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Chapter 1

Introduction

Understanding the structure of the nucleus from its basic constituents is a great
challenge. The nuclear structure can be interpreted in terms of nucleon-nucleon
interactions (derived from nucleon-nucleon scattering phase shifts and effective
field theory) applied to the nuclear many-body problem. Exciting the nucleus from
the regime where one can follow the configurations and the dynamics of indi-
vidual nucleons in the nucleus to a regime where a statistical approach is more
appropriate, is an important way to understand more complicated structures. The
experimental techniques for heating the nuclei may include the light ion reactions
with one charged ejectile and heavy ion collision reactions. The light ion reaction
is preferable over heavy ion collision since the populated excited states lie in a
narrower spin window and thus prevents large admixtures of collective contribu-
tions.

At the low excitation energy the nucleus is excited to levels, characterized by
energy, spin and parity. These levels are discrete and the level density can be deter-
mined by direct counting. However, at higher excitation energy regions (so called
quasi-continuum regime) the levels become so dense that the individual levels
cannot be resolved and become undeterminable by direct spectroscopic methods.
Instead, it is more appropriate to employ statistical models by averaging the num-
ber of levels at a given excitation energy. Hans Bethe, in his work [1] described the
simplest expression for the level density in the Fermi-gas model by considering
the nucleus as a cloud of non-interacting fermions. A number of phenomenologi-
cal extensions were made to incorporate the shortcomings of the Bethe’s approach
like the back-shifted Fermi gas model, which simulates the shell and pair correla-
tion effects.

The closed shell nuclei, within the description of the shell model [2], have
filled major shells, corresponding to the proton and neutron numbers equal to
magic numbers: Z or N = 2, 8, 20, 28, 50, 82, and 126. Nuclei close to these magic
numbers change their nuclear structure abruptly, and the statistical description of
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CHAPTER 1. INTRODUCTION

their properties may be less favorable.
The nuclear level density is an important quantity for revealing the statistical

properties of the nucleus. This is a basic parameter in the Hauser-Feshbach cal-
culations of reaction cross-sections [3], and in the models of accelerator driven
transmutation of nuclear waste. The counting of discrete levels [4] is restricted to
the low excitation energies, where the experimental resolution is high enough to
resolve the individual lines in the spectra. At energies close to the neutron sepa-
ration energy, the level density can be extracted from the average level spacings
observed in neutron-resonance capture [5]. However, at other excitation energies
the experimental information is scarce.

The γ-ray strength function is another important statistical quantity describing
the average electromagnetic properties of an excited nucleus. In general, the γ-
ray emission in an excited nucleus has to compete with other decay modes like
particle-emission and fission. However, our focus will mainly be on the γ-decay
in the excitation regions below the particle threshold. The strength functions can
be deduced from the neutron capture and photonuclear reactions. Since the γ-
decay depends on the number of accessible levels, the results are dependent on
our knowledge of the level density.

The nuclear physics group at the Oslo Cyclotron Laboratory has developed
a method (the Oslo method) to extract level density and γ-ray strength function,
simultaneously. The extraction of these quantities is based on the γ-ray energy dis-
tribution from initial excitation energies. The experimental method covers an ex-
citation energy region between the ground state and the neutron (proton) binding
energy [6, 7, 8]. This unique technique has provided experimental evidence for the
sequential breaking of nucleon Cooper pairs [9] and an M1 scissors mode pygmy
resonance in rare-earth nuclei [10, 11]. Also, a strongly enhanced strength func-
tion at low γ energies has been discovered in several Fe and Mo isotopes [12, 13].

The main aim of the present thesis is to extend the application of the Oslo
method to the closed and near closed shell nuclei. It is known that in general the
level densities are significantly lower for light nuclei and nuclei in the vicinity
of closed shells. Here, the large γ-ray intensity fluctuations and the insufficient
averaging over nuclear levels may introduce non-statistical effects. Therefore, ex-
ploring the level densities and γ-ray strength functions in these nuclei would be
interesting. It is also desirable to investigate the development of these average
quantities while going away from doubly magic to single magic nuclei. The nuclei
that have been studied in the present thesis are 44,45Sc [14], 45Ti [15], 50,51V [16],
and 205−208Pb [17]. The chain of A = 205−208 lead isotopes are of special inter-
est due to their large N = 126 and Z = 82 shell gaps. For 208Pb, the gaps prevent
the protons and neutrons to participate in creating the level density until the exci-
tation energy is high enough to cross these gaps.

The lighter nuclei investigated in this thesis (44,45Sc, 45Ti, and 50,51V), are
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interesting for several reasons. The primary motives are to (i) confirm the low-
energy γ-ray enhancements of the strength functions in the light nuclei, and (ii)
study the level density dependence of the interplay between crossing shell gaps
and breaking Cooper pairs. The light nuclei studied are situated between the 20
and 28 shell gaps, where nuclear structure and dynamics may change considerably
as functions of mass number and excitation energy. The scandium nuclei are close
to both the Z = N = 20 shell gaps. In addition, α-cluster structures are expected
to play a role in these nuclei. The vanadium nuclei are influenced by the Z = 20
and N = 28 shell gaps. The titanium nuclei, on the other hand, are well deformed
and are not expected to show large shell effects.

In Chapter 2 a brief description of the experimental setup and data analysis
are given. The main steps of the Oslo method and their application to physical
spectra are discussed in Chapter 3. The normalization of the Oslo data using the
available data from other experiments is described in Chapter 4. In Chapters 5
and 6 a brief description of the level density and the γ-ray strength function are
given. Chapter 7 presents three published articles, one accepted article and one
draft. Finally, summary and conclusions are given in Chapter 8.
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Chapter 2

Experimental Details and Data
Analysis

The experiments were performed at the Oslo Cyclotron Laboratory (OCL), Uni-
versity of Oslo, where the MC-35 Scanditronix cyclotron delivered the pulsed pro-
ton and 3He-ion beams. A lay-out of the beam lines and target stations is shown
in Fig. 2.1. In the present experiments the proton beam was used on the 46Ti tar-
get and beams of 3He ions were used on the 45Sc, 51V and 206,208Pb targets. The
details on the applied reactions and target specifications are listed in Table 2.1.

In our investigation, the neutron pick-up and inelastic scattering reactions are
used. These reactions populate states in a narrow spin window at high intrinsic
excitation energies and with only one charged ejectile. This allows the accurate
determination of excitation energy of the residual nuclei. The particle-γ coinci-
dence events were recorded for 44,45Sc, 45Ti, 50,51V, and 205−208Pb nuclei with the
CACTUS [18] γ-ray detector system in combination with eight silicon particle
telescopes.

The arrangement of the 28 5′′ × 5′′ NaI(Tl) detectors in a spherical frame is
shown in Fig. 2.2. The detectors have a distance of 22 cm to the target, and in
order to obtain a good peak-to-total ratio, each detector is collimated as shown in
Fig. 2.3. The CACTUS multi-detector array extends a total solid angle of 15% of
4π .

The particle telescopes are placed in vacuum inside the CACTUS detector.
They are composed of ΔE and E detectors having a thickness of 140 μm and
1500 μm, respectively. The eight telescopes are placed at a distance of 5 cm from
the target in the forward direction, making an angle of 45◦ with respect to the
beam axis. A schematic setup of the particle telescopes is shown in Fig. 2.4. The
energy loss per unit length of charged particles in the particle detector depends on
both the charge state and the mass of the penetrating particle. Therefore, particles
with equal charges and different masses, e.g. 3He, and α and particles having
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2.1. DATA ANALYSIS

Target Enrichment Thickness Reaction Beam energy
% (mg/cm2) (MeV)

206Pb 99.8 4.7 206Pb(3He,3He′)206Pb 38
206Pb(3He,α)205Pb

208Pb 99.9 1.4 208Pb(3He,3He′)208Pb 38
208Pb(3He,α)207Pb

45Sc† 99.9 3.4 45Sc(3He,α)44Sc 38
45Sc(3He,3He′)45Sc

51V† 99.8 2.3 51V(3He,α)50V 30
51V(3He,3He′)51V

46Ti† 86.4 1.8 46Ti(p,d)45Ti 32

† Natural targets.

Table 2.1: Targets and reactions used for the experiments studied in this thesis.

equal q/m ratio e.g. deuterons and α’s, can easily be distinguished by plotting
the energy loss in the ΔE vs. the E detector, as shown in Fig. 2.5. The reaction
ejectiles are collimated in order to reduce the uncertainty in the reaction angle and
the energy spread. An Al foil of 15 μm thickness is placed in front of the particle
detectors to stop low-energy δ electrons. The beam current was limited to∼ 1−2
nA to prevent pile-up events in the detectors.

For the runs on the titanium target, a 60% HPGe detector was placed in the
backward direction in order to monitor the range of spins populated in the (p,d)
reaction, and also to ensure that the correct nuclei were studied by looking for the
appearance of well-known γ transitions in the specific nuclei.

2.1 Data analysis
The excited residual nuclei after the direct reaction are assumed to thermalize be-
fore the subsequent γ-ray emission. From the known Q-values and reaction kine-
matics, the ejectile energy can be transformed into the initial excitation energy
of the residual nuclei. Using the particle-γ coincidence technique, each γ-ray is
assigned to a cascade depopulating the nucleus at given excitation energy. The
methodology and data analysis performed are briefly described below.

Each particle and γ-detector is calibrated linearly as:

E = a0 +a1 · ch, (2.1)

where E is the energy corresponding to channel number ch, and a0 and a1 are
the calibration coefficients. The particle spectra obtained from the front and end

5



CHAPTER 2. EXPERIMENTAL DETAILS AND DATA ANALYSIS

particle detectors are calibrated from the known states in the final nuclei. The par-
ticle identification is made from a two dimensional ΔE −E matrix, as shown in
Fig. 2.5. An important feature of this plot is that particles like proton, deuteron,
triton, 3He, and α are well separated. By gating on a specific particle type in the
ΔE−E matrix, the particle-γ coincidences for a specific reaction channel are ob-
tained. Gates are also set in the timing spectra of all the NaI(Tl) detectors. The true
coincident events are found by gating the prompt time peak and subtracting the
random events. A time spectrum for the NaI(Tl) detector in a 208Pb(3He,α)207Pb
reaction is shown in Fig. 2.6, where the prompt and random gates are shown. The
events falling into the prompt region are incremented, and those that fall into the
random region are decremented.

Figure 2.1: Experimental setup at the Oslo Cyclotron Laboratory.
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2.1. DATA ANALYSIS

Figure 2.2: The CACTUS multi-detector array, showing the positions of the
NaI(Tl) γ-ray detectors.

100 mm

38 mm

70 mm

NaI(Tl) crystal

Lead

collimator

127 mm

127 mm

Figure 2.3: A collimated NaI(Tl) detector. The collimator is used so that a better
peak-to-total ratio can be achieved.
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projectile

target nucleus

ejectile

particle telescope

Al. foil

collimator
front detector

end detector

beam direction
45 ◦

Figure 2.4: Schematic drawing of a Si particle telescope.

Figure 2.5: A typical ΔE −E matrix used to identify the ejectile particles in a
nuclear reaction.
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Figure 2.6: Time spectrum between the particle and the NaI(Tl) detector. The
true coincident events are the prompt events, which are sorted out by putting gate
between the markers t3 and t4. The random events are obtained by gating between
the t1 and t2 markers.
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Chapter 3

The Oslo Method

In the previous chapter the method of recording the raw data in a coincidence ma-
trix of ejectile and γ-ray energies, has been briefly described. These coincidence
measurements for all excitation energy bins provide us the particle-γ matrix which
is the starting point of the Oslo method. The three main steps of the method are;
unfolding the γ-ray spectra, extraction of the first generation γ-rays and the factor-
ization of the distribution of primary γ-rays into level density and γ-ray strength
function. In the following, these procedures will be briefly discussed.

3.1 Unfolding the γ-ray spectra

The observed γ-ray spectra are not a true representative of the γ-emission. The
incident γ-ray that hits a detector interacts mainly in three ways: Compton scat-
tering, photoelectric absorption and pair production. Among these interactions
the photoelectric absorption is the one where the incident γ-ray deposits its full
energy. The detector response function includes the contributions from all these
processes. Therefore, we need to correct for the response functions of the NaI(Tl)
γ-ray detectors in order to get true γ-ray spectra.

The response functions of the CACTUS detector array are obtained by doing
measurements at monoenergetic γ-ray energies: 122, 245, 344, 662, 1173, 1333,
1836, 4439, 6130 and 15110 keV. For other γ energies the response functions are
interpolated. The interpolation of peak structures like photoelectric peak, single
and double escape peaks and back-scattered peaks and Compton scattering con-
tinuum is made separately and the method has been described in Ref. [6].

In order to unfold the observed γ spectra, the folding iteration method [19] is
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3.1. UNFOLDING THE γ-RAY SPECTRA

used. The folding can be expressed by⎛
⎜⎜⎜⎝

f1
f2
...
fn

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

R11 R12 · · · R1n
R21 R22 · · · R2n

...
... . . . ...

Rn1 Rn2 · · · Rnn

⎞
⎟⎟⎟⎠×

⎛
⎜⎜⎜⎝

u1
u2
...

un

⎞
⎟⎟⎟⎠ , (3.1)

where f and u represent the folded and unfolded spectra, respectively and the
matrix element Ri j represents the response in channel i when the detector is hit by
γ-rays having energy corresponding to channel j. The iteration procedure takes
the raw spectrum as a first trial function. The spectrum is then folded and a new
trial function is obtained by adding the difference spectrum to the original trial
function. The new trial function is folded again to obtain a new trial function. The
iteration is continued until the folded spectrum becomes equivalent to the raw
spectrum, subsequently giving us the unfolded γ-ray spectrum. A straight forward
way to unfold is by inversion of R and solving u = R−1 f . However, this way of
unfolding gives large fluctuations due to unstabilities in R−1.

Instead we adopt an iteration proceedure, the Compton subtraction method [6],
that subtracts the Compton background from the observed spectrum while pre-
serving the fluctuations in the original spectra without introducing any further
spurious fluctuations. The method takes the unfolded spectrum u, resulting from
the previous folding iteration method, as input. The contributions from full energy
u f , single escape us, double escape ud and annihilation process ua are separated
from the unfolded spectrum. Each of these contributions is then smoothed with
appropriate energy resolution in order to achieve the experimental energy resolu-
tion. The Compton-scattering events uc(i) in corresponding channel i are obtained
by subtracting the peak structures spectra from the observed spectrum r(i);

uc(i) = r(i)− [u f (i)+us(i− i511)+ud(i− i1022)+ua(i511)]. (3.2)

Here i511 and i1022 represent the channels with energies 511 and 1022 keV, re-
spectively. It is notable that all annihilation events are registered in i511 since these
511 keV annihilation γ-ray originate in the detector surroundings. The Compton
background makes large contribution to the detector response. Its extraction from
the raw spectrum reduces the fluctuations caused by the folding iteration method.
However, the extracted Compton spectrum uc(i) shows strong oscillations due to
statistical fluctuations in the observed spectrum. So, it is smoothed with a large
energy resolution as Compton scattering process varies slowly with γ-ray energy.

The unfolded spectrum is obtained by subtracting the unwanted peak struc-
tures and Compton background from the total raw spectrum:

uun(i) = r(i)− [uc(i)+us(i− i511)+ud(i− i1022)+ua(i511)] (3.3)
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CHAPTER 3. THE OSLO METHOD

This new unfolded spectrum has the same staistical fluctuations as the observed
spectrum. Finally, including the detector efficiency ηtot we get,

Uun(i) =
uun(i)
ηtot

(3.4)

An application of the unfolding method described above is shown in Fig. 3.1 for
207Pb. The similarity of the folded and the raw spectra shows the good quality of
the method for the specified nucleus.
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Figure 3.1: Unfolding of the γ-ray spectrum for 207Pb in the excitation region
E = 4.5−6.7 MeV.

3.2 Extraction of the first generation γ-ray spectra
The unfolded spectra contain all generation γ-rays in cascades starting at a cer-
tain initial excitation energy E. The OCL group has developed a method [7] to
isolate the first generation γ-rays from the decay cascades whose energy distribu-
tion reveals essential information on the nuclear structure in the quasi-continuum
region.

The method of extraction of primary γ-ray spectra [7] for every excitation en-
ergy bin from the unfolded total γ-ray spectra is based on some assumptions. The
most important of these is that the γ-ray decay pattern from any excitation energy
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3.2. EXTRACTION OF THE FIRST GENERATION γ-RAY SPECTRA

bin is independent of the population mechanism of states, i.e. direct population by
a nuclear reaction, or population by the γ-decay.

Figure 3.2 illustrates the subtraction method. For each excitation energy bin in
a particle-γ matrix there is a γ-ray spectrum fi. The first generation γ-ray spectrum
of a specific excitation energy bin 1 is estimated by subtracting the weighted sum
of all lower excitation energy spectra g from the total, unfolded γ-ray spectrum of
bin 1 :

h = f1−g, (3.5)

or equivalently,
h = f1−∑

i
niwi fi, (3.6)

where wi is the weighting function representing the decay probability from bin
1 to i and corresponds to the first generation γ-ray spectrum. The normalization
coefficient ni can mainly be determined by two methods; singles and multiplicity
normalization methods. The singles normalzation uses the singles particle cross-

0

4

8

E (MeV)

1

i

f1

fi

f1

g =
∑
i niwifi

h = f1 - gEγ

Eγ Eγ

Eγ

Eγ

Figure 3.2: The method of first generation γ-rays extraction.

sections such that for bin i the ni can be written as:

ni =
σ1

σi
, (3.7)

where σ is the particle cross-section. In the multiplicity normalization, the γ-ray
multiplicity M is used to find the normalization coefficient

ni =
MiA( f1)
M1A( fi)

, (3.8)
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CHAPTER 3. THE OSLO METHOD

where A( fi) represents the area of spectrum fi. Further details of these normaliza-
tion methods can be found in Ref. [7].

The close relation between the h and wi allows us to use a trial weight function
to find h through a converging iteration proceedure. It has been shown [7] that the
shape of the first generation spectrum remains the same after a few iterations for
different choices of the trial weight functions. So, the choice of the trial weighting
function does not effect the results.

The basic assumption that the γ-decay pattern from an excitation energy bin is
independent of the population mechanism, may not be fulfilled if the direct reac-
tion at lower excitation bins do not favour some levels within the excitation energy
bin that are populated from above. This situation may cause that some γ-rays are
not fully subtracted from the total γ-ray spectrum. The influence of a possible dif-
ferent selectivity of levels at one excitation energy in the direct reaction compared
to γ-decay from the higher levels, is expected to be most pronounced when only
few levels are present in the excitation bin. These considerations are considerably
important in the vicinity of closed shell nuclei, where the level densities are low.
Therefore, one must show cautions while applying the Oslo method in such cases.

An unfolded, first generation, and higher generation spectra are shown in
Fig. 3.3 for 207Pb in the excitation energy region E = 4.5−6.7 MeV.
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Figure 3.3: Extraction of first generation γ-rays (middle panel) from the total,
unfolded spectrum (top panel) by subtracting the second and higher generation
γ-rays (bottom panel).
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3.3. DISENTANGLEMENT OF LEVEL DENSITY AND γ-RAY STRENGTH
FUNCTION

3.3 Disentanglement of level density and γ-ray strength
function

The primary γ-ray matrix P(E,Eγ) is normalized to unity for every excitation en-
ergy bin E. Thus, P(E,Eγ) represents the γ-decay probability. This normalized
matrix contains information on both the level density and the γ-ray strength func-
tion.

The generalized Fermi’s golden rule states that the decay probability can be
factorized into state density of final states, and a factor depending on the transition
matrix element between the initial and final state. Following this rule, we express
the γ-decay probabilty from an initial excitation energy E in terms of level density
ρ(E−Eγ) and γ-ray transmission coefficient T(Eγ):

P(E,Eγ) ∝ ρ(E−Eγ)×T(Eγ). (3.9)

According to the Brink-Axel hypothesis [20, 21], the transmission coefficient T is
assumed to be independent of temperature (or excitation energy). The hypothesis
states that collective excitations built on excited states have the same properties as
those built on the ground state. The average temperature for the nuclei studied is
typically below 2 MeV. In addition, the temperature is believed to vary slowly as
a function of excitation energy T ∼√

E f . Thus, the constant temperature approx-
imation for T in Eq. (3.9) is a reasonable approximation.

The factorization of the primary γ-ray matrix into ρ and T is determined by
a global least χ2 fit to the primary γ-ray matrix. An example to illustrate the
quality of the fit is shown in Fig. 3.4, where a least χ2 fit has been compared
with the experimental primary γ-ray matrix in the 208Pb(3He,α)207Pb reaction.
The calculated primary γ-ray spectra are obtained by:

Pth(E,Eγ) =
ρ(E−Eγ)T(Eγ)

∑E
Eγ=Emin

γ
ρ(E−Eγ)T(Eγ)

. (3.10)

The error bars of the data points in Fig. 3.4 take into account only statistical un-
certainties. This means that any systematic error occurring as a result of possible
shortcomings of the first generation method and a weak dependence of T on the
excitation energy is not included. In this context the comparison shown in Fig. 3.4
works satisfactorily for the 207Pb nucleus.

Equation (3.9) gives an infinite number of solutions for ρ and T. Applying the
transformation to one arbitrary solution [8]

ρ̃(E−Eγ) = Aexp[α(E−Eγ)]ρ(E−Eγ), (3.11)

T̃(Eγ) = Bexp(α Eγ) T(Eγ), (3.12)
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Figure 3.4: Comparison of the normalized experimental primary γ-ray spectra for
the 208Pb(3He,α)207Pb reaction (data points) at various excitation energies and the
fit (solid lines) using the factorization of Eq. (3.9). The excitation energy bins are
220 keV.

one can construct all the solutions. Here A, B and α are the generators of the
transformation and are undetermined. These parameters have to be determined
using independent experimental information to get the physically most relevant
solution.
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Chapter 4

Absolute Normalization of the
Experimental Results

The ρ(E) and T(Eγ) functions in the previous chapter are obtained from the χ2

minimization, giving only one solution out of many possible solutions that could
reproduce the primary γ-ray matrix. In order to get the most relevant solutions,
the determination of the transformation generators α , A, and B of Eqs. (3.11)
and (3.12) are necessary.

4.1 Normalization of level density

The parameters α and A correspond to the slope and the absolute value of the
level density, respectively. The level density ρ is normalized to the known dis-
crete levels at low excitation energies [4] and to the level density deduced from
neutron resonance spacing data at the neutron separation energy Sn. In Fig. 4.1 the
normalization procedure for 205Pb has been illustrated. The level density at Sn has
been deduced from the Fermi-gas expression [22] using the available proton or
neutron-resonance spacing data [5] and assuming that positive and negative pari-
ties contribute equally to the level density at Sn. For � = 0 capture (s-waves), the
level density ρ0 becomes:

ρ0(Sn) =
2σ2

D0
[It exp(−I2

t /2σ2)+(It +1)exp(−(It +1)2/2σ2)]−1. (4.1)
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For � = 1 capture (p-waves), the above equation is modified as:

ρ1(Sn) =
2σ2

D1
[(It−1)exp(−(It−1)2/2σ2)

+ It exp(−I2
t /2σ2)

+(It +1)exp(−(It +1)2/2σ2)

+(It +2)exp(−(It +2)2/2σ2)]−1. (4.2)

The quantities D0 and D1 are the average s- and p-wave resonances spacing. The
parameter It is the spin of the target nucleus. For target spin It = 0, the first two
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Figure 4.1: Normalization of the level density (data points) for 205Pb. At low ex-
citation energies the data points are normalized between the arrows, to the known
levels (solid lines). At higher excitation energies the data points are normalized
with the Fermi-gas level density (dotted lines) scaled to the level density at Sn
(open square) deduced from Eq. (4.2).

terms inside the bracket of Eq. (4.2) should be omitted and for spin It = 1/2 and
1, only the first term should be omitted. The σ is the spin-cut off parameter, which
accounts for the spin distribution and can either be determined by [23]:

σ2 = 0.0146A5/3 1+
√

1+4a(E−E1)
2a

(4.3)

or by combining the Eqs. (9) and (11) of Ref. [22] i.e.

