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Preface

This thesis is devoted to the relationship between the quantum Hall system
and its one-dimensional representation. The quantum Hall system, which
consists of electrons confined to two dimensions and in a strong transverse
magnetic field, has an edge which can be described by a one-dimensional
Luttinger model. The Luttinger model has the property that it can be bo-
sonized, that is, it can be rewritten as theory of non-interacting bosons, even
if the electrons in the model are interacting. This property makes it pos-
sible to exactly calculate its correlation function, which in the asymptotic
limit has the form of a power law. The general theory for the quantum Hall
edge makes the prediction that the power law exponent will have a universal
value determined by the bulk state. Tunneling experiments have verified the
Luttinger description of the edge, in the sense of a power law behaviour of
the correlation function. However, the experimental values of the exponent
deviate from the prescribed universal value. Several numerical works suggest
that the discrepancy can be explained by taking into account the electron
interaction.

This thesis consists of an introductory part where the general background
is introduced. My contribution to the field is found in three papers and a
chapter. Two of the papers investigate the relationship between the quantum
Hall system and its one-dimensional representation from a microscopical
point of view. The effect of the interaction is taken into account. In the
third paper I study the effects of interaction induced second Landau level
mixing. A chapter is devoted to the discussion of fractional charges in the
Luttinger model, and the discussion is exemplified by applying the theory to
the quantum Hall model discussed in the papers.

How this thesis is organized

Chapter 1 is an introduction to the quantum Hall effect and the necessary
concepts are introduced. Chapter 2 is an introduction to the Luttinger model.
The bosonization of the model is developed in great detail. Then, in Chapter
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3 we will see how the formalism developed in Chapter 2 can be applied to
the edge of the quantum Hall system. The Hartree-Fock method, which has
been used in the Paper III, is presented in Chapter 4. Chapter 5 is devoted
to ongoing research on fractional excitations in the Luttinger model. We will
see how the the quantum Hall model introduced in Paper I and II can be
used to exemplify the discussion in the literature and give valuable insight
not so easily seen in the one-dimensional case.

In Paper I we show how a ν = 1 quantum Hall system can be mapped onto
a one-dimensional representation. In the low energy limit the system takes
the form of a Luttinger model, and the Luttinger parameters are calculated.
The mapping is explicit in the sense that a microscopic description of the
system is used, in contrast to the macroscopic arguments mostly used in
the literature. The study is followed up in Paper II where we map the one-
dimensional correlation function back to the two-dimensional description.
The effect of the interaction on the correlation function and the density
profile is discussed. Paper III is a numerical study where I investigate the
effect of letting the interaction induce mixing with the second Landau level
in a ν = 1 quantum Hall model. It is shown that the asymptotic behaviour
of the correlation function is not affected by the interaction. However, the
interaction gives rise to oscillations in the density profile.
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Chapter 1

The quantum Hall effect

This chapter introduces the quantum Hall effect (QHE), a fascinating effect
which takes place in a relatively simple system that we still do not fully
understand. Most of my work presented in this thesis is related to some of
the mysteries found in this system. The presentation here is mainly based
on review articles and Ph.D. theses [1, 2, 3, 4].

1.1 Experimental verification

The QHE is a striking phenomenon that occurs in a two-dimensional elec-
tron gas with a strong transverse magnetic field and at low temperatures
(T ≤ 4K). The 2D electron gas is confined to the interface between two
semiconductors or between a semiconductor and an insulator. The experi-
mental setup is sketched in Figure 1.1, which shows the Hall bar with the 2D
electron gas. An electrical field is applied in the vertical direction and this
gives rise to a horizontal current. The longitudinal and transverse resistance,
Rxx = VH

I
and Rxy = VH

I
, respectively, can then be measured. The effect,

which is now called the integer QHE (IQHE), was first discovered by von
Klitzing, Dorda and Pepper in 1980 in a very clean sample [5]. They found
that the transverse resistance as a function of the magnetic field exhibits
plateaus in certain regions of the magnetic field. In the same regions of B
the longitudinal resistance vanishes. The plateaus were given by Rxy = 1

ν
h
e2 ,

where h is Planck’s constant, −e is the electron charge and ν is an integer.
Two years later Tsui, Stormer and Gossard [6] performed an experiment in
a cleaner sample and discovered the fractional QHE (FQHE); that ν could
take fractional values. Data from an experiment which shows the IQHE is
shown in Figure 1.2. We can clearly see the plateaus in ρxy (Rxy) and the
absence of horizontal resistivity at the plateaus.

3
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VH

VL

I

Figure 1.1: The geometry of a quantum Hall experiment.

Figure 1.2: Data from an IQHE experiment at 30mK. The resistivities ρxx

and ρxy are shown as functions of the magnetic field. Courtesy of D.R.
Leadley, Warwick University 1997.
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The quantization of Rxy in experiments is extremely precise and universal,
which means that it is not sensitive to the microscopic details of the sample
or its size. In fact, the value of h/e2 can be determined to a precision of at
least 1 part in 107. The reason for this universality lies in the two dimensional
nature of the system. To see this we can consider the resistivity tensor, ραβ ,
which is a local quantity. The resistivity and its inverse, the conductance,
σαβ , are related to the current density, j, and electric field, E, as

Eα = ραβjβ , jα = σαβEβ .

In two dimensions resistivity and resistance have the same dimension. This
means that the relationship between them can depend only on the shape and
not on the size of the sample. For a rectangular geometry in the case where
ρxx = 0, which is the case on a plateau, it turns out that Rxx = ρxx and
Rxy = ρxy. This explains why such an amazing precision can be achieved
in the experiments; the results are not sensitive to the fine details of the
sample and the measured quantity is actually the resistivity, which is a local
quantity.

1.1.1 The classical Hall conductance

Classically, a plateau in the transverse resistivity is not what we would ex-
pect. By assuming Lorentz invariance only, we will now show that the clas-
sical resistivity varies linearly with the magnetic field.

Assume that we have electrons confined to the xy-plane and in a trans-
verse magnetic field B. Let us perturb the system with a homogeneous
electric field E in the xy-plane. The electric field is assumed to be weak in
the sense that E

cB
� 1. If we assume that there is no preferred reference

frame, we can make a Lorentz transformation to a reference frame S ′ moving
with velocity v = E×B

B2 . The electric and magnetic field in the system S ′ is
given by the transformation properties of electric and magnetic fields,

E′ = γ(E + v × B) − γ − 1

v2
(E · v)v

B′ = γ

(
B− 1

c2
v × E

)
− γ − 1

v2
(B · v)v ,

where γ = (1−v2/c2)−1/2, as usual. Using these transformations it is easy to
show that B′ ≈ B, to first order in v/c, and E′ = 0. Since the electric field
vanishes in S ′, there cannot be a current in this reference frame, j′ = 0. From
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the transformation properties for charge density, ρ, and current density,

j = j′ + (γ − 1)
v · j′
v2

v + γρ′v

ρ = γ

(
ρ′ +

v · j′
c2

)
,

one finds that j = ρv in the lab system. By writing ρ = −en, where n is the
electron density in the plane, one sees that j = ne

B
ẑ×E. This expression can

be rewritten in terms of the conductivity tensor as jα = σαβEβ , where the
conductivity tensor can be written as

σ = ν
e2

h

(
0 −1
1 0

)
, (1.1)

where we have defined ν = nh
eB

. The resistivity tensor is the inverse of the
conductivity tensor,

ρ =
1

ν

h

e2

(
0 1
−1 0

)
.

We see that ρxy varies linearly in B, in contradiction to what is found in the
experiments in a strong magnetic field and at low temperature.

Let us try to interpret the quantity ν = nh
eB

that was introduced in (1.1).
From the definition of the magnetic flux quantum Φ0 = h

e
, we see that ν is

the ratio of the number of electrons to the number of magnetic flux quanta
in the system. A plateau would appear if this ratio could be kept constant
under variation of the magnetic field.

Our derivation is general, but it relies on the assumption that there is no
preferred reference frame (and that the particle number is constant, which
is the case in most experiments). This means that the Lorentz invariance
must be broken for a plateau to appear. The quantum Hall effect takes
place in very clean samples, but from the argument given here it cannot be
completely clean, because that would make the system Lorentz invariant, and
the plateaus would disappear. Therefore a small concentration of impurities
is essential for the effect to take place.

1.2 Electrons in a magnetic field

To get an understanding of the QHE it is good idea to start with the de-
scription of just a single particle in a magnetic field. As we have already
discussed, the two dimensionality is very important for the realization of
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these phenomena. We therefore write down the Lagrangian for an electron
in two dimensions in a perpendicular magnetic field with vector potential A,

L =
1

2
mṙ2 + eṙ · A (1.2)

From the Lagrangian the Hamiltonian is easily derived:

H =
1

2m
(p − eA)2

We will make a choice of gauge, namely the Landau gauge or the linear
gauge, Ax = −yB and Ay = 0. Other gauge choices are also possible, e.g.
the circular gauge, which is widely used. Also we assume that eB > 0. The
Hamiltonian can then be written as

H =
1

2m
(px + yeB)2 +

1

2m
p2

y. (1.3)

We see that this Hamiltonian is translationally invariant in the x-direction,
which means that the x-momentum can be quantized as px = �k. By sub-
stituting this into (1.3) a new length scale introduces itself; the magnetic

length, �B =
√

�

eB
. Another quantity also appears naturally; the cyclotron

frequency, ωc = eB
m

, which we recognize as the angular frequency of a particle
of mass m and charge e undergoing circular motion in a magnetic field B.
The Hamiltonian then takes the form

H =
1

2m
p2

y +
1

2
mω2

c

(
y + �2

Bk
)2

,

which we recognize as a one-dimensional harmonic oscillator shifted away
from the origin. The eigenstates of this Hamiltonian are given by ψn(y +
�2
Bk) where ψn is the eigenstate of a one-dimensional harmonic oscillator

of quantum number n. If we assume that the system is periodic in the
x-direction with period L, then k = 2π

L
m, where m ∈ Z, and the two dimen-

sional wavefunction is given by:

ψkn(x, y) = L−1/2eikxψn(y + �2
Bk). (1.4)

We see that this state corresponds to a plane wave in the x-direction and
a harmonic oscillator state in the y-direction centered at yk = −�2

Bk. The
correspondence between the y-coordinate and the wave vector is shown i
Figure 1.3, which shows a geometric representation of these states. By acting
with (1.3) on this state we see that it has energy Ekn = �ωc

(
n + 1

2

)
, i.e. it

is completely degenerate in the quantum number k. This means that if the



8 Chapter 1.The quantum Hall effect

�

�

y

x

0

−4π
L

�2
B

4π
L

�2
B

� k

0

−4π
L

4π
L

Figure 1.3: A geometrical representation of the eigenvectors (1.4). The states
correspond to plane waves with wave vector k in the x-direction, and har-
monic oscillator states centered at yk = −�2

Bk in the y-direction. The lines in
the figure show where the states are centered in the y-direction. We clearly
see the correspondence between the y-coordinate and the quantum number
k.

system has infinite extension in the y-direction, there is an infinite number
of states with the same energy. The different harmonic oscillator states is
called Landau levels, where the n = 0 is called the lowest Landau level (LLL),
n = 1 the second Landau level and so forth.

We also note that if the magnetic field is very strong, the electron will
be confined to the LLL. This means that the electron state is given by a
single quantum number only, which in this case is the wavevector k. The
system is therefore effectively one-dimensional. This fact has been used in
Paper I and II, where we map a quantum Hall model onto its one-dimensional
representation.

This one-dimensionality can also be seen in another way. We know that
the energy is degenerate within each Landau level, which means that all
electrons have the same kinetic energy. This suggests that the kinetic term
can be ignored. If we rewrite the Lagrangian (1.2) in the Landau gauge
and ignore the kinetic term, the Lagrangian takes the form L = −��−2

B ẋy,
where the definition of the magnetic length has been used. The momentum
canonical to x is then given by px = −��−2

B y. If we naively quantize this
theory by [x, px] = i�, we find that

[x, y] = −i�2
B .

