor. The PI regulator was chosen to obtain 
correct regulation.

H1(s) is the transfer function of the Peltier element, and q(t) is the heat flow from the 
Peltier element to the aluminium box. V(s) is heat the heat flowing from the box to or 
from the environment. H2(s) is the heat transfer function of the box to the sensor. y(t) is 
the temperature of the sensor. H3(s) is the transfer function of the temperature sensor 
which is fed back to the system. The transfer function of a PI regulator is given by 
(Tyssø, 1992)

(3.1)

which is implemented by the sum of the blocks Kp and 1/Ts. 

The system was implemented on a circuit card, shown in appendix B. It was 
implemented on the same circuit card as the amplifier shown in figure 3.14, which 
caused some problems as discussed below.

The gain Kp and the differential part of the system was implemented with an 
differential amplifier as shown in the following figure, 3.10. 

It had an adjustable gain, from Kp=0.25 to Kp=2.5. The gain was adjusted by the two 
potentiometers P4 and P5. To avoid any offset, they had to be adjusted to the same 
value, which is not an ideal solution. The gain was not meant to be adjusted after a 
suitable gain had been found. The Analog Devices OP200 opamp was chosen because 
it is a high accuracy, low noise operational amplifier.

Figure (3.9): Block diagram of the PI-regulator and the controlled system.
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The integrating part of the system was implemented in the following figure, 3.11. The 
transfer function of this circuit when the opamp is approximated to be ideal, is given by

  (3.2)

R is the value of R5 and R9 on figure 3.11. C can be chosen to be C4 or C3 with a 
jumper on the connector named STL3. C3 and C4 where chosen as two metalized 
polyester condensators because of their low leakage current. The time constant of the 
integrating loop was thus 33s or 47s configured by the jumper.

Figure (3.10): Implementation of an differential amplifier with adjustable gain. Excerpt from the 
circuit in appendix B.

Figure (3.11): Excerpt from circuit in appendix B implementing the integrating part of the PI- 
regulator
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Ts
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In order to provide the relatively high currents, up to 2.5A, to drive the Peltier element 
two effect transistors were used as shown on figure 3.12. The opamp provided 
feedback, and provides a gain of 0.1 in order to hold the output voltage within the 
limits of the Peltier element, V. The circuit was based on examples by Hill and 
Horowitz (1989).  

As mentioned previously in this subsection, this regulator was implemented on the 
same circuit card as the DAQ system shown in figure 3.15. Tests revealed that the 
relatively high currents floating to the Peltier element influenced and distorted the 
analog signal conditioning because of the way the circuit was routed. 

Testing showed that the circuit worked and showed good long time stability when the 
gain was adjusted to about one, but the dynamic performance was relatively poor, as 
expected. The turn-in time was much longer than that of the MPT5000 controller, 
which made the MPT5000 better suited for tests with varying temperatures. 

The fact that the temperature of the ADXL105 package was used as feedback made it 
possible to obtain better long time stability as temperature gradients within the box, as 
heat leakage trough the wires did not influence the system. This also made the response 
of the system slower because of the increased termic resistance between the element 
and the temperature sensor.

The influence of the temperature control system on the analog signal conditioning 
could have been avoided by modifications on the circuit, but the MPT5000 was 

Figure (3.12): The effect amplifier constructed of PNP and a NPN transistors and an OP200 
opamp to provide feedback. Excerpt from the circuit in appendix B.

3.75±
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available before this was done, and proved to have a better dynamic performance. Thus 
the MPT5000 unit was used during almost all of the experiments. 

3.3 DAQ systems

Two different Data Acquisition (DAQ) setups were used. Both setup were based on a 
combination of a circuit card with analog signal conditioning, and a commercial DAQ 
card from Dspace or National Instruments.

The first setup used a card from National Instruments, the DAQcard-16-E-4, mounted 
in a portable computer. The second setup used a card manufactured by Dspace, 
DS1102A, mounted in a stationary computer.

The ELAB at the Physics Department, University of Oslo produced all the circuit cards 
containing the analog signal conditioning. A HP6236B triple output power supply 
provided  and ground to the circuit cards. 

National Instruments Setup  

A schematic drawing of the system is shown on figure 3.13.

The lowpass filter on figure 3.13 was a first order passive RC-filter, with  
and , giving the cutoff frequency . The 
component values do not match the values in the figure. 

The signal was amplified to increase the signal-to-noise ratio, using an AD620 
instrumental amplifier. The AD620 component is a high accuracy, low noise device 
from Analog Devices. The gain of the amplifier was set by the value of resistance R13 
on the schematics showed on figure 3.14. A metal film resistor with a nominal error of 
1% was used to prevent any long term changes in the gain. A bias Vmid was added to 
the signal in order to keep the signal to the NI-card within the ADC range, making the 

Figure (3.13): The DAQ system during the static experiments
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output from the amplifier . Vmid was set by adjusting a 
potentiometer P2. The value of G and Vmid was calculated by using known input 
signals, measuring the outputs and using a line fit. The problems described in the next 

subsection, with long term variations in the gain and the Vmid had not yet been 
discovered when this setup was used in the experiments.

The offset adjustment input of the amplifier, pin number five, was connected to ground. 
The datasheets of the AD620 suggested to use the zero-output of the amplifier as the 
negative input of a differential ADC, but this setup was shown to give better results.

The DAQ card was of the type DAQcard-16-E-4, which has four 12 bits ADC’s. The 
four 12 bits ADCs has individually adjustable gains, polarities and input areas. The 
noise floor was specified to be approximately 1/2 LSB RMS. The ADCs were 
configured as differential inputs, and the negative input were connected to signal 
ground.

The data acquisition were controlled with a LabView VI, and stored and later 
processed in MATLAB.

All cables between the accelerometer and the DAQ circuit, the DAQ circuit and the NI 
card were shielded and grounded.

The signal from the accelerometer’s built-in temperature sensor was connected directly 
to the NI card without any buffering so that the signal picked relatively much electrical 
noise. The noise was removed by taking the mean over time, as only long time 
variations in the signal was of any importance.

White noise tests

A way to verify the DAQ setup is to calculate the RMS value of the measured system. 
The datasheets of the ADXL105 specifies a noise floor between  and 

Figure (3.14): The amplifier block in figure 3.13 and 3.15, excerpt from circuit in appendix B
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, which gives that the standard deviation of the output signal should be 
between 0.79mg and 1.1mg with a 12Hz bandwidth signal. Using a digital 20. order 
digital Butterwort filter with cutoff frequency 12Hz on 20s of a measured signal from 
the ADXL105 accelerometer number one, gave a signal with standard deviation 
0.82mg, calculated with the nominal accelerometer scale factor from the ADXL105 
datasheets, 0.25V/g.

The corresponding results with the Crossbow accelerometer was a measured to a 
standard deviation of 107 g, calculated with the nominal scale factor 0.833V/g, 

compared to the nominal 69 g calculated from the spectral density . 

The conclusion drawn from these tests was that the DAQ setup has sufficient accuracy 
to do experiments with the ADXL unit, while the results could be improved by 
choosing another setup when doing measurements on the Crossbow accelerometer.

Dspace Setup

Figure 3.15 shows a simplified schematic drawing of this setup. The system shown on 
the figure is implemented on the same circuit card as the temperature control system 
described in section 3.2.2. Appendix B contains the complete schematics of the circuit.

The cutoff frequency of the lowpass filter was set to . The 
frequency was set higher to decrease phase shifts in the dynamical area of hand 
movements, 0 to 12Hz.

The gain and the offset of the amplifier were configured the same way as on figure 
3.14. When what at the time seemed like asymmetries in the DAQ setup were 
discovered, extensive testing on the linearity and symmetry of the DAQ system were 
performed, see the following subsection.

Figure (3.15): Principal drawing of the analog signal conditioning
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A buffer was inserted between the sensor’s temperature output and the ADC, in order 
to increase the quality of the transfer, as the sensor showed unable to provide signal to 
both the ADC and the temperature control system. 

As shown in figure 3.15, the analog signal was sampled with one of the ADCs of the 
DS1102A-card. The DS1102 contains two 16bits ADCs with adjustable sampling 
period down to 4us, and two 14 bit ADCs. The input signal range is constant -20 to 
20V. It also contains four 14 bit DACs. 

The DS1102 is a real-time card with a built in processor from Texas Instruments which 
can be programmed from libraries in Simulink via MATLAB, or directly with C-code 
compiled with the Texas Instruments C-compiler. Dspace provides a program, 
ControlDesk, which makes real time control over the data acquisition possible. The 
sampled data are streamed to disk and later converted into files which are processed in 
MATLAB. If real-time processing was needed, it could be done with the Dspace card, 
but it has limited computational resources. 

All analog data cables were shielded, the accelerometer was kept in a metal box at 
ground potential, and the circuit card was shielded in a metal box kept at ground 
potential to shield it from electrical noise.

Testing the Gain and the Offset of the Amplifier

When the amplifier block was thoroughly tested, quite late in the process, several 
irregularities were revealed. The most important discovery were that the offset to the 
instrumentation amplifier adjusted by the potentiometer P2 in figure 3.14, Vmid, had 
long time variations up to 3 mV. 

To calculate the offset Vmid and the gain G, controlled inputs where applied to the 
amplifier input, and the output was measured. The output as a function of the input was 
then fitted to a straight line, , using the methods of least squares. The gain was 
then estimated as G=a, and Vmid as . The standard deviation in the 
estimated Vmid was then given as (Squires, 1968) 

(3.3)

Several series were run, where the input of the amplifier block was excited by one of 
the DACs in the DS1102 card, and the output measured by one of the 16 bits ADCs. 
Testing was also done to verify that the ADCs were stable over time. Testing over 24 
hours using a stable external voltage reference showed a long time stability for the 
ADC of the order 0.3 mV. The output of the DS1102 DACs were measured to be 
accurate within the accuracy of a Fluke 45 digital multitmeter. Measurements of the 
output from the DAC output from the Dspace card directly with the ADC showed no 
systematic errors.

The results in table 3.1 and table were obtained by stepping the DAC from the lower 

input limit, 2.544V and increased by steps of  to the upper limit, 
3.091V. The output on each step was constant for 1 second in the first series, first 
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column in table 3.1, and 2 seconds for the second and the third series. The input range 
was repeated twice during the last measurement.

The results in table 3.2 to table 3.4 were done after adjusting the gain, but leaving the 
offset unchanged. The input was then varied from 2.034V to 3.602V, with the same 
step size and the input constant 1 second on each step. The offset was adjusted to get 
the results in table 3.5, leaving the gain unchanged. Thus the input range was changed, 
but the span of the area was the same.     

Table (3.1): Results from three consecutive measurements, 23st May 2003 t

Time
Total 
gain

Standard 
deviation 
gain 

Vmid 
(V)

Standard 
deviation 
Vmid (V)

Gain for 
Vin<0 V 

Gain for 
Vin>0 V

20:50 36.4075 1.7e-3 2.8171 3e-4  36.3975 36.3896

20:56 36.4047 2.3e-3 2.8170 3e-4  36.3950 36.3876

21:08 36.4036 1.7e-3 2.8170 2e-4  36.3936 36.3880

Table (3.2): Results from three measurements, 4th June 2003, 1. series immediately after power up.

Time
Total 
gain

Standard 
deviation 
gain Vmid (V)

Standard 
deviation 
Vmid (V)

Gain for 
Vin<0 V 

Gain for 
Vin>0 V

14.54 12.7335  3e-4 2.82010 7e-5 12.7267 12.7343

15.19 12.7282 2e-4 2.81971 5e-5 12.7201 12.7302

23.36 12.7286 2e-4 2.81800 5e-5 12.7218 12.7296

Table (3.3): Results from three consecutive measurements, 3rd June 2003 

Time
Total 
gain

Standard 
deviation 
gain Vmid (V)

Standard 
deviation 
Vmid (V)

Gain for 
Vin<0 V 

Gain for 
Vin>0 V

20:18 12.7274 2e-4 2.81988 5.6e-5 12.7196 12.7294

20:37 12.7291 2e-4 2.82007 6.6e-5 12.7215 12.7312

20:55 12.7279 2e-4 2.81995 5.8e-5 12.7196 12.7299

Table (3.4): Results from measurements, 5th June 2003 

Time
Total 
gain

Standard 
deviation 
gain Vmid (V)

Standard 
deviation 
Vmid (V)

Gain for 
Vin<0 V 

Gain for 
Vin>0 V

16:30 12.7306  2e-4 2.50967 5e-5 12.7298 12.7362



Materials and Methods 44

As can be seen from the results there are clear indications of a asymmetry in the gain, 
although the asymmetry is not the same for the two different gains. The variation in the 
calculated gain seems to be about ten times the size of the calculated standard 
deviation, indicating unmodelled effects which cause random variations in the 
estimations.

The variations in the Vmid are possibly correlated with temperature or humidity. The 
apparent asymmetry in the gain is probably due to non linearity in the output stage of 
the amplifier. During the measurement which results are listed in table 3.2, the offset 
varied with 2 mV, adding more evidence to the assumption that the variations in offset 
were correlated with temperature, as the room temperature in the lab decreased during 
the evening and night. The cause of the variations may be temperature dependent 
leakage current in the capacitance CB12 on figure 3.14, or temperature dependent 
offset in the amplifier.

The gain and offset was measured immediately before each experiment after the 
discovery of this phenomenon. The different gains for inputs larger than 0 an less then 
zeros were then used to calculate back to the input as a function of the output of the 
amplifier block.

White noise test

The signal from the ADXL105 number three in a static position filtered with a 7. order 
lowpass Butterwort filter with cutoff frequency of 12 Hz gave a noise floor of 0.72 mg. 
The order of the filter had to be decreased from 20 to 7 in order to cope with the 
increased sampling frequency, 1.667 kHz. The same filter applied with a cutoff 
frequency of 15 Hz gave a standard deviation of 0.78 mg. The results where calculated 
using the nominal scale factor of 0.25 V/g

Even though the Butterwort filter is the maximally flat filter, the decreased filter order 
probably causes significant damping of the signal below the cutoff frequency, such that 
the real value of the noise floor probably is around 0.8 mg. The conclusion is anyway 
that the DAQ setup passed the white noise test. 

3.4  Experimental Environment

The ideal environment to conduct static experiments would be a room where all 
external vibrations from passing buses etc. is removed by a damping system. We did 
not have such an environment available, so the sensor most likely picked up vibrations 
from slamming doors, running fans and similar devices. These vibrations will be seen 
as noise, but they are probably zero mean and below the Nyquist frequency, and can 
removed by averaging over time. 

Table (3.5): Results from  measurement, 10th June 2003 

Time
Total 
gain

Standard 
deviation 
gain Vmid (V)

Standard 
deviation 
Vmid (V)

Gain for 
Vin<0 V 

Gain for 
Vin>0 V

Unknown 12.7286 2e-4 2.51021 5e-5 12.7277  12.73396
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During the first experiments when no temperature control system was available, the 
most primitive form of temperature control was applied: choosing a room with a stable 
ambient temperature. A room in the cellar of the SINTEF building was shown to have 
a very stable temperature over time, although noisy with much vibrations.

Some experiments were done on an optics table with passive damping. The ambient 
temperature in this room varied with about 1 degree Celsius. 

The dynamic experiments and the last static experiments were performed at ABB, 
Billingstad and the temperature control systems described in subsection 3.2.2 where 
used. Thus the temperature control was good, but the environment proved noisy with 
both vibrational and electrical noise.

3.5 The Static Experiments

3.5.1   Main Principle and Goals

The static experiments conducted was based on the ‘Multi point tumble test’ 
procedures described in the IEEE document ‘Guide and Test Procedure for Linear 
Single-Axis, Nongyroscopic Accelerometers’ (IEEE Std 1293-1999). The acquired 
data was analysed using the methods of linear least squares estimation described in 
section 2.5.4.

As described in section 2.2.4 the output of an accelerometer is given by the specific 
force, . When the acceleration relative to inertial space equals zero, the 
output is given as a function of the gravity vector projected onto the accelerometer 
input axis.

Using a rotation stage as described in following subsection, makes it possible to 
characterize the accelerometer output as a function of input acceleration in the input 
area , where g is the absolute value of the gravity vector g0 at the specific 
experiment location.

The first aim to build up an experimental setup and develop test series to be able to 
characterize an accelerometer. The experiments were run with 5 different Analog 
Devices ADXL105 units, and one Crossbow CLX02TG3 three axis accelerometer. 

The goal was to model and characterize each individual accelerometer based on the 
IEEE accelerometer model equation listed in appendix D. How good results could be 
achieved with the available experimental equipment? How good could the parameters 
of a given accelerometer be characterized?

The next experiments aimed to use static four point tumble tests to look at temperature 
dependent variations in scale factor and offset. As described in section 2.4 one of the 
goals was to examine whether these changes are repeatable, and thus can be 
compensated for.

A number of experiments were also carried out to examine long-time variations, like 
low frequency noise, random walk and similar phenomena.

f ∂2x ∂t2⁄ g–=

g g,–[ ]
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3.5.2   The Experimental Setup

Rotation Stage

A rotation stage was used to fix the accelerometer axis in a given static position. A 
schematic drawing of the device is shown in figure 3.16. Data sheets and the name of 
the manufacturer were not available, thus the resolution and accuracy had to be decided 
by testing.

The rotation stage was mounted on a 3mm thick sheet of aluminium with a 90 degrees 
bend. As shown on the photograph in figure 3.17, the lower half of the aluminium sheet 
was attached to a tilt platform. The function of the tilt platform was to align the plane 
of rotation to the gravity vector. The tilt platform was attached to a relatively heavy 
slab of aluminium to keep the system stable and damp vibrations. 

The input angle of the rotation stage was adjusted by hand, making the multipoint 
tumble test a time consuming process. The ideal instrument would be some kind of 
high accuracy automated device.

Specific force along the input axis

If the rotation axis is perfectly aligned normal to the gravity vector, and the angle  is 
defined as on figure 3.16, the static acceleration along the accelerometer input axis 
given by the specific force: 

(3.4)

The difference compared to the expression given in the IEEE document (IEEE Std 
1293-1999), , is due to different choice of the direction where .

Figure (3.16): Schematical drawing of the rotation stage.

θ

fi xi
·· gi– g θ( )cos–= =

f g θ( )sin= θ 0=
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Specific force along the normal axis

As can be seen from the IEEE model equation, the output from the accelerometer can 
also depend on acceleration normal to the input axis. Thus the acceleration along the 
principle and the output axis also have to be calculated.

Figure (3.17): Experimental setup for the multipoint tumble tests

Figure (3.18): Specific acceleration as a function of input angle
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The acceleration along the axis normal to the input axis, depends on which axis the 
system is rotated about. With the input, output and principle axes, described in the 
IEEE standard, is defined as a right hand system as shown on figure 3.1, and the 
rotation axis directed into the rotation plane, the acceleration along the output axis for 
rotations about the principle axis is given by:

(3.5)

The acceleration along the principal axis when the system is rotated about the output 
axis is given by:

(3.6)

Measurement Resolution

The resolution of the rotation stage used in the experiments was 0.05o, giving an 
approximate accuracy of .The output acceleration depends on the input 
as a cosine function. Using (Squires, 1968):

  (3.7)

the uncertainty in the output acceleration is given as 
.This expression gives no error at , 

which is unrealistic. Using  gives 
.

Combining these expressions gives that the error in the calculated specific force varies 
with position approximately as 

(3.8)

Gravity Constant

The value of the gravity constant has been measured at the SINTEF building, Oslo 
Norway to be . Effects of seasonal and lunar 
variations were considered to insignificant in these measurements, and ignored. In the 
absence of any measurement, the value of g0 at the ABB building at Billingstad, 
Norway, was considered to be of the same order. The formulas of Steiler and Winter 
(Titterton and Weston, 1997) could be used to obtain a value, but applied to the 
location of the SINTEF building (60oN, 100m above sea level) the equation gives: 

(3.9)

fo g θ( )sin=

fp g– θ( )sin=

∆θ 0.05°±=

∆Z
X∂
∂ f X( ) ∆X⋅=

∆fi g∆θ θ( )sin 0.8mg θ( )sin⋅= = θ kπ=

∆Z f X ∆X+( ) f X( )–=
∆fi kπ( ) g ∆θ( )cos 1–≈ 38µg=

∆f θ( ) 38µg 0.8mg θ( )sin⋅+=

g 9.81897919 2 10 7–⋅±( )m s2⁄=

g 9.780318 1 5.3024 10 3– 60o( )sin2 5.9 10 6– 120o( )sin2⋅–⋅+( )m s2⁄

3.0877 10 6– 1 1.39 10 3– 60o( )sin2⋅–( ) m
s2
---- m⁄ 100m⋅⋅–

9.81916601

=

=
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This values deviates from the measured value with  or 0.002%. Thus 
for very sensitive applications it would probably be wise to measure the gravity vector 
instead of relying on the Steiler and Winter formulas.