σ2 = 0.0888A2/3
√

a(E−Epair), (4.4)
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where E1 is the back shift parameter (values taken from [23]) and Epair is the pair-
ing energy correction parameter, evaluated following the description of Ref. [24].

In Fig. 4.1, the excitation energy regions between the arrows are used for nor-
malization. Below Emin

γ (∼2 MeV in the present case) the γ-rays are omitted in
the extraction procedure such that our data points reach up to ∼ Sn−Emin

γ . An
interpolation is made to fill the gap between the data points and the deduced level
density at Sn using the Fermi-gas level density:

ρFG(U) = η
exp(2

√
aU)

12
√

2a1/4U5/4σ
, (4.5)

where a is the level density parameter, U = E−E1 is the intrinsic excitation energy
and η is a constant introduced to adjust ρFG to the deduced level density at Sn.

4.2 Normalization of the transmission coefficient
The γ-ray transmission coefficient T(Eγ) is connected to the electromagnetic de-
cay properties of the nucleus. It is expressed as the sum of all the γ-ray strength
functions fXL for transitions having energy Eγ , electromagnetic character X , and
multipolarity L

TXL(Eγ) = 2π ∑
XL

fXLE2L+1
γ . (4.6)

The slope correction exp(αEγ) of Eq. (3.12) is already included in T during the
normalization of level density. However, the absolute normalization of the trans-
mission coefficient T is determined by the parameter B. The determination of B
requires other experimental data and will be described below.

In Fig. 4.2 is shown the transmission coefficient T in arbitray units for 205Pb.
By assuming that the γ-decay in the quasi-continuum region is mainly governed
by dipole transitions and that the number of accessible levels of positive and neg-
ative parity are equal for any energy and spin, T can be expressed as

BT(Eγ) = 2π( fE1 + fM1)E3
γ . (4.7)

The experimental data on the average total radioactive width 〈Γγ〉 of neutron res-
onances at Sn can be used to determine B. In Ref. [25] the average total radiative
width 〈Γγ(E, I,π)〉 of levels with excitation energy E, spin I, and parity π is given
by

〈Γγ(E, I,π)〉=
1

2πρ(E, I,π) ∑
XL

∑
I f ,π f

∫ E

0
dEγTXL(Eγ)ρ(E−Eγ , I f ,π f ). (4.8)
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The summations and integration run over all final levels with spin I f and parity
π f , accessible by the γ-decay with energy Eγ , electromagnetic character X and
multipolarity L. By assuming the dipole radiation as a significant contributor and
equal-parity distribution, one can determine the average total radiative width 〈Γγ〉
for neutron resonances by combining Eqs. (4.7) and (4.8). For s-wave neutron res-
onances the populated spins are I = |It ±1/2| and for p-wave neutron resonances
the populated spins are |It ± 1/2± 1|, where It represents the spin of the target
nucleus in the (n,γ) reaction. The parity is determined by the target parity πt as
π = πt(−1)l . The 〈Γγ〉 at Sn can now be written as

〈Γγ(Sn, I)〉=
1

4πρ(Sn, I,π)

∫ Sn

0
dEγBT(Eγ)ρ(Sn−Eγ)

1

∑
J=−1

g(Sn−Eγ , I + J).

(4.9)
The spin distribution of level density is given by [22]

g(E, I) =
2I +1
2σ2 exp[−(I +1/2)2/2σ2], (4.10)

which is normalized to ∑I g(E, I) ∼ 1. The experimental value of 〈Γγ(Sn, I)〉 is
then the weighted sum of contributions with I according to Eq. (4.9).

The methodological difficulties in the primary γ-ray extraction prevent the
determination of T below a certain Emin

γ . The extrapolation of T is made by an ex-
ponential form, as shown in Fig. 4.2, in order to calculate the integral of Eq. (4.9).
The contribution of this extrapolation in Eq. (4.9) is not more than 15%, so the
possible error induced by the extrapolation is of minor importance.
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Figure 4.2: Transmission coefficient T in arbitrary units for 205Pb. An exponential
function (solid line) is fitted to the data points between the arrows at low and high
excitation energies.
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Chapter 5

Level Density and Thermodynamic
Properties

5.1 Level density
The nuclear level density is defined as the number of energy levels accessible at a
specific excitation energy, within a given energy bin. It is a characteristic property
of every nucleus that the level density increases rapidly with excitation energy.
Bethe [1] introduced his Fermi-gas description of level density ρ(E) to predict
the experimental data by

ρ(E) =
√

π exp(2
√

aE)
12a1/4E5/4 , (5.1)

where a is the level density parameter given by

a =
π2

6
(gp +gn). (5.2)

Here, gp and gn are single particle level density parameters for protons and neu-
trons, respectively. The major assumptions of the model include independent par-
ticle motion and equidistant spacings of single-particle states. Bethe’s formula
predicts the general exponential increase in level density with excitation energy
and with mass number A. However, it did not consider the shell effects and odd-
even effects of the nuclei. Therefore, the phenomenological modifications were
proposed to this model, which take into account features like shell effects and
residual interactions. The standard Fermi-gas level density is expressed by

ρ(U,J) =
exp(2

√
aU)

12σ
√

2a1/4U5/4

(2J +1)
2σ2 exp

(−(J +1/2)2

2σ2

)
, (5.3)
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where U is the effective shifted excitation energy, and σ is the spin-cut off pa-
rameter (see Eqs. (4.3) and (4.4). Gilbert and Cameron [22] proposed a pairing
correction parameter Epair as a shift in excitation energy, such that U = E−Epair.

Gilbert and Cameron [22] also developed a constant temperature level density
formula, given by

ρ(E) =
1
T

exp
(

E−E0

T

)
(5.4)

for low excitation energies. The constant nuclear temperature T and energy shift
E0 are the free parameters, fitted to the experimental data at low and high excita-
tion energies in order to give absolute values of the level density.

Another approach of describing the experimental data is the back-shifted Fermi-
gas model (BSFG). The level density parameter a and energy shift E1 are consid-
ered as free parameters in this model. This approach covers a wider range of en-
ergies allowing a reasonable fit to the experimental data. T. von Egidy and D. Bu-
curescu [23] determined a new set of phenomenological level density parameters
for the BSFG and CT level density models, by fitting experimental data to levels
at low excitation energy and to neutron resonance spacings at the neutron binding
energies.

All the above approaches of determining level densities are semi-empirical
and based on experimental data. Although they give reasonable agreement with
the experimental data, yet they are unable to predict any fine structures in the
level density caused by pair breaking, shell effects etc.

5.2 Thermodynamics

Thermodynamic quantities in nuclear physics depend on statistical properties in
the nuclear many body system and may reveal phase transitions. In a micro-
scopic system there are fewer particles that make up the system compared to a
macroscopic system. Therefore, the application of thermodynamical and statisti-
cal methods must be done with care.

The level density as a function of excitation energy is the starting point to
establish the thermal quantities like entropy and nuclear temperature, of a nu-
clear system. The multiplicity of states Ωs, the number of physically accessible
microstates, is related to the level density and average spin 〈J(E)〉 by

Ωs(E) ∝ ρ(E) [2〈J(E)〉+1] . (5.5)

The 2J +1 degeneracy of magnetic sub-states is not included during the extraction
of our level density. Therefore, it does not correspond to the true multiplicity of
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states, and we use multiplicity Ωl based on experimental level density as:

Ωl(E) ∝ ρ(E). (5.6)

The micro-canonical ensemble describes an isolated nuclear system with fixed
energy and size. Due to the short range of the nuclear force, the nucleus does
not exchange its excitation energy with the external environment. According to
Ref. [26], the micro-canonical ensemble is the most appropriate statistical ensem-
ble for isloated systems like the nucleus. The entropy S(E) in the micro-canonical
ensemble is related to the multiplicity of levels Ωl(E) by

S(E) = kB lnΩl(E), (5.7)

where kB is Boltzmann’s constant. The multiplicity can be written as Ωl(E) =
ρ(E)/ρ0. The normalization constant ρ0 is adjusted to fulfill the condition of the
third law of thermodynamics; S→ 0 for T → 0, T being the nuclear temperature.
Temperature is assumed to be zero for the ground state of the even-even nucleus,
so that S(E) = 0 for E = 0 in even-even nucleus. The nuclear temperature in a
micro-canonical system is defined as:

1
T (E)

=
∂S
∂E

. (5.8)

A finite many-body system, like a nucleus, is characterized by large fluctuations
in the thermodynamic observables. It is obvious that small statistical deviations
in the entropy S will be enhanced due to the derivation in Eq. (5.8), giving large
contributions to the temperature T (E).
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Chapter 6

Models of γ-Ray Strength Functions

The γ-ray strength function represents the distribution of average decay proba-
bilities between levels in quasi-continuum as a function of γ-ray energy. It is the
measure of average electromagnetic properties of the nucleus. The charge of the
protons (Ze) and the magnetic dipole moments of the protons (μp) and neutrons
(μn) are the basic elements for these properties.

Blatt and Weisskopf [27] showed that the square of the γ-ray transition matrix
element connecting the compound states is related directly to the average level
spacing of the initial states with equal spin and parity. This lead to the descrip-
tion of γ-ray strength function in terms of average partial radiative width 〈Γγi f 〉,
average level spacing Di of initial states, and transition energy Eγ , by

fXL =
〈Γγi f 〉

E2L+1
γ Di

. (6.1)

Here fXL is the strength function for electromagnetic character X and multipolar-
ity L. The relation between the γ-ray strength function fXL and transition coeffi-
cient TXL is given by

fXL =
1

2π
TXL(Eγ)
E2L+1

γ
. (6.2)

Several models have been developed to determine the γ-ray strength function
fXL. The simplest of these is the Standard Lorentzian model (SLO). This model is
used to describe the giant electric dipole resonance (GEDR) E1, giant magnetic
dipole resonance (GMDR) [28] M1, and isoscalar giant resonance E2 radiations.
The SLO model uses the Brink-Axel approach [20, 21], which has been widely
used to describe the giant dipole resonances. The SLO model describes the domi-
nant E1 strength function by

f SLO
E1 (Eγ) =

1
3π2h̄2c2

σE1EγΓ2
E1

(E2
γ −E2

E1)2 +E2
γ E2

E1
, (6.3)
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where σE1, EE1, and ΓE1 are the GEDR parameters derived from photoabsorption
experiments. The model is independent of the excitation energy and depends only
on the transition energy, in accordance with the Brink-Axel hypothesis.

The magnetic dipole M1 strength function also plays an important role in the
determination of the total γ-ray strength function. The SLO model describes the
M1 radiation by

f SLO
M1 (Eγ) =

1
3π2h2c2

σM1EγΓ2
M1

(E2
γ −E2

M1)2 +E2
γ Γ2

M1
. (6.4)

The contribution from isoscalar E2 transition strength is of minor importance, but
can be included to the total γ-ray strength function. The E2 strength is described
in Ref. [5] by

f SLO
E2 (Eγ) =

1
5π2h̄2c2E2

γ

σE2EγΓ2
E2

(E2
γ −E2

E2)2 +E2
γ Γ2

E2
. (6.5)

The resonance parameters of M1 and E2 resonances are deduced from the sys-
tematics given in Ref. [5].

The experimental data [29] have shown the presence of a non-zero finite strength
function at the tail of the GEDR below 2 MeV. The SLO model underestimates
extensively the E1 strength function for the γ-ray energy Eγ < 1−2 MeV.

Kadmenskiı̆, Markushev, and Furman (KMF) suggested an improved model [30]
for the determination of the E1 strength function. The KMF model includes the
temperature dependent width Γk(Eγ ,T ) of the GEDR and give a non-zero strength
function for Eγ → 0. The KMF model describes the E1 strength functions at the
tail of GEDR by

f KMF
E1 (Eγ) =

1
3π2h̄2c2

0.7σE1ΓE1EγΓk(Eγ ,T )
(E2

γ −E2
E1)2 , (6.6)

where T =
√

(U/a) is the temperature of the final state, and Γk is the energy and
temperature dependent width of the GEDR given by

Γk(Eγ ,T ) =
ΓE1

E2
γ

(E2
γ +4π2T 2). (6.7)

The KMF model is singular at the resonance energies and is only valid for lower
γ energies.

The Generalized Lorentzian model (GLO) [31] is a combined model which
describes the GEDRs both at resonance energies and at low γ energies. The model
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is described as:

f GLO
E1 (Eγ) =

1
3π2h̄2c2

σE1ΓE1{
EγΓk(Eγ ,T )

(E2
γ −E2

E1)2 +(EγΓk(Eγ ,Tf ))2

+0.7
Γk(Eγ = 0,T )

E3
E1

}
. (6.8)

In Ref. [32] it has been shown that the GLO model gives a good agreement with
the data on average resonance capture (ARC) data and capture cross-sections for
selected spherical nuclei. However, in the mass region of strongly deformed nuclei
A = 150− 170, the GLO model underestimates the observed strength functions.
Therefore, the enhanced generalized Lorentzian model (EGLO) [5] is developed
to determine the γ-ray strength function for the whole mass region. In the EGLO
model the temperature and energy dependent width Γk(Eγ ,T ) of Eq. (6.7) is mod-
ified by

Γk(Eγ ,T ) = K(Eγ)
ΓE1

E2
γ

[E2
γ +4π2T 2], (6.9)

where the empirical function K(Eγ) is given by

K(Eγ) = κ +(1−κ)
Eγ −E0

EE1−E0
. (6.10)

Here we use E0 = 4.5 MeV and the enhancement factor κ , given by [33]

κ =

{
1 if A < 148,

1+0.09(A−148)2 exp(−0.18(A−148)) if A≥ 148.
(6.11)

These expressions are developed in the framework of the collisional damping
model for Eγ < EE1 and hold for T < 2 MeV.

The theoretical expressions discussed above have to be modified for deformed
nuclei. The GEDR in deformed nuclei is split into two components corresponding
to two oscillation frequencies, one for each principal axis. Therefore, the exper-
imental data are best described by adding the strength functions with the corre-
sponding resonance parameters.
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Chapter 7

Papers

The following papers are included in this thesis:

1. A. C. Larsen, R. Chankova, M. Guttormsen, F. Ingebretsen, T. Lönnroth,
S. Messelt, J. Rekstad, A. Schiller, S. Siem, N. U. H. Syed, A. Voinov, and
S. W. Ødegård, Microcanonical entropies and radiative strength functions
of 50,51V, Phys. Rev. C 73, 064301 (2006).

2. A. C. Larsen, M. Guttormsen, R. Chankova, F. Ingebretsen, T. Lönnroth,
S. Messelt, J. Rekstad, A. Schiller, S. Siem, N. U. H. Syed, and A. Voinov,
Nuclear level densities and γ-ray strength functions in 44,45Sc, Phys. Rev. C
76, 044303 (2007).

3. A. V. Voinov, S. M. Grimes, A. C. Larsen, C. R. Brune, M. Guttormsen,
T. Massey, A. Schiller, S. Siem, and N. U. H. Syed, Level densities of 44Sc
and 47Ti from different experimental techniques, Phys. Rev. C 77, 034613
(2008).

4. N. U. H. Syed, M. Guttormsen, F. Ingebretsen, A. C. Larsen, T. Lönnroth,
J. Rekstad, A. Schiller, S. Siem, and A. Voinov, Level density and γ-decay
properties of closed shell Pb nuclei, accepted to be published in Phys. Rev. C.

5. N.U.H. Syed, Extraction of thermal and electromagnetic properties in 45Ti,
submitted to the Oslo Collaboration.

7.1 Survey of papers

Paper I
The level densities and γ-ray strength functions are measured for the 50,51V from
particle-γ coincidence spectra of the (3He, 3He′γ) and (3He, αγ) reactions with
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45 MeV 3He ions. The extracted level densities in 51V show bump structures at
excitation energies up to E ∼ 4.5 MeV. These structures of 51V are partly due
to the closed proton shell and partly due to the breaking of nucleon pairs. The
presence of a valance proton vacancy in 50V produces some freedom of space,
causing the bump structures in the level density to be damped out. The extracted
level densities are used to deduce the thermodynamic quantities of 50,51V nuclei in
the micro-canonical ensemble. The entropy difference between the two isotopes is
found to be 1.2 kB, which is close to the value (0.9kB) obtained in the lead region.

The experimental radiative strength function is nicely described by the KMF
model. However, an enhancement in the strength function below 3 MeV is ob-
served, in total disagreement with the theoretical models. The physical explana-
tion of this enhancement is not yet understood.

Paper II
The motivation of this paper is to investigate the nuclear structure of scandium
isotopes in the quasi-continuum region. The 44,45Sc isotopes lie in the vicinity of
light near closed shell nuclei where one would expect low and fluctuating level
densities. The presence of upbend in the γ-ray strength function at low γ energies
in 56,57Fe, 93−98Mo, and 50,51V isotopes, suggests that upbend occurs in certain
nuclear mass regions due to a so far unknown collective resonances. Therefore,
studying the presence of enhancement in the γ-ray strength function of Sc isotopes
at low γ-ray energies are interesting.

The Oslo method is applied to primary γ-ray spectra of 44,45Sc nuclei to ex-
tract the level densities and γ-ray strength functions, simultaneously. The extracted
level densities display fine structures, however, these are less prominent com-
pare to those seen in closed shell lead and vanadium nuclei. The level densities
are compared to a combinatorial microscopic model. The agreement between the
model and the experimental level densities is satisfactory, especially for 44Sc. The
γ-ray strength functions of the 44,45Sc isotopes are normalized using the (γ,n) and
(γ, p) nuclear cross-sections data. The normalized strength functions are found to
be described well by the KMF model at the tail of the GEDR, except for γ-ray
energies below 4 MeV. The expected upbend in the γ-ray strength function below
4 MeV is confirmed for the Sc isotopes. This work also shows that the upbend
structure in the strength function is independent of the chosen excitation region.

Paper III
The two well-known approaches for the level density extraction above the known
discrete levels are the Oslo method and the modeling of the particle-evaporation
spectra from a compound nuclear reaction. In this paper the consistency of two
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level density extraction approaches have been investigated for the 44Sc nucleus.
Previously, such a consistency has been established for the level densities in 56Fe.

The level densities in 44Sc are determined from the evaporation spectra of α
particles in a (3He,α) reaction. The experiment was conducted at the Edwards
Accelerator Laborattories, Ohio University and the results are compared with the
level density determined by the Oslo method in a (3He,α) reaction, of the ex-
periment performed at the OCL, Oslo University. The consistency of the two ap-
proaches is confirmed for the 44Sc nucleus. The level densities of the 47Ti popu-
lated by 45Sc(3He,p) reaction are extracted as well.

Paper IV

Extracting the level densities by the Oslo method in the vicinity of closed shell
lead nuclei is the primary motive of this paper. From a statistical point of view, the
level densities in the closed shell nuclei are low and one can expect large Porter-
Thomas fluctuations on the γ-transition intensities. Therefore, non-statistical ef-
fects are expected to influence the results of the Oslo method in the closed shell
nuclei. It is therefore interesting to investigate if these non-statistical effects make
the Oslo method non-applicable in the region of closed shell nuclei.

The Oslo method is applied to data from the (3He, 3He′γ) and (3He, αγ) re-
actions on 206Pb and 208Pb targets. In spite of the possible non-statistical effects,
the extracted level densities are consistent with the known discrete levels. In 208Pb
the very good agreement between our data and previously known data indicates
the robustness of the Oslo method for its use for the closed shell nuclei. The level
densities of the lead nuclei show pronounced bump structures due to the shell ef-
fects. However, these step structures are damped out by gradual opening of the
neutron shell closure at N = 126 in the 205−207Pb nuclei.

The micro-canonical entropies are deduced from the experimental level den-
sities. An average entropy difference of ΔS ∼ 0.9kB has been observed between
205,206Pb. The micro-canonical temperatures are deduced for 205,206Pb with an
average temperature of T ∼ 1.0 MeV. The violent fluctuations in the entropy of
207,208Pb nuclei make their use unreliable for the determination of other thermo-
dynamic quantities.

The γ-ray strength functions in the 205−208Pb are also extracted and compared
with the (γ,n) reaction cross-section data. The Oslo data for the lead nuclei are
also compared with the SLO and EGLO γ-ray strength functions models. How-
ever, these models do not describe the data adequately. Intermediate structures in
the γ-ray strength functions for all the Pb nuclei have been observed at the tail of
the GEDR. These structures become less pronounced by gradual moving from the
doubly closed shell 208Pb to the single closed shell 205Pb.
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Paper V
In this work the Oslo method is used for the first time to extract the level density
and the γ-ray strength function from a (p,d) reaction. The proton beam is used
on the 46Ti target to populate 45Ti. The experimental level density confirm the
quenching of number of levels per MeV due to few interplaying valence nucleons.
The Oslo data for the 45Ti are compared with the level density of 47Ti, determined
by the proton-evaporation technique, described in paper III. The slope of these
two level densities from different techniques is similar, confirming our results.
The experimental level density of 45Ti is further investigated by a combinatorial
theoretical model. The model is based on BCS quasi-particles, scattered randomly
into the Nilsson single-particle levels, where collective states are schematically
added. The agreement between the model and the experimental level densities is
very good. The average number of broken Cooper pairs and the parity asymmetry
are calculated as well.

The γ-ray strength function is compared with the (γ,abs) reaction cross-section
data and with the GLO model. The γ-ray strength function is well described by
the model, however, below Eγ < 2.5 MeV the observed strength is higher than the
GLO model predictions. This enhancement of the γ-ray strength function at low
γ-ray energies, called upbend, has been observed previously in Fe, Mo, V and Sc
nuclei. The presence of upbend in Ti isotopes also strengthens the argument made
in paper II, that this structure might be due to some sort of low energy resonances
in the mass region A < 100.
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7.2. PAPER 1: MICROCANONICAL ENTROPIES AND RADIATIVE
STRENGTH FUNCTIONS OF 50,51V

7.2 Paper 1: Microcanonical entropies and radia-
tive strength functions of 50,51V
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The level densities and radiative strength functions (RSFs) of 50,51V have been extracted using the (3He,αγ )
and (3He,3He′γ ) reactions, respectively. From the level densities, microcanonical entropies are deduced. The
high γ -energy part of the measured RSF fits well with the tail of the giant electric dipole resonance. A significant
enhancement over the predicted strength in the region ofEγ � 3MeV is seen, which at present has no theoretical
explanation.
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I. INTRODUCTION

The structure of the vanadium isotopes is based on simple
shell-model configurations at low excitation energies. The
valence protons and neutrons occupy the single-particle πf7/2
and νf7/2 orbitals, respectively. These shells are isolated from
other orbitals by the N, Z = 20 and 28 shell gaps, making
the vanadium isotopes interesting objects for studying various
nuclear shell effects. In particular, it is well known that
the number of available singe-particle levels is significantly
reduced for nuclei at closed shells.
The density of states or, equivalently, the entropy in these

systems depends on the number of broken Cooper pairs
and single-particle orbitals made available by crossing the
shell gaps. The 50,51V nuclei are of special interest because
the neutrons are strongly blocked in the process of creating
entropy; 50V and 51V have seven and eight neutrons in the
νf7/2 orbital, respectively. Thus, the configuration space of the
three protons in the πf7/2 shell is of great importance.
These particular shell-model configurations are also ex-

pected to govern the γ -decay routes. Specifically, as within
every major shell, the presence of only one parity for single-
particle orbitals in the low-spin domain means that transitions
ofE1 typewill be suppressed. The lowmass of the investigated
nuclei causes the centroid of the giant electric dipole resonance
(GEDR) to be relatively high, while the integrated strength
according to the Thomas-Reiche-Kuhn sum rule is low; both
observations work together to produce a relatively weak
low-energy tail when compared to heavier nuclei. Hence,
possible nonstatistical effects in the radiative strength function
(RSF) might stand out more in the present investigation.

