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Abstract

The primary goal of the work in this thesis was to investigate the macroscopic
and microscopic nature of dry contact friction at very low velocities. Experi-
ments were carried out using a sandpaper and carpet as contacting surfaces.
The force required to pull the sandpaper across the carpet was recorded and
analyzed on a computer. The very low speed at which the sandpaper was pulled
(10-100 microns per second) gave rise to a so called stick-slip motion. That is,
the motion of the sandpaper consists of varying distance and time. The dis-
tributions of both jumps and duration times were found to follow power-laws
spanning up to 3 orders of magnitude. A scaling relation between event duration
time and event magnitude has also been found. An analytic relation between
the scaling exponents is found, and the experiments are found to follow this
relation. The statistical independence of the events is supported by the agree-
ment between theory and the experiment for the time between events of a given
magnitude. These properties of the system are often taken as signs of Self-
Organized Criticality (SOC), which is a category of non-equilibrium dynamical
systems where the complex behavior, both in space and time, can be described
statistically with power laws with non trivial exponents. By varying parameters
such as the normal force, sandpaper coarseness and the elasticity of the system
we have investigated how the statistics of the events are affected. However, no
(clear) additional scaling laws, such a finite-size scaling, have been observed in
the experiments. This raises questions about criticality of the system.

The force released when a single carpet fiber snaps is often too small for
the resolution in the force measurements, but the sound is easily heard. Using
a microphone and a sound card we are able to resolve these very fine details of
the friction process.

We have also found a way of imaging the real contact area between the
surfaces: by using an infrared camera and a transparent grid as a surface, we
are able to see where the contact occurred because of the heat generated when
there is a slip. We have not directly used the information collected using these
two methods, but rather showed their potential if they are further developed.

Simulations were carried out to test whether our theories about the micro-
scopic processes could lead to the macroscopic behavior observed in the exper-
iments. We have come up with a stochastic model where each contact point
between the surfaces are connected with springs of individual strength thresh-
olds. The crucial ingredient in our model compared to other models is that

v



whenever a spring is stretched longer than its threshold allows, the force, or
the elastic energy, is spread globally to all other contact points. This can lead
to avalanches of breaking springs if sufficiently many springs are close enough
to their threshold. We believe this kind of avalanche is what happens during a
slip. Results from the simulations show distributions of avalanche size following
a power law with exponents close to what we get from experiments. A numer-
ical model for halting events in stick-slip motion is also presented. This model
describes the halting of events that are relatively short lasting, but where the
motion of the slider during a slip is considerable.
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Chapter 1

Introduction

Friction represents a universal attitude of matter, and has always raised chal-
lenges to mankind. Even though evolution ’has known’ for millions of years how
to manage friction for its own benefit, for example joints supplied by liquid lu-
bricants, it took a long time before any species took direct practical advantage
of friction.

The first practical use of friction probably took place about 100 000 years
ago, when frictional heating was used as a tool for making fire. A surviving
portion of a potter’s wheel with a pivot hole smoothed with bitumen dated at
3 500 B.C, shows that the “practical laws” of friction have been known for a
long time [1].

Little academic interest in friction existed until the 15th century. Leonardo
da Vinci suggested that friction was proportional to the normal load, but in-
dependent of the apparent area of contact. He introduced the concept of the
coefficient of friction, µ, as the ratio of friction force F to normal load N . That
is µ = F/N . Leonardo concluded that for “polished and smooth” surfaces, “ev-
ery frictional body has a resistance of friction equal to one-quarter of its weight”.
Although this general result is incorrect, the realistic value of µ for the materials
he used might not have been far from 0.25.

Amontons (1699) [2], Coulomb (1785) and Morin (1833) all reached Leonardo’s
conclusions, but novel questions about friction were asked :

• Does friction depend on the type of surface or the velocity ?

• Does the time of contact influence the friction ?

• Why is the friction independent on the apparent area of contact ?

The purely empirical friction laws stated by Amontons-Coulomb were not
explained until 1950 when Bowden and Tabor proposed a “microscopic” inter-
pretation of friction [3]. They found that the apparent contact area was larger
than the real area of contact, which alone determined the magnitude of the
friction force. The real area of contact was also shown to be proportional to the

1



normal force. That is, the microscopic irregularities of the surfaces, also called
asperities (a term introduced by Coulomb), touch and push into each other,
and the sum of these contact points is the real contact area. The adhesive (or
cohesive) forces 1 acting between the contact points was believed to be the main
cause of friction. Friction has later been found to be related to the irreversible
process of bringing asperities together and deforming them, and then separating
them again. Despite this finding, no explicit physical mechanism for friction was
proposed.

With the invention of the “surface force apparatus” and the “atomic force
microscope” in the last 30 years, it has been possible to directly study both
the mechanisms of friction at the atomic scale, and the topology of apparently
smooth surfaces. Even though these technological advances have brought science
closer to a detailed understanding friction, there is still a big knowledge-gap be-
tween understanding friction at the microscopic scale and understanding friction
at the macroscopic scale. For example, nobody has so far been able to compute
µ, given the details about the materials in contact. James A. Greenwood, a pro-
fessor in physics and a well known person among tribologists, summed up the
situation in 1992 when he wrote, “If some clever person would explain why fric-
tion exists, and is proportional to the true area of contact, our problem would
be solved”.

It remains of fundamental interest to find out how the collective behavior of
all the asperities in contact gives rise to the most common, well-defined macro-
scopic friction laws. By addressing the two first questions posed by Coulomb
and Amontons, we encounter the main topic of this thesis: at low sliding ve-
locities there is no well-defined µ, and the friction may consists of a mixture of
static and dynamic friction, called stick-slip friction. Squeaking doors and the
sound produced when sliding the bow on a violin are good examples of reg-
ular stick-slip motion. A candidate for more irregular stick-slip friction is the
dynamics of earthquakes. Here the periods of stick represents the time where
stress is being built up around borders of continental plates, and slips events
are expressed through sudden movement of the earth’s crust. Amontons and
Coulomb assumed friction was independent of the velocity, but stick-slip mo-
tion gives a clear indication that this is not always the case. In fact, it can be
shown that if we measure a steady friction, or velocity when pulling or pushing
a macroscopic body, there will always on some smaller length scale be a stick-
slip motion of atoms or groups of atoms [4]. Therefore, learning more about
stick-slip friction might be fruitful in understanding more about the collective
behavior of asperities in contact and the resulting macroscopic friction laws.

We have carried out stick-slip friction experiments where a sandpaper is
being pulled over a carpet (described in chapter 3). The carpets that are used
in the experiments are made up of small fiber loops where the sandpaper gets
a good grip. By measuring the force required to pull, and recording the sound
produced by the breaking carpet fibers, we have been studying the behavior

1Adhesion is often defined when two different materials are involved, while cohesion is used
when similar materials are in contact.
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of the interacting surfaces at very small velocities ẋ(t). We believe the carpet-
sandpaper system can be regarded as a way of looking at the microscopic details
of stick-slip motion through a “macroscopic window”. That is, all stick-slip
events in our experiment are more easily observed, and visualized, than in a
“normal” friction experiment, where the stick-slip events often only happen on
the molecular scale.

When the sandpaper is pulled with an elastic string at a very slow rate
(10µm/s), highly irregular stick-slip motion is observed. This suggests that very
complex dynamics is governing the system. The experiments were analyzed by
calculating the magnitudes of the slips events, and their distribution was found
to obey the same functional form as that of the distribution of earthquakes: a
power-law distribution. That is, the probability that a slip event or earthquake,
X, is larger than some event magnitude x, can be written as ∼ x−b, where
b ∼ 2/3 both for earthquakes and our experiments. Many systems that are out
of equilibrium and with a seemingly very complicated behavior, are found to
give similar statistics. This class of systems all have in common that events
happen at a much shorter time scale than the driving of the system, and where
the probability of an event happening is described by a power-law distribution.
The concept of self-organized criticality (SOC) was introduced in 1988 as way
of describing this class of systems [5, 6]. In 1993 Feder and Feder [7] performed
the original carpet experiment, and found that the distribution of slip event
magnitudes followed a power law. They were the first to experimentally show
the possibility of SOC in a stick-slip process. However, the authors did not
explore the dependence of the result on system parameters such as load, elastic
properties and different surface types. A cellular automaton model for the carpet
sandpaper system was proposed, but the statistics of their simulations did not
have the same properties as their experiments.