Errors due to Misalignment to the Gravity Vector 

If the rotational plane is misaligned to the gravity vector with an angle  as shown in 
figure 3.19, the output as a function of the misalignment and the input angle is given by

 (3.10)

which for small misalignment angles can be approximated to 

(3.11)

This means that all estimations of the input acceleration are biased by a factor of 
. This error will bias the estimation of several parameters, like the scale factor 

and higher order coefficients.

For instance, if phi is 1 degree, all the measurements gets multiplied by the factor 
 which gives an error in the measurements of about 0.15 mg. If  

equals 0.1 degree, the error is about 1.5 g and 0.01 degrees gives about 16 ng.

Adjustments of the plane of rotation to the gravity vector were done with the tilt 
platform shown in figure 3.20. The tilt platform had a resolution of 0.01 mm on the 
micrometer screw from Starret. The length of the axis was measured to be 100 mm, 
giving the one mm adjustment to be equal to atan(1/100)= 0.01 degrees, and a 
resolution of 10-4 degrees. The input range was 13 mm. 

Two different devices was used to calibrate the system. During the first experiments a 
spirit level device was used which had and accuracy of approximately 0.5 degrees, 
giving an error of about 0.04 mg. This error is insignificant compared to other 
measurement errors.

During later experiments a Sola Lasertronic inclinometer with laser projector with an 
accuracy of 0.05 degrees was used, making the error due to misalignment of the 

Figure (3.19): Misalignment to the gravity vector

1.8 10 4– m s2⁄⋅

ϕ

fi g– θ( ) ϕ( )coscos=

fi g– θ ϕ+( )cos⋅≈

ϕ( )cos

ϕ( )cos 0.99984= ϕ
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rotation plane equal to 0.38 g, which is of the same order as the accuracy in the 
measurement of the gravity constant. 

The input axis of the accelerometer under testing had to be aligned to the plane of 
rotation, or the misalignment had to be estimated. The methods described in the 
following subsection were developed to do that.

3.5.3   Methods of Aligning the Input Axis to the Plane of Rotation.

As mentioned previously, aligning the accelerometer axis to the plane of rotation can 
be quite tricky. Even if a method of aligning the package to the plane was developed, 
there still could be up to one degree misalignment between the package and the input 
axis as specified in the ADXL105 datasheets.

The input axis may be misaligned to the rotation plane with an angle , but it may 

also be misaligned in the plane of rotation with an angle  to the vertical where 

. The challenge was to adjust these angles to be zeros, or to estimate and 
compensate for the misalignments.

• Until other methods were developed the angle  where adjusted manually as seen 
on figure 3.21. After the plane of rotation had been aligned to the gravity vector 
using the inclinometer or a spirit level device, the screws where adjusted to the point 
where Vout from the accelerometer was minimized. The angle  was estimated by 

adjusting the rotation stage input angle around  until the point with the 
minimum output where found. 

Figure (3.20): Schematical drawing of the tilt platform
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• The second method developed, used nonlinear least squares estimation with 
functions from the MATLAB statistics toolbox. The tilt platform was used to set the 
input angle , and the accelerometer output was logged for each input angle. The 
output could then be fitted to a cosine-function on the form 

(3.12)

where  indicates the maximum angle. The same method can be used to find the 

misalignment in the rotation plane  by nonlinear estimation to the function

(3.13)

The procedure has to be repeated at number of times to compensate for bias random 
drift. The disadvantages are that it is quite time-consuming, and has to be redone 
each time the accelerometer is remounted. In addition, it only estimates the angles 

 and , and has to be redone if adjustments are done on the screws.

• The last and preferred method, was to use least square estimation on the tumble test 
data, see section 3.5.5, to estimate the misalignment constant using the model 
equation given in equation (3.20). Then an angle  is subtracted from the data, 
such that

(3.14)

This expression is calculated until the point is found where  is minimized. This 
angle was then assumed to be the misalignment in the rotation plane. The 
experiments showed that this gave the same result as nonlinear estimation using 
equation (3.13). This method can only be done for the axis about which the 
accelerometer is rotated. 

Mounting the accelerometer on a sheet of metal with a 90o corner as shown on 
figure 3.22, rotations around both the output and the principle axis are possible 

Figure (3.21): Manually adjusting the misalignment angle ϕ0
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without remounting the accelerometer on the metal. Thus the angle  can also be 
estimated, with the same method as for the output axis  by attaching the other 

surface of the metal sheet to the rotation stage.
In this way the equation (3.10) can be combined with the equations (3.18) and (3.19) 

(3.15)

(3.16)

If the g is replaced by  and  by  in equation (3.18), and g by  and  

by  in equation (3.19), all the estimates are corrected for misalignments.

Since the estimations of  and  depended on each other, a few repetitions were 
necessary where the updated values of each constant was inserted into the equations 
(3.18) and (3.19) until convergence was reached. 

3.5.4   Data Analysis

As mentioned in section 3.5.1, the data gathered in the multi-position tumble tests was 
analysed using the method of linear least squares estimation.

With small Angle Assumption

The small axis assumption means that the misalignment of the plane of rotation relative 
to the vertical is estimated to be zero.

Figure (3.22): Setup used to rotate the accelerometers about both the principle- and the 
output- axis
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The IEEE equation for a multitumble test around the output axis with a small angle 
approximation is given by

(3.17)

As referred in section 2.4, the accelerometer output is modelled in Volts instead of 
acceleration units. The modified version of equation (3.17) becomes

 (3.18)

For a tumble test about the principle axis the corresponding equation is given by

(3.19)

Estimation without the small axis assumption can be done by replacing g by  in 

equation (3.18) and  in equation (3.19).  and  are calculated as described in 
section 3.5.3.

Correlated Parameters

Some of the parameters in the model equation are perfectly correlated in a Multi 
position tumble test. By doing a Fourier expansion on the model equation it can be 
shown (IEEE Std 1293-1999) that K2 and Kpp are perfectly correlated in a tumble 
about the output axis and K2 and Koo are perfectly correlated in tumble test about the 
principle axis. As mentioned in the IEEE standard a centrifuge or a vibration test is 
needed to estimate these square coefficients individually.

The Fourier expansion of the model equation also shows that if K2 is not estimated, the 
offset is biased by a fraction of the value of the second order coefficient. Similarly if 
K3 is not estimated but set to 0, the scale factor is biased by one third of the third order 
coefficient.

3.5.5   Estimation models

Several different algorithms were implemented, where different selections of the 
parameters from the equations (3.18) and (3.19) where estimated.

Doing a tumble about the principle axis, and choosing to estimate the parameters scale 
factor, offset and misalignment simplifies equation (3.19) to
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 (3.20)

 This gives the least square estimation problem

(3.21)

Solving the least squares estimation problem formulated in equation (2.58) for the 
parameter vector 

(3.22)

gives the linear system of equations:

(3.23)

The solution of the normal equation to get the uncertainty in the estimated parameters 
as described in section 2.5.4 is also implemented in the function. 

As shown in section 3.5.2, the accuracy of the results are not constant for all angles. 
The uncertainty varies as a function of angle because of the error input angle, not 
because of different accuracy in the measurement of the output signal. The least 
squares method can be implemented with a weighting vector giving 

(3.24)

E θ( ) O K– g θ( ) δo g θ( )sin⋅–cos⋅=

J O K δo, ,( ) E θn( ) O– K g θn( ) δo g θn( )sin⋅+cos⋅+( )2

n
∑=

α O K δo, ,[ ]T=

O∂
∂J 2 E θn( ) O– K g θn( ) δo g θn( )sin⋅–cos⋅–( )

K∂
∂J

n
∑–

2 θn( ) E θn( ) O– K g θn( ) δo g θn( )sin⋅+cos⋅+( )

δ∂
∂J

cos
n
∑

2 θn( ) E θn( ) O– K g θn( ) δo g θn( )sin⋅+cos⋅+( )sin
n
∑

=

=

=

n g– θn( )cos
n
∑ g– θn( )sin

n
∑

g– θn( )cos
n
∑ g2 θn( )cos 2

n
∑ g2 θn( ) θn( )sincos

n
∑

g– θn( )sin
n
∑ g2 θn( ) θn( )sincos

n
∑ g2 θn( )2sin

n
∑

O
K
δo

E θn( )
n
∑

g– E θn( ) θn( )cos
n
∑

g– E θn( ) θn( )sin
n
∑

=

J O K δ, ,( )
E θn( ) O– K g0 θn( ) δ g0 θn( )sin⋅+cos⋅+( )2

wn
2

--------------------------------------------------------------------------------------------------------------
n
∑=



Materials and Methods 55

where the error as function of angle is given in equation 3.8. Normalizing the errors, 
and using  gives the following expression for wn:

 (3.25)

The equation (3.23) can then be reformulated as:

(3.26)

Similar least squares systems were also expressed and solved for the following models. 
All the solutions are implemented in the function least_squares_estimate( ) listed in 
appendix A.

• Cross axis sensitivity, scale factor and offset.

 (3.27)

• Cross axis sensitivity, second order coefficient, scale factor and offset. 

(3.28)

• Second and third order coefficients, scale factor and offset. 

(3.29)

• Scale factor asymmetry, scale factor and offset.

(3.30)

• Offset asymmetry, scale factor and offset.

(3.31)
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• In addition all parameters in the equation (3.19) were estimated at once.

All of these models were inserted into equation (2.58) and solved to form expressions 
like (3.23) and (3.26). 

The same models and file can be applied to rotations about the output axis, but the sign 
of some of the parameters has to be inverted, given the different signs in equation (3.5) 
and (3.6).

3.5.6   Measurement Series

Noise and Start-up Tests

Start-up tests

The output from an accelerometer for a static position was logged for half an hour after 
power-up. The signal was then analysed to check for any settling periods, and 
variations in the noise pattern.

Noise and Random-walk tests

The output from the accelerometer under test several was logged over several minutes. 
The output were then analysed in the frequency domain using Power Spectral Density 
(PSD) analysis, to look for indications of random walk, trends and other phenomena 
described in section 2.4.2.

The output was also analysed in the time domain using digital filtering in order to 
examine the shape of the offset random walk curve over time.

Multipoint Tumble Tests about one Axis

This setup used the rotation stage as described in section 1.2.1. 

The output from the accelerometer under testing, was measured at the following 
angles:

The angles are not uniformly spaced in order to get an equal number of measurement 
points in each of the intervals , ,  and .

The arithmetic mean of the data was taken for the measurement period, and the data 
was analysed using the algorithms in section 3.5.4.

Four Point Tumble Tests with Temperature Variations

The heat boxes described in section 3.2.1 were used to control the temperature during 
these experiments.
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For each temperature, the accelerometer was put in four different positions, 
positions, . The scale factor was then calculated as

 (3.32)

and the offset as

(3.33)

The input angle of the rotation stage had to be adjusted manually, which meant that the 
door to the heat box had to be opened. Opening the door meant that the inside 
temperature changed dramatically. Because of this, the accelerometer was heated to all 
the temperatures in the input range before adjusting the angle. This meant that the time 
span was quite long, and that the accelerometer went trough four heating and cooling 
cycles for each experiment.

Multipoint Tumble Tests about two Axes.

A L-shaped sheet of aluminium with a 90o bend on it was attached to the rotation stage 
as previously described in section 1.2.2. The accelerometer could then be rotated about 
both the output and the principle axis without remounting it on the sheet.

Each side of the sheet can be attached to the rotation stage, and using the high accuracy 
inclinometer, the rotation plane can be aligned to previous mountings within 0.05o. 

Figure (3.23): Photo of the setup, accelerometer rotated about the output axis.
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The same set of angles listed above was used for each axis. 

3.6 Experiments using dynamic Accelerations

3.6.1   Main Principles

The aim of these experiments was to verify a new method to characterize 
accelerometers using a highly accurate capacitive position sensor, and if possible apply 
the method to gather information about the ADXL105 accelerometer.

When doing experiments to characterize accelerometers, the applied acceleration is 
often calculated trough the gravity vector, with a centrifuge or trough a setup using 
vibrations with known RMS amplitude. With this experimental setup, the acceleration 

of the platform was obtained via the principle . The measured position 

was differentiated twice with respect to time using the Savitzky-Golay filter, described 
previously in section 2.5.5. No previous literature was found on accelerometer 
characterization using these methods.

The accelerometer under test was placed on a platform which was allowed to move in 
one direction in a plane carefully aligned normal to the gravity vector. The position of 
the platform was monitored with the capacitive position sensor.

By comparing the applied accelerations, which were calculated from the position data, 
to the output from the accelerometer, the goal was to obtain the output of the 
accelerometer as a function of accelerations at different bandwidths, amplitudes and 
temperatures.

3.6.2   Why Dynamic Testing?

If the accelerometer is perfectly aligned to the direction of movement, the modified 
model equation from appendix D can be reduced to: 

(3.34)

when all higher order nonlinear terms than third order are ignored. All of the 
misalignment terms are eliminated, and will not cause any random bias in the estimated 
parameters. The cross axis acceleration is constant, given by , and will bias the 

estimates as , where n is either o or p depending on whether the output or the 
principle axis is directed along the gravity vector. The cross axis terms are small 
compared to other terms, so this error was ignored during these tests. This model 
equation has fewer parameters than the ones for multi-position tumble tests given in 
the equations (3.29) and (3.30), which is an advantage, as the expression for the output 
as a function of input acceleration is simpler. The output can be plotted as a function of 
input acceleration in a two-dimensional plot.

In addition to this, when doing a multi-position tumble position tests only a limited 
number of inputs are available for estimation, as for instance the 48 different positions 
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used during the experiments in section 3.5. Comparing the acceleration estimated from 
the measured position to the accelerometer output, will dramatically increase the 
number of points to use in the estimation, as for instance seen in figure 3.34. The input 
acceleration is approximately continues instead of the 25 different input accelerations 
in the 48 position tumble test. 

Another advantage is that the time span needed to make an estimation of the scale 
factor and the offset is decreased to approximately 10 seconds. As the multi position 
tumble procedure is relatively time-consuming, especially with an non-automated 
setup, estimating random variations in parameters is difficult, or impossible for 
variations with high bandwidths. If the estimation time can be limited to 10 seconds, 
the ability to track parameter changes would be increased. It is also possible to examine 
other dynamic phenomena like phase shifts in the accelerometer output.

3.6.3   The Experimental Setup 

An overview of the experimental equipment can be seen in figure 3.24. The 
accelerometer was mounted on a platform which could move back and forth in one 
direction on a rig. The platform was attached to the rig with rigid ball bearings. The 
position of the platform was logged using a position sensor.

Equipment to align the input axis of the accelerometer to the direction of movement 
was mounted on the platform. This consisted of a rotation stage and a tilt platform. A 
detailed picture of this can be seen in figure 3.28. 

The MPT5000 temperature controller was used to regulate the temperature of the 
accelerometers. 

Figure (3.24):  Overview of the experimental setup for the dynamic measurements
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Both the accelerometer and the position sensor outputs were interfaced with a DAQ 
card from Dspace.

The rig

The rig was a relatively heavy iron structure standing on metal feet. The feet had 
adjustable height, making it possible to level the plane of movement normal to the 
gravity vector. An accurate inclinometer, Sola Lasertronic, with an accuracy of 0.05 
degrees was used to make the adjustments. Ideally the rig could have been attached to a 
heavy structure like a concrete block to keep it fixed in space, but it was considered to 
be heavy enough to withstand the movements of the platform.

The original plan was to run the platform with an electrical motor controlled by a 
Maxxon motor controller, but the motor was shown to induce too much vibrations, and 
possibly magnetic noise. The noise pattern generated by the motor can be seen in figure 
3.25.

The transfer of force from the motor to the platform was done with nylon ropes and 
pulleys, making the system very elastic. This induced a lot of acceleration due to stick-
slip-friction, seen as the peaks in figure 3.25. A more rigid mechanical transfer of force 
could have reduced these peaks.

The solution was to run the platform back and forth by hand. The platform was moved 
by hand during all the experiments described in this subsection, with approximately 
sinusoidal movements.

The position sensor

The capacitive position sensor used in the experiments was a prototype of a position 
sensor. The resolution of the sensor was 1 m (configurable), and the sampling 

Figure (3.25): Amplified output from an accelerometer when the system was run by the motor.
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frequency was set to 833 Hz. The noise floor of the sensor was specified to be less than 
1 m. The sensor had not been optimally calibrated, so the absolute error in position 
was specified to be maximum 10 m.

The sensor consisted of two parts, one permanently mounted on the rig, and one part 
attached the moving platform. The output was analysed with a prototype circuit card, 
which communicated with the computer trough the digital interface of the Dspace card. 
The interrupt input of the Dspace card was used to signal that new data was available, 
and then four bytes of data were sent to the Dspace card with the least significant bit 
first.

Using the Dspace card as shown on figure 3.26, made it possible to synchronize the 
data from the position sensor and the accelerometer with good accuracy. This was 
necessary to avoid phase differences between the accelerometer and the position sensor 
output. The phase delay on the signal conditioning card was negligible in the input area 
below 12 Hz, and the transport delay in the circuit card analysing the position data was 
fixed 1.2 ms. The circuit card implementing the analog signal conditioning is described 
in section 3.3. 

Yaw and pitch adjustment equipment   

In order to adjust the pitch, roll and yaw angles of the input axis of the accelerometer 
relative to the direction of movement, the setup shown in figure 3.28 was used. Yaw, 
pitch and roll rotation angles are defined in figure 3.27, where the axis of rotation 

Figure (3.26): The full DAQ setup for the dynamic measurements

Figure (3.27): Definition of the Pitch- roll- and yaw-axis
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points of the plane. The x axis was defined along the direction of movement, while the 
z axis where defined upwards along the negative gravity vector. The yaw angle was 
adjusted using the Newport rotation stage 481-A. The absolute accuracy of the device 
was 1/12 degrees. The relative accuracy for small regions was 0.01 degree. The pitch 
angle was adjusted with the tilt platform described in section 3.5.2.

3.6.4   Vibrational Noise 

As the setup was tested, it became clear that the accelerometer picked up some high 
frequency vibrations. The ball bearings were pointed out as the main source of the 
vibrations, as the frequency and amplitude of the vibrations increased with velocity. A 
deformed ball in the bearings may induce such vibrations. An example of the measured 
vibrations is shown in figure 3.29.

The vibrations during the run shown in figure 3.29 had amplitudes up to 40 mV and 
frequencies of approximately 200 Hz. This matches the Power Spectral Density (PSD) 
plot of this run seen in figure 3.30 well, which shows is a peak at approximately 200 
Hz. As the vibrations have a frequency above the cutoff frequency, they had been 
damped by the passive RC filter in the analog signal conditioning card, so that the 
actual amplitude of the vibrations may have been up to

(3.35)

where the nominal scale factor 0.25 V/g was used in the calculation. PSD analysis 
showed that the vibrations lay in the frequency region between 125 Hz and 300 Hz.

Figure (3.28): The equipment used to align the accelerometer input axis to the direction of 
movement
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There were also irregularities at the peaks of the accelerometer output, as shown in 
figure 3.31. These were probably caused by stick-slip friction, by the small shock every 
time the platform started moving after stopping at a peak in the sinusoidal movement.  

Figure (3.29): Vibrations in the output from the accelerometer

Figure (3.30): PSD of the vibrational patterns in a run with sinusoidal movements with 
frequency of approximately 2Hz
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3.6.5   Data Analysis 

Differentiating the position

The data from the position sensor was differentiated twice in order to calculate the 
acceleration of the system. In order to eliminate the effect of noise, the data had to be 
lowpass filtered either before or after the differentiation. This was done in two different 
ways. The first method used the Savitzky-Golay filter, which implements both 

Figure (3.31): Irregularities caused by stick-slip friction.

Figure (3.32): The difference between the smoothed output from the accelerometer and the 
real output
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smoothing by the method of least squares and differentiation of the data. The second 
method used a digital lowpass Butterworth filter for smoothing, and numerical 
differentiation using a Taylor expansion. 

The Savitzky-Golay method has previously been described in section 2.5.5. The 
function named savgol( ) was configured to fit the data to a polynomial of second 
degree and differentiate the polynomial twice, by passing the parameters m=2 and id=2 
to the savgol( ) function. As described in section 2.5.5 the amplitude response of the 
filter depended on the width of the filter window. The tuning of the filter parameters is 
discussed in a following paragraph.

The second approach used a direct differentiation of the results. Using a Taylor 
expansion of x(t) about t=t0 :

(3.36)

Having measured , and reshaping (3.36) to , 
the expression for the second derivative of x(t0) is given by:

(3.37)

The position data was first smoothed using a digital third order lowpass Butterworth 
filter, using the MATLAB filter function filtfilt( ) from the signal processing toolbox, 
which is a zero phase shift filter function.

