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Preface

In 1911, Rutherford discovered the existence of the atomic nucleus, which
was later confirmed through the experiments of Geiger and Marsden. A
new branch of science, nuclear physics, started to develop. In the 1940s
and 1950s, it was revealed that protons and neutrons, which are the con-
stituents of the nucleus, were not fundamental, but built up of even smaller
particles later called quarks and gluons. However, some of the most fun-
damental problems of nuclear physics such as the exact nature of the force
that holds the nucleus together, are yet unsolved. In recent years, a huge
effort has been made to understand the basic force between the quarks and
gluons, and attempts have been made to describe nuclear properties from
first principles. However, the complex nature of the nuclear force makes
this task extremely hard. The status of today is that nuclear physics still
lacks a coherent theoretical formulation that would enable us to analyze
and interpret all nuclear phenomena in a fundamental way.

The aim of this thesis is to provide a tiny bit of new insight into the
broad and diverse field of nuclear physics by presenting experimental ob-
servations on statistical properties of medium-mass nuclei at high temper-
atures. This has long been the main research field of the nuclear physics
group at the Oslo Cyclotron Laboratory, where the experiments were per-
formed. In the experiments, the nuclei were excited to high-energy quan-
tum levels and the decay from these levels were studied by means of statis-
tical methods. This thesis will show that statistical methods are applicable
in the energy region of interest, even for relatively small systems such as a
nucleus, provided that the nucleus is brought to a sufficiently high temper-
ature and that the time scale is large enough for the nucleus to equilibrate
before emitting radiation. The results are especially interesting from an
astrophysical point of view, as the nuclear structure close to the particle
separation energies influences strongly the nucleosynthesis processes that
take place in extreme stellar environments such as supernovae.
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Chapter 1

Introduction

Low-energy nuclear physics describes atomic nuclei in terms of nucleons
as the relevant degrees of freedom. The carriers of the force between the
nucleons are thought to be light mesons, in particular the π and ρ mesons.
Ab initio calculations based on, e.g, the shell model, are able to describe
the observed nuclear quantum numbers such as energy levels, spin and
parity with good accuracy for nuclei and excitation energies where there
are relatively few quantum energy levels accessible. Transition strengths
and branching ratios are also often well reproduced.

However, as the excitation energy increases, the density of energy lev-
els becomes so high that it is impractical or even impossible to resolve
individual levels. This is the region of the quasi-continuum, squeezed in
between the discrete region where levels are easily resolved with state-
of-the-art spectroscopy measurements, and the continuum region, where
the levels are overlapping and thus not possible to separate. The onset
of quasi-continuum varies from nucleus to nucleus, and is in general at
higher excitation energy for light nuclei and nuclei with nucleon numbers
close to or equal a magic number – that is, a filled major shell1.

In the region of quasi-continuum, the precise location of levels and
strengths of individual transitions between those levels is of much lesser
importance than in the discrete region. The mixing that occurs due to
small, residual interactions dilutes the purity of, in principle, simple exci-
tations formulated in terms of approximate quantum numbers. The strength
of these excitations is then distributed over many energy levels. Therefore,
statistical concepts such as average values and fluctuations around those
values become the physically relevant quantities.

Two very important, statistical quantities applied in the quasi-continuum,

1The magic numbers representing shell closures are 2, 8, 20, 28, 50, 82, and 126 [1].
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CHAPTER 1. INTRODUCTION

is the nuclear level density and the γ-ray strength function. These av-
erage quantities can be regarded as the counterparts of the energy lev-
els and transition strengths in the discrete region. Local deviations from
a smooth behaviour in the level density and the strength function im-
ply global structure changes in the nucleus, such as breaking of nucleon
Cooper pairs or collective excitation modes such as the scissors mode.

However, it has has proven to be a difficult task to get experimental
information on the level density and the γ-ray strength function in the
medium and high excitation-energy region. The nuclear physics group
at the Oslo Cyclotron Laboratory (OCL) has developed a method (the
so-called Oslo method) to extract level density and γ-ray strength func-
tion from first-generation γ-ray spectra for excitation energies between the
ground state and the neutron (proton) binding energy [2, 3, 4]. This unique
technique has provided experimental evidence for the sequential breaking
of nucleon Cooper pairs [5] and an M1 scissors mode pygmy resonance in
rare-earth nuclei [6, 7]. Also, a strongly enhanced strength function at low
γ energies has been discovered in several Fe and Mo isotopes [8, 9].

The main object of this thesis is to investigate how the level density
and the γ-ray strength function develop in medium-mass nuclei, and to
test the Oslo method on nuclei with neutron or proton numbers near or
at magic numbers. Therefore, the nuclei studied here are 44,45

21Sc [10, 11],
50,51

23V [12], and 93−98
42Mo [9, 13]. The Sc nuclei are close to the proton shell

Z = 20, while the neutrons are filling the f7/2 shell half-way. The situation
is opposite in 50,51V, with 23 protons and with a closed or almost closed
N = 28 shell for 51V and 50V, respectively. Moving to a region of heav-
ier nuclei, the Mo isotopes considered in this thesis have neutron num-
bers near the N = 50 shell closure. Shell effects are therefore expected to
manifest themselves in the level density through structures and an overall
lower level density than for mid-shell nuclei. Such features will be looked
for in the presented experimental data.

When it comes to the γ-ray strength functions, it is an open question
whether the low-energy enhancement seen in the Fe and Mo isotopes is
a feature related to specific structures in these nuclei, or if it is a general
behaviour of nuclei in a certain mass region. This issue has been addressed
in the present work.

The thesis is organized as follows: Chapter 2 gives a historic overview
of theoretical and experimental achievements concerning level densities
and γ-ray strength functions. In Chapter 3, the experimental equipment
and some details of the performed experiments are given, and the data
analysis is briefly described. The Oslo method is explained and discussed

2



in Chapter 4. Chapter 5 includes reprints of five published articles. Finally,
conclusions and an outlook will be given in Chapter 6.
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Chapter 2

Nuclear structure and γ-ray
strength in the quasi-continuum

The excitation-energy region between the discrete regime (where the nu-
clear states have well-defined quantum numbers), and the continuum re-
gion (where individual levels cannot be resolved due to minuscule or van-
ishing level spacings), is defined as the quasi-continuum. Here, the nu-
cleus undergoes a transition from an ordered phase at low excitation en-
ergy to a more chaotic behaviour as the energy is increased. Nuclei in
this transitional excitation-energy region might be most appropriately de-
scribed by average quantities like the level density and the γ-ray strength
function. The level density, averaged over a specific excitation-energy bin,
replaces the counting of discrete levels, while the γ-ray strength function
inherits the role that transition probabilities are playing at low excitation
energies.

2.1 The level density

The level density is defined as the number of quantum energy levels ac-
cessible at a specific excitation energy, within a given energy bin. The level
density gives direct information on thermodynamic properties of the nu-
clear system, see Appendix A for a brief introduction to thermodynamic
concepts and quantities.

The first theoretical attempt to describe nuclear level densities was
done by H. Bethe in 1936 [15]. In his fundamental and pioneering work,
Bethe described the nucleus as a gas of non-interacting fermions mov-
ing freely in equally spaced single-particle orbits. The level density was
obtained by the inverse Laplace transformation of the partition function

4



2.1. THE LEVEL DENSITY

determined from Fermi statistics. Bethe’s original results yielded a level
density function

ρ(E) =
√

π

12
exp(2

√
aE)

a1/4E5/4 , (2.1)

for an excitation energy E, and where a is the level-density parameter
given by

a =
π

6
(gp + gn). (2.2)

The terms gp and gn are the single-particle level density parameters for
protons and neutrons, respectively, which are expected to be proportional
to the mass number A. In fact, Bethe’s consideration of the nucleus to be
a Fermi gas of free protons and neutrons confined to the nuclear volume
gives

a = αA. (2.3)

The constant α has been found to be about 1/8− 1/10 by fitting to exper-
imental data.

The Bethe expression predicts an exponential increase in the level den-
sity with the square-root of the excitation energy and level-density pa-
rameter. This has been found to be qualitatively true, although important
factors such as pairing correlations, collective phenomena and shell effects
are not included. Refined versions of the original Fermi gas formula take
into account these effects by employing free parameters that are adjusted
to fit experimental data on level spacings obtained from neutron and/or
proton resonance experiments. A. Gilbert and A. G. W. Cameron [16] pro-
posed the following level-density formula in 1965:

ρ(U) =
√

π

12
exp(2

√
aU)

a1/4U5/4
1√
2πσ

. (2.4)

Here, U is the shifted excitation energy, U = E− ∆p − ∆n, where ∆p and
∆n are the pairing energy for protons and neutrons, respectively. The spin
cutoff parameter σ is given by

σ2 = g〈m2〉T, (2.5)

where g = gp + gn relate to the level density parameter as in Eq. (2.2),
〈m2〉 ≈ 0.146A2/3 is the mean-square magnetic quantum number for single-
particle states, and the temperature is given by

T =
√

U/a. (2.6)
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CHAPTER 2. NUCLEAR STRUCTURE AND γ-RAY STRENGTH IN
THE QUASI-CONTINUUM

Another expression of the level density for excitation energies between
0− 10 MeV is obtained from the constant-temperature (CT) model [16],

ρ(E) =
1
T

exp[(E− E0)/T], (2.7)

where E is the excitation energy, and the free parameters T and E0 are
connected to a constant nuclear temperature (in contrast to Eq. (2.6)) and
an energy shift, respectively.

A variant of the shifted Gilbert-Cameron expression given in Eq. (2.4)
is the back-shifted Fermi gas (BSFG) model [17], where the level-density
parameter and energy shift are considered as free parameters, allowing
for a reasonable fit to experimental data over a wider range of energies1.
Also, phenomenological methods were developed to describe the energy
dependence of the parameter a.

In 2005, T. von Egidy and D. Bucurescu [18] published a new compila-
tion of systematics of nuclear level-density parameters. In their approach,
they determined a new set of phenomenological level density parameters
for the BSFG and CT model by fitting the latest data on low-excitation-
energy levels and neutron resonance spacings at the neutron binding en-
ergies for 310 nuclei between 19F and 251Cf. Then they studied the varia-
tions of these parameters for the set of nuclei, and observed correlations
with other physical observables leading to the determination of simple
formulas that describe the main features of the empirical parameters. For
the BSFG model, the following expressions were used for the level density
and the spin cutoff parameter:

ρ(E) =
exp[2

√
a(E− E1)]

12
√

2σa1/4(E− E1)5/4
(2.8)

and

σ2 = 0.0146A5/3 1 +
√

1 + 4a(E− E1)
2a

. (2.9)

The level-density parameter a and energy shift E1 were treated as free pa-
rameters to be fitted to experimental data.

The expression for σ is based on the rigid-body value for the nuclear
moment of inertia,

I =
2
5

m0r2
0

h̄2 A5/3, (2.10)

1The shift ∆p + ∆n turns out to be too large, so it is ’back-shifted’ by subtracting a
parameter C1 [17].
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2.1. THE LEVEL DENSITY

where m0 is the nucleon mass and r0 is the nuclear radius parameter, and
the nuclear temperature is described as

T =
1 +

√
1 + 4a(E− E1)

2a
. (2.11)

From the relation
σ2 = IT, (2.12)

we obtain the expresion given in Eq. (2.9). Although Eq. (2.11) has been
shown to be mathematically incorrect in [16], the authors of [18] found
Eq. (2.9) to be most adequate in the excitation-energy region considered in
their work.

Other semi-empirical level density models have also been developed,
such as the model by Kataria, Ramamurthy and Kapoor (KRK), which ac-
counts for shell effects in terms of the ground-state shell correction to the
nuclear binding energy, and the Generalized Superfluid (GSF) model in-
troduced by Ignatyuk and others. As these models will not be used in
this thesis, the reader is referred to [19] and references therein for further
information.

Although the above-mentioned semi-empirical expressions give rea-
sonable agreement with experimental data on, e.g., neutron resonance
spacings, they are not able to describe fine structures in the level den-
sity caused by pair breaking, shell effects etc. Also, any extrapolation
to nuclei far from the valley of stability where little or no experimental
data are known could be highly uncertain. In order to have a predictive
power, level densities should ideally be calculated from microscopic mod-
els based on first principles and fundamental interactions.

For a detailed, microscopic description of the nuclear level density, one
should solve the exact many-body eigenvalue problem

Ĥ |Ψ〉 = E |Ψ〉 , (2.13)

where the Hamiltonian is given by

Ĥ =
A

∑
i=1

− h̄2

2m
∇i +

A

∑
i<j

v(i, j) (2.14)

assuming a two-body character of the nucleon interaction, and where i
represents all relevant coordinates and quantum numbers of the ith nu-
cleon. The nuclear wave function for A nucleons is given as

|Ψ〉 = |Ψ(1, ..., A)〉 . (2.15)
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CHAPTER 2. NUCLEAR STRUCTURE AND γ-RAY STRENGTH IN
THE QUASI-CONTINUUM

This is a simplified, non-relativistic treatment where three-body and higher-
order contributions are neglected. However, this has turned out to be a
tremendous challenge for mid-mass and heavy nuclei as the dimension of
the problem grows rapidly with the number of nucleons. For example,
using the interactive shell model to simplify the Hamiltonian and pro-
vide an orthogonal basis for single-particle wave functions, the required
model space is many orders of magnitude larger than spaces in which con-
ventional diagonalization methods can be applied. It is therefore of great
importance to introduce methods where level density can be calculated
approximately without loosing too much of the desired microscopic de-
tails.

One such method is the shell model Monte Carlo approach as applied
by Y. Alhassid et al. [20, 21, 22]. Here, thermal averages are taken over
all possible states of a given nucleus. Two-body correlations are fully
taken into account within the model space2. These calculations show very
promising results and are often in good agreement with experimental data.
The drawback is that they are very time consuming.

Another statistical approach, starting from mean-field theory, is pre-
sented by P. Demetriou and S. Goriely [23]. Here, a global, microscopic
prescription of the level density is derived based on the Hartree-Fock-BCS
(HFBCS) ground-state properties (single-particle level scheme and pair-
ing force). Combinatorial models have also been developed [24], which,
like the HFBCS plus statistical model, give almost equally good agreement
with experimental data as obtained with phenomenological BSFG formu-
lae. A global combinatorial model has been combined with an updated
deformed Hartree-Fock-Bogolyubov model by S. Hilaire and S. Goriely
[25], where the combinatorial predictions provide the non-statistical limit
that by definition cannot be described by any statistical approach. An-
other advantage of this combined model is that the parity dependence of
the level density is obtained in addition to the energy and spin depen-
dence. Globally, the new model of [25] predicts s- and p-wave neutron
resonance spacing data within a factor of two.

When it comes to measuring level densities experimentally, several
methods have been developed and applied in various excitation-energy
regions. At low excitation energies it is possible to determine the level
density by counting the discrete levels from databases such as the Table
of Isotopes [26] and ENSDF [27]. However, this method quickly becomes
unreliable when the level density reaches about 50 levels per MeV.

2The complete pf shell and the 0g9/2 orbit are included in calculations of nuclei from
iron to germanium [21]).
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Figure 2.1: The level density of 51V calculated with two parameterizations of
the back-shifted Fermi gas model (colored lines, [17, 18]), and from the work of
S. Hilaire and S. Goriely (white squares, [25]) compared to the experimental level
density from OCL (black dots, [12]).

At the neutron (proton) separation energy, the numbers of s- and p-
wave neutron (proton) resonances within the energy range of the incom-
ing neutron (proton) reveal the level spacing between the states reached
in the capture reaction [19]. This is the method of choice for determining
parity- and spin-projected level density at and slightly above the neutron
(proton) separation energy. Obviously, the method is not applicable at
other energies, and corrections are needed for missing resonances or con-
taminating resonances with higher ` values.

Another appreciable method is the Hauser-Feshbach modelling of evap-
oration spectra [28]. This method can be applied to the quasi-continuum
and produces reliable level density functions, including fine structures.
However, care has to be taken so that the underlying assumptions of the
Hauser-Feshbach theory are met by choosing appropriate reactions, beam
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Figure 2.2: The level density of 44Sc obtained from Hauser-Feshbach modelling
of α-evaporation spectra (open circles) and from a statistical analysis of primary-γ
spectra (black circles), see [11].

energies, ejectile angles and so on. Also, a priori knowledge of particle
transmission coefficients is needed.

In the Ericsson regime (excitation energies 3− 4 MeV above the neu-
tron separation energy for heavy nuclei), the level density can be deter-
mined from a fluctuation analysis of total neutron cross sections [29]. This
method relies on specific assumptions concerning how level density can
be extracted from cross-section fluctuations. In particular, level widths,
level spacings and the experimental resolution must follow a certain hier-
archy, which is only fulfilled in certain energy regions. Also the restriction
to very specific reactions limits the usefulness of this method.

A recent method to measure the level density has been developed by
the Oslo nuclear physics group [2, 3, 4]. This method, called the Oslo
method, is based on a statistical analysis of primary-γ spectra extracted
from various excitation-energy bins. The extracted level density of 51V
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2.2. THE γ-RAY STRENGTH FUNCTION

is shown in Fig. 2.1, where it is compared with calculated level densities
from the back-shifted Fermi gas model, and the calculations of [25]. The
Oslo method determines the functional form of the level density between
the discrete region and the neutron (or proton) separation energy, and has
about the same precision in providing information on fine structures as
the Hauser-Feshbach modelling of evaporation spectra, see Fig. 2.2. It is
however necessary to use information on discrete levels and neutron (pro-
ton) resonances in order to obtain the correct slope and absolute value of
the level density.

2.2 The γ-ray strength function

Gamma-ray strength functions characterize the average electromagnetic
properties of excited nuclei, which means that they are closely connected
to radiative decay and photo-absorption processes. They are also called
radiative strength functions [30] and photon strength functions [31] in the
literature. They can be directly associated with reduced transition proba-
bilities, see Appendix B for details on this subject.

The original definition of a model-independent γ-ray strength function
is (Bartholomew et al. [32]):

fXL(Eγ) =
〈Γγ`〉

(E2L+1
γ D`)

. (2.16)

Here, fXL(Eγ) is the γ-ray strength for electromagnetic character X, mul-
tipolarity L, and γ-ray energy Eγ, 〈Γγ`〉 is the average radiative width and
D` is the resonance spacing for `-wave resonances (usually s- or p-wave)
determined from average resonance capture (ARC) neutron experiments.
This is the ”downward” strength function related to the γ decay. The
photo-excitation (”upward”) strength function is determined by the av-
erage photo-absorption cross section 〈σXL(Eγ)〉 summed over all possible
spins of final states [19, 31, 33]:

fXL(Eγ) =
1

(2L + 1)(πh̄c)2
〈σXL(Eγ)〉

E(2L−1)
γ

. (2.17)

Based on Fermi’s golden rule and the principle of detailed balance, the
”upward” and ”downward” γ-ray strength function correspond to each
other provided that the same states are populated.
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The γ-ray strength function fXL is related to the γ-ray transmission
coefficient TXL by

TXL(Eγ) = 2πE(2L+1)
γ fXL(Eγ) . (2.18)

Therefore, γ-ray strength functions are important for the description of the
γ emission channel in nuclear reactions. This is an almost universal chan-
nel since γ rays, in general, may accompany emission of any other emitted
particle. Like the particle transmission coefficients that emerge from the
optical model, γ-ray transmission coefficients enter the Hauser-Feshbach
model for calculation of the competition between photon emission with
other particles.

The simplest model for the strength function, the single-particle model
of Blatt and Weisskopf [34], results in energy-independent strength func-
tions. This has been long known to be a too simple picture – collective ex-
citations must also be taken into account. For instance, the well-known gi-
ant electric dipole resonance (GEDR) that strongly influences the strength
function has been observed throughout the periodic table with great regu-
larity. This resonance is believed to stem from harmonic vibrations where
protons and neutrons oscillate off-phase against each other, and is there-
fore called an isovector collective excitation mode. Other giant resonances
have been discovered as well, such as the giant magnetic dipole resonance
(GMDR), which is built of spin-flip transitions between `± 1/2 subshells,
and the isoscalar giant electric quadrupole resonance (GEQR) originated
from surface oscillations where the protons and neutrons are distorted in
two orthogonal directions. For more information on giant resonances in
general, see M. N. Harakeh and A. van der Woude [35].

There is also experimental evidence for other types of collective excita-
tion modes, namely the so-called pygmy resonances, which are small com-
pared to the corresponding giant resonances. Examples of such small reso-
nances are the M1 scissors mode, where, in a macroscopic view, the proton
and neutron clouds act like a pair of scissor blades ”clipping” against each
other, and the E1 pygmy resonance caused by a ”skin” created by excess
neutrons oscillating against an N = Z core.

In the following, some of the standard models for the E1 strength func-
tion will be described. For details regarding the determination of various
constants etc., and also for a description of the models of the M1 spin-flip
and E2 isoscalar resonance, see Appendix C.

The Brink-Axel hypothesis [30, 36] has been widely used to describe
collective excitation modes, and in particular the GEDR. The hypothesis
states that collective excitations built on excited states have the same prop-
erties as those built on the ground state; that is, the probability of γ decay
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is only dependent on the γ-ray energy and not on the temperature of the
final state. This strong assumption leads to a Lorentzian shape of the giant
resonances. For the GEDR, the Standard Lorentzian (SLO) is given as3 [19]

fE1(Eγ) =
1

3π2h̄2c2

σrΓ2
r Eγ

(E2
γ − E2

r )2 + Γ2
r E2

γ
(2.19)

in units of MeV−3. Here, the Lorentzian parameters σr (in mb), Γr (in MeV)
and Er (in MeV) are the peak cross section, width and centroid energy of
the GEDR, respectively. This form gives a very accurate description of
photo-absorption data of mid-mass and heavy nuclei close to the reso-
nance maximum. However, the SLO model significantly underestimates
the γ-ray strength function for Eγ . 1 MeV. Also, the SLO model tends to
overestimate experimental data such as capture cross sections and average
radiative widths in heavy nuclei (see [19] and references therein).

In the work of Kadmenskiı̆, Markushev and Furman (KMF) based on
Fermi liquid theory [37], a temperature dependency on the final states Tf
is incorporated in the description of the GEDR:

f KMF
E1 (Eγ, Tf ) =

1
3π2h̄2c2

0.7σrΓ2
r (E2

γ + 4π2T2
f )

Er(E2
γ − E2

r )2 (2.20)

Here, the temperature-dependent width of the GEDR is given by

ΓKMF(Eγ, Tf ) =
Γr

E2
r
(E2

γ + 4π2T2
f ), (2.21)

where the first term reflects the spreading of particle-hole states into more
complex configurations, and the second term accounts for collisions be-
tween quasiparticles. This temperature inclusion made it possible for the
authors of [37] to reproduce quite accurately the experimental strength
function of 144Nd [38] in the region Eγ = 0.2 − 7 MeV. Also, the KMF
model gives good agreement with capture cross sections and average ra-
diative widths. However, using a variable temperature of the final states
contradicts the Brink-Axel hypothesis. This could in principle be mended
if a constant temperature is applied instead. Another problem with the
KMF model is the divergence at the resonance centroid energy that makes
it impossible to describe both the high- and low-energy part of the E1
strength function.

3The constant 1/(3π2h̄2c2) = 8.674 · 10−8 mb−1MeV−2.
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Several attempts have been made to implement the behavior of the
strength function at low and high γ energies simultaneously. The General-
ized Lorentzian (GLO) model as proposed by J. Kopecky and R. E. Chrien
[39] consists of two terms: a Lorentzian with a temperature-dependent
width according to Eq.(2.21), and the non-zero limit when Eγ → 0 as de-
scribed in [37]:

f GLO
E1 (Eγ, Tf ) =

1
3π2h̄2c2

σrΓr

[
Eγ

ΓKMF(Eγ, Tf )
(E2

γ − E2
r )2 + E2

γΓ2
KMF(Eγ, Tf )

+ 0.7
ΓKMF(Eγ = 0, Tf )

E3
r

]
. (2.22)

The GLO model gives reasonable agreement with data on capture cross
sections and primary γ-ray spectra from ARC measurements for nearly
spherical nuclei. For nuclei with a large ground-state deformation in the
mass region A = 150− 170, the GLO model underestimates the observed
strength calculated from primary γ rays. Therefore, an Enhanced Gen-
eralized Lorentzian (EGLO) model has been proposed [19, 40], where a
generalization of the temperature-dependent width is introduced as fol-
lows:

ΓK(Eγ, Tf ) = K(Eγ)
Γr

E2
r
(E2

γ + 4π2T2
f ), (2.23)

where the empirical function K(Eγ) given by

K(Eγ) = κ + (1− κ)
Eγ − E0

Er − E0
(2.24)

relates the width in Eq. (2.21) to the collisional damping width in the Fermi
liquid theory. The factor κ depends on the model adopted for the level
density, while E0 is a constant set to 4.5 MeV (see [19] and Appendix C).

From a theoretical point of view, there are problems with both the SLO
and the (E)GLO models despite the good agreement of the latter with ex-
perimental results. As described in [19] and references therein, the shapes
of the (E)GLO and SLO models are inconsistent with the general relation-
ship between the γ-ray strength function of heated nuclei and the imag-
inary part of the nuclear response function to the electromagnetic field.
Also, the damping width of the EGLO model is proportional to the col-
lisional component of the damping width in the infinite Fermi liquid in
which only the collisional (two-body) relaxation is considered. It is how-
ever necessary to also include the contribution from the fragmentation
(one-body) width stemming from the nucleon motion in a self-consistent
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mean field. This fragmentation width is almost independent of the tem-
perature, and is not included in the (E)GLO model, while the temperature-
independent width in the SLO model only accounts for the fragmentation,
but not for collisional damping.

These shortcomings can be avoided using refined closed-form models
such as the Modified Lorentzian (MLO) [19, 41, 42] given by

f MLO
E1 (Eγ, Tf ) =

1
3π2h̄2c2

L(Eγ, Tf )σrΓr
EγΓ(Eγ, Tf )

(E2
γ − E2

r )2 + E2
γΓ2(Eγ, Tf )

. (2.25)

Equation (2.25) is consistent with the principle of detailed balance, and is
obtained by calculating the average radiative width of nuclei with micro-
canonically distributed initial states. The term

L(Eγ, Tf ) =
1

1− exp(−Eγ/Tf )
(2.26)

is a scaling factor that determines the enhancement of the γ-ray strength
function in a heated nucleus as compared to a cold nucleus. This quantity
can be interpreted as the average number of one-particle− one-hole states
excited by an electromagnetic field with frequency ω = Eγ/h̄, and is only
important for low-energy γ rays [19]. The semi-empirical damping width
is expressed as

Γ(Eγ, Tf ) = ΓC(Eγ, Tf ) + ΓF(Eγ), (2.27)

where ΓC represents the collisional damping width and ΓF simulates the
fragmentation component of the total damping width (see Appendix C for
more details).

Another approach for the E1 strength function is the Generalized Fermi
Liquid (GFL) model as proposed by S. F. Mughabghab and C. L. Dunford
[43] and slightly modified in [19]. The GFL model depends on the final
temperature Tf and the deformation parameter β2, and is given by

f GFL
E1 (Eγ, Tf , β2) =

1
3π2h̄2c2

σrΓr
KGFLEγΓm(Eγ, Tf )

(E2
γ − E2

r )2 +KGFLE2
γΓ2

m(Eγ, Tf )
, (2.28)

KGFL =

√
1 + F′1/3

1 + F′0
, (2.29)

where F′0 and F′1 are the Landau-Migdal parameters of the quasi-particle
interaction in the isovector channel of the Fermi system. According to [19],
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the term KGFLE2
γΓ2

m(Eγ, Tf ) is added in the denominator to avoid singu-
larity at the resonance centroid energy. Equation (2.28) is thus an exten-
sion of the original expression given in [43]. Quite similar to the width in
Eq. (2.27), the width Γm is given by a sum of a collisional damping width
ΓC and the term Γdq that simulates the fragmentation width:

Γm(Eγ, Tf ) = ΓC(Eγ, Tf ) + Γdq(Eγ, β2). (2.30)

The Hybrid Formula proposed by S. Goriely in Ref. [44] is another
model that is able to simultaneously describe the low-energy and high-
energy part of the γ-ray strength function. The form of the Hybrid For-
mula as given in [19] is:

f HF
E1 (Eγ, Tf ) =

1
3π2h̄2c2

σrΓr
EγΓh(Eγ, Tf )

(E2
γ − E2

r )2 + E2
γΓrΓh(Eγ, Tf )

, (2.31)

where

Γh(Eγ, Tf ) = KGFLΓr
E2

γ + 4π2T2
f

EγEr
. (2.32)

All expressions discussed so far need to be generalized for deformed
nuclei, where the deformation leads to a splitting of the GEDR into two
components corresponding to two oscillation frequencies, one for each
principal axis. The E1 strength function in deformed nuclei is thus defined
as the sum of two components, each with the corresponding centroid en-
ergy Er,j, damping width Γr,j and peak value of the photo-absorption cross
section σr,j where j = 1 and j = 2 correspond to collective vibrations along
and perpendicular to the symmetry axis (see Appendix C for further de-
tails). In Fig. 2.3, model calculations are shown for the E1 strength func-
tion of 51V, and it is seen how the models might deviate significantly at
the low- and high-energy tails of the GEDR. The models of the M1 and E2
resonance briefly described in Appendix C are also included in the figure.

As for the level density, a microscopic treatment of the strength func-
tion is necessary to obtain information on the underlying nuclear structure
and to have predictive power throughout the nuclear chart. For example,
structures due to the scissors mode and neutron skin oscillations are not
dealt with in a comprehensive way in the models described so far. Also,
any extrapolation of the GEDR, GMDR and GEQR systematics for the res-
onance centroid energy, maximum cross section and damping width to
exotic nuclei far from the β-stability line is highly questionable. Calcula-
tions based on, e.g., the random-phase approximation (RPA) have proven
to be superior to the semi-classical approaches in predictive power.
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Figure 2.3: Various theories for the E1 strength in 51V (see text) and the M1 spin-
flip and E2 isoscalar resonance.

Several publications have been dedicated to the microscopic descrip-
tion of γ-ray strength functions. S. Goriely and E. Khan presented in
Ref. [45] large-scale calculations based on the quasi-particle RPA (QRPA)
model [46] to generate excited states on top of the HF+BCS ground state.
To account for the damping of the collective motion, the GEDR is empiri-
cally broadened by folding the QRPA resonance strength with a Lorentzian
function. These calculations were performed for more than 6000 nuclei
with 8 ≤ Z ≤ 110. It is shown that the QRPA provides a quite accurate
description of the GEDR centroid and the fraction of the energy-weighted
sum rule exhausted by the E1 mode (see [35] for a thorough treatment of
radiative sum rules).

Another approach to treat the collective modes microscopically, is the
quasi-particle multiphonon (QPM) model introduced by F. Andreozzi, F.
Knapp, N. Lo Iudice, A. Porrino, and J. Kvasil [47]. Within this model, the
nuclear eigenvalue problem given in Eq. (2.13) is solved exactly in a multi-
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phonon space, where the basis states are generated via the Tamm-Dancoff
Approximation (TDA) [46]. The calculations in Ref. [47] are compared
with experimental data on low-lying negative parity states in 16O, show-
ing a fairly good agreement when three phonons (3h̄ω) are included. It
appears that the isovector GEDR, which is harmonic, is not affected by the
choice of number of phonons included. However, the strength distribu-
tion of the isoscalar GEQR is very sensitive to the size of the multiphonon
space; if three phonons are included, much more fragmentation is induced
compared to the case when only one phonon or two phonons are included.
The same is true for octupole modes.

The by far largest contribution of experimental information on the γ-
ray strength function is from photoabsorption measurements4. To mea-
sure photoabsorption, most often photoneutron cross sections, which pro-
vide a good substitute for photoabsorption cross sections, are measured.
Photoneutron (or photoproton) cross-section measurements are dominated
by E1 radiation, and are limited to energies above the neutron (proton)
separation energy. Also, the absorption cross sections can only be mea-
sured on ground states or on very long-lived isomeric states. These mea-
surements are traditionally performed by guiding a beam of photons to
impinge on a thick target (typically several grams) of the nucleus that is
under study. The photons can be of bremsstrahlung type from a betatron
or a synchrotron facility, or produced by the in flight annihilation of fast
positrons from a linear accelerator giving a quasi-monoenergetic photon
beam although still containing some bremsstrahlung components [50, 51].
More recently, the inverse Compton-scattering technique has been utilized
to produce true quasi-monoenergetic photon beams (see, e.g., Ref. [52] and
references therein).

To measure the γ-ray strength function below the particle-emission
threshold, photon scattering on isolated levels has been utilized. In the
so-called Nuclear Resonance Fluorescence (NRF) method, the spins, par-
ities, branching ratios and reduced transition probabilities of the excited
states can be extracted in a model-independent way [53]. Polarization and
angular correlation measurements allow the separation of transitions into
E1, M1, and E2 transitions, usually with very good precision [54]. How-
ever, the method is selective with respect to strong transitions, and experi-
mental thresholds might hamper the determination of an average transition
strength as represented by the γ-ray strength function [6, 7, 55]. Never-

4See, e.g., the atlas of ground-state photoneutron and photoabsorption cross sections
by S. S. Dietrich and B. L. Berman [48], and the Centre for Photonuclear Experiments Data
[49].
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theless, this method was able to confirm the experimental evidence for a
new, low-lying magnetic dipole mode [53] first discovered in (e,e’) exper-
iments [56] on rare-earth nuclei. Also, a thorough study of the E1 pygmy
resonance in the 40,44,48Ca isotopes and in N = 82 nuclei using photon
scattering (γ,γ′) reactions has been presented by A. Zilges et al. [57]. Here,
a summed B(E1↑) strength of up to 1% of the Thomas-Reiche-Kuhn sum
rule [35] for the total E1 strength was found for the pygmy resonance.