In addition to reproducing the experimental results in [7], we have, with the
introduction of the temporal aspects of the slips, made a distinction between two
different types of stick-slip motion depending on the type of surface: stick-creep
motion (SCM) and stick-slip motion (SSM). In SSM, all the gripping carpet
fibers will loose their grip during big slip events, and macroscopic motion of
the slider is easily observed. In SCM, there will at all times be carpet fibers
that are gripping to the sandpaper, even during the largest slip events that can
last more than 100 seconds. Surfaces with a low density of carpet fibers yields
SSM, whereas a high density will give SCM. Both SCM and SSM will produce
a power law distribution of slip sizes, but with different exponents b. We have
also, for SCM, found that the distribution of event duration times is distributed
as a power law.

As an exploratory study, we have in chapter 3 explained novel methods
of both visualizing the dissipation and geometry slips/creeps using as infrared
camera, and obtaining details about individual breakings of fibers using a mi-
crophone and a sound card in a PC. In chapter 4 we describe how the statistics
of the slips event magnitudes depend on experimental parameters such as sand-
paper coarseness, normal force and elasticity in the pulling system. A model
describing the triggering and propagation of creep events is proposed in chapter
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5. This model predicts the same distribution of creeps as obtained from SCM
experiments, that is, b ∼ 2/3. In chapter 6 we present a model for the halting of
slip events. That is, once a slip has been triggered (all hooked fibers let go) we
describe a possible model for halting the slip event. A discussion and a summary
of our findings are presented in chapter 7.
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Chapter 2

Friction

When the word “friction” is mentioned, what first comes to mind is a picture of
two surfaces rubbing against each other. This kind of friction is called contact or
sliding friction, and is partly responsible for not letting everything drift apart,
and for in general slowing things down. Another kind of friction is viscosity.

In general the macroscopic motion of bodies surrounded by an external
medium will be accompanied by irreversible frictional processes. This results
in converting the kinetic energy of the bodies into heat, and ultimately bringing
the motion to a halt. We say that the energy is dissipated. Joule established
through systematic studies that work could be converted to heat, while Carnot
found that there is an upper limit to the efficiency of a heat engine. Thus the
physics of friction is of fundamental interest both for engineering purposes and
for a better understanding of the principles of physics. The rest of this thesis
will focus on the first kind of friction, namely the friction between solid bodies
in contact.

In this chapter we will present a short summary of the most important results
that have lead us to the present knowledge about friction.

2.1 Common ideas about friction

It is known from experience that when two solid objects make contact they will
resist relative motion along the plane of the contact area. From situations where
friction is handled to our own benefit, like ice-skating, skiing, and driving a car,
we have learnt some of the basic laws of friction :

• the magnitude of friction is dependent on what combination of materials
we choose

• the visual topology or roughness of the surfaces affects the amount of
friction

• the amount of friction is drastically reduced when one of the surfaces is
lubricated (using an agent such as oil).

5



• as long as the relative velocity of the surfaces is not very small, the friction
force is rather stable

• for small relative velocities, the friction can be very irregular, sometimes
even bringing the bodies at rest

The behavior of the frictional forces is sometimes very much dependent on
the actual speed at which the surfaces move over each other: squeaking doors
do not squeak when you open them very fast, the tone from a violin is partly
decided by how fast the player moves the bow over the strings, and to decelerate
a car uniformly and stop it without a jerk, the driver must ease up on the brake
in the final moments. Other, not so obvious factors that can decide the amount
of friction are the actual area of contact between the surfaces, the magnitude of
the normal force pressing the surfaces together, the humidity, the temperature
and material properties to mention a few. These frictional factors are often
encountered in our daily life and their effect is most often predictable and taken
for granted.

The motivation for exploring the different aspects of friction must have had
its origin in solving practical problems. An illustration from 2400 B.C (Figure
2.1) shows how lubricants are used when a big statue is being pulled to reach
its destination. A nice summary of the historical development in understanding
friction can be found in the thesis of Elise Bergli [8]. A more thorough analysis
of the history of tribology1. I will here only restate the conclusions about friction
reached by Leonardo da Vinci, Amontons and Coulomb. These conclusions now
help to constitute the classic laws of friction:

• The force F required to move a load, is proportional to the load N: F = µN

• The friction is independent of the apparent area of contact Aa

• The coefficient of friction µ is independent of velocity and the apparent
contact area

These classical friction laws have outlived a variety of attempts to explain them
on a fundamental basis in terms of, for example, surface roughness or molecular
adhesion. Friction is not well-understood in terms of physics.

Modern techniques, such as the atomic force microscopy (AFM) and the
scanning tunneling microscope (STM) allow scientists to reveal details about
friction on a the smallest length scales. Together with a wide accessibility of
computational power and the development of computational physics this has
triggered a widespread interest in friction. Therefore, a majority of the articles
about friction treat the problem from a microscopic point of view. It is therefore
natural to review some of the modern findings of the details about friction.

1See can be found in the book by Dowson [1]
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Figure 2.1: The picture shows the transporting of the statue of Ti (2400 B.C). The

person who applies the lubricant (the tribologist) between the sledge and wooden

planks is seen in front of the sledge. The lubricant consisted of water which has a

great lubrication effect on wood. The picture is taken from [1].

2.2 Friction on the microscopic scale

The scientific interest in friction increased during the industrial revolution as the
industry saw need for better and more reliable machinery. Much scientific work
was put into experimental studies, specially on lubricants, but little pioneering
theoretical work was produced. An exception is Hertz’s theory for elastic contact
in 1880 [9], but it took more than 70 years before his work was used in connection
with dry friction.

From the 1940s, scientists have been lucky to enjoy, and to take advantage
of a very rapid development of highly sophisticated measurement technology,
such as the surface force apparatus and the atomic force microscope used to
determine frictional mechanisms at the atomic scale. The influential work by
Bowden and Tabor [3] (1950) were among the first to exploit this “new” tech-
nology in the field of tribology.2 They were able to explain the fact that the
friction is independent of the apparent area of contact, and pointed out that
there was a crucial difference between the apparent area of contact, Aa, and

2The word “tribology”, is often used about studies of friction and wear of materials.
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the real area of contact, Ar. It was shown that Ar alone determined the mag-
nitude of friction, and that Ar was proportional to the normal force. Thus, the
mechanisms responsible for friction was found to take place at discrete contact
points between the surfaces. We therefore, in the next section, review some of
the recent findings in contact physics.

Surfaces in contact

All naturally occurring surfaces are rough, even though they may feel “smooth”.
The detail of the roughness may have different properties depending on what
scale you look at it. Establishing a theory for surfaces in contact has proven to
be a difficult task. A wide range of fields within physics have to be combined
to understand all the underlying mechanisms at work when two surface are
pressed together. Even though these fields are well known separately, they are
still somewhat disjointed.

Consider two solid surfaces placed in contact, as in Figure 2.2. From the
figure one can see that only a small fraction of the apparent contact area, Aa,
is close enough for it to contribute any frictional force. It is possible to simplify

Figure 2.2: Schematic view of a contact interface, showing the apparent (Aa)
and real (Ar) areas of contact. The picture was taken from [10].

the contact problem by saying that all interaction between the surfaces takes
place where there is atom-to-atom contact. This is because the powerful atom-
to-atom forces are effective only at very short range, that is, of the order of
magnitude of a few Ångstrøm (10−10m). These regions of contact will from
now on be referred to as junctions. The sum of the junction areas make up
the real area of contact, Ar. What we see is that the roughness of the surfaces
determines the surface contact, as was also noted by Bowden in his memorable
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words in a BBC broadcast from 1950 [3] : Putting two solids together is rather
like turning Switzerland upside down and standing it on Austria - the area of
intimate contact will be small.

Many workers have found a correlation between roughness parameters and
friction, where in some cases the friction increases with the average roughness
[11], which is the result we intuitively expect. Opposite effects have also been
reported (see [12] and references therein).