The x and y variable no longer commute! The commutator resembles the
commutator between x and p for a one-dimensional system. This means
that a state vector, ψ(x, y), can be viewed as wave function defined on phase
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space instead of the configuration space, just like a coherent state. We then
know that there exists an alternative formulation where the wavefunctions
only depend on one variable, e.g. ψ(x).

1.2.1 Number of states in a Landau level

In the real world the Hall bar is of course not infinite in size, this means that
there is a finite number of of electron orbitals in each Landau level. Let us
see if we can count them:

First, let us assume that the system has a length L in the x-direction,
and a width W in the y-direction. By placing the x-axis along the center of
the bar, the two edges will have positions yedge = ±W/2. The two highest

momentum states will be characterized by k = ±kF , the Fermi momenta.
From the correspondence between the k and y-space, we see that yedge =

±�2
BkF , which gives kF = W/2�2

B. The number of states is given by N =∑kF

k=−kF
1, which in the large L limit can be written;

N =
L

2π

∫ kF

−kF

dk =
L

2π
2kF =

WL

2π�2
B

= WLB
e

2π�
,

where the definition of the magnetic length have been used in the last line. We
recognize WLB as the total magnetic flux through the sample and 2π�

e
= h

e

as the magnetic flux quantum. This means that the number of states in a
Landau level is given by

N =
Φ

Φ0
= NΦ0

.

That is, the number of states is equal to the number of magnetic flux quanta
penetrating the bar; there is on state per magnetic flux quantum.

We now see that the quantity ν = Ne

NΦ0

, that was introduced in (1.1), can

also be interpreted as the ratio of the number of electrons to the number of
available states. We will call this ratio the filling fraction. The filling fraction
tells us how many of the of the available states that are actually occupied:
ν = 1 means that the whole LLL is filled, ν = 2 means that both the LLL
and the second Landau level is filled, ν = 1

3
means that only one third of the

LLL is filled. We see that when a Landau level is completely filled there is
an excitation gap to all excited states.

1.2.2 The integer quantum Hall effect

From the previous discussion it is not clear how the IQHE plateaus can
appear; when the magnetic field is changed slightly the filling fraction changes
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E1

E2

E3

E

ρ(E)

E1

E2

E3

E

ρ(E)

εF

Localized states

Delocalized states

Figure 1.4: The left figure shows the density of states of a system without
impurities. We see that the Landau levels corresponds to delta functions.
Impurities will give rise to a broadening of the Landau levels as shown in the
figure to the right. Only the original Landau levels corresponds to delocalized
states, while the states that originates from the impurities are localized.

and no plateau is possible. This is where the impurities come in [7, 8]. The
left figure in Figure 1.4 shows the density of states of a clean sample; the
Landau levels can clearly be seen as deltafunctions situated at E1, E2 etc.
Impurities in the sample will give rise to a broadening of the Landau levels
as shown in the right figure. The states that originate from the impurities
are localized. This means that electrons that occupy these states do not
contribute to the transport properties of the system. Only the delocalized
states, which correspond to the original Landau levels, contribute to the
transport.

We can now understand how a plateau can appear: Assume that the
Fermi level, εF , lies in a mobility gap as shown in Figure 1.4. Assume that
the Fermi level is increased, the transport properties will not change because
only the number of occupied localized states increases. But as soon as the
Fermi level crosses one of the Landau levels (localized at E2 in this example),
we will get a transition where more electrons contribute to the transport, and
we have a new plateau.

In an experimental setting the magnetic field is varied, and from the pic-
ture presented here we see that the localized states act as electron reservoirs.
As the magnetic field is increased available states open up in the Landau
levels, but since there exist occupied localized states with higher energies,
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these states provide electrons for the available delocalized states.
The FQHE can be explained in a similar manner, but for this explanation

to work we see that we need a mobility gap. How can there be a gap when a
Landau level is only partially filled? From what we have seen here the ground
state will even be degenerate, since all single particle orbitals in a Landau
level have the same energy. The solution to this mystery is the electron
interaction, which we have ignored until now.

1.3 The fractional quantum Hall effect

For ν = 1
m

, m odd, all particle orbitals are confined to the lowest Landau
level. Since these orbitals are degenerate, the total energy will effectively be
given by the repulsive Coulomb interaction, e4

4πεr
.

When discussing these states it is more convenient to work in the sym-
metric gauge, A = −1

2
r × B, which preserves rotational symmetry about

the origin. This means that the single particle orbitals will also be eigen-
states of the angular momentum operator. It can be shown that the energy
eigenstates in the LLL are given by

ϕm(z) =
1

�B

√
2π2mm!

zme−|z|2/4,

where the dimensionless complex number z = (x + iy)/�B represents the
position of the particle in the xy-plane and m ≥ 0 is an integer. The angular
momentum of this state is �m. We also see that the peak of ϕm(z) is located
at a radius of R =

√
2m�B.

The ground state of a ν = 1 system of N electrons is a Slater determinant
with all m < N orbitals occupied. This corresponds to a circular shaped
quantum Hall droplet of radius

√
2(N − 1)�B. It can be shown that this

Slater determinant can be written as (up to a normalization factor)

Ψ1({z}) =
N∏

i<j

(zi − zj)e
− 1

4

PN
j=1

|zj |2,

where {z} = (z1, z2, .., zN).
Laughlin [9] suggested that the ground state for the ν = 1

m
, m odd, FQHE

could be written as

Ψ1/m({z}) =

N∏
i<j

(zi − zj)
me−

1

4

PN
j=1

|zj |2. (1.5)
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Let us discuss the form of this wavefunction. Since m is odd it is clearly
antisymmetric, which is required by the Pauli principle. The electrons are
effectively kept apart, since the wavefunction vanishes quickly as zi → zj due
to the factor (zi − zj)

m. The wavefunction therefore includes the effects of
the interaction. The highest order of z that appears in (1.5) is m(N − 1),
which gives a droplet radius of R =

√
2πm(N − 1)�B. This droplet contains

πR2B
Φ0

= m(N − 1) flux quanta, by the use of the definition for the magnetic

length and Φ0. In the thermodynamic limit this gives a filling factor of ν = 1
m

.

For the Laughlin state it can be shown that there is a finite gap to excita-
tions, and that the elementary excitations are quasi-holes and quasi-particles
with fractional charge 1

m
[9, 10, 1]. The fact that the excitations have frac-

tional charge means that they also have fractional statistics [2, 11]. Any-
ons, particles with fractional statistics, were first discussed by Leinaas and
Myrheim [12]. The same mechanism that gave rise to the plateaus in the
IQHE can now be used to explain the FQHE plateaus: As the magnetic field
is increased (decreased) quasi-holes (-particles) will be created, but, as in
the IQHE, these holes (particles) will be trapped by the impurities, and will
therefore not contribute to the charge transport. The ratio of the number of
conducting states to the number of flux quanta is therefore unchanged, and
we have a plateau. The value of the Hall conductance at a plateau follows
from a gauge invariance argument that we will not go into here [7, 9]. It
can be shown that the Laughlin state is incompressible [9]. That the ground
state can be viewed as an incompressible quantum Hall fluid will be used
when we discuss edge excitations in Chapter 3.

But does the Laughlin state have anything to do with the real world?
The Laughlin state is not the ground state of a Hamiltonian with Coulomb
interaction. The exact ground state of such a Hamiltonian can be calculated
numerically for a limited number of particles. It turns out that the overlap
between the exact ground state and the Laughlin state is very large. Even
more, the overlap between the Laughlin state and the exact ground states
with other repulsive interactions is also very large [9]. This shows that the
interaction type is not very important for the effect to take place, and that
the Laughlin state is a very good approximative wavefunction that captures
the essential physics.

1.3.1 Composite fermions

Lauglins wavefunction is a good approximation to the ν = 1
m

ground state.
But what about other fractions? Jain have proposed wavefunctions that
easily captures the essential physics of the ν = n

2mn+1
states, where m ≥ 0
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and n > 0 are integers [13, 14]. Jain’s idea is that the ν = n
2mn+1

FQHE can
be thought of as an IQHE of socalled composite fermions (CF), which can
be viewed as electrons with an even number of flux quanta attached.

The Lauglin state (1.5) can be written as Ψ1/(2m+1) = DmΨ1, where Ψ1

is the ν = 1 ground state, m is an integer and the Jastrow factor is given by

Dm ≡
N∏

j<k

(zj − zk)
2m.

Let us fix all zi except z1. If z1 is brought in a loop around any other
electron it can be shown that Dm will contribute with a phase 4mπ. Since
the Aharanov-Bohm phase acquired when an electron is brought in a loop
around a unit flux quanta is 2π, Jain suggests that we can think of Dm as
effectively attaching 2m flux quanta to each electron. We can then view the
ν = 1

2m+1
state as the ν = 1 ground state of non-interacting CFs, that is

electrons with 2m flux quanta attached. Jain then generalizes this picture
and looks at the state Ψν = DmΨn, where Ψn, n integer, is the ν = n
ground state. This state will correspond to the ground state of n completely
filled CF Landau levels. But which electronic filling fraction does this state
correspond to? The electrons in the system will see a different magnetic field
than the CFs. From a mean field point of view an electron will see both the
magnetic field arising from all the flux quanta attached to the CFs, as well
as the magnetic background field in the CF system, B∗. The total magnetic
flux in the electron system is therefore given by

Φ = Φ∗ + 2mNΦ0 ,

where Φ and Φ∗ is the total magnetic flux penetrating the electron droplet
and the CF droplet, respectively. From the definition of the filling fraction
we see that the electron filling fraction is given by

ν =
n

2mn + 1
.

At first sight the wavefunction DmΨn doesn’t seem like a good candidate for
a ground state in the ν = n

2mn+1
case, since it obviously includes mixing with

higher Landau levels. However, the Jastrow factor is very efficient at pushing
the electrons down to the LLL [14]. To get a state completely in the LLL,
Jain’s suggestion for the ν = n

2mn+1
state is therefore

Ψν({z}) = P
N∏

j<k

(zj − zk)
2mΨn({z}). (1.6)
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where P is an operator that projects the state onto the LLL. We see that the
gap to excited states is easily accounted for since the only possible excitations
involve the excitation of one or more CFs from the completely filled Landau
levels to the non-occupied ones. The Jastrow factor effectively keeps the
CFs apart and compensates for the CF interaction; as zj approaches zk we
see that ΨCF

ν ({z}) goes to zero at least as fast as (zj − zk)
2m. Therefore

the CF-interaction can usually be ignored, and the CFs can be viewed as
non-interacting particles.

We see that the CF picture reduces the complicated problem of interact-
ing electrons in a partially filled LLL to the more or less trivial picture of
non-interacting CFs in completely filled Landau levels. However, this picture
is mainly based on arguments and is difficult to verify directly. But one can
compare the ground states constructed with the CF approach with exact
ground states: The exact ground states of ν = n

2mn+1
systems can be calcu-

lated numerically for a limited number of electrons. It can be shown that the
overlap between the exact ground state and the CF constructed wavefunction
is very large, which suggests that the Jain states are good approximations to
the real ground states. In Ref. [14] numerical results involving eight particles
is presented. We also note that the Laughlin series emerges as a special case
of the Jain series; it can be translated into a filled CF LLL only.



Chapter 2

The Luttinger model and

bosonization

The bosonization technique has been used extensively in my work. In this
chapter we will see how this technique makes it possible to study the low
energy limit of a one-dimensional system. The presentation given here is
mainly based on the original paper by Haldane [15], but some ideas are
taken from Ref. [16].

2.1 The low energy limit

Let us start with the quadratic Hamiltonian for a non-interacting and non-
relativistic one-dimensional system:

H0 =

∫ L/2

−L/2

dξψ†(ξ)
(−i�∂ξ)

2

2m
ψ(ξ).

If we assume periodic boundary conditions of period L, the field operator
can be written as ψ(ξ) = L−1/2

∑
k eikξck, where ck is a fermion annihilation

operator and k = 2π
L

n, n ∈ Z. In terms of this expression the Hamiltonian
takes the form

H0 =
�

2

2m

∑
k

k2c†kck.