∗Electronic address: a.c.larsen@fys.uio.no

The Oslo Cyclotron group has developed a method to
extract first-generation (primary) γ -ray spectra at various
initial excitation energies. From such a set of primary spectra,
the nuclear level density and the RSF can be extracted
simultaneously [1,2]. These two quantities reveal essential
information on nuclear structure such as pair correlations and
thermal and electromagnetic properties. In the last five years,
the Oslo group has demonstrated several fruitful applications
of the method [3–7].
In Sec. II an outline of the experimental procedure is given.

The level densities and microcanonical entropies are discussed
in Sec. III, and in Sec. IV the RSFs are presented. Finally,
concluding remarks are given in Sec. V.

II. EXPERIMENTAL METHOD

The experiment was carried out at the Oslo Cyclotron
Laboratory using a beam of 30-MeV 3He ions. The self-
supporting natural V target had a purity of 99.8% and a
thickness of 2.3 mg/cm2. Particle-γ coincidences for 50,51V
were measured with the CACTUS multidetector array [8].
The charged ejectiles were detected using eight Si particle
telescopes placed at an angle of 45◦ relative to the beam
direction. Each telescope consists of a front �E detector and
a back E detector with thicknesses of 140 and 1500 μm,
respectively. An array of 28 collimated NaI γ -ray detectors
with a total efficiency of ∼15% surrounded the target and
the particle detectors. The reactions of interest were the
pick-up reaction 51V(3He, αγ )50V, and the inelastic scattering
51V(3He,3He′γ )51V. The typical spin range is expected to be
I ∼ 2−4 h̄. The experiment ran for about one week, with beam
currents of ∼1 nA.
The experimental extraction procedure and the assumptions

made are described in Refs. [1,2]. The data analysis is based
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FIG. 1. γ spectra of 50V for excitation energy E = 6–8 MeV.

on three main steps: (1) preparing the particle-γ coincidence
matrix, (2) unfolding the γ -ray spectra, and (3) constructing
the first-generation matrix.
In the first step, for each particle-energy bin, total spectra

of the γ -ray cascades are obtained from the coincidence mea-
surement. The particle energy measured in the telescopes is
transformed to excitation energy of the residual nucleus, using
the reaction kinematics. Then each row of the coincidence
matrix corresponds to a certain excitation energy E, while
each column corresponds to a certain γ energy Eγ .
In the next step, the γ -ray spectra are unfolded using the

known response functions of the CACTUS array [9]. The
Compton-subtraction method described in Ref. [9] preserves
the fluctuations in the original spectra without introducing
further spurious fluctuations. A typical raw γ spectrum is
shown in the top panel of Fig. 1, taken from the 50V
coincidence matrix gating on the excitation energies between
E= 6–8MeV. Themiddle panel shows the unfolded spectrum,
and in the bottom panel this spectrum has been folded with the
response functions. The top and bottom panels are in excellent
agreement, indicating that the unfolding method works very
well.
The third step is to extract the γ -ray spectra containing

only the first γ rays in a cascade. These spectra are obtained
for each excitation-energy bin through a subtraction procedure
as described in Ref. [10]. The main assumption of this method
is that the γ -decay spectrum from any excitation-energy bin
is independent of the method of formation, either directly by
the nuclear reaction or populated by γ decay from higher-
lying states following the initial reaction. This assumption
is automatically fulfilled when the same states are equally
populated by the two processes, since γ branching ratios are
properties of the levels themselves. Even if different states are
populated, the assumption is still valid for statistical γ decay,

FIG. 2. Unfolded γ spectra of 50V for excitation energy E =
6–8 MeV.

which only depends on the γ -ray energy and the number of
accessible final states. In Fig. 2, the total unfolded γ spectrum,
the γ spectrum of second and higher generations, and the
first-generation spectrum of 50V with excitation-energy gates
E = 6−8 MeV are shown. The first-generation spectrum is
obtained by subtracting the higher-generation γ rays from the
total γ spectrum.
When the first-generationmatrix is properly normalized [2],

the entries of it are the probabilities P (E,Eγ ) that a γ ray
of energy Eγ is emitted from an excitation energy E. The
probability of γ decay is proportional to the product of the
level density ρ(E − Eγ ) at the final energy Ef = E − Eγ and
the γ -ray transmission coefficient T (Eγ ), that is,

P (E,Eγ ) ∝ ρ(E − Eγ )T (Eγ ). (1)

This factorization is the generalized form of the Brink-Axel
hypothesis [11,12], which states that any excitation modes
built on excited states have the same properties as those built
on the ground state. This means that the γ -ray transmission
coefficient is independent of excitation energy and thus of the
nuclear temperature of the excited states. There is evidence
that the width of the giant dipole resonance varies with the
nuclear temperature of the state on which it is built [13,14].
However, the temperature corresponding to the excitation-
energy range covered in this work is rather low and changes
slowlywith excitation energy (T ∼√

Ef ); thus, we assume that
the temperature is constant and that the γ -ray transmission
coefficient does not depend on the excitation energy in the
energy interval under consideration.
The ρ and T functions can be determined by an iterative

procedure [2], with which each data point of these two func-
tions is simultaneously adjusted until a global χ2 minimum
with the experimental P (E,Eγ ) matrix is reached. No a
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FIG. 3. Experimental first-generation
γ spectra (data points with error bars) at six
different initial excitation energies compared
to the least-χ 2 fit (solid lines) for 50V.
The fit is performed simultaneously on the
entire first-generation matrix of which the
six displayed spectra are a fraction. The
first-generation spectra are normalized to unity
for each excitation-energy bin.

priori assumptions about the functional form of either the
level density or the γ -ray transmission coefficient are used.
An example to illustrate the quality of the fit is shown in
Fig. 3, wherewe compare for the 51V(3He,αγ )50V reaction the
experimental first-generation spectra to the least-χ2 solution
for six different initial excitation energies.
The globalized fitting to the data points determines the

functional form of ρ and T ; however, it has been shown [2]
that if one solution for the multiplicative functions ρ and
T is known, one may construct an infinite number of other
functions, which give identical fits to the P matrix by

ρ̃(E − Eγ ) = A exp[α(E − Eγ )]ρ(E − Eγ ), (2)

T (Eγ ) = B exp(αEγ )T (Eγ ). (3)

Thus, the transformation parameters α,A, and B, which
correspond to the physical solution, remain to be determined.

III. LEVEL DENSITY AND MICROCANONICAL ENTROPY

The parameters A and α can be obtained by normalizing
the level density to the number of known discrete levels at low
excitation energy [15] and to the level density estimated from
neutron-resonance spacing data at the neutron binding energy
E = Bn [16]. The procedure for extracting the total level
density ρ from the resonance energy spacing D is described
in Ref. [2]. Since our experimental level-density data points
only reach up to an excitation energy of E ∼ Bn − 1 MeV,
we extrapolate with the back-shifted Fermi-gas model with a

global parametrization [17,18]

ρBS(E) = η
exp(2

√
aU )

12
√
2a1/4U 5/4σI

, (4)

where a constant attenuation coefficient η is introduced to
adjust ρBS to the experimental level density atBn. The intrinsic
excitation energy is estimated by U = E − C1 − Epair, where
C1 = −6.6A−0.32 MeV is the back-shift parameter and A

is the mass number. The pairing energy Epair is based on
pairing gap parameters �p and �n evaluated from even-odd
mass differences [19] according to [20]. The level-density
parameter a and the spin-cutoff parameter σI are given by
a = 0.21A0.87MeV−1 and σ 2I = 0.0888T A2/3, respectively.
The nuclear temperature T is described by T = √

U/a. The
parameters used for 50,51V in Eq. (4) are listed in Table I.
Unfortunately, 49V is unstable, and no information exists

on the level density at E = Bn for 50V. Therefore, we estimate
the values from the systematics of other nuclei in the same
mass region. In order to put these data on the same footing,
we plot the level densities as a function of intrinsic energy
U . Due to the strongly scattered data of Fig. 4, the estimate
is rather uncertain. We chose a rough estimate of ρ(Bn) =
5400 ± 2700 MeV−1 for 50V. This value gives an attenuation
η = 0.46, which is in good agreement with the obtained value
of η = 0.51 for the 51V nucleus. Figure 5 demonstrates the
level-density normalization procedure for the 50V case, i.e.,
how parameters A and α of Eq. (3) are determined to obtain
a level-density function consistent with known experimental
data.
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TABLE I. Parameters used for the back-shifted Fermi-gas level density.

Nucleus Epair a C1 Bn D ρ(Bn) η

(MeV) (MeV−1) (MeV) (MeV) (keV) (103 MeV−1)

50V 0 6.31 −1.89 9.33 - 5.4(16)a 0.46
51V 1.36 6.42 −1.88 11.05 2.3(6) 8.4(26) 0.51

aEstimated from systematics.

The experimentally extracted and normalized level den-
sities of 50V and 51V are shown in Fig. 6 for excitation
energies up to ∼8 and 9 MeV, respectively. The level density
of 50V is relatively high and has a rather smooth behavior due
to the effect of the unpaired proton and neutron, while the
level density of 51V displays distinct structures for excitation
energies up to ∼4.5 MeV. This effect is probably caused by
the closed f7/2 neutron shell in this nucleus.
The level densities of 50,51V obtained with the Oslo method

are compared to the number of levels from spectroscopic
experiments [21]. The 51V nucleus has relatively few levels
per energy bin because of its closed neutron shell, so using
spectroscopic methods to count the levels seems to be reliable
up to ∼4 MeV excitation energy in this case. For higher
excitations, the spectroscopic data are significantly lower
compared to the level density obtained with the Oslo method.
This means that many levels are not accounted for in this
excitation region by using standard methods. The same can
be concluded for 50V, and in this case the spectroscopic level
density drops off at an excitation energy of about 2.5 MeV.

FIG. 4. Level densities estimated from neutron resonance level
spacings at Bn and plotted as a function of intrinsic excitation energy
Un = Bn − C1 − Epair. The unknown level density for 50V (open
circle) is estimated from the line determined by a least-χ2 fit to the
data points.

The level densities of 50,51V are also compared to the
constant-temperature formula

ρfit = Cexp(E/T ), (5)

which is drawn as a solid line in Fig. 6. Here the parameters
C and T are the level density at about zero excitation energy
and the average temperature, respectively; both are estimated
from the fit of the exponential to the region of the experimental
level density indicated by arrows. From this model, a constant
temperature of about 1.3 MeV is found for both nuclei.
The level density of a system can give detailed insight into

its thermal properties. The multiplicity of states�s(E), which
is the number of physically obtainable realizations available
at a given energy, is directly proportional to the level density
and a spin-dependent factor (2〈J (E)〉 + 1), thus

�s(E) ∝ ρ(E)(2〈J (E)〉 + 1), (6)

where 〈J (E)〉 is the average spin at excitation energy E.
Unfortunately, the experimentally measured level density in
this work does not correspond to the true multiplicity of
states, since the (2J + 1) degeneracy of magnetic substates

FIG. 5. Normalization procedure of the experimental level den-
sity (data points) of 50V. The data points between the arrows are
normalized to known levels at low excitation energy (histograms)
and to the level density at the neutron-separation energy (open circle)
using a Fermi-gas level-density extrapolation (solid line).
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FIG. 6. Normalized level density of 50,51V compared to known
discrete levels (jagged line) and a constant temperature model
(straight line). The fits are performed in the region between the arrows.

is not included. If the average spin of levels 〈J 〉 at any
excitation energywere known, this problem could be solved by
multiplying an energy-dependent factor (2〈J (E)〉 + 1) by the
experimental level density. However, little experimental data
exist on the spin distribution. Therefore, we choose in this
work to use a multiplicity �l(E) based on the experimental
level density alone:

�l(E) ∝ ρ(E). (7)

The entropy S(E) is a measure of the degree of disorder of
a system at a specific energy. The microcanonical ensemble
in which the system is completely isolated from any exchange
with its surroundings, is often considered as the appropriate
one for the atomic nucleus since the strong force has such a
short range, and because the nucleus normally does not share
its excitation energy with the external environment.
According to our definition of the multiplicity of levels

�l(E) obtained from the experimental level density, we define
a “pseudo” entropy

S(E) = kBln�l(E), (8)

which is utilized in the following discussion. For convenience,
Boltzmann’s constant kB can be set to unity.
In order to normalize the entropy, the multiplicity is written

as �l(E) = ρ(E)/ρ0. The normalization denominator ρ0 is to
be adjusted such that the entropy approaches a constant value
when the temperature approaches zero in order to fullfill the
third law of thermodynamics: S(T → 0) = S0. In the case
of even-even nuclei, the ground state represents a completely
ordered system with only one possible configuration. This
means that the entropy in the ground state is S = ln1 = 0,
and the normalization factor 1/ρ0 is chosen such that this is
the case. Since the vanadium nuclei have an odd number of

FIG. 7. Entropies of 50,51V (upper panel), and entropy difference
between the two vanadium isotopes (lower panel).

protons, a ρ0 which is typical for even-even nuclei in this
mass region is used for both the 50V and the 51V nucleus.
The normalization factor ρ0 used is 0.7 MeV−1, found from
averaging data on 50Ti and 52Cr.
The entropies of 50,51V extracted from the experimental

level densities are shown in the upper panel of Fig. 7. Naturally,
they show the same features as the level-density plot, with the
odd-odd 50V displaying higher entropy than the odd-even 51V.
Since the neutrons are almost (50V) or totally (51V) blocked at
low excitation energy, the multiplicity and thus the entropy is
made primarily by the protons in this region.
At 4 MeV of excitation energy, a relatively large increase

in entropy is found in the case of 51V. This is probably because
the excitation energy is large enough to excite a nucleon across
the N,Z = 28 shell gap to other orbitals.
In the excitation region above ∼4.5 MeV, the entropies

show similar behavior, which is also expressed by the entropy
difference �S displayed in the lower panel of Fig. 7. We
assume here that the two systems have an approximately
statistical behavior and that the neutron hole in 50V acts as
a spectator to the 51V core. The entropy of the hole can be
estimated from the entropy difference�S = S(50V)− S(51V).
From the lower panel of Fig. 7, we find �S ∼1.2kB for E >

4.5 MeV. This is slightly less than the quasiparticle entropy
found in rare-earth nuclei, which is estimated to be �S ∼
1.7kB [5]. This is not unexpected since the single-particle
levels are more closely spaced for these nuclei; they have
therefore more entropy.
The naive configurations of 50,51V at low excitations are

πf 37/2νf
7
7/2 and πf 37/2νf

8
7/2, respectively. Thus, by counting

the possible configurations within the framework of the BCS
model [22] in the nearly degenerate f7/2 shell, one can estimate
the multiplicity of levels and thus the entropy when no Cooper
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pairs are broken in the nucleus, one pair is broken, and so
on. We assume a small deformation that gives four energy
levelswithNilsson quantumnumbers� = 1/2, 3/2, 5/2, 7/2.
Furthermore, we neglect the proton-neutron coupling and
hence assume that the protons and neutrons can be considered
as two separate systems; the total entropy based on the number
of energy levels can then be written as S = Sp +Sn. This gives
S = 2.8kB for the nucleus 50V, and S = 1.4kB for 51V when
two protons are coupled in a Cooper pair. These values are in
fair agreement with the data of Fig. 7 at an excitation energy
below ∼2 MeV. It is gratifying that these crude estimates give
an entropy of the neutron hole in 50V of �S = 1.4kB , in
good agreement with the experimental value for the entropy
difference of 1.2kB found from Fig. 7.
With the three f7/2 protons unpaired, we obtain a total

entropy of S = 3.5 and 2.1kB for 50,51V, respectively. This
means that the process of just breaking a proton pair within
the same shell does not contribute much to the total entropy,
but when a nucleon has enough energy to cross the shell gap
a significant increase of the entropy is expected. As already
mentioned, at excitation energies above ∼4 MeV, it is very
likely that configurations from other shells will participate in
building the total entropy.

IV. RADIATIVE STRENGTH FUNCTIONS

The γ -ray transmission coefficient T in Eq. (1) is expressed
as a sum of all the RSFs fXL of electromagnetic character X

and multipolarity L:

T (Eγ ) = 2π
∑
XL

E2L+1
γ fXL(Eγ ). (9)

The slope of the experimental γ -ray transmission coefficient
T has been determined through the normalization of the level
densities, as described in Sec. III. The remaining constant
B in Eq. (3) is determined using information from neutron
resonance decay, which gives the absolute normalization of
T . For this purpose, we utilize experimental data [16] on the
average total radiative width 〈�γ 〉 at E = Bn.
We assume here that the γ decay taking place in the

quasicontinuum is dominated by E1 and M1 transitions and
that the number of positive and negative parity states is equal.
For initial spin I and parity π at E = Bn, the expression of
the width [23] reduces to

〈�γ 〉 = 1

4πρ(Bn, I, π )

∑
If

∫ Bn

0
dEγ BT (Eγ )

× ρ(Bn − Eγ , If ), (10)

where Di = 1/ρ(Bn, I, π ) is the average spacing of s-wave
neutron resonances. The summation and integration run over
all final levels with spin If , which are accessible by dipole
(L = 1) γ radiation with energy Eγ . From this expression,
the normalization constant B can be determined as described
in Ref. [6]. However, some considerations have to be made
before normalizing according to Eq. (10).
Methodical difficulties in the primary γ -ray extraction pre-

vent determination of the function T (Eγ ) in the intervalEγ <1

FIG. 8. Unnormalized γ -ray transmission coefficient for 51V.
Lines are extrapolations needed to calculate the normalization integral
of Eq. (10). Arrows indicate the lower and upper fitting regions for
the extrapolations.

MeV. In addition, the data at the highest γ energies, above
Eγ ∼ Bn − 1 MeV, suffer from poor statistics. We therefore
extrapolate T with an exponential form, as demonstrated for
51V in Fig. 8. The contribution of the extrapolation to the total
radiative width given by Eq. (10) does not exceed 15%, thus
the errors due to a possibly poor extrapolation are expected to
be of minor importance [6].
Again, difficulties occur when normalizing the γ -ray

transmission coefficient in the case of 50V because of the lack
of neutron resonance data. Since the average total radiative
width 〈�γ 〉 at E = Bn does not seem to show any clear
systematics for nuclei in this mass region, we choose the same
absolute value of the GEDR tail for 50V as the one found for
51V from photoabsorption experiments. The argument for this
choice is that the GEDR should be similar for equal number
of protons provided that the two nuclei have the same shapes.
Since it is assumed that the radiative strength is dominated

by dipole transitions, the RSF can be calculated from the
normalized transmission coefficient by

f (Eγ ) = 1

2π

T (Eγ )

E3
γ

. (11)

We would now like to decompose the RSF into its components
from different multipolarities to investigate how the E1 and
M1 radiation contribute to the total strength.
The Kadmenskiı̆, Markushev, and Furman (KMF) model

[13] is employed for the E1 strength. In this model, the
Lorentzian GEDR is modified in order to reproduce the
nonzero limit of the GEDR for Eγ → 0 by means of a
temperature-dependent width of the GEDR. The E1 strength
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TABLE II. Parameters used for the radiative strength functions.

Nucleus EE1,1 σE1,1 �E1,1 EE1,2 σE1,2 �;E1,2 EM1 σM1 �M1 〈�γ 〉 T κ

(MeV) (mb) (MeV) (MeV) (mb) (MeV) (MeV) (mb) (MeV) (meV) (MeV)

50V 17.93 53.3 3.62 20.95 40.7 7.15 11.1 0.532 4.0 – 1.34 0.75
51V 17.93 53.3 3.62 20.95 40.7 7.15 11.1 0.563 4.0 600(80) 1.31 0.74

in the KMF model is given by

fE1(Eγ ) = 1

3π2h̄2c2
0.7σE1�

2
E1

(
E2

γ + 4π2T 2)
EE1

(
E2

γ − E2
E1

)2 , (12)

where σE1 is the cross section, �E1 is the width, and EE1 is
the centroid of the GEDR determined from photoabsorption
experiments.
We adopt the KMF model with temperature T taken as a

constant to be consistent with our assumption that the RSF
is independent of excitation energy. The possible systematic
uncertainty caused by this assumption is estimated to have a
maximum effect of 20% on the RSF [24]. The values used for
T are the ones extracted from the constant-temperature model
in Eq. (5).
The GEDR is split into two parts for deformed nuclei. Data

of 51V from photoabsorption experiments show that the GEDR
is best fitted with two Lorentzians, indicating a splitting of the
resonance and a non-zero ground-state deformation of this
nucleus. Indeed, B(E2) values [16] suggest a deformation
of β ∼ 0.1 for 50,51V. Therefore, a sum of two modified
Lorentzians each described by Eq. (12) is used (see Table II).
For fM1, which is supposed to be governed by the spin-

flip M1 resonance [6], the Lorentzian giant magnetic dipole
resonance (GMDR)

fM1(Eγ ) = 1

3π2h̄2c2
σM1Eγ �2M1(

E2
γ − E2

M1

)2 + E2
γ �2M1

(13)

is adopted.
The GEDR and GMDR parameters are taken from the

systematics of Ref. [16] and are listed in Table II. Thus, we fit
the total RSF given by

f = κ(fE1,1 + fE1,2 + fM1) (14)

to the experimental data using the normalization constant κ as
a free parameter. The value of κ generally deviates from unity
because of theoretical uncertainties in the KMF model and
the evaluation of the absolute normalization in Eq. (10). The
resulting RSFs extracted from the two reactions are displayed
in Fig. 9, where the data have been normalizedwith parameters
from Tables I and II.
The γ -decay probability is governed by the number and

character of available final states and by the RSF. A rough
inspection of the experimental data of Fig. 9 indicates that the
RSFs are increasing functions of γ energy, generally following
the tails of the GEDR and GMDR resonances in this region.
At low γ energies (Eγ � 3 MeV), an enhancement

of a factor of ∼5 over the KMF estimate of the strength
appears in the RSFs. This increase has also been seen in some
Fe [25] and Mo [24] isotopes, where it has been shown to be

present in the whole excitation-energy region. In the case of
the 57Fe RSF, the feature has been confirmed by an (n, 2γ )
experiment [25]. However, it has not appeared in the RSFs of
the rare-earth nuclei investigated earlier by the Oslo group.
The physical origin of the enhancement has not, at present,
any satisfying explanation, as none of the known theoretical
models can account for this behavior.
So far, we have not been able to detect any technical prob-

lems with the Oslo method. The unfolding procedure with the
NaI response functions gives reliable results, as demonstrated
in Fig. 1. Also, Fig. 2 indicates that the low-energy γ intensity

FIG. 9. Normalized RSFs of 50,51V. Dashed and dash-dotted lines
show the extrapolated tails of the giant electric and giant magnetic
dipole resonances, respectively. Solid line is the summed strength for
the giant dipole resonances.
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is subtracted correctly; if not, one would find less intensity in
the higher-generation spectrum at these γ energies. Figure 3
shows the final test, where the result from the least-χ2 fit nicely
reproduces the experimental data. In addition, investigations
in 27,28Si [26] showed that our method produced γ -transition
coefficients in excellent agreement with average decay widths
of known, discrete transitions. Hence, we do not believe that
the enhancement is caused by some technical or methodical
problems. Still, independent confirmation of the increasing
RSF from, e.g., (n, 2γ ) experiments on the V andMo isotopes,
is highly desirable.