Elastic contact

In order to get an idea about the physics at a junction, the situation can be
simplified by modeling the two contacting asperities at the junction as two elastic
spheres pressed together. Continuum models that predict the contact area for
various geometries of the asperities were, as mentioned, developed by Hertz [9].
Imagining the junction as two spheres pressed together, Hertz found that, if the
deformation is truly elastic, the area of contact, Ar, is related to the load N
pressing the spheres together, as

Ar = KN
2
3 , (2.1)

where N is the normal load, and K is a constant depending upon the local radius
of curvature and the elastic constants of the materials. The linear relationship
between friction 3 and load seen in the classical friction laws, does not follow
from equation (2.1) – new theories were needed.

In reference [13] a more realistic situation is considered, in which many small
elastic junctions take part in Ar, it can be shown that equation (2.1) no longer
holds and that the true area of contact can be written as :

Ar = K ′Nn, (2.2)

where both K ′ and n depend on the form and the properties of the surfaces, and
n takes a value between 0.67 and ∼ 1.0, depending on the size of the covering
spheres.

Plastic contact

Indentation experiments suggest that plastic deformation of the asperities at
the junction takes place even for a small normal force. When two surfaces are
pressed together, the material at the junctions will start to deform, and as the
local pressure becomes high enough, the material will start to deform plastically.
New junctions will continue to appear and grow in size as the surfaces get closer,
and this will go on until the contact pressure integrated over all the junctions
(Ar) equals the force pressing the surfaces together (N). That is,

Arpm = N , (2.3)

3According to the classical friction laws, the friction force is assumed to be proportional
to Ar.
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where pm is the smallest yield pressure4 of the two materials [3]. Note that pm is
not related to the elasticity of the material, but rather to the kind of process by
which the deformation takes place. This is illustrated by comparing rubber and
a metal: rubber is elastically “soft” and plastically hard, while it’s the opposite
way for most metals.

By considering all junctions to be in a state of incipient plastic flow [4],
that is, Mg = pmAr, where M is the mass of the body on top and g is the
gravitational constant, one can estimate Ar from experimentally obtained values
of pm. A steel cube with sides 10 cm, Mg ∼ 100N and pm ∼ 109N/m2 for steel,
placed on a steel table will give a value of Ar ∼ 10−7m2 = 0.1mm2. This is
only a fraction, or 10−5 of the apparent area of the cube. Typical junction sizes
obtained from experiments suggests an area of ∼ 10µm per junction. This gives
a total of about 1000 junctions between a steel cube of 100cm2 in contact area,
and the steel table.

Forces acting between surfaces in contact: Adhesion theory

Attractive and repulsive forces between surfaces can be said to take place only
between touching atoms, while atoms separated more than a few Å, play es-
sentially no part in determining the interaction.5 The interactions between the
touching atoms might be of various electromagnetic origins such as dipole-,
ionic-, dispersive- and inductive forces, but their total sum results in a stable
equilibrium separation between the surfaces.

The work or force required to separate two surfaces in contact, a phenomenon
known as adhesion, is indeed a big study on its own, and is today receiving great
scientific attention. The master thesis of Elise Bergli [8], will serve as a splendid
reference at this point. I will try to summarize, from her work, what has been
done in this area of research.

The forces of adhesion

The strength of the interacting forces between materials in contact are often very
small, but can be considerable for materials such as clean metals, chewing gum,
and model clay. Two solid bodies situated adjacent to each other will adhere.
Reasons for not observing adhesion can be explained by three phenomena: a
small value for the real contact area, contamination of the surfaces, and residual
elastic stresses which break up the adhesion joints (elastic springback).

The interaction at the junctions is usually modeled using the well-known
two particle Lennard-Jones potential. With the concept of surface energy γ, the
adhering force between spheres of radii R1 and R2 is found to be 2πR∆γ. Here
∆γ is the work done to separate unit areas of media, and R = R1R2

R1+R2
[3].

Using Hertz’s contact theory as a foundation, new theories where the mate-
rial properties have been included, have been developed. When two bodies are

4The pressure before the material starts to deform plastically
5In particular the long range van der Waals interaction gives a negligible contribution to

the attraction.
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brought into contact the idea is that adhesion forces will flatten the surfaces
somewhat, and this will lead to a finite contact area. The results indicate that
the total energy in a junction contact, is a sum of the stored elastic energy, the
mechanical energy in the applied load and the surface energy. The force required
to separate the surfaces is given as

F = −α∆γπR , (2.4)

where α is a constant dependent on the material properties.
Bowden and Tabor proposed that cold-welding would take place over the

junctions, and that the friction force was equal to the force S required to shear
these junctions. A plowing force in certain situations is also needed. The total
friction force could therefore be related to the pressure yield strength, pm, and
the shear strength, ps, of the junctions (from equation 2.2),

F = Ar ∗ ps =
Nps

pm
. (2.5)

The coefficient of friction could then be given as µ = ps/pm. What happens
to the surface when a pull-off force is applied, is that some of the material will
continue to be attached while the surfaces depart. This will create a “neck”
of material before the surfaces suddenly let go [3]. This wear of material was
presumed by Bowden and Tabor to be the main cause of friction. But later
experiments have shown that substantial friction can exist even without wear
[14].

For a theory of adhesion to be practically useful, possible plastic, as well as
elastic deformation of the asperities must be considered.6 That is, net energy
dissipated to permanent deformation of the asperities is most likely to occur,
to some degree, in most real situations. Strong correlations among many of the
mechanical properties, like Young’s modulus, elastic strain and hardness, makes
the dynamics of adhesion a very complex system.

As we see, the dynamics behind friction is very complicated even before any
lateral motion of the surfaces has been initiated. We will now see what happens
when the contacting surfaces start to move in the plane of contact.

2.3 Sliding friction

As we have seen, classical and “well known” laws of friction, maintain that the
friction coefficient is roughly independent of important variables such as contact
area, normal force, and velocity. We have also seen that a microscopic picture
of the physical processes, which are believed to give rise to friction, are quite
complicated, and that these processes are not easily generalized.

So what does sliding friction depend on? Clearly, friction depends primarily
on the nature of the sliding surfaces, and the lubricants and the contaminants at

6No mathematical theory of adhesion has yet been worked out, and this makes any calcu-
lation of adhering forces impossible
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the interface. Discussions regarding lubricants and contaminants on the surfaces
will not be treated further. The focus of this thesis will be directed toward
understanding the connection between microscopic and macroscopic details of
dry sliding friction.

Possible mechanisms of sliding friction

As we saw in the last section, Bowden and Tabor believed the main cause
of friction came from the force required shear cold-welded junctions (equation
(2.2)). This might be a reasonable explanation for friction between materials like
clean metals, but there are materials where adhesion is a very small component
of the total friction force and the classical friction laws still hold. We will briefly
discuss some of the possible mechanisms at play in contact friction.

Adhesion

We have all experienced that friction between clean metals results in wear of
the surfaces. The wear of a non-lubricated bicycle chain is a good example. In
Figure 2.3 the effects of friction wear between metals is illustrated: wear debris
has been traced using a radioactive metal.

Figure 2.3: Micrograph (bottom) and autoradiograph (top) showing a copper
surface with roughness 250Å(unscratched) and 5000Å(scratched part) after a
radioactive copper block has been slid over it. The load is 4kg and speed 0.1
cm/s). Debris has been left behind as black dots in the picture. Note how little
dependence the roughness has on the wear of the block. The figure is taken from
[4].

The adhesion theory neatly explains many of the experimentally observed
effects of friction, such as the existence of a static frictional strength, the pro-
portionality of friction force and the normal force, and the weak dependence
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of friction on the surface roughness [10].7 There are, however, some problems
with this approach. From equation (2.2), µ = ps/pm, which gives µ = 1/5 for
an ideal plastic material. Most metals have a µ > 0.5. This calls for additional
mechanisms of friction.

Plowing – elastic solids

In addition to adhesion as a mechanism of friction, there is always a plowing or
grooving frictional term. If one hard surface is slid over a soft surface, the hard
surface will tend to dig into to the softer and produce a groove. The energy
required to produce the groove must be supplied by the friction force. Similarly,
sharp asperities slid over a soft surface produce scratches, which will cause a
friction force. This grooving is not necessarily permanent, but there is always
energy dissipated because all surfaces deform imperfectly. This is related to the
internal friction and hysteresis of solids.