Smoothing the Accelerometer Output

Using lowpass filtering on the accelerometer improved the repeatability of the 
estimated accelerometer parameters. As given in the specifications in section 2.1.1 the 
bandwidth of hand movements is approximately 12Hz, thus all signals over this 
frequency could be considered as noise.

The Savitzky-Golay filter was used for smoothing, giving the parameter id=0 to the 
savgol( ) function. A third order digital lowpass Butterworth filter was also applied, 
using the filtfilt( ) function again as described above. 

Matching the Smoothing and Differentiation filters

The choice of filter parameters influenced the estimations. Thus finding the filter 
parameters that gave the best estimates was a problem that had to be solved. Tuning the 
Savitzky-Golay filter meant adjusting the width of the filter window both for the 
differentiating filter and for the smoother. The cutoff and the order of the lowpass 
Butterworth filters were also varied to find the best parameters, using the methods 
described below. 

The first method tried was to use the algorithms to find the optimal yaw and pitch 
angles described in section 3.6.6. The residuals of the cosine-fit were calculated, and 
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the parameters that minimized the sum of the residuals where chosen. This method was 
shown to give large variations in the estimated optimal filter parameters.

The second method was to use the methods described  below in this subsection  to 
estimate the offset and scale factor. The algorithm was then used on a 5 minutes run, 
and the parameters that gave the lowest standard deviation in estimated offset and scale 
factor over the 5 minutes where chosen. Using this method on one set of data gave a 
window size of 103 points for the differentiating Savitzky Golay filter, and 255 points 
for the smoothing filter. The frequency responses of the two filters are shown in figure 
3.33. Other experiments gave different values.  The cutoff frequency of the 

differentiating filter calculated with this method was 13 Hz, which matches the 
estimated bandwidth of the hand very well. The filter had a -60 dB/decade decay 
beyond the cutoff frequency. The smoother had the minus 3 dB point at 6.7 Hz and a -
20 dB/decade decay. 

Combining the Savitzky-Golay differentiating filter and the Butterworth lowpass filter 
was also tried in order to match the frequency response of the smoother and the 
differentiator.

The last approach was to combine static and dynamic measurements, where the static 
results were considered accurate. Knowing that the parameters of the accelerometer 
should be given values allowed the filter parameters to be adjusted until the values 
were reached.

Figure (3.33):  Frequency response of the a Savitzky-Golay differentiating filter (top) and a 
Savitzky-Golay smoother (bottom)
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AV-plotting, the AV-plane and line-fitting

Having filtered the position data and the accelerometer output, the next step was to plot 
the output as a function of acceleration, getting plots like the one shown in figure 3.34. 

The output from the accelerometer was then fitted to a straight line using the method of 
least squares. The algorithm is implemented in the function line_test_lsq( ) in appendix 
A, and is based on the methods given by Squires (1968). The scale factor was 
estimated as a in the line fit, , and the offset as b. The line fit can be seen as the 
straight red line in figure 3.34. 

The plane on which the graphs in figure 3.34 are plotted will from now on be referred 
to as the AV-plane, and a line or a function in the plane will be called an AV-plot.

Effects of stick-slip friction on the line-fit

The irregularities caused by stick-slip friction shown in figure 3.31 were shown to 
cause errors in the estimations at the peaks of the accelerometer output. The 
accelerometer output smoothed with the Savitzky-Golay filter and a third order 
Butterworth filter is shown in figure 3.35. As seen from the graphs, there are 
differences in how the filters estimate the peak. The differences varied with the 
selected filter parameters. The consequences of these error are discussed in the results 
chapter. One possible solution to the problem was to ignore all input data outside a 
given range, for instance a=[-10, 10] m/s2 in figure 3.34.  

Effects of nonlinearities and asymmetries on the line-fit

The estimated parameters in an AV-plot like the one in figure 3.36 can be biased if 
there are significant nonlinearities or scale factor asymmetries present. 

Figure (3.34): Accelerometer output plotted as a function of input acceleration, fitted to a 
straight line.
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As can be seen from figure 3.36 a scale factor asymmetry would add a bias to the 
estimated offset. The scale factor would be the average of the two scale factors. If there 
are more points in the plot on one side of a=0, the estimated scale factor would also be 
biased, as all points are weighted equally in the linear fit. Thus either the negative or 
the scale factor will dominate the estimation. For a repeatable estimation of the offset 
and scale factor, an equal number of points on each side of a=0 should be used. This 
can be achieved by using an integer number of periods in the sinusoidal movements.

Nonlinear terms may bias the estimated scale factor, as seen in figure 3.37. In order to 
get a repeatable estimation of the scale factor, the same input area  

Figure (3.35): The peak of the output from an accelerometer filtered by the Savitzky-Golay 
filter and a third order lowpass Butterworth filter. 

Figure (3.36): Illustration of the effect of scale factor asymmetry on the line-fit
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should be used in every fit. Second order nonlinearities or an asymmetric input area 
around a=0 can bias the estimated offset as well. 

Density Plots 

In order to make a plot like the one shown in figure 3.38, the AV-plane was divided into 
a grid with size  and , and the number of points in each cell was counted. The 
two dimensional array was then plotted as a contour plot as shown in figure 3.38 in 
order to see the density of points around the line fit. These plots could be seen as a 
representation of the probability density function, although not normalized. In order to 

Figure (3.37): Illustration of the effects of nonlinear terms on the line fit

Figure (3.38): The density of points in the AV-plane around the line fit for a 5 minutes run. The 
plot is rotated  in the AV-plane in order to better visualize the resultsθ K( )atan–=

δa δv
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make the graph more readable, the density function was smoothed in the direction of 
the V-axis with an equally weighted running average filter for each acceleration step,

The data has been rotated with an angle  in the AV-plane around the 
point (a,v)=(0,Of), where Of is the estimated offset and K is the scale factor, to get a 
better visualization of the results.

The line fit is seen as the blue line on the plot. As can clearly be seen from this and 
other plots, there were indications that the residuals deviated from the line-fit in a 
systematic manner.

3.6.6   Measurements Series

Stability of parameters over time

To test the stability of the method over time, experiments lasting several minutes were 
done. The filtering methods were used as a running window to estimate the 
development of the offset and scale factor as a function of time. The random walk of 
both bias and scale factor could be logged over time with this method.

Optimal Yaw and Pitch adjustments

A nonlinear cosine fit was used to align the input axis to the direction of movement. 
The lsqcurvefit( ) function from the statistics toolbox in MATLAB was used to do the 
fit, and the regdata( ) function listed in appendix A written by Arthur Jutan was used to 
calculate the standard deviations of the estimated parameters.

Yaw adjustments

The pitch angle was set to a constant position. Several runs were done around the initial 
estimation of the angle, by adjusting the input angle of the rotation stage shown in 
figure 3.28. Ignoring all cross-axis terms, the estimated scale factor is then given as, 
and estimating the pitch misalignment to be zero

 (3.38)

where  is the ideal angle. Thus fitting the estimated scale factors at each angle to the 
function given in equation (3.38) gives an estimate of the angle, and the scale factor.

Changing the yaw with an angle  from the ideal angle is the same as a rotation of the 
AV-plot in the AV plane, with an angle

 (3.39)

Pitch adjustments

The pitch angle  was adjusted with the tilt platform, also seen in figure 3.28. The 
same method, with a nonlinear cosine fit was used to find an estimate of the ideal angle 

 and the scale factor.
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(3.40)

Having estimated the offset for all angles, and using the estimated scale factor, it was 
also possible to get an estimate of the gravity constant.

The estimated offset of the accelerometer at an angle  is given as a function of the 
offset at zero input, O0, and the scale factor as: 

(3.41)

Using that , the gravity constant was estimated fitting the estimated 
offsets as functions of angle to the function given in equation (3.41), as K and O0 were 
known. This estimation was compared to the value calculated in section 3.5.2, and 
worked as a test whether the results where sensible or not. 

Effects of nonlinearities and scale factor asymmetry on the estimated pitch angle

When the pitch angle is set to an angle different from the ideal angle, the sensor will 
measure some component of specific force from the gravity vector. Thus input 
accelerations in the region [-b, b] will be measured by the accelerometer as 
accelerations in the region [-b-a, b-a] where a is the projection of the gravity vector 
onto the accelerometer input axis. 

The effect of adjusting the pitch angle  is the same as a linear rotation of the AV-plot 
in the AV-plane  plus a sideways linear transform

(3.42)

In the presence of significant nonlinearities, the input area may be moved to another 
nonlinear section on the A-V curve, with different dynamic properties. As seen in 
figure 3.39 the accelerometer output for the adjusted curve in the input area a=[-10, 10] 
m/s2, has different dynamic properties than the original curve.

Thus an inverse transform of the AV-plot given by  may have 

to be applied before the line-fit is done, which is hard to do when  is the constant 

sought to find. An initial estimation of  could be used and then adjusted after a new 

value of  has been estimated by using equation (3.40) and nonlinear estimation by 
the method of least squares. The procedure then has to be repeated until the estimated 
value of  changes less than a specified number.

The effect of scale factor asymmetry is somewhat like the effect of nonlinearities. The 
sideways transform of the A-V curve given by equation (3.42) will bias the estimated 
offset and scale factors if not compensated for.
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Temperature dependence of Bias and Scale Factor

Some  experiments were conducted to check the connection between the accelerometer 
parameters and temperature using these methods. The MPT5000 was used to control 
the temperature, while the methods described previously in this section was used to 
calculate the scale factor and the offset. The accelerometer was kept at constant pitch 
and yaw angles during the experiments.

3.7 Simulations of a Three-dimensional Inertial Tracking System

3.7.1   Main principles

A virtual environment was created where the performance of a modelled Inertial 
Measurement Unit (IMU) could be measured for random movements defined in a local 
reference frame. The solution to the navigation equations in section 2.2 was 
implemented numerically and the output from the IMU was used as input to the 
navigation equations, and the position and the velocity as a function of time was 
estimated.

The movement of the IMU was defined in the local geographical frame while the 
rotation and heading was defined in the IMU body frame. In order to calculate the 
acceleration measured by the IMU due to Coriolis force, and the measured rotation due 
to the rotation of the earth, the vector transformations described in section 3.7.2 were 
applied. 

Figure (3.39): Effects of pitch adjustments of the accelerometer input axis on the A-V plot.
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The three accelerometers of the IMU was modelled based on results from the static 
experiments described in section 3.5. The three gyroscopes were mostly modelled as 
perfect devices as no testing of the performance of gyros had been done.

The aim of the simulations was to see how errors in the estimated accelerometer 
parameters influenced the performance of the system. In addition it was possible to 
look at the effects on the performance caused by nonlinear terms and cross-axis 
sensitivity. Different ways to compensate for these terms were tested. 

As the error of an inertial system to some extent depends on the movement of the 
system, using random movements with bandwidths up to 12 Hz was a mean to get a 
statistical estimation of the system error as a function of each of the IMU errors. 

Any accelerometer model could be used in the simulations, making it a way to test 
performance of an IMU containing accelerometers with given specifications.   

3.7.2   Transformation of Vectors

To calculate the rotation and the acceleration measured by the IMU for a given 
movement, the coordinate transformations shown in figure 3.40 was used 

The three orthogonal axes of the IMU make up the body frame given the subscript b, 
which is defined by the unit vectors i, j, and k in figure 3.40. The local reference frame 
was defined as the local geographical frame see section 2.2.8, from now on called the 
fixed navigation frame or the navigation frame. Vectors and points in this frame were 
given the subscript n, and the unit vectors were defined by the vectors ii, jj, and kk in 
figure 3.40. ii is fixed pointing in direction north, jj to the east and kk down along the 
g0 vector. This coordinate system is not well defined on the geographical poles of the 
earth, but can be by fixing the jj vector along a chosen meridian. The inertial frame, i, 
was placed at the centre of the earth and is defined by the unit vectors I, J, and K. 

Figure 3.40: The thee frames used in the simulations, the inertial fram, the navigation frame 
and the body frame.
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In order to calculate the IMU-output for a given movement in the navigation frame, the 
movements had to be transformed to the inertial frame, and then back to the body 
frame, adding coriolis acceleration, specific force due to gravity and other terms.

As seen from figure 3.40, the relative velocity, position and acceleration of the IMU in 
the navigation frame is defined by the position of the origo of the body frame which by 
using Coriolis equation defined in equation (2.6) gives equation (3.43). 

(3.43)

Applying the Coriolis equation and transforming the vectors to the inertial frame gives

(3.44)

where R1 is the distance from the centre of the earth to origo of the navigation frame. 
The rotation vector for a given latitude L is defined by

 (3.45)

Using the equations  and  gives the 
expression for the specific force measured by the IMU expressed in inertial 
coordinates:

(3.46)

Thus the specific force expressed in the navigation frame is given by

(3.47)

The output from the accelerometers in the IMU is then defined by 

(3.48)

The size of the term  is very small for small values of R1. For instance 
R1=10 m when the navigation frame is located at the equator, gives the maximum norm 
of the term (7.3e-5 rad/s)2*10 m=5e-8 m/s2. Thus this term was ignored in all the 
calculations, as it is also ignored when Titterton and Weston (1997) derives the 
navigation equations.

Using the results from chapter 2.2.8, the rotation measured by the IMU expressed in 
inertial coordinates can be given as

(3.49)

thus the output measured by the IMU in body coordinates is given as

(3.50)
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3.7.3   Generating Random Movements

In order to generate random movements, the position in the navigation frame were 
calculated as the sum of several different cosine and sine-functions with random 
amplitudes and phase-shifts as shown in the following equation. 

(3.51)

The velocity and acceleration were then calculated by differentiating equation (3.51) 
with respect to time once and twice. The amplitudes a(k,i) and b(k,i) were random 
constants with the amplitudes limited such that . The 

constant  were tuned such that the acceleration stayed within 10 m/s2 most of the 
time, to keep the output from each of the accelerometer in the IMU less than 2 g most 
of the time. The phase-shifts  and  where generated as random 

variables with uniform probability density on the interval . The frequencies  
were chosen in the interval [0, 12 Hz]. Care was taken to choose the lowest frequency 
to be lower than , where T was the total time of the interval of the movements. 
This was done to avoid periodic repetitions of the acceleration during the period. 

The heading of the body frame was generated as given in the following equation.

(3.52)

The differentiated with respect to time of this heading vector was then the rotation 
vector . The amplitudes c(k,i) and d(k,i) where now random constants with the 

amplitude limited by  where  was tuned such that the total 

rotation stayed within  most of the time, as given in the specifications from chapter 
2.1.1. The frequencies  of the functions were chosen in the interval .

The direction cosine matrix could then be generated from equation (3.52) as 

(3.53)
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3.7.4   Adding Error and Integrating

As the input to the IMU had been calculated by the equations (3.43) to (3.48), the 
output from the accelerometers were calculated with different error models, as 
described in the following subsection.

When the algorithm in equation (2.27) was implemented it appeared that the solution 
was unable to handle large changes in the direction of the rotation vector. Applying the 
rotation correction term given in equation (2.28) improved the results, but it still gave 
too much errors. The solution was to solve the equation

  (3.54)

numerically, using a fourth order Runge-Kutta algorithm.

Equation (2.30) was solved using the trapezoidal integration algorithm giving 

(3.55)

where ,  and  are ,  and  at the time t=t0+k*dt. 

The correction for the Coriolis term was then done as

(3.56)

The calculated velocity was then integrated to get the position, using the trapezoidal 
algorithm again.

All of these algorithms are implemented in the MATLAB function inertial_algorithm( ) 
listed in appendix A.

3.7.5   Error Models

The accelerometer output as function of the input, was varied to look at the effects of 
different errors. For instance white noise was added, giving the output from the x-axis 
of the IMU to be

(3.57)

where  was white noise defined by its standard deviation. The superscript (x) here 
means the parameter of the accelerometer along the x-axis in the IMU. Offset error was 

added as , and scale factor error as . 
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The complete model used for the x-axis is given in equation (3.58), and similar models 
were used for the y- and z-axis. 

(3.58)

The principle axis of the accelerometer directed along the i-axis in figure 3.40, the x-
axis accelerometer, was directed along the IMU’s z-axis and the output axis along the 
y-axis. For the accelerometer directed along the j-axis in figure 3.40, the y-axis 
accelerometer, the output axis was directed along the IMU’s z-axis and the principle 
axis along the x-axis. The corresponding headings of the IMU’s z-axis accelerometer 
was the principle axis along the IMU’s y-axis and the output axis along the x-axis.

The input specific force along a given axis was calculated as

  (3.59)

or as the solution of the third order polynomial given by

 (3.60)

This equation has three different solutions. Which solution that gives the non-
imaginary correct answer depends on the sign of K2 and K3. 

In addition a numerical solution to the equation (3.61) for the input vector 

 was obtained using nonlinear least squares estimation. Using this 
solution was shown to increase the computation time of the algorithms by a factor of 5. 

(3.61)

3.7.6   Simulations

Position error as function of accelerometer model errors

Different errors were inserted into (3.61), and the position and the velocity of the IMU 
was estimated using the equations from section 3.7.4. The output from the simulations 
was the difference between the estimated position  and the actual position p(t), 

calculated as . Starting off with zero, the error typically 
drifted off like as ~t2, giving that the error at the t=T, where T was the length off the 
simulation, most likely was the maximum error or close to the maximum error. The 
maximum of e(t) was used as the output from the simulations. The movements during 
the simulations was random movements generated by the methods from section 3.7.4, 
and 10 or 20 different simulations were done for each error model, in order to calculate 
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the average of the results. The maximum error seen during the 10 or 20 simulations 
was also logged.

The effects of white noise, offset error and scale factor errors were simulated by setting 
all other parameters than O, K and  to be zeros in equation (3.58) and its equivalents 
for the IMU’s y-axis and z-axis. The IMU output was then calculated using equation 
(3.59). 

To look at the effect of uncompensated nonlinear terms, these errors were added to the 
accelerometer output, but equation (3.59) was used to calculate the IMU output. The 
output from the IMU was also calculated using equation (3.61), to examine whether it 
is possible to compensate for nonlinearities if they are exactly known. 

The last errors to be added were cross-axis sensitivities. Both the effect when not 
compensated for and the effect of the errors when compensated for using equation 
(3.61) was tested.

3.8 Simulations of a Local Positioning System (LPS) 

3.8.1   Main Principles

The synchronized data from the position sensor and the accelerometer obtained during 
the experiments described in section 3.6 made simulations of a LPS possible. The 
simulated LPS consisted of a primary system, for instance the ultrasound system from 
Sonitor, and an IMU. A less accurate primary system than the capacitive position 
sensor was simulated by downsampling the position data and adding white noise. 
Linear Kalman filters were used to combine measurements from the accelerometers 
and the position sensor, as described below. 

Using real accelerometer output and hand movements in the simulations, made the 
simulations closer to reality than when using generated paths and accelerometer 
models, even though limited to one dimension. Only the primary system data had to be 
generated, and they were based on the position measured by the capacitive sensor.

Three one-dimensional runs were put together to simulate movements in three 
dimensions. This is in principle the same as a gimballed system, see section 2.3, where 
the measured acceleration in the three directions are independent of each other. All 
errors induced by misalignments and gyro errors are ignored, thus the error in a system 
with 6 degrees of freedom will be several orders larger. The open source VTK 
visualization toolkit was used to make three-dimensional vizualizations of the results.

The stand-alone accuracy of the inertial system during periods where the primary 
system was unavailable was also simulated in these experiments.

3.8.2   Simulations of an Ultrasonic System

As described in the previous subsection an ultrasonic system was simulated by using 
data from the position sensor. The simple model given in equation 2.1.5 was used, 
where the measurement error was modelled as white Gaussian noise, with the same 
standard deviation for all positions. The noise was generated using the built-in 

ṽ
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MATLAB function randn( ), which generates normalized white noise. The accuracy 
and the sampling frequency were changed by changing the standard deviation of the 
noise and by changing the downsampling interval of the position data.

An specific ultrasonic system from Sonitor has a sampling frequency of 4 Hz and an 
error of about 30 mm. This is considered a relatively low accuracy system, and the 
given specifications were used in the simulations as a low accuracy system. The error 
was decreased down to 1mm and the sampling frequency increased up to 50 Hz to 
simulate high accuracy systems.

The simulations were based on six different experiments, where the sensor outputs 
looked similar to the plot shown in figure 3.41. The first 10 seconds the platform was 
fixed in a constant position, the next 10 seconds with random movements and the last 
10 seconds at rest. The purpose of the 10 seconds at rest before and after the movement 
of the platform was to simulate that the inertial measurement unit was kept in a fixed 
known position before and after the system is used. The raw position data from the 
capacitive sensor was fed to the Kalman filter to simulate that the initial and final states 
of the system were almost exactly known. 