The dispersion is quadratic in the wavenumber k. Figure 2.1 shows the
particle energy as a function of k. The ground state consists of all states
between the Fermi-points, ±kF , occupied. We define the Fermi point to lie
in between the highest occupied level and the lowest non-occupied level in
the ground state of the system. In terms of the number of particles N0,

15
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Figure 2.1: The quadratic dispersion.
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χ=− χ=+

Figure 2.2: The quadratic dispersion linearized at the Fermi points. The
dotted lines show the low energy region.
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which is assumed to be odd, the Fermi point is given by kF = π
L
N0. At low

energies only excitations close to the Fermi-points are possible. To a good
approximation we can therefore expand the dispersion at the Fermi points
and keep only the lowest (i.e. first) order contribution. Figure 2.2 shows the
dispersion linearized at the Fermi points. To perform such a linearization
formally it is a good idea to introduce chiral annihilation operators defined
by

c+,k = ck, k ≥ 0

c−,k = ck, k < 0.

In terms of these operators the Hamiltonian takes the form

H0 =
�

2

2m

∑
χ,k

k2θ(χk)c†χ,kcχ,k,

where the chiral variable takes the values χ = ±, and θ(x) is the step function.
By expanding k2 around ±kF we find that

H0 =
�

2k2
F

2m

∑
χ,k

θ(χk)

{(
χk − kF

kF

)2

+ 2

(
χk − kF

kF

)
+ 1

}
c†χ,kcχ,k.

In the low energy sector the first term can be ignored compared to the second
term. The last term is proportional to the total number of particles. If we
assume that the number of particles is constant, this term is uninteresting
and can be ignored as well. We are then left with only the second term. If we
measure the the energy relative to the ground state (i.e. all states between
the Fermi points occupied), the Hamiltonian can be written as

H0 = vF �

∑
χ,k

θ(χk)(χk − kF )
{
c†χ,kcχ,k − θ(kF − χk)

}
, (2.1)

where the Fermi velocity is defined as vF = �kF

m
. The left branch includes

states with wavenumbers that range from zero to minus infinity, while the
right branch includes states with wave numbers that range from zero to plus
infinity. However, there is no reason not to expand the branches to include
all possible wavenumbers: The low energy sector will not be affected by such
an extension and the Hamiltonian (2.1) will still be well defined since it is
defined relative to the ground state. Relative to this new ground state, |F〉,
we see that

cχ,k|F〉 = 0 if χk > kF

c†χ,k|F〉 = 0 if χk < kF .
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In terms of this ground state we define the normal ordering of operators by
placing the operator that annihilates the ground state to the right;

: c†χ,kcχ,k : =

{
c†χ,kcχ,k if χk > kF

−cχ,kc
†
χ,k if χk < kF

= c†χkcχk − θ(kF − χk).

The last line follows from the anti-commutation relation of the fermion op-
erators

{cχ,k, c
†
χ′,k′} = δχ,χ′δk,k′ . (2.2)

The low energy Hamiltonian can then be compactly written as

H0 = vF �

∑
χ,k

(χk − kF ) : c†χ,kcχ,k : . (2.3)

2.2 The density operator and its properties

The chiral creation and annihilation operators motivate the definition of a
chiral field operator,

ψχ(ξ) = L−1/2
∑

k

eikξcχ,k , (2.4)

and a chiral density operator

ρχ(ξ) =: ψ†
χ(ξ)ψχ(ξ) :

= L−1
∑

q

eiqξρχ,q , (2.5)

where the Fourier transform is given by

ρχ,q =

{ ∑
k c†χ,kcχ,k+q if q �= 0

Nχ if q = 0 .

The number operator Nχ counts the number of χ-particles relative to the
ground state, and is given by

Nχ =
∑

k

: c†χ,kcχ,k : .

We easily see that ρ†
χ,q = ρχ,−q. The density operator plays a central role in

the bosonization technique since, as we are about to see, its commutation
relations suggest the definition of bosonic creation and annihilation operators.
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We begin by calculating the commutation relation between the density
operator and the chiral field operator

[ρχ,q, ψ
†
χ(ξ)] = L−1/2

∑
k,k′

eik′ξ[: c†χ,qcχ,q :, c†χ′,q′]

= δχ,χ′e−iqξψ†
χ′(ξ) . (2.6)

The last line follows by the use of the the anticommutation relation (2.2) and
the definition of the field operator.

The commutation relation between the density operators is more com-
plicated. By repeated use of the fermion anticommutation relations it is
straightforward to show that

[ρχ,q, ρχ′,−q′] = δχ,χ′

∑
k,k′

{
δk+q,k′c†χ,kcχ,k′−q′ − δk,k′−q′c

†
χ,k′cχ,k+q

}
.

The commutator, as it stands, is not a well defined operator since it is not
normal ordered. To make the commutator well defined we can introduce a
cutoff on the k (and k′) variable, −m ≤ k ≤ m. If we assume that q > 0 and
q′ > 0 the primed sum can be performed,

[ρχ,q, ρχ′,−q′] = δχ,χ′

{
m−q∑

k=−m

c†χ,kcχ,k+q−q′ −
m−q′∑
k=−m

c†χ,k+q′cχ,k+q

}
.

By a change of variables in the last expression this reduces to

[ρχ,q, ρχ′,−q′] = δχ,χ′

⎧⎨
⎩

−m+q′−2π/L∑
k=−m

c†χ,kcχ,k+q−q′ −
m∑

k=m−q+2π/L

c†χ,kcχ,k+q−q′

⎫⎬
⎭

Let us consider the χ = + case first: The second term vanishes when acting
on a low energy state since the annihilation operator will act on non-occupied
states on the positive branch. The second term will act deep down in the
Fermi sea and will also vanish if q �= q′ since the creation operator will act
on occupied states. However, if q = q′ we see that the first term merely
counts the number of states from −m to −m+ q′−2π/L. Now to the χ = −
case: The first term vanishes when acting on a low energy state since the
annihilation operator acts on non-occupied states. The second term also
vanishes if q �= q′ since the creation operator will act on occupied states in
the Fermi sea. If q = q′ the second term will count the number of states
between m and m − q + 2π/L. In both cases we see that the commutator
reduces to

[ρχ,q, ρχ′,−q′] = δχ,χ′δq,q′χ
Lq

2π
. (2.7)
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This algebra is a form of the of Kac-Moody algebra. It can be shown that
this relation also holds for the other cases (q, q′ < 0 etc.) [17].

Let us now consider the the commutator between the density operator
and the Hamiltonian (2.3). It is easily shown that

[H0, ρχ,q] =
∑

k

vF �

{
(χk − kF )c†χ,kcχ,k+q − (χ(k + q) − kF )c†χ,kcχ,k+q

}
.

For the q = 0 case we see that this reduces to

[H0, Nχ] = 0, (2.8)

and for the q �= 0 we find

[H0, ρχ,q] = −vF �χqρχ,q . (2.9)

2.2.1 Bosonic operators and bosonic states

The commutator between the density operators, (2.7), resembles the com-
mutator between bosonic operators. This motivates the definition of bosonic
creation and annihilation operators

aq =

√
2π

L|q|
∑

χ

θ(χq)ρχ,q , a†
q =

√
2π

L|q|
∑

χ

θ(χq)ρχ,−q , q �= 0. (2.10)

From (2.7) it is easily shown that

[aq, a
†
q′ ] = δq,q′ , [aq, aq′ ] = [a†

q, a
†
q′ ] = 0 . (2.11)

The commutator of the Hamiltonian and the density operator, (2.9), gives

[H0, aq] = −vF �|q|aq , [H0, a
†
q] = vF �|q|a†

q . (2.12)

We see that aq and a†
q act as lowering and raising operators for the energy,

respectively. We will see in the following that this property makes it possible
to define bosonic states for the system.

Let us define |N+, N−〉 as the state constructed by adding Nχ electrons
to the lowest available orbitals on the χ-branch in the ground state (or by
removing |Nχ| electrons from the highest occupied orbitals on the χ-branch
in the ground state if Nχ < 0). We see that this state is an eigenstate of the

the operator : c†χ,kcχ,k : with eigenvalue
{
θ(2π

L
Nχ + kF − χk) − θ(kF − χk)

}
.

From this it follows that the state is also an eigenstate of the Hamiltonian
with energy

�vF
π

L

∑
χ

N2
χ .
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It is easily shown that the state is annihilated by aq, which means that the
state is a bosonic ground state. Let us define excited bosonic states by

|N+, N−, {nq}〉 =
∏
q �=0

(a†
q)

nq√
nq!

|N+, N−〉, (2.13)

where {nq} is a set of non-negative integers. It can be shown that these
states are normalized and orthogonal. Since the a†

q’s are raising operators
for the energy, we see that (2.13) is an eigenvector of the Hamiltonian with
eigenvalue ∑

k �=0

�vF |q|nq + �vF
π

L

∑
χ

N2
χ. (2.14)

We have shown that some eigenstates of H can be represented as bosonic
states, but it is not obvious that all eigenstates can be written in this rep-
resentation. The question is therefore, is the set of states {|N+, N−, {nq}〉}
a complete set? A fermionic state can be written as |{m+,k}, {m−,k}〉, where
mχ,k is the occupation number of the k-orbital on the χ-branch. Since we
are dealing with fermions mχ,k is either zero or one. It can be shown that
for a given energy the number of fermionic and bosonic states are the same
[17]. This implies that the bosonic set of states is complete, and every state
has a bosonic representation. The bosonic number operator is given by a†

qaq,
and the Hamiltonian can therefore be rewritten as

H0 =
∑
k �=0

�vF |q|a†
qaq + �vF

π

L

∑
χ

N2
χ. (2.15)

2.3 Bosonization of the field operator

The Hamiltonian has been written in a bosonized form, we will now show
how the field operator can be bosonized as well. The idea is as follows: We
define an operator Oχ(ξ) which is proportional to ψ†

χ(ξ). The operator is
constructed so that it commutes with the bosonic operators. This property
makes it possible to identify Oχ(ξ) by its action on the basis states. The
expression for Oχ(ξ) can then be inverted and an expression for the field
operator is found.

The operator is defined as

Oχ(ξ) = ψ†
χ(ξ)eiΛχ(ξ)eiΛ†

χ(ξ), (2.16)

where

Λχ(ξ) = −i
∑
q �=0

√
L

2π|q|θ(χq)eiqξaq. (2.17)
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By using the commutation relation between the density and the field oper-
ator, (2.6), and the fact the [f, eg] = [f, g]eg if [f, [f, q]] = 0, it can indeed be
shown that the operator Oχ(ξ) commutes with both aq and a†

q. We will now
identify the the operator Oχ(ξ). It is easily seen that Oχ(ξ)|N+, N−〉 has no
overlap to excited states,

〈N+, N−, {nq}|Oχ(ξ)|N+, N−〉 = 〈N+, N−|
∏
q �=0

a
nq
q√
nq!

Oχ(ξ)|N+, N−〉 = 0.

The last equality follows by commuting the aq operators past Oχ(ξ), the
operators will then annihilate the ket to the right.

Let us now consider the effect of Oχ(ξ) on states with no bosonic excita-
tions

〈N ′
χ, N ′

−χ|ψ†
χ(ξ)|Nχ, N−χ〉

= 〈N ′
χ, N ′

−χ|Oχ(ξ)e−iΛ†
χ(ξ)e−iΛχ(ξ)|Nχ, N−χ〉

= 〈N ′
χ, N ′

−χ|Oχ(ξ)|Nχ, N−χ〉

The last line follows by commuting the first exponential to the left. It is
easily shown that

〈N ′
χ, N ′

−χ|ψ†
χ(ξ)|Nχ, N−χ〉 = ηL−1/2δN ′

χ,Nχ+1δN−χ,N ′
−χ

e−iχ(kF− π
L

+(Nχ+1) 2π
L

)ξ,

where η = ±1 depends on how the state |Nχ, Nχ〉 is constructed. It then
follows that

Oχ(ξ)|Nχ, N−χ〉 = ηL−1/2e−iχ(kF− π
L

)e−i 2π
L

χNχξ|Nχ + 1, N−χ〉,

where Nχ in the exponential is the number operator. Both Oχ(ξ) and Nχ

commute with a†
q, which means that the effect of Oχ(ξ) on a general bosonic

state is given by

Oχ(ξ)|Nχ, N−χ, {nq}〉 = ηL−1/2e−iχ(kF− π
L

)e−i 2π
L

χNχξ|Nχ + 1, N−χ, {nq}〉.