Another way of measuring γ-ray strength functions below the neutron
separation energy, is by radiative neutron (or proton) capture reactions
into compound states in the final nucleus [39, 58, 59]. From such experi-
ments, both average total radiative widths of neutron resonances and indi-
vidual transition strengths from one or several neutron resonances to one
or several lower-lying discrete states can be obtained. Such primary γ-
rays are averaged manually to get the γ-ray strength function, unless ARC
neutrons were used, covering a wider range of energy and including many
resonances. In the case of the total radiative widths, the γ-ray strength is
obtained by integrating a modeled spectral distribution of γ rays which is
constructed from trial γ-ray strength functions and level densities. In the
analysis of individual transition strengths, corrections can be applied for,
e.g., experimental bias and non-statistical effects. The advantage of mea-
suring individual transition strengths is that since the spin and parity of
both the initial and final states are known, E1, M1, and E2 γ-ray strength
functions can be obtained separately. The method is however limited in
energy in that it provides averages of transitions with energies in the or-
der of ∼ 1− 2 MeV below the neutron separation energy.

Yet another approach in determining the γ-ray strength experimen-
tally, is the spectrum-fitting method (see Ref. [60] and references therein).
Within this method, a total γ-cascade spectrum is fitted in terms of trial
γ-ray strength functions and level densities. This method has been used
extensively for γ spectra following, e.g, fusion-evaporation reactions in
the search for the temperature response of the giant electric dipole res-
onance and can cover a wide range of temperatures and spins. A special
development of the spectrum-fitting method is the two-step cascade (TSC)
or (n,2γ) method, where experimentally, only two-step cascades which
connect neutron resonances and discrete low-lying levels with definite
parity and spin are recorded. In this manner, the method trades flexi-
bility in terms of applicable nuclear reactions, and temperature and spin
regions with sensitivity to γ-ray strength functions of different multipo-
larities [6, 8, 55]. The disadvantage of all spectrum-fitting methods is that
the level density remains a large source of systematic uncertainty, unless
it is known a priori.
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The Oslo method makes it possible to extract the γ-ray strength through
the statistical analysis of excitation-energy indexed primary γ-ray spec-
tra [4, 61]. This method is probably the most reliable method in terms
of possible systematic errors to produce a total γ-ray strength function in
the energy region below the neutron separation energy. It is therefore en-
tirely complementary to the measurement of photoneutron and photopro-
ton cross sections. The method is able to reveal fine structures, however,
it does not provide absolute values and the γ-ray strength function has
to be normalized to the average total radiative neutron resonance width.
In several cases, the results from the Oslo method have been validated
by their successful application to the spectrum-fitting method of total and
two-step cascades [6, 8]. Also, the results after normalization to the aver-
age total radiative neutron resonance width are shown to be in excellent
agreement with extrapolations of γ-ray strength from photoneutron cross-
section measurements as well as individual transition strengths from neu-
tron resonances [14].
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Chapter 3

Experimental details and data
analysis

3.1 Introduction

The experiments were performed at the Oslo Cyclotron Laboratory (OCL)
at the University of Oslo. The cyclotron at the OCL is the heart and workhorse
of the research centre SAFE (Centre for Accelerator Based Research and
Energy Physics), which was established by the University of Oslo in June
2005, merging the nuclear physics group, the nuclear chemistry group,
and the energy research group.

The Oslo cyclotron is an MC-35 Scanditronix model delivering pulsed
light-ion beams, see Table 3.1 for a list of available beams. The molybde-
num data were taken in February and June 2002, the vanadium data in
November 2002, and the scandium experiment was carried out in Septem-
ber 2004. In all experiments, a 3He beam was used. For details on the
targets, see Table 3.2. In order to prevent pileup in the detectors, the beam
current was limited to ≈ 1− 2 nA. The experiments were run for about six
days.

Ion Charge state Energy range (MeV) Intensity (µA)

Proton 1H+ 2-35 100
Deuteron 2H+ 4-18 100
Helium-3 3He++ 6-47 50
Helium-4 (α) 4He++ 8-35 50

Table 3.1: Beams available at the Oslo Cyclotron Laboratory.
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Target Enrichment Thickness Reactions Beam energy
(mg/cm2) (MeV)

45Sc† 99.9% 3.4 45Sc(3He,αγ)44Sc 38
45Sc(3He,3He′γ)45Sc

51V† 99.8% 2.3 51V(3He,αγ)50V 30
51V(3He,3He′γ)51V

94Mo 92% 2.7 94Mo(3He,αγ)93Mo 30
94Mo(3He,3He′γ)94Mo

96Mo 96.7% 1.9 96Mo(3He,αγ)95Mo 30
96Mo(3He,3He′γ)96Mo

98Mo 97.0% 2.0 98Mo(3He,αγ)97Mo 45
98Mo(3He,3He′γ)98Mo

† Natural targets.

Table 3.2: Targets and reactions used for the experiments studied in this thesis.

The following nuclei will be studied in this thesis: 44,45Sc, 50,51V, and
93−98Mo. The selected reactions are listed in Table 3.2. The experimental
equipment used in the experiment is described in the following sections.

3.2 Experimental setup

The experimental setup at the OCL is shown in Fig. 3.1. The cyclotron is
situated in the inner hall, the cyclotron hall, where it delivers the light-ion
beam in pulses with a typical frequency of about 8 MHz for 3He ions. The
beam from the cyclotron is bent 90◦ by an analysing magnet into the exper-
imental hall, giving an energy resolution of typically 60 keV of the beam
after this magnet1. In addition, slits and quadrupole magnets in the beam
line allow for collimation and further focusing of the beam, respectively.
When the beam reaches the target placed in the centre of the detector ar-
ray CACTUS (see next section), the diameter of the beam is collimated to
about 1− 2 mm.

1The analysing magnet is a so-called doubly-focusing magnet, focusing in both the
vertical and horizontal direction. The result of ∼60 keV resolution (full width half maxi-
mum, FWHM) is obtained with a 38-MeV 3He beam and with 2 mm wide slits in front of
the analysing magnet, which has a radius of 1 m.
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Figure 3.1: Experimental setup at the Oslo Cyclotron Laboratory. The Q1 . . . Q4
are guadrupole magnets, the S1 . . . S4 are slits. The beam dumps marked with
211At and 18F are stations for producing the radioactive isotopes 211At and 18F for
medical use and research.

3.2.1 CACTUS

The multi-detector array CACTUS [62] is utilised for measuring particle-
γ coincidences. The γ-rays are detected with 28 5′′ × 5′′ NaI(Tl) detec-
tors mounted on a spherical frame surrounding the target and the particle
telescopes, see Fig. 3.2. The NaI(Tl) crystals are collimated with lead colli-
mators, so that their diameter is reduced from 12.7 cm to 7 cm. The solid
angle coverage of the collimated NaI(Tl) detectors is estimated to be 17.7%
of 4π from Ω = NA

4πR2 , where N = 28 is the number of detectors, A = πr2

is the collimated front area of one detector with radius r = 3.5 cm, and R =
22 cm is the distance of the NaI(Tl) detectors from the target.

The total efficiency was measured to be 15.2% for the 1332-keV γ tran-
sition in 60Co. The efficiency was determined by measuring a singles-γ
spectrum of a 60Co source with a Ge detector placed in a long distance
(≈ 50 cm) from the source. Then, a coincidence requirement was set for
the Ge detector and the NaI(Tl)s, so that either the 1173-keV or the 1332-
keV transition was measured by the Ge detector or the NaI(Tl)s. The area
(counts) reduction in the full-energy peak of the 1173-keV transition of the
Ge coincidence spectrum compared to the singles-γ spectrum gave the ef-
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Figure 3.2: The multi-detector array CACTUS.

ficiency of the NaI(Tl)s:

εNaI
tot (1332 keV) =

NGe
coinc(1173 keV)

NGe
singles(1173 keV)

, (3.1)

where εNaI
tot is the total efficiency of the 28 NaI(Tl)s for Eγ = 1332 keV, Ncoinc

is the number of counts in the 1173-keV coincidence full-energy peak, and
Nsingles is the number of counts in the 1173-keV singles full-energy peak of
the Ge detector.

The resolution of the NaI(Tl) detectors is ∼ 7% FWHM for the 1332-
keV line. A 2 mm copper absorber is placed in front of each γ detector
to suppress X-rays. To reduce crosstalk2, a 3 mm lateral lead shielding
surrounds each NaI(Tl) crystal.

For the runs on the vanadium target, a 60% Ge detector was placed in
backward direction in order to monitor the range of spins populated in the
(3He,α) and (3He,3He′) reactions. It also helped to ensure that the correct
nuclei were studied – the good energy resolution allows for the identifi-
cation of well-known γ transitions in the specific nuclei. The electronics
setup allows for three Ge detectors; however, normally only one is used
during an experiment.

2Crosstalk occurs when a γ ray interacts with one of the detectors and then scatters
into another detector. Then, there is a non-negligible probability for the γ ray to be mea-
sured by two or more detectors within the detector response time, giving false γ signal.
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Figure 3.3: Schematic drawing of a Si particle telescope.

The charged particles produced in the nuclear reaction are detected
by eight Si ∆E − E telescopes mounted inside the CACTUS frame. The
∆E counters have a thickness of ∼ 140 µm, and the E counters are 1500
µm thick. The particle telescopes are placed 5 cm from the target in the
forward direction at an angle of 45◦ with respect to the beam axis. A 15
µm thick Al foil is placed in front of the particle telescopes in order to
stop δ electrons that are emitted from the target foil when the beam is
passing through it. The particle detectors were collimated to reduce the
uncertainty in the outgoing angle and thereby in the energy of the ejectile.
The eight particle telescopes cover 0.2% of 4π when using collimators of
3 mm diameter, as done in the Mo, V, and Sc experiments. The average
energy resolution is ≈ 200− 300 keV as determined from the FWHM of
the elastic 3He peak.

3.2.2 Electronics and data acquisition

At present, the electronics at the OCL is placed partly in the experimental
room and partly in the computer room, see Fig. 3.4 and Fig. 3.5. The pulses
from the particle and Ge detector(s) are first amplified with preamplifiers
mounted close to the detectors, and then sent to timing filter amplifier
(TFA) units where fast timing signals are filtered out, amplified and in-
verted (Fig. 3.4). The signals are also sent to main amplifiers and directly
to their corresponding analog-to-digital converters (ADCs). The timing
signals are further processed by constant fraction discriminators (CFDs) to
obtain essentially walk-free, fast logic signals. For simplicity, the signals
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Figure 3.4: Block diagram of the electronics setup in the experimental room,
taken from Ref. [63].

from the eight particle end counters are put in groups of four (EA Time
and EB Time), added by a linear fan in (Lin OR) and processed together
(Group A and B). The ∆E detector time signals (∆E Time) are connected to
a multiplicity unit with the setting N = 1, which produces a gate signal if
one and only one ∆E detector was hit. In addition, a summed, attenuated
analog output of the ∆E timing CFD (Lin OR) is fed into a TFA, where it
is amplified and then used for a common threshold setting (Z > 1). In
this way, it is possible, if desired, to suppress events where protons or
electrons3 hit the ∆E detectors.

All the ∆E-detector CFDs are connected to a pile-up rejection module
(PUR). This module takes the logic signal from the multiplicity unit and
stretches it for ≈ 1 µs, and if another pulse arrives within this time in-
terval, the PUR gives an inverted logic signal to indicate a pile-up event.
Then the pile-up signal is sent to a VME trigger pattern unit (TPU), where
the event is marked as pileup.

The coincidence events of the ∆E and E detectors are made by requir-
ing three conditions:

1. Exactly one ∆E detector is hit.

2. The signal of the ∆E detector is larger than the common threshold
setting (Z = 1).

3Fast electrons and protons with Z = 1 deposit only a small fraction of their energy in
the ∆E counters.
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3. At least one E detector is hit.

This is done by a coincidence unit (AND) checking whether the E detec-
tor CFD signal, the multiplicity unit signal, and the Z > 1 CFD signal
are in coincidence with each other. Unfortunately, there is neither a hard-
ware condition that the ∆E and E detector of the same particle telescope
are hit, nor that only one E detector gave a signal. However, since the
particle multiplicity and the beam current are relatively low, this does not
introduce severe problems, and can also be checked during offline data
sorting.

A scaler serves as a counter for several unit signals, such as the coin-
cidence rate of the particle telescopes and the summed rate of the Ge de-
tectors. Since the elastically scattered 3He particles produce a high count
rate due to the large Rutherford cross section, every other event is rejected
with a (1/N) module with the setting N = 2 unless a γ-ray detector is
hit; thus, the particle singles spectrum is divided by two (shown as ’P div.’
output in Fig. 3.4).

The electronics setup in the computer room is displayed in Fig. 3.5. The
timing signals from the NaI(Tl) detectors (NaI Time) are processed by CFD
units. The coincidence of the signals from the particle telescopes and the γ-
ray detectors is first tested with a gated discriminator (DISC) shown in the
upper part of Fig. 3.5. The DISC is vetoed unless a particle counter gives
a signal. Then, if a coincidence is measured, a logic signal is sent to start
a time-to-digital converter (TDC). Another branch, delayed by 200 ns, is
used to stop the TDC. The gate generators (GG) connected to the DISC cre-
ate a gate signal for the analog-to-digital converters (ADC) for the NaI(Tl)
detectors (ADC NaI) and the Ge detectors (ADC Ge1/2/3/T). The other
logic units connected to the DISC are used to (i) identify which particle-
telescope group is in coincidence with the γ ray(s) (NaI OR, Ge OR, γ OR,
γ+p OR, A OR (AND), B OR (AND), Delay), and subsequently send a gate
signal to open the particle-telescope ADC, (ii) start the Ge-detector time-
to-amplitude converter (TAC) which, with the ADC GeT unit, works as a
TDC (Ge OR), and (iii) set flags in the VME trigger pattern units (TPU),
which control the readout of the digitized data.

In Table 3.3 all the hit patterns for the TPUs are listed. TPU1 handles
the particle telescopes and the Ges, while TPU2 and TPU3 deal with the
NaI(Tl) detectors. The virtual TPU4 is not a real module, but is created
by the sorting program (see next two sections) in order to show in which
detectors pile-up events occured. For simplicity, the control of the NIM-
ADCs by VME-ADC controllers, and the control of the CAMAC crate by
a CAMAC-branch driver are not shown in Fig. 3.5. The VME crate ac-
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Bit # TPU 1 TPU 2 TPU 3 TPU 4
(virtual, for pile up)

0 Group A NaI(Tl) 1 NaI(Tl) 17 ∆E 1
1 Singles NaI(Tl) 2 NaI(Tl) 18 ∆E 2
2 Group B NaI(Tl) 3 NaI(Tl) 19 ∆E 3
3 Coincidence NaI(Tl) 4 NaI(Tl) 20 ∆E 4
4 Ge 1 NaI(Tl) 5 NaI(Tl) 21 ∆E 5
5 NaI(Tl) 6 NaI(Tl) 22 ∆E 6
6 Ge 2 NaI(Tl) 7 NaI(Tl) 23 ∆E 7
7 NaI(Tl) 8 NaI(Tl) 24 ∆E 8
8 Ge 3 NaI(Tl) 9 NaI(Tl) 25 Ge 1
9 NaI(Tl) 10 NaI(Tl) 26 Ge 2

10 Ge time NaI(Tl) 11 NaI(Tl) 27 Ge 3
11 NaI(Tl) 12 NaI(Tl) 28
12 NaI(Tl) 13 NaI(Tl) 29
13 NaI(Tl) 14 NaI(Tl) 30
14 NaI(Tl) 15 NaI(Tl) 31 EA
15 NaI(Tl) 16 NaI(Tl) 32 EB

Table 3.3: Hit patterns for the TPUs.

commodates connections to the SUN-Sparc station via a BIT3 Sun Sbus to
VMEbus interface.

Each event is constructed on an event-by-event basis by the program
Eventbuilder+ [64], running on a CES RIO2 single board processor in the
VME crate with a PowerPC 604r @ 300 MHz CPU running LynxOS. The
event structure is similar to that of Fig. 4.2 in Ref. [64]; the event starts with
a 16-bit word, were bits 12–15 are set to indicate the start of a new event.
The bits 0–11 describe the total event length. The next two words denote
which TPU is read and its pattern word, respectively. The follow words
contain the data (energy, time) of the corresponding detector(s). Then the
next TPU is read and so on, until all information of this particular event is
recorded. The events are then put in buffers with a length of 32768 words.
When a buffer is full, it is transferred to the Sun SPARC computer, where
the data acquisition program Sirius+ [64] writes the event buffer to disk.
While waiting for buffers, the program sorts events on-line for monitoring
the experiment.

The hit patterns of the TPUs displayed in Table 3.3 indicate whether the
corresponding detector has data. When sorting the data files off-line with
the program Offline+ [65], an event matrix is generated so that the user
can access energies and times from this matrix in the sorting user routine.
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Figure 3.5: Block diagram of the electronics setup in the computer room, taken
from Ref. [63].
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3.3 Data analysis

In this section, the data analysis applied on the event files will be briefly
discussed, as well as the techniques involved to obtain a coincidence ma-
trix with γ-decay spectra for each given excitation energy.

3.3.1 Selected reactions

As previously described, the 3He beam energy used for the experiments
discussed here is between 30 − 45 MeV. Letting these 3He ions impinge
on the targets, several reaction channels are opened, such as (3He,xnγ),
(3He,dγ), (3He,xnαγ), and (3He,3He′γ). The reactions of interest for this
study were the inelastic scattering (3He,3He′γ) and the (3He,αγ) pick-up
reaction as shown in Table 3.2. As there are no neutron detectors present
in the experimental setup, and it is necessary to measure all the ejectiles’
energies in order to precisely determine the initial excitation energy of the
target nucleus, the highest excitation energy for which the γ spectra can
be used is the neutron binding energy Bn. If a proton is emitted, the pro-
ton binding energy Bp plus the Coulomb barrier is the excitation limit. In
Table 3.4, the proton and neutron binding energies for all the nuclei stud-
ied in this work are shown, together with the Coulomb barrier for proton
emission and the reaction Q value in the case where the nuclei are popu-
lated through the (3He,αγ) reaction. The Coulomb barrier for the proton
is given by

UCoul =
e2

4πε0

ZpZtarget

Rp + Rtarget
, (3.2)

where the factor e2/4πε0 = 1.44 MeV·fm, the sum of the radii Rp + Rtarget =
r0(A1/3

p + A1/3
target) with r0 ≈ 1.25 fm, and Zp, Ztarget are the electric charge

of the proton and the target nucleus, respectively.
The maximum angular momentum transfer `max possible in the reac-

tions can roughly be estimated using the classical expression∣∣∣~̀ ∣∣∣ = |~r×~p| = rmv sin θ. (3.3)

For θ = 90◦, we have

` = Rtargetm3Hev = r0A1/3
targetm3He

√
2Ek

m3He
, (3.4)

where the relation
Ek =

1
2

mv2 (3.5)
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Nucleus Iπ Bp Bn Coulomb barrier Q value
(MeV) (MeV) (MeV) (MeV)

44Sc 2+ 6.696 9.700 5.34 9.255
45Sc 7/2− 6.889 11.32 5.31 -
50V 6+ 7.949 9.332 5.66 9.526
51V 7/2− 8.061 11.05 5.63 -

93Mo 5/2+ 7.643 8.070 8.75 10.90
94Mo 0+ 8.490 9.678 8.72 -
95Mo 5/2+ 8.632 7.369 8.70 11.42
96Mo 0+ 9.298 9.154 8.67 -
97Mo 5/2+ 9.226 6.821 8.65 11.94
98Mo 0+ 9.794 8.643 8.62 -

Table 3.4: Neutron and proton binding energies, ground-state spin/parity,
Coulomb barriers, and Q values for the nuclei under study.

for the kinetic energy Ek of the 3He projectile has been utilized. Using
r0 ≈ 1.25 fm, Atarget = 98, Ek = 45 MeV, m3He = 2809.41 MeV/c2 and
h̄c = 192.329 MeV · fm gives

`max ≈ 15h̄ (3.6)

for the target nucleus 98Mo. Of course, to get a more precise estimate for
the expected spin window populated, one should perform more realistic
reaction calculations based on reaction theory such as the distorted wave
Born approximation (DWBA, see [1, 66]), taking into account the quantum
nature of the impinging ion and the target nucleus, and also the geometry,
as the particle telescopes are placed 45◦ with respect to the beam axis. Pre-
vious experiments [67] and DWBA calculations [68] have shown that for
the (3He,α) reaction, the pick-up of neutrons with high `-values are pre-
ferred. For the nuclei Sc, V, and Mo, the spin range of states populated by
the direct reactions is typically 2h̄ ≤ I ≤ 6h̄.

3.3.2 Coincidence technique

As displayed in Figs. 3.4 and 3.5, the electronics setup consists of a fast
branch that treats the timing information, and a slow branch that ensures
the best possible handling of the energy information [69]. The time be-
tween the detection of a particle and one or more γ-rays is registered by
TDCs for the NaI(Tl) detectors and a TAC plus an ADC for the Ge detector.
By setting gates on the prompt peak in the measured time spectra when
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sorting the data offline, the true coincident events were obtained, i.e. the
particle and the γ-rays are detected within a narrow time interval. The
present electronics setup has a time window of 200 ns, which means that
the master gate signal set by the particle (start of the TDCs/TAC) has a
duration of 200 ns.

Figure 3.6 shows the time spectrum from the 51V(3He,αγ)50V, and the
gates chosen for the random background (left) and the prompt peak (right).
The time resolution is determined by the FWHM of the prompt peak,
which is in this case about 17 ns. The gated area of the peak to the left gives
the number of random coincidences, and in addition the events where γ-
rays from a reaction stemming from one beam burst are detected in coin-
cidence with particles from a reaction produced by the next beam burst.
Roughly, the true number of coincidences can be obtained by subtracting
the events in the random peak from the prompt peak. Therefore, dur-
ing the offline data sorting, events that fall into the random gate will be
decremented and events in the prompt gate will be incremented, while
everything else is rejected.
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Figure 3.6: The time spectrum of 50V. The dashed lines indicate lower (tl,r, tl,p)
and upper (th,r, th,p) gates on the random and prompt peak, respectively.
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3.3.3 Particle–γ matrix

In order to obtain the particle energy vs. γ-ray energy matrix, each indi-
vidual particle telescope and NaI(Tl) detector is calibrated with a linear
calibration

E = a0 + a1 · ch, (3.7)

where E is the energy, a0 is the constant shift, a1 is the dispersion and ch
is the channel number in the spectrum. When all detectors are properly
calibrated, one can add the data of all the particle telescopes together, and
likewise the NaI(Tl) spectra.

The particle telescopes allow for particle identification by utilizing the
fact that the energy loss of a charged particle per unit length in a medium
is a function of the charge and the mass of the penetrating particle accord-
ing to the Bethe-Bloch formula [69]. The penetration depth or range as
a function of the particle’s kinetic energy differs for each charged parti-
cle due to their different charge and mass numbers. A given particle will
therefore lose a different amount of its energy in the ∆E and E detectors as
a function of its total kinetic energy. Such a plot of the energy deposited
in the ∆E detector vs. the energy deposited in the E detector is shown in
Fig. 3.7, with characteristic banana-shaped curves for each type of particle.

The particle-identification technique described above makes it possible
to gate on a specific particle type utilizing its unique range curve in the
Si detectors. By gating on the 3He and α particles event-by-event in the
offline sorting procedure in addition to the gates on the time spectrum,
the 3He–γ and α–γ coincidence events can be extracted. Figure 3.8 shows
the α–γ coincidence matrix of the 45Sc(3He,αγ)44Sc reaction.

The α–γ coincidence matrix in Fig. 3.8 displays characteristic features
such as the diagonal where the excitation energy equals the γ-ray energy
E = Eγ. The strong population of yrast states in many excitation-energy
bins is shown as intense, vertical lines in the matrix at low γ-ray energy. In
the region of excitation energies around 8− 9 MeV, the γ-ray multiplicity
is seen to be drastically reduced. In this region, the excitation energy is
high enough so that proton/neutron emission starts to compete with γ-
ray emission, and the nucleus with A− 1 is populated.
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Figure 3.7: Identification of the ejectiles (bananas) by plotting the energy de-
posited in the thin ∆E detector versus the energy deposited in the thick E detector
of the Si particle telescopes (insert).
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Figure 3.8: Alpha–γ coincidence matrix of 44Sc. The energy of the α particle is
transformed into excitation energy E of the residual nucleus using the reaction
kinematics and the Q-value.
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Chapter 4

The Oslo method

Based on the particle-γ coincidence matrix that is obtained by tagging the
measured γ rays with the corresponding particle energy, the Oslo group
has developed a method to unfold the γ-ray spectra by means of the re-
sponse functions of the CACTUS array. In this way, the γ-ray spectra
for each excitation energy are corrected for the single- and double escape
peak, the annihilation peak, the Compton events, and the detector effi-
ciency [2]. From the unfolded γ-ray spectra, the first γ-rays emitted in the
decay cascades from each excitation energy are extracted utilizing a sub-
traction procedure called the ’first-generation method’ [3]. This matrix of
primary γ-rays contains information on the level density and the average
γ-ray transition probability, which are extracted simultaneously through
an iterative procedure with a global fit to the experimental first-generation
matrix [4]. Together, these three methods are called the Oslo method.

4.1 Unfolding the γ-ray spectra

The response function of a γ-ray detector depends on the various inter-
actions with matter that the photons can undertake: Compton scattering,
photoelectric absorption, and pair production. Ideally, the original γ-ray
is fully absorbed and is found in the full-energy peak in the γ-ray spec-
trum. However, since Compton-scattered photons and one or both of the
annihilation photons can escape from the detector and thus deposit only
part of the full energy, it is necessary to correct the observed γ-ray spec-
tra for such incompletely detected photons. Additional background from
backscattered annihilation and Compton γ-rays in the surroundings of the
experimental setup give rise to peak structures at 511 and ≈ 200 keV, re-
spectively.
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To obtain proper γ-ray spectra, one in principle needs to know the re-
sponse of the detector for all incident γ-ray energies. In practice, however,
one is limited to several well-known γ lines from calibration sources such
as 152Eu, 60Co, and 137Cs, and in addition γ lines from in-beam experi-
ments. It is therefore mandatory to choose an appropriate procedure to
interpolate between the response functions of the monoenergetic γ-rays
to get the response function of all γ energies. The technique used here is
explained in detail in Ref. [2], where a folding iteration method called the
Compton subtraction method is applied in order to construct full-energy
γ spectra. A brief outline of the method is given in the following.

First, the detector response functions R(E, Eγ), where E is the actual
amount of energy deposited in the detector, are established for available
incident γ-ray energies Eγ. In total, ten response functions have been
measured for monoenergetic γ lines ranging from 122 to 15 110 keV [2].
These spectra are the basis for interpolating to intermediate full energy γ-
ray peaks. This interpolation is easily done for the peak structures, that
is, the full energy (f), single escape (s), double escape (d), and annihila-
tion (a) peaks, by adding a Gaussian distribution at the interpolated peak
position with proper intensity and width. However, the interpolation of
the Compton background is more complicated, as the observed Compton
background response functions have different maximum energy depend-
ing on their respective full energy values. Therefore, the interpolation op-
erates along a set of curves forming a fan, connecting the same channels
in the lower end and the highest channels in the upper end of the spectra,
see Fig. 4.1. A γ-ray that is scattered at an angle θ transfers an energy E to
the electron as given by

E = Eγ −
Eγ

1 + Eγ

mec2 (1− cos θ)
, (4.1)

where me is the electron mass and c is the speed of light. As a reasonable
approach, the Compton background is thus interpolated between chan-
nels having the same Compton scattering angle θ (see Fig. 4.1).

Having the appropriate response matrix R at hand, the unfolding pro-
cedure can be applied on the experimental γ-ray spectra. The folding it-
eration method takes advantage of the fact that folding is easy and fast to
perform. Each matrix element Rij of the response matrix R is defined as
the response in channel i when the detector is hit by γ-rays with an energy
corresponding to channel j. For each incident γ-ray energy channel j, the
response function is normalized so that ∑i Rij = 1. The folding is then
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Figure 4.1: The interpolation of the Compton part of the measured response
functions c1 and c2, illustrating the increase of ∆θ with the full energy Eγ.

expressed as
f = Ru, (4.2)

or, explicitly,
f1
f2
...

fN

 =


R11 R12 . . . R1N
R21 R22 . . . R2N

...
... . . .

...
RN1 RN2 . . . RNN




u1
u2
...

uN

 . (4.3)

Here, f and u represent the folded and unfolded spectra, respectively.
Thus by obtaining better and better trial spectra for u, those trial functions
can be folded with the corresponding response functions and compared
with the observed γ spectrum, hereby denoted r. In practice, the folding
iteration method is carried out as follows:

1. As the first trial function u0 for the unfolded spectrum, the observed
spectrum r is used:

u0 = r. (4.4)

2. The first folded spectrum f 0 is then calculated,

f 0 = Ru0. (4.5)
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3. The next trial function u1 is obtained by adding the difference spec-
trum r− f 0 as a correction to the original trial function u0:

u1 = u0 + (r− f 0). (4.6)

4. The new trial function u1 is folded again to get the next f 1, which
again is used to generate the next trial function:

u2 = u1 + (r− f 1), (4.7)

and so on until f i ∼ r, where i is the iteration index.

Typically, ten iterations (i = 10) are sufficient to get a folded spectrum that
agrees with the observed spectrum within the experimental uncertainties.
However, the obtained unfolded spectrum u10 = u exhibits strong oscil-
lations and fine structures, which give artificially a better resolution of u
than the experimental resolution. This problem is mended by the Comp-
ton subtraction method [2].

The starting point for the Compton subtraction method is the unfolded
spectrum u resulting from the folding iteration method as described above,
hereby denoted u0. This spectrum is used to create the expected contri-
butions from the full energy uf, single escape us, double escape ud, and
annihilation ua part of the original, observed spectrum:

uf(i) = pf(i)u0(i), (4.8)
us(i− i511) = ps(i)u0(i), (4.9)
ud(i− i1022) = pd(i)u0(i), (4.10)

ua(i511) = ∑
i

pa(i)u0(i), (4.11)

where i511 and i1022 represent the channels with energies 511 and 1022 keV,
respectively. The factors pf(i), ps(i), pd(i), and pa(i) are the probabilities
for an event in channel i to be a photo peak, single escape, double escape,
or annihilation event, respectively (see Table 1 in Ref. [2]). The probabili-
ties are normalized so that

∑
i

pf(i) + ps(i) + pd(i) + pa(i) + pc(i) = 1, (4.12)

where pc(i) is the probability for a Compton event in channel i.
The ua spectrum, originally with all its counts in channel i511, must be

smoothed with the experimental resolution denoted 1.0 FWHM in order
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to get the energy resolution of the observed spectrum. The energy reso-
lution of the spectra uf, us, and ud is determined by the resolution of the
observed spectrum (1.0 FWHM) and the response matrix (0.5 FHWM) giv-
ing1

√
1.02 − 0.52 FWHM = 0.87 FWHM. Therefore, an additional smooth-

ing of 0.5 FWHM is done to get a spectrum with the experimental resolu-
tion of 1.0 FWHM:

√
0.872 + 0.52 FWHM ≈ 1.0 FWHM.

The Compton background spectrum2 c(i) can now be found by sub-
tracting the components uf, us, ud, and ua from the experimentally ob-
served spectrum r(i):

c(i) = r(i)− v(i), (4.13)

where
v(i) = uf + us + ud + ua. (4.14)

The extracted Compton spectrum c(i) displays strong oscillations of the
same order as the experimental spectrum r(i). To be able to preserve the
experimental, statistical fluctuations, an additional, rather strong smooth-
ing of 1.0 FWHM is applied on the spectrum c(i), justified by the fact that
this spectrum should be a slowly varying function of energy. The total
smoothing of c(i) is then

√
2 FWHM.

To obtain the unfolded energy spectrum uunf of full-energy peaks, the
smoothed Compton spectrum c and the peaks us, ud, and ua are subtracted
from the observed spectrum r:

uunf(i) = r(i)− c(i)− us(i− i511)− ud(i− i1022)− ua(i511). (4.15)

Finally, the true γ-ray energy distribution is calculated, correcting uunf for
the full energy probability pf and the energy-dependent total γ-ray detec-
tion efficiency εtot:

Uunf(i) =
uunf(i)

pf(i)εtot(i)
. (4.16)

Here, εtot is taken from Table 1 in Ref. [2]. In addition, εtot is multiplied
with the energy-dependent cutoff function reflecting the individual detec-
tor’s discriminator level. Typically, the experimental energy threshold is
about 100-200 keV with a width of ≈ 100 keV.

Figure 4.2 shows an example of the resulting α–γ coincidence matrix of
44Sc, where all γ-ray spectra for each excitation-energy bin are unfolded

1Assuming that the spectra f , r, and u follow a Gaussian behavior, we have (δ f )2 =
(δr)2 + (δu)2, giving δu =

√
(δ f )2 − (δr)2.

2This Compton spectrum also contains the backscattering peak at ≈ 200 keV stem-
ming from Compton backscattered γ-rays of the surroundings, in addition to other back-
ground events such as X-rays.
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Figure 4.2: Unfolded α–γ coincidence matrix of 44Sc.

using the above-described method. A fraction of the matrix is displayed
in Fig. 4.3, where a projection of the γ-ray spectra has been performed
for excitation energies between 5.5–6.5 MeV. As is seen from Fig. 4.3 by
comparing the original and the folded spectrum, the unfolding procedure
works very well.

4.2 Distribution of first-generation γ rays

In general, the γ decay from highly excited states involves a cascade of
transitions. The measured γ spectra will contain contributions from all
decay steps, since the γ decay in the quasi-continuum is generally very
fast (≈ 10−15 s) and as no timing technique is able to determine the order
of the γ-rays that belonged to a specific cascade. As the generations of γ
rays are not well separated in energy either, it is difficult to get hold of the
distribution of primary γ-rays in this excitation-energy region.