The offset and scale factor for the given pitch and yaw angle were calculated using a 
combination of static and dynamic estimations. The offset was calculated as the mean 
of the 20 second where the sensors was at rest. The scale factor was calculated with the 
methods described in section 3.6 from the 10 seconds where the sensor was moving. 

3.8.3   The Kalman filter and the one-dimensional linear Smoother

The acceleration input as function of accelerometer output was calculated both as the 
solution of the linear model given in equation (3.59) or the nonlinear model from 
equation (3.60).The calculated acceleration was fed to a Kalman filter as a scalar 
control input, a. 

Figure (3.41): Position sensor and accelerometer output as function of time, experiment 
number two.
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Several different system models were tested. The first model is given in a continuous 
form in equation (3.62). The scalar variables p(t) and v(t) are the position and the 
velocity of the system, while a(t) is the input acceleration obtained from the 
accelerometer. q(t) is the scalar process noise, defined by the normal probability 
distribution  or the expectation value of the square of the scalar 

.  is the spectral density of the white noise.

In equation (3.62) the process noise is modelled as white noise. zk and xk are 
respectively the measurement update and the state vector at the time t=k. w is the zero 
mean white measurement noise, defined by . The measurement noise of 
the capacitive position sensor was considered small compared to the process noise 
added to simulate an ultrasonic system, and ignored.

(3.62)

Equation (3.63) shows a system model where the accelerometer noise is modelled as a 
first order Markov process, defined by  
where q(t) is white noise, and T is the correlation time of the Markov process.

 (3.63)

In equation (3.64) the accelerometer noise is modelled as the sum of a first order 
Markov process m(t) and white noise. The noise of the system is now a vector 
consisting of two different independent stocastic variables, q1 and q2. The stocastic 
variables are zero mean white noise, defined by their standard deviations. The 
measurement update of the system is the equal to equation (3.63) and is left out of the 
equation.

(3.64)

The expectation value of the squared noise vector is now given by 

(3.65)
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where  is a spectral density matrix.

The continuous-discrete equations given in the equations (3.62), (3.63) and (3.64) were 
discretized by the MATLAB function diskretiser( ) listed in appendix A to obtain 
systems on the form

(3.66)

and thus the discrete formulation of the Kalman filter listed in equation (2.53)could be 
used. The diskretiser( ) function is based on algorithms from Bar-Shalom et al. (2001) 
and Gelb (1974).

As given in the system specifications listed in section 2.1.1, there was no need for real-
time knowledge of system state, thus a fixed interval ideal linear smoother was used to 
increase the accuracy of the filter.

The one dimensional linear discrete Kalman filter from section and the Rauch-Tung-
Striebel formulation of the smoother defined in equation  are implemented in the 
MATLAB function Kalman_Markov( ) listed in appendix A.

3.8.4   Residual Minimization

The methods of residual minimization previously mentioned in section 2.4.3 was used 
to model the accelerometer noise. The ideal smoother was used to estimate the 
position, and the residuals between the estimated and the position measured with the 
capacitive sensor were calculated. Different noise models and filter parameters could 
then be tested and adjusted until the residuals reached a minimum.

In addition the method was used to obtain estimation of the higher order nonlinear 
coefficients in equation (3.60). It turned out that the nonlinear model gave better results 
than the linear model in equation (3.59). The estimations of the nonlinear coefficients 
from the static measurements were used as initial guesses, and the parameters were 
adjusted to minimize the calculated residuals. This could be an other way to estimate 
the accelerometer parameters. The estimated nonlinear coefficients were probably 
biased by the initial estimations of the scale factor and offset, in addition to the selected 
noise models. Thus the higher order nonlinear coefficients estimated in this manner, 
may just compensate for errors in the estimated linear coefficients.

3.8.5   Visualization of the Results

One way to visualize the result of the estimations, was to plot the difference between 
the position measured with the capacitive sensor, and the position estimated with the 
Kalman filters. This error as function of the primary system sampling frequency or 
other parameters, was plotted in two-dimensional plots. 

Libraries from the VTK toolkit for C++ was also used for visualization. The toolkit 
was used to make three dimensional visualizations of the performance of the filters. 
The results from three one-dimensional estimations was put together to make a three-
dimensional run. The visualizations were a useful way to represent the filter 
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performance in addition to the two-dimensional plots. A screenshot from a run is seen 
in figure 3.42. The animations could be stored as videos in MPEG-format. 

3.8.6   Simulations

Ultrasonic combined with an inertial system

The ultrasonic system was combined with the inertial measurements with the linear 
Kalman filter. The different system models were tested for varying primary system 
accuracies and sampling frequencies to check the performance. Each of the models in 
the equations (3.62), (3.63) and (3.64) were tested on several different runs, and the 
parameters in the models were adjusted using the methods from section 3.8.4.

To get an estimate of the performance of each model, the standard deviation of the 
error defined by 

(3.67)

and the maximum value of e(t) was estimated as the ultrasonic system accuracy was 
varied. These values were logged both as function of the standard deviation of the 
noise added to simulate the ultrasonic system, and the sampling frequency of the 
ultrasonic system

Situations where the final and initial state of the system were known with high 
accuracy were also simulated to see the effects on the performance of the filters.

Missing primary system data

During periods where data from the primary system is unavailable, for instance 
because of obstacles in the line of sight between the ultrasound transmitter and 

Figure (3.42): Screenshot from an animation
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receivers, the LPS system is totally dependent on the data from the inertial system. 
This was simulated for short and long periods, by running the Kalman filter without 
measurement updates for periods of different lengths. 

The performance of the filter during these intervals were shown to depend on the 
movement during the interval, and the state of the system at the start and end of the 
interval. Thus the starting and ending points were varied, as well as the length of the 
interval.

The primary system performance was also varied to look at the connection between 
primary system accuracy and the filter performance during the periods without data 
from the primary system.

Stand-alone ultrasonic system

To compare the performance of an stand-alone ultrasonic system and a combined 
ultrasonic and inertial system, a Kalman filter without input from the accelerometers 
were constructed. The input acceleration was then modelled as a first order Markov 
process, and the system model is given by equation (3.68). 

The performance of the filter was tested in the same manner as the combined system.
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4 Results

4.1Results from Experiments using Static Positions

4.1.1   Noise and Start-up Tests

Start-up tests

The results of a start-up test conducted with an ADXL105 unit can be seen in figure 
4.1. The temperature of the system, the accelerometer inside the aluminium box as seen 
on figure 3.6, was controlled with the MPT5000 unit to be constant within 0.1 oC. The 
temperature of the system was stabilized before the power to the accelerometer was 
turned on. The data was sampled with the DAQ system shown on figure 3.15 at 1.667 
kHz.

As can clearly be seen from the graph, there is a transient period. The apparent increase 
in measured temperature could be because of heat generated by the accelerometer, or 
because the temperature sensor needs some time to display a stable correct 
temperature. It may also be a combination of both. 

The sensor should probably be turned on about 1000 seconds before the output can be 
regarded as stable.

Random Walk test

The output of the several accelerometers were logged for half an hour in a static 
position, sampling the data with a frequency of 120 Hz using the DAQ system seen on 
figure 3.13. 

Figure (4.1): Start-up period ADXL105 number three
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The PSD analysis of the output from the ADXL can be seen in figure 4.2 while a PSD 
plot of half an hour from the x-axis of the Crossbow CLX02TG3 accelerometer can be 
seen in figure 4.3. .   

Figure (4.2): PSD plot of half an hour of output from an ADXL105 unit at a static position. 

Figure (4.3): PSD plot of half an hour from x-axis of a Crossbow CLX02TG3 accelerometer at 
a static position. 
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The result from a random walk test in the time domain can be seen in the following 
figures, 4.4 and 4.5. The output from the accelerometers in static positions was logged 
for 5 minutes, at a sample rate of 1.667 kHz using the DAQ system on figure 3.15. An 
equally weighted running average was calculated for a period of 0.5 seconds and 5 
seconds on each side of each point, and plotted as a function of time.     

Figure (4.4): Offset /bias random walk for an ADXL105 unit at a static position. Data filtered 
with 1 second running average.

Figure (4.5): Offset /bias random walk for an ADXL105 unit at a static position. Data filtered 
with 10 seconds running average.
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4.1.2   Multi Position Tumble Tests

Multitumble tests about one axis, ADXL105

A multitumble test were done with the ADXL given the number one. The experiment 
was performed in a room with relatively stable temperature, and measured by the 
accelerometer temperature sensor to lie between 24 and 25 oC. The data was sampled 
at 120 Hz, and filtered with a passive lowpass filter with cutoff frequency 47Hz with 
the DAQ system shown on figure 3.13. The system was rotated about the principle 
axis, where the principle axis was defined on figure 3.1. 

The following tables show the results of the estimation algorithms described in section 
3.5.4.. 

The estimated standard deviation is substantially smaller when weighting is applied. 
The total sum of the residuals increased from 4.5428e-6 to 5.1838e-6, but the sum of 
the residuals where each residual is weighted, decreased. The rest of the results in this 
subsection are obtained with least squares algorithms using weighted measurements.

The method of estimating the misalignment angle from section 3.5.3 gave the result 
.This angle has been subtracted from the input angles to eliminate the 

misalignment in the estimations which results are listed in the tables 4.3-4.8.             .   .

Table (4.1): Offset (O), scale factor (K) and misalignment factor ( ) of the input axis 

relative to  estimated with equal weights on each measurement.

Estimated parameters O (V) K (V/m/s2)  (V/m/s2)

Value 2.892 2.5893e-2 -1.9e-4

Standard deviation 3e-3 4e-4 3e-4

Table (4.2): Offset (O), scale factor (K) and misalignment factor ( ) of the input axis 

relative to  estimated with the weighting function given in equation (1.24)

Estimated parameters: O (V) K (V/m/s2)  (V/m/s2)

Value 2.8921 2.589e-2 2.1e-4 

Standard deviation 7e-4 7e-5 3e-4

Table (4.3): Estimation of offset (O), scale factor (K) and cross-axis sensitivity (Kip) 

Estimated parameters O (V) K (V/m/s2) Kip (V/(m/s2)2)

Value 2.8921 2.5891e-2 1.2e-7 

Standard deviation 1e-4 1e-5 5e-5

δo
θ 0=

δo

δo
θ 0=

δo

θ 0.43762°–=
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In addition all the parameters, except Kpp, where estimated at once. As mentioned 
previously in section 1.3.2, K2 and Kpp are perfectly correlated in a tumble test about 
the principle axis. The misalignment factor was also estimated.  

Table (4.4): Estimation of offset (O), scale factor (K) and second order nonlinear 
coefficient (K2)

Estimated parameters O (V) K (V/m/s2) K2 (V/(m/s2)2)

Value 2.8920 2.5891e-2 1.9e-6

Standard deviation 1e-2 4e-5 1e-4

Table (4.5): Estimation of offset (O), scale factor (K), 2. and 3. order nonlinear coefficients (K2, 
K3)

Estimated parameters O (V) K (V/m/s2) K2 (V/(m/s2)2) K3

Value 2.8920 2.5901e-2 1.9e-6 -1.0e-7

Standard deviation 1e-2 3e-3 1e-4 3e-5

Table (4.6): Estimation of offset (O), scale factor (K), 2. order nonlinear coefficient (K2) and 
cross-axis sensitivity (Kip).

Estimated parameters O (V) K (V/m/s2) K2 (V/(m/s2)2) Kip (V/(m/s2)2)

Value 2.892 2.5891e-2 1.9e-6 7.2e-8

Standard deviation 1.2e-2 3.8e-5 1e-4 2e-4

Table (4.7): .Estimation of offset (O), offset asymmetry (Oa) and scale factor (K)

Estimated parameters O (V) Oa K (V/m/s2)

Value 2.8921 -1.0e-4 2.590e-2

Standard deviation 1.2e-4 5.1e-3 5.2e-4

Table (4.8): Estimation of offset (O), scale factor (K) and scale factor asymmetry (Ka).

Estimated parameters O (V) K (V/m/s2) Ka (V/m/s2)

Value 2.8919 2.589e-2 2.2e-5

Standard deviation 5.0e-3 1.2e-5 5e-4

Table (4.9): Estimation of all parameters. Koq is the odd second order 
nonlinear coefficient.

Estimated param-
eter

Value Standard devi-
ation

O (V) 2.8921 8e-3

Oa (V) -1.9177e-5 1e-2
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Notice how the estimated standard deviation for each parameter increases as the 
number of estimated parameters increases.

One Axis Multipoint tumble test, Crossbow CLX02TG3

Two similar series where performed with the high accuracy Crossbow accelerometer. 
The DAQ system shown on figure 3.13 was used at a sampling frequency of 120Hz.

The location of the experiment was on an optics table, damping much of the 
environment vibrations. The temperature in the room was between 22.5 and 24.5 oC. 
The series were taken without remounting the accelerometer on the rotation stage. 

The input axis was the y-axis, while the system was rotated about the z-axis. The 
misalignment relative to  was estimated to be -0.18871 degrees. The difference 
in the estimated misalignment between the two series was about 0.01 degrees.        

K (V/m/s2) 2.57e-2 8e-3

Ka (V/m/s2) -7.0e-5 3e-3

K2 (V/(m/s2)2) 7.3e-6 2e-4

K3 (V/(m/s2)3) -3.4e-6 9e-5

 (V/m/s2) 5.0e-8 3e-4

Kip (V/(m/s2)2) 5.8e-8 5e-5

Koq (V/(m/s2)2) 5.1e-5 2e-3

Table (4.10): Estimation of offset, scale factor and misalignment factor. 

Measurement series: Estimated parameters: O (V) K (V/m/s2)  (V/m/s2)

SERIES 1
Value 2.51790 8.5893e-2 -2.83e-4

Standard deviation 1e-5 1e-6 5e-4

SERIES 2
Value 2.51780 8.5898e-2 -2.79e-4

Standard deviation 1e-5 1e-6 4e-4

Table (4.11): Estimation of offset, scale factor 2. and 3. order nonlinear coefficient. Input 
compensated for misalignment

Measurement series: Estimated 
parameters

O
 (V)

K 

 (V/m/s2)

K2 

(V/(m/s2)2)

K3 

(V/(m/s2)3)

SERIES 1
Value 2.5181 8.573e-2 -2.4e-6 1.6e-6

Standard
deviation

6e-2 1e-2 6e-4 1e-4

Table (4.9): Estimation of all parameters. Koq is the odd second order 
nonlinear coefficient.

δo

θ 0=

δo
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Tumble tests about two axes

These tests were performed with the ADXL105 number 3. The DAQ setup in figure 
3.15 was used, with a sampling frequency of 1.667 kHz. The temperature was 
controlled using the MPT5000 temperature controller. The temperature was measured 
with the accelerometer temperature sensor to lie between 20.78 and 20.92 oC during 
the experiments.         

Measurements with the Sola inclinometer gave that the two remounts of the sheet were 
skewed in relation to each other with an angle of 7/20 degrees and 0.1 degrees. Thus 
the difference between the two estimations of the misalignment was 0.1 for  and 

0.007 degrees for . 

Second test

The second test was performed with the same DAQ setup as the first series, but the 
gain had been adjusted. The gain and Vmid was measured and calculated immediately 
before the experiment to be GP=12.730, GN=12.720 and Vmid=2.8197. GN here 
means the gain for input voltages higher than zero, and GN the gain for input voltages 
lower than zero. An asymmetry in the gain of the AD620 amplifier was discovered that 
had not been seen before this point. The measurements were repeated later and the 
same results were found.

The temperature was measured to lie between 21.04 and 21.22 oC. The corresponding 
output from the AD592 temperature sensor glued to the lid of the aluminium bow was 
23.7oC.             

SERIES 2
Value 2.5177 8.583e-2 1.0e-6 6.9e-7

Standard
deviation

4e-2 8e-3 4e-4 1e-4

Table (4.12): Estimation of misalignment of the input axis relative to  e

Measurement series: Estimated parameters:  ( o )

SERIES 1 Value 0.283067

SERIES 2 Value 0.73851

Table (4.13): Estimation of  misalignment of the input axis relative to  

Measurement series: Estimated parameters:  ( o )

SERIES 1 Value -0.01337

SERIES 2 Value -0.12015

Table (4.11): Estimation of offset, scale factor 2. and 3. order nonlinear coefficient. Input 
compensated for misalignment

θ 0=

θ0

ϕ 0=

ϕ0

θ0

ϕ0
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Tanglement measurements with the inclinometer gave a difference between the two 
remounts of 1/10 degrees for the principle measurements, and 3/20 degrees for the 
output experiments. Thus the difference in the estimated misalignments was 0.28 
degrees for the estimation of  and 0.02 degrees for .  

Table (4.14): Estimation of  misalignment of the input axis relative to  

Measurement series:
Estimated parameters:  ( o )

SERIES 1 Value 0.89332

SERIES 2 Value 1.27371

Table (4.15): Estimation of  misalignment of the input axis relative to  

Measurement series:
Estimated parameters:  ( o )

SERIES 1 Value 0.68593

SERIES 2 Value 0.86465

Table (4.16): Results from all series. O, K, K2 and K3 Kio and Kip

Measure-
ment 
series:

Esti-
mated 
parame-
ters:

O (V) K 

(V/m/s2)

K2

(V/(m/
s2)2)

K3

(V/(m/
s2)3)

Kio

(V/(m/
s2)2

Kip

(V/(m/
s2)2

1ST 
TEST,
SERIES 1

Value 2.8125 2.515e-2 1.2e-6 -1.8e-7 -9.9e-7

Standard
deviation

2e-4 2e-5 2e-4 4e-5 6e-5

Value 2.81260 2.5498 -7.8e-7 -1.8e-7 6.6e-7

Standard
deviation

2e-5 6e-6 3e-4 9e-5 6e-5

1ST 
TEST,
SERIES 2

Value 2.8125 2.550 -1.8e-6 2.0e-7 2.5e-7

Standard
deviation

1e-4 2e-5 1e-4 3e-5 4e-5

Value 2.81260 2.5490 -5.4e-7 9.5e-9 -1.1e-6

Standard
deviation

7e-5 8e-6 1e-4 3e-5 1e-4

2ND 
TEST,
SERIES 1

Value 2.8149 2.553e.2 -2.8e-6 1.4e-8 1.4e-6

Standard
deviation

2e-4 2e-5 1e-4 3e-5 5e-5

Value 2.8152 2.551e-2 -3.3e-7 -7.2e-8 -2.7e-6

Standard
deviation

2e-4 2e-5 8e-5 2e-5 6e-5

ϕ 0=

θ0

ϕ 0=

ϕ0

θ0 ϕ0
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Four-points tumble tests with temperature variations

The accelerometers were placed inside heat boxes, connected to the DAQ system with 
a shielded wire.

The results displayed in figure 4.6 was performed with the ADXL105 accelerometer 
number 2.   Fitting the offset as a function of temperature to a straight line by the 
method of least squares, gave the relationship between offset and temperature was -
3.24e-4 V/oC. The corresponding value for the scale factor was 1.59e-7 V/(m/s2)/oC.    

The results displayed in the figures 4.7 and 4.8 were done with the ADXL105 unit 
number 3. 

The first series fitted to straight lines gave that the offset depended on temperature as    
-4.38e-4 V/oC and the scale factor as -3.18e-6 V/(m/s2)/oC. The last series were done 
in a heat box with cooling functionality. The results was that the offset varied with 
temperature as -2.64e-4 V/oC and scale factor as 2.99e-6 V/(m/s2)/oC 

2ND 
TEST,
SERIES 2

Value 2.8150 2.553e-2 -3.4e-6 8.1e-9 1.1e-6

Standard
deviation

3e-4 3e-5 1e-4 2e-5 5e-5

Value 2.8150 2.552e-2 -2.4e-6 -1.2e-8 -2.6e-8

Standard
deviation

3e-4 3e-5 1e-4 2e-5 3e-5

Figure (4.6): Scale factor and offset as function of temperature as results of a 4 point tumble 
test performed in a heat box

Table (4.16): Results from all series. O, K, K2 and K3 Kio and Kip
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4.2 Results of Dynamic Experiments

4.2.1   Repeatability Tests

Data from several long experiments with the ADXL105 number three on the rig was 
used to tune the filter parameters. The offset and scale factor were estimated for 
subintervals of a fixed length, and the standard deviation of the estimated parameters 
were then calculated. The goal was to minimize the variation over the total period, and 
the random walk of the offset and scale factor were considered to be small. 

Figure (4.7): Scale factor and offset as function of temperature as results of a 4 point tumble 
test performed in a heat box

Figure (4.8): Scale factor and offset as function of temperature as results of a 4 point tumble 
test performed in a heat box
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The filter parameters of the differentiating filter and the smoothing filter, and the width 
of the input area were tuned as described in section 3.6.5.