This means that Oχ(ξ) can be written as

Oχ(ξ) = L−1/2e−iχ(kF− π
L

)e−i 2π
L

χNχξUχ ,

where Uχ is a ladder operator that increases the fermion number on the χ-
branch by one. If we assume that the state |N+, N−〉 is constructed by adding
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the N+ particles to the positive branch before N− particles are added to the
negative branch, we see that Uχ can be written as

U+ =
∑

Nχ,N−χ,{nq}
(−1)N− |N+ + 1, N−, {nq}〉〈N+, N−, {nq}|

U− =
∑

Nχ,N−χ,{nq}
|N+, N− + 1, {nq}〉〈N+, N−, {nq}|.

The factor (−1)N− gives the phase acquired when a creation operator for
the positive branch is commuted past the creation operators for the negative
branch. This factor ensures that U+ and U− anti-commute. Since the bosonic
states are orthonormal it follows that Uχ is unitary and that

[Nχ, Uχ′] = δχ,χ′Uχ′ . (2.18)

By inverting the expression for Oχ(ξ), we have found an expression for
the field operator

ψ†
χ(ξ) = L−1/Le−iχkF ξeiφ†

ξ
(ξ)Uχeiφξ(ξ), (2.19)

where

φχ(ξ) = −π

L
χNχξ + i

∑
q �=0

√
2π

L|q|θ(χq)eiqξaq . (2.20)

We have now bosonized both the Hamiltonian and the field operator in the
case of a non-interacting theory. In the next section we will see what happens
when interactions are introduced.

2.4 The interacting model

Let us introduce an interaction term in the Hamiltonian,

HI =
π

L

∑
χ,k

{V1,qρχ,qρχ,−q + V2,qρχ,qρ−χ,−q} . (2.21)

At first sight this term looks a bit odd; first we note that the interaction
between particles of the same chirality, V1,q, is different from the interaction
between particles of opposite chiralities, V2,q. We also note that the density
operators in the interaction term are already normal ordered. At the moment
we will just accept this interaction term, and not be bothered about how it
might arise.
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From the definition of the boson operators we see that the density oper-
ator can be written as

ρχ,q = δq,0Nχ +

√
L|q|
2π

{
θ(χq)aq + θ(−χq)a†

−q

}
. (2.22)

By using this expression for the density operator, the full Hamiltonian, H =
H0 + HI, can be written as

H =
1

2

∑
q �=0

(�vF + V1,q)|q|
{
aqa

†
q + a†

qaq

}
+

1

2

∑
q �=0

V2,q|q|
{
aqa−q + a†

−qa
†
q

}

+
π

L

{
(�vF + V1,0)

∑
χ

N2
χ + V2,0

∑
χ

NχN−χ

}
− 1

2

∑
q �=0

�vF |q|. (2.23)

By defining an operator for the total number of particles, N , and the total
current, J , by

N = N0 +
∑

χ

Nχ , J =
∑

χ

χNχ , (2.24)

the q = 0 contribution to H can be compactly written as

π

L

{
(�vF + V1,0)

∑
χ

N2
χ + V2,0

∑
χ

NχN−χ

}
=

π

2L

{
vN (N − N0)

2 + vJJ2
}

,

where we have defined the velocities

vN = �vF + V1,0 + V2,0 vJ = �vF + V1,0 − V2,0. (2.25)

The q �= 0 contribution can be considerably simplified by defining new
bosonic operators by a Bogoliubov transformation,

bq = cosh ζqaq − sinh ζqa
†
−q, (2.26)

where the parameter ζq is assumed to depend on |q| only. It is easily shown

that the new operator obeys bosonic statistics, [bq, b
†
q′ ] = δq,q′. By expressing

aq in terms of bq (and b†−q), the Hamiltonian can be cast in a non-interacting
form

H =
∑
q �=0

�ωqb
†
qbq +

π

2L

{
vN(N − N0)

2 + vJJ2
}

+
1

2

∑
q �=0

�(ωg − vF |q|) , (2.27)

if we require that

2(�vF + V1,q) cosh ζq sinh ζq + V2,q(cosh2 ζq + sinh2 ζq) = 0.
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This requirement determines the ζq parameter,

tanh(2ζq) = − V2,q

�vF + V1,q
. (2.28)

The frequency ωq is given by

ωq = |q|
√

(vF + �−1V1,q)2 − (�−1V2,q)2 ,

which shows that the system is gapless, just like the non-interacting system,
since arbitrarily small excitations are possible. We have seen that the re-
definition of bosonic operators made it possible to transform the interacting
Hamiltonian into a Hamiltonian of free bosons. In the next subsection we
will see that the interacting ground state is related to the non-interacting
one by a unitary transformation.

2.4.1 The interacting ground state

By using the formula

e−BAeB =

∞∑
n=0

1

n!
[A, B]n = A + [A, B] +

1

2!
[[A, B], B] + . . . ,

where [A, B]n+1 = [[A, B]n, B] and [A, B]0 ≡ A, one can show that the
definition of the interacting boson operator, (2.26), can be related to the
non-interacting one by a unitary transformation

bq = SaqS
† , (2.29)

where

S = e
1

2

P
q �=0

ζq(a†
qa†

−q−aqa−q). (2.30)

This transformation also makes it possible to relate the non-interacting ground
state to the interacting one. We see from the interacting Hamiltonian (2.27)
that the ground state has to be annihilated by bq. From aq|F〉 = 0, where |F〉
is the non-interacting ground state, and the unitary transformation of aq, we
see that bqS|F〉 = 0. This means that the interacting ground state is related
to the non-interacting one by

|IGS〉 = S|F〉 .
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2.4.2 The interacting field operator

It will be helpful to express the field operator in terms of the interacting
boson operators. From (2.26) we see that the bosonic field in the expression
for the field operator (2.19) can be written as

φχ(ξ) = −π

L
χNχξ + i

∑
q �=0

√
2π

L|q|θ(χq)eiqξ
(
cosh ζqbq + sinh ζqb

†
−q

)
.

The field operator can be normal ordered with respect to the boson operators
by using the formula

eAeB = eBeAe[A,B]

eAeB = eA+Be
1

2
[A,B], (2.31)

which hold if [A, [A, B]] = [B, [A, B]] = 0. The field operator then takes the
form

ψ†
χ(ξ) = L−1/2e−

P
q �=0

2π
L|q|

sinh2 ζqe−iχkF ξeiϕ†
χ(ξ)Uχeiϕχ(ξ), (2.32)

where the bosonic field is given by

ϕχ(ξ) = − π

L
χNχξ

+ i
∑
q �=0

√
2π

L|q| {θ(χq) cosh ζq − θ(−χq) sinh ζq} eiqξbq . (2.33)

The action of all the operators in (2.32) on the interacting ground state is
known, and in the next section we will see how this makes it possible to
calculate the correlation function exactly.

2.5 The correlation function

We want to calculate the correlation function
〈
ψ†

χ(ξ)ψχ′(ξ′)
〉
. The only op-

erator that can change the fermion number on a branch is the Uχ operator,
for this reason the expectation value will vanish unless χ = χ′. The quantity
of interest is therefore

Cχ(ξ − ξ′) =
〈
ψ†

χ(ξ)ψχ(ξ′)
〉

= L−1e−2
P

q �=0

2π
L|q|

sinh2 ζqe−iχkF (ξ−ξ′)

× 〈F|S†eiϕ†
χ(ξ)Uχeiϕχ(ξ)e−iϕ†

χ(ξ)U †
χe−iϕχ(ξ′)S|F〉.
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The last line can be simplified by noting that ϕχ(ξ)S|F〉 = 0. By using
[Nχ, Uχ] = 1, we can commute Uχ to the right and U †

χ to the left. These
operators will then cancel due to the unitarity of Uχ. The expectation value
in the last line is then given by

eiχ π
L

(ξ−ξ′)e[ϕχ(ξ),ϕ†
χ(ξ′)] ,

where the commutator follows from (2.31). The commutator is easily shown
to give

∑
q>0

2π

Lq
eiχq(ξ−ξ′) +

∑
q>0

2π

Lq
sinh2 ζq

{
eiχq(ξ−ξ′) + e−iχq(ξ−ξ′)

}
.

To calculate the exponential of this expression, let us first consider the func-
tion S(x) = e

P∞
n=1

n−1einx

. To make this function well behaved for all x, it is
a good idea to introduce a small imaginary part, x → x + iε, where ε > 0.
The derivative of S is given by

dS(x)

dx
= S(x)i

∞∑
n=1

ein(x+iε)

= S(x)i
ei(x+iε)

1 − ei(x+iε)
,

where the last line follows by performing the sum in the second line. By
integrating this expression with suitable boundary conditions, one gets

e
P

q>0

2π
Lq

eiχqξ

=
(
1 − ei(χ 2π

L
+iε)

)−1

. (2.34)

Since the correlation function only depends on ξ − ξ′ one can write the full
expression for the correlation function as

Cχ(ξ) =
i

2L
e−iχkF ξe−A(ξ) 1

sin
[

π
L
(χξ + iε)

] ,

where

A(ξ) = 4
∑
q>0

2π

Lq
sinh2 ζq sin2 (qξ/2) .

We see that the interaction contribution sits in the function A(ξ). It can be
shown that in the large ξ (and large L) limit, the correlation function takes
the asymptotic form

Cχ(ξ) ∼ e−iχkF ξ|ξ|−γ,
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where γ = cosh(2ζ0). From the definition of ζq we find that

γ =

√
(�vF + V1,0)2

(�vF + V1,0)2 − V 2
2,0

. (2.35)

We see that an interaction between particles of opposite chirality will give
rise to a renormalization of the exponent away from its noninteracting value
γ = 1.

2.6 Coordinate space formulation

In this section we will reformulate the bosonized Hamiltonian in terms of
fields Θ(ξ) and Φ(ξ) instead of the Fourier modes. In the presentation given
here we will be using a notation similar to the one used in Ref. [18], since
that article will be discussed more closely in Chapter 5.

We start by defining the fields

Θ(ξ) = Θ0 − 1

2
√

π

∑
χ

{
φχ(ξ) + φ†

χ(ξ)
}

(2.36)

Φ(ξ) = Φ0 +
1

2
√

π

∑
χ

χ
{
φχ(ξ) + φ†

χ(ξ)
}

, (2.37)

where φχ(ξ) is given by (2.20), and the operators Θ0 and Φ0 will be discussed
later. It is easily shown that the derivatives and of the fields are related to
the charge and current density,

ρ(ξ) − ρ0 = − 1√
π

∂ξΦ(ξ) , j(ξ) =
1√
π

∂ξΘ(ξ) ,

where the charge and current is given by

ρ(ξ) = ρ0 +
∑

χ

ρχ(ξ) , j(ξ) =
∑

χ

χρχ(ξ) ,

and the ground state density by ρ0 = N0

L
.

In the low-energy limit we can expand the interaction to zeroth order in
the expression for the interacting Hamiltonian (2.23). If we define u =

√
vNvJ

and K =
√

vJ

vN
, we see that the Hamiltonian can be expressed in terms of

the fields (2.36) and (2.37) as

H =
u

2

∫ L/2

−L/2

dξ
{
K−1 (∂ξΦ(ξ))2 + K (∂ξΦ(ξ))2

}− 1

2

∑
q �=0

�vF |q| . (2.38)
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This is the form used in Ref. [18].
It is also useful to express the field operator, (2.19), in terms of the Θ

and Φ fields. We easily see from the definition of these fields that the field
operator can be formulated as

ψχ(ξ) = L−1/2eiχkF ξe−iφ†
χ(ξ)U−1

χ e−iφχ(ξ)

∼ eiχkF ξei
√

π(Θ(ξ)−χΦ(ξ)). (2.39)

The Uχ operator can be expressed in terms of the exponential of the Θ0 and
Φ0 operators. Since this is rather technical, as discussed in Ref. [19], we will
not go into the details here.