The nuclear physics group at the OCL has developed a subtraction
method to extract the primary (first-generation) γ-rays from the quasi-
continuum γ-ray spectra measured for each excitation-energy bin. The
method is described in detail in Ref. [3], and its main features will be
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Figure 4.3: Original (top), unfolded (middle) and folded γ spectrum of 44Sc for
excitation energy between 5.5− 6.5 MeV.

sketched here.
The main assumption of the first-generation method is that the γ decay

from any excitation-energy bin is independent on how the nucleus was ex-
cited to this bin. In other words, the decay routes are the same whether
they were initiated directly by the nuclear reaction or by γ decay from
higher-lying states. This assumption is automatically fulfilled when states
have the same cross section to be populated by the two processes, since γ
branching ratios are properties of the levels themselves. Even if different
states are populated, the assumption is still valid for statistical γ decay,
which only depends on the γ-ray energy and the number of accessible fi-
nal states. Here, in the region of high level density, the nucleus seems to
attain a compound-like system before emitting γ-rays even though the di-
rect reactions (3He,α) and (3He,3He′) are utilized. This is because the reac-
tion time, and thus the time it takes to create a complete compound state,
is ≈ 10−18s, while the typical life time of states in the quasi-continuum
is ≈ 10−15s. Therefore, it is reasonable to assume that the nucleus has
thermalized prior to γ decay.
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Figure 4.4: Illustration of the principle of the first-generation method (see text).

Figure 4.5: A hypothetical γ-decay cascade. The first-generation γ rays from
level E3 can be obtained by subtracting the γ spectra from the levels E2 and E1.

The method is illustrated in Fig. 4.4. For each excitation-energy bin i
(typically 120− 240 keV wide), a γ-ray spectrum fi is projected out from
the total particle–γ coincidence matrix, which is generated as described in
Sec. 3.3.3 and unfolded as explained in Sec. 4.1. The unfolded spectra fi
are made of all generations of γ rays from all possible cascades decaying
from the excited levels within the bin i. Now, we utilize the fact that the
spectra f j<i for all the underlying energy bins j contain the same γ transi-
tions as fi except the first γ rays emitted, since they will bring the nucleus
from the states in bin i to underlying states in the energy bins j. This is
shown for one specific, hypothetical cascade in Fig. 4.5, where it is easily
seen that by subtracting the γ spectra from the levels E2 and E1, the first-
generation spectrum of level E3 is found. The picture of Fig. 4.5 is of course
oversimplified. In reality, one has to take into account the different cross
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sections for populating the levels in the various energy bins i and also the
different intensities (branching ratios) of the primary γs. Therefore, the
first-generation spectrum hi is found by

hi = fi − gi, (4.17)

where gi is a weighted sum of all spectra

gi = ni1wi1 f1 + ni2wi2 f2 + . . . + nijwij f j = ∑
j

nijwij f j. (4.18)

Here, the unknown coefficients wij (with ∑j wij = 1) represent the proba-
bility of the decay from bin i to bin j. In other words, wij is the weighting
coefficient or branching ratio of each primary γ-ray depopulating level
i. In this sense, the wij values correspond directly to the first-generation
spectrum hi.

The coefficients nij are correcting factors for the different cross sections
of populating level i and the underlying levels j, and are determined so
that the total area of each spectrum fi multiplied by nij corresponds to the
same number of cascades. This can be done in two ways [3]:

• Singles normalization. The singles-particle cross section is propor-
tional to the number of populated states and thus to the number of
decay cascades. We denote the number of counts measured for bin i
and j in the singles spectrum Si and Sj, respectively. The normaliza-
tion factor nij that should be applied to the spectrum f j is then given
by

nij =
Sj

Si
. (4.19)

• Multiplicity normalization. The average γ-ray multiplicity 〈M〉 can
be obtained in the following way [70]: Assume an N-fold population
of an excited level E. The decay from this level will result in N γ-ray
cascades, where the ith cascade contains Mi γ rays. The average
γ-ray energy 〈Eγ〉is equal to the total energy carried by the γ rays
divided by the total number of γ rays:

〈Eγ〉 = N · E

∑N
i=1 Mi

=
E

1
N ∑N

i=1 Mi
=

E
〈M〉 . (4.20)

Then, the average multiplicity is simply given by

〈M〉 =
E
〈Eγ〉

. (4.21)
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The average γ-ray multiplicity 〈Mi〉 can thus easily be calculated for
each excitation-energy bin i. Let the area (or total number of counts)
in spectrum fi be denoted by A( fi). Then the singles particle cross
section Si is proportional to the ratio A( fi)/〈Mi〉, and the normaliza-
tion coefficient nij that should be applied to bin i when subtracting
bin j is

nij =
A( fi)/〈Mi〉
A( f j)/〈Mj〉

=
〈Mj〉A( fi)
〈Mi〉A( f j)

. (4.22)

In order to choose between the two normalization methods, one needs to
consider the actual experimental conditions. For example, if the nucleus
studied has an isomeric state that has a longer life time than the time range
of the TDCs, the γ decay from this state will not be measured in coinci-
dence with the outgoing particle. This was the case for the nucleus 44Sc,
which has an isomer at E = 271.13 keV with a half-life of 58.6 hours [26].
Therefore, the multiplicity normalization was applied for the Sc nuclei. In
general, the two normalization methods give very similar results.

In cases where the multiplicity is well determined, an area consistency
check can be applied to Eq. 4.17. Assume that a small correction has to be
introduced by substituting gi by αgi, where α is close to unity. The area of
the first-generation γ spectrum is then

A(hi) = A( fi)− αA(gi), (4.23)

and corresponds to a γ-ray multiplicity of one unit. Since the number of
primary γ rays in the spectrum fi equals A( fi)/〈Mi〉, A(hi) is also given
by

A(hi) = A( fi)/〈Mi〉. (4.24)

Combining Eqs. (4.23) and (4.24) yields

α = (1− 1/〈Mi〉)
A( fi)
A(gi)

. (4.25)

The α parameter can be varied to get the best agreement of the areas A(hi),
A( fi) and A(gi) within the following restriction: α = 1.00± 0.15; that is,
the correction should not exceed 15%. If a greater correction is necessary,
then improved weighting functions wij should be determined instead.

As mentioned before, the weighting coefficients wij correspond directly
to the first-generation spectrum hi, and this close relationship makes it
possible to determine wij (and thus hi) through a fast converging iteration
procedure [3]:
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1. Apply a trial function wij.

2. Deduce hi.

3. Transform hi to wij by giving hi the same energy calibration as wij,
and normalizing the area of hi to unity.

4. If wij(new) ≈ wij(old), convergence is reached and the procedure is
finished. Otherwise restart from step 2.

Tests of the convergence properties of the procedure have shown that ex-
cellent agreement is achieved between the exact solution (from simulated
spectra) and the trial function wij already after three iterations [3]. Usually,
about 10 iterations are performed on experimental spectra.

To demonstrate how well the first-generation procedure works, Fig. 4.6
shows the total, unfolded γ spectrum, the second and higher generations
γ-ray spectrum and the first-generation spectrum of 45Sc for excitation
energy between E = 5.5 − 6.5 MeV. The first-generation spectrum has
a continuum-like, bell-shaped form indicating that the γ decay is domi-
nated by statistical processes in the region Eγ = 1.4− 6.5 MeV. However,
by looking at the lower panel of Fig. 4.6, it is clear that the main assump-
tion of the subtraction method is not fulfilled for Eγ . 1.4 MeV. In this
region, some strong, low-energy transitions were not subtracted correctly.
This means that the levels from which these transitions originate are pop-
ulated more strongly from higher excited levels through γ emission, than
directly by inelastic 3He scattering. Therefore, only data for Eγ > 1.6 MeV
is used in the further analysis. Similar considerations are done for the V
and Mo nuclei.

4.3 Extraction of level density and γ-ray strength
function

For compound reactions, the following assumption has been shown to be
valid: the relative probability for decay into any specific set of final states
is independent of the means of formation of the compound nucleus; in
other words, the compound nucleus can share its excitation energy on a
relatively large number of nucleons and thus ”forgets” the way of forma-
tion (see, e.g., Refs. [1, 75]). The subsequent decay of the compound states
will mainly be governed by statistical rules. Therefore, the decay probabil-
ity P(E, Eγ) of a γ-ray with energy Eγ decaying from a specific excitation-
energy E is proportional to the level density ρ(Ef) at the final excitation
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Figure 4.6: Unfolded, total γ-ray spectrum, second and higher-generation γ-
ray spectrum and first-generation γ-ray spectrum of 45Sc for excitation energy
between 5.5− 6.5 MeV.

energy Ef = E− Eγ, and the γ-ray transmission coefficient T (Eγ):

P(E, Eγ) ∝ ρ(Ef)T (Eγ). (4.26)

The essential assumption the above relation is based on is that the nuclear
reaction can be described as a two-stage process, where a compound state
is first formed before it decays in a manner that is independent of the mode
of formation [75, 76]. This is believed to be fulfilled at high excitation
energy, even though the direct reactions (3He,α) and (3He,3He′) are used,
as already discussed in Sec. 4.2. Equation (4.26) can also be compared with
Fermi’s golden rule:

λ =
2π

h̄
∣∣〈f ∣∣Ĥint

∣∣ i
〉∣∣2 ρ(Ef), (4.27)

where λ is the decay rate of the initial state |i〉 to the final state |f〉, and Ĥint
is the transition operator. In Eq. 4.26, an ensemble of initial and final states
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within each excitation-energy bin is considered, and thus the average de-
cay properties of a set of initial states to a set of final states.

The γ-ray transmission coefficient T (Eγ) in Eq. 4.26 is independent of
the excitation energy, and thus the nuclear temperature according to the
generalized Brink-Axel hypothesis [30, 36], which states that collective ex-
citation modes built on excited states have the same properties as those
built on the ground state. This hypothesis is violated when high temper-
atures and/or spins are involved in the nuclear reactions, as shown for
GEDR excitations in Ref. [60] and references therein. However, since both
the temperature reached and the spins populated are rather low for the
experiments in this work, these dependencies are assumed to be of minor
importance in the excitation-energy region of interest here.

To extract the level density and the γ-ray transmission coefficient, an
iterative procedure [4] is applied to the first-generation γ matrix P(E, Eγ).
The basic idea of this method is to minimize

χ2 =
1

Nfree

Emax

∑
E=Emin

E

∑
Eγ=Emin

γ

(
Pth(E, Eγ)− P(E, Eγ)

∆P(E, Eγ)

)2

, (4.28)

where Nfree is the number of degrees of freedom, and ∆P(E, Eγ) is the
uncertainty in the experimental first-generation γ-ray matrix. The exper-
imental matrix of first-generation γ-rays is normalized [4] such that for
every excitation-energy bin E, the sum over all γ energies Eγ from some
minimum value Emin

γ to the maximum value Emax
γ = E at this excitation-

energy bin is unity:
E

∑
Eγ=Emin

γ

P(E, Eγ) = 1. (4.29)

The first-generation γ-ray matrix can theoretically be approximated by

Pth(E, Eγ) =
ρ(E− Eγ)T (Eγ)

∑E
Eγ=Emin

γ
ρ(E− Eγ)T (Eγ)

. (4.30)

The input (experimental) matrix P(E, Eγ) and the output (theoretical) ma-
trix Pth(E, Eγ) of 50V are displayed in Fig. 4.7. The limits set in the first-
generation matrix for extraction are also shown. These limits are chosen to
ensure that the data utilized are from the statistical excitation-energy re-
gion (Emin, Emax) and that no γ lines stemming from, e.g., yrast transitions,
which might not be subtracted correctly in the first-generation method,
are used in the further analysis (Emin

γ ). Every point of the ρ and T func-
tions is assumed to be an independent variable, so that the reduced χ2 of
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Figure 4.7: The experimental first-generation matrix P(E, Eγ) of 50V (left) and
the calculated one (right) from the iteration procedure of A. Schiller et al. [4]. The
dashed lines show the limits set in the experimental first-generation matrix.

Eq. (4.28) is minimized for every argument E − Eγ and E. The quality of
the procedure when applied to 50V is shown in Fig. 4.8, where the exper-
imental first-generation spectra for various initial excitation energies are
compared to the least-χ2 solution. In general, the agreement between the
experimental data and the fit is very good.

The globalized fitting to the data points only gives the functional form
of ρ and T . In fact, it has been shown [4] that if one solution for the multi-
plicative functions ρ and T is known, one may construct an infinite num-
ber of other functions, which give identical fits to the P(E, Eγ) matrix by

ρ̃(E− Eγ) = A exp[α(E− Eγ)] ρ(E− Eγ), (4.31)
T̃ (Eγ) = B exp(αEγ)T (Eγ). (4.32)

Therefore the transformation parameters α, A and B, which correspond to
the physical solution, remain to be found.

4.3.1 Normalizing the level density

In order to determine the correction α to the slope of the level density and
the γ-ray transmission coefficient, and to determine the absolute value A
of the level density in Eq. (4.31), the ρ function is adjusted to fit the number
of known discrete levels at low excitation energy and neutron (or proton)
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Figure 4.8: Experimental first-generation γ spectra (data points with error bars)
at six different initial excitation energies (indicated in the figure) compared to
the χ2 fit (solid lines) for 50V. The fit is performed simultaneously on the entire
first-generation matrix of which the six displayed spectra are a fraction.

resonance data at high excitation energy. This normalization is shown for
44Sc in Fig. 4.9. The data point at high excitation energy (open square in
Fig. 4.9) is calculated in the following way according to [4]: The starting
point are the Eqs. (4) and (5) of Ref. [16]:

ρ(U, J) =
√

π

12
exp(2

√
aU)

a1/4U5/4

(2J + 1) exp
[
−(J + 1/2)2/2σ2]

2
√

2πσ3
, (4.33)

ρ(U) =
√

π

12
exp(2

√
aU)

a1/4U5/4
1√
2πσ

, (4.34)

where ρ(U, J) is the level density for a given spin J, and ρ(U) is the level
density for all spins (Eq. (4.34) is identical to Eq. (2.4)). The level-density
parameter a and the spin cutoff parameter σ is taken from Ref. [18]. Let
I be the spin of the target nucleus in a neutron resonance experiment.
The average neutron resonance spacing D`=0 for s-wave neutrons with
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spin/parity 1/2+ can be written as

1
D0

=
1
2

[ρ(Bn, J = I + 1/2) + ρ(Bn, J = I − 1/2)] , (4.35)

because all levels with spin J = I± 1/2 are accessible in neutron resonance
experiments, and it is assumed that both parities contribute equally to the
level density at the neutron binding energy Bn. Combining Eqs. (4.33) to
(4.35) with U = Bn, one finds the total level density at the neutron binding
energy to be

ρ(Bn) =
2σ2

D0
· 1
(I + 1) exp [−(I + 1)2/2σ2] + exp [−I2/2σ2]

, (4.36)

where σ is calculated at Bn using Eq. (2.9).
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Since the data only reach up to excitation energies around Bn − Emin
γ ,

an interpolation is made between the Oslo data and ρ(Bn) using the back-
shifted Fermi gas model of Ref. [18], as shown in Fig. 4.9.

4.3.2 Normalizing the γ-ray transmission coefficient

The slope of the γ-ray transmission coefficient T (Eγ) has already been
determined through the normalization of the level density as explained
in the previous section. The remaining constant B in Eq. (4.32) gives the
absolute normalization of T , and is determined using information from
neutron resonance decay on the average total radiative width 〈Γγ〉 at Bn
according to Ref. [61].

The starting point is Eq. (3.1) of Ref. [59],

〈Γγ(E, I, π)〉 =
1

2πρ(E, I, π) ∑
XL

∑
If,πf

∫ E

Eγ=0
dEγTXL(Eγ)ρ(E− Eγ, If, πf),

(4.37)
where 〈Γγ(E, I, π)〉 is the average total radiative width of levels with en-
ergy E, spin I and parity π. The summation and integration are going over
all final levels with spin If and parity πf that are accessible through γ tran-
sitions with energy Eγ, electromagnetic character X and multipolarity L.
Assuming that the main contribution to the experimental T is from dipole
radiation (` = 1), it can be expressed as

BT (Eγ) = B ∑
XL
TXL(Eγ) ≈ B [TE1(Eγ) + TM1(Eγ)] , (4.38)

from which the total, experimental γ-ray strength function can easily be
calculated from Eq. (2.18):

f (Eγ) =
1

2πE3
γ

BT (Eγ). (4.39)

Further, we also assume that there are equally many accessible levels
with positive and negative parity for any excitation energy and spin, so
that the level density is given by

ρ(E− Eγ, If,±πf) =
1
2

ρ(E− Eγ, If). (4.40)

Now, by combining Eqs. (4.37), (4.38) and (4.40), the average total radiative
width of neutron s-wave capture resonances with spins It ± 1/2 expressed
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in terms of T is obtained:

〈Γγ(Bn, It ± 1/2, πt)〉 =
B

4πρ(Bn, It ± 1/2, πt)

∫ Bn

Eγ=0
dEγTXL(Eγ)

× ρ(Bn − Eγ)
1

∑
J=−1

g(Bn − Eγ, It ± 1/2 + J),

(4.41)

where It and πt are the spin and parity of the target nucleus in the (n, γ)
reaction and ρ(Bn − Eγ) is the experimental level density. Note that the
factor 1/ρ(Bn, It ± 1/2, πt) equals the neutron resonance spacing D0. The
spin distribution of the level density is given by [16]:

g(E, I) =
2I + 1

2σ2 exp
[
−(I + 1/2)2/2σ2

]
. (4.42)

The spin distribution is normalized so that ∑I g(E, I) ≈ 1. The experi-
mental value of 〈Γγ〉 at Bn is then the weighted sum of the level widths of
states with It ± 1/2 according to Eq. (4.41). From this expression the nor-
malization constant B can be determined as described in Ref. [61]. How-
ever, some considerations must be done before normalizing according to
Eq. (4.41).

Methodical difficulties in the primary γ-ray extraction prevent deter-
mination of the function T (Eγ) for Eγ < Emin

γ as discussed previously. In
addition, the data at the highest γ-energies in the interval Bn − Emin

γ ≤
Eγ ≤ Bn suffer from poor statistics. Therefore, T is extrapolated with an
exponential function, as demonstrated for 51V in Fig. 4.10. The contribu-
tion of the extrapolation to the total radiative width given by Eq. (4.41)
does not normally exceed 15%, thus the errors due to a possibly poor ex-
trapolation are expected to be of minor importance [61].

4.4 Possible uncertainties in the normalization
procedures

4.4.1 The spin distribution

The quantity ρ(Bn) is calculated assuming a bell-like spin distribution ac-
cording to [16] given by Eq. (4.42) and using a model for the spin cutoff
parameter σ taken from [16] in the case of the Mo and V nuclei, and from
[18] for the Sc isotopes. Both these assumptions could in principle be a
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Figure 4.10: Extrapolation of the γ-ray transmission coefficient of 51V. The data
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source of uncertainty, as it is hard or even impossible to measure the total
spin distribution experimentally at high excitation energy.

In Fig. 4.11 various spin distributions for 44Sc are shown, calculated at
an excitation energy of 8.0 MeV. In the two upper panels, the spin distri-
bution of [16] has been used, but with the expression for the spin cutoff
parameter of [16] given in Eq. (2.5) in panel a) and the formalism of [18]
(Eq. (2.9)) in panel b). In panel c) the spin distribution the spin-dependent
level densities of [23] are shown. Here, the authors also have assumed a
bell-shaped spin distribution according to Eqs. (7) and (8) in [23]. It is clear
from the figure that the spin distributions in panel b) and c) give a broader
spin distribution and a centroid shifted to higher spins compared to the
one in panel a).

In panel d), the spin distribution of the calculated spin- and parity-
dependent level density of [25] briefly discussed in Sec. 2.1 is shown. There
are no underlying assumptions for the spin distribution in these calcula-
tions. It is seen from this distribution that there is a significant difference
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Figure 4.11: Relative spin distributions calculated for E = 8.0 MeV of 44Sc (see
text).

in the relative numbers of states with spin 0 and 1. The normalization
method for the level density described above is especially sensitive to such
variations at low spin if the neutron resonance spacing D0 is measured
from a neutron capture reaction where the target nucleus is even-even,
that is, with zero ground-state spin. Then the states reached in neutron
capture can only have spin 1/2+, and the number of all other states must
be estimated using a certain spin cutoff parameter, introducing a larger
uncertainty in the calculated ρ(Bn). Therefore it is preferred to calculate
ρ(Bn) from both D0 and D1 resonance spacings if possible, since in the lat-
ter, also states with 3/2− are reached for target nuclei with Iπ = 0+, and
will therefore decrease this uncertainty.
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4.4.2 The parity distribution

As described above, for both the normalization of the level density and the
γ-ray transmission coefficient the assumption of equally many levels with
positive and negative parity is used. For the level density, this assumption
is likely to be approximately valid since it is utilized for the calculation of
ρ(Bn), which is at relatively high excitation energies for the nuclei consid-
ered in this work (see Table 3.4). For the nuclei 44,45Sc and 93−98Mo, this
assumption has been investigated by calculating the parity distribution
with the code ’Micro’ presented in [10]. Using ρ+ and ρ− to denote the
level density with positive and negative parity levels, the parity asymme-
try α is defined as [71]

α =
ρ+ − ρ−
ρ+ + ρ−

, (4.43)

which gives −1 and 1 for only negative and positive parities, respectively,
and 0 when both parities are equally represented.

The resulting parity distributions are shown in Figs. 4.12 and 4.13 for
the Sc and Mo isotopes. It is seen in Fig. 4.12 that α is close to zero for
E ≈ 10 MeV for both 44,45Sc, in excellent agreement with the findings of
[71]. By inspecting the 2+/2− level densities in 58Ni and 90Zr (Ref. [72]
and references therein), one sees that this is also the case for these nuclei.
However, the calculations for the Mo isotopes indicate a majority of levels
with positive parity, even at excitation energies around 8 MeV, in conflict
with the 90Zr data and the calculations of [25].

To investigate the impact of the assumption of parity symmetry on the
calculations of ρ(Bn), the ratio ρ+/ρ− as a function of the parity asymme-
try α is defined from Eq. (4.43) as

ρ+

ρ−
=

1 + α

1− α
. (4.44)

Inserting α ≈ 0.3 found in the calculations on 93Mo, we get

ρ+ ≈ 2 · ρ−, (4.45)

which means that the assumption of equally many positive and negative
parity levels are clearly not fulfilled in the ’Micro’ calculations.

The parity distribution should be taken into account when calculat-
ing ρ(Bn) for cases where the parity asymmetry is large. If one assumes
that the spin- and parity-projected level density ρ(E, J, π) can be described
by [73]

ρ(E, J, π) = ρ(E) · g(E, J) · P(E, π), (4.46)
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Figure 4.12: Parity distributions as a function of excitation energy calculated for
44,45Sc (see text).

where ρ(E) is the total level density at excitation energy E, g(E, J) is the
spin distribution given by Eq. (4.42), and P(E, π) is the parity projection
factor. According to Eq. (4.35), we get

1
D0

= ρ(Bn) · g(Bn, J = I ± 1/2) · P(Bn, πt) (4.47)

for the neutron resonance spacing at Bn reaching states with parity πt ·
(−1)` = πt for s-wave neutrons having ` = 0. Now, defining the level
density of levels with the same parity πg as the ground state of the nucleus
as ρg, and the level density of levels with parity πs opposite to the ground
state of the nucleus as ρs, we obtain [73]

Pg ≡ P(E, π = πg) =
ρg

ρ
=

1
1 + ξ

, (4.48)

Ps ≡ P(E, π = πs) =
ρs

ρ
=

1
1 + 1/ξ

, (4.49)
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Figure 4.13: Parity distributions as a function of excitation energy calculated for
93−98Mo (see text).

with

ξ =
ρs

ρg
. (4.50)

Further,

1
D0

= ρ(Bn) [g(Bn, J = I + 1/2) + g(Bn, J = I − 1/2)]Pg(Bn) (4.51)

= ρ(Bn) [g(Bn, J = I + 1/2) + g(Bn, J = I − 1/2)]
1

1 + ξ
, (4.52)
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which gives

ρ(Bn) =
σ2

D0

1 + ξ

(I + 1) exp [−(I + 1)2/2σ2] + I exp [−I2/2σ2]
, (4.53)

using Eq. (4.42). In the future, the expression given in Eq. (4.53) should be
used for the calculation of ρ(Bn) instead of Eq. (4.35) if the parity asym-
metry is known, and especially if the parity asymmetry at Bn is large. The
estimation of the factor ξ should be based on experimental data, or on
realistic calculations if such data are not available.

The assumption of equally distributed levels with positive and neg-
ative parity influence also the normalization of the γ-ray transmission
coefficient. To take into account the parity distribution, one can modify
Eq. (4.40) according to Eq. (4.46) so that

ρ(E− Eγ, If,±πf) = ρ(E− Eγ) · g(E− Eγ, If) · Pg(E− Eγ, πf). (4.54)

Instead of Eq. (4.41), one finds

〈Γγ(Bn, It ± 1/2, πt)〉 =
B

2πρ(Bn, It ± 1/2, πt)

∫ Bn

Eγ=0
dEγTXL(Eγ)

×ρ(Bn − Eγ)
1

∑
J=−1

g(Bn − Eγ, It ± 1/2 + J)Pg(Bn − Eγ, πf),

(4.55)

where Pg now must be evaluated for every argument Bn − Eγ.

4.5 Robustness test of the Oslo method

The nucleus 96Mo has become a benchmark for other experimental groups
trying to verify or falsify the upbend structure seen in the γ-ray strength
function [9]. For 96Mo, it has been discovered that the extraction of the
first-generation spectra used in Ref. [9] was not performed in an optimal
way, and therefore the data sets from the reactions 96Mo(3He,3He′γ)96Mo
and 97Mo(3He,αγ)96Mo have recently been reanalyzed [74]. The two main
reasons for reanalyzing these data are explained in the following.

In the previous analysis, the γ-ray energies close or below the strong
778.2 keV 2+ → 0+ ground-state band transition were included, and this
transitional region in the experimental (E, Eγ) matrix were not properly
subtracted in the first-generation procedure. These γ-ray energies are now
excluded from the further analysis.
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The second point concerns the estimate of the γ-ray multiplicity as
function of excitation energy, which was used for the normalization proce-
dure in the first-generation method as explained in Sec. 4.2. In the previous
analyses, the statistical multiplicity at excitation energy E was estimated
by introducing a lower γ-ray threshold E0 and an effective excitation en-
ergy E− Eentry giving

〈Mstat
γ 〉 = (E− Eentry)/〈Eγ〉>E0 , (4.56)

where 〈Eγ〉>E0 is the average energy of the γ spectrum for Eγ > E0. The
Eentry parameter mimics the excitation energy at which the statistical γ-
ray transitions enter the ground-state band. This treatment is applicable
to rare earth nuclei, where the CACTUS efficiency for the lowest ground
state band transitions, typically the 4+ → 2+ and the 2+ → 0+ transitions,
is low. However, for 96Mo the energy of the lowest ground-state band
transitions are detected with high efficiency, as the first excited state is at
E = 778.2 keV [26]. Therefore, in the present analysis the straightforward
expression for the total γ-ray multiplicity

〈Mtot
γ 〉 = E/〈Eγ〉, (4.57)

is used, where the excitation energy is simply divided by the average en-
ergy of the γ spectrum as in Eq. (4.21).

In Figs. 4.14 and 4.15 the reanalyzed level densities and γ-ray strength
functions are compared with previous data [9, 13]. Note that the error bars
include statistical errors only. A very good resemblance between the pick-
up reaction and the inelastic scattering reaction is seen. The reanalyzed
level densities are very similar to the previous ones, and the same is true
for the γ-ray strength functions, except that the upbend is less pronounced
due to the exclusion of the 778.2 keV transition. This gives further confi-
dence in the robustness and stability of the Oslo method, as different ways
of performing the analysis give very similar results.
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Figure 4.14: Experimental level densities of 96Mo from the (3He,α) (filled circles)
and the (3He,3He’) (open circles) reaction. The data from the new analysis is
compared with previously published data [13].
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Figure 4.15: Experimental γ-ray strength functions of 96Mo from the (3He,α)
(filled circles) and the (3He,3He’) (open circles) reaction. The data from the new
analysis is compared with previously published data [9].
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5.1 Brief introduction to the papers

Paper 1 and 2: The Mo isotopes

The motivation for the Mo experiments was primarily to test the Oslo
method in the mass region near the N = 50 shell closure. Also, as the
ground-state deformation parameter β2 goes down from 0.17 in 98Mo to
0.11 in 92Mo [19], one would expect to see deformation effects in both the
level density (decreasing ρ(E) as the deformation decreases) and the γ-ray
strength function (decreasing f (Eγ) as the deformation decreases since the
tail of the GEDR is expected to decrease when approaching spherical nu-
clear shape).

In paper 1, the γ-ray strength functions of 93−98Mo were studied through
the analysis of the measured (3He,3He′γ) and (3He,αγ) reactions as de-
scribed in Chapters 3 and 4. It was found that the γ-ray strength functions
agreed well with the low-energy tail of the GEDR for γ-ray energies larger
than about 3 MeV. However, below Eγ ≈ 3 MeV, an increase of the strength
functions was found for all nuclei, similar to the behavior previously dis-
covered in 56,57Fe [8]. This feature was found to be present at all initial
excitation energies between 5− 8 MeV.

In paper 2, the level densities of 93−98Mo were investigated and ana-
lyzed within the framework of thermodynamics. It was found that the
level density decreased when approaching the N = 50 shell closure. For
example, ρ(6 MeV) ≈ 4000 MeV−1 for 98Mo, while ρ(6 MeV) ≈ 1400 MeV−1

for 94Mo. Also, the level densities of 93,94Mo display more structures than
the heavier Mo isotopes.

Thermodynamic quantities such as entropy, temperature, and heat ca-
pacity were deduced using both the microcanonical and canonical ensem-
ble, and signatures of phase transitions were looked for (see Appendix B).
The difference in the microcanonical entropies of 93−94Mo were found to
be close to zero, while for 97−98Mo it was about 1kB. These observations
were qualitatively explained considering the available single-particle or-
bits in the two cases. The canonical heat capacities showed an S-like func-
tional form that might indicate a pairing phase transition, consistent with
shell-model Monte Carlo simulations.

Paper 3: The V isotopes

In light of the successful application of the Oslo method on Fe and Mo
nuclei, 51V with N = 28 was chosen for the next experimental campaign
at OCL. Now, the enhancement in the γ-ray strength function at low γ-
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ray energies had been discovered not only in 56,57Fe, but also in all the Mo
isotopes studied in paper 1. One could therefore suspect that this feature
was not singular for Fe and Mo due to some specific nuclear-structure
effects in these nuclei, but rather could be a general feature, perhaps some
sort of low-energy resonance, in a certain mass region.

The level densities and γ-ray strength functions of 50,51V measured us-
ing the Oslo method on the (3He,3He′γ) and (3He,αγ) coincidence spectra.
The level density of 51V showed distinct structures and bumps at excita-
tion energies up to ≈ 4.5 MeV, interpreted as effects of the N = 28 shell
closure that inhibit the neutrons from participating in the creation of levels
until the excitation energy is high enough to let the neutrons cross the shell
gap. Microcanonical entropies were deduced from the level densities, and
the entropy difference were found to be about 1.2kB. The γ-ray strength
functions resembled the ones in Fe and Mo, with a good agreement with
the low-energy GEDR tail at high γ-ray energies and an enhancement at
low γ-ray energies.

Paper 4 and 5: The Sc isotopes

Going even further down in mass number and approaching the Z = 20
major shell, the level densities and γ-ray strength functions of the nu-
clei 44,45Sc were extracted from the (3He,3He′γ) and (3He,αγ) data taken
at OCL. The results were presented in paper 4. The level densities of
both nuclei turned out to be much less structured than for 51V, in spite
of them having only one proton above the Z = 20 shell. However, the
neutrons are mid-shell in the 1 f7/2 orbit, and, apparently, produce a rather
smooth behavior of the level density function. The level densities were
compared with calculations performed with a microscopic combinatorial
model called ’Micro’, where BCS quasi-particles are scattered randomly
into Nilsson single-particle levels, and collective states were schematically
added. The agreement with this very simple model was satisfactory, es-
pecially for 44Sc. Also the average number of broken Cooper pairs and
the parity asymmetry were extracted from the calculations. The γ-ray
strength functions were compared to (γ,n) and (γ,p) data and to the theo-
retical GEDR tail, and a good agreement was again found at γ-ray energies
above 4 MeV. The γ-ray strength functions are seen to increase for γ-ray
energies below 4 MeV, and this upbend structure is shown to be indepen-
dent of initial excitation energy for E = 4.5− 9.3 MeV in 45Sc. Thus, the
existence of this structure has been established in twelve nuclei from four
different elements (Sc, V, Fe and Mo).
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The motivation for the particle-evaporation experiment at Ohio Uni-
versity presented in paper 5 was twofold. First, since the normalization
of the level density in 44Sc was based on proton resonances with no dis-
tinction of ` = 0, 1, this normalization might prove wrong even though
a reasonable agreement was found with the level density and strength
function of 45Sc. By performing a particle-evaporation experiment for the
compound reaction 45Sc(3He,α)44Sc, where the α particles were measured
in backward angles, the level density could be extracted using a Hauser-
Feshbach model to describe the measured evaporation spectra. This method,
which is briefly described in Chapter 2, will give the slope of the level
density directly without any input from auxiliary data except the particle
transmission coefficients determined from optical potential models. Thus,
an independent check of the slope of the 44Sc level density and strength
function could be obtained.

Second, the overall agreement between the level density of 56Fe previ-
ously measured at OCL and Ohio University was very good [28]. There-
fore, we wanted to see if this was also the case for 44Sc. The results pre-
sented in paper 5 was very encouraging, as the slope of the level density
utilized in the OCL data was verified, and the agreement between the OCL
and Ohio data were excellent (see also Fig. 2.2). The reliability of the Oslo
method is thus further strengthened.
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5.2 Paper 1: Radiative strength functions in 93−98Mo
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Radiative strength functions (RSFs) in 93−98Mo have been extracted using the (3He,αγ ) and (3He,3He′γ )
reactions. The RSFs are U shaped as function of γ energy with a minimum at around Eγ = 3 MeV. The
minimum values increase with neutron number because of the increase in the low-energy tail of the giant electric
dipole resonance with nuclear deformation. The unexpected strong increase in strength below Eγ = 3 MeV, here
called soft pole, is established for all 93−98Mo isotopes. The soft pole is present at all initial excitation energies
in the 5−8-MeV region.
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I. INTRODUCTION

The γ decay of nuclei at high excitation energy tends to
follow certain statistical rules. The dominating γ -transition
driving factors are the number of accessible final states and
the γ -ray transmission coefficient. The largest uncertainties
are connected to the latter factor. In the description of this
factor Blatt and Weisskopf [1] included an E2L+1

γ dependency,
where L is the angular momentum transfer in the transition.
In their definition of the radiative strength function (RSF),
this simple energy dependence was divided out. With such
a definition, the single-particle RSF (Weisskopf ) estimates
become independent of γ -ray energy. Various concepts of
RSFs and γ decay in the continuum are outlined in the reviews
of Bartholomew et al. [2,3].