Savitzky-Golay differentiator, accelerometer output smoothed with a Savitzky-Golay 
filter

The least standard deviation in the estimated parameters was found using wide input 
areas. With the input data in the area a=[-27, 27] m/s2, and a window size for the 
differentiating filter of 85 points or 51 ms the results was as shown in the following 
figure. The window size of the smoothing filter was 232 points, or 139.2 ms. The 
standard deviation in the offset was 0.51 mV and the standard deviation in the scale 
factor was 3.4e-5 V/m/s2  

The values of the estimated offset and scale factor when using these filter parameters 
deviated from the parameters obtained from the static measurements, see section 4.1. 
The mean values of the offset was 2.8147V, and the mean value of the scale factor was 
0.025512 V/m/s2. The corresponding values taken from table 4.15 with static 
experiments is offset=2.8152V and scale factor=2.553e-2 V/m/s2.

This was combined with a static measurement of the accelerometer output for the same 
pitch and yaw angle, which was 2.8156V. The yaw angle was set to be 90o, while the 
optimum yaw angle was estimated to be about 87o, see table 4.21. In addition to 
seeking the lowest possible standard deviation in the estimated parameters over the one 
minute period, the estimated parameters should also be close to O=2.8156V and 
K=0.025512 V/(m/s2) * cos(3o)=0.02548 V/m/s2.

Figure (4.9): Acceleration calculated with the Savitzky-Golay filter, window size 51ms. The 
accelerometer output filtered with Savitzky-Golay smoother, window size 139.2ms.
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The offset and scale factor as a function of different filter parameters are shown in the 
following table.

Savitzky-Golay differentiator without smoothing the accelerometer output

As seen from the results in table 4.18 no set of parameters was found that gave an 
offset close to 2.8156V 

Savitzky-Golay filtering and Butterworth lowpass filtering

Using a window size of 19.8 ms for the differentiating Savitzky-Golay filter, and a 
cutoff frequency of 11Hz for the smoothing Butterworth filter, did not give the desired 
offset value, but gave a very good repeatability for the scale factor, 2.7e-5V/m/s2. The 
input area was chosen to be [-25, 25] m/s2.

Differentiation using a Taylor series expansion combined with Butterworth lowpass 
filtering of the accelerometer output

The estimated ideal cutoff frequencies to minimize the variation in the scale factor and 
offset were 12 Hz for the filter that lowpass filtered the position data, and 9 Hz for the 

Table (4.17): Standard variation and mean of the estimated accelerometer offset and scale factor as 
function of filter parameters of the Savitzky-Golay differentiating filter, and the Savitzky-Golay 
smoother. 

Differentiating 
filter window 
size
(ms)

Smoothing 
filter
window size
(ms)

Accelera-
tion input 
region

(m/s2)

Mean 
Offset
(V)

Standard 
deviation
Offset
(V)

Mean 
Scale 
factor

(V/m/s2)

Standard 
deviation 
scale 
factor

(V/m/s2)

57 155.6 [-12.5, 12.5] 2.8155 9.e-4  2.626e-2 2e-4

27 137.4 [-15, 15] 2.8150 1e-3 2.551e-2 2e-4

51 160.2 [-25, 25]  2.8155 5e-4 2.547e-2 3e-5

21 21 [-27, 27] 2.8147 2e-4 2.559e-2 3e-5

Table (4.18): Standard variation and mean of the estimated accelerometer offset and scale 
factor as function of filter parameters of the Savitzky-Golay differentiating filter. 
Accelerometer output not smoothed.

Differentiating 
filter window 
size
(ms)

Acceleration 
input region

(m/s2)

Mean 
Offset
(V)

Standard 
deviation 
Offset
(V)

Mean 
Scale 
factor

(V/m/s2)

Standard 
deviation 
scale fac-
tor

(V/m/s2)

24 [-10, 10] 2.8084 1e-3 2.514e-2 2e-4

18 [-15, 15] 2.8096 1e-3 2.521e-2 1e-4

15 [-25, 25] 2.8128 5e-4 2.564e-2 3e-5

12 [-27, 27] 2.8130 4e-4 2.533e-2 5e-5
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filter that lowpass filtered the accelerometer output. The results are shown in figure 
4.10. The standard deviation in the calculated offset was 0.49 mV and the standard 
deviation in the estimated scale factor was 2.5e-5 V/m/s2. Choosing the cutoff 
frequencies to be 16 Hz and 7 Hz gave a mean estimated offset 2.8140 V scale factor of 
2.540e-2 V/m/s2, which are close to the desired values. 

4.2.2   Results from Combined Static and Dynamic Experiments

4.2.3   Yaw and Pitch Alignment

Results from a series done with gain 36.4 and input interval [-g, g]

The yaw alignments is shown in figure 4.11. The data was differentiated with the 
Savitzky-Golay filter with a window size of 105 points, or 62.6ms. The data was 
smoothed with a Savitzky-Golay smoother with window size 255 points or 153ms.

The three different series gave the results shown in table 4.19       

The pitch alignment series were done with the same filter parameters as the yaw series, 
and are shown in figure 4.12. The results are displayed in table 4.20    

Figure (4.10): Direct differentiation using a Taylor series expansion of position data, lowpass 
filtered with a Butterworth filter with cutoff frequency of 12 Hz. Accelerometer output 
lowpass filtered with cutoff frequency 9 Hz.
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Results from series with input accelerations up to [-2.5g, 2.5g]   

The results shown in the tables 4.21 and 4.22 were obtained using differentiation with 
Taylor expansion, as it was shown to give the best repeatability for the scale factor. The 
accelerometer was remounted on the rig. The angles therefore have no connection to 
the ideal angles in tables 4.19 and 4.20.       

Table (4.19):  Results from estimations of the ideal yaw angle, input accelerations in the region
 [-g, g]

Series 
number

Maximum 
angle

Estimated 
standard 
deviation of the 
maximum angle Scale factor

Estimated 
standard 
deviation of the 
scale factor

1 84.38 0.1 2.5709 e-2 5e-06

2 84.41 0.1 2.5728 e-2 6e-06

3 84.43 0.1 2.5707 e-2 4e-06

Figure (4.11): Results from three different estimations of the optimal yaw angle. Input 
accelerations in the region [-g, g].
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Table (4.20):  Results from estimations of the ideal pitch angle. Input accelerations in the region 
[-g, g].

Series 
number

Maximum 
height (mm)

Estimated 
standard 
deviation, 
maximum 
height (mm)

Scale factor
(V/m/s2)

Estimated 
standard 
deviation, 
scale factor
(V/m/s2) g (m/s2)

1 6.4393 0.39623 0.025681 4.2138e-06 10.303

2 8.086 0.23303 0.025728 2.8542e-06 9.9617

Figure (4.12): Results from two different estimations of the ideal pitch angle. Input 
accelerations in the region [-g, g] 

Table (4.21):  Results from estimations of the ideal yaw angle. Input accelerations in the 
region [-2.5g, 2.5g] 

Series
Maximum 
angle

Standard 
deviation 
maximum 
angle Scale factor

Standard 
deviation scale 
factor

1 87.05 4e-2 2.5449 e-2 5e-06

2 86.65 0.1 2.5430 e-2 1e-05

3 87.16 9e-2 2.5455 e-2 9e-06
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4.2.4   Results from Combined static and dynamic Measurements

During the pitch alignments presented in the previous subsection, the measurements 
were combined with static measurements. At each input angle, the output from the 
accelerometer was logged for a period of 15 seconds. Ideally, the average of this 
measurement should be the same as the offset estimated from the dynamic 
measurements. This was not the case, the offset estimated from the line fit was in 
general about 3 mV lower than the offset estimated from the static measurement. 

As described in section 3.6.5 both second order nonlinearities and scale factor 
asymmetry can bias the estimated offset. In both cases, the scale factor will be 
asymmetric about a=0. As shown in the following figure, this was the case. There was 
a significant gap between the scale factor estimated from positive and negative 
accelerations. 

Table (4.22):  Results from estimations of the ideal pitch angle. Input accelerations in the 
region [-2.5g, 2.5g]. 

Series
Maximum 
height (mm)

Standard 
deviation 
maximum 
height 
(mm)

Scale factor
(V/m/s2)

Standard 
deviation 
scale 
factor
(V/m/s2) g (m/s2)

1 6.1 0.3 2.5373e-2 3e-06 9.7497

2 7.6 0.3 2.5348e-2 3e-06 10.2519

Figure (4.13): Difference between parameters estimated from accelerations between 
[-25, 0] m/s2 and [0, 25] m/s2.



Results 100

This asymmetry vanished if the input area was set to be a=[-10, 10] m/s2, indicating 
that the asymmetry originated from the higher accelerations and not from scale factor 
asymmetry. The apparent asymmetry may be a real asymmetry caused by second order 
nonlinearities, or the results of the stick-slip friction described in section 3.6.5.

Thus the output ideal pitch angle can be calculated from the static measurements and 
the value of the offset calculated in the static measurements. The ideal pitch height was 
then calculated to be 6.11mm. 

4.2.5   Density Plots

Ideally, the contours on the plot in figure 4.14 should have followed the blue line, 
which represents the line fit. They do not, and cause the effects discussed in section 
4.2.4. As seen in figure 4.15, which is a cross-section of the density plot paralell to axis 
number two at the line 0 on axis number one, the data are centred about the correct 
value for a=0, and the calculated mean is also 2.815 V, as it should be. Also seen in 
figure 4.14 is the fact that the concentration of points is highest at the peaks, which 
implies that cutting the input area, means cutting a lot of the data and thus increasing 
the uncertainty in the plots.   

The plot in figure 4.16 is a corresponding density plot from the Crossbow 
accelerometer. As seen from the figure, there are indications of hysteresis due to phase 
delay or other phenomena. 

Figure (4.14): Density plot of a 1 minute long experiment. The blue line is the linear fit. Units of 
the axes is V+m/s2 and is without any physical interpretation.
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4.2.6   Temperature Experiment

Two series were done with the ADXL105 unit number three. The results are shown in 
the figures 4.17 and 4.18.

Figure (4.15): section from the plot figure 4.14 at axis1=0.

Figure (4.16): Density plot for a five minutes long experiment with the Crossbow 
accelerometer.
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The first series gave the following results:
Scale factor dependency on temperature=(3.4e-6+/-2e-6) V/(m/s2)/oC
Offset dependency on temperature=(-2.3e-4+/-4e-5) V/oC

The second series gave the results:
Scale factor dependency on temperature:(1.6e-6 +/- 6e-7) V/(m/s2)/oC
Offset dependency on temperature: (2.5e-4 +/- 2e-5) V/oC  

4.3 Results from Simulations of an Inertial Tracking System

4.3.1   Simulations with White Noise, Offset and Scale Factor Errors

Inertial system error with white noise

The results shown in figure 4.19 are from simulations done with all accelerometer 
parameters modelled as ideal, and white noise with different standard deviation added 
to the accelerometer outputs. The simulation time was 20 seconds starting with zero 
error. The maximum measured error measured during 10 simulations is plotted as the 
non-stapled line in the figure, while the stapled line is the average maximum error from 
the 10 simulations. The sampling frequency of the system was set to 2 kHz.   

Effects of scale factor errors

The results in figure 4.20 is the error as function of scale factor error. The same error 
was applied to all the accelerometers. The simulation time was 20 seconds, with a 2 
kHz sampling frequency. Each of the results is a mean over 10 simulations. The 

Figure (4.17): Scale factor and offset as a function of temperature, series one.
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nominal offset was set to 2.8149 V for all the accelerometers and the scale factor to 
2.553e-2 V/(m/s2).   

Figure (4.18): Scale factor and offset as a function of temperature, series two

Figure (4.19): System error as function of added white noise. Mean over 10 separate 
simulations with random movements.
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Estimation error as function of offset error

The plot in figure 4.21 is the system error as a function of offset error. The same error 
was applied to all the accelerometers, and the error was taken as the mean over 10 
simulations for each offset error. The simulation time was 20 seconds. The values of 
the offset and the scale factor was again set to O=2.8149 V and K=2.553e-2 V/(m/s2). 

Figure (4.20): Error as function of scale factor error. 

Figure (4.21): System error as function of offset error. 
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Combined effect of white noise, offset error and scale factor error

In order to look at the combined effect of offset errors, scale factor error and white 
noise, several simulations were done where these parameters were varied. The nominal 
scale factor and offset were the same as in the preceding simulations. The error was 
taken as the mean of 10 simulations.

Figure (4.22): System error by combining scale factor errors, offset errors and white noise. 
Mean error over 10 simulations.
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4.3.2   Simulations with non-linear Accelerometer Models

When adding higher order non-linear terms to the accelerometer model, the results 
were the ones displayed in table 4.23. The nonlinear terms were compensated for by 
using the solution of the polynomial given in equation (3.60).

With cross-axis sensitivity

The next simulations included cross-axis sensitivities. The compensation was now 
done using equation (3.61) and nonlinear least squares estimation. 

Simulation using accelerometer models from table 4.15

A mean of the estimated Kip, Kio and K2 and K3 from the table 4.15 were used, while 
the results from measurement number two were used as the scale factor and offset. The errors 

Table (4.23): System error over 20 seconds. Standard deviation white noise=2 mg, 
offset=2.8149 V, scale factor =2.553e-2 V/(m/s2)

Second 
order 
coefficient
(V/(m/s2)2)

Third order 
coefficient 
(V/(m/s2)3)

Maximum error, 
mean 10 
simulations, 
uncompensated 
(mm)

Maximum error, 
mean 10 
simulations, 
compensated 
(mm)

-1e-7 1e-6 8.8e3 53.9

-5e-7 1e-8 0.16e3 47.0

 -2e-6, 1e-7 0.79e3 58.4

 -6e-6 1e-9  1.1e3  64.0

 -1e-5 1e-5  94e3  50.4

Table (4.24): System error over 20 seconds. Standard deviation white noise=3 mg, 
offset=2.8149 V, scale factor =2.553e-2 V/(m/s2)

Kip
(V/(m/s2)2)

Kio
(V/(m/s2)2)

Maximum error, 
mean 10 
simulations, 
uncompensated 
(mm)

Maximum error, 
mean 10 
simulations, 
compensated 
(mm)

-1e-8 1e-8 45.6 50.0

-1e-6 1e-8 164 47.7

1e-4 1e-8 9.69e3 40.8 

1e-2 1e-8 1.16e6 57.3

-1e-8 -1e-7 57.2 49.7

-1e-6 -1e-7 132 64.5

1e-4 -1e-7 10.7e3 31.9

1e-2 -1e-7 1.24e6 60.5
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were then calculated as the difference between the highest and the lowest estimate for the 
nonlinear factors, and the estimated standard deviation for the scale factor and the offset. 

. 

4.4 Results from Simulations of a Local Positioning System

4.4.1   Simulations of Ultrasonic System and Inertial System

Accelerometer noise modelled as white noise

Using the model from equation (3.65), applying the ideal smoother and minimizing the 
residuals with a sampling frequency of 10Hz for the simulated ultrasonic system, gave 
an ideal spectral density for the white noise of . The spectral 

density suggested in the ADXL105 datasheets is  . This main 
reason behind this difference was probably the vibrations induced by the ball bearings, 
described in section 3.6.4, which are added to the white noise generated by the 
accelerometer. Experiments were done where the accelerometer output was filtered 
with a digital lowpass filter to remove some of the vibrations, but this did not improve 
the performance of the estimations.

The results shown in figure 4.23 is an example from a simulation. The estimation 
obtained from the smoother is shown as the dashed line, and advantages of applying 
smoothing can clearly be seen from the plot. 

Table (4.25): Accelerometer model used in simulation which results are shown in table 4.26

Parameter Offset K K2 K3 Kip Kio

Value 2.8150 2.552e-2 -1.3562e-6 -2.6612e-8 -7.9150e-7 4.40e-7

Error 2e-4 2e-5 3.6e-6 7.38e-6 3.36e-6 2.39e-6

Table (4.26): System error over 20 seconds. Standard deviation white noise=3 mg. 20 
simulations.

Without parameter errors With parameter errors

Maximum 
error mean 
(mm)

Maximum 
error (mm)

Maximum 
error mean 
(mm)

Maximum 
error (mm)

Linear calcu-
lations

526 954 63.5e3 87.3e3

Compen-
sated for non-
linear terms

81.2 132 39.0e3 43.1e3

Compen-
sated for all 
terms

59 138 122 183

1800µg f Hz( ) 1 2/–⁄

225µg f Hz( ) 1 2/–⁄
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The results shown in figure 4.24 is the results from a single run, where the data from 
the position sensor has been added noise, and sampled at different frequencies. The 
error is the difference between the smoothed output and the position measured with the 
capacitive position sensor. 

Figure 4.25 displays the results from the same run, but the standard deviation of the 
noise added to the position to simulate the ultrasonic system is now varied. The 
standard deviation of the error and the maximum measured error is taken as a mean 
over five different sets of generated ultrasonic position data for each different value of 
the standard deviation of the added noise.            

Accelerometer noise modelled as first order Markov process

The optimal time coefficient for the Markov process,  was shown to 
vary as a function of the sampling frequency of the primary system. The spectral 
density was determined by minimizing the residuals for with an ideal smoother to be 

. The ideal cutoff frequency, , was estimated by 
minimizing the residuals as described in section 3.8.4 to be about 300 radians/s or 
48Hz for a sampling frequency of 10 Hz for the simulated ultrasonic system.

Figure 4.26 and 4.27 shows performance of the smoothing filter when the primary 
system parameters were varied. The results in figure 4.27 are obtained from averaging 
over 5 simulations for each frequency instead of using one set of measurement data as 
it was done for the plots in figure 4.25. The 1  line in the plot was calculated as given 
in equation (3.70).  

Figure 4.23: Example of simulation of a low accuracy ultrasonic system combined with an 
inertial system. Sampling frequency 4 Hz, error of primary system: =30mmσ

x· x T⁄– w+=

0.26g f Hz( ) 1 2/–⁄ β 1 T⁄=

σ
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Accelerometer noise modelled as white noise and first order Markov process

The performance of the ideal smoother when the system was modelled as defined in 
equation (3.67) can be seen in figure 4.28. The ideal cutoff frequency of the Markov 
process was estimated to be 144Hz, which makes sense considering that the input from 

Figure 4.24: Smoothing filter performance as function of primary system sampling frequency. 
The standard deviation ultrasonic system error =10mm. Accelerometer noise 
modelled as white noise

Figure 4.25: Smoothing filter performance as function of ultrasonic system error. Sampling 
frequency of ultrasonic system 10Hz. Accelerometer noise modelled as white noise.

σ
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the accelerometer has been lowpass filtered by the analog RC filter seen in figure 3.14 
with a cutoff frequency of 159Hz. The spectral density matrix defined in equation 
(3.68) was estimated to be

(4.1)

Figure 4.26: Performance of smoothing filter as function of primary system sampling 
frequency. Standard deviation of ultrasonic system noise: =10mm. Accelerometer 
noise modelled as first order Markov process.

Figure 4.27: Smoothing filter performance as function of ultrasonic system error. Sampling 
frequency of ultrasonic system 10Hz. Accelerometer noise modelled as a first order 
Markov process.

σ

Q̃ 122µg f Hz1 2/⁄ 0

0 0.202g f Hz1 2/⁄
=



Results 111

for f=10Hz and =1cm. The ideal parameters was now shown to vary to some extent 
with the standard deviation of the noise added to the position to simulate the ultrasonic 
system. 

Residual minimization and higher order terms

As mentioned in section 3.8.3, the input acceleration as a function of accelerometer 
output can be calculated as the solution to  or as the solution of the 
equation . The results shown in the previous figures 
were all obtained by using the third order polynomial. The improved performance by 
using this model, can clearly be seen in figure 4.29.

Using these methods gave the estimates K2=-8.7e-6 and K3=4.8e-5 when the 
accelerometer noise was modelled as white noise and K2=-2.5e-5 and K3=3e-5 when 
the process noise was modelled as the sum of a first order Markov process and white 
noise.

4.4.2   Simulations with Periods without Primary System Measurements

Figure 4.30 shows an example of a simulation where the data from the primary system 
is left out for a 10 seconds long interval.  As mentioned in section 3.8.6, the error in the 
estimated position during the period without primary system measurement updates 

Figure 4.28: Smoothing filter performance as function of primary system error (upper) and 
primary system sampling frequency (lower). Sampling frequency of the ultrasonic 
system was 10Hz for the upper plot, and the system error =10mm for the lower plot. 
Accelerometer noise modelled as the sum of a first order Markov process and white 
noise.