Chapter 3

Edge states in the quantum

Hall effect

In this chapter we will see how the Luttinger model can be applied to the
edge of a quantum Hall system. As we saw in the previous chapter the
Luttinger model exhibits gapless bosonic excitations. We have learned that
the excitations of the quantum Hall system are gapped, so how can the
Luttinger model be applied to such a system? It turns out that even if the
bulk of the system is gapped, the edge of the system exhibits gapless modes
[8].

The presentation here is mainly based on Wen’s hydrodynamical approach
[20], but I have tried to make the theory more rigorous.

3.1 Hydrodynamical description

Let us consider the edge of a two-dimensional incompressible quantum Hall
fluid of density n = ν

2π�2
B

, as shown in Figure 3.1. The fluid is subject

to a transverse magnetic field and a confining electric field in the negative
y-direction (to be in accordance with the notations used in Chapter 1 and
Papers I-III, the charge of the fluid will be assumed to be positive). The edge
profile is given by the profile function h(x), which defines a one-dimensional
density ρ(x) = nh(x).

We will now try to find a Lagrangian for such a system. The Lagrangian
for a particle of charge q in a magnetic field and an electric potential φ is
given by

L =
1

2
mv2 + qv · A− qφ,

where A is the magnetic vector potential. We argued in Chapter 1 that for
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h(x)

y

x

BE

Figure 3.1: The edge of an incompressible quantum Hall fluid.

a system restricted to the LLL, the kinetic term can be ignored. We will
therefore consider the Lagrangian L = LA + Lφ, where LA = qv · A and
Lφ = −qφ.

Let us start by evaluating LA. We will be working in the Landau gauge,
A = (−yB, 0, 0). By summing over all volume elements in the liquid we see
that LA can be written as

LA = −neB

∫ L

0

dx

∫ h(x)

0

dy vxy,

where L is the length of the system. If we make the approximation that
the velocity component, vx, is only dependent on x, the y-integral can be
performed

LA = −π�ν−1

∫ L

0

dx vxρ
2(x),

where the definition of n and ρ(x) have been used. The velocity can be
found from the expression for the one-dimensional current density, j(x) =
ρ(x)vx. To find an expression for the current density we can integrate the
one-dimensional continuity equation, ∂xj = ρ̇. We then find that the velocity
is given by

vx = − 1

ρ(x)

∫ x

0

dx′ρ̇(x′) +
j(0)

ρ(x)
.

If we assume periodic boundary conditions the density can be expressed in
terms of Fourier components as

ρ(x) = L−1
∑

q

eiqxρq . (3.1)
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The following expression for LA can then be found

LA =
π�

νL

∑
q �=0

1

iq
ρ̇qρ−q − π�

νL
Q

∑
q �=0

1

iq
ρ̇q − π�

ν
Qj(0), (3.2)

where Q is the q = 0 Fourier transform of ρ(x). Q corresponds to the total
number of electrons in the edge region, y > 0, and is assumed to be constant.

The electric potential is expressed in terms of the electric field as φ(x) =
Ey. Lφ can then be expressed as

Lφ = −ne

∫ L

0

dx

∫ h(x)

0

dy Ey

= −eB

2n
v

∫ L

0

dxρ2(x),

where we have defined the velocity parameter v = E/B. Using (3.1), we find
that

Lφ = −π�v

νL

∑
q �=0

ρqρ−q − π�v

νL
Q2 . (3.3)

The last terms in (3.2) and (3.3) correspond to a boundary term and a
constant term. If we ignore these terms we find that the Lagrangian is given
by

L =
π�

νL

∑
q �=0

1

iq
ρ̇q (ρ−q − Q) − π�v

νL

∑
q �=0

ρqρ−q . (3.4)

The canonical momentum is given by

Πq =
∂L

∂ρq
=

π�

νL

1

iq
(ρ−q − Q) . (3.5)

It is then easily seen that the equations of motion, Π̇q = ∂L
∂ρq

, is given by

ρ̇q = ivqρq .

The Fourier transform of this equation is (∂t − v∂x) ρ(x, t) = 0, with solutions
of the form ρ(x, t) = ρ(x + vt). The solutions are chiral and move to the left
with velocity v = E

B
. This is also what we would expect: A charged particle

in a crossed electric and magnetic field will drift with a velocity v = E×B

B2 .
A height profile h(x) in the charged liquid should therefore move to the left
with velocity v.

From the Lagrangian, (3.4), and the canonical momenta, (3.5), the Hamilto-
nian is easily found

H =
π�v

νL

∑
q �=0

ρqρ−q . (3.6)
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The Hamiltonian is equal to the electrostatic contribution and we notice that
it does not depend on the canonical momenta, the reason for this is that the
Lagrangian is only first order in the velocities ρ̇q.

3.1.1 Quantization

To canonically quantize this theory is not straightforward because the Hamilto-
nian formulation of this theory is not well defined as it stands. The reason
for this is that the phase space is constrained since the coordinates and ca-
nonical momenta can be identified with each other. The physical states are
therefore constrained to lie on a surface in phase space. As we see from
(3.5) the surface is defined by φq = 0, where φq = Πq − π�

νL
1
iq

(ρ−q − Q). The
Hamiltonian formulation can be generalized to deal with such constrained
systems [21, 22]. The Poisson brackets are generalized to Dirac brackets,
which enable quantization. We will not go into the details here, but it can
be shown that the commutator between the density operators is given by

[ρq, ρq′] = −ν
Lq

2π
δq,−q′ . (3.7)

The commutator between the Hamiltonian, (3.6), and the density operator
then easily follows

[H, ρq] = �vqρq . (3.8)

The electron operator creates a particle of unit charge, which means that it
has to obey

[
ρ(x′), ψ†(x)

]
= δ(x′ − x)ψ†(x). The Fourier transform of this

commutator is [
ρq, ψ

†(x)
]

= e−iqxψ†(x). (3.9)

We recognize (3.7), (3.8) and (3.9) as the corresponding commutators for the
negative chirality density operator in the Luttinger model, (2.7), (2.9) and
(2.6), respectively, except that the Kac-Moody algebra found here has been
modified with a factor ν. The theory can therefore be bosonized, but the
factor ν in (3.7) gives rise to a modified exponent in the asymptotic electron
correlation function 〈

ψ†(x)ψ(x′)
〉 ∼ 1

(x − x′)1/ν
.

The commutator (3.9) only ensures that the electron creates a unity charge,
the requirement that the electron operator has to be fermionic, i.e. it has
to anticommute with itself, constrains the filling fraction to be ν = 1/m,
with m odd [20], i.e. the Laughlin series. However, the edge theory can be
generalized, by a Chern-Simons description, to account for other fractions as
well [20], which gives rise to other forms of the correlator exponents. Since the
fluid model gives the results needed here, we will not go into that formalism.
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3.2 Experimental and numerical results

The derivation in the previous section predicts that the edge of a quantum
Hall system behaves as a Luttinger liquid. The electron correlation func-
tion will therefore have a power-law behaviour and the exponent takes the
universal value of ν−1 (in the case of the Laughlin series).

The correlation function can be related to the current-voltage character-
istics for electron tunneling into the edge, I ∼ V α, where α is the correlation
function exponent. Several experiments have been performed to test this
prediction [23, 24, 25, 26], and the experiments do confirm a Luttinger liquid
behaviour in the sense that the current-voltage characteristics behave as a
power-law. However, the experimentally measured exponent does not agree
with the universal prediction. A clear observation of a plateau behaviour for
the exponent is also missing. However, a weak plateau like structure for α
close to the ρxy plateau in the ν = 1/3 case is reported in Ref. [25].

So far no widely accepted theoretical explanation for the experimental res-
ults exists, but several numerical works suggest that the discrepancy between
theory and experiment can be ascribed to the effects of the electron interac-
tion [27, 28, 29]. Of special interest to Paper III is Ref. [27], where Mandal
and Jain (MJ) suggest that mixing with the second CF Landau level can
lead to renormalization of the correlation function exponent for the ν = 1/3
case. As we saw in Chapter 1 the ν = 1/3 FQHE can be seen as a ν = 1
IQHE of CFs. The question then arises: Can a similar renormalization effect
be seen in the ν = 1 IQHE if one allows the interaction to cause mixing with
the second electronic Landau level? This is the motivation behind Paper III.
In that paper I allow for mixing with the second electronic Landau level in
a fashion similar to the approach in MJ’s work. The single particle orbitals,
that in the non-interacting case is given by (1.4) with n = 0, is allowed to be
in a superposition of a LLL and a second Landau level state

ϕk(x, y) = C0(k)ψk0(x, y) + C1(k)ψk1(x, y) , (3.10)

where C0(k) and C1(k) are mixing coefficients. Normalization requires that
|C0(k)|2+|C1(k)|2 = 1. The interaction, which has a Gaussian shape, will give
rise to mixing coefficients different from the non-interacting case, C0(k) =
1 and C1(k) = 0. Since we work in the ν = 1 case, the many-particle
ground state of the system is a Slater determinant of the single-particle states
(3.10). Since the ground state is given as a Slater determinant it can be
calculated numerically within the Hartree-Fock approximation. In Paper III
knowledge of the Hartree-Fock approximation is assumed, for that reason an
introduction to that topic is given in Chapter 4. As opposed to the ν = 1/3
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case I find no renormalization of the correlation function exponent. However,
the interaction is shown to give rise to oscillations in the density profile.

3.3 Explicit mapping

The hydrodynamic model is based on very general arguments, and it is not
derived from a microscopical point of view. The motivation for the work in
Paper I and II is to study a model where the relationship between the two-
dimensional quantum Hall system and the one-dimensional Luttinger model
can be made precise. One of the advantages of this approach compared
to the effective edge description is that interactions can be included at the
microscopic level and can be dealt with in a natural way. The fact that the
quantum Hall system has two edges that can interact with each other is also
naturally described in this approach. The disadvantage is that we have to
consider the case of integer filling since this case has a ground state that can
easily be dealt with.

We will now discuss some of the ideas and results of Paper I and II.
In Chapter 1 we pointed out that in the LLL the quantum Hall system is
effectively one-dimensional, due to the fact the wavefunction (1.4) is given
by one quantum number only. Let us exploit this fact. A single particle state
in the LLL can be expanded in a basis consisting of the states (1.4),

ψ(x, y) = L−1/2
∑

k

cke
ikxψ0(y + �2

Bk) .

However, since the state is determined by the ck parameters alone it is equi-
valent to a one-dimensional wave function

ψ(ξ) = L−1/2
∑

k

cke
ikξ .

By using the expression for the harmonic oscillator ground state, ψ0, one can
find a mapping between the 1D and 2D representations

ψ(ξ) =

∫
dxdyf(x− ξ, y)ψ(x, y) ,

ψ(x, y) =

∫
dξf(x− ξ, y)ψ(ξ) ,

where

f(x, y) =
1√

2π
√

π�3
B

e−x(x+2iy)/2�2
B . (3.11)
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The transition function f does not only make it possible to map wavefunc-
tions between one and two dimensions, and vice versa, also matrix elements
of arbitrary operators can be mapped in this way. This means that any op-
erator defined in the two-dimensional model has a corresponding one in the
one-dimensional representation.