It has been well known that the RSF is not at all constant
but shows an additional Ex

γ dependency with x = 1−2 for
γ energies in the 4−8-MeV region. Axel [4] argued that
this feature is because of the collective giant electric dipole
resonance (GEDR), which represents the essential mechanism
for the γ decay. However, the situation is more complex.
Further studies [5–7] reveal fine structures in the RSF, which
are commonly called pygmy resonances. This name does not
refer to specific structures: the E1 pygmy resonance in the
Eγ = 5−7 MeV region of gold to lead nuclei could be because
of neutron skin oscillations [8], whereas bumps in the 3-MeV
region of rare earth nuclei are now determined to be of M1
character [9,10]. The electromagnetic character and measured
strength of the latter pygmy resonance is compatible with the
scissors mode [11]. Recently [12,13], the RSF picture of iron
isotopes has been further modified by the observation of an
anomalous increase in strength at γ energies below 4 MeV.

∗Electronic address: magne.guttormsen@fys.uio.no

It is clear that in the present situation, new experimental results
are urgently needed.

The stable molybdenum isotopes are well suited as targets
for the study of nuclear properties when going from spherical
to deformed shapes. In this work we perform a systematic
analysis of the RSFs of the six 93−98Mo isotopes. The
RSFs depend on the dynamic properties of electric charges
present within these systems (Z = 42). Because the nuclear
deformation varies from spherical shapes (β ∼ 0) at N = 51 to
deformed shapes (β ∼ 0.2) at N = 56, we expect to observe
effects because of shape changes. Furthermore, these nuclei
reveal weak GEDR tails at low Eγ , making them interesting
objects in the search for other weak structures in the RSF.

The Oslo Cyclotron group has developed a sensitive tool
to investigate RSFs for Eγ below the neutron binding energy
Sn. The method is based on the extraction of primary γ -ray
spectra at various initial excitation energies Ei measured in
particle reactions with one and only one charged ejectile.
From such a set of primary γ spectra, nuclear level densities
and RSFs can be extracted [14–16]. The level density reveals
essential nuclear structure information such as thermodynamic
properties and pair correlations as functions of temperature.
These aspects of the molybdenum isotopes will be presented in
a forthcoming work. Various applications of the Oslo method
have been described in Refs. [17–21].

II. EXPERIMENTAL METHOD

The particle-γ coincidence experiments were carried out at
the Oslo Cyclotron Laboratory for 93−98Mo using the CACTUS
multidetector array. The charged ejectiles were detected with
eight particle telescopes placed at an angle of 45◦ relative to
the beam direction. An array of 28 NaI γ -ray detectors with

0556-2813/2005/71(4)/044307(7)/$23.00 044307-1 ©2005 The American Physical Society
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a total efficiency of ∼15% surrounded the target and particle
detectors.

In the present work, results from eight different reactions
on four different targets are discussed. Results from two of
those reactions have been reported earlier. The beam energies
for the different reactions are given in parentheses:

1. 94Mo(3He,αγ )93Mo (new, 30 MeV)
2. 94Mo(3He,3He′γ )94Mo (new, 30 MeV)
3. 96Mo(3He,αγ )95Mo (new, 30 MeV)
4. 96Mo(3He,3He′γ )96Mo (new, 30 MeV)
5. 97Mo(3He,αγ )96Mo (reported in [12,21], 45 MeV)
6. 97Mo(3He,3He′γ )97Mo (reported in [12,21], 45 MeV)
7. 98Mo(3He,αγ )97Mo (new, 45 MeV)
8. 98Mo(3He,3He′γ )98Mo (new, 45 MeV).

The targets were self-supporting metal foils enriched to
∼95% with thicknesses of ∼2 mg/cm2 . The experiments were
run with beam currents of ∼2 nA for 1–2 weeks. The reaction
spin windows are typically I ∼ (2−6)h̄.

The experimental extraction procedure and the assumptions
made are described in Refs. [14,16] and references therein. For
each initial excitation energy Ei , determined from the ejectile
energy and reaction Q value, γ -ray spectra are recorded. Then
the spectra are unfolded using the known γ -ray response
function of the CACTUS array [22]. These unfolded spectra
are the basis for making the first-generation (or primary) γ -ray
matrix [23], which is factorized according to the Brink-Axel
hypothesis [4,24] as follows:

P (Ei,Eγ ) ∝ ρ(Ei − Eγ )T (Eγ ). (1)

Here, ρ is the level density and T is the radiative transmission
coefficient.

The ρ and T functions can be determined by an iterative
procedure [16] through the adjustment of each data point of
these two functions until a global χ2 minimum of the fit to
the experimental P (Ei,Eγ ) matrix is reached. It has been
shown [16] that if one solution for the multiplicative functions
ρ and T is known, one may construct an infinite number of
other functions, which give identical fits to the P matrix by the
following:

ρ̃(Ei − Eγ ) = A exp[α(Ei − Eγ )] ρ(Ei − Eγ ), (2)

T̃ (Eγ ) = B exp(αEγ )T (Eγ ). (3)

Consequently, neither the slope (α) nor the absolute values of
the two functions (A and B) can be obtained through the fitting
procedure.

The parameters A and α can be determined by normalizing
the level density to the number of known discrete levels at low
excitation energy [25] and to the level density estimated from
neutron-resonance spacing data at the neutron binding energy
Sn [26]. The procedure for extracting the total level density ρ

from the resonance energy spacing D is described in Ref. [16].
Here, we will discuss only the determination of parameter B
of Eq. (3), which gives the absolute normalization of T . For
this purpose we utilize experimental data on the average total
radiative width of neutron resonances at Sn 〈�γ 〉.

We assume here that the γ decay in the continuum is
dominated by E1 and M1 transitions. For initial spin I and

parity π at Sn, the width can be written in terms of the
transmission coefficient by the following [27]:

〈�γ 〉 = 1

2ρ(Sn, I, π )

∑
If

∫ Sn

0
dEγ BT (Eγ )

× ρ(Sn − Eγ , If ), (4)

where the summation and integration run over all final levels
with spin If , which are accessible by γ radiation with energy
Eγ and multipolarity E1 or M1.

A few considerations have to be made before B can
be determined. Methodical difficulties in the primary γ -ray
extraction prevents determination of the functions T (Eγ )
in the interval Eγ < 1 MeV and ρ(E) in the interval E >

Sn − 1 MeV. In addition, T (Eγ ) at the highest γ energies,
above Eγ ∼ Sn − 1 MeV, suffers from poor statistics. For the
extrapolation of ρ we apply the back-shifted Fermi gas level
density as demonstrated in Ref. [20]. For the extrapolations
of T we use an exponential form. As a typical example, the
extrapolations for 98Mo are shown in Fig. 1. The contribution
of the extrapolations of ρ and T to the calculated radiative
width in Eq. (4) does not exceed 15% [18]. The experimental
widths 〈�γ 〉 in Eq. (4) are listed in Table I. For 94Mo,
this width is unknown and is estimated by an extrapolation
based on the 96Mo and 98Mo values.

The total radiative strength function for dipole radiation
(L = 1) can be calculated from the normalized transmission
coefficient T by the following:

f (Eγ ) = 1

2π

T (Eγ )

E3
γ

. (5)

The RSFs extracted from the eight reactions are displayed in
Fig. 2. As expected, the RSFs do not seem to show any odd-
even mass differences. The results obtained for the (3He,α)
and (3He,3He′) reactions populating the same residual nucleus
reveal very similar RSFs. Also for 96Mo two different beam
energies have been applied, giving very similar RSFs. Thus,
the observed energy and reaction independency gives further
confidence in the Oslo method.

III. DESCRIPTION OF THE RADIATIVE
STRENGTH FUNCTIONS

An inspection of the experimental RSFs of Fig. 2 reveals
that the RSFs are increasing functions of γ energy for Eγ >

3 MeV. This indicates that the RSFs are influenced by the tails
of the giant resonances. As follows from previous work, the
main contribution (about 80%) is because of the electric dipole
resonance (GEDR). The magnetic resonance (GMDR) and the
isoscalar E2 resonance are also present in this region.

If the GEDR is described by a Lorentzian function, one
will find that the strength function approaches zero in the limit
Eγ → 0. However, the 144Nd(n,γα) reaction [29] strongly
suggests that fE1 has a finite value in this limit. Kadmenskiı̆,
Markushev, and Furman (KMF) have developed a model [30]
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FIG. 1. Measured level density ρ (upper
panel) and radiative transmission coefficient T
(lower panel) for 98Mo. The straight lines are
extrapolations needed to calculate the normaliza-
tion integral of Eq. (4). The triangle in the upper
panel is based on resonance spacing data at Sn.

describing this feature for the electric dipole RSF:

fE1(Eγ , T ) = 1

3π2h̄2c2

0.7σE1�
2
E1

(
E2

γ + 4π2T 2
)

EE1
(
E2

γ − E2
E1

)2 . (6)

The temperature T depends on the final state f and for
simplicity we adapt the schematic form

T (Ef ) = √
Uf /a, (7)

where the level density parameter is parametrized as a =
0.21A0.87 MeV−1. The intrinsic energy is estimated by
Uf = Ef − C1 − Epair with a back-shift parameter of C1 =
−6.6A−0.32 MeV [31]. The pairing energy contribution Epair

is evaluated from the three-point mass formula of Ref. [33].
Although the KMF model has been developed for spherical

nuclei, it has been successfully applied to 56,57Fe and several

rare earth nuclei [13,18–20] assuming a constant temperature
parameter T in Eq. (6) (i.e., one that is independent of excitation
energy). In this work we assume that the temperature depends
on excitation energy according to Eq. (7), which gives an
increase in the RSF at low γ energy [20].

The GMDR contribution to the total RSF is described
by a Lorentzian. This approach is in accordance with nu-
merous experimental data obtained so far [26]. However,
the experimental data scatter and the resonance parameter
values are uncertain. This is also true for the E2 resonance.
The Lorentzian description of the M1 and E2 contributions
are given in Ref. [17]. The resonance parameters for the
E1,M1, and E2 resonances are taken from the compilations of
Refs. [26,32] and are listed in Table I.

The enhanced RSF at low γ energies has at present no
theoretical explanation. Recently, the same enhancement has

TABLE I. Parameters used for the radiative strength functions. The data are taken from Ref. [26]. The
E1 resonance parameters for the even Mo isotopes are based on photo absorption experiments [32], and the
parameters for the odd Mo isotopes are derived from interpolations.

Nucleus EE1 σE1 �E1 EM1 σM1 �M1 EE2 σE2 �E2 〈�γ 〉
(MeV) (mb) (MeV) (MeV) (mb) (MeV) (MeV) (mb) (MeV) (meV)

93Mo 16.59 173.5 4.82 9.05 0.86 4.0 13.91 2.26 4.99 160(20)
94Mo 16.36 185.0 5.50 9.02 1.26 4.0 13.86 2.24 4.98 170(40)a

95Mo 16.28 185.0 5.76 8.99 1.38 4.0 13.81 2.22 4.97 135(20)
96Mo 16.20 185.0 6.01 8.95 1.51 4.0 13.76 2.21 4.96 150(20)
97Mo 16.00 187.0 5.98 8.92 1.58 4.0 13.71 2.19 4.95 110(15)
98Mo 15.80 189.0 5.94 8.89 1.65 4.0 13.66 2.17 4.93 130(20)

aEstimated from systematics.
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FIG. 2. Normalized RSFs for 93−98Mo. The filled and open circles
represent data taken with the (3He,α) and (3He,3He′) reactions,
respectively. The filled triangles in 93,95Mo are estimates of E1 RSF
of hard primary γ rays [28] . The solid and dashed lines are fits to the
RSF data from the two respective reactions (see text).

been observed in the iron isotopes [12,13]. We call this
structure a soft pole in the RSF and choose a simple power law
parametrization given by the following:

fsoftpole = 1

3π2h̄2c2
AE−b

γ , (8)

where A and b are fit parameters and Eγ is given in
MeV.

Previously, a pygmy resonance around Eγ ∼ 3 MeV has
been reported in several rare-earth nuclei [18–20]. The electro-
magnetic character of the corresponding RSF structure is now
established to be of M1 type [9,10] and is interpreted as the
scissors mode. Deformed nuclei can in principle possess this
collective motion, and, for example, 98Mo with a deformation
of β ∼ 0.18, could eventually show some reminiscence of
the scissors mode. Data on 94Mo [34] and 96Mo [35] show
a summed M1 strength to mixed symmetry 1+ states around
∼3.2 MeV on the order of ∼0.6µ2

N . This is about one order
of magnitude lower than the M1 strength observed in well-
deformed rare-earth nuclei using the present method. This M1
strength is deemed too weak to cause a visible bump in our
RSFs above 3 MeV.

We conclude that a reasonable composition of the total RSF
is as follows:

f = κ(fE1 + fM1 + fsoftpole) + E2
γ fE2, (9)

where κ is a normalization constant. Generally, its value
deviates from unity for several reasons; the most important
reasons are theoretical uncertainties in the KMF model and
the evaluation of B in Eq. (4). We use κ,A, and b as free
parameters in the fitting procedure, and the results for the
eight reactions are summarized in Table II.

In Fig. 3 the various contributions to the total RSF of 98Mo
are shown. The main components are the GEDR resonance
and the unknown low-energy structure. We observe that the
E1 component exhibits an increased yield for the lowest γ

energies because of the increase in temperature T. However,
this effect is not strong enough to explain the low-energy
upbend.

Figure 2 shows the fit functions for all reactions and
gives qualitative good agreements with the experimental data.
The fitting parameters κ,A, and b are all similar within the
uncertainties. It should be noted that the soft pole parameters

TABLE II. Soft pole fitting parameters and integrated strenghts. The B values are only lower estimates (see
text).

Reaction κ A b B(E1↑) B(M1↑) B(E2↑)
(mb/MeV) (e2 fm2 ) (µ2

N ) (103e2 fm4)

(3He,α)93Mo 0.44(4) 0.37(7) 2.6(3) 0.021(5) 1.9(4) 14(3)
(3He,3He′)94Mo 0.36(2) 0.48(5) 2.5(2) 0.023(3) 2.1(3) 16(2)
(3He,α)95Mo 0.39(2) 0.48(6) 2.6(2) 0.024(4) 2.2(3) 16(2)
(3He,3He′)96Mo 0.36(1) 0.60(4) 3.2(2) 0.022(2) 2.0(2) 16(1)
(3He,α)96Mo 0.32(4) 0.47(14) 2.7(6) 0.019(7) 1.7(6) 13(4)
(3He,3He′)97Mo 0.38(3) 0.47(7) 2.4(3) 0.025(5) 2.3(4) 16(3)
(3He,α)97Mo 0.45(5) 0.30(10) 2.2(5) 0.020(8) 1.9(7) 13(5)
(3He,3He′)98Mo 0.52(4) 0.22(7) 2.1(5) 0.018(7) 1.6(6) 12(4)
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FIG. 3. Experimental radiative strength function of 98Mo com-
pared to a model description, including GEDR, GMDR, and the
isoscalar E2 resonance. The empirical soft pole component is used
to describe the low energy part of the RSF.

coincide with the description of the 57Fe nucleus [13] having
A = 0.47(7) mb/MeV and b = 2.3(2).

The RSFs for Eγ > 3 MeV when going from N = 51 to 56
increase by almost a factor of 2 and this can be understood from
the corresponding evolution of nuclear deformation. Following
the onset of prolate deformation the GEDR will split into two
parts, where 1/3 of its strength is shifted down in energy and
2/3 up. Photoneutron cross sections [32] show no splitting into
two separate bumps; however, the observed increase in width
�E1 as a function of neutron number (see Table I) supports
the idea of a splitting, which is a well-known feature in other
more deformed nuclei. Figure 2 demonstrates that the adopted
widths describe very well the variation of the RSF strength as
function of mass number.

To investigate whether the prominent soft pole structure
is present in the whole excitation energy region, we have per-
formed the following test. Assuming that the level density from
Eq. (1) is correct, we can estimate the shape of the strength
functions starting at various initial excitation energies using
the following:

f (Eγ ,Ei) = 1

2π

N (Ei)P (Ei,Eγ )

ρ(Ei − Eγ )E3
γ

. (10)

Actually, f (Eγ ,Ef ) would have been the proper expression
to investigate, but because of technical reasons we chose
f (Eγ ,Ei), which is equivalent to investigating f (Eγ ,Ef )
because in our method Ef and Ei are uniquely related
by Ef = Ei − Eγ . One problem is that the normalization

FIG. 4. RSFs for 96,98Mo at various initial excitation energies.
The soft pole is present for all Ei . The solid lines display the RSFs
obtained in Fig. 2.

constant is only roughly known through the following estimate:

N (Ei) =
∫ Ei

0 dEγ ρ(Ei − Eγ )T (Eγ )∫ Ei

0 dEγ P (Ei,Eγ )
, (11)

with Ei < Sn. However, for the expression f (Eγ ,Ei) we
are interested only in the shape of the RSFs, and an exact
normalization is therefore not crucial. The evaluation assumes
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that eventual temperature-dependent behavior of the RSF is
small compared to the soft pole structure.1

In Fig. 4, the RSFs for 96,98Mo are shown at various initial
energies Ei . For comparison, the figure also includes the global
RSFs (solid lines) obtained with the Oslo method (Fig. 2).
Within the error bars the data support that the soft pole is
present in all the excitation bins studied.

The origin of the soft pole cannot be explained by any
known theoretical model. One would therefore need to know
the γ -ray multipolarity as guidance for theoretical approaches
to this phenomenon. Rough estimates of the reduced strength
can be obtained from the following:

B(XL↑) = 1

8π

L (2L + 1) [(2L + 1)!!]2

L + 1
(h̄c)2L+1

×
∫ 3 MeV

1 MeV
dEγ fXL(Eγ ). (12)

In the evaluation, we have integrated the soft pole between
1 and 3 MeV. Thus, the estimates listed in Table II for the
reactions studied give only a lower limit for the respective
B(XL↑) values. The correct result will of course depend on
the functional form of fsoftpole(Eγ ) below 1 MeV; however,
no experimental data exist in this region and any assumption
here would be highly speculative. There seems to be no
clear dependency of the B values on mass number or nuclear
deformation.

With the assumptions above, we get in the case of an E1 soft
pole an average B(E1↑) value of 0.02 e2 fm2, which is 0.07%
of the sum rule for the GEDR. Assuming an M1 soft pole,
we get roughly B(M1↑) ∼ 2.0µ2

N , which is 3−4 times larger
than the observed strength to mixed symmetry 1+ states around
3 MeV [34,35]. Provided the soft pole has E2 multipolarity
we obtain finally a B(E2↑) value around 15000 e2 fm4,
which is 5–15 times larger than the ones for the excitation to the

1Simulations using the KMF model with fixed temperature in
the T ∼ 0.8 MeV region indicate a maximum 20% effect from
temperature dependence of the RSF.

first excited 2+ states in the even molybdenum isotopes. Thus,
we cannot exclude any of these multipolarities, since neither
of them would yield unreasonably high transition strengths.
Moreover, we would like to point out that the observed soft
pole resides on top of the tails of giant resonances. Thus,
the transition strength included in the soft pole has to be
added to the strength in the giant resonance tail of the correct
multipolarity to give the summed transition strength.

IV. SUMMARY AND CONCLUSIONS

As expected, the observed RSFs reveal very similar shapes
because they all refer to isotopes with the same nuclear charge.
When going from N = 51 to 56 the RSF increases by almost
a factor of two for Eγ > 3 MeV, which can be understood
from the change of nuclear deformation. With the onset of
deformation, the increasing resonance GEDR width �E1 is
responsible for the increasing strength.

An enhanced strength at low γ energies is observed, which
is equally strong for all isotopes and excitation energies
studied. A similar enhancement has also been seen in the
iron isotopes. The multipolarity of the soft pole radiation is
unknown and there is still no theoretical explanation for this
very interesting phenomenon.
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Level densities for 93−98Mo have been extracted using the (3He,αγ ) and (3He,3He′γ ) reactions. From the level
densities thermodynamical quantities such as temperature and heat capacity can be deduced. Data have been
analyzed by utilizing both the microcanonical and the canonical ensemble. Structures in the microcanonical
temperature are consistent with the breaking of nucleon Cooper pairs. The S shape of the heat capacity curves
found within the canonical ensemble is interpreted as consistent with a pairing phase transition with a critical
temperature for the quenching of pairing correlations at Tc ∼ 0.7−1.0 MeV.
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I. INTRODUCTION

Level density is a characteristic property of many-body
quantum mechanical systems. Its precise knowledge is often
a key ingredient in the calculation of different processes,
such as compound nuclear decay rates, yields of evaporation
residues to populate exotic nuclei, or thermonuclear rates in
astrophysical processes.

Measurements of experimental nuclear level density are
an important prerequisite for thermodynamical studies of
atomic nuclei. Level density is directly connected to the
multiplicity of states, i.e., the number of physical realizations
of the system at a certain excitation energy. The entropy is
a fundamental quantity and a measure of the disorder of the
many-body system. Within the microcanonical ensemble it is
defined as the natural logarithm of the multiplicity of states.
When the entropy is known, thermodynamic quantities such
as temperature and heat capacity can be extracted. These
quantities depend on the statistical properties of the nuclear
many-body system and may reveal phase transitions.

Pairing correlations are one of the fundamental properties
of nuclei and have been successfully described by the Bardeen-
Cooper-Schrieffer (BCS) theory of superconductivity [1].
By using the BCS theory the thermodynamical properties
of nuclear pairing were investigated in the study of warm
nuclei [2–5]. In the case of a finite Fermi system such as
the nucleus, statistical fluctuations beyond the mean field
become important. The fluctuations smooth out the sharp
phase transition, and then the pairing correlations do not
vanish suddenly but decrease with increasing temperature.
The quenching of pairing correlations has been obtained in
recent theoretical approaches: the shell-model Monte-Carlo

∗Electronic address: rositsa.chankova@fys.uio.no

(SMMC) calculations [6–8], the finite-temperature Hartree-
Fock-Bogoliubov theory [9], and the relativistic mean-field
theory [10]. Experimental data on the quenching of pair
correlations are important as a test for nuclear theories. A
long-standing problem in experimental nuclear physics has
been to observe the transition from strongly paired states at
zero temperature to unpaired states at higher temperatures.
A signature of the pairing transition at finite temperature
might be a local increase in the heat capacity as a function
of temperature [11]. Recently [12,13], fine structures in the
level densities in the 1-to 7-MeV region were reported, which
are probably because of the breaking of individual nucleon
pairs and a gradual decrease of pair correlations.

The group at the Oslo Cyclotron Laboratory (OCL) has
developed a method to extract simultaneously the level density
and the radiative strength function from primary γ spectra
[14]. The method is a further development of the sequential
extraction method [15,16]. The Oslo method has been tested
in the rare-earth mass region that led to many interesting
applications [12,17–19]. To make quantitative judgments of
the applicability of the method, the Oslo Cyclotron group
has extracted the level density and radiative strength function
(RSF) of the very light 27,28Si nuclei, where these quantities are
known. Excellent overall agreement was found [20]. Subse-
quently, another extension has been made to the intermediate
nuclei 56,57Fe and 96,97Mo, and it has been shown that the
method can be applied in this intermediate mass region where
the level density is still relatively low [21,22]. All of these
successful applications have motivated us to employ the Oslo
method to study medium-heavy nuclei in the vicinity of closed
shells.

The naturally occurring isotopes of molybdenum span one
of the larger isotopic ranges and are well suited as targets for
the study of nuclear properties, such as the effect of changing
from spherical to deformed shapes. When approaching closed
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shells, the nuclear structure changes significantly, and one
expects this to influence the level densities and radiative
strength functions.

The even-even 92Mo has a filled N = 50 neutron shell [23].
It is essentially a spherical nucleus and vibrations are primarily
governed by the proton core. As the mass increases from 94Mo
to 100Mo, neutrons fill the 2d5/2 and 1g7/2 subshells. Moving
away from the N = 50 shell closure, pairing and quadrupole
interactions cause a more collective behavior in the heavier
Mo isotopes. The character of the isotopes changes rapidly
from that of the essentially spherical 92Mo to nuclei making a
transition from collective vibrators to the deformed rotors of
the unstable 104Mo and 106Mo isotopes [24]. The transitional
nature of molybdenum isotopes away from N = 50 has been
the focus of several efforts as described in Ref. [25] and
references therein.

Around closed shells, effects from the increasing single-
particle energy spacings can be expected. These will also
influence the entropy difference between odd-mass and even-
even nuclei. Therefore, a statistical description of the transition
from closed shells to deformed nuclei is of great interest.

In this work, a unique and consistent investigation of the
six 93−98Mo isotopes is performed to determine experimentally
the level density from the ground state to the neutron binding
energy. The Oslo method also determines the RSFs of the
molybdenum isotopes studied; these are presented in an earlier
article [26].

II. EXPERIMENTAL METHODS

The experiments were carried out at the Oslo Cyclotron
Laboratory by bombarding 94,96,97,98Mo targets with 3He ions.
In the present work, results from eight different reactions on
four different targets are discussed. These are the following
six reactions that are the subject of the present investigation:

(i) 98Mo(3He,αγ )97Mo (45 MeV)
(ii) 98Mo(3He,3He′γ )98Mo (45 MeV)

(iii) 96Mo(3He,αγ )95Mo (30 MeV)
(iv) 96Mo(3He,3He′γ )96Mo (30 MeV)
(v) 94Mo(3He,αγ )93Mo (30 MeV)

(vi) 94Mo(3He,3He′γ )94Mo (30 MeV) together with the
reactions

(vii) 97Mo(3He,αγ )96Mo (45 MeV)
(viii) 97Mo(3He,3He′γ )97Mo (45 MeV)

which have been reported earlier [21,22]. The self-supporting
targets with thicknesses of ∼2 mg/cm2 are enriched to
∼95%. The experiments were run with beam currents of
∼2 nA for 1–2 weeks. The particle-γ coincidences were
measured with the CACTUS multidetector array. The charged
ejectiles were detected by eight particle telescopes placed at an
angle of 45◦ relative to the beam direction. An array of 28 NaI
γ -ray detectors with a total efficiency of ∼15% surrounded
the target and particle detectors.

For each initial excitation energy, the γ -ray spectra are
recorded as a function of the initial excitation energy of
the residual nucleus. This is accomplished by utilizing the
known reaction Q values and kinematics. Using the particle-γ

coincidence technique, each γ ray can be assigned to a
cascade depopulating a certain initial excitation energy in
the residual nucleus. The data are therefore sorted into total
γ -ray spectra originating from different initial excitation-
energy bins. Each spectrum is then unfolded with the NaI
response function using a Compton-subtraction method which
preserves the fluctuations in the original spectra and does
not introduce further, spurious fluctuations [27]. From the
unfolded spectra, a primary-γ matrix P (E,Eγ ) is constructed
using the subtraction method of Ref. [28].

The basic assumption of this method is that the γ -ray energy
distribution from any excitation energy bin is independent
of whether states in this bin are populated directly via the
(3He,α) or (3He,3He′) reactions or indirectly via γ decay from
higher excited levels following the initial nuclear reaction.
This assumption is trivially fulfilled if one populates the same
levels with the same weights within any excitation-energy bin,
because the decay branchings are properties of the levels and
do not depend on the population mechanisms. The assumptions
behind this method have been tested extensively by the Oslo
group and have been shown to work reasonably well [29].

The (3He,3He′γ ) and (3He,αγ ) reactions exhibit very
different reaction mechanisms. This is demonstrated in
Fig. 1, where the particle spectra in coincidence with γ rays
show indeed very different yields and peak structures.

The (3He,αγ ) pick-up reaction reveals a cross section dom-
inated by high � neutron transfer. Here, the direct population of
the residual nucleus takes place through one-particle-one-hole
components of the wave function. Such configurations are not
eigenstates of the nucleus, but they are rather distributed over
virtually all eigenstates in the neighboring excitation-energy
region. Thus, the neutron-hole strength for single-particle
levels away from the Fermi energy is distributed over a rather
large range of background states.

However, the inelastic scattering (3He,3He′γ ) reaction is
known to populate mainly collective excitations with a slightly
lower spin window. Collective excitations built on the ground
state give rise to rather pure eigenfunctions and their strength
is less spread over other eigenfunctions of the nucleus in the
neighboring excitation-energy region.

To test if the number of γ rays per cascade depends on the
two types of reactions, we have evaluated the average γ -ray
multiplicity

〈Mγ (E)〉 = E

〈Eγ 〉 , (1)

as a function of excitation energy E. The average γ -ray
energy 〈Eγ 〉 is calculated from γ spectra selected at a certain
energy E.

Figure 2 shows the γ -ray multiplicity versus excitation
energy. Despite the different reaction mechanisms, the two
reactions give similar results. In particular, the multiplicities
(solid and dashed lines) of 96Mo and 97Mo are equal within
their error bars, which gives support to the applicability of the
Oslo method for both reactions.

The experimental extraction procedure and assumptions of
the Oslo method are given in Refs. [14,29] and references
therein. The first generation (or primary) γ -ray matrix that is
obtained as described above can be factorized according to the
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FIG. 1. Charged ejectile spectra for 93−98Mo in coincidence with
γ -rays, labeled by the product nuclei. The arrows indicate the neutron-
separation energy Bn.

Brink-Axel hypothesis [30,31] as

P (E,Eγ ) ∝ ρ(E − Eγ )T (Eγ ), (2)

where ρ is the level density and T is the radiative transmission
coefficient.

The ρ and T functions can be determined by an iterative
procedure [14] through the adjustment of each data point
of these two functions until a global χ2 minimum with the
experimental P (E,Eγ ) matrix is reached. It has been shown
[14] that if one solution for the multiplicative functions ρ and
T is known, one may construct an infinite number of other
functions, which give identical fits to the P matrix by

ρ̃(E − Eγ ) = A exp[α(E − Eγ )] ρ(E − Eγ ), (3)

T̃ (Eγ ) = B exp(αEγ )T (Eγ ). (4)

FIG. 2. γ -ray multiplicity evaluated by Eq. (1) versus excitation
energy. The individual spectra are labeled by the product nuclei.
Solid and dashed lines represent (3He,α) and (3He,3He′) reactions,
respectively.

Consequently, neither the slope nor the absolute values of the
two functions can be obtained through the fitting procedure.
Thus, the parameters α,A, and B remain to be determined.

The parameters A and α can be determined by normalizing
the level density to the number of known discrete levels at low
excitation energy [32] and to the level density estimated from
neutron-resonance spacing data at the neutron-separation en-
ergy E = Bn [33]. The procedure for extracting the total level
density ρ from the resonance energy spacing D is described in
Ref. [14]. Because our experimental level-density data points
reach up to an excitation energy of only E ∼ Bn − 1 MeV,
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FIG. 3. Normalization procedure of the ex-
perimental level density (data points) of 97Mo.
The data points between the arrows in the upper
panel are normalized to known levels at low
excitation energy (histograms). In the lower
panel they are normalized to the level density
at the neutron-separation energy (open triangle)
using a Fermi-gas extrapolation (line).

we extrapolate with the back-shifted Fermi-gas model [34,35]

ρBSFG(E) = η
exp(2

√
aU )

12
√

2a1/4U 5/4σI

, (5)

where a constant η is introduced to adjust ρBSFG to the
experimental level density at Bn. The intrinsic excitation
energy is estimated by U = E − C1 − Epair, where C1 =
−6.6A−0.32 MeV and A are the back-shift parameter and
mass number, respectively. The pairing energy Epair is based
on pairing-gap parameters �p and �n evaluated from even-
odd mass differences [36] following the prescription of
Dobaczewski et al. [37]. The level-density parameter is given
by a = 0.21A0.87 MeV−1. The spin-cutoff parameter σI is
given by σ 2

I = 0.0888aT A2/3, where the nuclear temperature
is given by the following:

T =
√

U/a. (6)

In cases where the intrinsic excitation energy U becomes
negative, we set U = 0, T = 0, and σI = 1.

Figure 3 demonstrates the level-density normalization
procedure for the 97Mo case. The experimental data points are
normalized according to Eq. (3) by adjusting the parameters
A and α such that a least χ2 fit is obtained in between the
arrows. For the lower excitation region (see upper panel),
one should take care only to include a fit region where it
is likely that (almost) all levels are known. In practice, this
means that the level density should not exceed ∼50 levels
per MeV. At the higher excitation region (lower panel),
the Fermi-gas extrapolation connects seamlessly the
highest-energy data points with the level-density value

determined from neutron-resonance spacing at Bn. Generally,
the resulting normalization is not very dependent on the choice
of the theoretical extrapolation function (Fermi gas) or the
chosen fit region (∼4.5 to ∼7 MeV).

Unfortunately, no information exists on the level density
at E = Bn for 94Mo. Therefore, we estimate this value from
a systematics of other Mo isotopes where information on
the level density at Bn exists. In Fig. 4 we plot all the
known data points from the Mo isotopic chain. The odd-
and even-mass molybdenum nuclei fall into two groups, both
showing a decreasing level density as function of excitation
energy. This behavior is rather counterintuitive because in
a given nucleus the level density increases exponentially
with excitation energy, and for neighboring nuclei one would
naively expect quite similar level-density curves. Two effects
combine to result in the negative slope of the data points: (i) the
decrease of single-particle level density when approaching the
N = 50 shell gap resulting in a decrease of the level density in
general and (ii) the increase of the neutron-separation energy
with decreasing neutron number. For the negative slope to
emerge, both effects have to be rather precisely of the same
size for each step along the Mo isotopic chain. We have
found no good physical explanation for this to happen, but
we employ this fortuitous coincidence to estimate ρ(Bn) =
(6.2 ± 1.0)104 MeV−1 for 94Mo from our phenomenological
systematics.1 The splitting of data points between even and
odd Mo isotopes must not be interpreted solely as because

1This value also agrees within a factor of 2 with the systematics of
Ref. [38].
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FIG. 4. Level densities at the neutron-separation energy. The
unknown level density of 94Mo (open circle) is estimated from the
slope of the data points of the odd-mass molybdenum isotopes.

of the effect of the pairing-energy shift of the level-density
curves; the difference in the magnitude of Bn between neutron-
odd and -even isotopes also affects the magnitude of this
splitting.