Experiments with rubber and wood show, as with metals, that the mech-
anisms of friction is a combination of adhesion and plowing. The difference is
that in metals the plowing is often plastic, while it is more elastic for materials
like wood and rubber. The hysteresis losses in elastic materials are often so high
that it becomes very important in the total amount of friction.

Geometric friction

If someone, without any prior knowledge about friction, is asked what he or
she believes is the main mechanism for sliding friction, the person will most
probably ascribe the friction effect to the roughness of the surfaces. They picture
the asperities in the materials to bump into each other, or being lifted over one
another, with the result of heat production (which we often feel is the net effect
of friction).

Rabinowicz [10] comments in a section entitled Other contributions to
the friction force (apart from adhesion) that the effect of geometric friction
– or “the roughness component of friction ..” as he likes to call it: “..arises
from the need to lift one surface over the roughness of the other .. there might
be a negative roughness component of friction, since θ (the asperity inclination
θ contributes with tan(θ) to µ) will take on negative as well as positive values.
Summing up for all the contacts, we note that regions of positive θ and negative θ
coexist, so to some extent the roughness friction terms tend to cancel out. What
remains is usually a contribution of about 0.05 to the overall friction coefficient,
representing a fluctuating force superposed on the main adhesive component of
the friction force.”

A new crack at friction

No one has yet been able to confirm and predict the results of friction through
calculations using first principles. The goal is to construct the friction force

7Most of the work is being done in inducing shear displacement of the junction interface.
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either analytically or through computer simulations using molecular dynamics or
methods of finite elements. Attempts at this have failed because of the mismatch
between asperities on the surfaces, resulting in no friction at all.

Two alternative solutions to the problem have recently been proposed. In a
paper in Nature (2001) [15] Mardar and Gerde propose a dynamical description
of friction through the evolving of self-healing cracks. The idea can be visualized
and simplified by regarding the surfaces as a carpet lying on the floor. If you
want to move the carpet, without lifting it off the floor or rolling it together, you
can do two things: the carpet can be slid over the floor, or you can form a ridge
in one end by pushing it toward the center and then move the ridge across the
carpet until it reaches the other end. A net movement of the rug is the result.
This traveling ridge is in Mardar’s theory supposed to represent a crack (a re-
healing crack) traveling through one of the surfaces. The two surfaces at the
ridge are no longer in contact, just as the two halves of a material break contact
and come apart on a crack. An illustration of the idea is pictured in Figure 2.4.
In a mathematical treatment of the problem, using techniques from continuum

Figure 2.4: A self healing crack traveling through a compressed strip. The figure is
taken from [15].

mechanics, they have succeeded in predicting a minimum shear force required
to initiate a propagating crack. This force is also found to be proportional to the
compressive force, as in Amontons-Coulomb’s law. The idea is that once this
minimum force is applied, self-healing cracks are formed, causing the surfaces
to slide over one another.

It is still not clear whether this a possible and a true description of frictional
processes. Only experiments can find out.
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Quantitative laws of sliding friction

A way to roughly characterize the variations in the friction coefficient is by a
“factor of 10” rule [10]: if you change a parameter like load, sliding speed or
roughness by a factor of 10, the friction coefficient will change up or down by
10% or less. However, this is not a great variation and is generally not of any
particular importance. One exception to this is the low-magnitude region of the
sliding speed parameter. Sliding two surfaces over each other with decreasing
speed, one suddenly reaches a velocity where the surfaces get “stuck” and the
friction rises abruptly.

Apparently there are two friction coefficients for a given pair of surfaces: one
coefficient before there is any motion, µs, and one after motion starts, µk. These
are often referred to as the static and the kinetic (or dynamic) coefficient of fric-
tion. In Figure 2.5, µk and µs are illustrated from a typical friction experiment.
It is always assumed that µs > µk.

Figure 2.5: The force required to pull paper on paper is recorded. The pulling
starts after a time at rest, and then the static µs and dynamic µk (labeled µd

in the figure) friction coefficients are found. The picture is taken from [14].

It is common to show static and dynamic friction separately in tables of fric-
tion coefficients. Experiments have shown that this is a gross oversimplification
and that this kind of “phase transition” from static to kinetic friction is hard to
justify both from theory and from experiments. For many engineering purposes
tables for µs and µk are useful, but their real/exact value (see for example [10]
page 117-118) must be regarded with great skepticism. A plot of the distribution
of 110 measured values for µs for steel on steel plotted in Figure 2.6, gives an
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impression of the fluctuation present at low sliding velocities v. Strong fluctua-

Figure 2.6: A histogram showing the distribution of static friction coefficients for
steel on steel surfaces. The time of contact is held constant in these experiment. The
standard deviation is about 20% of the mean value. Tabled values for steel-on-steel
µss show a value of 0.58 (taken from [16]).

tions in µs are not unexpected, since that Ar/Aa ∼ 10−6 for a 1cm high block
of metal (see page 10). Thus macroscopic randomness may not simply average
out, and the classical friction laws may only exist in an average sense [17].

Aside from large fluctuations in the measured value of µs, it is widely known
that µs is also a function of the time of contact. An example of this effect is
shown in figure 2.7 (a), where µs varies most markedly at short times of static
contact (∼ 0.1 second). For longer times of sticking, mus increases only by a
few percent for every tenfold increase in time [10].

The value of µk is in most cases slightly influenced by the relative velocity,
v, of the surfaces, as is illustrated in Figure 2.7 (b). The scale of the time axis
is in this case dependent on both the experimental setup and the materials in
contact.

It is clear from Figure 2.7 b) that the friction as a function of v does not
vary much when we stick to the parameter space for which the sliding speed is
relatively high. That is, the “factor of 10” rule is roughly valid in this regime.
However, if we let v go to zero, we will see that deviations from the classical
friction laws will produce critical effects such as periodic or irregular stick-slip
motion.
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Figure 2.7: Figure (a) shows a typical plot of µs as a function of time: µs ∼
constant + t1/10. The largest change in µs is for small t. Figure (b) shows the
velocity dependence of µk : µk ∼ v−1/10. Also, the change in µk is greater for
small values of v. The figures are reproduced from [10] (compare with Figure
2.8 where a velocity strenghtening effect also is present).

2.4 Friction at low sliding velocities

Friction at low sliding velocity often leads to a non-steady motion. That is, be-
low a certain sliding velocity and given that the pulling spring is soft enough, it
is often possible to see that the motion is made up of periods where the bodies
hardly move, and periods where there are sudden motions.8 This is called stick-
slip motion (SSM) and is caused by the fact that the friction force does not
remain constant as a function of distance, time or sliding velocity. Reasons for
SSM can be found by inspecting Figure 2.8, which shows how the friction force
varies for steady sliding at low velocities.9 The observed “velocity weakening”

8At the microscopic scale there is no state where the bodies have no relative motion under
a shear stress. There will always thermally activated creep [10].

9Steady sliding can always be obtained by using a stiffer loading machine or smaller mass.
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Figure 2.8: A typical plot of the friction force as a function of velocity V for
steady-sliding speeds typically in the range 0.1 – 100 µm/s. For V = 0 the
µk = µs (µk is labeled µd in the figure). The figure is taken from [14].

effect in Figure 2.8, should be expected for the sake of continuity of µ at low
velocities. When the sliding velocity is in the “velocity weakening” regime, a
slight change in velocity (acceleration)10 will be amplified because of the rather
strong dependence between friction and velocity. A stick-slip cycle is initiated
with a deceleration: it will consist of an elastic loading, or stick, while µk in-
creases, followed by a stress relaxation, or slip, when the external forces have
exceeded Mµs. Here, M , is the mass of the sliding body.