σ

σ

E a( ) O Ka+=
E a( ) O Ka K2a2 K3a3+ + +=
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depended on several factors, as for instance the shape of the movement of the system 
during the period.

In order to obtain an estimate of the error for a given interval, the interval was placed at 
different times during each of the experiments described in section 3.8.2. The 
maximum error and the standard deviation of the error was then logged for each 
starting time. For each starting time 5 different sets of ultrasonic position 

Figure 4.29: Smoothing filter performance as function of frequency for a linear and nonlinear 
accelerometer model. Maximum error plotted. Primary system error =10mm 
Accelerometer noise modelled as sum of Markov process and white noise.

Figure 4.30: Example of Kalman filter performance in periods without measurement update. 

σ
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measurements were generated, and the results averaged. The accelerometer noise was 
modelled as given in equation (3.67) during all of these simulations, with the noise 
parameters as estimated in section 4.4.1.

High-accuracy primary system

The high accuracy primary system was defined as added noise with standard deviation 
=1mm added to the position data, and a sampling frequency of 20Hz. The errors 

when the interval without measurements update was placed at different times are 
shown in figure 4.31. When the length of the interval was five seconds, the mean 
maximum error was 6.0mm and the mean of the standard deviation of the estimated 
error was 2.3mm. For the 10 seconds long interval without measurement updates, the 
mean of the maximum error was 9.7mm and the mean of the estimated standard 
deviation was 3.2mm. 

Low accuracy primary system

A low accuracy ultrasonic system was simulated by adding noise with 30mm standard 
deviation and sampling with a frequency of 4Hz, and the results of the simulations are 

Figure 4.31: Smoothing filter performance during periods without measurement updates as 
function of the interval starting time with a high accuracy ultrasonic system as primary 
system.

σ
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shown in figure 4.31. The maximum error did not stay within four standard deviations 
when the interval length was ten seconds. The mean of the result are shown in table 1.   

No primary system

These simulations corresponded with a situation where the inertial system is placed in 
a known position before and after each run. The same estimated offset, scale factor and 
higher order coefficients were used in the estimations on each run. The six different 
runs of the type shown in figure 3.41 were used, and the position was estimated 

Figure 4.32: Smoothing filter performance during periods without measurement updates as 
function of the interval starting time with a low accuracy ultrasonic system as primary 
system.

TABLE 1. Mean smoothing filter performance during 
periods without measurement updates with a low accuracy
primary ultrasonic system. 

Interval 
length (s)

Mean 
maximum 
error (mm)

Mean 
standard 
deviation of 
error (mm)

3 18.7 3.28

5 24.6 6.26

10 34.8 16.7
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without primary system measurements during the time the system was moving. The 
results of the estimations are shown in table 2. 

4.4.3   Simulations of an Ultrasonic System

By minimizing residuals, the correlation time was found to be =62.5ms and 

the spectral density of the white noise to be . The performance of the 
smoothing filter is shown in figure 4.33.

TABLE 2. Smoothing filter performance with the inertial system as 
a stand-alone system.

Run number
Movement 
time (s)

Standard 
deviation of 
error (mm)

Maximum 
error (mm)

1 14.4 4.36 17.2

2 15.0 3.29 16.4

3 14.58 2.05 8.83

4 13.8 2.54 10.7

5 18.48 2.06 10.0

6 14.58 2.14 8.88

Figure 4.33: Performance of the smoothing filter with a stand-alone ultrasonic system as 
function of system error (upper) and sampling frequency (lower). Sampling frequency 
10Hz for the upper plot, and system error =10mm in the lower plot.

T 1 β⁄=

0.94g f Hz1 2/⁄
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5   Discussion

5.1 Data Acquisition Setup

As mentioned in section 3.3 the main problem with the DAQ setup used in this thesis 
was the variations in the offset voltage of the instrumentation amplifier. The bipolar 
capacitance used to lowpass the offset voltage, CB10 in figure 3.14, was the main 
suspect as the cause of the error. The error could have been avoided by choosing a 
different capacitance with smaller leakage current, using two capacitances with 
opposite temperature characteristics, or simply by removing the capacitance. The gain 
of the AD620 instrumentation amplifier is set by a single resistance, R13 in figure 3.14. 
Although a metal film resistor with 1% tolerance was used, the temperature coefficient 
was unknown. A metal film or wire wound resistor with lowest possible temperature 
coefficient should have been used to avoid changes in the amplifier gain as a result of 
variations in the ambient temperature.

The source of the problem may also have been temperature dependent changes in the 
performance of the AD620 amplifier, which would have been more difficult to solve. 
Extensive testing would have been needed to model and compensate for such errors.

When the problems with variations in the offset had been discovered and compensated 
for by measuring the gain and offset before each experiment, the measurement 
accuracy was good enough. This was an ad hoc solution, but proved to be effective.

An alternative to using an instrumentation amplifier could be the setup shown in figure 
5.1. This setup use a high resolution delta-sigma ADC with a built in voltage reference 
and amplifier with programmable gain. The voltage reference may be used to set the 
offset voltage of the input as the negative input to the differential ADC. 

The main advantage of using the instrumentation amplifier and a PC-based commercial 
DAQ card, was the ability to control the sampling intervals. The input data was time-
stamped with good accuracy, and the outputs from the position sensor and the 

Figure 5.1: DAQ setup using an external ADC interfaced via the PC serial port. 
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accelerometer during the dynamic experiments were synchronized. Using an external 
ADC as shown in figure 5.1 would require two different digital interfaces for the 
position sensor and for the accelerometer, thus complicating the system and 
introducing problems with time-stamping and synchronization. This would not cause 
any problems in a tumble-test where the accelerometer output averaged over time is 
used, but in a local positioning system and during the dynamic experiments, the 
outputs from the position sensor and the IMU need to be synchronized. When using an 
external ADC this problem may be solved by over-sampling accelerometer output and 
taking the mean over small intervals, or by constructing a setup that time-stamps the 
data from both systems. 

5.2 Static Experiments

5.2.1   The setup

Many of the measurements suffered from the flaw in the DAQ setup described in the 
previous subsection. When the problem was discovered, and compensated for by 
measuring the amplifier offset and gain before each experiment, the repeatability of the 
estimations over longer periods improved.

The absolute accuracy of the rotation stage used during the experiments was 0.05 
degrees, which is in the medium performance range. As described in the IEEE 
accelerometer testing standard (IEEE Std 1293-1999), extreme accuracy in the 
measurements is needed to get accurate estimations of quadratic and especially cubic 
nonlinearities. Thus further testing is needed to estimated the nonlinear coefficients, 
either by increasing the number of measurement in a test, or using a more accurate 
rotation device. This was reflected in the variations of the estimated parameters. 

Because the input angle of the rotation stage was set manually, each experiment lasted 
up to one hour. As all the input data is used in the estimations, it is impossible to detect 
changes in accelerometer parameters with bandwidths higher than 1/T, where T is the 
duration of the measurements. An automated device may decrease the time needed to 
do each measurement series, and thus increase the ability to track time dependent 
variations in the estimated parameters. A machine dividing head, as suggested in the 
IEEE accelerometer testing standard may be a good instruments for these tests, but 
would increase the complexity and cost of the setup.

Mounting the accelerometer on a sheet of metal with a 90 degrees bend a described in 
section 3.5.3 and shown in the figures 3.22 and 3.23, worked as a simple way to be able 
to rotate the accelerometer about both the principle- and the output-axis. However the 
procedure described to align the sheet to previous mounts on the rotations stage did not 
give the wanted results. A difference of 0.45 o was estimated between two of the 
remounts, see table 4.12. To improve the method, the accelerometer under test may be 
mounted on a cube which is machined close to perfectly cubic. The cube could then be 
clamped on the rotation stage using a spring, as seen in figure 5.2. This method would 
make it possible to do rotations about all the three axes, the input-, output- and 
principle-axis. Rotations about the input axis could be used to measure the alignment 
of the input axis to the side of the cube.
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The experiments showed that the heat boxes described in section 3.2 were inconvenient 
as a mean to measure performance as a function of temperature. The control systems 
using a Peltier element like the MPT5000 seemed like an ideal solution for these kind 
of experiments.

The system specifications listed in section 2.1.1 gives that the input range of the system 
is [-2g, 2g]. The multi-position tumble tests, at least when performed on the surface of 
the earth, can only characterize accelerometers in the input region a=[-g, g]. At the 
higher input accelerations, the higher order nonlinear terms may become more 
dominant, and the estimated scale factor may change if a different range is used, as 
illustrated in figure 3.37.

5.2.2   The results

The long term static measurements proved like a good way to examine changes in 
offset over time, but other experimental methods is needed to look at changes in scale 
factor. Using the method of identifying noise slopes in a PSD plot from section 2.4.3, 
the output from half an hour of the high-accuracy Crossbow accelerometer in a static 
position shown in figure 4.3 can be interpreted as the sum white noise and random 
walk. The random walk has frequencies below 0.1 Hz. The slopes for the ADXL105 
accelerometers were in general not that easy to identify. As seen from figure 4.2 the 
spectral density is higher, and the point where the white noise becomes flicker noise or 
random walk is at 1 Hz or higher. Thus the better performance of the Crossbow 
accelerometer is evident from these plots.

The results in the tables 4.3 to 4.9 shows the estimated standard deviation for each 
parameter increased as the number of parameters included in the estimation was 
increased. This is probably due to the fact that the number of estimated parameters is 
increased, but not the corresponding number of measurements. Table 4.10 and 4.11 
shown that the standard deviation estimated for the offset and the scale factor increases 
significantly when second and third order nonlinearities are estimated, but the value of 
the estimated parameters stays close to unchanged. The estimated standard deviation of 

Figure 5.2: Alternative setup aimed to be able to rotate the accelerometer about more than 
one axis. 
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the offset and the scale factor when only the offset and the scale factor are estimated 
from the experiment, may be a better indication of the true error. 

The mean of the estimated standard deviations for the offset shown in table 4.15, is   
0.2 mV which matches the variation of the estimated offset between each measurement 
series. The scale factor had an estimated standard deviation of around 1e-5 V/(m/s2) 
which also matched the variations between each measurement series. The estimates 
done for the Crossbow accelerometer in table 4.10 gave a standard deviation of 1e-5 V 
for the offset and 1e-6 V/(m/s2) for the scale factor. This indicates that the estimated 
standard deviations in for the ADXL105 accelerometer is limited by random walk or 
other noise phenomena, not by the accuracy of the experimental setup. A standard 
deviation of 0.2 mV matches the plot shown in figure 4.5, where the random walk over 
half an hour has an amplitude of the order 0.2 mV. Thus measurements may have to be 
repeated over longer periods of time in order to compensate for the offset random walk 
in the ADXL105. 

The standard deviations of the second and third order nonlinear coefficients and the 
cross-axis sensitivity also seen from the table 4.15, are several orders larger than the 
estimated parameters. This is also reflected in the variations of the estimated 
parameters. The same variations were seen in the estimated nonlinear coefficients of 
the Crossbow accelerometer, indicating that further and more accurate test procedures 
are needed to estimate these parameters.

The three different series shown in the figures 4.6, 4.7 and 4.8 suggest that the offset 
and the scale factor as function of temperature is more predictable than the  mV/oC 
specified in the datasheets from Analog Devices. The tests where done with two 
different accelerometers and they both showed that the offset decreased with 
temperature between 15 and 40 oC, while the scale factor stayed constant within the 
measurement accuracy. The difference between the two series done with the same 
accelerometer shown in the figures 4.7 and 4.8, may be caused by measurement errors 
due to misalignments or it may be real variations in how the offset varies with 
temperature. Further testing is needed to look into this.

5.3 Dynamic Experiments

5.3.1   The setup

The main problem with the setup used during these experiments was the vibrational 
accelerations picked up by the accelerometers and the acceleration due to stick-slip 
friction. The maximum amplitude of the vibrations was up to 0.26 g, which is quite 
high. With a frequency of up to 300Hz, the amplitude of sinusoidal movements would 
have to be , which is below the 
configured resolution of the position sensor. 

The following suggestions are given as possible improvements of the experimental 
setup:

1±

Ap 0.26 9.81m s2⁄⋅( ) 2π300 s⁄( )2⁄ 0.7µm= =
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• Use anti-vibrational mounting. The accelerometer could be mounted in a more rigid 
way inside the aluminium box, instead of using two plastic screws. Passive or active 
damping could be also be applied. 

• Take more care to avoid vibrations transferring trough cable. Other kind of system 
could be used to transfer the signals from the accelerometer, for instance by wires 
attached to the inside of the box instead of attaching the wires from the wire directly 
to the chip carrier board by. Using a battery and wireless communication would be 
the ideal solution, provided that the linear voltage regulator is insensitive to changes 
in the supply voltage. This method would make it harder to synchronize data from 
the accelerometer and the position sensor.

• Changing the ball bearings, which may have a damaged or deformed ball, or 
consider another way of mounting the platform on the rig.

The influence of the stick-slip friction on the estimations was discussed in section 
3.6.5. The stick-slip friction was shown to vary as a function of the shape of the 
movement and the velocity. The following points are suggested to reduce this effect.

• Use mechanical force to move the accelerometer back and forth. The input 
movement can be better controlled, and the slip-stick friction be reduced if the 
system is rigid enough.

• Use less rigid ball bearings. The shock experienced every time the sensor starts 
moving at the peak of each cycle, could be reduced by reducing the friction between 
the platform and the rig. 

• Disregard signals in the areas where the effects of stick-slip friction occurs. This 
reduces the amounts of data, as the sensor spends the most time in the areas where 
the velocity is lowest. The total amount of input data may have to be increased to 
keep the same accuracy. 

The accuracy of the estimations could be improved to some extent if some or all of the 
vibrations could be removed. Figure 5.3 shows an A-V plot from a simulated 
movement. The accelerometer is modelled as the results from table 4.15.

5.3.2   The results

As seen in the tables 4.17 and 4.18, the estimated accelerometer offset and scale factor 
depended on the filter parameters and the shape of the movement. The long time 
stability of the estimated offset seen in the figures 4.9 and 4.10 was higher than the 
variations in the half-hour plot in figure 4.5, independent of the chosen filter 
parameters. The long time variations in the scale factor were also larger than the 
variations in the scale factor estimated from the static tests. 

The results of the alignment experiments were independent of whether the estimated 
scale factor matched the real value. The results in table 4.19 shows a repeatability of 
0.1 degrees which is quite good, as alignment better than 0.1 degrees puts great 
demands on the resolution of which the scale factor has be estimated. The resolution 
has to be in the order cos(0.1o)=0.9999984 or 10-6 which is better than the resolution 
obtained during the static experiments. As the repeatability of the estimations was 
shown to depend on the movements of the platform, the good results may also have 
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been a result of that the operator who pushed the platform was able to repeat the same 
movements for each of the experiments. 

Decreasing the gain of the amplifier and thus increasing the input range improved the 
repeatability of the estimated accelerometer parameters to some extent. The effects of 
the stick-slip friction were less dominating when the input range was higher. The 
apparently lower accuracy in the alignment experiments seen when comparing the 
results in table 4.19 to the ones in table 4.21, may be caused by the fact that it was 
much harder to do approximately periodic sinusoidal movements when the velocities 
increased. The accelerations after the gain was decreased were measured to have 
amplitudes up to 3 g, which fits the system specifications from section 2.1.1 better than 
the input during the static experiments which was limited to 1 g. 

The density plots from figure 4.16 shows a phase delay in the signal from the 
Crossbow accelerometer. The delay may have been caused by the a malfunction in the 
sensor, or it may be phase delay in the output of the sensor that not is specified in the 
datasheets from Crossbow. This phenomenon could not have been discovered in a 
multi-position tumble test or in a centrifuge test. 

5.4 Simulations of an Inertial Tracking System

5.4.1   The simulations

As shown in the figures 4.19 to 4.21, the simulations appeared to be a good way 
estimate the influence of one single error in an estimated parameter on the performance 

Figure 5.3: A-V plot for simulated dynamic experiment. Upper plot with vibrations with 
magnitudes of 0.26 g, correlated with velocity. Lower plot with vibrations with 
magnitudes of 0.26g/4=65 mg
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of the IMU in a stand-alone inertial system. The performance of the system as a 
function of several combined errors was more complex. A statistical method like for 
instance the algorithm called ‘variation of the parameters’ could have been used to 
examine the combined effects of the errors. 

In addition the setup had the advantage that models of all thinkable accelerometers can 
be inserted into the simulations, and thus also the performance of any future 
components with expected specifications could be tested. This could also be seen as a 
disadvantage as models instead of real accelerometer output were used. Any 
unmodelled accelerometer errors are not included in the simulations. As mentioned in 
section 3.7 the main flaw with these simulations were the missing gyro- and 
misalignment errors. 

The method of generating random movements and calculating the mean error seemed 
to work as way to test the performance of the system. The method could be expanded 
by increasing the number of simulations and mapping the probability density of the 
error. 

Solving equation 3.61 numerically by the method of least squares was shown to be 
effective to compensate for cross-axis sensitivity, although time-consuming. The 
processing time for 20 seconds of output from the IMU increased from 20-30 seconds 
to about three minutes. No analytical solution to the equation was found, at least within 
the computational power of the mathematical software Maple. An analytical solution 
was found when numeric values where inserted for all the parameters except the IMU 
accelerometer outputs, but still far too complex to be implemented effectively in a 
MATLAB function.

Accelerometer errors where modelled as constants and no time-varying errors where 
implemented. This could easily have been achieved by modelling the errors as random 
processes and using the random number generator of MATLAB. The models for the 
ADXL105 accelerometer noise obtained in section 4.4.1 could have been inserted in 
the simulations. 

5.4.2   The results

Figure 4.19, figure 4.20 and figure 4.21 showed that the system error as a function of 
offset error, scale factor error and white noise, was proportional to the parameter errors 
and the standard deviation of the white noise. The results shown in figure 4.22 and 
other similar simulations indicated that the combined effect of these three errors was a 
linear combination of the separate effects.

The effect of nonlinear errors and cross-axis sensitivities on the system performance 
was more complex. As seen in table 4.23 the nonlinear parameters can be compensated 
for, while the error can be large if they are not accounted for. In order to get the wanted 
results, the compensation have to be performed when the magnitude of the coefficients 
reach a certain level. for instance the values K2=-1e-5 V/(m/s2)2 and K3= 1e-5 V/(m/
s2)3 gave an error of 94 meter when not compensated for and 50.4 mm when 
compensated for. 
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The results displayed in table 4.24 showed that errors due to the cross-axis terms is in 
the same order as for the nonlinear terms. The results also showed that the errors can be 
compensated, using the nonlinear least squares algorithm to solve the nonlinear 
equation (3.61). 

The simulations using the ADXL105 accelerometer model from the static 
measurements which results are shown in table 4.26, showed that compensating for the 
nonlinear and cross-axis terms is necessary when their magnitude reach a certain level. 
As seen in table 4.26, compensating for the cross-axis terms is necessary when the 
magnitudes are in the order of 10-6, while compensating for the nonlinear terms may be 
good enough when they are in the order of 10-7. 

When the specific force is calculated from the IMU output as the least squares solution 
of the nonlinear equation (3.61), the performance of the system is limited by the errors 
in the estimated parameters and the noise floor of the accelerometers. The error in the 
estimated parameters also include parameter random walk. If compensation for third 
order nonlinearities is applied as solution to equation (3.60), then the performance is 
decided by measurement errors, noise floor and the magnitude of the cross-axis 
coefficients. If no form of compensation is applied and the specific force is calculated 
from the linear equation (3.59), then the performance of the system is decided by 
magnitude of the nonlinear coefficients and the cross-axis sensitivities together with 
the accelerometer noise floor and the measurement errors. 

5.5 Simulation of a local positioning system

5.5.1   The simulations

The main advantage with these simulations was that real accelerometer output was 
used in the simulations, which made them close to reality. The main disadvantage was 
that the movements were limited to one dimension, and that any gyro errors which 
according to Titterton and Weston (1997) will dominate the error of an strap-down 
inertial system, are left out from the simulations. In addition, the model of the primary 
system, may not have been realistic.

Using a linear Kalman smoother, showed to be very effective and especially increased 
the time of which the inertial system can manage within a given error without data 
from the primary system. The ideal smoother also worked as way to test and verify 
different noise models for the accelerometer, which are needed in a minimum variance 
filter like the Kalman filter.

5.5.2   The results

When estimating the accelerometer noise, different noise models were shown to fit for 
different primary system parameters as shown in section 4.4.1. This indicates that there 
are unmodelled errors in the accelerometer output. The vibrations picked up by the 
accelerometer from the rig would probably have to be modelled to get optimal filter 
performance, but the vibrations are correlated with the velocity. According to 
Jazwinski (1970) Ito calculus is needed to cope with errors correlated with the state of 
the system, which was considered to be way beyond the scope of this thesis.
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For low primary system sampling frequencies, the accelerometer noise was best 
modelled as the sum of a first older Markov process and white noise, see figure 4.28. 
The cutoff frequency of the Markov process was shown to be close to the cutoff 
frequency of the first order lowpass filter in the analog signal conditioning.