V. SUMMARY AND CONCLUSIONS

The Oslo method has been applied to extract level densities
and RSFs of the vanadium isotopes 50,51V. From the measured
level densities, microcanonical entropies have been derived.
The entropy carried by the neutron hole in 50V is estimated

to be ∼1.2 kB , which is less than the quasiparticle entropy of
∼1.7 kB found in rare-earth nuclei.
The experimental RSFs are generally increasing functions

of γ energy. The main contribution to the RSFs is the GEDR;
also the GMDR is present. At low γ energies, an increase
in the strength functions is apparent. A similar enhancement
has also been seen in iron and molybdenum isotopes. There is
still no explanation for the physics behind this very interesting
behavior.
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The scandium isotopes 44,45Sc were studied with the 45Sc(3He, αγ )44Sc and 45Sc(3He, 3He′γ )45Sc reactions,
respectively. The nuclear level densities and γ -ray strength functions have been extracted using the Oslo method.
The experimental level densities are compared to calculated level densities obtained from a microscopic model
based on BCS quasiparticles within the Nilsson level scheme. This model also gives information about the parity
distribution and the number of broken Cooper pairs as a function of excitation energy. The experimental γ -ray
strength functions are compared to theoretical models of the E1, M1, and E2 strength and to data from (γ , n)
and (γ ,p) experiments. The strength functions show an enhancement at low γ energies that cannot be explained
by the present standard models.
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I. INTRODUCTION

The energy levels of an atomic nucleus and the decay
probability of each level contain essential information on
the nuclear structure. When the nucleus is excited to levels
just above the ground state, spectroscopic measurements are
able to give accurate information on the energy, spin, parity,
and transition rates of the levels. However, as the excitation
energy increases, the number of levels quickly becomes so
high that all levels cannot be foundwith present state-of-the art
spectroscopy methods. The nucleus leaves the discrete region
and enters the region of quasicontinuum and continuum,where
it is regarded as more appropriate to use average quantities to
describe the behavior of the nucleus.
The nuclear level density and the γ -ray strength function

give a measure of the gross properties of the nucleus. These
average quantities are indispensable in practical applications of
nuclear physics, such as calculations of nuclear reaction rates
in astrophysical processes, the design and operation of fission
reactors, and transmutation of nuclear waste. When it comes
to fundamental nuclear structure, the level density can reveal
information on, e.g., pair correlations and thermodynamic
quantities such as entropy and temperature [1,2], whereas the
average electromagnetic properties are characterized by the
γ -ray strength function [3].
Neutron (and proton) resonance experiments provide data

on the level density at or above the nucleon binding energy [4],
and fluctuation analysis of total neutron cross sections [5]
gives level density at excitation energies well above the
nucleon binding energy. However, in the intermediate region

*a.c.larsen@fys.uio.no

between the nucleon binding energy and the discrete regime
(the quasicontinuum) relatively little is known. To fill in this
gap, the Oslo Cyclotron group has developed the so-called
Oslo method, which enables the extraction of both level
density and γ -ray strength function from the distribution of
primary γ rays at various initial excitation energies. The
method has been thoroughly tested on nuclei in the rare-earth
region [6–8] and has also been successfully extended to other
mass regions [9–12].
The present work reports on new results from an experiment

on the scandium isotopes 44,45Sc. The 45Sc nucleus has one
unpaired proton in the πf7/2 orbital, whereas 44Sc has an
unpaired proton and a neutron in the πf7/2, νf7/2 orbitals. If
one naively assumes that only thef7/2 orbital is dominant in the
model space, one would expect a majority of positive-parity
states in the case of 44Sc and negative-parity states for 45Sc.
However, it is well known that states with different parity
appear already at very low excitation energy in these nuclei.
Early attempts on reproducing the states both with particle-
plus-rotor models [13] and shell-model calculations [14]
had relatively little success. More recent works have shown
that these nuclei exhibit both collective and single-particle
character even at low excitation energy, and they have been
considered as a good case for studying the interplay between
the single-particle and the collective degrees of freedom in
medium-mass nuclei near the closed shell [15,16]. These
scandium isotopes are therefore of special interest to test the
Oslo method further.
In Sec. II an outline of the experimental procedure and

the Oslo method is given. The level densities and the
γ -ray strength functions are discussed in Secs. III and
IV, respectively. Finally, concluding remarks are given in
Sec.V.

0556-2813/2007/76(4)/044303(11) 044303-1 ©2007 The American Physical Society
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II. EXPERIMENTAL DETAILS AND THE OSLO METHOD

The experiment was performed at the Oslo Cyclotron
Laboratory (OCL) using a beam of 3He ions with energy
38 MeV. The self-supporting natural target of 99.9% 45Sc
had a thickness of 3.4 mg/cm2. Eight Si �E-E telescopes
were arranged close to the target at an angle of 45◦ relative
to the beam. The γ -detector array CACTUS [17], consisting
of 28 collimated NaI crystals with a total efficiency of ∼15%,
surrounded the target and the particle detectors. The exper-
imental setup enabled particle-γ coincidence measurements
of the reactions (3He, αγ ) and (3He, 3He′γ ). These reactions
populate states with spin range I ∼ 2–6h̄, which means that
most of the energy transferred to the target nucleus is intrinsic
excitation energy. The experiment ran for about 5 days, with a
typical beam current of ∼1 nA.
The recorded coincidences were sorted into two-

dimensional particle-γ matrices. From the reaction kinemat-
ics, the measured energy of the outgoing 3He or α particle
were converted into excitation energy of the residual nucleus.
With particle-energy bins of 240 keV/channel, total γ -ray
spectra were obtained for each bin. These γ spectra were
then unfolded using a well-tested unfolding procedure based
on the known response functions of the CACTUS array [18].
The unfolding method described in Ref. [18] preserves the
fluctuations in the original spectra without introducing further,
spurious fluctuations. In Fig. 1 an original γ spectrum, an
unfolded spectrum, and the unfolded spectrum convoluted
with the response functions are shown for 44Sc with gate
on the excitation-energy bins between 5.5 and 6.5 MeV.
The original and the convoluted spectrum show excellent
agreement, giving strong confidence in the unfolding method.
The unfolded particle-γ matrix of the 45Sc(3He, αγ )44Sc data
is displayed in Fig. 2, where the sharp diagonal E = Eγ

is clearly seen. Apart from the prominent peak at E ∼ 1
MeV and Eγ ∼ 0.75 MeV, the matrix is without outstanding
structures.
The energy distribution of the first emitted γ rays from the

decay cascades reveals essential information on the nuclear
structure. To extract these primary γ rays from the total γ

spectra, a subtraction procedure described in Ref. [19] is
applied for each excitation-energy bin. The main assumption
of this method is that the γ decay from any excitation-energy
bin is independent on how the nucleus was excited to this bin.
In other words, the decay routes are the same whether they
were initiated directly by the nuclear reaction or by γ decay
from higher-lying states. This assumption is automatically
fulfilled when the same states are equally populated by the
two processes, because γ branching ratios are properties of
the levels themselves. Even if different states are populated,
the assumption is still valid for statistical γ decay, which
depends only on the γ -ray energy and the number of accessible
final states. Figure 3 shows the total, unfolded γ spectrum,
the second and higher generations γ spectrum and the first-
generation spectrum of 45Sc for excitation energy between
E = 5.5 and 6.5 MeV. The first-generation spectrum is
obtained by subtracting the higher-generation γ rays from the
total γ spectrum. By looking at the lower panel of Fig. 3, it
is clear that the main assumption of the subtraction method is
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FIG. 1. Original (top), unfolded (middle) and folded γ spectrum
of 44Sc for excitation energy between 5.5 and 6.5 MeV.
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FIG. 3. Unfolded, total γ spectrum, second and higher-generation
γ spectrum and first-generation γ spectrum of 45Sc for excitation
energy between 5.5 and 6.5 MeV.

not fulfilled for Eγ <∼ 1.4 MeV. In this region, some strong,
low-energy transitions were not subtracted correctly. This
means that the levels fromwhich these transitions originate are
populated more strongly from higher excited levels through γ

emission than directly by inelastic 3He scattering. Therefore,
only data for Eγ > 1.6 MeV are used in the further analysis.
Similar considerations were done for 44Sc.
The experimental matrix of first-generation γ rays is then

normalized [20] such that for every excitation-energy bin E,
the sumover all γ energiesEγ from someminimumvalueEmin

γ

to the maximum value Emax
γ = E at this excitation-energy bin

is unity:

E∑
Eγ =Emin

γ

P (E,Eγ ) = 1. (1)

For statistical γ decay in the continuum region, the γ -decay
probability from an excitation energy E to Ef = E − Eγ is
proportional to the γ -ray transmission coefficient T (Eγ ) and

the level density at the final excitation energy ρ(Ef ):

P (E,Eγ ) ∝ ρ(E − Eγ )T (Eγ ). (2)

The essential assumption underlying the above relation is
that the reaction can be described as a two-stage process,
where a compound state is first formed, before it decays in a
manner that is independent of the mode of formation [21,22].
Equation (2) could also be regarded as a generalization1 of
Fermi’s golden rule, where the decay rate is proportional to
the density of final states and the square of the matrix element
between the initial state and the final state.
The experimental normalized first-generation γ matrix can

theoretically be approximated by

Pth(E,Eγ ) = ρ(E − Eγ )T (Eγ )∑E
Eγ =Emin

γ
ρ(E − Eγ )T (Eγ )

. (3)

The γ -ray transmission coefficient T is independent of
excitation energy according to the generalized Brink-Axel
hypothesis [23,24], which states that collective excitation
modes built on excited states have the same properties as those
built on the ground state. There is evidence that the width
of the giant dipole resonance (GDR) varies with the nuclear
temperature of the state on which it is built [25,26]. However,
the temperature corresponding to the excitation-energy range
covered in this work is rather low and changes slowly with
excitation energy (T ∼√

Ef ). The temperature is therefore
assumed to be approximately constant, and the Brink-Axel
hypothesis is recovered in the energy region of interest.
To extract the level density and the γ -ray transmission

coefficient, an iterative procedure [20] is applied to the
first-generation γ matrix P (E,Eγ ). The basic idea of this
method is to minimize

χ2 = 1

Nfree

Emax∑
E=Emin

E∑
Eγ =Emin

γ

[
Pth(E,Eγ )− P (E,Eγ )

�P (E,Eγ )

]2
, (4)

where Nfree is the number of degrees of freedom and
�P (E,Eγ ) is the uncertainty in the experimental first-
generation γ matrix. Every point of the ρ and T functions
is assumed as an independent variable, so the reduced χ2 is
minimized for every argument E − Eγ and E. The quality
of the procedure when applied to the 44Sc data is shown in
Fig. 4, where the experimental first-generation spectra for
various initial excitation energies are compared to the least-χ2

solution. In general, the agreement between the experimental
data and the fit is very good.
The globalized fitting to the data points only gives the

functional form of ρ and T . In fact, it has been shown [20]
that if one solution for the multiplicative functions ρ and
T is known, one may construct an infinite number of other

1A generalization in the sense that the present work deals with an
ensemble of initial and final states and therefore considers the average
decay properties in each excitation-energy bin.
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FIG. 4. A sample of the experimental first-
generation spectra of 44Sc (data points with error
bars) are plotted with the least-χ2 fit (lines).

functions, which give identical fits to the P (E,Eγ ) matrix by

ρ̃(E − Eγ ) = A exp[α(E − Eγ )] ρ(E − Eγ ), (5)

T̃ (Eγ ) = B exp(αEγ )T (Eγ ). (6)

Therefore the transformation parameters α, A, and B, which
correspond to the physical solution, remain to be found.

III. THE LEVEL DENSITIES

A. Normalization

As described in the previous section, only the shape of
the level density is found through the least χ2 procedure
of Ref. [20]. To determine the slope α and the absolute
value A in Eq. (5), the ρ function is adjusted to match the
number of known discrete levels at low excitation energy
[27] and proton-resonance data [28,29] at high excitation
energy. The procedure for extracting the total level density ρ

from the resonance spacing D is described in Ref. [20].
Because the proton beam energy had a range of Ep(44Sc)
= 0.90–1.50 MeV and Ep(45Sc) = 2.50–3.53 MeV in
Refs. [28,29], respectively, the level density estimated from

the proton resonances is not at the proton binding energy
Bp, but rather at approximately Bp + (�E)/2, where �E

is the energy range of the proton beam, assuming that the
resonances are approximately equally distributed over �E.
Also, the authors of Ref. [28] do not distinguish between s-
and p-wave resonances, so the calculation of the total level
density is rather uncertain in the case of 44Sc. However, by
comparing with preliminary level-density data from an exper-
iment done on 44Sc at Ohio University, the slope α seems to be
correct [30].
Because our experimental data points of the level density

only reach up to an excitation energy of ∼7.2 and ∼8.0 MeV
for 44,45Sc, respectively, we extrapolate with the back-shifted
Fermi gas model [31,32]

ρBS(E) = η
exp(2

√
aU )

12
√
2a1/4U 5/4σ

, (7)

where a constant η is introduced to ensure thatρBS has the same
value as the level density calculated from the proton-resonance
experiments. The intrinsic excitation energy is estimated
by U = E − E1, where E1 is the back-shift parameter.
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TABLE I. Parameters used for the back-shifted Fermi gas level density and the parameters from Ref. [32].

Nucleus E1

(MeV)
a

(MeV−1)
σ E a

1

(MeV)
aa

(MeV−1)
σ a Bp

(MeV)
Bp + (�E)/2
(MeV)

Db (eV) ρ (proton res.)
(MeV−1)

η

44Sc −2.91 5.13 3.53 −2.06 5.68 3.37 6.696 7.896 3243(324) 1855(392) 1.12
45Sc −2.55 4.94 3.75 −0.61 6.07 3.41 6.889 9.904 7874(496) 3701(760) 1.26

aCalculated with the method of Ref. [32].
bCalculated from proton-resonance data.

The spin-cutoff parameter is given by2

σ 2 = 0.0146A5/3
1+ √

1+ 4aU

2a
, (8)

where A is the mass number. Because the level-density
parameter a and the back-shift parameter E1 calculated with
the method of Ref. [32] did not seem to give reliable results
for 45Sc, these parameters were extracted by fitting the Fermi
gas to the known levels at ∼1.75 MeV and ∼2 MeV for
44,45Sc, respectively, and to the known resonance-spacing data
at Bp + (�E)/2. The parameters used for 44,45Sc in Eq. (7)
are listed in Table I, where also the Fermi-gas parameters from
Ref. [32] are shown. As the authors demonstrate in Fig. 5 in
Ref. [32], the difference between the calculated parameters
and the empirically extracted ones might be large in the
mass region A � 50. The normalization procedure is pictured
in Fig. 5; note that only statistical errors are shown. Above
∼2 MeV, there are more than 30 levels per MeV, giving the
present limit to make complete spectroscopy in these nuclei.
The normalized level densities of 44Sc and 45Sc are

displayed in Fig. 6. As one would expect, the odd-odd nucleus
44Sc has an overall higher level density than its odd-even
neighbor 45Sc due to its two unpaired nucleons. The difference
in level density between the odd-odd (44Sc) and the odd-even
(45Sc) nucleus is seen to be approximately constant, except in
the area between E ∼ 4–5 MeV, where the level densities are
almost the same. This is in agreement with earlier findings in
the rare-earth region. However, here the odd-odd system has
approximately a factor of 2 higher level density compared
to the odd-even nucleus, whereas for rare-earth nuclei the
difference was found to be a factor of 5.
Bump structures in the level densities of the scandium

nuclei are observed. Standard models such as the back-shifted
Fermi gas give a smooth ρ function and are unable to describe
the structures that appear in the experimental level density in
this excitation-energy region.

B. Comparison with microscopic model

To further investigate the level density at high excitation
energy, a microscopic model has been developed. The model
is based on combining all possible proton and neutron config-
urations within the Nilsson energy scheme, and the concept

2The authors of Ref. [32] found this expression to be the most
adequate in the low-energy region, even though it is connected to
the (mathematically incorrect) relation U = aT 2 − T and not the
standard one U = aT 2 (see Ref. [31] for more details).

of Bardeen-Cooper-Schrieffer (BCS) quasiparticles [33] is
utilized.
The model is described within the microcanonical en-

semble, where the excitation energy E is well defined. The
single-particle energies esp are taken from the Nilsson model
for an axially deformed core described by the quadrupole
deformation parameter ε2. Furthermore, the model depends
on the spin-orbit and centrifugal parameters κ and μ.
The oscillator quantum energy h̄ω0 = 41A−1/3 MeV between
the harmonic oscillator shells is also input to the code. Within
theBCSmodel, the single-quasiparticle energies are defined by

eqp =
√
(esp − λ)2 + �2, (9)
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FIG. 6. Normalized level densities for 44,45Sc.

where the Fermi level λ is adjusted to reproduce the number
of particles in the system and � is the pair-gap parameter,
which is kept constant.
The double-degenerated proton and neutron quasiparticle

orbitals are characterized by their spin projections on the
symmetry axis �π and �ν , respectively. The energy due to
quasiparticle excitations is given by

Eqp(�π,�ν) =
∑

{�′
π �′

ν}
[eqp(�

′
π )+ eqp(�

′
ν)+ V (�′

π ,�′
ν)].

(10)

Between the aligned and antialigned levels of the proton and
neutron projections, i.e., �π + �ν and |�π − �ν |, a residual
interaction V is defined as a random Gaussian distribution
centered at zero energy with a width of 50 keV. The sets of
proton and neutron orbitals

{
�′

π�′
ν

}
are picked out by using

a random generator. The total number of broken Cooper pairs
are set to 3, making a maximum number of 8 participating
quasiparticles for odd-odd nuclear systems. Technically, this
process is repeated until all possible energies Eqp(�π,�ν)
have been obtained. An indicator that this saturation is reached,
is that all energies are reproduced at least ten times in the
simulation.
Collective energy terms are schematically added by

E = Eqp(�π,�ν)+ ArotR(R + 1)+ h̄ωvibν, (11)

where Arot = h̄2/2J is the rotational parameter and R =
0, 1, 2, 3 . . . is the rotational quantum number. The vibrational
motion is described by the phonon number ν = 0, 1, 2, . . . and
the oscillator quantum energy h̄ωvib.
The advantage of the present model is a fast algorithm

that may include a large model space of single-particle
states. Because level density is a gross property, the detailed
knowledge of the many-particle matrix elements through large
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FIG. 7. The Nilsson level scheme for 45Sc with parameters κ =
0.066 and μ = 0.32.

diagonalizing algorithms is not necessary. No level inversion
is observed, as frequently seen for microscopic models with
single-particle orbital truncations. In the sum of Eq. (10), all
orbitals with energy up to the maximum energy (eqp < E) are
included. Typically, for excitation energies up to ∼10 MeV,
about 20 proton and 20 neutron orbitals are taken into account
(∼10 orbitals below the Fermi level and ∼10 orbitals above).
In the calculation we adopted the Nilsson parameters κ =

0.066 and μ = 0.32 from Ref. [34] with oscillator quantum
energy of h̄ωvib = 1.904 MeV, found from the 0+ vibrational
state in 44Ti [35]. TheNilsson levels used in the calculations for
45Sc are shown in Fig. 7, with the Fermi levels for the protons
and neutrons. The value of the deformation parameter ε2 was
set to 0.23, which is in agreement with values suggested in
Ref. [15]. The rotational and vibrational terms contribute only
significantly to the total level density in the lower excitation
region. To reproduce the transition energy from the 11/2− →
7/2− transition in the ground-state rotational band of
45Sc [35], the rotational parameter Arot was set to 0.135 MeV.
The adopted pairing gap parameters�π and�ν are taken from
the calculations of Dobaczewski et al. [36] for the even-even
42Ca for 44Sc and 44Ca for 45Sc. A list of the input data for the
model calculations can be found in Table II.
The experimental and calculated level densities are shown

in Fig. 8. The result is satisfactory, especially for the nucleus

TABLE II. Model parameters.

Nucleus ε2 �π �ν Arot h̄ω0 h̄ωvib λπ λν

(MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV)

44Sc 0.23 1.234 1.559 0.135 11.61 1.904 45.96 47.47
45Sc 0.23 1.353 1.599 0.135 11.53 1.904 45.60 47.91
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FIG. 8. Calculated level densities (solid lines) compared with the
experimental ones (data points with error bars) for 44,45Sc.

44Sc where there is a good agreement between the model
calculation and the experimental level density. The general
decrease in level density for the odd-even system compared
to the odd-odd nucleus as well as the level densities found
from the proton-resonance experiments are well reproduced.
However, it is seen that themodelmissesmany low-lying levels
in the excitation-energy region E = 1–5 MeV for 45Sc. This
can, at least partially, be explained by the well-established
shape coexistence determined from the negative-parity and
positive-parity bands in this nucleus [15]. Only one shape is
included in our model, and thus only one potential, which
results in an undershoot of bandheads of about a factor of 2.
The pairing parameters �π and �ν are important inputs of

the model, because the slope of the level density (in log scale)
increases with decreasing pairing parameters in the energy
region considered here. It can be seen from Fig. 8 that the
adopted values give a nice agreement of the log slope of the
level densities for both isotopes.
Figure 9 shows the average number of broken Cooper

pairs 〈Nqp〉 as a function of excitation energy. This is
calculated by looking at all configurations obtained in each
240-keV excitation-energy bin, and finding the number of
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FIG. 9. The average number of broken Cooper pairs as function
of excitation energy for 44,45Sc.

configurations with one broken pair, two broken pairs and
so on. Both neutron and proton pairs are taken into account.
From this information the average number of broken Cooper
pairs is calculated. From Fig. 9, the pair-breaking process is
seen to start at E ∼ 2.5 MeV for both nuclei, in accordance
with the values used for �π (see Table II). The average
number of broken pairs seems to have a relatively linear
increase, giving an exponential growth in the level density.
This behavior also indicates that there is no abrupt change in
seniority as a function of excitation energy. For example, in
the region E = 9–10 MeV, the model predicts 1% states with
no pairs broken, 34% states with one broken pair, 61% states
with two broken pairs, and 4% of the states have three pairs
broken.
The location of the proton and neutron Fermi levels of

44,45Sc in the Nilsson level scheme gives, roughly speaking,
mostly positive-parity orbitals below and negative-parity states
above the Fermi levels. Knowing this, one would expect a
relatively homogeneousmixture of positive and negative parity
states in the whole excitation-energy region covered by the
calculations. In order to investigate this feature, we utilize the
parity asymmetry defined in Ref. [37] by

α = ρ+ − ρ−
ρ+ + ρ−

, (12)
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FIG. 10. The parity asymmetry as function of excitation energy
for 44,45Sc.

which gives −1 and 1 for only negative and positive parities,
respectively, and 0 when both parities are equally represented.
In Fig. 10 the parity asymmetry α is shown as a function
of excitation energy. On the average, for E > 4 MeV, there
seems to be a slight excess of positive- and negative-parity
states in 44Sc and 45Sc, respectively. However, as the exci-
tation energy increases, the model predicts that the parity
asymmetry becomes smaller and smaller for both nuclei.
The proton-resonance data in Ref. [37] from the reaction
44Ca+p (compound nucleus 45Sc, with excitation-energy
region 9.77–10.53 MeV), gives an asymmetry parameter
α = −0.18+0.07

−0.06 for J = 1/2 resonances, andα = 0.23± 0.07
for J = 3/2 resonances. Given the level densities of J = 1/2
and J = 3/2 resonances (see Table III in Ref. [37]), the
parity asymmetry for ρ(J = 1/2, J = 3/2) can be estimated
to α ∼ 0.02, in good agreement with the model’s result in this
excitation-energy region.