Emerging aspects of friction

From slowly driven friction experiments on different materials such as rocks [18],
metals [19] and on paper [20], one interesting aspect of dry friction emerges: the
characteristics of dry slow sliding friction, as shown in Figure 2.8, are essentially
material independent.11 Moreover, the statements of the classical friction laws
have to be revised or refined as suggested by Rabinowicz [14, 10]:

• µs depends on the history of the sliding surface, and it increases slowly
with the duration time after the sliding has stopped, or the slider has been
put in contact with the surface (see Figure 2.7 (a)). From experimental
observations on rock [18] and metals [10], this effect is likely to be related
to a slow plastic relaxation of the junctions, leading to an increased real
area of contact, Ar, and thereby a higher µs. A fit to experimental data

10For example caused by homogeneities, or hysteresis in the surfaces.
11However, the characteristics of the classical friction laws can roughly be said to be material

dependent, ranging from friction mainly caused by adhesion in metals and diamond, to friction
dominated by plowing in elastic solids [3].
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[18] suggests a functional form of the static coefficient of friction:

µs(t) ∼ a + b ln(t) , (2.6)

where a and b are material dependent parameters, and t is the time after
the sliding has stopped.

• µk will, when measured in the steady sliding regime, decrease at the lowest
velocities as illustrated in Figure 2.7(b) and 2.8. One can in this velocity
range define a characteristic length D0 ∼ 1µm, such that, if subjected to
a sudden change in sliding velocity, friction is found to evolve to its new
steady-state value over the slip-distance D0 [18]. This velocity weakening
effect of the coefficient of friction is thus described by the length, D0,
which can be seen as the average sliding distance after which a given set
of contacts has been destroyed and replaced by a fresh one [21].

• The aging of µs and the velocity dependence of µk are related behavior
which result from creep of the surface contact and a consequent increase
real contact area with the time of contact.

• One can also talk about a velocity threshold where v > v∗, above which
µk starts to increase again. This is called velocity-strengthening, and is
also illustrated in Figure 2.8. So when the pulling velocity is increased,
the motion crosses-over from a creep dominated regime when v < v∗, to
a regime dominated by a global inertia (steady-state) for v > v∗ [14]. In
friction experiments with rocks, the slope of the velocity strengthening
region is known to be both negative and positive, depending on the rock
type and parameters such as the temperature.

These general laws of low-velocity friction dynamics are well explained by an
heuristic model [20]. In this model the sliding dynamics consist of a single degree
of freedom, namely the translation of the center of mass of the slider, which
undergoes a noise-activated motion in a periodic pinning potential and where
the “strength” of the pinning potentials are assumed to increase with their age.
Such a phenomenological approach is useful for analyzing experimental data
and suggesting the underlying mechanisms, but a number of questions remain
unanswered :

• At the scale of the contacting asperities, what is the basic mechanism for
the pinning force at the junctions ?

• Does the macroscopic motion depend on the pinning of only one junc-
tion, or are the junctions and the asperities involved in a collective affair
resulting in a macroscopic pinning or motion ?

• Can macroscopic friction be described or modeled without knowing all the
details at the smallest scales ?
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The last two questions touch at the heart of this thesis, namely the problem sur-
rounding the collective behavior of asperities and whether interactions among
them plays a crucial role in determining the dynamics of macroscopic friction.
We will see that in the very slow sliding regime and for certain surface parame-
ters, stick-slip motion can be characterized by inspecting the distribution of the
slip event magnitudes.

Irregular stick-slip motion

It is well known that stick-slip motion (SSM) can be very irregular [3, 20].
As mentioned earlier, strong fluctuations in µs will be present when the ratio
Ar/Aa is small, and the deterministic nature of SSM will depend on this fact.
That is, if the surface properties on the scale of the asperities making up the
junctions lead to a highly fluctuating real area of contact, Ar, or if the material
is not homogeneous, then non-deterministic SSM is expected. Otherwise, when
the ratio Ar/Aa is bigger, the microscopic fluctuations in µs will lead to a more
periodic and possibly deterministic SSM [14]. A large normal load therefore
seems to have a regulating effect on SSM, such as reported for rock experiments
where the nominal pressure is of order 1 − 10 MPa and the SSM regularity is
good [18]. Releasing the pressure will lead to more irregular SSM.

Irregular SSM can be analyzed by calculating the individual slip magni-
tudes (defined later) from force measurement required to pull or positioning
systems, and by “listening” to the energy dissipated by the slip event (seismol-
ogy). Statistics of the slips events, both in the temporal and spatial domain,
may give information about the underlying dynamics. For some sliding parame-
ters the distribution of slip magnitudes will be exponential with a characteristic
scale [17]. While for other sliding surfaces, often for very slow sliding velocities
(10 µm/s), the distribution of slips will follow a power law. That is, the proba-
bility p(x) for the slider to slip for example a distance X ∈ [x, x + ∆x] is given
as:

p(x)∆x ∼ x−β∆x , (2.7)

where β has a non-trivial value (< 2). Equation (2.7) states that there is no
characteristic length scale in the system besides possible finite size effects [22].
The crossover from an exponential to a power law distribution of slip magnitudes
is often obtained by decreasing the velocity even further. As an analogy to
critical systems this crossover to a scale invariant distribution of event sizes
might be related to an increased correlation length in the system [6].

Stick-slip experiments that find a power law distribution of slip sizes are not
numerous [17, 7, 23, 24], and questions have been asked whether a power law
distribution of slips is interesting at all (see page 433 in [14]).

These special distribution of slip events (power laws) have tempted people
to ask whether the often very irregular observed behavior of SSM is possible to
understand without going into the details of the complex interaction between the
two sliding surfaces. In the search for an answer to this challenging question,
a great number of articles, from both in the physics and geology/geophysics

20



community, have tried to explain these results. Most of these articles are based
on simulations or theoretical derivations, and most of them lack confirmations
through experiments.

Very simple spring-block models and cellular automaton type models have
been found to produce power law distributions of slip magnitudes [7, 6, 25].
Spring block models are not well suited for a description of the physics in our
experiments. We believe the reasons for this lies in the negligible elastic interac-
tion among the contacting asperities. Instead we have proposed an alternative
type of model which we have found to reproduce the experimental results. This
model will be presented in chapter 5.

Analogies between stick-slip motion and other systems such as vortex pinning
in super conductors, charge density waves, and avalanches in rice piles [6, 4] have
raised question whether there exists a universality in these type of systems. A
new field of interest in the physics community, called self-organized criticality
(SOC), has emerged and aims at explaining the mechanisms in these systems.
We will now briefly review SOC and see how it differs from other non-equilibrium
systems.

2.5 Generic Scale Invariance: a property non-
equilibrium systems?

In equilibrium systems with generic parameter values, correlations fall off rapidly
– most often exponentially as e−r/ξ – in space, being set by the correlation length
ξ. Only by carefully adjusting the system parameters to a critical point, or by
considering a system with certain symmetries, can we make ξ diverge and cause
algebraically decaying correlations described by a power law. 12 Systems behav-
ing in this way are often referred to as being “self-similar” or “scale invariant”,
reflecting the way that power laws, unlike exponentials, lack a characteristic
time or length that decides the scale for the decay. In other words the sys-
tem repeatedly moves into a state where things are finely balanced and a small
disturbance in one part of the system can trigger massive changes across its
entirely.

In equilibrium systems, this behavior is rather the exception than the rule.
The classical example of this behavior can be seen when a ferroelectric magnet
is heated. Above a certain temperature, TC , the spontaneous magnetization
vanishes. 13

In non-equilibrium systems - those driven externally in some fashion and
so prevented from reaching thermodynamic equilibrium – the situation is quite
different. Here, scale-invariance is now recognized to occur abundantly, and its

12An algebraically decaying function, or a power law is on the form f(ψ) ∼ ψ−a. The
function f might for example be a correlation function and ψ the length or time (often the
order parameter of the system).

13The magnetization, M , actually goes as (TC − T )β (a power law) when T → TC (from
below), and where β is a universal scaling exponent (with a value between 0.3 and 0.4) roughly
identical for large groups of apparently diverse physical systems.
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most famous manifestations are in power law distributions of both (arbitrary)
spatial and temporal parameters [26]. A well known example of this kind of
system, and of great relevance to this thesis, is the Gutenberg-Richter law [23]
of earthquakes.