The figures 4.31 and 4.32 showed that the performance of the inertial system during 
periods without measurement updates depends on the accuracy and sampling 
frequency of the primary system as well as the quality of the inertial system. Thus no 
clear conclusion can be made on the performance of the inertial system during stand-
alone periods without knowing the primary system specifications. In order to get 
simulations close to reality, some focus should be set on measuring and modelling the 
performance of primary systems as well as inertial components and systems. 

The improvement of the results when compensating for higher order nonlinear terms 
shown in 4.29, may be due to the fact that the nonlinear terms compensate for errors in 
the estimation of the scale factor. The scale factor was estimated using the methods 
from the dynamic experiments, which was shown to give a relatively large uncertainty 
in the estimations. The estimated nonlinear terms did not match magnitude of the 
nonlinear coefficients estimated during the multi-position tumble tests. 

The inertial system as a stand alone system, can not be directly be compared to the 
results from the simulations of an IMU, as a linear smoother was applied on the 
accelerometer output. As seen in figure 4.30 the smoothing filter improves the 
performance of the estimation to a great extent. 

5.6 General Discussion

The simulations of an inertial system which results were given in section 4.3, showed 
that it is possible to extend the navigation algorithms to compensate for both nonlinear 
terms and cross-axis sensitivities if values of these coefficients are known. The 
simulations also showed that the performance of the system will be dominated by these 
errors if they are large enough and not compensated for. 

The experiments setups tested in this thesis did not have the accuracy to measure these 
coefficients, which made it impossible to make any conclusions on the long time 
stability of the terms. Using an accurate on one or more units, may give indications on 
whether these parameters are stable over time. To repeat such procedures after each 
start-up, would require a lot of expensive experimental equipment and be time-
consuming. If these coefficients prove to be relatively constant over time, each 
component may calibrated once. The scale factor and the offset could be determined 
more often by using less accurate tests.

The accuracy over time for a given accelerometer if compensation for nonlinear terms 
and cross-axis sensitivities is not applied, can be estimated by the magnitude of these 
parameters together with the parameter random walk an noise floor.
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6   Conclusion and Recommendations

Conclusion

Two different experimental setups to characterize accelerometers were developed and 
tested on different low-cost accelerometers. 

The multi-position tumble tests which used the static force generated by gravity as 
input, was shown to be accurate enough to estimate the accelerometer parameters 
offset and scale factor with a repeatability in the order .The accuracy of 
the setup was not good enough to get accurate estimations of nonlinear factors or the 
sensitivity to accelerations normal to the input axis. The setup can be improved by 
using more accurate equipment, or increasing the number of measurements in each 
experiment.

The second setup which used dynamic accelerations in one dimension and an accurate 
position sensor to calculate the accelerations, was shown to be corrupted by vibrations 
in the experimental equipment picked up by the accelerometer. The method could be 
improved and possibly used to characterize accelerometers if the experimental 
equipment is modified to damp or remove most of the vibrations. However the setup 
proved to be useful for doing simulations of a one-dimensional local positioning 
system.

Using multi-positions tumble tests on the low-cost ADXL105 accelerometer from 
Analog Devices showed that each unit was different characteristics and had to be 
calibrated individually. The data gathered from the experiments where the parameters 
were examined as function of temperature, concluded that the accelerometer offset 
varied with temperature as -0.3 mV/oC to -0.4 mV/oC in the region oC, 
while the scale factor stayed constant within the measurement accuracy. This is a 
significant improvement of the performance specified in the ADXL105 datasheets, that 
the offset could change with temperature as  mV/oC. Further experiments are 
needed to look at long-time variations like run-to-run differences and aging if any 
conclusion is to be made on whether the accelerometer model needs to be recalibrated 
each time after power-up. 

The simulations of a strap-down inertial navigation system conducted in this thesis, 
showed that both cross-axis sensitivity and higher order nonlinear coefficients can be 
compensated for if they are known, and thus improving the performance of the system 
several orders. This requires much computational power and would be difficult to 
achieve in a real time system. 

The simulations of a one-dimensional local positioning system indicated that 
combining a chosen primary system with an inertial system would improve the 
performance of the local positioning compared to the primary system as a stand-alone 
application. The performance of the inertial system as a back-up system during periods 
where data from the primary system is unavailable was shown to depend on the 
accuracy of the primary system. The application of an ideal smoothing filter improved 
the performance of the system significantly. 
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As the errors of a strap-down inertial system is dominated by errors of the gyros, it is 
hard to make any conclusion on possible performance of any present of future system 
on the basis of the results gathered in this thesis. In one dimension, the error using the 
ADXL105 accelerometer as a stand-alone system was proven to be as low as 1 cm over 
10-15 seconds. 

Future work

This has only looked in to parts of the problem of constructing a local positioning 
system using a primary system and low-cost inertial components. Much work is still 
left, for instance testing and modelling of low-cost gyroscopes. These models could 
then be inserted into simulations similar to the ones described in this thesis to get a 
better estimation of the performance of an low-cost inertial system. 

Magnetic heading systems could also be tested as extra means to determine the heading 
of the IMU in addition to the gyros. The systems should be tested, and experiments 
conducted to verify performance. 

Accelerometer parameter estimation can also be done with an extended Kalman filter. 
Attempts were done to include this in this thesis, but suitable filters had not been 
developed before the end of the work. Parameter estimation using nonlinear Kalman 
filters or nonlinear observers could be an integrated part of the system. 

If a model good model of the primary system is available, the sensor outputs from the 
IMU and the primary system can be integrated in a tightly coupled system to increase 
the performance, as described by Vik (2000). Thus experimental testing to look at the 
performance and make models of different primary systems may be a good idea. 
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APPENDIX A III

APPENDIX A  Matlab Code

1 %%%%%%%%  Savitzky-Golay algorithm %%%%%%%%%%

2 %Writtten by Morten Stakkeland, Physics Department, University of Oslo

3 function output=savgol(m,nr,nl,id,inp,tid)

4 %The Savitzky-Golay smoothing and differentiation algorithm

5 % 1. Calculate A as given in  14.8.6

6 sx=nr+nl+1; sy=m+1; le=length (inp);

7 A=zeros(sx,sy);

8 for i=1:sx

9     for j=1:sy

10         A(i,j)=(i-nr-1)^(j-1);

11     end

12 end

13 % 2. Calculate (A'A)^-1

14 mi=A'*A;

15 B=inv(mi);

16 % 3 Calculate cn

17 c=zeros(sx,1);

18 for i=1:sx

19     for j=1:sy

20         c(i,1)=c(i,1)+B(id+1,j)*(i-nr-1)^(j-1);

21     end

22 end

23 le2=length(c);

24 %3 Construct matrix suitable for convolution

25 d=floor(le2/2);

26 e=zeros((d*2+le),1);

27 for i=1:le+d

28     if i<=d

29         e(i,1)=inp(1,1);

30         e(2*d+le-i+1,1)=inp(le,1);

31     else

32       e(i,1)=inp(i-d,1);

33   end

34 end

35 % 4 Calculate normalizaton constant

36 if id==0 

37     fak=1;

38 else

39     cp=cumprod(1:id);

40     fak=cp(id);

41 end

42 mi=(-1)^(id);

43 nor=mi*(1/fak)*((tid(le)-tid(1))/(le-1))^(id);

44 % 5 Convolution

45 f=conv(e,c);

46 f=f/nor;

47 output=f(le2:(le2+le-1));

48

49

50 %%%%%%%%%%%% least squares estimate %%%%%%%%%%

51 function least_squares_estimate(E,T,g0)

52 % g0=9.81897919;

53 n=length(E);

54

55 W=zeros(1,n);

56 W=((1+abs(2105*sin(T)))/2106);

57 W2=W.^2;

58

59 %Summing

60 cost=g0*cos(T);

61 cost2=cost.^2;

62 cost3=cost.^3;

63 cost4=cost.^4;

64 cost5=cost.^5;

65 cost6=cost.^6;

66 scost=sum(cost./W2);

67 scost2=sum(cost2./W2);

68 scost3=sum(cost3./W2);

69 scost4=sum(cost4./W2);

70 scost5=sum(cost5./W2);
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71 scost6=sum(cost6./W2);

72

73 sint=g0*sin(T);

74 sint2=sint.^2;

75 ssint=sum(sint./W2);

76 ssint2=sum(sint2./W2);

77

78 costsint=cost.*sint;

79 costsint2=cost.*sint2;

80 cost2sint=cost2.*sint;

81 cost2sint2=cost2.*sint2;

82 cost3sint=cost3.*sint;

83 cost4sint=cost4.*sint;

84 scostsint=sum(costsint./W2);

85 scostsint2=sum(costsint2./W2);

86 scost2sint=sum(cost2sint./W2);

87 scost2sint2=sum(cost2sint2./W2);

88 scost3sint=sum(cost3sint./W2);

89 scost4sint=sum(cost4sint./W2);

90

91 sig=sign(cost);

92 sig2=sig.^2;

93 sigcost=sig.*cost;

94 sigcost2=sig.*cost2;

95 sigcost3=sig.*cost3;

96 sigcost4=sig.*cost4;

97 sigcost5=sig.*cost5;

98 ssig=sum(sig./W2);

99 ssig2=sum(sig2./W2);

100 ssigcost=sum(sigcost./W2);

101 ssigcost2=sum(sigcost2./W2);

102 ssigcost3=sum(sigcost3./W2);

103 ssigcost4=sum(sigcost4./W2);

104 ssigcost5=sum(sigcost5./W2);

105

106 sigsint=sig.*sint;

107 sigsint2=sig.*sint2;

108 sigcostsint=sig.*costsint;

109 sigcost2sint=sig.*cost2.*sint;

110 sigcost3sint=sig.*cost3.*sint;

111 ssigsint=sum(sigsint./W2);

112 ssigsint2=sum(sigsint2./W2);

113 ssigcostsint=sum(sigcostsint./W2);

114 ssigcost2sint=sum(sigcost2sint./W2);

115 ssigcost3sint=sum(sigcost3sint./W2);

116

117 ecost=E.*cost;

118 ecost2=E.*cost2;

119 ecost3=E.*cost3;

120 esint=E.*sint;

121 ecostsint=E.*costsint;

122 esig=E.*sig;

123 esigcost=E.*sig.*cost;

124 esigcost2=E.*sig.*cost2;

125 se=sum(E./W2);

126 secost=sum(ecost./W2);

127 secost2=sum(ecost2./W2);

128 secost3=sum(ecost3./W2);

129 sesint=sum(esint./W2);

130 secostsint=sum(ecostsint./W2);

131 sesig=sum(esig./W2);

132 sesigcost=sum(esigcost./W2);

133 sesigcost2=sum(esigcost2./W2);

134

135 sw=sum(1./W2);

136

137 %%%%%%%%%%%%%% Estimate Offset, Scale factor and misallignement %%%%%%%%%%

138 M=[ sw       -scost     -ssint; 

139     -scost  scost2    scostsint;

140     -ssint  scostsint ssint2];
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141 x=[ se;

142     -secost;

143     -sesint];

144 XM=M\x;

145 %Normal Matrix

146 A=M;

147 p=[XM(1),0,XM(2),0,0,0,XM(3),0,0];

148 res=(E-full_model(p,T)).^2;

149 sResM=sum(res);

150 s=sqrt(sum(res./W2)/n);

151 UM=sqrt(diag(inv(A))*s);

152

153 %%%%%%%%%%%%%%%% Offset, scale factor and 2. order nonlinear term %%%%%%%%%

154 % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % 

155 %Construct the linear system

156 M=[ sw               -scost       scost2;

157     -scost       scost2      -scost3; 

158     scost2      -scost3     scost4];

159 x=[ se;

160     -secost;

161     secost2];

162

163 %Solve the linear system

164 X2=M\x;

165

166 %Construct the Normal matrix

167 A=M;

168

169 %Calculate the standard devitation of the residuals

170 p=[X2(1),0,X2(2),X2(3),0,0,0,0,0];

171 res=(E-full_model(p,T)).^2;

172 s=sqrt(sum(res./W2)/n);

173 sRes2=sum(res);

174 U2=sqrt(diag(inv(A))*s);

175

176 %%%%%%%%%%%%%%%% Offset scale factor and cross axis sensitivity %%%%%%%

177 % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % 

178 %Construct the linear system

179 M=[ sw               -scost       scostsint; 

180     -scost       scost2      -scost2sint;

181     scostsint  -scost2sint  scost2sint2];

182 x=[ se;

183     -secost;

184     secostsint];

185

186 %Solve the linear system

187 XC=M\x;

188

189

190 %Construct the Normal matrix

191 A=M;

192

193 %Calculate the standard devitation of the residuals

194 p=[XC(1),0,XC(2),0,0,0,0,XC(3),0];

195 res=(E-full_model(p,T)).^2;

196 s=sqrt(sum(res./W2)/n);

197 sResC=sum(res);

198 UC=sqrt(diag(inv(A))*s);

199

200 %%%%%%% % % %Offset, Scale factor and scale factor asymmetry%%%%

201 % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % 

202 %Construct the linear system

203 M=[ sw               -scost          ssigcost;

204     -scost       scost2          -ssigcost2; 

205     ssigcost   -ssigcost2    scost2];

206 x=[ se;

207     -secost;

208     sesigcost];

209

210 %Solve the linear system
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211 XSA=M\x;

212

213 %Construct the Normal matrix

214 A=M;

215

216 %Calculate the standard devitation of the residuals

217 p=[XSA(1),0,XSA(2),XSA(3),0,0,0,0,0];

218 res=(E-full_model(p,T)).^2;

219 s=sqrt(sum(res./W2)/n);

220 sResSA=sum(res);

221 USA=sqrt(diag(inv(A))*s);

222

223 %%%%%%%%%Offset, scale factor, 2. and 3 order nonlinear factors %%%%%%%%

224 % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % 

225 M=[ sw               -scost       scost2      -scost3; 

226     -scost       scost2      -scost3     scost4;

227     scost2      -scost3     scost4      -scost5;

228     -scost3     scost4      -scost5     scost6];

229 x=[ se;

230     -secost;

231     secost2;

232     -secost3];

233

234 %Solve the linear system

235 X3=M\x;

236

237 %Construct the Normal matrix

238 A=M;

239

240 %Calculate the standard devitation of the residuals

241 p=[X3(1),0,X3(2),X3(3),X3(4),0,0,0,0];

242 res=(E-full_model(p,T)).^2;

243 s=sqrt(sum(res./W2)/n);

244 sRes3=sum(res);

245 U3=sqrt(diag(inv(A))*s);

246

247 %%%%%%%%%%%%%% Offset, Offset asymmetry and scale factor%%%%%%%%%%%

248 % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %

249 %Construct the linear system

250 M=[ sw               -ssig         -scost;

251     -ssig           ssig2          ssigcost; 

252     -scost          ssigcost       scost2];

253

254 x=[ se;

255     -sesig;

256     -secost];

257

258 %Solve the linear system

259 XA=M\x;

260

261 %Construct the Normal matrix

262 A=M;

263

264 %Calculate the standard devitation of the residuals

265 p=[XA(1),XA(2),XA(3),0,0,0,0,0,0];

266 res=(E-full_model(p,T)).^2;

267 s=sqrt(sum(res./W2)/n);

268 sResA=sum(res);

269

270 UA=sqrt(diag(inv(A))*s);

271

272 %%%%%% Offset, scale factor, misallignment sensitivity and 2. order coeff %%

273 % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % 

274 %Construct the linear system

275 M=[ sw               -scost       scost2     scostsint; 

276     -scost        scost2      -scost3    -scost2sint;

277     scost2       -scost3     scost4     scost3sint;

278     scostsint    -scost2sint scost3sint scost2sint2];

279 x=[ se;

280     -secost;
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281     secost2; 

282     secostsint];

283

284 %Solve the linear system

285 X2C=M\x;

286

287 %Construct the Normal matrix

288 A=M;

289

290 %Calculate the standard devitation of the residuals

291 p=[X2C(1),0,X2C(2),X2C(3),0,0,0,X2C(4),0];

292 res=(E-full_model(p,T)).^2;

293 s=sqrt(sum(res./W2)/n);

294 sRes2C=sum(res);

295 U2C=sqrt(diag(inv(A))*s);

296

297 %%%%%%%%%%%%%%%%% All parameters %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5

298 % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %

299 %Construct the linear system

300 DI=diag([sw;

301         ssig2;

302         scost2;

303         scost2;

304         scost4;

305         scost6;

306         ssint2;

307         scost2sint2;

308         scost4]);

309 c1=[    0;

310         -ssig;

311         -scost;

312         ssigcost;

313         scost2;

314         -scost3;

315         -ssint;

316         scostsint;

317         -ssigcost2];

318 c2=[    0;0;

319         ssigcost;

320         -scost;

321         -ssigcost2;

322         ssigcost3;

323         ssigsint;

324         -ssigcostsint;

325         scost2];

326 c3=[    0;0;0;

327         -ssigcost2;

328         -scost3;

329         scost4; 

330         scostsint;

331         -scost2sint;

332         ssigcost3];

333 c4=[    0;0;0;0;

334         ssigcost3; 

335         -ssigcost4;

336         -ssigcostsint;

337         ssigcost2sint;

338         -scost3];

339 c5=[    0;0;0;0;0;

340         -scost5;

341         -scost2sint;

342         scost3sint;

343         -ssigcost4];

344 c6=[    0;0;0;0;0;0;

345         scost3sint;

346         -scost4sint;

347         ssigcost5];

348 c7=[    0;0;0;0;0;0;0;

349         -scostsint2;

350         ssigcost2sint];
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351 c8=[    0;0;0;0;0;0;0;0;

352         -ssigcost3sint];

353 LH=[c1,c2,c3,c4,c5,c6,c7,c8,zeros(9,1)];

354 M=LH+DI+LH';

355 x=[ se;

356     -sesig;

357     -secost;

358     sesigcost

359     secost2;

360     -secost3;

361     -sesint;

362     secostsint;

363     -sesigcost2;];

364

365 % Solve the linear system

366 X=M\x;

367

368 % Construct the Normal matrix

369 A=M;

370

371 % Calculate the standard deviation of the residuals

372 res=(E-full_model(X,T)).^2;

373 sRes=sum(res);

374 s=sqrt(sum(res./W2)/n);

375 U=sqrt(diag(inv(A))*s);

376

377 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%

378 %%%%%%%%%% Display parameters %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

379 % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % 

380

381 disp('Offset, scale factor and misallignement factor:');

382 disp(strcat('Offset=',num2str(XM(1)),' Std=',num2str(UM(1))));

383 disp(strcat('Scale factor=',num2str(XM(2)),' Std=',num2str(UM(2))));

384 disp(strcat('Misallignement factor',num2str(XM(3)),' Std=',num2str(UM(3))));

385 disp(strcat('Sum of residuals=',num2str(sResM)));

386 disp(' ');

387 disp('Offset, scale factor and 2. order nonlinear term:');

388 disp(strcat('Offset=',num2str(X2(1)),' Std=',num2str(U2(1))));

389 disp(strcat('Scale factor=',num2str(X2(2)),' Std=',num2str(U2(2))));

390 disp(strcat('Second order coefficient=',num2str(X2(3)),' Std=',num2str(U2(3))));

391 disp(strcat('Sum of residuals=',num2str(sRes2)));

392 disp(' ');

393 disp('Offset, scale factor, 2. and 3. order nonlinear terms:');

394 disp(strcat('Offset=',num2str(X3(1)),' Std=',num2str(U3(1))));

395 disp(strcat('Scale factor=',num2str(X3(2)),' Std=',num2str(U3(2))));

396 disp(strcat('Second order coefficient=',num2str(X3(3)),' Std=',num2str(U3(3))));

397 disp(strcat('Third order coefficient=',num2str(X3(4)),' Std=',num2str(U3(4))));

398 disp(strcat('Sum of residuals=',num2str(sRes3)));

399 disp(' ');

400 disp('Offset, scale factor and cross-axis sensitivity:');

401 disp(strcat('Offset=',num2str(XC(1)),' Std=',num2str(UC(1))));

402 disp(strcat('Scale factor=',num2str(XC(2)),' Std=',num2str(UC(2))));

403 disp(strcat('Cross-axis coefficient=',num2str(XC(3)),' Std=',num2str(UC(3))));

404 disp(strcat('Sum of residuals=',num2str(sResC)));

405 disp(' ');

406 disp('Offset, scale factor, 2. order coefficient and cross-axis coefficient:');