IV. THE γ -RAY STRENGTH FUNCTIONS

As mentioned in Sec. II, the γ -decay process in the
(quasi-)continuum is governed by the level density and the
γ -ray transmission coefficient. By using the Oslo method,
also the γ -ray transmission coefficient can be extracted from
the experimental data.
The slope of the γ -ray transmission coefficient T (Eγ ) has

already been determined through the normalization of the level
densities (Sec. III A). However, the constant B in Eq. (6)
remains to be determined. If there was data on the average

total radiative width 〈�γ 〉 for these nuclei, this data could be
utilized for the absolute normalization of T as described in,
e.g, Refs. [38,39]. Because such data does not exist for 44,45Sc,
other considerations had to be made to obtain the absolute
value of the strength function.
The experimental T contains components from all elec-

tromagnetic characters X and multipolarities L. It is closely
connected to the total γ -ray strength function through the
relation [40]

T (Eγ ) = 2π
∑
XL

E2L+1
γ fXL(Eγ ), (13)

where fXL is the γ -ray strength function for electromagnetic
character X and multipolarity L. Assuming that the γ -decay
taking place in the continuum is dominated by E1 and
M1 transitions, the total γ -ray strength function can be
approximated by

f (Eγ ) � 1

2π

T (Eγ )

E3
γ

. (14)

The resulting γ -ray strength functions of 44,45Sc are then
scaled to agree with data from Ref. [41]. Based on two
resonances from the reaction 45Sc(n,γ ) and on the ob-
servation of 13 E1 transitions and 9 M1 transitions of
average energy 7.0 and 7.2 MeV, respectively, the strength
functions are found to be fE1 = 1.61(59)× 10−8 MeV−3
and fM1 = 1.17(59)× 10−8 MeV−3 [41]. By adding these
values together, the absolute normalization is given at this
specific γ energy. The experimental γ -ray strength functions
of 44,45Sc are displayed in Fig. 11, together with the data point
from Ref. [41] used for the normalization.
Several interesting features can be seen in Fig. 11. In

general, for Eγ � 3.5 MeV, the data show that the γ -ray
strength functions of 44,45Sc are slowly increasing with
γ energy. For γ energies below ∼3 MeV, the γ -ray strength
functions of both nuclei have an increase of a factor∼3 relative
to their minimum.
To investigate the experimental strength functions further,

they are compared to theoretical predictions. For the E1 part
of the total γ -strength function, the Kadmenskiı̆, Markushev,
and Furman (KMF) model [26] described by

fE1(Eγ ) = 1

3π2h̄2c2
0.7σE1�

2
E1

(
E2

γ + 4π2T 2)
EE1

(
E2

γ − E2
E1

)2 (15)

is applied. Here, σE1 is the cross section, �E1 is the width,
and EE1 is the centroid of the giant electric dipole resonance
(GEDR). The Lorentzian parameters are taken from Ref. [42]
(see Table III). The nuclear temperature on the final state,
introduced to ensure a nonvanishing GEDR for Eγ → 0, is
given by T (Ef ) = √

Uf /a.
For fM1, which is supposed to be governed by the spin-

flipM1 resonance [38], the Lorentzian giant magnetic dipole
resonance (GMDR)

fM1(Eγ ) = 1

3π2h̄2c2
σM1Eγ �2M1(

E2
γ − E2

M1

)2 + E2
γ �2M1

(16)

is adopted.
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TABLE III. Parameters used for the theoretical γ -ray strength functions.

Nucleus κ A b EE1

(MeV)
σE1

(mb)
�E1

(MeV)
EM1

(MeV)
σM1

(mb)
�M1

(MeV)
EE2

(MeV)
σE2

(mb)
�E2

(MeV)

44Sc 1.11(3) 0.52(10) 2.57(23) 19.44 39.40 8.0 11.61 1.239 4.0 17.85 1.069 5.58
45Sc 1.20(1) 1.62(9) 2.93(5) 19.44 39.40 8.0 11.53 1.214 4.0 17.71 1.047 5.57

The contribution from E2 radiation to the total strength
function is assumed to be very small. However, for the sake of
completeness, the E2 isoscalar reconance described by

fE2(Eγ ) = 1

5π2h̄2c2E2
γ

σE2Eγ �2E2(
E2

γ − E2
E2

)2 + E2
γ �2E2

(17)

is included in the total, theoretical strength function.
In lack of any established theoretical prediction of the

observed increase at low γ energy, this phenomenon is
modelled by a simple power law as

fupbend(Eγ ) = 1

3π2h̄2c2
AE−b

γ , (18)

where A and b are fit parameters.
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FIG. 11. Normalized γ -strength functions of 44,45Sc (black dots),
and fE1 + fM1 from Ref. [41] (star).

The total, theoretical γ -ray strength function is then given
by

ftotal = κ(fE1 + fM1 + fupbend)+ E2
γ fE2, (19)

where κ is a renormalization factor that should be close to
unity. All parameters employed are listed in Table III, and
the result for 44Sc is displayed in Fig. 12. It is seen that the
theoretical strength function fits the data well. From Fig. 12,
one would also conclude that the data points below ∼3 MeV
are not described by the standard models.
In Fig. 12 also the photoneutron cross-section data from the

reaction 45Sc(γ , n)44Sc [43] and the photoproton cross-section
data from the reaction 45Sc(γ ,p)44Ca [44] are shown. The
photoabsorbtion cross-section σ (Eγ ) is converted into strength
function through the relation

f (Eγ ) = 1

3π2h̄2c2

[
σ (Eγ )

Eγ

]
. (20)

The (γ , n) and (γ ,p) data exhaust ∼57% and ∼25% of
the Thomas-Reiche-Kuhn sum rule, respectively [42]. The
summed strength of the two photoabsorption experiments for

FIG. 12. The γ -strength functions of 44,45Sc from Oslo experi-
ments (black dots) and GDR data from (γ , n) (white dots) and (γ ,p)
(white crosses) experiments [43,44]. The black squares represent
the summed strength from the (γ , n) and (γ ,p) experiments for
Eγ = 15.0–24.6 MeV. Also the total, theoretical strength function
(solid line), the E1 tail from the KMF model (dashed line), the spin-
flip M1 resonance (dashed-dotted line), the E2 isoscalar resonance
(dashed-dotted line), and a fit to the upbend structure (dotted line) are
shown.
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FIG. 13. The γ -strength function of 45Sc extracted from different
excitation-energy regions together with the strength function obtained
from the total excitation-energy region considered.

Eγ = 15.0–24.6MeV is also displayed in Fig. 12, and it seems
to fit reasonably well with the theoretical expectation and
the Oslo data. Note that the photoabsorption cross sections
from the (γ, n) and (γ, p) reactions may have some overlap
in strength in the energy region where the (γ, pn) channel is
opened.
For γ energies below∼3MeV, the γ -ray strength functions

of 44,45Sc display an increase of a factor ∼3 relative to their
minimum.This behavior has been observed in severalmedium-
mass nuclei; first in 56,57Fe [45], then recently in 93−98Mo [39]
and 50,51V [12]. For the iron and molybdenum isotopes,
the upbend structure has been shown to be independent of
excitation energy. This has also been tested for the Sc isotopes,
as demonstrated in Fig. 13. Here, the γ -ray strength function
of 45Sc has been extracted from two different excitation-
energy regions (the intervals 4.5–6.9 MeV and 6.9–9.3 MeV),
representing two independent sets of data. As seen in Fig. 13,
the result is quite convincing. The general trends are very

similar, and the enhancement at low γ energies appears in
both data sets.
The physical origin of this low-energy enhancement in

strength is not yet understood. To check if the upbend feature
could be due to peculiarities of the nuclear reactions or
the Oslo method, a two-step cascade (n, 2γ ) experiment
was carried out with 56Fe as a target [45]. This experiment
confirmed the large increase in γ -ray strength observed in
the Oslo data but was unable to establish the character and
multipolarity of the enhancement. To pin down the physical
reason behind these observations, it is necessary to design and
carry out experiments that have the possibility to determine
the electromagnetic nature of this low-energy structure. Also,
it would give better confidence to the findings to have
independent confirmation of the increase from, e.g, (n, 2γ )
experiments on the Mo, V, and Sc isotopes as well.

V. SUMMARY AND CONCLUSIONS

The nuclear level densities and the γ -ray strength functions
of the scandium isotopes 44,45Sc were measured from primary
γ rays using theOslomethod. The level densities display bump
structures that cannot be obtained from standard statistical
level-density models. A new, microscopic model to calculate
the level density has been developed and applied on both
nuclei, giving an overall good agreementwith the experimental
data. From the model, information on the average number of
broken pairs and the parity asymmetry can also be extracted.
The γ -ray strength functions are in general found to be

increasing functions of γ energy in the energy region examined
in this work. The new data sets from the Oslo experiment are
compared to theoretical models of the strength function and
photoabsorbtion data, and the agreement seems to be good. At
low γ energies a substantial enhancement of the total γ -ray
strength is observed that is not accounted for in any of the
standard theories. As of today, this puzzling feature has no
satisfying, physical explanation.
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G. E. Mitchell, J. Rekstad, A. Schiller, S. Siem, A. C. Sunde,
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The level densities of 44Sc and 47Ti have been determined from measurements of particle evaporation spectra
from the compound nuclear reaction 3He+ 45Sc with an 11 MeV 3He beam. The level density of 44Sc has been
compared to the level density obtained from an independent experimental method based on an analysis of α-γ
coincidences from the transfer reaction 45Sc(3He,αγ )44Sc. The good agreement between the two experiments
indicates the reliability of the level density obtained. Some level density systematics have been tested against the
experimental data. New Fermi-gas level density parameters have been derived.
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I. INTRODUCTION

The nuclear level density is difficult to measure precisely
because of the lack of reliable experimental techniques. The
counting of discrete levels is restricted to excitation energies
below about 3–5 MeV for medium mass nuclei because
above this limit the levels become too close in energy to
resolve. Above these energies more sophisticated methods
need to be applied (see Ref. [1]). The main approach for
estimating the level density above the discrete level region
is to use some model-based function with parameters fitted
to the density of discrete low-lying levels and the density of
neutron resonances. For nuclei for which information about
the neutron resonance spacing is not available, parameter
systematics must be used. There are several systematics of
level density parameters (mainly related to either Fermi-gas
or constant temperature models) that modern computer codes
utilize to calculate reaction cross sections. However, because
neutron resonances are known only for a very narrow spin
interval, and because the shape of the level density function
is not well established, it is not yet clear how well available
systematics reproduce total level densities above the discrete
level region.
At this time, two experimental techniques appear to be good

candidates for the systematic investigation of the total level
density in nuclei above the region of discrete levels. The first
onewas developed at theOslo Cyclotron Laboratory (hereafter
referred to as the “Oslo method”) to extract both level density
and γ -strength functions from the particle-γ coincidence
matrix measured from inelastic scattering (3He,3He′γ ) and
transfer (3He,αγ ) reactions [2]. The second method uses
particle evaporation spectra from compound nuclear reactions
[3]. The problem is that both methods might contain intrinsic
systematic uncertainties, which are difficult to estimate while
remaining inside of these methods. Particularly the Oslo
method suffers from normalization uncertainties because it
produces only a level density function with an uncertainty
factor of A exp(BEx), where Ex is the excitation energy.

*voinov@ohio.edu

The coefficients (A,B) then have to be determined from
auxiliary experimental information such as neutron resonance
spacing (when available) and the density of discrete levels. The
Oslo method is also based on assumptions discussed below,
which are possible sources of systematic uncertainties as well.
The main problem with the particle evaporation technique
is possible contaminations of the evaporation spectra due to
multistep and/or direct reaction contributions. It could result
in an incorrect slope of the obtained level density function and
could cause an absolute normalization problem.
The consistency of these two experimental techniques has

been confirmed in Ref. [4], where the level density of 56Fe was
investigated with the reaction 57Fe(3He,αγ )56Fe by the Oslo
method and with the neutron evaporation spectrum from the
55Mn(d,n)56Fe reaction. Neutron spectra are most suitable for
level density studies because neutron transmission coefficients
are better known than proton and α-transmission coefficients.
Moreover, the neutron channel is a preferred decay channel
for the compound nucleus. This means that it is more likely
that compound reactions dominate the neutron spectrum. On
the other hand, it would be highly desirable to study different
types of reactions for these purposes. In this work we have
studied the level density from the evaporation spectra of α

particles from the 45Sc(3He,α)44Sc reaction and compared it to
the level density obtained recently from the 45Sc(3He,αγ )44Sc
reaction using the Oslo method. The level density of 47Ti
populated by the 45Sc(3He,p)47Ti reaction has been obtained
as well. Different available level density systematics have been
tested.

II. EXPERIMENTS AND METHODS

A. The Oslo method

At the Oslo Cyclotron Laboratory, a measurement of the
45Sc(3He,αγ )44Sc reaction with a 38 MeV 3He beam was
performed. The self-supporting natural target of 99.9% 45Sc
had a thickness of 3.4 mg/cm2. Eight Si �E-E telescopes
were arranged close to the target at an angle of 45◦ relative
to the beam. The γ -ray detector CACTUS [5], consisting
of 28 collimated NaI crystals with a total efficiency of 15%
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surrounded the target and particle detectors. The experimental
setup enabled particle-γ coincidence measurements of the
reaction 45Sc(3He,αγ )44Sc. The experiment ran for about
5 days, with a typical beam current of ∼1 nA.
The essential part of the analysis of particle-γ coincidences

is the extraction of first-generation spectra P (Ex,Eγ ) at
each excitation energy bin Ex , which is the initial excitation
energy of the γ transitions. The corresponding technique is
described in Ref. [6]. The first generation matrix P (Ex,Eγ )
can be decomposed into a level density ρ(Ex − Eγ ) and
γ -transmission function T (Eγ ) as

P (Ex,Eγ ) ∝ ρ(Ex − Eγ )T (Eγ ). (1)

The details of this particular experiment and its analysis are
described in Ref. [7]. Here we would like to outline the
important assumptions behind this decomposition.

(i) The γ decay from each excitation energy bin and the spin
population within the bin are independent of how the
levels were populated; whether directly by the reaction
or by γ decay from higher-lying states.

(ii) The γ -strength function does not depend on the excita-
tion energies of either initial or final states, it depends
only on the γ energy.

It is difficult to estimate how large the possible violations of the
assumptions are and how they affect the final results. Special
concern is caused by the possible temperature dependence
of the γ -strength function suggested in theoretical work [8]
which would mean a violation of the second assumption.

B. Level density from evaporation spectra

To obtain an independent result on the level density of
44Sc, we measured the α-particle evaporation spectrum from
the 45Sc(3He,α)44Sc reaction. The proton spectrum was also
studied, which allowed us to investigate the level density
of the residual 47Ti nucleus. The experiment was performed
with an 11-MeV 3He beam from the tandem accelerator of
the Ohio University Edwards Accelerator Laboratory. Proton
and α-particle spectra were measured with a charged-particle
spectrometer [1]. Seven 2-m time-of-flight tubes with Si
detectors placed at the end were set up at angles ranging
from 22.5◦ up to 157.5◦. The masses of the charged particles
were determined by measuring both the energy deposited in
the Si detectors and the time of flight. The mass resolution
was sufficient to resolve protons, deuterons, 3He/3H, and
α particles.
The cross section of outgoing particles resulting from

compound nucleus decay can be calculated in the framework
of the Hauser-Feshbach (HF) model [9], according to which

dσ

dεb

(εa, εb)

=
∑
Jπc

σCN(εa)

∑
Iπr �b(U, J, πc, E, I, πr )ρb(E, I, πr )

�(U, J, πc)
,

(2)

with

�(U, J, πc)

=
∑
b′

(∑
k

�b′
(
U, J, πc, Ek, Ik, π

r
k

)

+
∑
I ′πr′

∫ U−Bb′

Ec

dE′ �b′

× (U, J, πc, E′, I ′, πr′) ρb′ (E′, I ′, πr′)
)

. (3)

Here σCN(εa) is the fusion cross section, εa and εb are
energies of relativemotion for incoming and outgoing channels
(εb = U − Ek − Bb, where Bb is the separation energy of
particle b from the compound nucleus), �b is the transmission
coefficient of outgoing particles, and the quantities (U, J, πc)
and (E, I, πr ) are the energy, angular momentum, and parity
of the compound and residual nuclei, respectively. The energy
Ec is the continuum edge, above which levels are modeled
using a level density parametrization. For energies below Ec,
the known excitation energies, spins, and parities of discrete
levels are used. In practice Ec is determined by the available
spectroscopic data in the literature. It follows from Eq. (3)
that the cross section is determined by both transmission
coefficients of outgoing particles and the level density of the
residual nucleus ρb(E, I, π ). It is believed that transmission
coefficients are known with sufficient accuracy near the line
of stability because they can be obtained from optical model
potentials, which are usually based on experimental data for
elastic scattering and total cross sections in the corresponding
outgoing channel. Transmission coefficients obtained from
different systematics of optical model parameters do not differ
by more that 15–20 % from each other in our region of interest
(1–15 MeV of outgoing particles). The uncertainties in level
densities are much larger. Therefore, the HFmodel can be used
to improve level densities by comparing experimental and cal-
culated particle evaporation spectra. Details and assumptions
of this procedure are described in Refs. [3] and [10]. The
code HF2002 [11] was used for calculations of spectra from
compound nuclear reactions.
The main uncertainty of this method comes from contribu-

tions of noncompound mechanisms of a nuclear reaction in-
cluding direct, multistep direct, andmultistep compound. They
correspond to different stages of nucleon-nucleon interactions
inside the projectile+ target nuclear system until complete
equilibrium is achieved. The measurement of the energy
distribution of outgoing particles at backward angles reduces
considerably the contribution from noncompound reactions,
but does not guarantee their complete elimination. Therefore,
the systematic uncertainties connected to the presence of
noncompound reaction contributions can be estimated only
by applying different experimental techniques directed to
measure the level density of the same nucleus.
By comparing data obtained from the Oslo method with

data extracted from particle evaporation spectra one can
estimate possible systematic uncertainties pertaining to these
methods.
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FIG. 1. Angular distributions of α particles in the c.m. system for
different energy intervals. The points are experimental data and the
solid lines are HF calculations normalized to match the experimental
points at backward angles for low energy particles.

III. RESULTS

To investigate the reaction mechanism, the proton and
α-particle angular distributions were measured (Figs. 1
and 2). In the figures the particle energies are restricted to
ensure that only first stage particles emitted immediately from
the compound nucleus 48V can contribute. For compound
nuclear reactions the HF calculation predicts a symmetric
angular distribution of the cross section with respect to 90◦ in
the center of mass system. The present measurement exhibits
forward-peaked distributions for both protons and α particles.
However, it is important to note that for lower energy α

particles, the angular distribution starts to follow the calculated
curve at ≈115◦ and beyond. For higher energy particles the
asymmetry is stronger. For α particles in the energy interval
16–18 MeV, i.e., for those populating the discrete levels of
44Sc, the angular distribution does not agree with calculations
even at backward angles. This means that high energy α

particles contain contributions from noncompound reactions
even at backward angles. From this analysis, it is possible
to conclude that the α-particle spectra measured at backward

FIG. 2. Angular distributions of protons (open circles) and α

particles (solid circles) in the c.m. system.

FIG. 3. Experimental energy spectra of protons and α particles
measured at 157◦ with respect to the beam line.

angles can be used for extracting level densities but only in the
energy region 10–16 MeV, which corresponds to excitation
energies of the residual 44Sc nucleus between 2 and 8 MeV.
We could not make a similar analysis for protons because
the thickness of our detectors (1000 and 1500 μm) was not
sufficient to stop protons with energies greater than 10 and
15 MeV, respectively (note that the maximum proton energy
from this reaction is 21 MeV). Therefore, the proton angular
distribution is integrated over all energies and is presented in
Fig. 2 along with integrated distribution for α particles. The
similarity of these distributions indicates that the compound
mechanism is the main mechanism determining both proton
and α-particle spectra measured at backward angles.
The energy dependence of proton and α-particle cross

sections measured at 157◦ with respect to the beam axis are
shown in Fig. 3. The level densities for both 44Sc (populated
by α particles) and 47Ti (populated by protons) nuclei were
obtained by the method described in Ref. [3] and in our
previous article [1]: a level density model is chosen for the
calculation of the differential cross section of Eq. (3). The
parameters of the model are then adjusted to reproduce the
experimental spectra as closely as possible. The input level
density is improved by binwise renormalization according to
the expression

ρb(E, I, π ) = ρb(E, I, π )input
(dσ/dεb)meas
(dσ/dεb)calc

. (4)

To get the absolute normalization, information about the level
density of discrete levels is used.
The level densities of 47Ti and 44Sc extracted from proton

and α-particle evaporation spectra are shown in Fig. 4. The
level density of 44Sc extracted from the Oslo experiment is
presented for comparison.
The absolute normalization of the level density for 44Sc has

been obtained bymatching the Oslo level density to the density
of discrete levels in the low energy region and by matching the
slope of the Oslo level density to the slope of the level density
obtained from the particle evaporation spectrum. One can see
the good agreement between the shapes of the level densities
from two types of experiments. The absolute normalization
of the level density for 47Ti was obtained from the ratio of
α/proton cross sections of the 3He+ 45Sc reaction.
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TABLE I. Ratio of experimental and model level densities at different excitation energiesEx . The
bottom line shows the comparison of the experimental and calculated ratios of α-particle and proton
cross sections.