To model a proper Hall bar there has to be a confining potential in the
system. This we will take to be a harmonic potential in the y-direction,
1
2
mω2y2. This confining potential can be absorbed in the Hamiltonian (1.3)

by a redefinition of the parameters. This means that the eigenstates will have
the same form and the mapping just described still holds, except for a re-
definition of some parameters. The confining potential will lead to a particle
drift in the system in a similar way to the E×B drift in the hydrodynamic
case, except that the current is not restricted to the edges only, it will extend
through the whole system and reaches its maximum at the edges. Another
effect of the interaction is that it lifts the degeneracy in the LLL, the energy
of the single particle states is now given by

�
2

2M
k2 +

1

2
�ω̄c ,

where M is a mass parameter and ω̄c is a redefined cyclotron frequency.
The ground state of this system can be represented by Figure 1.3 with all
the lowest momentum states occupied, this will give rise to two well defined
edges in terms of the Fermi momenta, yedge = ±�2

BkF . The particles in the
upper half plane will all drift toward the left, while the particles in the lower
half plane drift to the right.

An interaction between the particles can be introduced, and we have
chosen an interaction with a Gaussian form, V (x, y) = V0e

−α2(x2+y2). In
addition to giving easy control of both the interaction strength, V0, and in-
teraction length, 1/α, it can be explicitly mapped to the one-dimensional
representation due to the fact that the the transition function, (3.11), has a
Gaussian shape. This gives rise to a one-dimensional Gaussian interaction
that is no longer a local density interaction. The one-dimensional picture
now emerges: We have a well defined non-interacting groundstate defined by
all momentum states |k| < kF occupied. The dispersion is quadratic in the
wavenumber k and the interaction is non-local in the densities. By taking
the low-energy limit, just as we did when we discussed the Luttinger model
in Chapter 2, the dispersion can be linearized at the Fermi points. By as-
suming that excitations close to the Fermi points are allowed the momentum
representation of the interaction can also be given a low energy form, where
the interaction splits into two parts: One part corresponds to the interaction
between particles with same chirality, V1(q), and the other part to inter-
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actions between particles of opposite chirality, V2(q) ≈ e−α2W 2

V1(q), where
W = 2�2

BkF is the width of the quantum Hall bar. The 1D representation
can now be bosonized with the technique developed in Chapter 2. As we
know, this leads to a correlation function which in the asymptotic limit has
the shape of a power law, where the exponent is renormalized by the inter-
action. However, only the interaction between opposite chiralities will lead
to renormalization, as seen from (2.35).

We see that our approach has no need for effective arguments, since it is
based on an exact mapping from the two-dimensional to the one-dimensional
representation. We also see that this mapping is not restricted to the edges
only, as in the hydrodynamical approach, in fact, the whole quantum Hall
system is mapped onto its one-dimensional representation.

The one-dimensional representation has now been described, but in real
life the quantum Hall system is two-dimensional. What is needed is to map
the expression for the one-dimensional correlation function back to the 2D
case. This is the topic of Paper II, where we show how the 2D correla-
tion function,

〈
ψ†(x, y)ψ(x′, y′)

〉
, can be derived. The expression for the

correlation function close to the edge is shown to approach a power law in
the asymptotic limit with the exponent equal to the exponent in the one-
dimensional representation. Since we have an explicit expression for the 2D
correlation function the electron density profile is given simply by putting
x = x′ and y = y′. What we find is that even if the interaction between the
edges, i.e. the different chiralities, can lead to substantial renormalization of
the exponent, the effect of the interaction on the density profile is minimal
compared to the non-interacting case. Even more, the deviation from the
non-interacting density is only found close to the edges of the system.



Chapter 4

The Hartree-Fock

approximation

In Paper III, the Hartree-Fock (HF) algorithm was used to calculate the
ground state of a quantum Hall system where the single particle states have
contributions from the second Landau level. In this chapter I will derive the
HF equation and show how it can be used. The review I present here is
mainly based on Refs. [30, 31].

4.1 The Hartree-Fock equation

The HF approximation is based on the idea that an interacting many-particle
system can be approximately described by a system of non-interacting particles,
where the particles move in an effective potential set up by all the other
particles.

The idea is therefore that the Hamiltonian of the N particles (in the
x-representation)

H =

N∑
i=1

hi +
1

2

∑
i,j=1

i�=j

V (ri − rj),

where the first term consists of single particle operators (kinetic energy and
background potential, if it exists) and the second term is the interaction
term, can be replaced by a Hamiltonian of single particle operators,

HHF =
N∑

i=1

hHF
i . (4.1)

The ground state of (4.1) will then be a Slater determinant of single particle
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orbitals,

Φ({r}) =
1√
N !

det(ϕi(rj)), (4.2)

where the single particle orbitals, ϕi(r), are normalized, 1 =
∫

drϕ∗
i (r)ϕi(r).

The ground state orbitals are chosen so that they minimize the energy ex-
pectation value of the full Hamiltonian, 〈Φ|H|Φ〉. We will see that this
requirement will lead to single particle eigenvalue equations that determine
the single particle operators hHF

i in (4.1). Since the the single particle orbitals
have to be normalized, we have to minimize

H = 〈Φ|H|Φ〉 −
N∑

i=1

λi

{∫
dwϕ∗

i (w)ϕi(w) − 1

}
, (4.3)

where the Lagrange multipliers {λi} arise from the constraint that {ϕi} have
to be normalized. The energy expectation value can be written as

〈Φ|H|Φ〉 =
∑
i=1

∫
dwϕ∗

i (w)hiϕi(w)

+
1

2

N∑
i,j=1

{∫
dwdw′ϕ∗

i (w)ϕ∗
j(w

′)V (w − w′)ϕi(w)ϕj(w
′)

−
∫

dwdw′ϕ∗
i (w)ϕ∗

j(w
′)V (w −w′)ϕj(w)ϕi(w

′)
}

. (4.4)

The variation of H with respect to ϕ∗
k(r) is then given by

δH
δϕ∗

k(r)
=hkϕk(r) +

N∑
i=1

∫
dwϕ∗

i (w)V (r −w)ϕi(w)ϕk(r)

−
N∑

i=1

∫
dwϕ∗

i (w)V (r − w)ϕi(r)ϕk(w) − λkϕk(r).

For the Φ to minimize the energy, the variation of H has to vanish, δH
δϕ∗

k
(r)

= 0,

and this leads to the HF equation,{
h +

N∑
i=1

(Ii − Ki)

}
ϕk(r) = λkϕk(r), (4.5)

where the operator Ii is defined by

Ii =

∫
dwϕ∗

i (w)V (r− w)ϕi(w) (4.6)
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and the exchange operator by

Kiψ(r) =

∫
dwϕ∗

i (w)V (r − w)ψ(w)ϕi(r). (4.7)

It is easily shown that the operators on the LHS of (4.5) are Hermitian,

〈f |Ii|g〉 =

∫
drdwf ∗(r)ϕ∗

i (w)V (r −w)g(r)ϕi(w)

=

{∫
drdwg∗(r)ϕ∗

i (w)V (r − w)f(r)ϕi(w)

}∗
= 〈g|Ii|f〉∗, (4.8)

and similarly for Ki (h is of course Hermitian). We see that the problem of
finding the single particle orbitals has been reduced to finding the solution
to an eigenvalue equation, (4.5), where all the eigenvalues are real (since the
operator on the LHS is Hermitian). On the other hand, the operators Ii and
Ki themselves depends on the single particle orbitals. The way forward is a
self consistent approach:

1. Make an initial approximation for ϕi(r) for all i ∈ {1, .., N}.
2. Calculate Ii and Ki for all i ∈ {1, .., N}.
3. Solve the HF equation (4.5).

4. Select the N orbitals with the lowest eigenvalue λi.

The procedure is then repeated from Step 2 with the new orbitals. This
cycle is iterated until the orbitals found are equal to the orbitals found in
the previous iteration.

4.1.1 The Hartree-Fock energy

From (4.5) we would expect the HF energy to be
∑N

i=1 λi, but we will see
that this is not the case. By multiplying (4.5) with

∫
drϕ∗

k(r) and using the
fact that the single particle states are orthonormal (the orthogonality follows
from the fact that the operator on the LHS of (4.5) is Hermitian), we find
that∫

dwϕ∗
i (r)hϕi(r) ≡ 〈ϕi|h|ϕi〉

= λi −
N∑

j=1

{〈ϕiϕj|V |ϕiϕj〉 − 〈ϕiϕj|V |ϕjϕi〉} , (4.9)
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where the matrix element in the last line is defined by

〈ϕiϕj|V |ϕkϕl〉 =

∫
drdwϕ∗

i (r)ϕ
∗
j(w)V (r −w)ϕk(r)ϕl(w)

By inserting this expression in (4.4) we find that the HF energy is given by

EHF =

N∑
i=1

λi − 1

2

N∑
i,j=1

{〈ϕiϕj|V |ϕiϕj〉 − 〈ϕiϕj|V |ϕjϕi〉} , (4.10)

where we indeed see that there is a correction to the naive guess that EHF =∑N
i=1 λi.

4.2 Stability of the Hartree-Fock solution

The variational principle used to derive the HF equation only guarantees that
the solution is stationary with respect to variation of the orbitals, and not
necessarily that the solution is a minimum. A necessary condition for this
is that the energy of an “excited state” is higher than EHF. Let us consider
the state |Φph〉, constructed by replacing one of the ground state orbitals ϕh,
h ≤ N with one of the discarded orbitals, ϕp, p > N . From (4.4) we see that
the energy of this state is given by

Eph = 〈Φph|H|Φph〉 =

N,p∑
i=1

i�=h

〈ϕi|h|ϕi〉 +
1

2

N,p∑
i,j=1

i,j �=h

{〈ϕiϕj|V |ϕiϕj〉 − 〈ϕiϕj |V |ϕjϕi〉}

= EHF + 〈ϕp|h|ϕp〉 +

N∑
j=1

{〈ϕpϕj|V |ϕpϕj〉 − 〈ϕpϕj|V |ϕjϕp〉}

− 〈ϕh|h|ϕh〉 −
N∑

j=1

{〈ϕhϕj|V |ϕhϕj〉 − 〈ϕpϕj|V |ϕjϕp〉}

− {〈ϕpϕh|V |ϕpϕh〉 − 〈ϕpϕh|V |ϕhϕp〉}
For the last equality the expression for the HF energy, (4.10), have been used.
From (4.9) it follows that

Eph = EHF + λp − λh − {〈ϕpϕh|V |ϕpϕh〉 − 〈ϕpϕh|V |ϕhϕp〉} .

By defining Γph = Eph − EHF, we see that the necessary condition for EHF

to be a minimum is that

Γph > 0, for all

{
h ≤ N
p > N

(4.11)

In Paper 3 this check have been performed on the HF solutions.
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4.3 Expansion of single particle state orbitals

Usually a computer is used for HF calculations. It will therefore be useful
to convert the integral equation (4.5) into an algebraic equation. This can
be done if we expand the single particle orbitals in a basis of a finite number
of functions, φμ(r), so that ϕk(r) =

∑
μ Cμ(k)φμ(r). We will see that the

number, Ω, of basis functions has to be larger than the number of particles,
N . By multiplying (4.5) with

∫
drφ∗

ν(r) and assuming that the basis orbitals
are orthonormal we see that the the HF equation can be written as

∑
μ

{∫
drφ∗

ν(r)hφμ(r) +

N∑
i=1

∫
drφ∗

ν(r)(Ii − Ki)φμ(r)

}
Cμ(k) = λkCν(k),

which can be written as ∑
μ

FνμCμ(k) = λkCμ(k). (4.12)

The matrix Fνμ can be found by rewriting the Ii and Ki operators in terms
of the expansion of ϕi, the result is

Fμν =〈φν |h|φμ〉

+
N∑

i=1

∑
σρ

C∗
σ(i)Cρ(i) {〈φνφσ|V |φμφρ〉 − 〈φνφσ|V |φρφμ〉} . (4.13)

When a basis has been chosen, all the matrix elements in (4.13) can be
explicitly calculated. The problem has then been reduced to solving the
algebraic eigenvalue equation (4.12) for all coefficients Cμ(i). The algorithm
is similar to the previously discussed procedure:

1. Make an initial choice of {Cμ(i)}.
2. Calculate the matrix Fμν

3. Solve the eigenvalue equations (4.12) for all i

4. Select the N sets of coefficients, {Cμ(i)}, with the lowest eigenvalues
(because Ω > N , the number of solutions will generally be larger than
N).