III. LEVEL DENSITY AND FINE STRUCTURES
OF THE ENTROPY

The present knowledge on level density is concentrated
in mainly two regions; the low-excitation region up to
∼2 MeV, studied in detail using spectroscopy and counting
of known, discrete levels [39] and the region around the
neutron-separation energy studied by experiments on neutron
resonances [40]. Almost nothing is known of the level density
in between the above-mentioned regions, but it is possible to
determine quite reliably two anchor points of the level density.

Figure 5 shows the extracted anchor points (filled data
points) for nine molybdenum isotopes together with the level
density deduced from known discrete levels (solid lines).
The upper anchor point is simply determined from neutron-
resonance data. The lower anchor point, which is the average
value of three data points, is determined such that a straight line
on a logarithmic plot, going through the upper anchor point,
provides an upper bound of the level-density distribution of
known levels. The algorithm is iterative and treats all nuclei
similarly to ensure that the results are comparable. The straight
line connecting the lower and upper anchor points is defined
by the constant temperature formula

ρ(E) = CeE/τ (7)

FIG. 5. Level density of nine molybdenum isotopes. The his-
tograms represent levels from spectroscopy [39]. A straight line is
drawn from these levels to the level density at the neutron-separation
energy that is determined by average neutron-resonance spacings.
The line represents the constant-temperature level-density formula
(see text).

with τ−1 = (ln ρ2 − ln ρ1)/(E2 − E1) and C = ρ1 exp(−E1/

τ ). Details are given in Ref. [41]. Provided that all the levels
are measured at the excitation energy of the lower anchor
point, we find from the plots of Fig. 5 that the temperature-like
parameter τ drops from 1.05 MeV for the spherical 93Mo to
about 0.72 MeV for the well-deformed 101Mo nucleus. This
figure also illustrates the excitation energy where one would
expect the appearance of missing levels in spectroscopic work,
typically if the density of levels exceeds 50 MeV−1.

The level densities ρ(E) extracted from the eight reactions
are displayed in Fig. 6. The data have been normalized as
prescribed above, and the parameters used for 93−98Mo in
Eq. (5) are listed in Table I. We find that the normalization
constant η drops by one order of magnitude when going from
deformed to spherical nuclei. This means that the spherical
93Mo has about ten times lower level density than predicted
by a global Fermi-gas model. As mentioned earlier, this effect
is one of the reasons for the negative slope of the data points
in Fig. 4.

Our experimental data interpolate between the previously
known lower anchor point at ∼2 MeV and about 1 MeV
below the upper anchor point at ∼7 MeV. For the energy
interval between ∼6 and ∼7 MeV, we rely on models [34,35].
Despite the fact that the final extrapolation of the level density
up to the nucleon-separation energy is model dependent, this
affects only the average slope of the level density and does
not affect the fine structure. This enables us to observe fine
structures in the level density that are thought to reflect the
breaking of individual pairs. In an earlier work, we showed how
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FIG. 6. Normalized level densities for 93−98Mo. The open and
filled circles are data from the (3He,α) and (3He,3He′) reactions,
respectively.

a simple single-particle-plus-pairing model can qualitatively
explain the emergence of such fine structures [21]. Moreover,
we have in the past investigated how pairing correlations are
weakened in the presence of already unpaired nucleons, but

also how these unpaired nucleons around the Fermi energy
can increase the cost in energy to break up further nucleon
pairs because of the blocking effect of the Pauli principle [42].
Our goal in the present work is to obtain experimental values
for the critical temperature of the pair-breaking process. On
the way, we also investigate some other thermodynamical
properties, in particular the entropy, when going from spherical
to deformed nuclei. The generalization of the concept of
temperature for a small system is not straightforward and
has been discussed extensively in the literature (see, e.g.,
Ref. [42] and references therein). Traditionally, temperature
is introduced in slightly different ways in the microcanonical
statistical ensemble (as a property of the system itself) and
in the canonical statistical ensemble (as imposed by a heat
bath). The temperature-energy relations for rare-earth nuclei
(the caloric curves) derived within the two statistical ensembles
display in general a different behavior because the nuclei under
discussion are essentially discrete systems [13].

To avoid the shortcomings imposed by the above-mentioned
statistical ensembles, a new approach for the caloric curves
based on the two-dimensional probability distribution P (E, T )
has been proposed [42,43]. This approach bypasses the well-
known problem of spurious structures such as negative tem-
peratures and heat capacities in the microcanonical ensemble.
Conversely, more structures in the new caloric curve are
evident than in the canonical caloric curve. However, this new
method is still not well settled and we will defer the discussion
of caloric curves to another occasion.

Within the microcanonical ensemble the experimentally
obtained level density corresponds to the partition function
that is simply the multiplicity 
 of accessible states. Thus, the
entropy S of the system within the energy interval E and E + δ

is determined by the following:

S(E) = kB ln 
(E), (8)

where 
(E) = ρ(E)/ρ0 and the Boltzmann constant is set to
unity (kB ≡ 1) for simplicity.2 To fulfill the third law of ther-
modynamics; namely S → 0 when T → 0, the normalization
denominator is set to ρ0 = 1.5 MeV−1. Entropy as a function of
energy can be defined and measured for small and mesoscopic
systems as well as for large systems. However, fluctuations in

2More precisely, multiplicity 
(E) is proportional to ρ(E) (2〈J
(E)〉 + 1), where 〈J (E)〉 is the average spin of levels with excitation
energy E. However, in the present work, we neglect the weak
excitation-energy dependence of 〈J (E)〉.

TABLE I. Parameters used for the back-shifted Fermi-gas level density.

Nucleus Epair (MeV) a (MeV−1) C1 (MeV) Bn (MeV) D (eV) ρ(Bn) (104 MeV−1) η

98Mo 2.080 11.33 −1.521 8.642 75 9.99 0.87
97Mo 0.995 11.23 −1.526 6.821 1050 3.10 0.65
96Mo 2.138 11.13 −1.531 9.154 105 7.18 0.46
95Mo 1.047 11.03 −1.537 7.367 1320 2.50 0.34
94Mo 2.027 10.93 −1.542 9.678 — 6.20a 0.25
93Mo 0.899 10.83 −1.547 8.067 2700 1.27 0.08

aEstimated from systematics (see text).
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FIG. 7. Experimental entropy for 93,94Mo (upper panel) and
97,98Mo (lower panel) as function of excitation energy E.

level spacings that are typical for small systems will make the
entropy sensitive to exactly how the energy interval between
E and E + δE is chosen. Thus, Eq. (8) is useful only if 
(E)
is a sufficiently smooth function, i.e., for the case that its first
derivative exists. Small statistical fluctuations in the entropy
S may give rise to large contributions to the temperature T,
which is defined within the microcanonical ensemble as

T (E) =
(

∂S

∂E

)−1

. (9)

Figure 7 shows the entropy deduced within the microcanon-
ical ensemble for 93,94Mo (upper panel) and 97,98Mo (lower
panel). The entropy curve plotted on a linear scale is essentially
identical to the level-density curve on a logarithmic scale. In
general, the most efficient way to create additional states in
atomic nuclei is to break J = 0 nucleon Cooper pairs from
the core. The resulting two nucleons may thereby be thermally
excited rather independently to the available single-particle
levels around the Fermi surface. We therefore interpret, e.g.,
the steplike increases in entropy around 2–3 MeV excitation
energy in Fig. 7 as because of the breaking of the first nucleon
Cooper pair.

The entropies of odd-mass nuclei are higher than those
of their even-even neighbors, even when their mass numbers
are lower. It is interesting to compare entropies between
neighboring nuclei. The difference in entropy

�S(E) = Sodd−mass − Seven−even (10)

is assumed to be a measure for the single-particle entropy. The
entropies of the almost spherical 93Mo and 94Mo (upper panel
of Fig. 7) follow each other closely above E ∼ 2.5 MeV. Here,
the odd valence nucleon behaves almost as a passive spectator.
For 93,94Mo, we find �S >∼ 0 for E > 2.5 MeV. The deformed
case, (lower panel of Fig. 7) exhibits an entropy difference of

�S >∼ 1. This is less than the value of �S ∼ 2 found for
rare-earth nuclei [44,45].

These observations can be explained qualitatively by the
fact that the single-particle entropy depends on the number of
single-particle orbitals that are available for excitations at a
certain temperature. For 93,94Mo at low energies, the single
neutron outside the closed shell can only occupy the two
d5/2 and g7/2 orbitals giving an entropy of ln 2 ∼ 0.7. For
the case of deformed nucleus 97,98Mo, symmetry breaking
results in a splitting of these two single-particle orbitals into
seven Nilsson orbitals, giving a total entropy of ln 7 ∼ 1.9, i.e.,
about one unit more than for the 93,94Mo case. In the rare-earth
region strong deformation and intruder orbitals from other
shells result in an even higher single-particle level density,
giving rise to an even larger single-particle entropy. Although
our simple argument somewhat overestimates the observed
single-particle entropies, it provides a satisfactory explanation
for the differences between the single-particle entropies in the
different cases.

The entropy in atomic nuclei at low energies does not simply
scale with the total number of nucleons. In the presence of
pairing correlations, i.e., away from closed shells, the entropy
scales rather with the number of unpaired nucleons at a
certain excitation energy. When pairing correlations cannot
form because of the large single-particle level spacings around
closed shells, an unpaired nucleon will behave almost as
a passive spectator without contributing significantly to the
entropy of the system.

At excitations energies around 5.5 MeV, a bump is observed
in the entropy curves for the lighter 93,94Mo nuclei. In light
of the discussion above, it is unlikely that such a bump can
be interpreted as the breaking of a nucleon Cooper pair.
We propose that this bump is related to the sudden onset of
neutron excitations across the N = 50 shell gap. Because of
the generally higher level density and the onset of deformation
in the heavier Mo isotopes, the opening of the g9/2 shell might
be less significant, leading to the effect being spread out in
energy. However, such an effect might become visible in the
lighter 93,94Mo nuclei. This interpretation is supported by the
fact that the large transfer peak at 5.5 MeV excitation energy
in the particle spectrum of the 97Mo(3He,αγ )96Mo reaction
at a beam energy of 45 MeV (see Fig. 1) has been shown
in an experiment at the Yale University Enge splitpole to be
dominated by high � transfer, most likely � = 4h̄ [46].

IV. PHASE TRANSITIONS

A. Model

In this section we utilize a recently developed thermo-
dynamic model [41,47,48] that allows the investigation and
classification of the pairing phase transition. The model is
based on the canonical ensemble theory where equilibrium is
obtained at a certain given temperature T. It can describe level
densities for midshell nuclei in the mass regions A = 58, 106,
162, and 234.

The basic idea of the model is the assumption of a reservoir
of nucleon pairs. These nucleon pairs can be broken and the
unpaired nucleons are thermally scattered into an infinite,
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equidistant, doubly degenerated single-particle level scheme.
The nucleon pairs in the reservoir do not interact with each
other and are thought to occupy an infinitely degenerated
ground state. The nucleons in the single-particle level scheme
do not interact with each other either, but they have to obey
the Pauli principle.

The essential parameters of the model are the number of
pairs n in the reservoir at zero temperature, the spacing of
the single-particle level scheme ε = 30 MeV/nucleon, and the
energy necessary to break a nucleon pair 2� = 24 MeV/

√
A.

Quenching of pairing correlations is introduced in this model
by reducing the energy required to break a nucleon pair in
the presence of unpaired nucleons. We assume that for every
already broken nucleon pair, the energy to break a further
nucleon pair is reduced by a factor of r = 0.56, which is
suggested by theoretical calculations [49]. To simulate the
effect of the N = 50 shell closure on the A < 98 isotopes,
we depart from the global systematics for ε and replace it
with ε′ = εa(A = 98)/a(A < 98) using the experimentally
deduced a values of Ref. [40]. We use the same parameters for
both protons and neutrons, keeping the proton pairs fixed to
seven because there are 14 more protons outside the Z = 28
shell closure.

The total partition function is written as a product of
proton (Zπ ), neutron (Zν), rotation (Zrot), and vibration (Zvib)
partition functions where the parameters for the collective
excitations are the rigid moment of inertia Arig = 34 MeV
A−5/3 and the energy of one-phonon vibrations h̄ωvib =
1.5 MeV taken from spectroscopic data [39]. Thermodynam-
ical quantities of interest can be deduced from the Helmholtz

free energy defined as

F (T ) = −T ln (ZπZνZrotZvib) . (11)

This equation connects statistical mechanics and thermody-
namics. Quantities such as entropy, average excitation energy,
and heat capacity can be calculated by

S(T ) = −
(

∂F

∂T

)
V

(12)

〈E(T )〉 = F + ST (13)

CV (T ) =
(

∂〈E〉
∂T

)
V

, (14)

respectively.
In Fig. 8, the Helmholtz free energy F, entropy S, average

excitation energy 〈E〉, and heat capacity CV are shown as
functions of temperature for even-even, odd, and odd-odd
systems in the 96Mo mass region. The free energy F and
the average excitation energy 〈E〉 are rather structureless as
functions of temperature. The odd-even effects are small: The
even-even, odd, and odd-odd systems have different excitation
energies at the same temperature, where the even-even system
requires the highest 〈E〉 to be heated to some given temperature
T. Around Tc ∼ 0.9–1.1 MeV the nuclei are excited to their
respective nucleon-separation energies.

The entropy S and heat capacity CV are more sensitive
to thermal changes. The entropy difference �S between
systems with A and A ± 1 is a useful quantity. At moderate
temperatures, it is approximately extensive (additive) and
represents the single-particle entropy associated with the

FIG. 8. Model calculation for nuclei around
96Mo. The four panels show the free energy
F, the entropy S, the thermal excitation energy
〈E〉, and the heat capacity CV as a function
of temperature T. The arrow at Tm ∼ 0.9 MeV
indicates the local maximum of CV where the
pair-breaking process takes place in the even-
even system. The same parameter set is used for
even-even (solid lines), odd (dashed lines), and
odd-odd systems (dash-dotted lines).
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valence particle (or hole) [41]. In the upper right panel, we
find, e.g., that the nucleon carries a single-particle entropy of
�S ∼ 2.0 at T ∼ 0.4 MeV.

The shape of the heat-capacity curve is related to the
level density. Traditionally, level-density curves have been
described by the two-component model as proposed by Gilbert
and Cameron [34]. Within this model, the low energetic
part is a constant-temperature level density and the high
energetic part is a Fermi-gas model. It has been shown in
Ref. [12] that the inclusion of a constant-temperature part
in the level-density formula creates a heat-capacity curve as
function of temperature with a pronounced S shape similar
to that shown in Fig. 8. With our model parameters, the
maximum of the local increase in the CV curve takes place
at about T ∼ 0.9 MeV. This temperature compares well with
the temperature determined in the microcanonical ensemble
from Eq. (9), giving a temperature of T ∼ 0.9 MeV for 96Mo
(see also Fig. 5).

B. Comparison with experimental data

Our model is described within the canonical ensemble,
whereas experimental data refer to the microcanonical en-
semble. There are two ways to compare our model with
experiments. Details are given in Ref. [41]. In this work we
will make use of the saddle-point approximation [50]

ρ(〈E〉) = exp(S)

T
√

2πCV

, (15)

which gives satisfactory results for the nuclear level density
[41,48].

Figure 9 shows the theoretical level densities calculated
using Eq. (15). The agreement with the anchor points and
the experimental level densities for 97,98Mo isotopes is sat-
isfactory. Some of the model parameters could be adjusted
more precisely, however, in this work we have chosen to use
parameters taken from systematics.

To investigate the behavior of the pairing correlations when
approaching a major shell gap, we compare the canonical
CV curves that are based on the Laplace transforms of the
experimental level densities. The curves are plotted in Fig. 10
for even 94,96,98Mo (upper panel) and odd 93,95,97Mo (lower
panel) nuclei. The CV curves resemble washed-out step
structures and show an S shape as a function of temperature
quite similar to the model calculation on the lower right
panel of Fig. 8. Because of the averaging performed by
the Laplace transformation discrete transitions between the
different quasiparticle regimes, as observed within the mi-
crocanonical ensemble, are hidden. Only the phase transition
related to the quenching of the pair correlations as a whole can
be seen. Details are given in Ref. [17].

The canonical heat-capacity curves show local enhance-
ments around T ∼ 0.5–1.0 MeV. Such enhancements were
predicted in the calculations of Fig. 8, and they are expected
to be larger in the even-mass nuclei compared to the odd-mass
neighbors. The experimental heat capacities show this feature
for the 97,98Mo pair, and up to a certain extend for the
93,94Mo pair, but it is not very obvious for the 95,96Mo pair,

FIG. 9. Calculated level density of 98Mo (solid line) and 97Mo
(dashed line) as function of average excitation energy 〈E〉. The big
open circles and squares are experimental level-density anchor points
from Ref. [41]. The small filled and open circles are experimental
data points measured with the (3He,α) and (3He,3He′) reactions,
respectively for the two isotopes.

where 95Mo shows a more pronounced enhancement than
expected. Approaching the N = 50 closed shell, the local
enhancements become less and less pronounced. The general
behavior of pairing correlations is that at shell closure there
are almost no pairing correlations and, as particles are added,
the pairing correlations increase. Therefore the signature of
a transition from a “paired phase” to an “unpaired phase”
when approaching a major shell gap becomes less and less
pronounced. We should note that very recently an alternative
interpretation has been given [51]. These authors find that the S
shape can be accounted for as an effect of the particle-number
conservation, and it occurs even when assuming a constant gap
in the BCS theory.

From the CV curves, we have extracted the critical tem-
perature for the quenching of pair correlations. The critical
temperatures have been obtained by a fit of the canonical heat
capacity of a constant-temperature level-density model to the
data for the first 600 keV in temperature. The algorithm and
its sensitivity are discussed in Ref. [12]. The values obtained
are plotted in Fig. 11; there is a tendency for the critical
temperature to be slightly higher for odd 93,95,97Mo than for
even 92,94,96Mo nuclei, similar to the local enhancement of the
heat-capacity curve in the model calculation (see the lower
right panel of Fig. 8) that is observed at higher temperatures
for odd-mass Mo isotopes. The higher critical temperature for
odd-mass nuclei is because of the Pauli blocking effect of
the unpaired quasiparticle that increases the distance to the
Fermi surface for low-lying orbitals with coupled pairs and
thus increases the cost in energy to break pairs into more
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FIG. 10. Observed heat capacity as functions of temperature in
the canonical ensemble for the even 94,96,98Mo (upper panel) and odd
93,95,97Mo (lower panel) nuclei.

quasiparticles. Incidentally, the critical temperature for the
quenching of pairing correlations coincides (by construction)
quite well with the temperature-like parameter τ of Fig. 5.

A discontinuity of the heat capacity in a macroscopic
system indicates a second-order phase transition according to
the Ehrenfest classification; this is observed in the transition
of a paired Fermion system such as a low-temperature
superconductor or superfluid 3He to their normal phases. Thus,
the experimentally observed local enhancement of the heat
capacity is interpreted as a fingerprint of a phase transition

FIG. 11. Critical temperature for the quenching of pair correla-
tions for 93−98Mo isotopes.

from a phase with strong pairing correlations to a phase
where the pairing correlations are quenched [12]. Shell-model
Monte-Carlo calculations [7] have shown that the pairing phase
transition is strongly correlated with the suppression of neutron
pairs with increasing temperature. It has also been observed
that the reduction of the neutron-pair content of the wave
function is much stronger in the even-even than in the odd-mass
isotopes, giving rise to the more pronounced S shape in the
canonical heat-capacity curves in the even-even nuclei. The
same odd-even difference in the heat capacity is also observed
experimentally between 161Dy and 162Dy, as well as 171Yb and
172Yb [12].

C. Entropy as function of neutron number

To study entropy as a function of neutron number, we
compare the microcanonical entropy obtained by the saddle-
point approximation of Eq. (15) to our experimental data.
In Fig. 12 the data are plotted as a function of the neutron
number N (left panel) and as a function of the number of
available neutrons in the reservoir (right panel). Although only
qualitative agreement is achieved, some simple conclusions
can be drawn.

For the isotopes under investigation in this work, we see
that the entropy at 1 MeV in both panels increases moderately
as a function of the number of particles. The entropy at
7 MeV increases more rapidly and this is correlated to the
evolution of the temperature-like parameter τ (see Fig. 5).
Both theoretically and experimentally, the odd systems show
�S = 1.0kB higher entropy than their neighboring even-even
systems.

FIG. 12. Entropy extracted at excitation energies of 1 and 7 MeV
as a function of neutron number N (left panel) and number of available
neutrons in the model (right panel) for odd-even (open circles) and
even-even (filled circles) molybdenum isotopes.
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The slopes at 7 MeV in the left panel of Fig. 12 give
dS/dN = 0.5kB . Thus, going from 98Mo to 93Mo the level
density drops when approaching the N = 50 shell gap by a
factor of ∼0.03. This mechanism is also reflected in the η

parameter of Eq. (5), which drops from 0.87 for 98Mo to 0.08
for 93Mo.

As we already mentioned, the less pronounced S shape
shows that the pairing correlations decrease when approaching
the N = 50 shell gap. At the same time, the critical temperature
for the quenching of pair correlations increases, which is
the opposite of what one might expect. This effect can be
explained by the increase in single particle level spacing when
approaching the N = 50 shell gap. We have already seen in the
discussion in the previous section, that this increase, together
with the weakening pairing correlations, which fail to push
the nuclear ground state sufficiently down in energy, lead to a
decrease in single-particle entropy, see Figs. 7 and 12.

Therefore, the increase in critical temperature for the
quenching of pairing correlations when approaching the N =
50 shell gap is because of the competition between the weak-
ening pairing correlations and the increasing single-particle
level spacing. Just as the weakened pairing correlations in odd
nuclei cannot compensate for the effect of Pauli blocking on
Tc, they cannot compensate for the effect of an increase in
single-particle level spacing on Tc when approaching a major
shell gap.

V. CONCLUSIONS

Levels in 93−98Mo in the excitation-energy region up to
the neutron-separation energy were populated using (3He,αγ )
and (3He,3He′γ ) reactions. The level densities of 93−98Mo
were determined from their corresponding primary γ -ray

spectra. Within the canonical ensemble, thermodynamical
observables were deduced from the level density; they display
features consistent with signatures of a phase transition from a
strongly pair-correlated phase to a phase without strong pairing
correlations. This conclusion is supported by recent theoretical
calculations within shell-model Monte Carlo simulations by
Alhassid et al. [7,8,50], where it is shown that the expectation
value of the pair operator decreases strongly around the
critical temperature. However, we would like to point out that
other interpretations are not excluded. Different mechanisms
governing the thermodynamic properties of odd and even
systems were studied. A simple, recently developed model
for the investigation and classification of the pairing phase
transition in hot nuclei has been employed and qualitative
agreement with experimental data achieved. Using the saddle-
point approximation the experimental level densities of even-
even and odd-even systems are reproduced. Estimates for
the critical temperature of the pairing phase transition yield
Tc ∼ 0.7–1.0 MeV.
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The level densities and radiative strength functions (RSFs) of 50,51V have been extracted using the (3He,αγ )
and (3He,3He′γ ) reactions, respectively. From the level densities, microcanonical entropies are deduced. The
high γ -energy part of the measured RSF fits well with the tail of the giant electric dipole resonance. A significant
enhancement over the predicted strength in the region of Eγ � 3 MeV is seen, which at present has no theoretical
explanation.
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I. INTRODUCTION

The structure of the vanadium isotopes is based on simple
shell-model configurations at low excitation energies. The
valence protons and neutrons occupy the single-particle πf7/2

and νf7/2 orbitals, respectively. These shells are isolated from
other orbitals by the N, Z = 20 and 28 shell gaps, making
the vanadium isotopes interesting objects for studying various
nuclear shell effects. In particular, it is well known that
the number of available singe-particle levels is significantly
reduced for nuclei at closed shells.

The density of states or, equivalently, the entropy in these
systems depends on the number of broken Cooper pairs
and single-particle orbitals made available by crossing the
shell gaps. The 50,51V nuclei are of special interest because
the neutrons are strongly blocked in the process of creating
entropy; 50V and 51V have seven and eight neutrons in the
νf7/2 orbital, respectively. Thus, the configuration space of the
three protons in the πf7/2 shell is of great importance.

These particular shell-model configurations are also ex-
pected to govern the γ -decay routes. Specifically, as within
every major shell, the presence of only one parity for single-
particle orbitals in the low-spin domain means that transitions
of E1 type will be suppressed. The low mass of the investigated
nuclei causes the centroid of the giant electric dipole resonance
(GEDR) to be relatively high, while the integrated strength
according to the Thomas-Reiche-Kuhn sum rule is low; both
observations work together to produce a relatively weak
low-energy tail when compared to heavier nuclei. Hence,
possible nonstatistical effects in the radiative strength function
(RSF) might stand out more in the present investigation.

∗Electronic address: a.c.larsen@fys.uio.no

The Oslo Cyclotron group has developed a method to
extract first-generation (primary) γ -ray spectra at various
initial excitation energies. From such a set of primary spectra,
the nuclear level density and the RSF can be extracted
simultaneously [1,2]. These two quantities reveal essential
information on nuclear structure such as pair correlations and
thermal and electromagnetic properties. In the last five years,
the Oslo group has demonstrated several fruitful applications
of the method [3–7].

In Sec. II an outline of the experimental procedure is given.
The level densities and microcanonical entropies are discussed
in Sec. III, and in Sec. IV the RSFs are presented. Finally,
concluding remarks are given in Sec. V.

II. EXPERIMENTAL METHOD

The experiment was carried out at the Oslo Cyclotron
Laboratory using a beam of 30-MeV 3He ions. The self-
supporting natural V target had a purity of 99.8% and a
thickness of 2.3 mg/cm2. Particle-γ coincidences for 50,51V
were measured with the CACTUS multidetector array [8].
The charged ejectiles were detected using eight Si particle
telescopes placed at an angle of 45◦ relative to the beam
direction. Each telescope consists of a front �E detector and
a back E detector with thicknesses of 140 and 1500 µm,
respectively. An array of 28 collimated NaI γ -ray detectors
with a total efficiency of ∼15% surrounded the target and
the particle detectors. The reactions of interest were the
pick-up reaction 51V(3He, αγ )50V, and the inelastic scattering
51V(3He,3He′γ )51V. The typical spin range is expected to be
I ∼ 2−4 h̄. The experiment ran for about one week, with beam
currents of ∼1 nA.

The experimental extraction procedure and the assumptions
made are described in Refs. [1,2]. The data analysis is based

0556-2813/2006/73(6)/064301(8) 064301-1 ©2006 The American Physical Society
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FIG. 1. γ spectra of 50V for excitation energy E = 6–8 MeV.

on three main steps: (1) preparing the particle-γ coincidence
matrix, (2) unfolding the γ -ray spectra, and (3) constructing
the first-generation matrix.

In the first step, for each particle-energy bin, total spectra
of the γ -ray cascades are obtained from the coincidence mea-
surement. The particle energy measured in the telescopes is
transformed to excitation energy of the residual nucleus, using
the reaction kinematics. Then each row of the coincidence
matrix corresponds to a certain excitation energy E, while
each column corresponds to a certain γ energy Eγ .

In the next step, the γ -ray spectra are unfolded using the
known response functions of the CACTUS array [9]. The
Compton-subtraction method described in Ref. [9] preserves
the fluctuations in the original spectra without introducing
further spurious fluctuations. A typical raw γ spectrum is
shown in the top panel of Fig. 1, taken from the 50V
coincidence matrix gating on the excitation energies between
E = 6–8 MeV. The middle panel shows the unfolded spectrum,
and in the bottom panel this spectrum has been folded with the
response functions. The top and bottom panels are in excellent
agreement, indicating that the unfolding method works very
well.

The third step is to extract the γ -ray spectra containing
only the first γ rays in a cascade. These spectra are obtained
for each excitation-energy bin through a subtraction procedure
as described in Ref. [10]. The main assumption of this method
is that the γ -decay spectrum from any excitation-energy bin
is independent of the method of formation, either directly by
the nuclear reaction or populated by γ decay from higher-
lying states following the initial reaction. This assumption
is automatically fulfilled when the same states are equally
populated by the two processes, since γ branching ratios are
properties of the levels themselves. Even if different states are
populated, the assumption is still valid for statistical γ decay,

FIG. 2. Unfolded γ spectra of 50V for excitation energy E =
6–8 MeV.

which only depends on the γ -ray energy and the number of
accessible final states. In Fig. 2, the total unfolded γ spectrum,
the γ spectrum of second and higher generations, and the
first-generation spectrum of 50V with excitation-energy gates
E = 6−8 MeV are shown. The first-generation spectrum is
obtained by subtracting the higher-generation γ rays from the
total γ spectrum.

When the first-generation matrix is properly normalized [2],
the entries of it are the probabilities P (E,Eγ ) that a γ ray
of energy Eγ is emitted from an excitation energy E. The
probability of γ decay is proportional to the product of the
level density ρ(E − Eγ ) at the final energy Ef = E − Eγ and
the γ -ray transmission coefficient T (Eγ ), that is,

P (E,Eγ ) ∝ ρ(E − Eγ )T (Eγ ). (1)

This factorization is the generalized form of the Brink-Axel
hypothesis [11,12], which states that any excitation modes
built on excited states have the same properties as those built
on the ground state. This means that the γ -ray transmission
coefficient is independent of excitation energy and thus of the
nuclear temperature of the excited states. There is evidence
that the width of the giant dipole resonance varies with the
nuclear temperature of the state on which it is built [13,14].
However, the temperature corresponding to the excitation-
energy range covered in this work is rather low and changes
slowly with excitation energy (T ∼√

Ef ); thus, we assume that
the temperature is constant and that the γ -ray transmission
coefficient does not depend on the excitation energy in the
energy interval under consideration.

The ρ and T functions can be determined by an iterative
procedure [2], with which each data point of these two func-
tions is simultaneously adjusted until a global χ2 minimum
with the experimental P (E,Eγ ) matrix is reached. No a

064301-2



MICROCANONICAL ENTROPIES AND RADIATIVE . . . PHYSICAL REVIEW C 73, 064301 (2006)

FIG. 3. Experimental first-generation
γ spectra (data points with error bars) at six
different initial excitation energies compared
to the least-χ 2 fit (solid lines) for 50V.
The fit is performed simultaneously on the
entire first-generation matrix of which the
six displayed spectra are a fraction. The
first-generation spectra are normalized to unity
for each excitation-energy bin.

priori assumptions about the functional form of either the
level density or the γ -ray transmission coefficient are used.
An example to illustrate the quality of the fit is shown in
Fig. 3, where we compare for the 51V(3He, αγ )50V reaction the
experimental first-generation spectra to the least-χ2 solution
for six different initial excitation energies.

The globalized fitting to the data points determines the
functional form of ρ and T ; however, it has been shown [2]
that if one solution for the multiplicative functions ρ and
T is known, one may construct an infinite number of other
functions, which give identical fits to the P matrix by

ρ̃(E − Eγ ) = A exp[α(E − Eγ )]ρ(E − Eγ ), (2)

T (Eγ ) = B exp(αEγ )T (Eγ ). (3)

Thus, the transformation parameters α,A, and B, which
correspond to the physical solution, remain to be determined.

III. LEVEL DENSITY AND MICROCANONICAL ENTROPY

The parameters A and α can be obtained by normalizing
the level density to the number of known discrete levels at low
excitation energy [15] and to the level density estimated from
neutron-resonance spacing data at the neutron binding energy
E = Bn [16]. The procedure for extracting the total level
density ρ from the resonance energy spacing D is described
in Ref. [2]. Since our experimental level-density data points
only reach up to an excitation energy of E ∼ Bn − 1 MeV,
we extrapolate with the back-shifted Fermi-gas model with a

global parametrization [17,18]

ρBS(E) = η
exp(2

√
aU )

12
√

2a1/4U 5/4σI

, (4)

where a constant attenuation coefficient η is introduced to
adjust ρBS to the experimental level density at Bn. The intrinsic
excitation energy is estimated by U = E − C1 − Epair, where
C1 = −6.6A−0.32 MeV is the back-shift parameter and A

is the mass number. The pairing energy Epair is based on
pairing gap parameters �p and �n evaluated from even-odd
mass differences [19] according to [20]. The level-density
parameter a and the spin-cutoff parameter σI are given by
a = 0.21A0.87MeV−1 and σ 2

I = 0.0888T A2/3, respectively.
The nuclear temperature T is described by T = √

U/a. The
parameters used for 50,51V in Eq. (4) are listed in Table I.

Unfortunately, 49V is unstable, and no information exists
on the level density at E = Bn for 50V. Therefore, we estimate
the values from the systematics of other nuclei in the same
mass region. In order to put these data on the same footing,
we plot the level densities as a function of intrinsic energy
U . Due to the strongly scattered data of Fig. 4, the estimate
is rather uncertain. We chose a rough estimate of ρ(Bn) =
5400 ± 2700 MeV−1 for 50V. This value gives an attenuation
η = 0.46, which is in good agreement with the obtained value
of η = 0.51 for the 51V nucleus. Figure 5 demonstrates the
level-density normalization procedure for the 50V case, i.e.,
how parameters A and α of Eq. (3) are determined to obtain
a level-density function consistent with known experimental
data.
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TABLE I. Parameters used for the back-shifted Fermi-gas level density.

Nucleus Epair a C1 Bn D ρ(Bn) η

(MeV) (MeV−1) (MeV) (MeV) (keV) (103 MeV−1)

50V 0 6.31 −1.89 9.33 - 5.4(16)a 0.46
51V 1.36 6.42 −1.88 11.05 2.3(6) 8.4(26) 0.51

aEstimated from systematics.

The experimentally extracted and normalized level den-
sities of 50V and 51V are shown in Fig. 6 for excitation
energies up to ∼8 and 9 MeV, respectively. The level density
of 50V is relatively high and has a rather smooth behavior due
to the effect of the unpaired proton and neutron, while the
level density of 51V displays distinct structures for excitation
energies up to ∼4.5 MeV. This effect is probably caused by
the closed f7/2 neutron shell in this nucleus.