Nucleus Ex (MeV) ρexp/ρmodel

FG [12] HFBCS [15] GC [14] CT [12]

47Ti 5.5 0.78(16) 0.92(19) 1.52(31) 1.19(24)
6.5 0.83(17) 1.14(23) 1.73(35) 1.18(24)
7.5 0.69(14) 1.12(23) 1.53(31) 0.92(19)
8.5 0.58(12) 1.10(22) 1.34(27) 0.70(14)
9.5 0.60(12) 1.30(26) 1.40(28) 0.63(12)
10.5 0.53(10) 1.29(26) 1.20(24) 0.45(9)
11.5 0.49(10) 1.35(27) 1.06(21) 0.36(7)

44Sc 2.5 1.41(30) 0.67(14) 1.50(31) 1.53(32)
3.5 1.16(24) 0.61(13) 1.46(30) 1.27(26)
4.5 1.00(20) 0.56(11) 1.42(29) 1.04(21)
5.5 0.91(18) 0.56(11) 1.43(29) 0.88(18)
6.5 0.93(19) 0.60(12) 1.55(31) 0.81(16)

σ
exp
α /σ

exp
p

σ calα /σ calp

1.6(2) 0.5(2) 1.1(2) 1.2(2)

The experimental level densities have been compared
to some level density models widely used in modern HF
computer codes. These prescriptions are based on the Fermi
gas (FG) model, the constant temperature (CT) model with

FIG. 4. Level densities of 47Ti (upper panel) and 44Sc (lower
panel) nuclei obtained from proton and α-particle energy spectra,
respectively. Black points are data from particle evaporation spectra.
Open points are data from the Oslo experiment [7]. The histograms
represent level densities from the counting of discrete levels.

parameters from the recent compilation of Ref. [12], and the
Gilbert-Cameron (GC) formula [13]. Parameter systematics
are obtained mainly on the basis of available information
about the level density in the region of discrete levels and
neutron resonances. For the GC model the Fermi-gas level
density parameter a was calculated according to the Ignatyuk
systematics [14] while parameters of the constant temperature
part of the GC formula were obtained from the fit to discrete
levels. We also tested the level density calculations based on
the Hartree-Fock-BCS approach (HFBCS) [15] recommended
by the RIPL data base [16]. Table I shows the ratio between
experimental and model level densities at different excitation
energies. It shows also how well HF calculations reproduce
the ratio of α and proton cross sections. This is an important
issue because this ratio gives an additional constraint on level
densities of residual nuclei. The conclusion is that the level
density of 47Ti is best reproduced with the HFBCS model but
the FG systematics fit better for 44Sc. No single model with
parameters from systematics reproduces level densities of both
nuclei equally well. However, HF calculations with GC and
CT models reproduce well the ratio of α and proton cross
sections.
To improve the level density prescription for these nuclei,

we used the FG model with free parameters a and δ to fit
the experimental level densities. The rigid-body spin cutoff
parameter was adopted for this fit. The parameters we obtained
are a = 5.13 MeV−1 and δ = −2.91 MeV for 44Sc and a =
5.06 MeV−1 and δ = −1.95 MeV for 47Ti. These parameters
can be compared to parameters from systematics [12]: a =
5.68 MeV−1 and δ = −2.064 MeV for 44Sc and a =
5.99 MeV−1 and δ = −0.738 MeV for 47Ti. Discrepancies
in corresponding level densities are shown in Table I. The
systematics of Ref. [12] agree with the experimental level
density of the 44Sc nucleus but are off by a factor of 1.3–2
for 47Ti. However, in the case of 47Ti, level density parameters
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from our experiment agree better with ones determined in
Ref. [12] on the basis of a fit to low-lying discrete levels
and neutron resonance spacings (a = 5.14(30) MeV−1 and
δ = −1.35(74) MeV).
It should be noted that the drawback of all available

level density systematics is that all of them use the neutron
resonance spacing as a main source for the experimental level
density at the neutron binding energy. The problem is that the
neutron resonances are known within a narrow spin interval
and the spin cutoff parametermust be used to calculate the total
level density, which actually affects the reaction cross section
calculations. The lack of experimental information on the spin
cutoff parameter above the discrete level region introduces
additional uncertainties in the calculation of reaction cross
sections and can cause deviations from our experimental data
(see Table I). An alternative optionwould be to establish a level
density systematic based on experimental data on total level
densities. There was an attempt [17] to establish the systematic
based on particle evaporation spectra. About 50 nuclei from the
A = 10–70 region have been analyzed. However, because of
large discrepancies in level density parameters from different
experiments, no good systematic regularity has been found.
The consistency between experimental level densities ob-

tained from the Oslo method and particle evaporation spectra
supports the underlying assumption of the Oslo method. It
shows that the statistical mechanism is the major mechanism
of γ decay following α-particle emission in the 45Sc(3He,αγ )
reaction. The spin of levels populated by either α particles
or γ transitions does not seem to be much different. Also,
the uncertainties due to the possible temperature dependence
of the γ -strength function are small enough to not affect the
final level density obtained by the Oslo method. All of these
results indicate that the Oslo method, within its limitations, is
a reliable tool for studying nuclear level densities.
The method based on particle energy spectra may suffer

from systematic uncertainties connected to contributions
of noncompound reaction mechanisms. These contributions
depend on the type of reaction used as well as on the angle
at which the spectra are measured. Backward angles allow
one to reduce the contribution from noncompound reactions

considerably but do not eliminate completely this effect,
especially for high energy particles. The measurement of the
angular distribution is an important tool in the analysis helping
to determine the angle and energy ranges to be used for the
level density determination.

IV. CONCLUSION

The level density of 44Sc has been obtained from two
independent experiments by using two different methods.
These are the Oslo method based on the analysis of particle-γ
coincidences from the 45Sc(3He,αγ ) reaction and the method
based on the analysis of particle spectra from the compound
nuclear reaction 45Sc(3He,α). Both methods produce the level
densities that are in good agreement with each other. It has
been shown that possible systematic uncertainties of the Oslo
method resulting from underlying assumptions are negligible
and do not cause any serious problems. Theα particles from the
45Sc(3He,α) compound reaction measured at backward angles
can be used to extract the level density of the corresponding
residual nucleus. The angular distribution is an important fac-
tor in determining the range of energies of outgoing particles
where the compound reaction mechanism is dominant.
The level density of 47Ti has been obtained from the proton

evaporation spectrum of the 45Sc(3He,p) reaction. Both 44Sc
and 47Ti experimental level densities have been compared to
several level density models. Despite the fact that some of
thesemodels reproduce experimental data well for one of these
nuclei, none of the models seem to fit experimental data for
both of them. The deviation from the best fit can be as large
as 50%. New Fermi-gas level density parameters have been
obtained.
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The level densities and γ-ray strength functions of 205−208Pb have been measured with the Oslo method,
utilizing the (3He, 3He′γ) and (3He, αγ) reactions on the target nuclei 206Pb and 208Pb. The extracted level
densities are consistent with known discrete levels at low excitation energies. The entropies and temperatures
in the micro-canonical ensemble have been deduced from the experimental level density. An average entropy
difference of ΔS∼ 0.9kB has been observed between 205Pb and 206Pb. The γ-ray strength functions in 205−208Pb
have been extracted and compared with two models; however, none of them describe the data adequately. Inter-
mediate structures have been observed in the γ-ray strength functions for γ-ray energies below neutron threshold
in all the analyzed Pb nuclei. These structures become less pronounced while moving from the doubly-magic
nucleus 208Pb to 205Pb.

PACS numbers: 21.10.Ma, 21.10.Pc, 25.55.Hp, 27.80.+w

I. INTRODUCTION

Tracing average nuclear properties such as nuclear level
density and γ-ray strength function in the quasi-continuum re-
gion are of particular importance. Both level density and γ-ray
strength function are inputs in statistical model calculations of
compound nuclear reactions and the subsequent decay of the
compound system. These calculations are important for many
aspects of nuclear structure studies, e.g., fission hindrance in
heavy nuclei, giant resonances built on excited states, yields
of evaporation residues to populate certain exotic nuclei and
production of heavy elements in stellar processes. The level
density is also an essential quantity for determining thermody-
namic properties of nuclei, such as entropy and temperature –
quantities that describe the many-particle behavior of the sys-
tem.
The level density is defined as the number of levels per unit

of excitation energy. It can be obtained experimentally from
different methods such as counting of resonances following
neutron capture [1] andmodeling of particle evaporation spec-
tra from compound nucleus reactions [2]. The γ-ray strength
function characterizes the nuclear electromagnetic response.
The concept of γ-ray strength function was introduced in the
work of Blatt and Weisskopf [3]. Most of the experimental
information on the γ-ray strength function has been obtained
from the study of photonuclear cross-sections for high energy
γ transitions (Eγ ∼ 10−20 MeV) [4]; however, at low γ ener-
gies experimental data are scarce.
The Oslo cyclotron group has developed a method [5] to

isolate the first γ-rays emitted in all decay cascades at various
initial excitation energies. The energy distribution of these

∗Electronic address: n.u.h.syed@fys.uio.no

primary (or first-generation) γ-rays provides information on
the level density and the γ-ray strength function. The Oslo
method has previously been applied for rare earth nuclei, ob-
taining information on the level density and average γ-decay
properties in this mass region [6, 7]. Recently, the method
has been extended to other mass regions like Fe, Mo, V and
Sc [8–12]. In order to check the validity of the method in
cases where nuclei have low level density and strong Porter-
Thomas fluctuations [13], the 27,28Si nuclei were studied with
gratifying results [14]. These achievements have encouraged
us to apply the method on closed shell 205−208Pb nuclei, where
the decay properties are less statistical due to shell effects and
more dominated by single-particle selection rules.
Based on the shell model, the nucleon configuration of

lead isotopes is such that the protons fill the h11/2 shell, and
the valence neutrons reside in the i13/2 shell. The chain of
A= 205−208 lead isotopes in general, and the doubly-magic
208Pb nucleus with Z = 82 and N = 126 in particular, are in-
teresting nuclei for studying the nuclear structure and γ-decay
properties at and in the vicinity of a two major shell closures.
In the following sections a brief outline of the experimental

method and data analysis are given. The level densities, ther-
modynamic properties and the γ-ray strength functions will be
discussed. Finally, a summary and conclusions are drawn.

II. EXPERIMENTALMETHOD AND DATA ANALYSIS

The experiments were conducted at the Oslo Cyclotron
Laboratory (OCL) using a 38-MeV 3He ion beam. Self-
supporting targets of 206Pb and 208Pb metallic foils, enriched
to 99.8% and 99.9% and with thicknesses of 4.7 mg/cm2 and
1.4 mg/cm2, respectively, were used. The experiments ran for
twelve days with a beam current of ≈0.6 nA.
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The bombardment of 3He ions on the Pb targets opens a
number of reaction channels, such as (3He, 3He′γ), (3He, αγ),
(3He, xnαγ) and (3He, 3He′xnγ). The following reactions are
analyzed in the present study:

1. 208Pb(3He,3He′γ)208Pb

2. 208Pb(3He, αγ)207Pb

3. 206Pb(3He, 3He′γ)206Pb

4. 206Pb(3He, αγ)205Pb

Particle-γ coincidences were measured for 205−208Pb using
the CACTUS multidetector array [15]. The charged particles
were detected by eight collimated ΔE−E type Si particle tele-
scopes, placed at a distance of 5 cm from the target and mak-
ing an angle of 45◦ with the beam line. The thicknesses of
the ΔE and E detectors are≈145 μm and ≈1500 μm, respec-
tively. For the detection of γ-rays, 28 5′′×5′′ NaI detectors
were used, surrounding the particle telescopes and the target.
The total efficiency of the NaI detectors is ∼ 15% of 4π .
The data analysis consists of four main steps: (i) making

the particle-γ coincidence matrix, (ii) unfolding the total γ-
ray spectra, (iii) extracting the first generation γ-ray spectra
and (iv) the factorization of the first generation γ-ray matrix
into level density and γ-ray transmission coefficient. From the
known Q values and reaction kinematics the ejectile energy
can be transformed into initial excitation energy of the resid-
ual nuclei. Using the particle-γ coincidence technique, each
γ-ray can be assigned to a cascade depopulating an excitation
energy region in the residual nucleus. Thus, the particle-γ co-
incidence measurements give a total γ-ray spectrum for each
excitation energy bin. Each row of the coincidence matrix
corresponds to a certain excitation energy (E) while each col-
umn corresponds to a certain γ-ray energy (Eγ ). In 205,206Pb
and 207,208Pb the excitation energy bins are chosen to be 240
keV/channel and 220 keV/channel, respectively.
The γ-ray spectra are corrected for the NaI response func-

tion. The unfolding procedure of Ref. [16] is employed for
this purpose, which is based on the Compton-subtracting tech-
nique that prevents additional spurious fluctuations in the un-
folded spectrum. The reliability of the unfolding technique is
tested for 207Pb γ-ray spectra, see Fig. 1. Here, the raw γ-
ray spectrum from the excitation energy region E = 4.5−6.7
MeV is compared with the spectrum that has been folded after
unfolding. The good agreement with the raw γ-ray spectrum
and the folded spectrum gives confidence in the employed un-
folding technique. The set of unfolded γ-ray spectra are orga-
nized in a (E,Eγ) matrix, which comprises the energy distri-
bution of all γ-rays from all decay cascades as a function of
excitation energy. This matrix of total, unfolded γ-ray spectra
is the basis for the next step of the Oslo method.
The first generation (primary) γ-ray energy distribution is

extracted by an iterative subtraction technique described in
Ref. [17]. The basic assumption of the subtraction method
is that the γ-decay pattern from any excitation energy bin is
independent of whether the state is populated directly via scat-
tering or neutron pick-up, or through γ-decay from a higher-
lying excited state.

The basic assumption may not be fulfilled if the direct re-
action at lower excitation bins, whose γ-spectra are utilized to
subtract higher-generation γ-rays from total spectra at higher
excitation energies, do not favor some levels within the ex-
citation bin that are populated by γ-rays from above. Such
situations may cause that some γ-rays are not fully subtracted
from the total spectrum.
The influence of a possible different selectivity of levels at

one excitation energy in the direct reaction compared to γ-
decay from higher lying levels, is expected to be most pro-
nounced when only a few levels are present in the excitation
bin. Thus, these considerations are increasingly important for
nuclei in the vicinity of closed shells having low level den-
sity. It is therefore necessary to be cautious when applying
the Oslo method to the Pb nuclei, and to carefully check that
the method gives reasonable results compared to other data.
In Fig. 2 the application of the first generation γ-rays ex-

traction technique is shown for 207Pb. The first generation γ-
rays are extracted by subtracting the weighted sum of higher
generation γ-rays from the total unfolded γ-ray spectrum. Fig-
ure 2 shows the total unfolded γ-ray spectrum, the first gen-
eration γ-ray spectrum, and the second and higher generation
γ-spectrum from E = 4.5−6.7 MeV for 207Pb. It is seen how
the higher generation γ-rays are well separated from the total
γ-ray spectrum in the specified excitation energy region.

III. NUCLEAR LEVEL DENSITIES

A. Application of the Axel-Brink hypothesis

The energy distribution of primary γ-rays emitted from a
well-defined initial excitation energy provides information on
the level density and the γ-strength function. First, the exper-
imental primary γ-ray matrix P(E,Eγ ) is normalized for the
various excitation energy bins E . This is done by summing
P(E,Eγ) over all γ-ray energies Eγ , for each excitation energy
bin E such that

E

∑
Eγ=Eminγ

P(E,Eγ) = 1. (1)

The entries of the first generation matrix are the probabilities
P(E,Eγ) that a γ-ray of energy Eγ is emitted from excitation
energy E . In accordance with Fermi’s golden rule, the decay
rate is proportional to the level density of final states and the
square of the transition matrix element. Thus, entries of the
primary γ-ray matrix P(E,Eγ) in the statistical region are pro-
portional to the level density ρ(E −Eγ) and the γ-ray trans-
mission coefficientT (Eγ):

P(E,Eγ) ∝ ρ(E−Eγ)T (Eγ ). (2)

In the factorization procedure of the two-dimensional primary
γ-ray matrix, a lower limit of the excitation energy region
E ∼ 3.0 MeV was used for all the analyzed nuclei in order
to exclude the main part of non-statistical transitions from
our data. The normalized experimental primary γ-ray matrix
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P(E,Eγ) can be approximated by

Pth(E,Eγ ) =
ρ(E−Eγ)T (Eγ)

∑EEγ =Eminγ
ρ(E−Eγ)T (Eγ)

. (3)

The first trial function for ρ is assumed to be unity i.e., ρ = 1
and the correspondingT can be determined by Eq. (3). Then,
a χ2 minimum is calculated for each data point of ρ andT si-
multaneously. This procedure is repeated until a global least-
square fit is achieved for all the data points of P(E,Eγ).
In Fig. 3 such a least χ2 fit is compared with the experimen-

tal primary γ-ray matrix for the 208Pb(3He,αγ)207Pb reaction
at different initial excitation energies between E = 3.8− 6.7
MeV with energy bins of 220 keV. The calculated primary
γ-ray spectra (solid lines) are obtained by multiplying the ex-
tracted ρ and T , as defined in Eq. (3).
The γ-ray transmission coefficient T (Eγ) in Eqs. (2) and

(3) is independent of excitation energy according to the gen-
eralized Axel-Brink hypothesis [18, 19], stating that collective
excitations built on excited states have the same properties as
those built on the ground state. The average temperature in
the excitation energy region studied is below 1.0 MeV for the
final levels. The temperature is believed to depend on the fi-
nal excitation energy by T ∝

√
Ef , which is a slowly varying

function. Thus, we assume that using a constant temperature
for the factorization of Eq. (2) is approximately valid in our
excitation region. The error bars of the data points take into
account only the statistical errors, see Ref. [5]. This means
that neither possible shortcomings of the first-generation pro-
cedure nor a weak dependence on the excitation energy in the
transmission coefficient, which means that the Axel-Brink hy-
pothesis is not fully valid, are included in the error bars. Keep-
ing this in mind, the comparison shown in Fig. 3 indicates
that the analyzing method works satisfactorily for the 207Pb
nucleus.
The multiplicative functions of Eq. (2) give an infinite num-

ber of solutions. It has been shown in Ref. [5] that if one so-
lution is known for Eq. (2), then the product ρ ·T is invariant
under the transformation

ρ̃(E−Eγ) = Aexp[α(E−Eγ)]ρ(E−Eγ), (4)

T̃ (Eγ ) = Bexp(α Eγ ) T (Eγ). (5)

Therefore, neither the slope nor the absolute value of ρ andT

can be determined directly from the iteration procedure. The
free parameters A, B and α must be determined by experimen-
tal data in order to normalize ρ and T .

B. Normalization of nuclear level density

The parameters A and α in Eqs. (4) and (5) are obtained
by fitting the inferred data points to the known discrete lev-
els [20] at low excitation energies and to the level density
at the neutron separation energy Sn. The level density at Sn
can be deduced from the Fermi-gas expression [21] using the
available proton or neutron-resonance spacing data [22] and

assuming that positive and negative parities contribute equally
to the level density at Sn. For � = 0 capture (s-waves), the level
density ρ0 becomes:

ρ0(Sn) =
2σ2

D0
[(It +1)exp(−(It +1)2/2σ2)

+ It exp(−I2t /2σ2)]−1. (6)

For � = 1 capture (p-waves), the above equation becomes:

ρ1(Sn) =
2σ2

D1
[(It −1)exp(−(It −1)2/2σ2)

+ It exp(−I2t /2σ2)
+ (It +1)exp(−(It +1)2/2σ2)
+ (It +2)exp(−(It +2)2/2σ2)]−1, (7)

where D0 and D1 are the average s- and p-wave resonance
spacings. The parameter It is the spin of the target nucleus.
For spin It = 0, the first two terms inside the bracket [· · · ] of
Eq. (7) should be omitted and for spin It = 1/2 and 1 only the
first term should be omitted. The spin-cut off parameter σ is
defined in Ref. [21] by

σ2 = 0.0888A2/3
√
a(E−Epair). (8)

where A is the mass number, a is the level density parame-
ter and Epair is the pairing correction parameter. The pairing
correction parameter is estimated following the description of
Ref. [23]. The spin distribution of levels at one excitation en-
ergy is given by [21]:

g(E, I) =
2I+1
2σ2

exp[−(I+1/2)2/2σ2], (9)

which is normalized to ΣIg(E, I) ∼ 1. The spin assignments
of 206,208Pb in the excitation region E ∼ 4 – 5 MeV are taken
from Ref. [20]. The average spin distribution of these data
points are compared with the relative spin distribution deter-
mined from Eq. (9), as shown in Fig. 4. Within the statistical
uncertainty of the data points the agreement of the experimen-
tal and theoretical spin distributions is very good and supports
our adopted σ in Eq. (8).
In Ref. [22] both s-wave and p-wave resonance spacingsD0

and D1 for the target 204,206,207Pb nuclei are given at Sn. The
deduced level densities ρ0 and ρ1 at Sn are listed in Table I.
Since the s-wave resonances in 207,208Pb are more weakly
populated than the p-wave resonances, the level densities de-
termined using D0 are less reliable than those determined us-
ing D1. Therefore, the ρ1 level density has been used for nor-
malizing our data.
The parameters used in the analysis of 205−208Pb are sum-

marized in Table I. The level density parameter a of the Pb
nuclei is taken from Ref. [24] using the Gilbert and Cameron
approach [21]. Since the proton/neutron resonance spacing
information for 206Pb is unavailable, we estimate the level
density at the neutron separation energy using the systemat-
ics of Ref. [21]. Figure 5 demonstrates the estimation proce-
dure, where the level densities of odd and even Pb nuclei are
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shown. In 208Pb and 209Pb the Fermi gas level densities at
Sn are comparable with those deduced from the neutron res-
onance data [22]. However, in 205Pb and 207Pb the large dis-
crepancy between the two level densities is obvious. In view
of this discrepancy we have estimated an uncertainity of 80%
for the adopted Fermi gas level density in 206Pb.
The experimental level density is extracted up to ∼ 2 MeV

below Sn since the γ-rays below 2 MeV are omitted in the ex-
traction procedure. In order to fill the gap between the data
points and the level density at Sn deduced from resonance
data, an interpolation is required. The Fermi gas level den-
sity formula for all spins and parities

ρFG(U) = η
exp(2

√
aU)

12
√
2a1/4U5/4σ

(10)

is employed for the interpolation. Here, U = E−Epair is the
intrinsic excitation energy and η is a constant used to adjust
ρFG to the experimental level density at Sn (values are given
in Table I).
Figures 6 and 7 show the normalized level densities ex-

tracted for 205,206Pb and 207,208Pb, respectively, up to ∼ 5−6
MeV of excitation energy. The exponential increase of level
density with excitation energy is evident from these figures,
where the Oslo data points are shown as filled squares. The
Fermi gas level densities (dashed lines) that are used for nor-
malization at the highest energy points, are seen to describe
the data points only to some extent. This feature is expected
for nuclei near closed shells, having few nuclear levels. For
the lead region, it is clear that the Fermi gas gives a poor de-
scription below 4–5 MeV of excitation energies.
By comparing our data with the discrete levels from spec-

troscopic experiments [20], a very good resemblance is seen at
lower excitation energies in all the nuclei. Local differences
might be due to violation of the assumptions behind Eq. (2)
for nuclei where level densities are low and large fluctuations
of the γ-ray intensity are observed. In the doubly magic 208Pb
the level density is low and the Oslo data agree nicely with the
spectroscopic measurements [20] up to 5 MeV of excitation
energy. The presence of a single unpaired neutron in 207Pb
increases the level density compared to 208Pb at a given exci-
tation energy. The Oslo data of 207Pb provide new information
on level density above E = 4 MeV. Similarly, in 205,206Pb new
information on the level densities are determined at higher ex-
citation energies where spectroscopic methods fail to find lev-
els.
Figure 6 shows that the level densities of 205,206Pb are

smoother functions of excitation energywith an overall higher
absolute value than of 207,208Pb, where characteristic struc-
tures are prominent. This feature is expected due to the pres-
ence of two and three neutron vacancies, which provide extra
degrees of freedom for the nucleons to arrange themselves for
a given excitation energy.
The drop of the total level density for E ≤ 4 MeV while go-

ing from 205Pb to 208Pb, is interpreted as a shell closure effect.
The extraction of level density in 208Pb does not provide any
new information above the known levels. However, these re-
sults give further confidence in the Oslo method and its appli-
cability in this mass region, as our data show good agreement

with the data found in literature. In summary, these results are
gratifying and support the applicability of the Oslo method in
closed-shell nuclei where the level densities are low.

IV. THERMODYNAMICS

The nuclear level density is closely related to the entropy
S of the system at a given excitation energy E . In fact, the
level density ρ(E) is directly proportional to the number of
accessible levels at excitation energy E . In order to derive
thermodynamic quantities for mesoscopic systems, it is
common to use the micro-canonical or canonical ensemble.
The micro-canonical ensemble is the most appropriate
ensemble according to Ref. [25], since the nucleus is con-
sidered as an isolated system with well-defined energy.
The micro-canonical ensemble theory will therefore be
utilized for 205−208Pb, although temperature and heat ca-
pacity may become negative due to fluctuations in the entropy.