407 disp(strcat('Offset=',num2str(X2C(1)),' Std=',num2str(U2C(1))));

408 disp(strcat('Scale factor=',num2str(X2C(2)),' Std=',num2str(U2C(2))));

409 disp(strcat('Second order coefficient=',num2str(X2C(3)),' Std=',num2str(U2C(3))));

410 disp(strcat('Cross-axis coefficient=',num2str(X2C(4)),' Std=',num2str(U2C(4))));

411 disp(strcat('Sum of residuals=',num2str(sRes2C)));

412 disp(' ');

413 disp('Offset, Scale factor and offset asymmetry:');

414 disp(strcat('Offset=',num2str(XA(1)),' Std=',num2str(UA(1))));

415 disp(strcat('Offset asymmetry=',num2str(XA(2)),' Std=',num2str(UA(2))));

416 disp(strcat('Scale factor=',num2str(XA(3)),' Std=',num2str(UA(3))));

417 disp(strcat('Sum of residuals=',num2str(sResA)));

418 disp(' ');

419 disp('Offset, Scale factor and scale factor asymmetry:');
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420 disp(strcat('Offset=',num2str(XSA(1)),' Std=',num2str(USA(1))));

421 disp(strcat('Scale factor=',num2str(XSA(2)),' Std=',num2str(USA(2))));

422 disp(strcat('Scale factor asymmetry=',num2str(XSA(3)),' Std=',num2str(USA(3))));

423

424 disp(strcat('Sum of residuals=',num2str(sResSA)));

425 disp(' ');

426 disp('All coefficients:');

427 disp(strcat('Offset=',num2str(X(1)),' Std=',num2str(U(1))));

428 disp(strcat('Offset assymmetri=',num2str(X(2)),' Std=',num2str(U(2))));

429 disp(strcat('Scale factor=',num2str(X(3)),' Std=',num2str(U(3))));

430 disp(strcat('Scale factor assymetri=',num2str(X(4)),' Std=',num2str(U(4))));

431 disp(strcat('2. order coefficient=',num2str(X(5)),' Std=',num2str(U(5))));

432 disp(strcat('3. order coefficient=',num2str(X(6)),' Std=',num2str(U(6))));

433 disp(strcat('Misallignement factor',num2str(X(7)),' Std=',num2str(U(7))));

434 disp(strcat('Cross axis sensitivity=',num2str(X(8)),' Std=',num2str(U(8))));

435 disp(strcat('Odd second order coefficient=',num2str(X(9)),' Std=',num2str(U(9))));

436 disp(strcat('Sum of residuals=',num2str(sRes)));

437

438

439 %%%%%%%%%%%%%%%% REGDATA %%%%%%%%%%%%%%%%

440 function [std,varresid,r2,cor,vcv,varinf]=regdata(param,yfit,ydata,jac)

441 %[std,varresid,r2,cor,vcv,varinf]=regdata(param,yfit,ydata,jac)

442 % Calculate and Plot regression statistics from lsqcurvefit.m

443 % OUT

444 % std -standard error of each parameter

445 % varresid- Variance of residuals

446 % r2    - R^2 Correlation coefficient

447 % cor   - Correlation matrix for Parameters

448 % vcv   - Variance Covariance Matrix for Parameters

449 % varinf- Variance inflation factors >10 implies Multicollinearity in x's

450 % IN

451 % param -Least squares parameter values

452 % yfit  -Response fit using param to get yfit from lsqcurvefit use yfit=residual+ydata 

453 %                                  where residual is the error matrix from lsqcurvefit

454 % ydata -Response data

455 % jac   -Jacobian value at Least squares parameter values

456

457 % Arthur Jutan Univ of Western Ontario Dept of Chemical Engineering

458 % ajutan@julian.uwo.ca

459 % Revised 11-20-98,5-19-99

460

461 e=yfit(:)-ydata(:); %error vectorize the Y matrix for multiple ouputs

462 ss=e'*e; % best sum of squares

463 m=length(yfit);n=length(param);

464 if (m~=n),varresid=ss./(m-n);else, var=NaN;end % variance of Residuals

465

466 % CALC VARIANCE COV MATRIX AND CORRELATION MATRIX OF PARAMETERS

467 %convert jac to full matrix for ver 5.3

468     jac=full(jac);%aj 99

469     xtx=jac'*jac;

470       xtxinv=inv(xtx);

471

472       %calc correlation matrix cor and variance inflation varinf

473     varinf = diag(xtxinv);

474     cor = xtxinv./sqrt(varinf*varinf');

475

476 % Plot the fit vs data

477 %       t=1:m;

478 %       plot(t,ydata,'o',t,yfit,'g-')

479 %       title(' ydata and ymodel versus observation number')

480 %       xlabel(' observation number');

481 %       ylabel(' ydata o and ymodel-')

482 %       grid;

483

484 %       disp(' Least Squares Estimates of Parameters')

485 %       disp(param')

486 %       disp(' correlation matrix for parameters ')

487 %       disp(cor)

488       vcv=xtxinv.*varresid; % mult by var of residuals~=pure error

489 %       disp('Variance inflation Factors >10 ==> Multicollinearity in x"s')
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490 %       disp(varinf')

491

492 %Formulae for vcv=(x'.vo.x)^-1 *sigma^2 where meas error Var, v=[vo]*sigma^2

493       std=sqrt(diag(vcv)); % calc std error for each param

494 %       disp('2*standard deviation (95%CL) for each parameter')

495 %       disp(2*std')

496 %Calculate R^2 (Ref Draper & Smith p.46)

497       r=corrcoef(ydata(:),yfit(:));

498       r2=r(1,2).^2;

499 %       disp('Variance of Residuals  ' )

500 %       disp(  varresid )

501 %       disp( 'Correlation Coefficient R^2')

502 %       disp(r2)

503

504 %%%%%%%%%%%%%%%% line test %%%%%%%%%%%%%%%%%

505

506 function [m,b]=line_test_lsq(X,E);

507 %function [m,b,S]=line_test_lsq(X,E);

508 n=length(X);

509 sx=sum(X);

510 sE=sum(E);

511 sx2=sum(X.^2);

512 sxE=sum(X.*E);

513 M=[ sx2 sx;

514     sx  n];

515 x=[sxE;sE];

516 u=M\x;

517 m=u(1);

518 b=u(2);

519 st=sum((E-m*X-b).^2)/n;

520 S=diag(inv(M)*st);

521

522 %%%%%%%%%%%% diskretiser %%%%%%%%%%%%%

523

524 function [F,D,G,Q]= diskretiser(A,L,C,QU,dt)

525 F=expm(A*dt);

526 si=size(A);

527

528 [tt,x]=ode45(@dudt,[0 dt],zeros(length(L),1),[],A,L);

529 D=x(length(x),:)';

530

531 sx=si(1,1);sy=si(1,2);

532 A2=-A';

533 MID=C*QU*C';

534 AP=zeros(2*sx,2*sy);

535 for i=1:sx,

536     for j=1:sy,

537         AP(i,j)=A(i,j);

538         AP(i,j+sy)=MID(i,j);

539         AP(i+sx,j+sy)=A2(i,j);

540     end;

541 end;

542 FI=expm(AP*dt);

543 F12=zeros(sx,sy);F22=zeros(sx,sy);F22I=zeros(sx,sy);

544 F12=FI(1:sx,sy+1:2*sy);

545 F22=FI(sx+1:2*sx,sy+1:2*sy);

546 F22I=inv(F22);

547 FAK=F12*F22I;

548

549 Q=eye(sx,sy);

550 G=chol(FAK);

551 G=G';

552

553 function vu=dudt(t,y,A,L)

554 vu=zeros(length(L),1);

555 vu=expm(t*A)*L;

556

557

558 %%%%%%%%%%%% Kalman filter %%%%%%%%%%%%%%%5

559
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560 function Kalman_Markov()

561

562 stdsup=3e-2;

563 stdpos=1e-4;

564 beta0=301;

565 F=[0 1 0;0 0 1;0 0 -beta0];

566 L=[0;1;0];

567 G=[0;0;1];

568 H=[1 0 0];

569 R=(stdpos)^2; %Position sensor covarians

570 R2=(stdsup)^2; %Ultrasound covarians

571

572 [b,a]=butter(3,70/833.33);

573 freq=4;

574 beg=1000;

575

576 QU=(2.6e5*9.8*1E-6)^2; %The accelerometer noise spectral density

577 Has_done=0;

578 dt=0.0006;

579 [Fi,La,Ga,Q]=diskretiser(F,L,G,QU,dt);

580 n1=load('2.mat');

581 t=n1.dscapture.X.Data';

582  %u=accelerometer data

583 u=double(n1.dscapture.Y(1).Data)';

584 z=double(n1.dscapture.Y(3).Data)*1E-6';

585 z=filtfilt(b,a,z);

586 off=mean([u(1:1.8e4); u(3e4:end)]);

587 bn=2e4;nd=4.26e4;

588 h=42;fak=3.14;c=round(fak*h);

589 aa=savgol(2,h,h,2,z(bn:nd)',t(bn:nd));

590 vs=savgol(2,c,c,0,u(bn:nd),t(bn:nd));

591 p1=polyfit(aa(c:end-c),vs(c:end-c),1);

592 sc=p1(1);

593 z=z(beg:end-beg);

594 leng=length(z);

595 u=u(beg:leng+beg);

596 uz=(u-off)/sc;

597 Of=off; K=sc;

598

599 [bff,aff]=butter(1,150/833.33);

600 % uz=filtfilt(bff,aff,uz);

601 meas=zeros(2,leng);

602

603 P0=[(stdpos)^2 0 0;0 (10000E-6)^2 0;0 0 (12425e-6)^2]; % Uncertainties in initial position

604 int1=1000;

605 %meas=1: primary system

606 meas(:,1:int1)=1;

607

608 meas(:,leng-int1:end)=1;

609 % meas(:,:)=1;

610

611 for i=int1+1:leng-int1-1

612     if rem(i,round(1/(freq*6e-4)))==0

613         %meas = 2: ultrasound measurement

614         meas(1,i)=2;

615     end

616     meas(2,i)=2;

617 end

618 int3=19000-beg; int4=10*1666;

619 meas(:,int3:int3+int4)=0;

620

621 Pp=zeros(3,3,leng); %covariance matrices

622 Pe=zeros(3,3,leng);

623 Pp(:,:,1)=P0;

624 Pe(:,:,1)=P0;

625

626 xp=zeros(3,leng);

627 xe=zeros(3,leng);

628 randn('state',sum(100*clock));

629
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630 xe(1,1)=z(1);%initial position 

631 xe(2,1)=(z(5)-z(3))/1.2E-3; %initial velocity

632 xe(3,1)=1;

633 xp(:,1)=xe(:,1);

634

635 K3=4.8e-5;

636 K2=-8.7e-6;

637 uz=(three_solve(Of,K,K2,K3,u));

638 %     uz=two_solve(Of,K,K2,K3,u);

639

640 m=randn(1,leng)*stdsup;

641 z2=z+m;

642 for k=1:leng

643 %     if(rem(k,1000)==0)disp(k);end;

644     if meas(1,k)==1

645         KG=k_gain_update(Pp(:,:,k),H,R);

646         xe(:,k)=xp(:,k)+KG*(z(1,k)-H*xp(:,k));

647         if k<leng

648             xp(:,k+1)=Fi*xe(:,k)+La*uz(k);

649         end

650         Pe(:,:,k)=(eye(3,3)-KG*H)*Pp(:,:,k);

651     elseif meas(1,k)==2

652          KG=k_gain_update(Pp(:,:,k),H,R2);

653         xe(:,k)=xp(:,k)+KG*(z2(1,k)-H*xp(:,k));

654         if k<leng

655             xp(:,k+1)=Fi*xe(:,k)+La*uz(k);

656         end

657         Pe(:,:,k)=(eye(3,3)-KG*H)*Pp(:,:,k);

658     else

659         %no measurement update

660         if k<leng

661             xp(:,k+1)=Fi*xp(:,k)+La*uz(k);

662         end

663         Pe(:,:,k)=Pp(:,:,k);

664         xe(:,k)=xp(:,k);

665     end

666     if k<leng

667         Pp(:,:,k+1)=Fi*Pe(:,:,k)*Fi'+Ga*Q*Ga';

668     end

669 end

670

671

672 %Smoothin part, use the Rauch Tung Striebel formulas from Gelb

673

674 Pb=zeros(3,3,leng);

675 xb=zeros(3,leng);

676 Pb(:,:,leng)=Pe(:,:,leng);

677 xb(:,leng)=xe(:,leng);

678

679 for k=1:leng-1

680     Ak=Pe(:,:,leng-k)*Fi'*inv(Pp(:,:,leng-k+1));

681     xb(:,leng-k)=xe(:,leng-k)+Ak*(xb(:,leng-k+1)-xp(:,leng-k+1));

682     Pb(:,:,leng-k)=Pe(:,:,leng-k)+Ak*(Pb(:,:,leng-k+1)-Pp(:,:,leng-k+1))*Ak';

683 end

684

685

686 Li=0;

687 [q,qq,aa]=computer;

688 if aa=='L'

689     Li=1;

690 end

691 fil=fopen('xdir','w');

692 uu=[meas(2,:)',z',xb(1,:)',xe(1,:)',t(1:leng)];

693 fwrite(fil,leng,'double');

694 fwrite(fil,Li,'double');

695 fwrite(fil,uu,'double');

696 fclose(fil);

697

698

699 %%%%%%%%%%% inertial algoritm %%%%%%%%%%%%%%
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700

701 function [Cnbo,vko]=inertial_alg(fb,wb,Cnb,v0,dt,LA)

702 g0=[0;0;9.81897919];

703 latitude=LA*pi/180;

704 w0=(1+365.25)*2*pi/(365.25*24*3600);

705 w_in=w0*[cos(latitude);0;-sin(latitude)];

706 % w_in=w0*[0;0;-1];

707 OM_in=skew_sym(w_in);

708 leng=length(fb);

709 Cnbo=zeros(3,3,leng);

710 vko=zeros(3,leng);

711 Wb=zeros(3,3,leng);

712 for i=1:leng

713     Wb(:,:,i)=skew_sym(wb(:,i));

714 end

715 Cnbo(:,:,1)=Cnb(:,:,1);

716

717 inter=100;

718 ddt=dt/inter;

719 for i=2:leng

720

721     Cmid=RK(Cnbo(:,:,i-1),Wb(:,:,i-1),Wb(:,:,i),OM_in,ddt);

722     for j=2:inter

723         Cmid=RK(Cmid,Wb(:,:,i),Wb(:,:,i),OM_in,ddt);

724     end

725     Cnbo(:,:,i)=Cmid;

726 %     Cnbo(:,:,i)=RK(Cnbo(:,:,i-1),Wb(:,:,i-1),Wb(:,:,i),OM_in,dt);

727 end

728

729 vko(:,1)=v0;

730 vko(:,2)=vko(:,1)+dt*(Cnbo(:,:,1)'*fb(:,1)-2*cross(w_in,vko(:,1))+g0+(Cnbo(:,:,2)'*fb(:,2)+g0-2*cross(w_in,vko(:,1))))/2;

731 vko(:,3)=vko(:,1)+dt*((Cnbo(:,:,1)'*fb(:,1))+4*(+Cnbo(:,:,2)'*fb(:,2))+(Cnbo(:,:,3)'*fb(:,3))+6*g0)/3;

732 for i=4:leng

733     vko(:,i-2)=vko(:,i-2)-2*dt*OM_in*vko(:,i-2);

734     vko(:,i)=vko(:,i-2)+dt*((Cnbo(:,:,i-2)'*fb(:,i-2))+4*(+Cnbo(:,:,i-1)'*fb(:,i-1))+(Cnbo(:,:,i)'*fb(:,i))+6*g0)/3;

735 end

736

737 function OM=skew_sym(v);

738 OM=[0 -v(3) v(2); v(3) 0 -v(1);-v(2) v(1) 0];

739

740 function DC=RK(Ck,Wm,Wp,Win,dt)

741 k1=dt*(Ck*Wm-Win*Ck);

742 k2=dt*((Ck+0.5*k1)*Wp-Win*(Ck+0.5*k1));

743 k3=dt*((Ck+0.5*k2)*Wp-Win*(Ck+0.5*k2));

744 k4=dt*((Ck+k3)*Wp-Win*(Ck+k3));

745 DC=Ck+k1/6+k2/3+k3/3+k4/6;

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761
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APPENDIX B The Analog Signal Conditioning Circuit
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APPENDIX C  Extracts from the Accelerometer Datasheets

ADXL105

• Range: ±5g.

• Nominal sensitivity: 250mV/g. Minimum 225mV/g, maximum 275mV/g 

• Nominal zero g: 2.5V, bias: ±625mV. 

• Nonlinearity: 0.2 \% of full-scale output.

• Alignment error: ±1°.

• Cross axis sensitivity: 1 - 5 \%.

• Noise Performance: 225 - 325 µg/sqrt{Hz}

• Bias offset vs. temperature: approx. 1mg/°C 

• Sensitivity change vs. temperature: ±0.5%.

• Bandwidth: Adjustable, max=10kHz. 

• Power 2mA. Vdd=5V. Source/sink min. 50µA, buffer may be required for some 
DCs. Output is ratiometric to VDD.

• Temperature range: 0-70 deg C. Ideal: 25 deg C. 

• Temperature sensor: T(°C) = (Vout-2.5V)/0.008V/°C+25°C

Crossbow CLX02TG3

• Range: 2g.

• Nominal sensitivity: minimum 767mV/g, typical 833mV/g and maximum 900mV/g   

• Nominal zero g: 2.5V, 10mV

• Nonlinearity: 0.75-1.5% of FS.

• Alignment error: 1% of FS.

• Cross axis sensitivity: 1 - 5 \% of FS.

• Noise Performance: 20 µg/sqrt{Hz}

• Bias offset vs. temperature:170µV

• Bandwidth: 800Hz.

• Power 2mA. Vdd=5V. Output is ratiometric to VDD.

• Temperature range: -40-85 deg C. 

• Temperature sensor: T=(Vout-1.375V)*44.4 C/V
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APPENDIX D  The IEEE Accelerometer Model Equation

A complete model of an non-gyroscopic inertial accelerometer as a function of the 
applied acceleration and rotation around the exes shown on figure  is given as (IEEE 
Std 1293-1999):

E is the accelerometer output in units (V)
ε is the measurement and process noise and unmodelled error (g or m/s2)
K1 is the scale factor (units/g or units/m/s2)
ai, ao, ap is the applied acceleration along IA, PA and OA (g or m/s2)
sign (ai) = 1 if ai>0, -1 if ai<0 and 0 if ai=0.
ωi, ωo, ωp are the angular velocities around the IA, PA and OA (rad/s)

   are angular accelerations around IA, PA and OA
Ki is bias (g or m/s2)
K0’ is bias asymmetri (g or m/s2)
K1’ is scale factor asymmetry (dimensionless)
Koq is odd quadratic coeffisient (g/g2 or s2/m)

Figure (a): The principle axes of an accelerometer
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K2 is second order coefficient (g/g2 or s2/m)
K3 is third order coefficient (g/g3 or s4/m2)
Kn is ogher higher order coefficients, n=4,5,6... (g/gn or s(2n-1)/m(n-1))
δo, δp are misallignements of the IA with respect to the input reference axis about the 
OA and PA (rad)
Kip, Kio, Kpo are cross-coupling coefficients (g/g2 or s2/m)
Kpp, Koo are cross axis nonlinearity coefficients (g/g2 or s2/m)
Kspin is spin correction coefficient
Kangacc  is angular acceleration coefficient.

Modified version of the IEEE model equation

E is the accelerometer output in units (V)
ε is the measurement and process noise and unmodelled error (g or m/s2)
K is the scale factor (V/m/s2)
ai, ao, ap is the applied acceleration along IA, PA and OA (m/s2)
sign (ai) = 1 if ai>0, -1 if ai<0 and 0 if ai=0.
ωi, ωo, ωp are the angular velocities around the IA, PA and OA (rad/s)

   are angular accelerations around IA, PA and OA
O is the accelerometer offset (V)
Oa is the offset asymmetry (V)
Ka is the scale factor asymmetry (V/m/s2)
Koq is odd quadratic coeffisient (V/(m/s2)2)
K2 is second order coefficient (V/(m/s2)2)
K3 is third order coefficient (V/(m/s2)3)
Kn is ogher higher order coefficients, n=4,5,6... 
δo, δp are misallignements of the IA with respect to the input reference axis about the  
OA and PA (V rad/ (m/s2)
Kip, Kio, Kpo are cross-coupling coefficients (V/(m/s2)2)
Kpp, Koo are cross axis nonlinearity coefficients (V/(m/s2)2)
Kspin is spin correction coefficient
Kangacc  is angular acceleration coefficient.
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