The level densities of 50,51V obtained with the Oslo method
are compared to the number of levels from spectroscopic
experiments [21]. The 51V nucleus has relatively few levels
per energy bin because of its closed neutron shell, so using
spectroscopic methods to count the levels seems to be reliable
up to ∼4 MeV excitation energy in this case. For higher
excitations, the spectroscopic data are significantly lower
compared to the level density obtained with the Oslo method.
This means that many levels are not accounted for in this
excitation region by using standard methods. The same can
be concluded for 50V, and in this case the spectroscopic level
density drops off at an excitation energy of about 2.5 MeV.

FIG. 4. Level densities estimated from neutron resonance level
spacings at Bn and plotted as a function of intrinsic excitation energy
Un = Bn − C1 − Epair. The unknown level density for 50V (open
circle) is estimated from the line determined by a least-χ2 fit to the
data points.

The level densities of 50,51V are also compared to the
constant-temperature formula

ρfit = Cexp(E/T ), (5)

which is drawn as a solid line in Fig. 6. Here the parameters
C and T are the level density at about zero excitation energy
and the average temperature, respectively; both are estimated
from the fit of the exponential to the region of the experimental
level density indicated by arrows. From this model, a constant
temperature of about 1.3 MeV is found for both nuclei.

The level density of a system can give detailed insight into
its thermal properties. The multiplicity of states 
s(E), which
is the number of physically obtainable realizations available
at a given energy, is directly proportional to the level density
and a spin-dependent factor (2〈J (E)〉 + 1), thus


s(E) ∝ ρ(E)(2〈J (E)〉 + 1), (6)

where 〈J (E)〉 is the average spin at excitation energy E.
Unfortunately, the experimentally measured level density in
this work does not correspond to the true multiplicity of
states, since the (2J + 1) degeneracy of magnetic substates

FIG. 5. Normalization procedure of the experimental level den-
sity (data points) of 50V. The data points between the arrows are
normalized to known levels at low excitation energy (histograms)
and to the level density at the neutron-separation energy (open circle)
using a Fermi-gas level-density extrapolation (solid line).
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FIG. 6. Normalized level density of 50,51V compared to known
discrete levels (jagged line) and a constant temperature model
(straight line). The fits are performed in the region between the arrows.

is not included. If the average spin of levels 〈J 〉 at any
excitation energy were known, this problem could be solved by
multiplying an energy-dependent factor (2〈J (E)〉 + 1) by the
experimental level density. However, little experimental data
exist on the spin distribution. Therefore, we choose in this
work to use a multiplicity 
l(E) based on the experimental
level density alone:


l(E) ∝ ρ(E). (7)

The entropy S(E) is a measure of the degree of disorder of
a system at a specific energy. The microcanonical ensemble
in which the system is completely isolated from any exchange
with its surroundings, is often considered as the appropriate
one for the atomic nucleus since the strong force has such a
short range, and because the nucleus normally does not share
its excitation energy with the external environment.

According to our definition of the multiplicity of levels

l(E) obtained from the experimental level density, we define
a “pseudo” entropy

S(E) = kBln
l(E), (8)

which is utilized in the following discussion. For convenience,
Boltzmann’s constant kB can be set to unity.

In order to normalize the entropy, the multiplicity is written
as 
l(E) = ρ(E)/ρ0. The normalization denominator ρ0 is to
be adjusted such that the entropy approaches a constant value
when the temperature approaches zero in order to fullfill the
third law of thermodynamics: S(T → 0) = S0. In the case
of even-even nuclei, the ground state represents a completely
ordered system with only one possible configuration. This
means that the entropy in the ground state is S = ln1 = 0,
and the normalization factor 1/ρ0 is chosen such that this is
the case. Since the vanadium nuclei have an odd number of

FIG. 7. Entropies of 50,51V (upper panel), and entropy difference
between the two vanadium isotopes (lower panel).

protons, a ρ0 which is typical for even-even nuclei in this
mass region is used for both the 50V and the 51V nucleus.
The normalization factor ρ0 used is 0.7 MeV−1, found from
averaging data on 50Ti and 52Cr.

The entropies of 50,51V extracted from the experimental
level densities are shown in the upper panel of Fig. 7. Naturally,
they show the same features as the level-density plot, with the
odd-odd 50V displaying higher entropy than the odd-even 51V.
Since the neutrons are almost (50V) or totally (51V) blocked at
low excitation energy, the multiplicity and thus the entropy is
made primarily by the protons in this region.

At 4 MeV of excitation energy, a relatively large increase
in entropy is found in the case of 51V. This is probably because
the excitation energy is large enough to excite a nucleon across
the N,Z = 28 shell gap to other orbitals.

In the excitation region above ∼4.5 MeV, the entropies
show similar behavior, which is also expressed by the entropy
difference �S displayed in the lower panel of Fig. 7. We
assume here that the two systems have an approximately
statistical behavior and that the neutron hole in 50V acts as
a spectator to the 51V core. The entropy of the hole can be
estimated from the entropy difference �S = S(50V) − S(51V).
From the lower panel of Fig. 7, we find �S ∼1.2kB for E >

4.5 MeV. This is slightly less than the quasiparticle entropy
found in rare-earth nuclei, which is estimated to be �S ∼
1.7kB [5]. This is not unexpected since the single-particle
levels are more closely spaced for these nuclei; they have
therefore more entropy.

The naive configurations of 50,51V at low excitations are
πf 3

7/2νf
7
7/2 and πf 3

7/2νf
8
7/2, respectively. Thus, by counting

the possible configurations within the framework of the BCS
model [22] in the nearly degenerate f7/2 shell, one can estimate
the multiplicity of levels and thus the entropy when no Cooper
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pairs are broken in the nucleus, one pair is broken, and so
on. We assume a small deformation that gives four energy
levels with Nilsson quantum numbers 
 = 1/2, 3/2, 5/2, 7/2.
Furthermore, we neglect the proton-neutron coupling and
hence assume that the protons and neutrons can be considered
as two separate systems; the total entropy based on the number
of energy levels can then be written as S = Sp +Sn. This gives
S = 2.8kB for the nucleus 50V, and S = 1.4kB for 51V when
two protons are coupled in a Cooper pair. These values are in
fair agreement with the data of Fig. 7 at an excitation energy
below ∼2 MeV. It is gratifying that these crude estimates give
an entropy of the neutron hole in 50V of �S = 1.4kB , in
good agreement with the experimental value for the entropy
difference of 1.2kB found from Fig. 7.

With the three f7/2 protons unpaired, we obtain a total
entropy of S = 3.5 and 2.1kB for 50,51V, respectively. This
means that the process of just breaking a proton pair within
the same shell does not contribute much to the total entropy,
but when a nucleon has enough energy to cross the shell gap
a significant increase of the entropy is expected. As already
mentioned, at excitation energies above ∼4 MeV, it is very
likely that configurations from other shells will participate in
building the total entropy.

IV. RADIATIVE STRENGTH FUNCTIONS

The γ -ray transmission coefficient T in Eq. (1) is expressed
as a sum of all the RSFs fXL of electromagnetic character X

and multipolarity L:

T (Eγ ) = 2π
∑
XL

E2L+1
γ fXL(Eγ ). (9)

The slope of the experimental γ -ray transmission coefficient
T has been determined through the normalization of the level
densities, as described in Sec. III. The remaining constant
B in Eq. (3) is determined using information from neutron
resonance decay, which gives the absolute normalization of
T . For this purpose, we utilize experimental data [16] on the
average total radiative width 〈�γ 〉 at E = Bn.

We assume here that the γ decay taking place in the
quasicontinuum is dominated by E1 and M1 transitions and
that the number of positive and negative parity states is equal.
For initial spin I and parity π at E = Bn, the expression of
the width [23] reduces to

〈�γ 〉 = 1

4πρ(Bn, I, π )

∑
If

∫ Bn

0
dEγ BT (Eγ )

× ρ(Bn − Eγ , If ), (10)

where Di = 1/ρ(Bn, I, π ) is the average spacing of s-wave
neutron resonances. The summation and integration run over
all final levels with spin If , which are accessible by dipole
(L = 1) γ radiation with energy Eγ . From this expression,
the normalization constant B can be determined as described
in Ref. [6]. However, some considerations have to be made
before normalizing according to Eq. (10).

Methodical difficulties in the primary γ -ray extraction pre-
vent determination of the function T (Eγ ) in the interval Eγ <1

FIG. 8. Unnormalized γ -ray transmission coefficient for 51V.
Lines are extrapolations needed to calculate the normalization integral
of Eq. (10). Arrows indicate the lower and upper fitting regions for
the extrapolations.

MeV. In addition, the data at the highest γ energies, above
Eγ ∼ Bn − 1 MeV, suffer from poor statistics. We therefore
extrapolate T with an exponential form, as demonstrated for
51V in Fig. 8. The contribution of the extrapolation to the total
radiative width given by Eq. (10) does not exceed 15%, thus
the errors due to a possibly poor extrapolation are expected to
be of minor importance [6].

Again, difficulties occur when normalizing the γ -ray
transmission coefficient in the case of 50V because of the lack
of neutron resonance data. Since the average total radiative
width 〈�γ 〉 at E = Bn does not seem to show any clear
systematics for nuclei in this mass region, we choose the same
absolute value of the GEDR tail for 50V as the one found for
51V from photoabsorption experiments. The argument for this
choice is that the GEDR should be similar for equal number
of protons provided that the two nuclei have the same shapes.

Since it is assumed that the radiative strength is dominated
by dipole transitions, the RSF can be calculated from the
normalized transmission coefficient by

f (Eγ ) = 1

2π

T (Eγ )

E3
γ

. (11)

We would now like to decompose the RSF into its components
from different multipolarities to investigate how the E1 and
M1 radiation contribute to the total strength.

The Kadmenskiı̆, Markushev, and Furman (KMF) model
[13] is employed for the E1 strength. In this model, the
Lorentzian GEDR is modified in order to reproduce the
nonzero limit of the GEDR for Eγ → 0 by means of a
temperature-dependent width of the GEDR. The E1 strength
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TABLE II. Parameters used for the radiative strength functions.

Nucleus EE1,1 σE1,1 �E1,1 EE1,2 σE1,2 �;E1,2 EM1 σM1 �M1 〈�γ 〉 T κ

(MeV) (mb) (MeV) (MeV) (mb) (MeV) (MeV) (mb) (MeV) (meV) (MeV)

50V 17.93 53.3 3.62 20.95 40.7 7.15 11.1 0.532 4.0 – 1.34 0.75
51V 17.93 53.3 3.62 20.95 40.7 7.15 11.1 0.563 4.0 600(80) 1.31 0.74

in the KMF model is given by

fE1(Eγ ) = 1

3π2h̄2c2

0.7σE1�
2
E1

(
E2

γ + 4π2T 2
)

EE1
(
E2

γ − E2
E1

)2 , (12)

where σE1 is the cross section, �E1 is the width, and EE1 is
the centroid of the GEDR determined from photoabsorption
experiments.

We adopt the KMF model with temperature T taken as a
constant to be consistent with our assumption that the RSF
is independent of excitation energy. The possible systematic
uncertainty caused by this assumption is estimated to have a
maximum effect of 20% on the RSF [24]. The values used for
T are the ones extracted from the constant-temperature model
in Eq. (5).

The GEDR is split into two parts for deformed nuclei. Data
of 51V from photoabsorption experiments show that the GEDR
is best fitted with two Lorentzians, indicating a splitting of the
resonance and a non-zero ground-state deformation of this
nucleus. Indeed, B(E2) values [16] suggest a deformation
of β ∼ 0.1 for 50,51V. Therefore, a sum of two modified
Lorentzians each described by Eq. (12) is used (see Table II).

For fM1, which is supposed to be governed by the spin-
flip M1 resonance [6], the Lorentzian giant magnetic dipole
resonance (GMDR)

fM1(Eγ ) = 1

3π2h̄2c2

σM1Eγ �2
M1(

E2
γ − E2

M1

)2 + E2
γ �2

M1

(13)

is adopted.
The GEDR and GMDR parameters are taken from the

systematics of Ref. [16] and are listed in Table II. Thus, we fit
the total RSF given by

f = κ(fE1,1 + fE1,2 + fM1) (14)

to the experimental data using the normalization constant κ as
a free parameter. The value of κ generally deviates from unity
because of theoretical uncertainties in the KMF model and
the evaluation of the absolute normalization in Eq. (10). The
resulting RSFs extracted from the two reactions are displayed
in Fig. 9, where the data have been normalized with parameters
from Tables I and II.

The γ -decay probability is governed by the number and
character of available final states and by the RSF. A rough
inspection of the experimental data of Fig. 9 indicates that the
RSFs are increasing functions of γ energy, generally following
the tails of the GEDR and GMDR resonances in this region.

At low γ energies (Eγ � 3 MeV), an enhancement
of a factor of ∼5 over the KMF estimate of the strength
appears in the RSFs. This increase has also been seen in some
Fe [25] and Mo [24] isotopes, where it has been shown to be

present in the whole excitation-energy region. In the case of
the 57Fe RSF, the feature has been confirmed by an (n, 2γ )
experiment [25]. However, it has not appeared in the RSFs of
the rare-earth nuclei investigated earlier by the Oslo group.
The physical origin of the enhancement has not, at present,
any satisfying explanation, as none of the known theoretical
models can account for this behavior.

So far, we have not been able to detect any technical prob-
lems with the Oslo method. The unfolding procedure with the
NaI response functions gives reliable results, as demonstrated
in Fig. 1. Also, Fig. 2 indicates that the low-energy γ intensity

FIG. 9. Normalized RSFs of 50,51V. Dashed and dash-dotted lines
show the extrapolated tails of the giant electric and giant magnetic
dipole resonances, respectively. Solid line is the summed strength for
the giant dipole resonances.
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is subtracted correctly; if not, one would find less intensity in
the higher-generation spectrum at these γ energies. Figure 3
shows the final test, where the result from the least-χ2 fit nicely
reproduces the experimental data. In addition, investigations
in 27,28Si [26] showed that our method produced γ -transition
coefficients in excellent agreement with average decay widths
of known, discrete transitions. Hence, we do not believe that
the enhancement is caused by some technical or methodical
problems. Still, independent confirmation of the increasing
RSF from, e.g., (n, 2γ ) experiments on the V and Mo isotopes,
is highly desirable.

V. SUMMARY AND CONCLUSIONS

The Oslo method has been applied to extract level densities
and RSFs of the vanadium isotopes 50,51V. From the measured
level densities, microcanonical entropies have been derived.
The entropy carried by the neutron hole in 50V is estimated

to be ∼1.2 kB , which is less than the quasiparticle entropy of
∼1.7 kB found in rare-earth nuclei.

The experimental RSFs are generally increasing functions
of γ energy. The main contribution to the RSFs is the GEDR;
also the GMDR is present. At low γ energies, an increase
in the strength functions is apparent. A similar enhancement
has also been seen in iron and molybdenum isotopes. There is
still no explanation for the physics behind this very interesting
behavior.
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G. E. Mitchell, J. Rekstad, A. Schiller, S. Siem, A. C. Sunde,
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The scandium isotopes 44,45Sc were studied with the 45Sc(3He, αγ )44Sc and 45Sc(3He, 3He′γ )45Sc reactions,
respectively. The nuclear level densities and γ -ray strength functions have been extracted using the Oslo method.
The experimental level densities are compared to calculated level densities obtained from a microscopic model
based on BCS quasiparticles within the Nilsson level scheme. This model also gives information about the parity
distribution and the number of broken Cooper pairs as a function of excitation energy. The experimental γ -ray
strength functions are compared to theoretical models of the E1, M1, and E2 strength and to data from (γ , n)
and (γ ,p) experiments. The strength functions show an enhancement at low γ energies that cannot be explained
by the present standard models.
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I. INTRODUCTION

The energy levels of an atomic nucleus and the decay
probability of each level contain essential information on
the nuclear structure. When the nucleus is excited to levels
just above the ground state, spectroscopic measurements are
able to give accurate information on the energy, spin, parity,
and transition rates of the levels. However, as the excitation
energy increases, the number of levels quickly becomes so
high that all levels cannot be found with present state-of-the art
spectroscopy methods. The nucleus leaves the discrete region
and enters the region of quasicontinuum and continuum, where
it is regarded as more appropriate to use average quantities to
describe the behavior of the nucleus.

The nuclear level density and the γ -ray strength function
give a measure of the gross properties of the nucleus. These
average quantities are indispensable in practical applications of
nuclear physics, such as calculations of nuclear reaction rates
in astrophysical processes, the design and operation of fission
reactors, and transmutation of nuclear waste. When it comes
to fundamental nuclear structure, the level density can reveal
information on, e.g., pair correlations and thermodynamic
quantities such as entropy and temperature [1,2], whereas the
average electromagnetic properties are characterized by the
γ -ray strength function [3].

Neutron (and proton) resonance experiments provide data
on the level density at or above the nucleon binding energy [4],
and fluctuation analysis of total neutron cross sections [5]
gives level density at excitation energies well above the
nucleon binding energy. However, in the intermediate region

*a.c.larsen@fys.uio.no

between the nucleon binding energy and the discrete regime
(the quasicontinuum) relatively little is known. To fill in this
gap, the Oslo Cyclotron group has developed the so-called
Oslo method, which enables the extraction of both level
density and γ -ray strength function from the distribution of
primary γ rays at various initial excitation energies. The
method has been thoroughly tested on nuclei in the rare-earth
region [6–8] and has also been successfully extended to other
mass regions [9–12].

The present work reports on new results from an experiment
on the scandium isotopes 44,45Sc. The 45Sc nucleus has one
unpaired proton in the πf7/2 orbital, whereas 44Sc has an
unpaired proton and a neutron in the πf7/2, νf7/2 orbitals. If
one naively assumes that only the f7/2 orbital is dominant in the
model space, one would expect a majority of positive-parity
states in the case of 44Sc and negative-parity states for 45Sc.
However, it is well known that states with different parity
appear already at very low excitation energy in these nuclei.
Early attempts on reproducing the states both with particle-
plus-rotor models [13] and shell-model calculations [14]
had relatively little success. More recent works have shown
that these nuclei exhibit both collective and single-particle
character even at low excitation energy, and they have been
considered as a good case for studying the interplay between
the single-particle and the collective degrees of freedom in
medium-mass nuclei near the closed shell [15,16]. These
scandium isotopes are therefore of special interest to test the
Oslo method further.

In Sec. II an outline of the experimental procedure and
the Oslo method is given. The level densities and the
γ -ray strength functions are discussed in Secs. III and
IV, respectively. Finally, concluding remarks are given in
Sec.V.

0556-2813/2007/76(4)/044303(11) 044303-1 ©2007 The American Physical Society
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II. EXPERIMENTAL DETAILS AND THE OSLO METHOD

The experiment was performed at the Oslo Cyclotron
Laboratory (OCL) using a beam of 3He ions with energy
38 MeV. The self-supporting natural target of 99.9% 45Sc
had a thickness of 3.4 mg/cm2. Eight Si �E-E telescopes
were arranged close to the target at an angle of 45◦ relative
to the beam. The γ -detector array CACTUS [17], consisting
of 28 collimated NaI crystals with a total efficiency of ∼15%,
surrounded the target and the particle detectors. The exper-
imental setup enabled particle-γ coincidence measurements
of the reactions (3He, αγ ) and (3He, 3He′γ ). These reactions
populate states with spin range I ∼ 2–6h̄, which means that
most of the energy transferred to the target nucleus is intrinsic
excitation energy. The experiment ran for about 5 days, with a
typical beam current of ∼1 nA.

The recorded coincidences were sorted into two-
dimensional particle-γ matrices. From the reaction kinemat-
ics, the measured energy of the outgoing 3He or α particle
were converted into excitation energy of the residual nucleus.
With particle-energy bins of 240 keV/channel, total γ -ray
spectra were obtained for each bin. These γ spectra were
then unfolded using a well-tested unfolding procedure based
on the known response functions of the CACTUS array [18].
The unfolding method described in Ref. [18] preserves the
fluctuations in the original spectra without introducing further,
spurious fluctuations. In Fig. 1 an original γ spectrum, an
unfolded spectrum, and the unfolded spectrum convoluted
with the response functions are shown for 44Sc with gate
on the excitation-energy bins between 5.5 and 6.5 MeV.
The original and the convoluted spectrum show excellent
agreement, giving strong confidence in the unfolding method.
The unfolded particle-γ matrix of the 45Sc(3He, αγ )44Sc data
is displayed in Fig. 2, where the sharp diagonal E = Eγ

is clearly seen. Apart from the prominent peak at E ∼ 1
MeV and Eγ ∼ 0.75 MeV, the matrix is without outstanding
structures.

The energy distribution of the first emitted γ rays from the
decay cascades reveals essential information on the nuclear
structure. To extract these primary γ rays from the total γ

spectra, a subtraction procedure described in Ref. [19] is
applied for each excitation-energy bin. The main assumption
of this method is that the γ decay from any excitation-energy
bin is independent on how the nucleus was excited to this bin.
In other words, the decay routes are the same whether they
were initiated directly by the nuclear reaction or by γ decay
from higher-lying states. This assumption is automatically
fulfilled when the same states are equally populated by the
two processes, because γ branching ratios are properties of
the levels themselves. Even if different states are populated,
the assumption is still valid for statistical γ decay, which
depends only on the γ -ray energy and the number of accessible
final states. Figure 3 shows the total, unfolded γ spectrum,
the second and higher generations γ spectrum and the first-
generation spectrum of 45Sc for excitation energy between
E = 5.5 and 6.5 MeV. The first-generation spectrum is
obtained by subtracting the higher-generation γ rays from the
total γ spectrum. By looking at the lower panel of Fig. 3, it
is clear that the main assumption of the subtraction method is
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FIG. 1. Original (top), unfolded (middle) and folded γ spectrum
of 44Sc for excitation energy between 5.5 and 6.5 MeV.
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FIG. 3. Unfolded, total γ spectrum, second and higher-generation
γ spectrum and first-generation γ spectrum of 45Sc for excitation
energy between 5.5 and 6.5 MeV.

not fulfilled for Eγ <∼ 1.4 MeV. In this region, some strong,
low-energy transitions were not subtracted correctly. This
means that the levels from which these transitions originate are
populated more strongly from higher excited levels through γ

emission than directly by inelastic 3He scattering. Therefore,
only data for Eγ > 1.6 MeV are used in the further analysis.
Similar considerations were done for 44Sc.

The experimental matrix of first-generation γ rays is then
normalized [20] such that for every excitation-energy bin E,
the sum over all γ energies Eγ from some minimum value Emin

γ

to the maximum value Emax
γ = E at this excitation-energy bin

is unity:

E∑
Eγ =Emin

γ

P (E,Eγ ) = 1. (1)

For statistical γ decay in the continuum region, the γ -decay
probability from an excitation energy E to Ef = E − Eγ is
proportional to the γ -ray transmission coefficient T (Eγ ) and

the level density at the final excitation energy ρ(Ef ):

P (E,Eγ ) ∝ ρ(E − Eγ )T (Eγ ). (2)

The essential assumption underlying the above relation is
that the reaction can be described as a two-stage process,
where a compound state is first formed, before it decays in a
manner that is independent of the mode of formation [21,22].
Equation (2) could also be regarded as a generalization1 of
Fermi’s golden rule, where the decay rate is proportional to
the density of final states and the square of the matrix element
between the initial state and the final state.

The experimental normalized first-generation γ matrix can
theoretically be approximated by

Pth(E,Eγ ) = ρ(E − Eγ )T (Eγ )∑E
Eγ =Emin

γ
ρ(E − Eγ )T (Eγ )

. (3)

The γ -ray transmission coefficient T is independent of
excitation energy according to the generalized Brink-Axel
hypothesis [23,24], which states that collective excitation
modes built on excited states have the same properties as those
built on the ground state. There is evidence that the width
of the giant dipole resonance (GDR) varies with the nuclear
temperature of the state on which it is built [25,26]. However,
the temperature corresponding to the excitation-energy range
covered in this work is rather low and changes slowly with
excitation energy (T ∼√

Ef ). The temperature is therefore
assumed to be approximately constant, and the Brink-Axel
hypothesis is recovered in the energy region of interest.

To extract the level density and the γ -ray transmission
coefficient, an iterative procedure [20] is applied to the
first-generation γ matrix P (E,Eγ ). The basic idea of this
method is to minimize

χ2 = 1

Nfree

Emax∑
E=Emin

E∑
Eγ =Emin

γ

[
Pth(E,Eγ ) − P (E,Eγ )

�P (E,Eγ )

]2

, (4)

where Nfree is the number of degrees of freedom and
�P (E,Eγ ) is the uncertainty in the experimental first-
generation γ matrix. Every point of the ρ and T functions
is assumed as an independent variable, so the reduced χ2 is
minimized for every argument E − Eγ and E. The quality
of the procedure when applied to the 44Sc data is shown in
Fig. 4, where the experimental first-generation spectra for
various initial excitation energies are compared to the least-χ2

solution. In general, the agreement between the experimental
data and the fit is very good.

The globalized fitting to the data points only gives the
functional form of ρ and T . In fact, it has been shown [20]
that if one solution for the multiplicative functions ρ and
T is known, one may construct an infinite number of other

1A generalization in the sense that the present work deals with an
ensemble of initial and final states and therefore considers the average
decay properties in each excitation-energy bin.
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FIG. 4. A sample of the experimental first-
generation spectra of 44Sc (data points with error
bars) are plotted with the least-χ2 fit (lines).

functions, which give identical fits to the P (E,Eγ ) matrix by

ρ̃(E − Eγ ) = A exp[α(E − Eγ )] ρ(E − Eγ ), (5)

T̃ (Eγ ) = B exp(αEγ )T (Eγ ). (6)

Therefore the transformation parameters α, A, and B, which
correspond to the physical solution, remain to be found.

III. THE LEVEL DENSITIES

A. Normalization

As described in the previous section, only the shape of
the level density is found through the least χ2 procedure
of Ref. [20]. To determine the slope α and the absolute
value A in Eq. (5), the ρ function is adjusted to match the
number of known discrete levels at low excitation energy
[27] and proton-resonance data [28,29] at high excitation
energy. The procedure for extracting the total level density ρ

from the resonance spacing D is described in Ref. [20].
Because the proton beam energy had a range of Ep(44Sc)
= 0.90–1.50 MeV and Ep(45Sc) = 2.50–3.53 MeV in
Refs. [28,29], respectively, the level density estimated from

the proton resonances is not at the proton binding energy
Bp, but rather at approximately Bp + (�E)/2, where �E

is the energy range of the proton beam, assuming that the
resonances are approximately equally distributed over �E.
Also, the authors of Ref. [28] do not distinguish between s-
and p-wave resonances, so the calculation of the total level
density is rather uncertain in the case of 44Sc. However, by
comparing with preliminary level-density data from an exper-
iment done on 44Sc at Ohio University, the slope α seems to be
correct [30].

Because our experimental data points of the level density
only reach up to an excitation energy of ∼7.2 and ∼8.0 MeV
for 44,45Sc, respectively, we extrapolate with the back-shifted
Fermi gas model [31,32]

ρBS(E) = η
exp(2

√
aU )

12
√

2a1/4U 5/4σ
, (7)

where a constant η is introduced to ensure that ρBS has the same
value as the level density calculated from the proton-resonance
experiments. The intrinsic excitation energy is estimated
by U = E − E1, where E1 is the back-shift parameter.
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TABLE I. Parameters used for the back-shifted Fermi gas level density and the parameters from Ref. [32].

Nucleus E1

(MeV)
a

(MeV−1)
σ E a

1

(MeV)
aa

(MeV−1)
σ a Bp

(MeV)
Bp + (�E)/2

(MeV)
Db (eV) ρ (proton res.)

(MeV−1)
η

44Sc −2.91 5.13 3.53 −2.06 5.68 3.37 6.696 7.896 3243(324) 1855(392) 1.12
45Sc −2.55 4.94 3.75 −0.61 6.07 3.41 6.889 9.904 7874(496) 3701(760) 1.26

aCalculated with the method of Ref. [32].
bCalculated from proton-resonance data.

The spin-cutoff parameter is given by2

σ 2 = 0.0146A5/3 1 + √
1 + 4aU

2a
, (8)

where A is the mass number. Because the level-density
parameter a and the back-shift parameter E1 calculated with
the method of Ref. [32] did not seem to give reliable results
for 45Sc, these parameters were extracted by fitting the Fermi
gas to the known levels at ∼1.75 MeV and ∼2 MeV for
44,45Sc, respectively, and to the known resonance-spacing data
at Bp + (�E)/2. The parameters used for 44,45Sc in Eq. (7)
are listed in Table I, where also the Fermi-gas parameters from
Ref. [32] are shown. As the authors demonstrate in Fig. 5 in
Ref. [32], the difference between the calculated parameters
and the empirically extracted ones might be large in the
mass region A � 50. The normalization procedure is pictured
in Fig. 5; note that only statistical errors are shown. Above
∼2 MeV, there are more than 30 levels per MeV, giving the
present limit to make complete spectroscopy in these nuclei.

The normalized level densities of 44Sc and 45Sc are
displayed in Fig. 6. As one would expect, the odd-odd nucleus
44Sc has an overall higher level density than its odd-even
neighbor 45Sc due to its two unpaired nucleons. The difference
in level density between the odd-odd (44Sc) and the odd-even
(45Sc) nucleus is seen to be approximately constant, except in
the area between E ∼ 4–5 MeV, where the level densities are
almost the same. This is in agreement with earlier findings in
the rare-earth region. However, here the odd-odd system has
approximately a factor of 2 higher level density compared
to the odd-even nucleus, whereas for rare-earth nuclei the
difference was found to be a factor of 5.

Bump structures in the level densities of the scandium
nuclei are observed. Standard models such as the back-shifted
Fermi gas give a smooth ρ function and are unable to describe
the structures that appear in the experimental level density in
this excitation-energy region.

B. Comparison with microscopic model

To further investigate the level density at high excitation
energy, a microscopic model has been developed. The model
is based on combining all possible proton and neutron config-
urations within the Nilsson energy scheme, and the concept

2The authors of Ref. [32] found this expression to be the most
adequate in the low-energy region, even though it is connected to
the (mathematically incorrect) relation U = aT 2 − T and not the
standard one U = aT 2 (see Ref. [31] for more details).

of Bardeen-Cooper-Schrieffer (BCS) quasiparticles [33] is
utilized.

The model is described within the microcanonical en-
semble, where the excitation energy E is well defined. The
single-particle energies esp are taken from the Nilsson model
for an axially deformed core described by the quadrupole
deformation parameter ε2. Furthermore, the model depends
on the spin-orbit and centrifugal parameters κ and µ.
The oscillator quantum energy h̄ω0 = 41A−1/3 MeV between
the harmonic oscillator shells is also input to the code. Within
the BCS model, the single-quasiparticle energies are defined by

eqp =
√

(esp − λ)2 + �2, (9)
)
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FIG. 5. Normalization procedure of the experimental level den-
sity (data points) of 44,45Sc. The data points between the arrows are
normalized to known levels at low excitation energy (solid line) and
to the level density at the proton-separation energy (open square)
using the Fermi-gas level density (dashed line).
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FIG. 6. Normalized level densities for 44,45Sc.

where the Fermi level λ is adjusted to reproduce the number
of particles in the system and � is the pair-gap parameter,
which is kept constant.

The double-degenerated proton and neutron quasiparticle
orbitals are characterized by their spin projections on the
symmetry axis �π and �ν , respectively. The energy due to
quasiparticle excitations is given by

Eqp(�π,�ν) =
∑

{�′
π �′

ν}
[eqp(�′

π ) + eqp(�′
ν) + V (�′

π ,�′
ν)].

(10)

Between the aligned and antialigned levels of the proton and
neutron projections, i.e., �π + �ν and |�π − �ν |, a residual
interaction V is defined as a random Gaussian distribution
centered at zero energy with a width of 50 keV. The sets of
proton and neutron orbitals

{
�′

π�′
ν

}
are picked out by using

a random generator. The total number of broken Cooper pairs
are set to 3, making a maximum number of 8 participating
quasiparticles for odd-odd nuclear systems. Technically, this
process is repeated until all possible energies Eqp(�π,�ν)
have been obtained. An indicator that this saturation is reached,
is that all energies are reproduced at least ten times in the
simulation.

Collective energy terms are schematically added by

E = Eqp(�π,�ν) + ArotR(R + 1) + h̄ωvibν, (11)

where Arot = h̄2/2J is the rotational parameter and R =
0, 1, 2, 3 . . . is the rotational quantum number. The vibrational
motion is described by the phonon number ν = 0, 1, 2, . . . and
the oscillator quantum energy h̄ωvib.

The advantage of the present model is a fast algorithm
that may include a large model space of single-particle
states. Because level density is a gross property, the detailed
knowledge of the many-particle matrix elements through large
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FIG. 7. The Nilsson level scheme for 45Sc with parameters κ =
0.066 and µ = 0.32.

diagonalizing algorithms is not necessary. No level inversion
is observed, as frequently seen for microscopic models with
single-particle orbital truncations. In the sum of Eq. (10), all
orbitals with energy up to the maximum energy (eqp < E) are
included. Typically, for excitation energies up to ∼10 MeV,
about 20 proton and 20 neutron orbitals are taken into account
(∼10 orbitals below the Fermi level and ∼10 orbitals above).

In the calculation we adopted the Nilsson parameters κ =
0.066 and µ = 0.32 from Ref. [34] with oscillator quantum
energy of h̄ωvib = 1.904 MeV, found from the 0+ vibrational
state in 44Ti [35]. The Nilsson levels used in the calculations for
45Sc are shown in Fig. 7, with the Fermi levels for the protons
and neutrons. The value of the deformation parameter ε2 was
set to 0.23, which is in agreement with values suggested in
Ref. [15]. The rotational and vibrational terms contribute only
significantly to the total level density in the lower excitation
region. To reproduce the transition energy from the 11/2− →
7/2− transition in the ground-state rotational band of
45Sc [35], the rotational parameter Arot was set to 0.135 MeV.
The adopted pairing gap parameters �π and �ν are taken from
the calculations of Dobaczewski et al. [36] for the even-even
42Ca for 44Sc and 44Ca for 45Sc. A list of the input data for the
model calculations can be found in Table II.

The experimental and calculated level densities are shown
in Fig. 8. The result is satisfactory, especially for the nucleus

TABLE II. Model parameters.