In the micro-canonical ensemble, the entropy S(E) is iden-
tical to the partition function determined by the multiplicity
of states Ω(E) at excitation energy E which corresponds to
the level density ρ(E). The entropy in the micro-canonical
ensemble can be derived as

S(E) = kB lnΩ(E)

= kB ln
ρ(E)

ρ0
= kB lnρ(E)+S0, (11)

where Boltzmann’s constant kB is set to unity for the sake of
simplicity. The value of the normalization factor S0 is ad-
justed such that the third law of thermodynamics is fulfilled:
S→ 0 for T → 0. Since the ground-state band of the even-
even 206Pb and 208Pb nuclei has T = 0, the parameter S0 used
for 205−208Pb is 0.34. From the entropy, one can derive the
temperature by

1
T (E)

=
∂S
∂E

. (12)

In Figs. 8 and 9 the micro-canonical entropies of 205,206Pb
and 207,208Pb are shown, respectively. The entropies of
207,208Pb are seen to vary strongly with excitation energy. For
208Pb, the first vibrational 3− state appears at 2.6 MeV, be-
fore the two quasi-particle regime which is seen to enter at
E > 3.5 MeV. Figure 10 shows that the difference in entropy
between 207Pb and 208Pb, ΔS = S(207Pb)− S(208Pb), is fluc-
tuating between 0.3− 2.0 in the excitation energy region of
E = 3.0−5.7 MeV. This strong variation in entropy is due to
the few available single-particle orbitals for the unpaired neu-
trons below the closed shell. The strong fluctuation of entropy
in 207,208Pb with excitation energy makes it difficult to deter-
mine other thermodynamic quantities such as temperature.
In Fig. 10 the average difference in entropy between 205Pb

and 206Pb is shown to lie around 0.9 for the excitation en-
ergy region between E = 2− 5 MeV. The entropy difference
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of 205Pb and 206Pb is less fluctuating than that observed be-
tween 207Pb and 208Pb, thus indicating the departure of shell
closure effects in 205,206Pb. The entropy difference between
205Pb and 206Pb is about one half of the value observed in rare
earth nuclei (ΔS∼ 2) [26].
The micro-canonical temperature can be extracted from the

entropy as given by Eq. (12). Since the level densities in
207,208Pb are low and show large fluctuations, the tempera-
ture extraction for these nuclei is probably not reliable. The
micro-canonical temperatures of 205Pb and 206Pb are shown in
Figs. 11 and 12, respectively. For 206Pb, the temperature ex-
traction gives rise to large bump structures. These structures
in the temperature arise from the differentiation of the entropy
(see Eq. (12)), and can be interpreted as the breaking of nu-
cleon pairs. When nucleon pairs are broken, new degrees of
freedom open up leading to an increase of ρ(E) and decrease
in the temperature T (E).
For 205Pb, the situation is not so clear since this nucleus has

an unpaired neutron which gives a smoother entropy and thus
less structures in the temperature. Bumps indicating the pair-
breaking process might also be seen here, but one can also
fit a constant temperature to the data points in Fig. 11. By
doing so, we get an average temperature of 0.9(1) MeV for
0.4 ≤ E ≤ 5.0 MeV, which is in agreement with an average
temperature of T = 0.81(4)MeV [27].
In 205Pb and 206Pb one can observe the first drop in tem-

perature at E ≈ 2.0 MeV and E ≈ 2.5 MeV, respectively.
These excitation energies can be compared with the energy
amount necessary to break a neutron Cooper pair, namely 2Δn,
where Δn is the neutron pair gap parameter. The description of
Ref. [21] gives 2Δn = 1.8 MeV for 205,206Pb. The observed lo-
cations of pair-breaking lie at energies somewhat higher than
2Δn. This difference could be due to the large energy spac-
ing between the single-particle orbitals. However, the second
peak in 205Pb and 206Pb is observed at E ≈ 3.8 and 3.7 MeV,
respectively. These peaks may be due to proton-pair break-
ing, neutron-pair breaking, or because the proton (or neutron)
passes the energy gap between major shell gaps.

V. GAMMA-RAY STRENGTH FUNCTIONS

The γ-ray transmission coefficient T in Eq. (2) is con-
nected to the electromagnetic decay properties of the nucleus
and is expressed as the sum of all the γ-ray strength functions
fXL for transitions with electromagnetic character X and mul-
tipolarity L, given by:

T (Eγ ) = 2π ∑
XL
E2L+1γ fXL(Eγ), (13)

where Eγ is the transition energy, and the slope correction
exp(αEγ) from Eq. (4) has already been included in T . In
Fig. 13, T for 206Pb is shown, where the absolute normaliza-
tion B remains to be determined. This normalization will be
discussed in the following.
As already mentioned in sect. III, the methodological dif-

ficulties in the primary γ-ray extraction prevent the determi-
nation of ρ for E > Sn−2 MeV and T for Eγ < 2 MeV. The

level densities were extrapolated with the Fermi gas level den-
sity using Eq. (10). However, the transmission coefficients are
extrapolated using an exponential form, as shown in Fig. 13.
It is assumed that the main contributions to the function

T (Eγ) are E1 and M1 γ-ray transitions in the statistical re-
gion. Further, if one assumes that the number of accessible
levels of positive and negative parity are equal for any energy
and spin, one finds

ρ(E−Eγ , I f ,±π f ) =
1
2

ρ(E−Eγ , I f ). (14)

Clearly, this assumption does not hold true for all excitation
energy regions in the Pb nuclei considered here. However, by
applying these assumptions, the experimental γ-ray transmis-
sion coefficient of Eq. (13) yields

BT (Eγ) = 2π [ fE1(Eγ )+ fM1(Eγ)]E3γ , (15)

where B is an unknown factor that gives the absolute normal-
ization of the γ-ray strength function. We might expect a po-
tential error in the absolute normalization of the γ-ray strength
functions in the Pb region due to equal-parity assumption used
above.
The average total radiative width 〈Γγ 〉 of levels with energy

E , spin I and parity π is given by [28]:

〈Γγ (E, I,π)〉= 1
2πρ(E, I,π) ∑

XL
∑
If ,π f

∫ E

0
dEγTXL(Eγ )

×ρ(E−Eγ , I f ,π f ), (16)

where the summation goes over spins of final levels I f with
parities π f . Using the assumptions discussed above, one can
determine the average total radiative width 〈Γγ 〉 for neutron
resonances. For � = 0 capture (s-waves), the populated spins
are I = |It ± 1/2|, where It represents the spin of the target
nucleus in the (n,γ) reaction. For � = 1 capture (p-waves), the
populated spins are I= |It±1/2±1|. The parity is determined
by the target parity πt and � by π = πt(−1)�. The average total
radiative width is described at E = Sn by

〈Γγ (Sn, I)〉=
1

4πρ(Sn, I,π)

∫ Sn

0
dEγ

×BT (Eγ )ρ(Sn−Eγ)

×
1

∑
J=−1

g(Sn−Eγ , I+ J). (17)

The factor B can thus be determined from the average total
radiative width 〈Γγ 〉 of the compound states. Ref. [22] pro-
vides the experimental 〈Γγ 〉 for 205Pb, while the 〈Γγ〉 in 207Pb
is taken from Ref. [1].
In order to normalize the γ-ray strength function of 208Pb

the above mentioned method is difficult to apply since the av-
erage total radiative width at Sn cannot be found in the litera-
ture. However, there are discrete neutron resonance data [29]
for 208Pb on the E1 and M1 γ-ray strength functions at Eγ =
7.5 MeV. The Oslo data for 208Pb is thus normalized with the
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data of Ref. [29]. In addition, the (γ ,n) photonuclear cross-
section data of Ref. [30] has been used to confirm the normal-
ization of the γ-ray strength function of 208Pb. The following
relation [22] can be used to deduce the strength function from
the cross-section, asumming that dipole radiation is dominant:

f (Eγ ) =
1

3π2h̄2c2
σ(Eγ)
Eγ

. (18)

Since 205Pb is unstable, the resonance spacings and 〈Γγ 〉
have not been measured for 206Pb. Therefore, we utilized the
(γ ,n) cross-section data [30] to normalize the γ-ray strength
function of 206Pb. The Oslo data are scaled to match the data
of Ref. [30], giving the absolute normalization of the γ-ray
strength function of 206Pb. The normalized γ-ray strength
functions of 205,206Pb and 207,208Pb are shown in Figs. 14
and 15, respectively.
For 207Pb, the resonance data [29] for electric and magnetic

dipole radiation at Eγ = 7.1 MeV have been used to make a
consistency check for the normalized γ-ray strength function.
Moreover, the (γ ,n) data of Ref. [30] for 207Pb at Eγ > Sn are
also drawn in Fig. 15 for comparison. The agreement of these
strength functions with our extracted data is gratifying, and
indicates that the normalization procedure works well in this
case, in spite of the questionable assumption of equal parity
distribution described in Eq. (14).
The (γ ,n) data for 206−208Pb in Ref. [30] display bumps and

structures that increase in magnitude when approaching Sn.
Similar structures are present in our data below Sn. These in-
termediate structures are observed in the Oslo data at γ-ray
energies 5.6, 6.3 and 7.1 MeV in 208Pb. Similarly, in 207Pb
these intermediate structures have been seen at 4.3, 5.0, 5.6
and 6.3 MeV. For 205Pb and 206Pb these structures are ob-
served at γ-ray energies of 4.3, 6.0 and 6.3 MeV. It is hard
to interpret these structures without knowing the electromag-
netic character and the multipolarity of transitions in this re-
gion. However, it is likely that the bumps are due to enhanced
single-particle transitions at certain γ-ray energies, reflecting
the shell structure below Sn. The Oslo method does not pro-
vide any information on the multipolarity of these structures,
so to investigate it further, it would be necessary to perform
complementary experiments such as (n,γγ) measurements an-
alyzed with the two-step cascade method [31].
The above extracted γ-ray strength functions depend on the

normalization procedure chosen. The slope of the strength
function is sensitive to the resonance data at Sn, which have
been taken from the literature. In 206Pb the uncertainty of this
data play a central role in the normalization of our data. The
adopted values influence both the slope of the level density
as well as the slope of the strength function. In 206Pb, the
uncertainty in the value of α (see Eq. (13)) could be more
than 80% due to this uncertainty. In addition, the absolute
strength (B of Eq. (15)) is uncertain by a factor of 2 – 3. In
the case of 208Pb, the oscillating shape of the strength function
makes the absolute normalization between our data and (γ ,n)
data [29, 30] very difficult, as seen in Fig. 15.

VI. MODELS FOR E1 ANDM1 TRANSITIONS

A number of models describing the electric dipole γ-ray
strength function have been described in [22]. The simplest
of these is the Standard Lorentzian model (SLO), which de-
scribes the E1 strength as a Lorentzian shape. The model is
temperature independent and is given by:

fSLO(Eγ ) =
1

3π2h̄2c2
σE1ΓE1

Eγ ΓE1
(E2γ −E2E1)2+(ΓE1Eγ)2

, (19)

where the Lorentzian parameters σE1, EE1 and ΓE1 are the
peak cross section, energy and width of the giant dipole res-
onance, respectively, and are usually derived from photonu-
clear experiments. However, it has been shown [28, 29, 32–
34] that the SLO model overestimates the photonuclear data
away from the giant dipole resonance (GDR) centroid in many
nuclei.
One model that incorporates the temperature dependency

of the γ-ray dipole strength is the Enhanced Generalized
Lorentzian model (EGLO) [22]. Considering spherical nuclei,
EGLO is defined as

fEGLO(Eγ) =
1

3π2h̄2c2
σE1ΓE1{
EγΓk(Eγ ,T )

(E2γ −E2E1)2+(EγΓk(Eγ ,T ))2

+0.7
Γk(Eγ = 0,T )

E3E1

}
, (20)

where T is the temperature of the final states determined by
T =

√
(U/a). The energy and temperature dependent width

Γk(Eγ ,T ) is defined analytically as

Γk(Eγ ,T ) = K(Eγ )
ΓE1
E2γ

[E2γ +(2πT)2], (21)

where

K(Eγ) = κ +(1−κ)
Eγ −E0
EE1−E0 . (22)

is an empirical function. Here we use E0 = 4.5 MeV and the
enhancement factor κ , given by [35],

κ =

{
1 if A< 148,
1+0.09(A−148)2exp(−0.18(A−148)) if A≥ 148,

(23)
for the Fermi gas model. These expressions are developed in
the framework of the collisional damping model for Eγ < EE1
and hold for T < 2 MeV.
The magnetic dipole M1 radiation is described by a

Lorentzian based on the existence of a giant magnetic dipole
resonance (GMDR) [36],

fM1(Eγ) =
1

3π2h2c2
σM1Eγ Γ2M1

(E2γ −E2M1)2+E2γ Γ2M1
. (24)
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where σM1, ΓM1, and EM1 are the GMDR parameters deduced
from the systematics given in [22].

The contribution from isoscalar E2 transition strength is
also included in the total γ-ray strength function and is de-
scribed by [22]

fE2(Eγ) =
1

5π2h̄2c2E2γ

σE2EγΓ2E2
(E2γ −E2E2)2+E2γ Γ2E2

. (25)

The total model γ-ray strength functions, shown by solid lines
in Figs. 16 and 17, are the sum of the EGLO E1, Lorentzian
M1 and E2 contributions, i.e.,

ftot = fEGLO+ fM1+E2γ fE2. (26)

The GEDR and GMDR parameters for 205−208Pb are taken
from [22] and are listed in Table II. The extracted normalized
γ-ray strength functions of 205−208Pb are plotted together with
the models discussed above in Figs. 16 and 17. The photonu-
clear cross-section data of Ref. [30] have also been drawn for
comparison.
The intermediate structures at the tail of GEDR in the Oslo

data are observed at different γ-ray energies in the analyzed Pb
nuclei. These intermediate structures present in our data os-
cillate between the above-mentioned models; however, none
of them describe our data adequately for the whole energy
region. In Figs. 16 and 17 our extracted data points (filled
squares) of 205,206Pb and 207,208Pb tend to follow the EGLO
model for γ-ray energies ≥ 4 MeV. For lower γ-energies the
deviation between the theory and data points is obvious. This
is not surprising, since one expects that the closed shell(s) will
strongly influence the γ-decay, and thus preventing a good
description of the γ-strength with smooth functions such as
given by the EGLO model.
The strength functions in 206−208Pb show an increase at γ-

ray energies lower than∼3MeV. This may be due to the possi-
ble presence of strong non-statistical transitions, which are not
correctly subtracted in the primary γ-ray extraction procedure
and thus affecting the strength function at these γ-energies.
Therefore, the enhanced γ-ray strength functions at low γ-ray
energies are not conclusive.

VII. SUMMARY AND CONCLUSIONS

The primary motivation of this work was to determine the
level density and the γ-ray strength function in Pb isotopes
near and at shell closure. The applicability of the Oslo method

has also been investigated in the doubly magic 208Pb nucleus
and its neighboring 205−207Pb nuclei. In contrast to the rare
earth and mid-shell nuclei, these isotopes have low level den-
sity so that one can expect strong non-statistical fluctuations
of level density and γ-ray strength function.
The level densities and γ-ray strength functions of

205−208Pb have been extracted simultaneously from the pri-
mary γ-ray spectra. The comparison of our extracted level
densities with spectroscopic measurements at low excitation
energies gives good agreement within the experimental un-
certainty. In 208Pb, the Oslo method could not give more in-
formation on level density than previously known from dis-
crete spectroscopy. However, the good agreement between
our data and known levels in 208Pb indicates the robustness of
the method for its use in closed shell nuclei.
The level densities of 207,208Pb show significant step struc-

tures, which is an interesting finding of this work. Such struc-
tures are expected, partly due to strong shell effects at the
Z = 82 and N = 126 shell closures, and partly due to the
breaking of Cooper pairs. In 205,206Pb, these step structures
are smoothed out as neutron valence holes come into play.
From the extracted level densities the micro-canonical en-

tropies of the respective nuclei are deduced. The average en-
tropy difference ΔS between 205Pb and 206Pb is found to be
0.9; however, the entropy difference between 207Pb and 208Pb
varies violently with excitation energy and thus is difficult to
use for finding other thermodynamic properties. The fluctua-
tions in the entropy spectra are strongly enhanced in the tem-
perature spectra. The average temperatures of the 205,206Pb
nuclei are found to be T ≈ 1.0 MeV. This is twice the temper-
ature measured in rare earth nuclei.
The γ-ray strength functions of 205−208Pb show pronounced

structures at energies below the neutron separation energy.
However, the γ-ray strength function becomes smoother by
the gradual opening of the neutron shell closure at N = 126.
Such structures have also been observed above the neutron
threshold for (γ ,n) reactions in 206−208Pb nuclei. The multi-
polarities of these intermediate resonances are unknown. The
measured γ-ray strength functions of 205−208Pb are poorly de-
scribed by the SLO and EGLO models in the energy region
considered here. This indicates that there is more interesting
physics connected to the shell closure(s), which is revealed in
the γ-ray strength functions of the Pb isotopes.
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TABLE II: GEDR and GMDR parameters, used for the EGLO and SLO model calculations.
Nucleus EE1 ΓE1 σE1 EM1 ΓM1 σM1 〈Γγ 〉

(MeV) (MeV) (mb) (MeV) (MeV) (mb) (meV)

205Pb† 13.59 3.85 514 6.95 4.0 1.16 330
206Pb 13.59 3.85 514 6.94 4.0 1.16 -
207Pb 13.56 3.96 481 6.93 4.0 1.16 455(50)
208Pb 13.43 4.07 639 6.92 4.0 1.72 -

† GEDR parameters taken from 206Pb.
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FIG. 1: Unfolding of the γ-ray spectrum of 207Pb measured for the excitation energy region E = 4.5−6.7 MeV. Note the similarity of the raw
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Extraction of thermal and electromagnetic properties in 45Ti
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The level density and γ-ray strength function of 45Ti have been determined by use of the Oslo method. The
coincidences from the (p,dγ) pick-up reaction with 32 MeV protons are utilized to obtain γ-ray spectra as
function of excitation energy. The extracted level density and strength function are compared with models,
which are found to describe these quantities satisfactory. The data do not reveal any single-particle energy gaps
of the underlying double magic 40Ca core, probably due to the strong quadrupole deformation.

PACS numbers: 21.10.Ma, 21.10.Pc, 27.40.+z
Keywords: Level density, entropy, γ-ray strength function

I. INTRODUCTION

The density of nuclear levels in quasi-continuum provides
information on the gross structure of excited nuclei and is a
basic quantity in nuclear reaction theories. Also the γ-ray
strength function is important for describing the γ-decay pro-
cess at high excitation energies. Experimentally, the nuclear
level density can be determined reliably up to a few MeV
of excitation energy from the counting of low-lying discrete
known levels [1]. Previously, the experimental information
on the γ-ray strength function has been mainly obtained from
the study of photonuclear cross-sections [2].

The Oslo nuclear physics group has developed a tool to
determine simultaneously level densities and γ-ray strength
function from particle-γ coincidences. The Oslo method,
which is applicable for excitation energies below the particle
separation threshold, is described in detail in Ref. [3]. In this
work, we report for the first time on results using the (p,d)
reaction as inputs for the Oslo method. The advantage with
this reaction compared to the commonly used (3He,3He’) and
(3He,4He) reactions, are higher cross-sections and better par-
ticle resolution.

The subject of the this paper is to determine the level den-
sity and electromagnetic properties of the 45Ti nucleus. The
system has only two protons and three neutrons outside the
double-magic 40Ca core. It is therefore of great interest to see
if the number of levels per MeV are quenched due to the low
number of interplaying valence nucleons. Also the decay pat-
tern may be influenced by the expected overrepresentation of
negative parity states, originating from the π f7/2 and ν f7/2
single-particle states.

In Sect. II the experimental set-up and data analysis are de-
scribed. Nuclear level densities and thermodynamics are dis-
cussed in Sect. III, and in Sect. IV the γ-ray strength func-
tions are compared with models. Summary and conclusions
are given in Sect. V.

∗Electronic address: n.u.h.syed@fys.uio.no

II. EXPERIMENTAL SETUP AND DATA ANALYSIS

The experiment was conducted at Oslo Cyclotron Labora-
tory (OCL) using a 32-MeV proton beam bombarded on a
self-supporting target of 46Ti, enriched to 86% (10.6% 48Ti,
1.6% 47Ti, 1.0% 50Ti, and 0.8% 44Ti). The thickness of the
target was 1.8 mg/cm2. The transfer reaction, 46Ti(p,d)45Ti,
is analyzed in the present study. The charged ejectile of deu-
terium is used to tag the excitation energies for each γ-ray
spectrum from the ground state and up to the neutron separa-
tion energy.
The particle-γ coincidences are measured with the efficient

CACTUS multi-detector array [4]. The coincidence set-up
consists of eight collimated ΔE – E type Si particle telescopes,
placed at a distance of 5 cm from the target and making an an-
gle of θ = 45◦ with the beam line. The particle telescopes are
surrounded by 28 5”× 5” NaI γ-ray detectors, which have a
total efficiency of ∼ 15% of 4π .
The experimental extraction procedure and assumptions

made are described in Ref. [3]. The registered ejectil energy
is transformed into excitation energy of the residual nucleus
through reaction kinematics and the known reaction Q-value.
The excited residual nucleus produced in the reactionwill sub-
sequently decay by one or several γ-rays. Thus, a γ-ray spec-
trum can be recorded for each initial excitation energy bin E .
Furthermore, the γ-ray spectra are corrected for the NaI detec-
tor response function by applying the unfolding technique of
Ref. [5]. The unfolding is based on the Compton-subtracting
technique, which prevents additional count fluctuations to ap-
pear in the unfolded spectrum.
The set of these unfolded γ-ray spectra forms the basis of

extracting the first-generation γ-ray spectra, which are orga-
nized into an (E,Eγ ) matrix. Here, the energy distribution of
the first (primary) emitted γ-rays in the γ-cascades at various
excitation energies is isolated by an iterative subtraction tech-
nique [6]. Themain assumption of the first-generationmethod
is that the γ-ray spectrum from a bin of excited states are in-
dependent of the population mechanism of these states. In the
present setting, this means that the γ-spectrum obtained from
a direct (p,d) reaction into states at excitation energy bin E
is similar to the one obtained if the states at E are populated
from the γ-decay of higher-lying states.
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The generalized Fermi’s golden rule states that the decay
probability can be factorized into a factor depending on the
transition matrix-element between the initial and final state,
and the state density at the final states. Following this fac-
torization, we express the decay probability from the initial
excitation energy E to depend on the γ-ray transmission coef-
ficient T (Eγ ) and the level density ρ(E−Eγ) by

P(E,Eγ ) ∝ T (Eγ)ρ(E−Eγ). (1)

Here, T (Eγ ) is assumed to be temperature (or excitation
energy) independent according to the Brink-Axel hypothe-
sis [7, 8].
The ρ and T functions are determined by an iterative pro-

cedure [3] by adjusting these two functions until a global χ2
minimum with the experimental P(E,Eγ) matrix is reached.
It has been shown [3] that if one of the solutions for ρ and T

is known, then the entries of the matrix P(E,Eγ) in Eq. (1) are
invariant under the transformations:

ρ̃(E−Eγ) = Aexp[α(E−Eγ)]ρ(E−Eγ), (2)

T̃ (Eγ ) = Bexp(α Eγ ) T (Eγ). (3)

The parameters A, B and α are unknown and can be obtained
by normalizing the Oslo data to other experimental data or
systematics. The determination of A and α is discussed in the
next section, and parameter B is discussed in Sect. IV.

III. NUCLEAR LEVEL DENSITY AND
THERMODYNAMICS

The level density ρ extracted from our coincidence data by
the use of Eq. (1) contains the fine structures, but is not nor-
malized. The transformation generators A and α of Eq. (2),
which decide the absolute value and slope of the level den-
sity, can be determined by normalizing to the discrete levels at
low excitation energies [1] and to the level density determined
from the available resonance spacings data of photonuclear
experiments. Unfortunately, the neutron-resonance spacings
data for the target nucleus 44Ti are not found in literature (44Ti
has a half life of 67 years). We therefore use the systematics
of T. von Egidy and D. Bucurescu [9], which is based on a
global fitting of known neutron resonance spacing data with
the back-shifted Fermi gas (BSFG) formula:

ρBSFG(U) =
√

π
12
exp(2

√
aU)

a1/4U5/4
1√
2πσ

, (4)

where a is the level density parameter, U = E−E1 is the in-
trinsic excitation energy and E1 is the back-shifted energy pa-
rameter. The spin distribution is given by the spin cut-off pa-
rameter σ given by

σ2 = 0.0146A5/3
√
a(E−E1), (5)

where A is the nuclear mass number. The level-density param-
eters are summarized in Table I.