Two classes of Generic Scale Invariance

In the search for the origin of the scale invariance in nature, two main classes
of systems are considered:

• “Ordinary” non-equilibrium systems are known to resemble equilibrium
ones in that they need parameter tuning or special symmetries to produce
scale invariant behavior. The removal of the detailed balance constraint
is an important factor to achieve this.14 The scale invariance observed in
experiments can often be predicted from an appropriate Langevin equa-
tion, or equations containing local conservation laws or certain symmetries
[22]. The timescale at which the relaxation of the dynamics takes place is
comparable to the timescale on which the system is driven with.

• Self-organized criticality (SOC) is a different class of systems that exhibit
scale-invariant behavior, and differ mainly from the “ordinary” systems
in that the system is driven slowly away from the ground state. However,
the timescale of the driving is very large compared with the relaxation of
the system. SOC systems relax on a much shorter timescale than they are
perturbed.

Of the two classes, the SOC-class is of greatest relevance to the carpet exper-
iment, and a more detailed description of SOC will follow. A good description
of the “ordinary” class of systems can be found in [22] and references therein.

Self Organized Criticality

In 1987 Bak, Tang, and Wiesenfeld introduced the idea of self-organized criti-
cality (SOC) [27] which was aimed at categorizing or explaining systems with a
seemingly irregular behavior, but that for some reason gives rise to a frequency
spectrum P (f) that decays as 1/f over several decades of frequencies [27, 28].15

Solar activity, the resistance in conductors, the flow of big rivers and an hour-
glass [6, 29] are examples of such systems, where the 1/f frequency spectrum
indicates that there exist temporal correlations over a wide range of timescales.
This is a clear indication of some sort of cooperative effect in the system. Despite
the ubiquity of such signals in nature, no underlying mechanism was proposed
until the arrival of the concept of SOC, and the 1/f spectrum was believed
to reflect the intrinsic dynamics of a self-organized critical system. The power
spectrum from our experiments is found to be described by a power law with

14Detailed balance: in thermal equilibrium the rate of any process that leads to a given
state must equal the rate of the inverse process that leads from the state.

15The power spectrum often goes as 1/fϕ where ϕ ∼ 1.
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Another puzzle which was targeted by the SOC-hypothesis, was the empir-
ical observation that very many spatially extended objects, such as the shapes
of coastlines, mountain landscapes and fracture surfaces appeared to be self-
similar “fractal” structures [26].16 This “fractal” shape of objects formed under
conditions where 1/f frequency spectrum is observed in the time series, was
believed to be the fingerprint of a SOC-system.

Sandpiles and earthquakes

Bak et al. suggested a “simple” dynamical system with extended spatial degrees
of freedom that naturally evolves into self-organized critical structures of states
which are barely stable [27]. Their proposed model has later come to be known
as the “sandpile model”. The model can be visualized as a pile of sand where
one grain of sand is dropped at the time, and where the dynamics is expressed
through avalanches of sand taking place when the slope of the pile gets steep
enough. That is, as sand is added at the top of the pile, the slope of the pile builds
up to a “critical” state where it fluctuates around an angle of repose. Adding
more grains of sand when the pile is in this “self-organized critical” state, will
trigger sand-avalanches of all sizes. This “critical” angle of the slope can be said
to be the “attractor” of the pile-dynamics. The authors [28] then state that
“Once the critical point is reached, the system stays there”. The behavior of
systems at the self-organized critical point is characterized by scaling relations
(relations between power law exponents) – and the systems obey “finite-size
scaling” just as equilibrium statistical systems at the critical point [31]. When
the pile is at this critical state, the introduction of a new grain of sand may
have a wide range of results: from just the displacement of a few grains, to an
avalanche causing sand to be transported off the pile. Both the size and lifetime
of these events span a wide range of magnitudes, reflecting the lack of both a
timescale and a length scale for the system. The distribution of avalanche sizes
and lifetimes, that is, the probability of having an avalanche lasting a certain
time or having a certain magnitude, was found to yield a power law distribution
of avalanches. In a numerical study of a “lattice sandpile” [27] it was found
that the size-distribution P (s) of avalanches with energy s could be described
in a simple way, using a power law, reflecting the self-similarity of the system.
That is, P (s) ∼ s−β , where β normally lies between 1 and 2 depending on
various parameters of the studied system. Also the distribution of lifetimes of
the avalanches could be described as a power law. Later, experiments, performed
here at University of Oslo, using rice instead of sand [32], gave the experimental
evidence for power laws in granular media.

Other systems where the dynamics is dominated by a wide range of events, or
avalanches, and where the driving rate is much longer than the relaxation time
are also found to be well suited to be described as SOC-systems. The number of
articles published on experimental SOC systems are great and they cover fields

16Fractals are mathematical constructs characterized by a never-ending cascade of similar
structural details that are revealed upon magnification on all scales. See [30] for a description
of fractals.

23



such as, avalanches of granular media [32], earthquake dynamics [33, 28], noise
in ferromagnets (Barkhausen noise)[34], flux lines in high-Tc superconductors
[35], microfracturing [36], lung inflation [37], and friction [7, 24].

The scientific interest in SOC-models [5, 7, 22, 28, 25], and the following in-
terpretations and “philosophy” around SOC [38, 5, 39, 22, 40, 6] is even greater,
and the precise significance of SOC is still controversial. It is therefore an am-
bitious task to try to summarize the essential properties of a SOC system. The
key features of SOC are:

• There is a large number of meta-stable states, that is, their number should
increase with the number of sub-systems (e.g asperities, grains of sand).

• The dynamics is driven very slowly away from the ground state.

• The system, after a possible initial transient, should be stationary in the
asymptotic time limit.

• There are recognizable relaxation events (e.g avalanches) where the input
energy (driving force) is expelled from the system.

• The distribution of these event-magnitudes is a power law except for those
events that feel the size of the system (finite-size effects).

• The power spectrum should be of the form 1/fϕ where ϕ has a value ≥ 1.

• The initial conditions should have no impact on the stationary state.

• The power law for event magnitudes should be obtained without fine tun-
ing of the parameters of the system. The fine tuning can only be achieved
by a limit procedure [38]. SOC systems is in this sense not sensitive to fine
tuning.

The main purpose of the carpet experiment (in [7]) was to show that stick-
slip friction can, in special situations, be regarded as a self-organized critical
process. In this thesis, we have not focused on questions about whether this is
true or not, but one can loosely say that our experimental results show that the
carpet-sandpaper system exhibits most of the key features (listed above) of a
SOC-system.
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Chapter 3

The experiments

In this chapter we will discuss the stick-slip experiments (section 3.1) and the
methods used to obtain the data in section 3.2. We will in section 3.2 also discuss
the amount of noise present in the collected data, and by what means this can
be reduced. Novel methods of obtaining information about the slip events will
be discussed in section 3.3.

3.1 The Feder-Feder experiment

The apparatus is essentially the same as that used by Feder and Feder to obtain
a power law distribution of slip event magnitudes in slowly-driven stick-slip
motion [7]. A picture of the experimental setup is shown in Figure 3.1. In this
experiment a rigid circular slider with small, rigid asperities (sandpaper mounted
on a hard plastic disk) is loaded and dragged across a plane of elastic looped
fibers that are sometimes bundled (a carpet). The force needed to drag the slider
is measured using a strain gauge. The mounting of the strain gauge is pictured
in Figure 3.2.1 That is, the measured strain gauge deflection is proportional to
the force that is applied. The deflection is proportional to the output voltage of
the gauge and is measured by a multimeter.

1The workings of a strain gauge is explained in section 3.2.
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Figure 3.1: A photography of the experimental setup is shown. The pulling
direction is towards the bottom of the picture.
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Figure 3.2: A top view picture of the strain gauge mounted to the apparatus is
shown. The pulling direction is to the left in this picture.
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In Figure 3.3 the force required to pull the slider across a carpet is shown
for a typical experiment. Note that the force builds at the beginning, and drops
suddenly at about 0.5×104 seconds. This dramatic rise and drop in force at the
beginning of the experiment is characteristic of the interval in which the system
”forgets” its initial state. After this drop in force, the measurements fluctuate
around a mean pulling force value (in Figure 3.3 this corresponds to about 19V).
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Figure 3.3: Raw data from experiment A. The region for which we have selected to
measure event magnitudes is marked with vertical dashed lines. Note that the force
builds at the beginning of the experiment, and drops suddenly at about 1.7 × 107

seconds. This dramatic rise and drop in force (strain gauge deflection) at the beginning
of the experiment is characteristic of the interval in which the system ”forgets” its
initial state. This behavior is observed in all experiments.