Nucleus ε2 �π �ν Arot h̄ω0 h̄ωvib λπ λν

(MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV)

44Sc 0.23 1.234 1.559 0.135 11.61 1.904 45.96 47.47
45Sc 0.23 1.353 1.599 0.135 11.53 1.904 45.60 47.91
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FIG. 8. Calculated level densities (solid lines) compared with the
experimental ones (data points with error bars) for 44,45Sc.

44Sc where there is a good agreement between the model
calculation and the experimental level density. The general
decrease in level density for the odd-even system compared
to the odd-odd nucleus as well as the level densities found
from the proton-resonance experiments are well reproduced.
However, it is seen that the model misses many low-lying levels
in the excitation-energy region E = 1–5 MeV for 45Sc. This
can, at least partially, be explained by the well-established
shape coexistence determined from the negative-parity and
positive-parity bands in this nucleus [15]. Only one shape is
included in our model, and thus only one potential, which
results in an undershoot of bandheads of about a factor of 2.

The pairing parameters �π and �ν are important inputs of
the model, because the slope of the level density (in log scale)
increases with decreasing pairing parameters in the energy
region considered here. It can be seen from Fig. 8 that the
adopted values give a nice agreement of the log slope of the
level densities for both isotopes.

Figure 9 shows the average number of broken Cooper
pairs 〈Nqp〉 as a function of excitation energy. This is
calculated by looking at all configurations obtained in each
240-keV excitation-energy bin, and finding the number of
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FIG. 9. The average number of broken Cooper pairs as function
of excitation energy for 44,45Sc.

configurations with one broken pair, two broken pairs and
so on. Both neutron and proton pairs are taken into account.
From this information the average number of broken Cooper
pairs is calculated. From Fig. 9, the pair-breaking process is
seen to start at E ∼ 2.5 MeV for both nuclei, in accordance
with the values used for �π (see Table II). The average
number of broken pairs seems to have a relatively linear
increase, giving an exponential growth in the level density.
This behavior also indicates that there is no abrupt change in
seniority as a function of excitation energy. For example, in
the region E = 9–10 MeV, the model predicts 1% states with
no pairs broken, 34% states with one broken pair, 61% states
with two broken pairs, and 4% of the states have three pairs
broken.

The location of the proton and neutron Fermi levels of
44,45Sc in the Nilsson level scheme gives, roughly speaking,
mostly positive-parity orbitals below and negative-parity states
above the Fermi levels. Knowing this, one would expect a
relatively homogeneous mixture of positive and negative parity
states in the whole excitation-energy region covered by the
calculations. In order to investigate this feature, we utilize the
parity asymmetry defined in Ref. [37] by

α = ρ+ − ρ−
ρ+ + ρ−

, (12)
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FIG. 10. The parity asymmetry as function of excitation energy
for 44,45Sc.

which gives −1 and 1 for only negative and positive parities,
respectively, and 0 when both parities are equally represented.
In Fig. 10 the parity asymmetry α is shown as a function
of excitation energy. On the average, for E > 4 MeV, there
seems to be a slight excess of positive- and negative-parity
states in 44Sc and 45Sc, respectively. However, as the exci-
tation energy increases, the model predicts that the parity
asymmetry becomes smaller and smaller for both nuclei.
The proton-resonance data in Ref. [37] from the reaction
44Ca+p (compound nucleus 45Sc, with excitation-energy
region 9.77–10.53 MeV), gives an asymmetry parameter
α = −0.18+0.07

−0.06 for J = 1/2 resonances, and α = 0.23 ± 0.07
for J = 3/2 resonances. Given the level densities of J = 1/2
and J = 3/2 resonances (see Table III in Ref. [37]), the
parity asymmetry for ρ(J = 1/2, J = 3/2) can be estimated
to α ∼ 0.02, in good agreement with the model’s result in this
excitation-energy region.

IV. THE γ -RAY STRENGTH FUNCTIONS

As mentioned in Sec. II, the γ -decay process in the
(quasi-)continuum is governed by the level density and the
γ -ray transmission coefficient. By using the Oslo method,
also the γ -ray transmission coefficient can be extracted from
the experimental data.

The slope of the γ -ray transmission coefficient T (Eγ ) has
already been determined through the normalization of the level
densities (Sec. III A). However, the constant B in Eq. (6)
remains to be determined. If there was data on the average

total radiative width 〈�γ 〉 for these nuclei, this data could be
utilized for the absolute normalization of T as described in,
e.g, Refs. [38,39]. Because such data does not exist for 44,45Sc,
other considerations had to be made to obtain the absolute
value of the strength function.

The experimental T contains components from all elec-
tromagnetic characters X and multipolarities L. It is closely
connected to the total γ -ray strength function through the
relation [40]

T (Eγ ) = 2π
∑
XL

E2L+1
γ fXL(Eγ ), (13)

where fXL is the γ -ray strength function for electromagnetic
character X and multipolarity L. Assuming that the γ -decay
taking place in the continuum is dominated by E1 and
M1 transitions, the total γ -ray strength function can be
approximated by

f (Eγ ) 	 1

2π

T (Eγ )

E3
γ

. (14)

The resulting γ -ray strength functions of 44,45Sc are then
scaled to agree with data from Ref. [41]. Based on two
resonances from the reaction 45Sc(n,γ ) and on the ob-
servation of 13 E1 transitions and 9 M1 transitions of
average energy 7.0 and 7.2 MeV, respectively, the strength
functions are found to be fE1 = 1.61(59) × 10−8 MeV−3

and fM1 = 1.17(59) × 10−8 MeV−3 [41]. By adding these
values together, the absolute normalization is given at this
specific γ energy. The experimental γ -ray strength functions
of 44,45Sc are displayed in Fig. 11, together with the data point
from Ref. [41] used for the normalization.

Several interesting features can be seen in Fig. 11. In
general, for Eγ � 3.5 MeV, the data show that the γ -ray
strength functions of 44,45Sc are slowly increasing with
γ energy. For γ energies below ∼3 MeV, the γ -ray strength
functions of both nuclei have an increase of a factor ∼3 relative
to their minimum.

To investigate the experimental strength functions further,
they are compared to theoretical predictions. For the E1 part
of the total γ -strength function, the Kadmenskiı̆, Markushev,
and Furman (KMF) model [26] described by

fE1(Eγ ) = 1

3π2h̄2c2

0.7σE1�
2
E1

(
E2

γ + 4π2T 2
)

EE1
(
E2

γ − E2
E1

)2 (15)

is applied. Here, σE1 is the cross section, �E1 is the width,
and EE1 is the centroid of the giant electric dipole resonance
(GEDR). The Lorentzian parameters are taken from Ref. [42]
(see Table III). The nuclear temperature on the final state,
introduced to ensure a nonvanishing GEDR for Eγ → 0, is
given by T (Ef ) = √

Uf /a.
For fM1, which is supposed to be governed by the spin-

flip M1 resonance [38], the Lorentzian giant magnetic dipole
resonance (GMDR)

fM1(Eγ ) = 1

3π2h̄2c2

σM1Eγ �2
M1(

E2
γ − E2

M1

)2 + E2
γ �2

M1

(16)

is adopted.
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TABLE III. Parameters used for the theoretical γ -ray strength functions.

Nucleus κ A b EE1

(MeV)
σE1

(mb)
�E1

(MeV)
EM1

(MeV)
σM1

(mb)
�M1

(MeV)
EE2

(MeV)
σE2

(mb)
�E2

(MeV)

44Sc 1.11(3) 0.52(10) 2.57(23) 19.44 39.40 8.0 11.61 1.239 4.0 17.85 1.069 5.58
45Sc 1.20(1) 1.62(9) 2.93(5) 19.44 39.40 8.0 11.53 1.214 4.0 17.71 1.047 5.57

The contribution from E2 radiation to the total strength
function is assumed to be very small. However, for the sake of
completeness, the E2 isoscalar reconance described by

fE2(Eγ ) = 1

5π2h̄2c2E2
γ

σE2Eγ �2
E2(

E2
γ − E2

E2

)2 + E2
γ �2

E2

(17)

is included in the total, theoretical strength function.
In lack of any established theoretical prediction of the

observed increase at low γ energy, this phenomenon is
modelled by a simple power law as

fupbend(Eγ ) = 1

3π2h̄2c2
AE−b

γ , (18)

where A and b are fit parameters.

)
-3

-r
ay

 s
tr

en
g

th
 f

u
n

ct
io

n
 (

M
eV

γ

-810

-710

Sc, Oslo data 44 
)γSc(n,45 

 (MeV)
γ

 energy Eγ
0 2 4 6 8 10

)
-3

-r
ay

 s
tr

en
g

th
 f

u
n

ct
io

n
 (

M
eV

γ

-810

-710

Sc, Oslo data 45 

)γSc(n,45 

FIG. 11. Normalized γ -strength functions of 44,45Sc (black dots),
and fE1 + fM1 from Ref. [41] (star).

The total, theoretical γ -ray strength function is then given
by

ftotal = κ(fE1 + fM1 + fupbend) + E2
γ fE2, (19)

where κ is a renormalization factor that should be close to
unity. All parameters employed are listed in Table III, and
the result for 44Sc is displayed in Fig. 12. It is seen that the
theoretical strength function fits the data well. From Fig. 12,
one would also conclude that the data points below ∼3 MeV
are not described by the standard models.

In Fig. 12 also the photoneutron cross-section data from the
reaction 45Sc(γ , n)44Sc [43] and the photoproton cross-section
data from the reaction 45Sc(γ ,p)44Ca [44] are shown. The
photoabsorbtion cross-section σ (Eγ ) is converted into strength
function through the relation

f (Eγ ) = 1

3π2h̄2c2

[
σ (Eγ )

Eγ

]
. (20)

The (γ , n) and (γ ,p) data exhaust ∼57% and ∼25% of
the Thomas-Reiche-Kuhn sum rule, respectively [42]. The
summed strength of the two photoabsorption experiments for

FIG. 12. The γ -strength functions of 44,45Sc from Oslo experi-
ments (black dots) and GDR data from (γ , n) (white dots) and (γ ,p)
(white crosses) experiments [43,44]. The black squares represent
the summed strength from the (γ , n) and (γ ,p) experiments for
Eγ = 15.0–24.6 MeV. Also the total, theoretical strength function
(solid line), the E1 tail from the KMF model (dashed line), the spin-
flip M1 resonance (dashed-dotted line), the E2 isoscalar resonance
(dashed-dotted line), and a fit to the upbend structure (dotted line) are
shown.
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FIG. 13. The γ -strength function of 45Sc extracted from different
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from the total excitation-energy region considered.

Eγ = 15.0–24.6 MeV is also displayed in Fig. 12, and it seems
to fit reasonably well with the theoretical expectation and
the Oslo data. Note that the photoabsorption cross sections
from the (γ, n) and (γ, p) reactions may have some overlap
in strength in the energy region where the (γ, pn) channel is
opened.

For γ energies below ∼3 MeV, the γ -ray strength functions
of 44,45Sc display an increase of a factor ∼3 relative to their
minimum. This behavior has been observed in several medium-
mass nuclei; first in 56,57Fe [45], then recently in 93−98Mo [39]
and 50,51V [12]. For the iron and molybdenum isotopes,
the upbend structure has been shown to be independent of
excitation energy. This has also been tested for the Sc isotopes,
as demonstrated in Fig. 13. Here, the γ -ray strength function
of 45Sc has been extracted from two different excitation-
energy regions (the intervals 4.5–6.9 MeV and 6.9–9.3 MeV),
representing two independent sets of data. As seen in Fig. 13,
the result is quite convincing. The general trends are very

similar, and the enhancement at low γ energies appears in
both data sets.

The physical origin of this low-energy enhancement in
strength is not yet understood. To check if the upbend feature
could be due to peculiarities of the nuclear reactions or
the Oslo method, a two-step cascade (n, 2γ ) experiment
was carried out with 56Fe as a target [45]. This experiment
confirmed the large increase in γ -ray strength observed in
the Oslo data but was unable to establish the character and
multipolarity of the enhancement. To pin down the physical
reason behind these observations, it is necessary to design and
carry out experiments that have the possibility to determine
the electromagnetic nature of this low-energy structure. Also,
it would give better confidence to the findings to have
independent confirmation of the increase from, e.g, (n, 2γ )
experiments on the Mo, V, and Sc isotopes as well.

V. SUMMARY AND CONCLUSIONS

The nuclear level densities and the γ -ray strength functions
of the scandium isotopes 44,45Sc were measured from primary
γ rays using the Oslo method. The level densities display bump
structures that cannot be obtained from standard statistical
level-density models. A new, microscopic model to calculate
the level density has been developed and applied on both
nuclei, giving an overall good agreement with the experimental
data. From the model, information on the average number of
broken pairs and the parity asymmetry can also be extracted.

The γ -ray strength functions are in general found to be
increasing functions of γ energy in the energy region examined
in this work. The new data sets from the Oslo experiment are
compared to theoretical models of the strength function and
photoabsorbtion data, and the agreement seems to be good. At
low γ energies a substantial enhancement of the total γ -ray
strength is observed that is not accounted for in any of the
standard theories. As of today, this puzzling feature has no
satisfying, physical explanation.
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The level densities of 44Sc and 47Ti have been determined from measurements of particle evaporation spectra
from the compound nuclear reaction 3He + 45Sc with an 11 MeV 3He beam. The level density of 44Sc has been
compared to the level density obtained from an independent experimental method based on an analysis of α-γ
coincidences from the transfer reaction 45Sc(3He,αγ )44Sc. The good agreement between the two experiments
indicates the reliability of the level density obtained. Some level density systematics have been tested against the
experimental data. New Fermi-gas level density parameters have been derived.

DOI: 10.1103/PhysRevC.77.034613 PACS number(s): 21.10.Ma, 24.60.Dr, 27.40.+z

I. INTRODUCTION

The nuclear level density is difficult to measure precisely
because of the lack of reliable experimental techniques. The
counting of discrete levels is restricted to excitation energies
below about 3–5 MeV for medium mass nuclei because
above this limit the levels become too close in energy to
resolve. Above these energies more sophisticated methods
need to be applied (see Ref. [1]). The main approach for
estimating the level density above the discrete level region
is to use some model-based function with parameters fitted
to the density of discrete low-lying levels and the density of
neutron resonances. For nuclei for which information about
the neutron resonance spacing is not available, parameter
systematics must be used. There are several systematics of
level density parameters (mainly related to either Fermi-gas
or constant temperature models) that modern computer codes
utilize to calculate reaction cross sections. However, because
neutron resonances are known only for a very narrow spin
interval, and because the shape of the level density function
is not well established, it is not yet clear how well available
systematics reproduce total level densities above the discrete
level region.

At this time, two experimental techniques appear to be good
candidates for the systematic investigation of the total level
density in nuclei above the region of discrete levels. The first
one was developed at the Oslo Cyclotron Laboratory (hereafter
referred to as the “Oslo method”) to extract both level density
and γ -strength functions from the particle-γ coincidence
matrix measured from inelastic scattering (3He,3He′γ ) and
transfer (3He,αγ ) reactions [2]. The second method uses
particle evaporation spectra from compound nuclear reactions
[3]. The problem is that both methods might contain intrinsic
systematic uncertainties, which are difficult to estimate while
remaining inside of these methods. Particularly the Oslo
method suffers from normalization uncertainties because it
produces only a level density function with an uncertainty
factor of A exp(BEx), where Ex is the excitation energy.

*voinov@ohio.edu

The coefficients (A,B) then have to be determined from
auxiliary experimental information such as neutron resonance
spacing (when available) and the density of discrete levels. The
Oslo method is also based on assumptions discussed below,
which are possible sources of systematic uncertainties as well.
The main problem with the particle evaporation technique
is possible contaminations of the evaporation spectra due to
multistep and/or direct reaction contributions. It could result
in an incorrect slope of the obtained level density function and
could cause an absolute normalization problem.

The consistency of these two experimental techniques has
been confirmed in Ref. [4], where the level density of 56Fe was
investigated with the reaction 57Fe(3He,αγ )56Fe by the Oslo
method and with the neutron evaporation spectrum from the
55Mn(d,n)56Fe reaction. Neutron spectra are most suitable for
level density studies because neutron transmission coefficients
are better known than proton and α-transmission coefficients.
Moreover, the neutron channel is a preferred decay channel
for the compound nucleus. This means that it is more likely
that compound reactions dominate the neutron spectrum. On
the other hand, it would be highly desirable to study different
types of reactions for these purposes. In this work we have
studied the level density from the evaporation spectra of α

particles from the 45Sc(3He,α)44Sc reaction and compared it to
the level density obtained recently from the 45Sc(3He,αγ )44Sc
reaction using the Oslo method. The level density of 47Ti
populated by the 45Sc(3He,p)47Ti reaction has been obtained
as well. Different available level density systematics have been
tested.

II. EXPERIMENTS AND METHODS

A. The Oslo method

At the Oslo Cyclotron Laboratory, a measurement of the
45Sc(3He,αγ )44Sc reaction with a 38 MeV 3He beam was
performed. The self-supporting natural target of 99.9% 45Sc
had a thickness of 3.4 mg/cm2. Eight Si �E-E telescopes
were arranged close to the target at an angle of 45◦ relative
to the beam. The γ -ray detector CACTUS [5], consisting
of 28 collimated NaI crystals with a total efficiency of 15%

0556-2813/2008/77(3)/034613(6) 034613-1 ©2008 The American Physical Society
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surrounded the target and particle detectors. The experimental
setup enabled particle-γ coincidence measurements of the
reaction 45Sc(3He,αγ )44Sc. The experiment ran for about
5 days, with a typical beam current of ∼1 nA.

The essential part of the analysis of particle-γ coincidences
is the extraction of first-generation spectra P (Ex,Eγ ) at
each excitation energy bin Ex , which is the initial excitation
energy of the γ transitions. The corresponding technique is
described in Ref. [6]. The first generation matrix P (Ex,Eγ )
can be decomposed into a level density ρ(Ex − Eγ ) and
γ -transmission function T (Eγ ) as

P (Ex,Eγ ) ∝ ρ(Ex − Eγ )T (Eγ ). (1)

The details of this particular experiment and its analysis are
described in Ref. [7]. Here we would like to outline the
important assumptions behind this decomposition.

(i) The γ decay from each excitation energy bin and the spin
population within the bin are independent of how the
levels were populated; whether directly by the reaction
or by γ decay from higher-lying states.

(ii) The γ -strength function does not depend on the excita-
tion energies of either initial or final states, it depends
only on the γ energy.

It is difficult to estimate how large the possible violations of the
assumptions are and how they affect the final results. Special
concern is caused by the possible temperature dependence
of the γ -strength function suggested in theoretical work [8]
which would mean a violation of the second assumption.

B. Level density from evaporation spectra

To obtain an independent result on the level density of
44Sc, we measured the α-particle evaporation spectrum from
the 45Sc(3He,α)44Sc reaction. The proton spectrum was also
studied, which allowed us to investigate the level density
of the residual 47Ti nucleus. The experiment was performed
with an 11-MeV 3He beam from the tandem accelerator of
the Ohio University Edwards Accelerator Laboratory. Proton
and α-particle spectra were measured with a charged-particle
spectrometer [1]. Seven 2-m time-of-flight tubes with Si
detectors placed at the end were set up at angles ranging
from 22.5◦ up to 157.5◦. The masses of the charged particles
were determined by measuring both the energy deposited in
the Si detectors and the time of flight. The mass resolution
was sufficient to resolve protons, deuterons, 3He/3H, and
α particles.

The cross section of outgoing particles resulting from
compound nucleus decay can be calculated in the framework
of the Hauser-Feshbach (HF) model [9], according to which

dσ

dεb

(εa, εb)

=
∑
Jπc

σ CN(εa)

∑
Iπr �b(U, J, πc, E, I, πr )ρb(E, I, πr )

�(U, J, πc)
,

(2)

with

�(U, J, πc)

=
∑
b′

(∑
k

�b′
(
U, J, πc, Ek, Ik, π

r
k

)

+
∑
I ′πr′

∫ U−Bb′

Ec

dE′ �b′

× (U, J, πc, E′, I ′, πr′) ρb′ (E′, I ′, πr′)
)

. (3)

Here σ CN(εa) is the fusion cross section, εa and εb are
energies of relative motion for incoming and outgoing channels
(εb = U − Ek − Bb, where Bb is the separation energy of
particle b from the compound nucleus), �b is the transmission
coefficient of outgoing particles, and the quantities (U, J, πc)
and (E, I, πr ) are the energy, angular momentum, and parity
of the compound and residual nuclei, respectively. The energy
Ec is the continuum edge, above which levels are modeled
using a level density parametrization. For energies below Ec,
the known excitation energies, spins, and parities of discrete
levels are used. In practice Ec is determined by the available
spectroscopic data in the literature. It follows from Eq. (3)
that the cross section is determined by both transmission
coefficients of outgoing particles and the level density of the
residual nucleus ρb(E, I, π ). It is believed that transmission
coefficients are known with sufficient accuracy near the line
of stability because they can be obtained from optical model
potentials, which are usually based on experimental data for
elastic scattering and total cross sections in the corresponding
outgoing channel. Transmission coefficients obtained from
different systematics of optical model parameters do not differ
by more that 15–20 % from each other in our region of interest
(1–15 MeV of outgoing particles). The uncertainties in level
densities are much larger. Therefore, the HF model can be used
to improve level densities by comparing experimental and cal-
culated particle evaporation spectra. Details and assumptions
of this procedure are described in Refs. [3] and [10]. The
code HF2002 [11] was used for calculations of spectra from
compound nuclear reactions.

The main uncertainty of this method comes from contribu-
tions of noncompound mechanisms of a nuclear reaction in-
cluding direct, multistep direct, and multistep compound. They
correspond to different stages of nucleon-nucleon interactions
inside the projectile + target nuclear system until complete
equilibrium is achieved. The measurement of the energy
distribution of outgoing particles at backward angles reduces
considerably the contribution from noncompound reactions,
but does not guarantee their complete elimination. Therefore,
the systematic uncertainties connected to the presence of
noncompound reaction contributions can be estimated only
by applying different experimental techniques directed to
measure the level density of the same nucleus.

By comparing data obtained from the Oslo method with
data extracted from particle evaporation spectra one can
estimate possible systematic uncertainties pertaining to these
methods.
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FIG. 1. Angular distributions of α particles in the c.m. system for
different energy intervals. The points are experimental data and the
solid lines are HF calculations normalized to match the experimental
points at backward angles for low energy particles.

III. RESULTS

To investigate the reaction mechanism, the proton and
α-particle angular distributions were measured (Figs. 1
and 2). In the figures the particle energies are restricted to
ensure that only first stage particles emitted immediately from
the compound nucleus 48V can contribute. For compound
nuclear reactions the HF calculation predicts a symmetric
angular distribution of the cross section with respect to 90◦ in
the center of mass system. The present measurement exhibits
forward-peaked distributions for both protons and α particles.
However, it is important to note that for lower energy α

particles, the angular distribution starts to follow the calculated
curve at ≈115◦ and beyond. For higher energy particles the
asymmetry is stronger. For α particles in the energy interval
16–18 MeV, i.e., for those populating the discrete levels of
44Sc, the angular distribution does not agree with calculations
even at backward angles. This means that high energy α

particles contain contributions from noncompound reactions
even at backward angles. From this analysis, it is possible
to conclude that the α-particle spectra measured at backward

FIG. 2. Angular distributions of protons (open circles) and α

particles (solid circles) in the c.m. system.

FIG. 3. Experimental energy spectra of protons and α particles
measured at 157◦ with respect to the beam line.

angles can be used for extracting level densities but only in the
energy region 10–16 MeV, which corresponds to excitation
energies of the residual 44Sc nucleus between 2 and 8 MeV.
We could not make a similar analysis for protons because
the thickness of our detectors (1000 and 1500 µm) was not
sufficient to stop protons with energies greater than 10 and
15 MeV, respectively (note that the maximum proton energy
from this reaction is 21 MeV). Therefore, the proton angular
distribution is integrated over all energies and is presented in
Fig. 2 along with integrated distribution for α particles. The
similarity of these distributions indicates that the compound
mechanism is the main mechanism determining both proton
and α-particle spectra measured at backward angles.

The energy dependence of proton and α-particle cross
sections measured at 157◦ with respect to the beam axis are
shown in Fig. 3. The level densities for both 44Sc (populated
by α particles) and 47Ti (populated by protons) nuclei were
obtained by the method described in Ref. [3] and in our
previous article [1]: a level density model is chosen for the
calculation of the differential cross section of Eq. (3). The
parameters of the model are then adjusted to reproduce the
experimental spectra as closely as possible. The input level
density is improved by binwise renormalization according to
the expression

ρb(E, I, π ) = ρb(E, I, π )input
(dσ/dεb)meas

(dσ/dεb)calc
. (4)

To get the absolute normalization, information about the level
density of discrete levels is used.

The level densities of 47Ti and 44Sc extracted from proton
and α-particle evaporation spectra are shown in Fig. 4. The
level density of 44Sc extracted from the Oslo experiment is
presented for comparison.

The absolute normalization of the level density for 44Sc has
been obtained by matching the Oslo level density to the density
of discrete levels in the low energy region and by matching the
slope of the Oslo level density to the slope of the level density
obtained from the particle evaporation spectrum. One can see
the good agreement between the shapes of the level densities
from two types of experiments. The absolute normalization
of the level density for 47Ti was obtained from the ratio of
α/proton cross sections of the 3He + 45Sc reaction.
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TABLE I. Ratio of experimental and model level densities at different excitation energies Ex . The
bottom line shows the comparison of the experimental and calculated ratios of α-particle and proton
cross sections.

Nucleus Ex (MeV) ρexp/ρmodel

FG [12] HFBCS [15] GC [14] CT [12]

47Ti 5.5 0.78(16) 0.92(19) 1.52(31) 1.19(24)
6.5 0.83(17) 1.14(23) 1.73(35) 1.18(24)
7.5 0.69(14) 1.12(23) 1.53(31) 0.92(19)
8.5 0.58(12) 1.10(22) 1.34(27) 0.70(14)
9.5 0.60(12) 1.30(26) 1.40(28) 0.63(12)

10.5 0.53(10) 1.29(26) 1.20(24) 0.45(9)
11.5 0.49(10) 1.35(27) 1.06(21) 0.36(7)

44Sc 2.5 1.41(30) 0.67(14) 1.50(31) 1.53(32)
3.5 1.16(24) 0.61(13) 1.46(30) 1.27(26)
4.5 1.00(20) 0.56(11) 1.42(29) 1.04(21)
5.5 0.91(18) 0.56(11) 1.43(29) 0.88(18)
6.5 0.93(19) 0.60(12) 1.55(31) 0.81(16)

σ
exp
α /σ

exp
p

σ cal
α /σ cal

p

1.6(2) 0.5(2) 1.1(2) 1.2(2)

The experimental level densities have been compared
to some level density models widely used in modern HF
computer codes. These prescriptions are based on the Fermi
gas (FG) model, the constant temperature (CT) model with

FIG. 4. Level densities of 47Ti (upper panel) and 44Sc (lower
panel) nuclei obtained from proton and α-particle energy spectra,
respectively. Black points are data from particle evaporation spectra.
Open points are data from the Oslo experiment [7]. The histograms
represent level densities from the counting of discrete levels.

parameters from the recent compilation of Ref. [12], and the
Gilbert-Cameron (GC) formula [13]. Parameter systematics
are obtained mainly on the basis of available information
about the level density in the region of discrete levels and
neutron resonances. For the GC model the Fermi-gas level
density parameter a was calculated according to the Ignatyuk
systematics [14] while parameters of the constant temperature
part of the GC formula were obtained from the fit to discrete
levels. We also tested the level density calculations based on
the Hartree-Fock-BCS approach (HFBCS) [15] recommended
by the RIPL data base [16]. Table I shows the ratio between
experimental and model level densities at different excitation
energies. It shows also how well HF calculations reproduce
the ratio of α and proton cross sections. This is an important
issue because this ratio gives an additional constraint on level
densities of residual nuclei. The conclusion is that the level
density of 47Ti is best reproduced with the HFBCS model but
the FG systematics fit better for 44Sc. No single model with
parameters from systematics reproduces level densities of both
nuclei equally well. However, HF calculations with GC and
CT models reproduce well the ratio of α and proton cross
sections.

To improve the level density prescription for these nuclei,
we used the FG model with free parameters a and δ to fit
the experimental level densities. The rigid-body spin cutoff
parameter was adopted for this fit. The parameters we obtained
are a = 5.13 MeV−1 and δ = −2.91 MeV for 44Sc and a =
5.06 MeV−1 and δ = −1.95 MeV for 47Ti. These parameters
can be compared to parameters from systematics [12]: a =
5.68 MeV−1 and δ = −2.064 MeV for 44Sc and a =
5.99 MeV−1 and δ = −0.738 MeV for 47Ti. Discrepancies
in corresponding level densities are shown in Table I. The
systematics of Ref. [12] agree with the experimental level
density of the 44Sc nucleus but are off by a factor of 1.3–2
for 47Ti. However, in the case of 47Ti, level density parameters
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from our experiment agree better with ones determined in
Ref. [12] on the basis of a fit to low-lying discrete levels
and neutron resonance spacings (a = 5.14(30) MeV−1 and
δ = −1.35(74) MeV).

It should be noted that the drawback of all available
level density systematics is that all of them use the neutron
resonance spacing as a main source for the experimental level
density at the neutron binding energy. The problem is that the
neutron resonances are known within a narrow spin interval
and the spin cutoff parameter must be used to calculate the total
level density, which actually affects the reaction cross section
calculations. The lack of experimental information on the spin
cutoff parameter above the discrete level region introduces
additional uncertainties in the calculation of reaction cross
sections and can cause deviations from our experimental data
(see Table I). An alternative option would be to establish a level
density systematic based on experimental data on total level
densities. There was an attempt [17] to establish the systematic
based on particle evaporation spectra. About 50 nuclei from the
A = 10–70 region have been analyzed. However, because of
large discrepancies in level density parameters from different
experiments, no good systematic regularity has been found.

The consistency between experimental level densities ob-
tained from the Oslo method and particle evaporation spectra
supports the underlying assumption of the Oslo method. It
shows that the statistical mechanism is the major mechanism
of γ decay following α-particle emission in the 45Sc(3He,αγ )
reaction. The spin of levels populated by either α particles
or γ transitions does not seem to be much different. Also,
the uncertainties due to the possible temperature dependence
of the γ -strength function are small enough to not affect the
final level density obtained by the Oslo method. All of these
results indicate that the Oslo method, within its limitations, is
a reliable tool for studying nuclear level densities.

The method based on particle energy spectra may suffer
from systematic uncertainties connected to contributions
of noncompound reaction mechanisms. These contributions
depend on the type of reaction used as well as on the angle
at which the spectra are measured. Backward angles allow
one to reduce the contribution from noncompound reactions

considerably but do not eliminate completely this effect,
especially for high energy particles. The measurement of the
angular distribution is an important tool in the analysis helping
to determine the angle and energy ranges to be used for the
level density determination.

IV. CONCLUSION

The level density of 44Sc has been obtained from two
independent experiments by using two different methods.
These are the Oslo method based on the analysis of particle-γ
coincidences from the 45Sc(3He,αγ ) reaction and the method
based on the analysis of particle spectra from the compound
nuclear reaction 45Sc(3He,α). Both methods produce the level
densities that are in good agreement with each other. It has
been shown that possible systematic uncertainties of the Oslo
method resulting from underlying assumptions are negligible
and do not cause any serious problems. The α particles from the
45Sc(3He,α) compound reaction measured at backward angles
can be used to extract the level density of the corresponding
residual nucleus. The angular distribution is an important fac-
tor in determining the range of energies of outgoing particles
where the compound reaction mechanism is dominant.

The level density of 47Ti has been obtained from the proton
evaporation spectrum of the 45Sc(3He,p) reaction. Both 44Sc
and 47Ti experimental level densities have been compared to
several level density models. Despite the fact that some of
these models reproduce experimental data well for one of these
nuclei, none of the models seem to fit experimental data for
both of them. The deviation from the best fit can be as large
as 50%. New Fermi-gas level density parameters have been
obtained.
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Chapter 6

Conclusions and outlook

6.1 Summary of the results

The quasi-continuum properties of the nuclei 44,45Sc, 50,51V, and 93−98Mo
have been investigated by performing a statistical analysis of primary γ-
ray spectra with the so-called Oslo method, thereby extracting the level
density and γ-ray strength function. For all nuclei, the odd system dis-
plays an overall larger level density than the corresponding even system,
with an approximately constant entropy difference in the quasi-continuum
region. This odd-even effect is thought to be due to the valence nucleon
behaving as a spectator to the underlying even-even or odd-even sys-
tem. More pronounced structures are seen in the level density of nuclei
near shell closure except for the Sc isotopes. An independent measure-
ment of the level density of 44Sc through Hauser-Feshbach modeling of
α-evaporation spectra at Ohio University has confirmed the Oslo results
with great accuracy, giving further confidence in the Oslo method.

From the level density, thermodynamic quantities such as entropy, tem-
perature, and heat capacity have been extracted for the Mo isotopes. The
results derived within the canonical ensemble indicate that a pairing phase
transition takes place at TC ≈ 0.7− 1.0 MeV, which is higher than the crit-
ical temperature observed in rare-earth nuclei [79]. The difference in the
microcanonical entropies of 50,51V and 97,98Mo was found to be about 1kB,
while for 93,94Mo the difference was close to zero. These values are smaller
than the result of ≈ 2kB seen in mid-shell [80], which can be interpreted as
effects of approaching shell closure.

In general, the γ-ray strength functions agree well with theoretical de-
scriptions of the GEDR tail, and for the Sc isotopes also with experimental
photoneutron and photoproton data. The low-energy enhancement first
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discovered in the γ-ray strength functions of 56,57Fe was later also found
in 93−98Mo, and is now confirmed to be present in 44,45Sc and 50,51V also.
These findings suggest that this increase at low γ-ray energies is proba-
bly not due to peculiar structures that are specific for the Fe isotopes, but
rather caused by some sort of collective mode(s) in a certain mass region.