In Fig. 1 the nuclear level densities deduced from the neu-
tron resonance spacing data [10] of odd and even titanium nu-
clei have been compared with the BSFG level densities ob-
tained from the systematics [9]. The systematic values ρ(Sn)
for the titan isotopes are seen to overestimate the experimen-
tal values determined from resonance spacing data. Thus, the
systematic values from Eq. (4) are multiplied with a factor of
η = 0.5 to make themmore comparable with the experimental
values. In this way (see Fig. 1), the unknown level density of
45Ti is estimated to be ρ(Sn) = 1400±700 MeV−1. Figure 2
shows our normalized level density for 45Ti (black squares),
which is adjusted (A and α) to fit the discrete levels at low
excitation energy (solid lines) and the systematic value at Sn
(open square).
The slope (given by α) of the measured level density may

be uncertain due to the estimated level density at Sn, the upper
anchor point of the normalization. Various ways of analyzing
the global set of neutron resonance spacing data, may result in
different ρ(Sn) values within a factor of two. In order to jus-
tify our adopted level-density normalization, the experimental
data of 47Ti [11] are also shown in Fig. 2. The level density
in 47Ti is determined using proton-evaporation spectra from
the 45Sc(3He,p)47Ti reaction. In this method, the slope of the
level density should be well determined, however, the abso-
lute value is undetermined. The good agreement between the
slopes of 45Ti and 47Ti in the energy region of 4 – 8 MeV gives
confidence to the present normalization.
The level density is seen to follow very nicely the density of

known levels up to E ∼ 2−3 MeV. At higher excitation ener-
gies only a part of the levels are known, mainly from transfer
reactions. The BSFG level density (dashed line of Fig. 2) is
seen not to describe the fine structure of our data, but is as-
sumed to be relevant for the extrapolation between our data
and the value at Sn. This assumption is also supported by the
47Ti data, which follow closely the Fermi gas level density to
higher excitation energies.
The level density of 45Ti shows pronounced step structures

below E ∼ 6− 7 MeV. These structures are probably the re-
sults of the amount of energy needed to cross shell gaps and
to break Cooper pairs. The level density of the 45Ti nucleus,
with Z = 22 protons and N = 23 neutrons, is close to its dou-
ble magic Z = N = 20 core. The gap energies are around 2 –
3 MeV, which are comparable with the energy (2Δ) required
for breaking Cooper pairs. Thus, it is very difficult to foresee
the level-density fine structure in this case.
From the measurements of level density as a function of

excitation energy, one can explore various thermodynamical
properties of the nucleus like entropy and temperature. For
the present analysis, the micro-canonical ensemble has been
used since hot nuclei are better described statistically through
such an ensemble [12]. Within this framework, the nucleus
is considered to be an isolated system with a well-defined en-
ergy. The extracted level density ρ at excitation energy E is
directly related to the the entropy S by

S(E) = kB lnρ(E)+S0, (6)

where the Boltzmann’s constant kB is set to unity. The nor-
malization term S0 is adjusted to fulfill the third law of ther-
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modynamics i.e., S→ 0 for T → 0, T being temperature of the
nucleus. Using the ground state band of the even-even 44Ti,
the normalization term is found to be S0 =−0.1. Furthermore,
the microcanonical temperature T can be deduced from S by

1
T (E)

=
∂S
∂E

. (7)

Figures 3 and 4 show the micro-canonical entropy and tem-
perature of 45Ti, respectively. The variations in entropy with
excitation energy are equivalent to the variations in the level
density. The �ne structure of the entropy curve is seen to be
enhanced for the temperature T curve due to the differentia-
tion performed to S. The enhanced bump structures in the tem-
perature spectra can be interpreted as the breaking of nucleon
pairs. When particle pairs are broken, new degrees of freedom
open up leading to dramatic increase of ρ(E) and decrease in
temperature T (E). In the temperature plot of Fig. 4 one can
notice the locations of negative slopes. First such location ap-
pear at E ∼ 2.0 MeV which should be compared with twice
the proton pairing gap parameter 2Δp of 45Ti, the minimum
required energy to break a nucleon Cooper pair. By following
the de�nition of [13], one gets 2Δp = 1.784 which is compa-
rable to the location of the �rst temperature drop. The second
such location of temperature drop occurs around ∼ 4.2 MeV
which can be interpreted as the point of four quasi-particles
pair breaking.
The experimental level density is compared with the BSFG

level density (shown as dashed line in Fig. 2) in the excitation
region above 6 MeV. In this energy region, the comparison
shows that the BSFG agrees nicely with the extracted level
density of 45Ti. However, the BSFG model level density does
not reproduce the detailed structures in the experimental level
density. In order to investigate the level density further, a mi-
croscopic model has been applied.

A. Combinatorial BCS Model of Nilsson Orbitals

The model [14] is based on combining all the proton and
neutron con�gurations within the Nilsson level scheme and
using the concept of Bardeen-Cooper-Schrieffer (BCS) quasi-
particles [15]. The single-particle energies esp are taken from
the Nilsson model for an axially deformed core, where the de-
formation is described by the quadruple deformation param-
eter ε2. The quasi-particle excitation energies are described
by

Eqp(Ωπ ,Ων) = ∑
Ω′π ,Ω′ν

(
eqp(Ω′π)+ eqp(Ω′ν)+V(Ω′π ,Ω′ν)

)
,

(8)
where Ωπ and Ων are the spin projections of protons and
neutrons on to the symmetry axis, respectively, and V is the
residual interaction described by a random Gaussian distribu-
tion. The single quasi-particle energy eqp, characterized by
the Fermi level λ and pair-gap parameter, is de�ned as:

eqp =
√

(esp−λ )2+ Δ2. (9)

The total excitation energy is the sum of the quasi-particle
energy Eqp(Ωπ ,Ων), rotational excitations and vibrational ex-
citations i.e.,

E = Eqp(Ωπ ,Ων)+ArotR(R+1)+ h̄ωvibν. (10)

The rotational excitations are described by the rotational pa-
rameter Arot = h̄/2I , I being the moment of inertia and R
being the rotational quantum number. The vibrational excita-
tions are described by the phonon number ν = 0,1,2, . . . and
oscillator quantum energy h̄ωvib. At low excitation energy, the
rotational parameter Arot is for simplicity taken as the value
(Ags) deduced around the ground state of even-even nuclei in
this mass region. For increasing excitation energy, we let the
rotational parameter decrease linearly according to

Arot(E) = Ags+
(
Arigid−Ags
Erigid

)
E, (11)

where we assume Arot = Arigid for excitation energies above
the excitation energyErigid. Since theoretical approaches seem
to predict rigid moment of inertia at the neutron separation
energy, we put Erigid = Sn. The rigid value is calculated from

Arigid =
5h̄

4MR2A(1+0.31ε2)
, (12)

whereM is the nuclear mass and RA is the nuclear radius.
The spin (I) of each state is schematically calculated from

the rotational quantum number (R) and the total projection (K)
of the spin vector on the nuclear symmetry axis by

I(I+1) = R(R+1)+K2. (13)

The quantity K is determined by the sum of projections on the
symmetry axis:

K = ∑
Ω′π ,Ω′ν

Ω′π + Ω′ν . (14)

The Nilsson single-particle orbitals appropriate for 45Ti are
drawn in Fig. 5. The spin-orbit parameter κ = 0.066 and cen-
trifugal parameter μ = 0.32 are taken from Ref. [16]. The
main harmonic oscillator quantum is estimated by h̄ω0 =
1.2(41A−1/3) MeV. The vibrational quantum energy h̄ωvib =
2.611 MeV is taken from the excitation energy of the �rst 0+

vibrational state in 46Ti. The fermi levels for protons and neu-
trons are also shown in Fig. 5 for an estimated deformation of
ε2 = 0.25. Other parameters employed to calculate the level
density of 45Ti, are listed in Table II.
Figure 6 shows that the calculated level density for 45Ti

describes satisfactorily the experimental level density. The
general increase and the structural details of the level den-
sity are well reproduced. These structures can be understood
from Fig. 7 where the average number of nucleon pairs bro-
ken 〈Nqp〉 is plotted as a function of excitation energy. Here,
the average number of pairs includes both proton and neu-
tron pair breaking. Figure 7 shows that the �rst pairs break at
2Δ ∼ 2.5 MeV of excitation energy. The pair breaking pro-
cess leads to an exponential increase of level density, and the
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process is also responsible for an overall increase at higher
energies. Rotational and vibrational excitations are of less im-
portance. Even the shell gaps expected at Z = N = 20 seem
not to play a major role, probably because the gap between the
f7/2 and d3/2 orbitals is reduced by the nuclear quadrupole de-
formation. Indeed, the single-particle Nilsson orbitals appear
to make a rather uniform energy distribution at ε2 = 0.25 in
Fig. 5.
The spin distribution of our model can be compared with

the commonly used spin distribution [17]:

g(E, I) =
2I+1
2σ2

exp
[−(I+1/2)2/2σ2

]
(15)

with a spin cut-off parameter σ taken from Eq. (5). The two
spin distributions (normalized to unity) are shown in Fig. 8.
The comparison is made at four different excitation energy
bins having an excitation energy window of 0.24 MeV. The
general trend in the two distributions are surprisingly similar,
however, some deviations are also obvious. This is mainly
due to fluctuations originating from the low level density in
this nucleus. The moment of inertia of 45Ti is chosen to ap-
proach a rigid rotor at energies near and above Sn, which
has been seen theoretically in the medium mass region nu-
clei A ∼ 50− 70 [18]. The satisfactory resemblance of the
two spin distributions indicates that our simplified treatment
of determining the spin of levels through Eqs. (13) and (14)
works well.
The parity distribution is a quantity that also reveals the

presence (or absence) of shell gaps. In the extreme case,
where only the π f7/2 and ν f7/2 shells would be occupied by
the valence nucleons, just negative parity states would appear.
The parity asymmetry parameter can be utilized to display the
parity distribution in quasi-continuum and is defined by [19]

α =
ρ+−ρ−
ρ+ + ρ−

, (16)

where ρ+ and ρ− are the poisitive and negative parity level
densities. An equal parity distribution would give ρ+ = ρ−,
and thus α = 0. Other α values range from -1 to +1 i.e., from
more negative parity states to more positive parity states. Fig-
ure 9 shows that there are more negative parity states (α < 0)
below 4MeV, however, at higher excitation energies the asym-
metry is damped out giving an equal parity distribution. Thus,
the parity calculations also confirm the absence of pronounced
shell gaps in 45Ti.

IV. GAMMA-RAY STRENGTH FUNCTION

The γ-ray strength function can be defined as the distribu-
tion of average decay probability as a function of γ-ray energy
between levels in the quasi-continuum. The γ-ray strength
function fXL, where X is electromagnetic character and L is
the multipolarity, is related to the γ-ray transmission coeffi-
cient TXL(Eγ) for multipole transitions of type XL by

T (Eγ ) = 2π ∑
XL
E2L+1γ fXL(Eγ). (17)

According to the Weisskopf estimate [20], we assume the
electric dipole E1 and the magnetic dipoleM1 transitions are
dominant transitions in a statistical nuclear decay. It is also
assumed that the numbers of accessible positive and negative
parity states are equal i.e.,

ρ(E−Eγ , I f ,±π f ) =
1
2

ρ(E−Eγ , I f ). (18)

The expression of average total radiative width 〈Γγ〉 [21] for
s-wave neutron resonances with spin It ±1/2 and parity πt at
E = Sn, reduces to

〈Γγ (Sn, It ±1/2)〉= 1
4πρ(Sn, It ±1/2,πt)

∫ Sn

0
dEγ

×BT (Eγ )ρ(Sn−Eγ)

×
1

∑
J=−1

g(Sn−Eγ , It ±1/2+ J). (19)

As mentioned in Sect. II, we extract the level density ρ and
transmission coefficient T from the primary γ-ray spectrum.
The slope ofT is determined by the transformation generator
α (see Eq.(3)), which has already been determined during the
normalization of ρ in Sect. II. However, the factor B of Eq. (3)
which determines the absolute value of the transmission co-
efficient, remains to be determined. The unknown B can be
determined using Eq. (19) if in a photonuclear experiment the
〈Γγ 〉 at Sn is known. Unfortunately, the average total radiative
width for 45Ti is not measured. Instead, 〈Γγ 〉 for 47Ti has been
used as guideline for the determination of the parameter B.
The normalized γ-ray strength function is shown in Fig. 10.

In order to be more confident with our adopted parameters for
normalization, the total photoabsorption cross-section data in
46Ti(γ ,abs) [22] reaction have been displayed together with
our normalized data. The cross-section data has been trans-
formed into the γ-ray strength function by employing the re-
lation [10]

f (Eγ ) =
1

3π2h̄2c2
σ(Eγ )
Eγ

. (20)

The increase of the 45Ti γ-ray strength function with γ-ray
energy in Fig. 10 is well in line with the low energy part of the
(γ ,abs) data.
In order to investigate the strength functions further, the ex-

perimental data of 45Ti are compared with the Generalized
Lorentzian Model (GLO), described in Ref. [10]. The model
is used to describe the giant electric dipole resonance (GEDR)
at low γ energies and at resonace energies. In the lower en-
ergy region this model gives a non zero finite value of the
dipole strength function in the limit of Eγ → 0. The GLO
model is proposed by Kopecky and Chrien [23] and describes
the strength function as:

fGLO =
1

3π2h̄2c2
σE1ΓE1

× [Eγ
Γk(Eγ ,T )

(E2γ −E2E1)2+E2γ Γ2k(Eγ ,T )

+0.7
Γk(Eγ = 0,T )

EE1
], (21)
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where σE1, ΓE1 and EE1 are the cross-section, width and en-
ergy of the centroid of the GEDR, respectively. The energy
and temperature dependent width Γk is given by [24]

Γk(Eγ ,T ) =
ΓE1
E2E1

(E2γ +4π2T 2). (22)

The shape of the GEDR cross section obtained from (γ ,abs)
data [22] shows clearly a splitting of the GEDR into two or
more resonances. This splitting is a signature of the ground
state deformation of the nucleus. The GEDR cross sections
are thus best fitted with two Lorentzians using two sets of res-
onances parameters. Furthermore, we assume that the γ-ray
strength function is independent of the excitation energy, i.e.
with a constant temperature T = 1.4 MeV. This constant tem-
perature approach is adopted in order to be consistent with
the Brink-Axel hypothesis in Sect. II, where the transmis-
sion coefficientT (Eγ) is assumed to be temperature indepen-
dent. In Table III the two sets of GEDR parameters for the
ground state deformation ε2 ∼ 0.25 (interpolated between the
known neighboring nuclei) are listed using the systematics of
Ref. [10].
Themagnetic dipoleM1 radiation, supposed to be governed

by the giant magnetic dipole (GMDR) spin-flipM1 resonance
radiation [25], is described by a Lorentzian [26]

fM1(Eγ ) =
1

3π2h2c2
σM1EγΓ2M1

(E2γ −E2M1)2+E2γ Γ2M1
, (23)

where σM1, ΓM1, and EM1 are the GMDR parameters deduced
from the systematics given in Ref. [10].
The total model γ-ray strength function, shown by solid and

dash-dotted lines in Fig. 10, is given by

ftot = κ [ fE1,1+ fE1,2+ fM1] , (24)

where the factor κ is used to scale the model strength function
with the experimental γ-ray strength function. The value of

κ is expected to deviate from unity, since only approximate
values of the average resonance spacings D and the total av-
erage radiative width data 〈Γ〉 have been used for the absolute
normalization of the strength function.
The comparison of Fig. 10, shows that the Oslo data are

well descibed by the GLO model in the energy region ∼
2.5−9 MeV. However, at low γ-ray energies (Eγ < 2.5 MeV)
an enhancement in the γ-ray strength function compared to the
GLO model has been observed. Previously, this upbend has
been seen in several nuclei with mass number A < 100 (see
e.g. Ref. [14] and references therein). The physical origin of
this enhancement has not been fully understood yet, as no the-
oretical model accounts for such a behaviour of the nucleus at
low γ-ray energies.

V. CONCLUSIONS

The level density and γ-ray strength function for 45Ti have
been measured in a 46Ti(p,d)45Ti reaction, using the Oslo
method. The thermodynamical quantities; entropy and tem-
perature, in a micro-canonical ensemble are extracted from the
measured level densities. The avearge temperature for 45Ti is
found to be 1.4 MeV. The experimental level density is also
compared with combinatorial BCS model of Nilsson orbitals.
The model describes satisfactorily the general increase and
structural details of the experimental level density.
The generalized Lorentzian model (GLO) has been com-

pared with the experimental γ-ray strength funcion. The
GLO model describes the Oslo data well in the energy region
Eγ ∼ 2.5− 9 MeV. However, at Eγ < 2.5 MeV an enhance-
ment in the γ-ray strength function compared to GLO model
has been observed. This is very interesting since a similar γ-
decay behaviour has been observed in several other light mass
nuclei, however, this observation is still not been accounted
for by present theories.
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FIG. 1: The neutron resonance spacings data of [10], in a target nucleus of a (γ ,n) reaction, has been used to deduce the ρ(Sn) (filled triangles).
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Chapter 8

Summary and Conclusions

8.1 Summary of experimental results

The Oslo method has been used to extract the energy distribution of the first gen-
eration γ-ray spectra in the 44,45Sc, 45Ti, 50,51V, and 205−208Pb nuclei. In these
nuclei, the excited states at and below the neutron separation energy are populated
by inelastic scattering or neutron pick-up reactions. The primary γ-ray spectra in
the region of quasi-continuum contain the information of two important statistical
quantities, level density and γ-ray strength function.

The level densities are normalized with the known discrete levels at low excita-
tion energies and neutron resonance spacing data at the neutron separation energy.
The slope of the γ-ray strength function is fixed by the level density normaliza-
tion. However, the absolute normalization of the strength function is achieved
either from the average total radiative width of neutron resonances or by scal-
ing our data with other photonuclear reaction data. A great advantage of the Oslo
method is the simultaneous determination of the level density and the strength
function. Therefore, in a specific energy region these quantities are extractable
independently with little model dependency.

The invested nuclei in this thesis are situated in the vicinity of closed or near
closed shells. For these nuclei the statistical properties are less favorable as com-
pare to mid-shell nuclei. It is known that the level densities for light or closed shell
nuclei are generally low. In the previous findings by the Oslo physics group, the
level densities extracted in the rare-earth region for the excitation energies near
Sn were around 106 MeV−1. However, in the present thesis we are reporting level
densities for light and/or closed shell nuclei, around 103−104 MeV−1.

In papers I, II, IV, and V prominent bump structures have been observed in
the experimental level densities. The origin of these structures is partly due to
shell closure effects and breaking of Cooper pairs. These structures were most
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prominent in 207,208Pb and less prominent in 45Ti, 44,45Sc and 51V. In Paper IV
the effect of moving away from the doubly closed shell 208Pb to the single closed
205−207Pb isotopes has been described. One prominent effect is that the level den-
sities of 205,206Pb become a smoother function of excitation energies, compared
to 207,208Pb, as valance neutrons come into play.

In papers I, IV, and V the measured level densities are used to explore the ther-
modynamic properties like entropy and temperature. Here, the micro-canonical
ensemble has been used to determine thermodynamic quantities of the nuclei. The
results of paper I and V show a sudden increase in entropy at the pair breaking
energies, which appears as a sudden drop in temperature. In paper IV the micro-
canonical entropy difference ΔS between 205Pb and 206Pb is found to be 0.9kB
for excitation energies 2≤ E ≤ 5 MeV. This difference in entropy is close to that
observed in paper I between 50,51V (ΔS ∼ 1.2kB), and is nearly one half of the
value observed in the rare earth nuclei (ΔS ∼ 2kB). The relative smooth entropy
function in 205Pb makes its temperature function sufficiently smooth such that one
can fit a straight line between 0.4≤ E ≤ 5.0 MeV. In this way, an average temper-
ature of 0.9(1) MeV is obtained, which is in good agreement with the proposed
temperature of 0.81(4) MeV for 205Pb in Ref. [34].

The level densities of 207,208Pb show large fluctuations giving that the en-
tropies fluctuate in the same manner. The temperature extraction for these nuclei
due to strong entropy fluctuations is therefore not reliable.

In Paper III the level densities of 44Sc extracted by the Oslo method and by
particle-evaporation technique are compared. The slope of the extracted level den-
sities of 47Ti by proton-evaporation spectra is found to be similar to the level den-
sity of 45Ti from the Oslo method. The consistency in level densities by the two
approaches in Sc and Ti nuclei strengthens the reliability of the results obtained
by the Oslo method.

The average electromagnetic nature of γ-transitions are studied in papers I,
II, IV, and V by the determination of the γ-ray strength functions. Furthermore,
the strength functions obtained for the lead nuclei show large bump structures at
Eγ < Sn. These intermediate structures are more prominent for 206,208Pb than for
205,207Pb. In general, the strength functions in the lead nuclei are poorly described
by the SLO and EGLO models of the E1 strength functions. However, the strength
functions for 44,45Sc, 45Ti, and 50,51V are satisfactorily described by the KMF and
GLO models at the tail of GEDR, except for γ-ray energies lower than 2 – 3 MeV.

The previous results for the γ-ray strength functions in 56,57Fe, and 93,98Mo nu-
clei show an enhancement at low γ-ray energies. This enhancement (upbend) has
now been confirmed to be present in the γ-ray strength functions for the 44,45Sc,
45Ti, and 50,51V isotopes. In paper II it has been shown that the upbend is indepen-
dent of the excitation energy region chosen to extract the strength functions. The
physical origin of this low-energy upbend is not yet fully understood. However,
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the present studies suggest that this upbend structure is more likely to occur in a
certain mass region A < 100 caused by some sort of collective motions.

A general problem that has been encountered in the 44,45Sc, 45Ti, and 206,208Pb
nuclei were the absolute normalizations of their γ-ray strength functions due to the
lack of average total radiative width in these nuclei. Scaling our strength functions
with the available photonuclear cross-section data above the particle threshold has
been used in these cases. However, this way of normalizing the data, especially
in the Pb region, introduces large uncertainties in the absolute values of the γ-ray
strength function.

8.2 New experimental setup

The old silicon particle detectors are now replaced by modern, segmented silicon
detectors. Eight detectors are joined together in the form of a ring, called SiRi
system. Each detector, shown in Fig. 8.1, consists of eight front detector pads with
a common end detector, joined in the form of a trapezoid. The SiRi telescopes can

Figure 8.1: Layout of segmented SiRi detector, showing the eight front ΔE coun-
ters and the guard ring. The wafer covers about 4 cm2.
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be arranged both in the forward and backward angles covering a total solid angle
fraction 6% of 4π . This is roughly 30 times higher solid angle than previously.
Therefore, one would expect better statistics in the future experiments. Moreover,
the segmented front telescopes will give better particle energy resolution due to
better angular resolution.

The group has plans to replace the NaI(Tl) γ-ray detectors with the LaBr3(Ce)
scintillation detectors. With LaBr3(Ce) crystals one can achieve the energy res-
olution of the 662 keV photopeak of 137Cs to be 3% full width half maximum
(FWHM), compared to 6.5% in NaI(Tl) scintillators. The light output yield of
NaI(Tl) detectors is relative non-proportional to the energy. However, in LaBr3(Ce)
detectors a proportional response has been observed. Over the energy range from
60 to 1275 keV, the non-proportionality in the light yield is about 6% for LaBr3(Ce),
which is better than for NaI(Tl) where 20% non-proportionality has been ob-
served [35]. In addition to the good energy resolution and proportional response
these detectors show good timing resolution and fast response allowing high count
rates. Therefore, LaBr3(Ce) is a promising scintillator detector. The future prospect
is therefore to replace all the NaI(Tl) detectors of the CACTUS array with the
LaBr3(Ce) detectors.
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