These measurements of the force in time F (t) are used to calculate the
magnitudes, x, of slip events. All slip events will be referred to as just “events”.
An event magnitude here is defined in the following way, and is illustrated in
Figure 3.4:

• The change in force from any time t1 when the time derivative
of the force becomes negative (F ′(t1) < 0) until some later time
t2 when this derivative becomes positive again (F ′(t2) > 0). That
is, the magnitude m is given by F (t2)− F (t1).

When the slider is driven slowly enough, about 10 µm/sec, the distribution in
magnitudes of values for ∆F follows a power law distribution as shown in Figure
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Figure 3.4: Raw data from experiment A (Figure 3.3) is magnified, and our
method of calculating an event magnitude is illustrated. The event magnitude
is given as ∆F = F (t1)−F (t2) (∆F ∼ 3mV in this case). The duration time of
an event is given as t2 − t1 (duration time is about 200 seconds for the shown
event).

3.5. A similar power law was obtained by Feder and Feder in their original study
(1991) and for this reason they suggested that stick-slip motion in the carpet-
sandpaper system might become self-organized critical (SOC) [7]. The concept
of SOC was discussed in section 2.5.

The number N of earthquakes recorded per year, of magnitude2 greater than
m, is given as

N(m) ∼ m−b , (3.1)

where b takes a value between 0.8 and 1.2, depending on the size of the earth-
quake and its geographical location [23, 18]. This is often referred to as Gutenberg-
Richter’s law of earthquakes. Earthquakes occur by slippage along a pre-existing
fault, and are therefore a frictional phenomenon. In [7] it is claimed that the
magnitude of an event calculated from the carpet experiment is proportional
to a quantity termed the seismic moment in the discussion of earthquakes (see

2See appendix E for explanation about the earthquake magnitude.
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Figure 3.5: The cumulative distribution P (X > x) of event magnitudes x. The
slope of the log-log plot has a value of about -0.66±0.05 spanning about 3 orders
of magnitude in the x-direction.

appendix E for details about the seismic moment). This analogy to the seismic
moment allows us to both study earthquakes related processes at a more “near-
field” approach, and from the field of earthquake dynamic learn more about
fundamental frictional processes.

The apparatus

A schematic of the apparatus, and a blowup of the slider is shown in Figure
3.6. The carpet is taped onto an aluminum plate, which rests on a row of glass
cylinders (pipettes 5 mm in diameter and 20 cm in length). The pipettes will help
keep the plate from bulging while the slider moves over it. We will disregard the
motion and friction induced in the pipettes since the the maximum deflection
of the strain gauge is only about 1.5 mm.

The rectangular board which the pipettes rest on, is again fastened to a
bigger rectangular aluminum board (fixed support), which is clamped to the
same table as the motor. A strain gauge, which measures the amount of force
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Figure 3.6: The experimental setup is shown in (a). The aluminum board that sup-
ports the slider is 900mm long and 250mm wide. The distance between the motor and
the board is about 1200mm. The elastic string is 1100mm long, and has a thickness
(varying with experiment) between 0.45 and 0.70 mm. The inelastic part of the string
is long enough for the elastic part to have a constant length throughout the experi-
ment. A close-up drawing of the slider with mass is shown in (b). The varying normal
force is fastened to the slider using clay. The string is fastened to the plastic slider,
as close as possible to the carpet without touching, using a knot. The slider is about
The microphone (for sound recording) is mounted inside the slider as shown in Figure
3.19 (not as shown in the schematic drawing)
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that is exerted on the slider, is mounted between the aluminum plate and the
fixed support as shown in Figure 3.6 (a). The slider is pulled by a motor using
a composite string. The portion that winds around a spool3 connected to the
motor axis, is a relatively stiff 1.6 mm brake-wire for bikes, and the remainder
which is attached directly to the slider is an elastic nylon string (fishing line)
with a thickness (rline) 0.45, 0.60 or 0.70 mm.4

The motor we use is a 24V (AC) synchronous motor running at about 250
rounds per minute. The motor is driven with AC current from the wall (250V ,
50Hz) which is transformed down to 24V using a transformer, and then de-
livered to the motor. A gear-box modified to adjust the motor speed (the gear
ratios of the gear-box can be adjusted by changing the number of gears) is con-
nected to the motor. Tests show that the motor delivers a fairly constant speed
even when torques within our range of interest are applied. The derivative of the
rising force in experiments shows a slight periodicity as we will see later (Figure
3.14). We believe this is due to the fact that the wheels in the gear-box are not
100% fastened and can, apart from rotate, also move slightly in the directions
normal to the main axle and thereby cause a periodic variation in the pulling
force.

The use of an infrared camera and a microphone, shown in Figure 3.6 (a),
is discussed in section 3.3.

Surface properties

After trying a number of different types of carpets/surfaces, we have observed
that for different kinds of loop densities and loop compositions in the carpets,
there can be two qualitatively different kinds of event behavior.

When the loop density is low, and the loops are made up of single or few
threads (as pictured in Figure 3.8 (b)), the events are very brief in time and all
the gripping loops seem to loose their connection with the sandpaper whenever
the slider moves during the biggest events.5 In Figure 3.7 an event from an
experiment carried out on this kind of carpet is plotted. We have chosen to
call this kind of behavior stick-slip motion (SSM). The carpet used in the
original paper by Feder and Feder [7] was of this kind.

If we choose a carpet with much higher density of loops, where all the loops
are composed of very fine fibers (as pictured in Figure 3.8 (a)), the slider will
move in events with longer duration time. We have chosen to call these kind of
events “creeps”. The event plotted in Figure 3.4 is from an experiment with this
type of carpet, and can be categorized as a creep because of its long duration
time. In experiments carried out on this kind of surface there will at all times,
also during the events, be loops that are hooked to the sandpaper. The slider will,

3The spool is 60 mm in diameter and made of brass. Tracks on the spool directs the inelastic
wire onto the spool in order to keep a constant pulling speed.

4A fishing line is used. The label is Maxima.
5For the smallest events the movement of the slider is not observable, but the sound

produced by the breaking fibers can easily be heard.
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Figure 3.7: A single event (the biggest one in the figure) from an experiment
with a low loop-density carpet, that is, a carpet of the type in Figure 3.8 (b),
is plotted. Compare the duration time of the event with the event plotted in
Figure 3.4.

when slowly driven, exhibit what we have chosen to call stick-creep motion
(SCM). The concept of SCM and SSM will be discussed further in chapter 4.

We will primarily report experimental results from two basic experimental
configurations. We will call these experiment A and experiment B. The precise
configuration of experiment A is :

• Carpet labeled SU4 (blue), pictured in Figure 3.8 (a). This carpet has a
high loop density, and will produce events with a long duration time.

• Sandpaper coarseness 60. That is, the average particle diameter is 269 µm
(determined by sieving).

• Pulling velocity is 10 µm/s

• Diameter of nylon string is 0.60 mm, length 1100 mm

• Normal force is 0.5 kg
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(a) (b)

Figure 3.8: Close up pictures of two of the carpets used in the experiments. The
high loop-density (producing SCM) carpet used in experiment A is shown in
(a), and the low loop-density carpet used in experiment B (producing SSM) is
shown in (b).

• Strain gauge LCL-010

We will also report from the basic configuration, called experiment B, which is
basically the same as experiment A, but with a different type of carpet. The
carpet used in experiment B (pictured in 3.8 (b)) differs from A in the sense
that the fiber loops are not bundled together, and that the individual loops
are much thicker (lower density of loops) than in A. Regardless of whether the
experiment produce SCM or SSM, all “slips” or “creeps” will be referred to as
“events”.

3.2 Acquiring data

In order to measure and quantify the processes going on between the carpet
and the sandpaper, we have been using, as the main measurement instrument, a
strain gauge for recording the force required to pull the slider. The basic working
of the strain gauge will be explained. We will also in this section discuss other
ways to collect information from the experiment, such as using a microphone to
record the sound or an infrared camera to get a picture of the dissipation and
the geometry of the events.