6.2 Future upgrades of the experimental setup

6.2.1 New particle telescopes: the SiRi array

The nuclear physics group has been granted money for developing a new,
highly efficient system of particle telescopes called the Silicon Ring (SiRi).
Each particle telescope is designed as a trapeze, with an eight-fold seg-
mented ∆E detector (see Fig. 6.1) in front of one E detector serving all
eight front pads. There are in total eight such telescopes that arranged
in a ring that can be placed at forward or backward angles, covering a
solid angle fraction 6% of 4π. This is about 30 times the solid-angle cov-
erage of the setup previously used in the Sc, V, and Mo experiments, and
will thus give much better statistics. Also, the energy resolution is ex-
pected to improve, as the segmented ∆E detector allows for a better an-
gular resolution. The new SiRi setup is developed by the company SIN-
TEF (URL: http://www.sintef.no/) and Microcomponent (URL: http:
//www.microcomponent.no/), and is expected to be operational during fall
2008.

6.2.2 New γ-ray detectors: BrilLanCe

As described in Chapter 3, the CACTUS array consists mainly of NaI(Tl)
scintillation detectors, which are preferred over Ge detectors in Oslo-type
experiments due to their rather good and constant efficiency as a function
of γ-ray energy. With the development of new scintillation materials such
as LaBr3(Ce), a better energy resolution can also be obtained without loss
of efficiency, because these crystals have a resolution of about 2% (at Eγ =
1.33 MeV) instead of 6% for NaI(Tl)s. The LaBr3(Ce) crystals are actually
superior to NaI(Tl)s when it comes to efficiency; from Fig. 6.2 it is seen that
at Eγ = 2.6 MeV, the LaBr3(Ce) detector has a 65% better efficiency than
the NaI(Tl), and the resolution is almost three times better. In addition,
the LaBr3(Ce) detectors have excellent timing properties and temperature
stability. The future prospect is therefore to replace all the NaI(Tl)s of the
CACTUS array with LaBr3(Ce) detectors. As the large LaBr3(Ce) crystals
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Figure 6.1: Layout of the Si ∆E detector that will be used in the new particle-
telescope system SiRi. The eight strips and the guard ring are seen.

are still expensive, the replacement will be done stepwise. Several grant
applications have been submitted for the purpose of raising money for the
purchase of 4′′ × 5′′ LaBr3(Ce) BrilLanCe R©380 detectors. The time line of
the new-generation CACTUS is however uncertain.

6.3 Outlook

Perhaps the most important task for future experiments is to determine
the electromagnetic character and the multipolarity of the low-energy en-
hancement in order to be able to understand the underlying physics of this
phenomenon. The multipolarity could in principle be found by measuring
the γ-ray angular distribution with CACTUS; however, good statistics and
experimental conditions are necessary. When it comes to the electromag-
netic character, other experimental techniques must be utilized such as,
e.g., the (n,2γ) two-step-cascade method, preferably with ARC neutrons
to avoid peculiarities in the decay from thermal neutron capture states.

Another important aspect is to determine for which mass region and
nuclei the low-energy enhancement disappears. It has not been seen in the
rare-earth region [5, 77, 78], and preliminary OCL data on 116,117Sn show
no indication for any such behavior in these nuclei either. During fall 2008,
an experimental campaign will start at OCL to study the 89−92Zr isotopes.
Also, 105−108Pd will be investigated in the near future. The Pd isotopes
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Figure 6.2: The γ-ray spectrum of the 228Th decay chain measured with a 3′′ ×
3′′ NaI(Tl) detector (blue line) and a 3′′ × 3′′ LaBr3(Ce) BrilLanCe R©380 detector
(red line). The figure is taken from [81].

have Z = 46, right in between the Mo (Z = 42) and Sn (Z = 50) nuclei,
and it is therefore an open question whether these nuclei will exhibit an
upbend structure in their γ-ray strength functions.

The new SiRi particle-detector system will make it possible to measure
evaporation ejectiles in backward angles. Thus, a comprehensive analysis
with both the Oslo method and Hauser-Feshbach modeling of the particle
spectra can be performed on the same data set. In parallell with the up-
grade of the experimental setup, refinements of the Oslo method should
be implemented. In this way, the nuclear physics group at OCL will be
able to continue and improve the ongoing high-quality research in the fas-
cinating field of quasi-continuum nuclear physics.
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Appendix A

Thermodynamics in nuclear
systems

Thermodynamics and statistical mechanics have been effective tools to
study macroscopic systems in equilibrium. In thermodynamics, the sys-
tem is described from a macroscopic point of view by introducing ap-
propriate quantities such as volume, pressure, and temperature. A large
number of particles makes it possible to treat the microscopic descrip-
tion through statistical methods. In this appendix, some general thermo-
dynamic concepts and quantities will briefly be described for the micro-
canonical and canonical ensemble theory, and their applicability to meso-
scopic systems such as the nucleus will be discussed. For a thorough pre-
sentation of thermal physics, see the text book of C. Kittel and H. Kroemer
[82].

A.1 General concepts

The fundamental assumption of thermal physics in general is that a closed
system is equally likely to be in any of the quantum states accessible to it
[82]. All accessible quantum states are thus assumed to be equally prob-
able – there is no reason to prefer some accessible states over other ac-
cessible states. Suppose we have a closed system with g accessible states,
and let s denote a general, accessible state. Then, the probability P(s) of
finding the system in this state is

P(s) =
1
g

(A.1)
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where
∑

s
P(s) = 1 (A.2)

according to the fundamental assumption. For systems that are not closed,
the energy U and the particle number N may vary. For such systems P(s)
will not be constant as in Eq. (A.1), but will have a functional dependence
on U and N.

The average value of any observable physical property X when the
system is in a quantum state s is given by

〈X〉 = ∑
s

X(s)P(s). (A.3)

For a closed system, we have

〈X〉 = ∑
s

X(s)(1/g). (A.4)

This is an example of an ensemble average: g similar systems are constructed,
one in each accessible quantum state. The average of any property over the
group is then called the ensemble average of that property. An ensemble of
systems is composed of many systems, all constructed alike.

Let two systems S1 and S2 with energies E1 and E2 be brought in ther-
mal contact with each other, that is, energy can be transferred freely from
one to the other. The total, constant energy of the two systems is then
E = E1 + E2. The total number of states accessible to the combined system
is given by [82]

g(N, E) = ∑
E1≤E

g1(N1, E1)g2(N2, E− E1). (A.5)

Here g1(N1, E1) is the number of accessible states of system 1 at energy E1,
and g2(N2, E− E1) is the number of accessible states of system 2 at energy
E2 = E− E1. The entropy S of the total system is defined as

S ≡ kB ln g(N, E) (A.6)

where kB is the Boltzmann constant.
Taking the differential at extremum of g(N, E) and E for an infinitesi-

mal exchange of energy, we get:

dg =
(

∂g1

∂E1

)
N1

g2dE1 +
(

∂g2

∂E2

)
N2

g2dE2 = 0, (A.7)
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dE = dE1 + dE2 = 0, (A.8)

which corresponds to thermal equilibrium of the two systems. Further,
dividing Eq. (A.7) by g1g2 and using the result of Eq. (A.8), we get

1
g1

(
∂g1

∂E1

)
N1

=
1
g2

(
∂g2

∂E2

)
N2

, (A.9)

which can be written as(
∂ ln g1

∂E1

)
N1

=
(

∂ ln g2

∂E2

)
N2

, (A.10)

or, from the definition of entropy,(
∂S1

∂E1

)
N1

=
(

∂S2

∂E2

)
N2

. (A.11)

For macroscopic systems in thermal equilibrium, this corresponds to the
temperatures of the two systems being equal.

A.2 Microcanonical ensemble

A microcanonical ensemble consists of isolated physical systems with fixed
particle number N and a well-defined (sharp) energy E within a small
uncertainty δE � E. The quantum states are distributed according to the
fundamental assumption of thermal physics. The number of accessible
states Ω(E, N) is proportional to the density of states ω(E, N) per energy
unit so that

Ω(E, N) = ω(E, N) · ∆E, (A.12)

where ∆E is the energy bin.
The so-called partition function Z, which makes the connection between

the microcanonical ensemble and thermodynamics, is simply given by the
entropy:

Z(E, N) = S(E, N) = kB ln Ω(E, N). (A.13)

All thermodynamic quantities can be derived from Eq. (A.13), such as the
temperature T given by the caloric curve

1
T

=
(

∂S(E, N)
∂E

)
N

, (A.14)
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which defines the relationship between the temperature and energy of the
system. The microcanonical heat capacity can then be expressed by

CV = T
(

∂S(E, N)
∂T

)
V

, (A.15)

where the volume V is held fixed.
When dealing with atomic nuclei, the microcanonical ensemble the-

ory seems most appealing since the nucleus is a completely isolated sys-
tem with no thermal contact with its surroundings. Therefore, it is prob-
ably the most appropriate ensemble to use as it corresponds to the actual,
physical case when a nucleus is given a well-defined excitation energy in
a very short time interval through a direct reaction. However, complica-
tions might arise when applying the above relations to the experimental
nuclear entropy, that can be estimated through

Sexp(E) = kB ln(ρ(E)/ρ0), (A.16)

where ρ(E) is the measured level density at an excitation energy E, and
ρ0 is a constant set to ensure the fulfillment of the third law of thermody-
namics: S(T → 0) = S0 for a constant S0

1. Here, we have neglected the
spin-projection factor (2〈J(E)〉+ 1) (see Ref. [12] for more details). Now,
consider the bin size ∆E in Eq. (A.12). If it is too small, one can in principle
have bins with no quantum states in it, especially at low excitation energy
where the level spacing can be large. One therefore ends up with δ func-
tions in the entropy. To ensure that the experimental entropy will have a
sufficiently smooth behavior, the energy bin ∆E must be large enough so
that more than one state is contained within each bin. On the other hand,
the energy bin and thus the applied smoothing should not be too large, so
that significant structures in the entropy are preserved. Ideally, the energy
bin should be dependent on excitation energy to ensure an appropriate
bin size in the various level-density regions.

Another peculiarity of the microcanonical ensemble when applied to
nuclear level densities, is the appearance of negative branches in the tem-
perature and the heat capacity as a direct consequence of the entropy not
being a monotonic increasing function of excitation energy. The interpre-
tation of these features is not straightforward. According to the Ehrenfest
classification of phase transitions in macroscopic systems, a discontinuity
of the temperature indicates a first-order phase transition, and disconti-
nuity of the heat capacity indicates a second-order phase transition. It is

1For even-even nuclei the ground state represents a completely ordered system with
only one possible configuration, and S0 = 0 in this case.
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however unclear whether this classification is valid for small systems such
as the nucleus.

A.3 Canonical ensemble

An ensemble of physical systems that are in thermal equilibrium with a
heat reservoir R at constant temperature T and can exchange energy (but
not particles) with the reservoir, is called a canonical ensemble. The heat
reservoir is assumed to be very large compared to the system, so that the
reservoir temperature T is also the temperature of the system. As dis-
cussed for the microcanonical ensemble, the nucleus is not in contact with
a heat reservoir, so the temperature will just be a control parameter related
to the excitation energy when applying the canonical ensemble theory to
a nuclear system.

The partition function in the canonical ensemble is given by

Z(T) = ∑
s

exp(−εs/kBT). (A.17)

The summation goes over the Boltzmann factor exp(−εs/kBT) for all states
s of the system. The probability P(εs) for the system to be in state s with
energy εs can be written as

P(εs) =
exp(−εs/kBT)

Z
, (A.18)

with normalization ∑ P(εs) = Z/Z = 1.
The average energy of the system for a given reservoir temperature can

now be obtained from Eqs. (A.3) and (A.18):

〈E〉 = 〈ε〉 = ∑ εsP(εs) = ∑ εs exp(−εs/kBT)
Z

. (A.19)

The energy E refers to those states of the system that can exchange energy
with the reservoir. In contrast to the microcanonical ensemble, where the
energy is a sharp quantity, the energy in the canonical ensemble is fluctu-
ating around the mean value 〈E〉.

A useful quantity in the canonical ensemble is the Helmholtz free energy
given by the function

F = 〈E〉 − TS, (A.20)

or, expressed through the partition function,

F = −kBT ln Z. (A.21)
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Taking the differential of Eq. (A.20) and using the thermodynamic identity

d 〈E〉 = TdS− pdV (A.22)

where p is the pressure, we find that the entropy can be written as

S(T) = −
(

∂F
∂T

)
V

, (A.23)

for a constant volume, and the average energy can then be expressed as

〈E〉 = −T2
(

∂(F/T)
∂T

)
V

. (A.24)

The canonical heat capacity is given by

CV(T) =
(

∂ 〈E〉
∂T

)
V

. (A.25)

When applying the canonical ensemble theory to the experimental level
density, one must take into account the energy bin for which the level den-
sity is defined in the partition function. This can be done in the following
way:

Z(T) = ∑
i

ρ(Ei)∆Ei exp(−Ei/kBT), (A.26)

where the summation goes over all energy bins i. Equation (A.26) rep-
resents the Laplace transform of the multiplicity of levels ρ(Ei)∆Ei within
the energy bin ∆Ei. Due to the summation the Laplace transform performs
a significant averaging and smoothing of eventual structural changes in
the experimental ρ(E). However, a bump in the heat capacity at T ≈ 0.5
MeV has been observed in rare-earth nuclei [79]. One possible interpre-
tation of this S-shaped curve is that a transition from a phase with strong
pair correlations to a phase with weak or no pair correlations takes place
at this temperature.
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Appendix B

Connection between reduced
transition probability and γ-ray
strength function

This Appendix explains briefly the relations between reduced transition
probabilities, γ-ray strength functions, and photoabsorption cross sections.
In addition, it is shown how to calculate the fraction of the energy-weighted
sum rule for E1 radiation that is filled by the summed E1 transition strengths.

B.1 Basic relations

In the general theory of photon radiation, the decay rate λ (in units of s−1)
can be expressed by the reduced transition probability B(XL), where X
denotes the electric or magnetic character, and L is the multipolarity of
the radiation. The reduced transition probability for a transition from an
initial state i to a final state f is given by [83]

B(XL, Ji → J f ) =
1

2Ji + 1 ∑
Mi,M f

|〈 f |OLML |i〉|
2, (B.1)

where O is the electric (X = E) or the magnetic (X = M) transition opera-
tor. We note here that B is defined as an average over the substates Mi (by
the factor in front of the sum), and a sum over M f . It is common to dis-
tinguish between excitation (Ei < E f ) and decay (de-excitation, Ei > E f )
with the notations B↑and B↓, respectively. From Eq. (B.1), we find that

B↑
B↓ =

B(i → f )
B( f → i)

=
2J f + 1
2Ji + 1

. (B.2)
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We will use the notation

g =
2J f + 1
2Ji + 1

(B.3)

in the following.
The left-hand side of Eq. (B.1) is directly connected to the decay rate λ,

which leads to a relation between λ and B↓[83]:

λ(XL) =
8 π (L + 1)

L [(2L + 1)!!]2
1
h̄

(
Eγ

h̄ c

)2L+1

B↓ (XL). (B.4)

The decay width Γ and the decay rate λ of a specific energy level are
connected by

Γ = h̄λ, (B.5)

and the expressions for dipole (E1, M1) and quadrupole (E2, M2) transi-
tions thus become

Γ(X1) =
16 π

9

(
Eγ

h̄c

)3

B↓ (X1) (B.6)

and

Γ(X2) =
4 π

75

(
Eγ

h̄c

)5

B↓ (X2), (B.7)

respectively.
In general, we have the following relation between the reduced tran-

sition probability B(XL) and the γ-ray strength function fXL(Eγ) (Chap-
ter 2):

dB↑ (XL)
dEγ

=
L [(2L + 1)!!]2(2L + 1)

8 π (L + 1)
· (h̄c)(2L+1) fXL(Eγ). (B.8)

Similarly, the photoabsorption cross section σXL(Eγ) (next section) is con-
nected to B(XL) by

dB↑ (XL)
dEγ

=
L [(2L + 1)!!]2

8 π3 (L + 1)
·
(

h̄c
Eγ

)(2L+1)
σXL(Eγ) . (B.9)

B.2 Photoabsorption cross section

In the semiclassical theory of the interaction of photons with nuclei [84,
85], the shape of the resonance in the absorption cross section is described
by the Lorentzian shape

σ(Eγ) =
σr

1 + [(E2
γ − E2

r )2/E2
γΓ2

r ]
, (B.10)
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where Eγ is the photon energy. The resonance is described by the reso-
nance parameters as discussed in Chapter 2: the energy centroid Er, the
peak cross section σr and the width Γr.

The area under σ(Eγ) is called the energy-integrated cross section and
is given by

σ =
∫ ∞

0
σ(Eγ) dEγ =

π

2
σrΓr. (B.11)

Despite of the name, this is actually no cross section, but is found to be a
fruitful concept. In particular, the energy-weighted sum rule for E1 pho-
toabsorption in the absence of exchange forces is given by [35]

σE1 =
∫ ∞

0
σ(Eγ) dEγ =

2π2e2h̄
mc

NZ
A

' 60
NZ
A

[MeV ·mb] . (B.12)

B.3 Photon scattering cross section

The total cross section of resonance-scattered photons with energy Eγ to a
final level f is described by the Breit-Wigner shape [86, 87]

σf (Eγ) = π

(
h̄c
Er

)2 g
2

Γ0Γ f

(Eγ − Er)2 + Γ2/4
. (B.13)

Here, the cross section depends on

• Γ0, the decay width of the ground state transition

• Γ f , the decay width of the outgoing channel

• Γ, the total decay width

We calculate the energy-integrated cross section and find

σf =
∫ ∞

0
σf (Eγ) dEγ = π2 g

(
h̄c
Er

)2 Γ f

Γ
Γ0. (B.14)

Summing over all possible final states (∑ f Γ f = Γ), we obtain for the ab-
sorption cross-section:

σ = π2 g
(

h̄c
Er

)2

Γ0. (B.15)
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B.4 Putting things together

We now set σ from Eq. (B.11) equal σ from Eq. (B.15) and replace Γ0 with
Eqs. (B.6) and (B.7) for dipole and quadrupole transitions, respectively.
Then we find

g B↓ (X1) =
9 σrΓr

32 π2

(
h̄c
Er

)
(B.16)

and

g B↓ (X2) =
75 σrΓr

8 π2

(
h̄c
Er

)3

, (B.17)

for dipole and quadrupole transitions, respectively.

B.5 Summed B↑(E1) strength and its fraction of
the energy-weighted sum rule

For electric dipole radiation, Eq. (B.9) gives

dB↑ (E1)
dEγ

=
9

16π3 ·
h̄c
Eγ

σE1(Eγ) , (B.18)

and solving for the cross section σE1, we get

σE1(Eγ) =
16π3

9h̄c
dB↑ (E1)

dEγ
Eγ . (B.19)

Assuming that σE1(Eγ) can be described by the Lorentzian shape given
in Eq. (B.10) and integrating over all γ-ray energies, we get the result of
Eq. (B.11) on the left-hand side. Integrating the right-hand side, we must
solve

16π3

9h̄c

∫ ∞

0

dB↑ (E1)
dEγ

EγdEγ . (B.20)

Let us assume that dB ↑ /dEγ can be described by a sum of δ functions
with coefficients Bi, i.e.,

dB↑ (E1)
dEγ

= ∑
i

Biδ(Eiγ − Eγ) (B.21)

where the summation goes over all states i. Using this in Eq. (B.20), we
obtain for the integral

∑
i

Bi

∫ ∞

0
δ(Eiγ − Eγ)EγdEγ = ∑

i
Bi · Eγ,i. (B.22)
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B.5. SUMMED B↑(E1) STRENGTH AND ITS FRACTION OF THE
ENERGY-WEIGHTED SUM RULE

Noting that the average γ-ray energy 〈Eγ〉 of all discrete states is given by

〈Eγ〉 =
∑i BiEγ,i

∑i Bi
, (B.23)

we find
〈Eγ〉∑

i
Bi = ∑

i
BiEγ,i . (B.24)

Finally, inserting the above into Eq. (B.20), we obtain

16π3

9h̄c
· 〈Eγ〉∑

i
Bi =

π

2
σrΓr. (B.25)

We can then find the fraction η of the energy-weighted sum rule:

η =
16π3

9h̄c · 〈Eγ〉∑i Bi

60 NZ
A

. (B.26)

Note that ∑i Bi is often given in units of e2fm2 (the CGS system) in the liter-
ature, while the energy-integrated cross section (Eq. (B.11) and the energy-
weighted sum rule (Eq. (B.12) are given in SI units. We have the following
relations between CGS and SI units for the summed strength of E1 radia-
tion: (

e2fm2
)

CGS
=

(
e2fm2

4πε0

)
SI

, (B.27)

and for M1 radiation:(
µ2

N

)
CGS

=
(

eh̄
2mc

)2

CGS
=
(

eh̄
2mc

)2

SI
· 1

4πε0
=

e2h̄2µ0

16πm2 , (B.28)

Here, µN is the nuclear magneton. We have used the relation c = 1/
√

ε0µ0,
where ε0 is the electric vacuum permittivity, and µ0 is the magnetic vac-
uum permeability.
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Appendix C

Details of E1, M1 and E2
strength-function models

C.1 Global systematics of GEDR parameters

For nuclei close to the β-stability line and where the GEDR parameters
are unknown, the following global parameterization is recommended in
RIPL-2 [19] for spherical nuclei:

Er ≡ E0 = 31.2A−1/3 + 20.6A−1/6 [MeV] , (C.1)

Γr = 0.026E1.91
r [MeV] , (C.2)

σr ≡ σ0 = 1.2× 120
NZ

AπΓr
[mb] . (C.3)

The factor of 1.2 in the expression for σr is the value of the experimental
energy-weighted sum in units of the classical dipole Thomas-Reiche-Kuhn
sum rule σTRK ' 60(NZ/A) [MeV mb], see [35] for more details.

For deformed nuclei, which are usually considered axially symmetric
with a radius defined by

R(θ) = R′0(1 + α2P2 cos θ) = R′0(1 + β2Y20), (C.4)

R′0 = R0/λ, λ3 = 1 +
3
5

α2
2 +

2
35

α3
2, (C.5)

where R0 is the radius of a spherical nucleus of equal volume, P2 cos θ
is the Legendre polynomial, and Y20 = (5/4π)1/2P2 is the spherical har-
monic. The constant α2 is related to the ground-state quadrupole defor-
mation β2 by

α2 =
√

5
4π

β2. (C.6)

134



C.2. ENHANCED GENERALIZED LORENTZIAN MODEL

The E1 strength function in deformed nuclei is defined as the sum of
two components, each with the corresponding centroid energy Er,j, damp-
ing width Γr,j and peak value of the photo-absorption cross section σr,j
where j = 1 and j = 2 correspond to collective vibrations along and per-
pendicular to the symmetry axis. The global parameterization gives [19]

Er1 = Er2/
[

0.911
a0

b0
+ 0.089

]
, Er2 = E0

1
b0

[
1− 1.51 · 10−2 · (a2

0 − b2
0)
]

,

(C.7)

Γr1 = 0.026E1.91
r1 , Γr2 = 0.026E1.91

r2 , (C.8)

σr1 =
2
3

σ0, σr2 =
1
3

σ0, (C.9)

with relative semi-axes of a spheroid a0, b0 defined as

a0 ≡ R(θ = 0)/R0 = (1 + α2)/λ, (C.10)
b0 ≡ R(θ = π/2)/R0 = (1− 0.5α2)/λ. (C.11)

C.2 Enhanced Generalized Lorentzian model

As described in Chapter 2, the Enhanced Generalized Lorentzian (EGLO)
model for the E1 strength function is given as

f EGLO
E1 (Eγ, Tf ) =

1
3π2h̄2c2

σrΓr

[
Eγ

ΓK(Eγ, Tf )
(E2

γ − E2
r )2 + E2

γΓ2
K(Eγ, Tf )

+ 0.7
ΓK(Eγ = 0, Tf )

E3
r

]
[MeV−3]. (C.12)

Again, the Lorentzian parameters σr (in mb), Γr (in MeV) and Er (in MeV)
are the peak cross section, width and centroid energy of the GEDR, respec-
tively, and Tf is the nuclear temperature of the final states. The expression
for the temperature-dependent width ΓK is

ΓK(Eγ, Tf ) = K(Eγ)
Γr

E2
r
(E2

γ + 4π2T2
f ), (C.13)

where the empirical function K(Eγ) is given by

K(Eγ) = κ + (1− κ)
Eγ − E0

Er − E0
. (C.14)
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The factor κ depends on the model adopted for the level density, while the
constant reference energy E0 is set to 4.5 MeV. If the BSFG model is used,
κ is defined by:

κ =
{

1, if A < 148,
1 + 0.09(A− 148)2 exp(−0.18(A− 148)), if A ≥ 148. (C.15)

The equations (C.13) − (C.15) provide an enhanced E1 strength function
for nuclei between A = 150 − 170, so that the EGLO model is able to
give reasonable agreement with experimental data in the mass region A =
50− 200 [19].

C.3 Modified Lorentzian model

The Modified Lorentzian (MLO) model for the E1 strength function is
given by

f MLO
E1 (Eγ, Tf ) =

1
3π2h̄2c2

L(Eγ, Tf )σrΓr
EγΓ(Eγ, Tf )

(E2
γ − E2

r )2 + E2
γΓ2(Eγ, Tf )

[MeV−3],

(C.16)
where

L(Eγ, Tf ) =
1

1− exp(−Eγ/Tf )
(C.17)

is a scaling factor that determines the enhancement of the γ-ray strength
function in a heated nucleus as compared to a cold nucleus. The damping
width is expressed as

Γ(Eγ, Tf ) = ΓC(Eγ, Tf ) + ΓF(Eγ), (C.18)

where ΓC represents the collisional damping width and ΓF simulates the
fragmentation component of the total damping width. The component ΓC
is inversely proportional to the collision relaxation time τ in the isovector
channel of dipole distortion of the Fermi surface [19], and depends linearly
on the γ energy within the doorway-state relaxation mechanism of heated
nuclei:

ΓC =
h̄

τ(Eγ, Tf )
= CcollEr(Eγ + U), (C.19)

where U = aT2
f is the thermal excitation energy within the Fermi-gas

model. The collision parameter Ccoll is determined from the in-medium
cross section σ(np) of neutron-proton scattering near the Fermi surface:

Ccoll =
1

4π2
16m
9h̄2 σ(np) = c f · F, (C.20)
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C.3. MODIFIED LORENTZIAN MODEL

c f =
1

4π2
16m
9h̄2 σf (np) = 5.39 · 10−3 [MeV−1], F =

σ(np)
σf (np)

, (C.21)

in which m is the nucleon mass, and the in-medium cross section σ(np)
is assumed to be proportional with a factor F to the free-space cross sec-
tion σf (np) = 5 fm2 near the Fermi surface. This relationship for Ccoll
ensures agreement between the relaxation time given in Eq. (C.19) and
the relaxation time calculated from the collision integral within the Fermi-
liquid approach at Eγ = Er and Tf = 0. Note that the value given here
for c f is the updated value from V. Plujko [88]. The factor F is found to be
equal to unity (F = 1.0) by fitting the MLO model to experimental γ-decay
strengths.

The fragmentation width ΓF is imitated by the one-body (”wall”) relax-
ation component ΓW scaled with a factor ks as discussed in [19, 41, 42]:

ΓF(Eγ) = ks(Eγ)ΓW , ΓW =
3h̄vF

4R0
(C.22)

at the Fermi energy εF = mv2
F/2 = 37 MeV. There is a misprint in [19],

where it is stated that ΓW = 36.43 · A−1/3. However, using the average nu-
cleon mass m = (mp + mn)/2 = 938.9265 MeV/c2, and (h̄c)2 = (197.329)2

MeV2 fm2/c2, we get h̄2/m = 41.4715 MeV fm2. Further,

(h̄vF)2 = h̄2 · 2εF

m
=

h̄2

m
· 2εF, (C.23)

and finally,

ΓW =
3h̄vF

4R0
=

3
4
·

√
h̄2

m · 2εF

r0 · A−1/3 = 32.72 · A−1/3 (C.24)

where the (spherical) nuclear radius R0 is given by the standard relation-
ship R0 = r0 · A1/3, and r0 = 1.27 fm is used.

For simplicity, an energy-dependent power approximation is adopted
for the factor ks:

ks(Eγ) =
{

kr + (k0 − kr) |(Eγ − Er)|ns for Eγ < 2Er,
k0 for Eγ ≥ 2Er,

(C.25)

where the quantities k0 ≡ ks(Eγ = 0) and kr ≡ ks(Eγ = Er) determine the
contribution of the ”wall” component to the width at zero energy and the
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GDR energy, respectively. The constant kr is determined from the condi-
tion Γ(Eγ = Er, Tf = 0) = Γr in cold nuclei. According to this condition
and Eqs. (C.18)− (C.25), the following relationship is obtained:

Γr = ΓC(Er, Tf = 0) + ks(Er)ΓW = CcollE2
r + krΓW , (C.26)

whence it follows that

kr =
Γr − CcollE2

r
ΓW

. (C.27)

By fitting the predictions of the MLO model to experimental γ-decay strengths,
the values for k0 and ns were found to be k0 = 0.3, ns = 1.

For deformed nuclei, the fragmentation damping widths ΓF1, ΓF2 of the
collective vibrations along two principal axes of a spheroid are assumed
to be proportional to the dipole widths Γs1, Γs2 of the surface dissipative
model [89]:

ΓFj(Eγ) = ks(Eγ)Γsj, Γs1 = ΓW/aδ
0, Γs2 = ΓW/bδ

0, δ = 1.6, (C.28)

where j = 1, 2 corresponds to collective vibrations along and perpendic-
ular to the axis of symmetry, and a0 and b0 are relative semi-axes of a
spheroid as given in Sect. C.1.

C.4 Generalized Fermi Liquid model

The Generalized Fermi Liquid (GFL) model [43, 19] is given in Chapter 2
as

f GFL
E1 (Eγ, Tf , β2) =

1
3π2h̄2c2

σrΓr
KGFLEγΓm(Eγ, Tf )

(E2
γ − E2

r )2 +KGFLE2
γΓ2

m(Eγ, Tf )
. (C.29)

The factor KGFL is expressed through the Landau-Migdal parameters F′0,
F′1 of the quasi-particle interaction in the isovector channel of the Fermi
system:

KGFL =
√

Er/E0 =

√
1 + F′1/3

1 + F′0
= 0.63, (C.30)

with F′0 = 1.49 and F′1 = −0.04 according to [43], and E0 is the average
energy for one-particle one-hole states forming the GEDR. Following [19],
the term KGFLE2

γΓ2
m(Eγ, Tf ) is added in the denominator to avoid singu-

larity at the resonance centroid energy. Also, KGFL is included in the nom-
inator to preserve the standard relationship between the strength function
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C.5. GIANT MAGNETIC DIPOLE RESONANCE

at the resonance energy Er and peak value σr of the photo-absorption cross
section.

The GFL model takes into account a dipole-quadrupole interaction term
so that Γm is given by a sum of a collisional damping width ΓC and the
term Γdq that simulates the fragmentation width:

Γm(Eγ, Tf ) = ΓC(Eγ, Tf ) + Γdq(Eγ, β2). (C.31)

The width Γdq results from spreading of the GEDR over surface quadrupole
vibrations as a consequence of the dipole-quadrupole interaction, and is
expressed as

Γdq(Eγ, β2) =

√
5 ln 2

π
|β2|

√
1 +

E2

Eγ
= Cdq

√
E2

γβ2
2 + Eγs2, s2 = E2β2

2.

(C.32)
Here, the constant Cdq =

√
5 ln 2/π = 1.05, β2 is the deformation param-

eter , and E2 is the energy of the first excited 2+ state (in MeV). If E2 is not
known, s2 can be estimated from global parameterization by

s2 = 217.16/A2. (C.33)

The collisional component corresponds to the damping width in the
infinite Fermi-liquid model:

ΓC = C f (E2
γ + 4π2T2

f ). (C.34)

The constant C f is determined by defining the total GFL damping width
at the GEDR energy Er in cold nuclei to be equal to Γr:

Γm(Eγ = Er, Tf = 0) = ΓC(Er, 0) + Γdq(Er) = C f E2
r + Cdq

√
E2

r β2
2 + Ers2,

(C.35)
which leads to

C f =
Γr − Cdq

√
E2

r β2
2 + Ers2

E2
r

. (C.36)

C.5 Giant magnetic dipole resonance

To describe the distribution of the M1 strength, two prescriptions are usu-
ally used; either the single-particle model [34] where the fragmented strength
is adjusted to experimental data on primary M1 transitions to correct for
a global overestimation by this model, or a giant resonance model based
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on the existence of an M1 giant resonance assumed to be related to shell-
model spin-flip transitions between `± 1/2 single-particle states (see A. Bohr
and B. Mottelson [75]).

An expression for the magnetic spin-flip giant resonance is recommended
in [19] for the M1 strength function. Its functional form can be described
by, e.g., a standard Lorentzian,

fM1(Eγ) =
1

3π2h̄2c2

σM1Γ2
M1Eγ

(E2
γ − E2

M1)2 + Γ2
M1E2

γ

[MeV−3], (C.37)

with global parameterization

EM1 = 41 · A−1/3 [MeV], ΓM1 = 4 [MeV]. (C.38)

To determine the peak cross section σM1 of the M1 spin-flip resonance if it
is not known experimentally, one of the following relations are used:

fM1 = 1.58 · A0.47 at ' 7 MeV, (C.39)
fE1

fM1
= 0.0588 · A0.878 at ' 7 MeV. (C.40)

Note that since there is still a very limited amount of experimental infor-
mation on the M1 giant resonance parameters, the global systematics is
quite uncertain [90].

C.6 Giant electric quadrupole resonance

Radiation of E2 type is linked to the excitation of the giant quadrupole
isoscalar resonance, and a standard Lorentzian is recommended to de-
scribe the E2 strength [19]:

fE2(Eγ) =
1

3π2h̄2c2

σE2Γ2
E2Eγ

(E2
γ − E2

E2)2 + Γ2
E2E2

γ

[MeV−3]. (C.41)

A global parameterization is given by [19, 90]:

EE2 = 63 · A−1/3 [MeV], (C.42)
ΓE2 = 6.11− 0.012A [MeV], (C.43)

σE2 =
0.00015 · Z2E2

E2
A1/3ΓE2

[mb]. (C.44)
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