The whole procedure is then repeated from Step 2, and iterated until the
coefficients do not change from one iteration to the next.

The orbital expansion method was used to find the HF ground state in
Paper 3.
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Chapter 5

Fractional excitations in

Luttinger liquids

In this chapter I will discuss an ongoing study that is related to the discussion
of fractional charges in one-dimensional systems. The work presented here
is done in collaboration with Jon Magne Leinaas and Hans Hansson.

5.1 Introduction

In the literature it has been suggested that the elementary excitations of one-
dimensional systems carry fractional charges [32, 33, 18]. The suggestions are
based on two ideas. The first approach, taken by Heinonen and Kohn (HK)
[32], is based on the idea from Fermi liquid theory that excitations some-
how “become” dressed when the interaction is adiabatically turned on. The
second approach, taken by Fisher and Glazman (FG) [33] and Pham, Gabay
and Lederer (PGL) [18], is based on the idea that the Luttinger liquid have a
natural separation into chiral modes. It is interesting that HK’s quasiparticle
charge, which is only calculated to lowest order in the interaction, seem to
agree with PGL’s result. It is an open question whether this agreement also
holds to higher order, and that is one of the things that will be discussed in
this chapter.

This chapter is organized as follows: I begin by giving a short review of
the ideas and results in the three cited papers, and point out similarities and
differences between them. In Section 5.2 and 5.3 the ideas by PGL and HK
will be applied to the quantum Hall model introduced in Paper I and II. We
will see that the two edges of the systems gives an interesting aspect to the
discussion. In the Summary I suggest some questions for further study.

47



48 Chapter 5.Fractional excitations in Luttinger liquids

5.1.1 Motivation

I will now discuss the three different approaches that, although different,
seemingly agree on the values of the charges.

In Ref. [32] HK discuss the propagation of a quasiparticle in a one-
dimensional system with Hamiltonian

H =
∑

k

εkc
†
kck +

1

2

∑
k1,k2,p

V (p)c†k1−pc
†
k2

ck2−pck1
. (5.1)

The wavepacket is constructed as |Φk0
〉 =

∑
k Akc

†
k|F〉, where |F〉 is the

non-interacting ground state and c†k is the creation operator for a particle
with wavenumber k. The wavepacket correspond to the injection of a unit
charge, which imposes a normalization on the envelope function,

∑
k |Ak|2 =

1. The interaction is then adiabatically turned on, which means that the state
|Φk0

〉 evolves into a quasiparticle wavepacket |Ψk0
〉. The expectation value

of the density, in the Fourier representation, in this state, 〈Ψk0
|ρ(q)|Ψk0

〉,
is calculated to first order perturbation theory in the interaction V (p). It is
found that the density has a discontinuity as q → 0, which can be interpreted
as a delocalization of some of the charge to infinity. The quasiparticle charge
is identified by taking the q → 0 limit of the density, and it is found to be

e∗ = 1 − 1

4πkF
{V (0) − V (2kF )} . (5.2)

The last term, V (2kF ), is a high-momentum term that is absent in the Lut-
tinger model. In the model studied by HK the interaction between particles
with the same chirality is equal to the interaction between particles of oppos-
ite chirality, i.e. V1,q = V2,q. If we ignore the last term in (5.2) and translate
the interaction in terms of the formalism used in this thesis, we find that the
charge can be written as

e∗ = 1 − 1

2kF

V1/2,0. (5.3)

FG study a completely different process than HK, and they also conclude
that fractional excitations exist in one dimension. FG work within the form-
alism of the Luttinger model, and their conclusion is based on what is called
chiral separation [18]. If we go back to Eq. (2.38) and make a redefinition
of the fields ΘR/L(ξ) = Θ(ξ)∓K−1Φ(ξ), we see that the Hamiltonian can be
cast in the form

H =
uK

4

∫ L/2

−L/2

dξ
{
[∂ξΘR(ξ)]2 + [∂ξΘL(ξ)]2

}
.
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It can be shown that these fields satisfy the equations of motion(
∂ξ ± 1

u
∂t

)
ΘR/L(ξ, t) = 0,

which means that the fields are chiral, ΘR/L(ξ, t) = ΘR/L(x ∓ ut). FG study
the effect of backscattering by an impurity potential in the 1D wire. The
dominant 2kF backscattering is given by the operator

Himp ∼
∫ −L/2

L/2

δ(ξ)
(
ψ†

+(ξ)ψ−(ξ) + h.c.
)

. (5.4)

The field operators are given by eq. (2.39), and they can be reformulated
in terms of the fields ΘR/L(ξ). This means that (5.4) will give rise to two
counterpropagating modes, and FG identify the charges of these modes as
±K.

PGL have a very general approach to the existence of fractional charges
[18]. They claim that the fundamental excitations in the Luttinger liquid
are fractional. Their approach gives rise to a multitude of different fractional
charges depending of how they are created. We will not go into the details
here, but rather point out the general idea, which is based on the injection of
particles. The central operator in their approach is an operator that injects
Q particles with momentum q and current J ,

VQ,J(q) =
1√
L

∫ L/2

−L/2

dξei(q−JkF )ξ) : e−i
√

π(QΘ(ξ)−JΦ(ξ)) : , (5.5)

where : .. : means normal ordering with respect to the bosonic operators. The
quantum number J is as usual the difference between right- and left moving
particles in the non-interacting ground state. Note that for Q = 1 and J = 1
this operator corresponds to the Fourier transform of ψ†

+(ξ) in (2.39). In
terms of the ΘR/L(ξ) operators the injection (5.5) can be split into a right
moving mode and a left moving mode, which carry charges Q± = 1

2
(Q±KJ).

Hur et. al have proposed and experiment that involves the tunneling into a
quantum wire, and they predict charges in agreement with the analysis of
PGL [34].

We see that PGL’s picture corresponds to FG’s conclusion, since a backs-
cattering of a particle is a Q = 0, J = 2 excitation which will give rise to
counterpropagating charges ±K. However, there is not complete agreement
with HK’s result. We saw that the injection of a unit charge in HK’s ap-
proach only gave rise to one chiral charge. The injection of a unit charge is a
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Q = 1 and J = 1 excitation which, according to PGL, will give rise to coun-
terpropagating charges Q± = 1

2
(1±K). We see that to first order in the inter-

action the right moving charge is given by Q+ = 1
2

(
1 +

√
vJ

vN

)
≈ 1− 1

2�vF
V2,0,

which does indeed agree with HK (if we put � = m = 1, which is the notation
used by HK).

It is interesting that the charge found by HK agree with what PGL pre-
dict. However, it is an open question whether this agreement also holds to
higher order in the interaction. As we will see, this agreement does not hold
when the calculation is made exact. Another way to try to shed some light
on the excitations in the Luttinger model is by use of our quantum Hall
model described in Paper I and II. In contrast to the Luttinger model, which
is only one dimensional, our quantum Hall model is two-dimensional, which
means that excitations can not only be characterized by their chirality, also
the edge they reside on must be taken into account. We will in this chapter
look at two scenarios: First we will discuss the injection of a particle on the
upper edge. This particle will be injected into the interacting system, and in
that sense it resembles the injection mechanism discussed by PGL. We will
see that this approach gives results that agree with the the right and left
moving charges in PGL, but the picture is more complex since the charges
are distributed on two edges. The second approach is also an injection on
the upper edge. However, the injection is into the non-interacting system
and the interaction is then adiabatically turned on in a fashion similar HK’s
approach. In contrast to HK’s calculation the powerful machinery of boson-
ization makes it possible to identity the charge exactly, not only to the lowest
order in the interaction. What we find is this charge is not equal to PGL’s
charge, but it does agree with HK’s result to first order in the interaction.

5.2 Electron injection on the edge

Before we go into a detailed calculation it is a good idea to get some physical
insight into the system in question. We will start by discussing the non-
interacting system. We remember from Eq. (2.22) that the density operator
could be written as

ρχ,q = δq,0Nχ +

√
L|q|
2π

{
θ(χq)aq + θ(−χq)a†

−q

}
.

This operator is related to the density operator in the x-representation by
(2.5). We know that the time dependent non-interacting bosonic operators is
given by aq(t) = e−ivF |q|taq. We then see that the expectation value of ρχ(x)
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in a given state gives the density moving in the χ-direction. For the non-
interacting system particles with negative chirality correspond to the upper
edge of the 2D system and particles with positive chirality correspond to the
lower edge. From now on we will therefore take the parameter χ to mean the
upper edge for χ = − and the lower edge for χ = +.

If we now turn to the interacting system the original chiral operators are
not chiral anymore. The easiest way to see this is by considering the non-
interacting bosonic operator aq, which in the non-interacting system is an
operator with positive chirality for positive q. By inverting the Bogoliubov
transformation (2.26) we find that

aq = cosh ζqbq + sinh ζqb
†
−q . (5.6)

The time dependent interacting operator is given by bq(t) = eiωqtbq. This
means that for q > 0 the operator aq includes both chiralities.

Let us now turn to the operator for the densities on the edges. By use of
(5.6) it can be re-expressed as

ρχ,q(t) = δq,0Nχ +

√
L|q|
2π

cosh ζq

{
θ(χq)e−iωqtbq + θ(−χq)eiωqtb†−q

}

+

√
L|q|
2π

sinh ζq

{
θ(−χq)e−iωqtbq + θ(χq)eiωqtb†−q

}
(5.7)

By taking the expectation value of this operator in a given state we see that
we in general can identify left moving excitations both on the upper and
lower edge, and right moving excitations on both edges. We see that the
left moving excitations on the lower edge is equal to κ times the left moving
excitation on the upper edge, where κ = tanh ζq, and that the right moving
excitation on the upper edge is equal to κ times the right moving excitation
on the lower edge. The picture that emerges is that when the interactions are
turned on,the chiralities are no longer confined to each edge. The interaction
“pushes” some of the left moving chirality down to the lower edge, and some
of the right moving chirality up to the upper edge.

Let us exemplify this picture. Assume that a particle is injected into the
upper edge in the interacting system, this will give rise to a left propagating
charge Q on the upper edge. Some of the left moving charge will be found on
the lower edge with value κQ. The total charge on the lower edge has to be
conserved, which means that there has be a right moving charge −κQ on the
lower edge as well. However, this right moving charge means that there is a
right moving charge −κ2Q on the upper edge as well, see Figure 5.1. Charge
conservation on the upper edge means that Q − κ2Q = 1. If we identify the
charge by taking the q → 0 limit, we find that Q = cosh2 ζ0.
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χ = −

χ = +

κQ

Q

−κ2Q

−κQ

Figure 5.1: The injection of an electron on the upper edge, will give rise to
both left moving and right moving excitations on both edges.

Let us do this analysis more quantitatively. We will consider a wave
packet on the χ-edge, where χ refer to the edges (i.e. the non-interacting
chirality), defined by

|Φχ〉 =

∫
dξϕ(ξ)ψ†

χ(ξ)|IGS〉,

where |IGS〉 is the interacting ground state. Normalization of this state
means that ∫

dξ1dξ2ϕ
∗(ξ1)ϕ(ξ2)〈IGS|ψχ(ξ1)ψ

†
χ(ξ2)|IGS〉 = 1.

To be able to identify the different propagating modes, we will study the
expectation value of the time dependent density operator in this state. We
will therefore consider the quantity

Dχ′,χ(q, t; ξ1, ξ2) = 〈IGS|ψχ′(ξ1)ρχ,q(t)ψ
†
χ′(ξ2)|IGS〉 , (5.8)

where ρχ,q(t) is given by (5.7). We see that Dχ′,χ includes matrix elements
of the form

〈IGS|ψχ′(ξ1)bqψ
†
χ′(ξ2)|IGS〉 and 〈IGS|ψχ′(ξ1)b

†
−qψ

†
χ′(ξ2)|IGS〉 .

Since bq|IGS〉 = 0, these matrix elements can be calculated by commuting bq

to the right and b†−q to the left. From the definition of the the non-interacting
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bosonic operators, (2.10) and the commutation relation between the density
operator and the field operator, (2.6), we easily see that

[
aq, ψ

†
χ(ξ)

]
=

√
2π

L|q|θ(χq)e−iqξψ†
χ(ξ)

[
a†

q, ψ
†
χ(ξ)

]
=

√
2π

L|q|θ(χq)eiqξψ†
χ(ξ) . (5.9)

From the Bogoliubov transformation, (2.26), it then follows

[
bq, ψ

†
χ(ξ)

]
=

√
2π

L|q| {θ(χq) cosh ζq − θ(−χq) sinh ζq} e−iqξψ†
χ(ξ)

[
ψχ(ξ), b†q

]
=

√
2π

L|q| {θ(χq) cosh ζq − θ(−χq) sinh ζq} eiqξψχ(ξ) .

Using (2.18), we find that

Dχ′,χ(q, t; ξ1, ξ2)

= δχ,χ′〈IGS|ψχ′(ξ1)ψ
†
χ′(ξ2)|IGS〉

× [
δq,0 + cosh ζq

{
θ(χq)e−i(qξ2+ωqt) + θ(−χq)e−i(qξ1−ωqt)

}
− sinh ζq

{
θ(χq)e−i(qξ1−ωqt) + θ(−χq)e−i(qξ2+ωqt)

}]
+ δχ,−χ′〈IGS|ψχ′(ξ1)ψ

†
χ′(ξ2)|IGS〉

× sinh ζq cosh ζq

[{
θ(χq)e−i(qξ1−ωqt) + θ(−χq)e−i(qξ2+ωqt)

}
−{

θ(χq)e−i(qξ2+ωqt) + θ(−χq)e−i(qξ1−ωqt)
}]

. (5.10)

Let us assume that the state |Φχ〉 is constructed by injecting an electron
on the upper edge (χ = −) in the point ξ0, this means that the envelope
function goes as ϕ(ξ) ∼ δ(ξ− ξ0). We identify the localized charge by taking
the q → 0 limit. To find the correct chirality we have to remember that
the density operator is given by ρχ(ξ) ∼ ∑

q eiqξρχ,q, the correct chirality is
therefore determined by the relative sign between ξ and t in the exponentials.
The expectation values in (5.10) will not contribute to the charge due to the
normalization condition of the state |Φχ〉. The charges can then be read out
from (5.10) by taking the q → 0 limit. The excitations and their charges are
summed up in the table below:

Left moving Right moving

Upper edge (χ = −) cosh2 ζ0 − sinh2 ζ0

Lower edge (χ = +) cosh ζ0 sinh ζ0 − cosh ζ0 sinh ζ0
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We see that the result do agree with the discussion at the beginning of this
section. Let us compare our results with the charges found by PGL. From the

definition of ζq, (2.28), and vN and vJ , (2.25), we see that K =
√

vJ

vN
= e2ζ0 .

The total left moving and right moving charges are then found to be

Q− = cosh2 ζ0 + cosh ζ0 sinh ζ0 = (1 + K)/2

Q+ = − sinh2 ζ0 − cosh ζ0 sinh ζ0 = (1 − K)/2 .

Since the injection of a particle on the upper edge is a Q = 0 and J =
−1 excitation, we see that our result is in full agreement with the charges
predicted by PGL, Q± = 1

2
(Q ± KJ).

5.3 Adiabatic approach

We will now study the propagation of a wavepacket by a different approach.
The wavepacket is introduced on the edge of the non-interacting system, and
the interaction is then adiabatically switched on. This approach is similar to
the idea in HK. The transformation from the non-interacting system to the
interacting one is conveyed by the operator S, (2.30). The state is therefore
given by

|Φ̃χ〉 = S

∫
dξϕ̃(ξ)ψ†

χ(ξ)|F〉.

The S operator transforms a non interacting bosonic operator into an inter-
acting one, that means that an operator O will have the same effect in a
non interacting system as SOS† on an interacting system. Since the oper-
ator ψ†

χ(ξ) creates a particle with chirality χ in the non interacting system,
Sψ†

χ(ξ)S† will also create a particle with chirality χ, but in the interacting

system. We will therefore expect the state |Φ̃χ〉 to contain only modes with
chirality χ. Let us assume that we inject a particle on the upper edge, this
will give rise to a left moving charge Q on the upper edge. But due to the
interaction some of the left moving chirality is found on the lower edge, and,
as we see from the previous discussion, carry a charge κQ.

As in the previous section, we will study the time dependent density of
the state |Φ̃χ〉, which is assumed to be normalized. The quantity of interest
is therefore

Gχ′,χ(q, t; ξ1, ξ2) = 〈F|ψχ′(ξ1)S
†ρχ,q(t)Sψ†

χ′(ξ2)|F〉. (5.11)

From (2.29) we see that S†bqS = aq, this gives that S†ρχ,q(t)S is given by

(5.7) with bq and b†−q replaced by aq and a†
−q, respectively. We see that (5.11)
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will include matrix elements of the form

〈F|ψχ′(ξ1)aqψ
†
χ′(ξ2)|F〉 and 〈F|ψχ′(ξ1)a

†
−qψ

†
χ′(ξ2)|F〉 .

Since aq|F〉 = 0, these matrix elements can be calculated by commuting aq

to the right, and a†
−q to the left. By use of the commutators (5.9) we easily

find that

Gχ′,χ(q, t; ξ1, ξ2)

= δχ,χ′〈F|ψχ′(ξ1)ψ
†
χ′(ξ2)|F〉

× [
δq,0 + cosh ζq

{
θ(χq)e−i(qξ2+ωqt) + θ(−χq)e−i(qξ1−ωqt)

}]
+ δχ,−χ′〈F|ψχ′(ξ1)ψ

†
χ′(ξ2)|F〉

× sinh ζq

{
θ(χq)e−i(qξ1−ωqt) + θ(−χq)e−i(qξ2+ωqt)

}
. (5.12)

First of all we notice that Gχ′,χ is discontinuous as q → 0, which means that
some of the charge has been delocalized. If we assume that we inject an
electron on the upper edge we see by an analysis similar to the one preceding
Eq. (5.10) that the charges that appear in the system are as given in the
table below:

Left moving Right moving
Upper edge (χ = −) cosh ζ0 0
Lower edge (χ = +) sinh ζ0 0

We see some clear differences from the results in the previous section: First
of all we note that there is no right moving charge, this agrees with the
discussion at the beginning of this section. Secondly we note that the left
moving charges in this case are different from the charges found previously.
On the other hand, the ratio between the charge on the lower edge and the
upper edge, tanh ζ0, is the same. In the introduction to this chapter we saw
that there was agreement between the charges found in PGL and HK, but
we have to remember that HK’s result is only correct to first order in the
interaction. We see that that the bosonization technique made it possible for
us to calculate the same quantity exactly.

Let us relate the total left moving charge to the parameter K, we easily
see that

Q̃− = cosh ζ0 + sinh ζ0 =
√

K,

whereas the left moving charge found in the previous section was given by
Q− = (1 + K)/2. If we assume that the interaction is weak can make the
approximation K ≈ 1 − V2,0

�vF
, it then follows that Q− and Q̃− agree to first

order in the interaction, as expected. Note that this agreement holds in the
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case where the interaction between particles of the same chirality is different
from the interaction between particles of opposite chirality, a case that was
not discussed by HK.

5.4 Discussion

Motivated by the discussion of fractional charges in the Luttinger model
we have studied the excitations on the edges of the quantum Hall model
introduced in Paper I and II. The excitations are created by the injection
of a particle on one edge only. We see that the injection gives rise to a rich
structure in the sense that the excitations reside on both edges. From our
analysis we see that these excitations carry fractional charges. However, the
two different approaches gives rise to two different excitations with different
charges. The adiabatic turning on of the interaction gives rise to a charge
that does not fit into the general approach of PGL. One can therefore ask
whether the concept of fractional charges in the Luttinger model is useful,
since the charges created are dependent on the way they are created, but
further study is required in this field.

Another interesting project for further study is to examine the two-
dimensional density when an electron is injected into the two-dimensional
quantum Hall system discussed in Paper I and II. This will involve the cal-
culation of four point functions, which can be calculated exactly in one di-
mension due to the bosonization technique. A mapping, in analogy with the
procedure used to calculate the 2D correlation function in Paper II, should
in principle give the full 2D description of the density. On the other hand
this mapping is much more complicated than the one solved in Paper II.



Summary

In this thesis I have discussed the quantum Hall system and its relation to the
one-dimensional Luttinger model. In chapter 1 I gave an introduction to the
quantum Hall effect. We saw how the restriction to the lowest Landau level
suggested that a one-dimensional representation could be given. Both the
integer and the fractional effect was discussed, and an introduction to Jain’s
composite fermion approach were given. Chapter 2 gave an introduction to
the Luttinger model and it was shown how the bosonization technique made
it possible to calculate correlation functions exactly. Then, in Chapter 3, the
edge states of the quantum Hall effect was discussed. We saw how a gen-
eral hydrodynamical approach predicted that the edge of the quantum Hall
system could be described by a Luttinger liquid with a universal correlation
function exponent. However, the value of the exponent do not agree with
experiments. Some work have suggested that this discrepancy is due to the
electron interaction. It is within this discussion my work is focused. My
work is presented in three papers and one chapter and I will now show how
they are related to this topic and how they are related to each other.

In Paper I we exploit the fact that there exists an explicit one-to-one
mapping between a state in the lowest Landau level and a one-dimensional
representation. We study a model of a ν = 1 quantum Hall system with
interacting electrons confined to a narrow linear channel by a harmonic po-
tential. The system is mapped to its one-dimensional representation. The
mapping is done at the microscopical level which means that there is no need
for the qualitative arguments usually employed. In the low energy limit the
one-dimensional representation takes the form of a Luttinger liquid with both
chiralities present. The Luttinger parameters are calculated and it is shown
that they are modified by the interaction. However, the current parameter is
not renormalized and we relate that to the non-renormalization of the Hall
conductivity due to the interaction. We calculate the 1D correlation function
and find that the asymptotic exponent is renormalized in the case where the
interaction reaches across the Hall bar.

The work in Paper I is followed up in Paper II, where we derive the
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two-dimensional correlation function by applying the explicit mapping to
the one-dimensional correlation function. We see that the 2D correlation
function naturally splits into a bulk part not modified by the interaction
and an edge part that is sensitive to the interaction. From the correlation
function we find the electron density. The density is only minimally affected
by the interaction, and the effect is only found close to the edges. On the
other hand, the interaction can lead to renormalization of the exponent of
the asymptotic correlation function. The exponent agrees with the exponent
found in the one-dimensional representation.

Paper III is a numerical study motivated by a work by Mandal and
Jain, where they suggest that interaction induced second composite Fermion
Landau level mixing can lead to renormalization of the exponent in the frac-
tional effect. Since the fractional effect can be seen as an integer effect of
composite fermions, I wanted to see whether a similar renormalization effect
could be seen in the ν = 1 quantum Hall effect if mixing with the second
Landau level was allowed. Each electron orbital in a completely filled lowest
Landau level is allowed to mix with the corresponding momentum orbital in
the second Landau level. Note that this approach is somehow complement-
ary to the work in Paper I and II since scattering across the Fermi point
is forbidden in this paper, while the study in Paper I and II was restricted
to the lowest Landau level. The ground state of the interacting system was
calculated by the use of the Hartree-Fock algorithm, for that reason an in-
troduction to the algorithm was given in Chapter 4. No renormalization of
correlation function exponent is found. However, the interaction gives rise
to oscillations in the density profile.

Chapter 5 was devoted to an ongoing study motivated by the discussion
of fractional excitations in one-dimensional systems. In particular we saw
how the quantum Hall model discussed in Paper I and II could be used to
give insight on the propagation of excitations in the Luttinger model. We
also saw that different values of the charge could be identified depending on
how the excitations are created in the system. However, further study is
needed and I believe that our model can be a useful tool in this study.
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