The strain gauge

Strain gauges are based on a discovery done by Lord Kelvin 150 years ago. He
found that conductors subjected to mechanical strain, ε = ∆L/L, where L is
the length of the conductor, exhibit a change in their electrical resistance R,
∆R.
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This strain sensitivity in the resistance is called the gauge factor (GF ) and
is given by the unit-less factor:

GF =
∆R/R

ε
. (3.2)

The gauge consists of a grid, or grids of very fine semiconductor material,
with resistance R, bonded to the strained surface by a layer of epoxy. When the
surface is strained, the strain is transmitted to the grid material through the
adhesive.

VoutV in

R2 R3

R1 R4

C

D

A

B

Figure 3.9: A schematic drawing/view of the electronic components inside the
LCL-010 strain gauge. When all the resistances are variable (as in the LCL-010
we use), this is called a full Wheatstone bridge.

The strain gauge we used to obtain the force in time (F (t)), is a so-called
full [Wheatstone] bridge thin-beam load cell, consisting of 4 variable resistances
as shown in Figure 3.9. A picture of the strain gauge is shown in Figure 3.10 (a).
The potential we measure, Vout, is given by (see appendix C for more details
about the deduction):

Vout = Vin

[
R3

R3 + R4
− R2

R1 + R2

]
. (3.3)

Two of the gauges (resistances) are wired in compression and two in tension
as pictured in 3.10 (b).

When a force is applied to the beam as illustrated in Figure 3.10 (b), the
gauges will either compress or stretch. In this way one can effectively double
the bridge output for the same strain. If all R’s are equal, Vout will vanish. If
there is a difference in the resistances, the bridge will become unbalanced and
we will measure a potential difference at Vout (see equation (3.3)). In appendix
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(a) (b)

Figure 3.10: To the left (a) is a picture of the LCL-010, where the size is com-
pared to an American dime. Two different gauges are shown, but we use the one
to the right in (a). In (b) is an illustration how the gauges are placed in both
compression and tension. The pictures are taken from www.omega.com.

C it is also shown that the change in Vout is proportional to the sum of the
individual changes in the resistances when the tension gauges are on opposite
legs (equation (C.8)). With all strain gauges in a bridge at the same temperature
and mounted on the same material, any changes in temperature affect all gauges
in the same way. Because the temperature changes are identical in the gauges,
the ratio of their resistances does not change, and therefore the output voltage
of the gauge does not change. This makes the fullbridge strain gauge insensitive
to temperature fluctuations. Variations in the temperature does however effect
any material by altering their internal structure and therefore their elastic as
well as electric properties. This will of course again affect the gauge factor in
equation (3.2). Most metallic gauge alloys, however, exhibit a nearly linear gauge
factor variation with temperature over a broad range, which is less than ±1%
within ±1000C. Consequently we assume, for practical reasons, that the room
temperature and the gauge factor is constant in all the experiments.

For the strain gauge to work properly, an excitation voltage of at least 5V
DC(max 12V) must be applied across the Wheatstone bridge at Vin. According
to equation (C.8), the change in output voltage for a given level of strain in-
creases in direct proportion to the excitation voltage. Increasing excitation volt-
age thus improves signal to noise ratio (SNR), but a practical limit is reached
when the ill effects of gauge self-heating become predominant. An optimum
excitation voltage is best determined by an experimental procedure:

With no load applied, we examined the zero point of Vout while the excitation
level, Vin, was progressively raised. Once instability in the zero reading was
observed, we lowered the excitation until stability returned. We found that the
optimal value of Vin was very close to 7V , so this is the value used for Vin in all
experiments.
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The strain gauge used primarily is an Omega LCL-010 thin beam load cell.
We used a Metrix AX322 stabilized power supply, for the excitation voltage.
The multimeter, a Keithley 2002, records measurements at 13-14 Hz from Vout

on the bridge, and these are transmitted to a computer by means of a GPIB
interface board.

The elastic properties of the system

For any period of time when asperities, that is fibers, in the carpet are gripping
on the slider, the system can be simplified and visualized as shown in Figure
3.11. That is, in the experiments the slider is clamped to the carpet such that
practically no fibers break while the pulling force increases.6

In Figure 3.11, the spring constant k3 represents the effective spring constant
for the strain gauge, k1 refers to the effective spring constant of the nylon string
used for pulling the slider, and k2 represents the sum of the spring constants for
the carpet fibers. The force constants of all the other parts of the system are
assumed to be of infinite magnitude compared to k1, k2 and k3. The mass of the
slider and the platform are represented by M in the figure. We also have that x1

Carpet fibers

Slider with

Strain gauge
k3

Table

Pipettes

mass M

x1

x3

k1
Pulling string

x

Direction of pulling

k2,x2

Figure 3.11: A simplified view of the system when the slider is “stuck” to the
carpet. That is, the pulling force builds up, while no carpet fibers break. The
carpet fibers are imagined to be leaf springs with an effective force constant k2.
All parameters in the figure are described in the text.

is the total amount by which the nylon string is stretched from its equilibrium
length, x3 is the total amount by which the strain gauge (SG) is deflected from
its straight equilibrium configuration, and x2 is the mean elongation of the
gripping carpet fibers.7

Assuming the motor pulls with a constant average velocity v, and that all
”springs” begin at their equilibrium lengths, then:

• The force measured is k3x3 (in the left direction).

6This is often the case at the start of experiments. The force then builds up to a value
much higher than the stationary value, before dropping down. This can be seen in Figure 3.3.

7Note that no sub index is used to symbolize the different x’s in the figure.
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• The force applied to the system is k1x1 (in the right direction).

• At rest we have k1x1 = k3x3 (whatever value of x2, that is k2x2 = k1x1 =
k3x3).

• The total elongation of the nylon line, strain gauge and the carpet fibers
after a time t is x1 +x2 +x3, is equal to the distance pulled by the motor,
vt.

In other words we have the following equations:

x1 =
k3

k1
x3 (3.4)

x2 =
k3

k2
x3 (3.5)

x1 + x2 + x3 = x3

(
k3

k1
+

k3

k2
+ 1

)
= vt. (3.6)

We can then write:

x3(t) =
k1vt

k1 + k3 + k1
k2

k3

= σt , (3.7)

where σ = vk1

k1+k3+
k1
k2

k3
. The value of σ is the rate at which strain gauge is

deflected when the slider is “stuck” to the platform and the attached fibers and
the nylon string are stretching (see slope of plot in Figure 3.13). By measuring
the output (in mV) of the strain gauge as a function of applied weight we found
a conversion from units of Volts to units of Newton. We found that 1V of output
from the strain gauge corresponds to ∼3.6N of applied force.

We measured the value of k1 by putting a heavy load (about 5kg) on a scale
and then lifting it with the elastic nylon string (0.70 mm in diameter and 1150
mm long). The weight of the load and the elongation of the string were recorded
at discrete steps. Between each measurement the string was allowed to “relax”
for about 5 minutes before the measurement was made (see Figure 3.12). The
value of k1 was found to be ∼500N/m.

A rough estimate of the effective spring constant of the strain gauge can be
found by considering the full deflection and the maximum load of the gauge. A
full scale deflection of the strain gauge is about 1.3mm, and the maximum load
is about 4.5kg.8 The value of k3 ∼4.5*9.8/0.0013 N/m ∼ 30 kN/m, which is
about 60 times larger than k1. The idea of using the rather elastic nylon string
is to ensure that the pulling force remains nearly constant throughout a slip
event.

By inspecting the slope in Figure 3.13 we find that the tension rise (in the
no-slip case) is about 9×10−3V/4000s×3.6N/V ∼ 8×10−6N/s. We then needed
to make an estimate for how much deflection of the strain gauge this tension rise

8Data is supplied by the vendor (Omega).
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Figure 3.12: The elongation of the pulling string (0.7mm in diameter) as the function

of the load. A linear regression to the data gives a slope of about 500N/m, which is

the effective spring constant of the string.

corresponds to. Again we used a rough estimate: we assume that a full deflection
(at ∼ 45N) of the gauge corresponds to about 1.3mm. We can then estimate
that σ ∼ 8 × 10−6N/s × 1.3 × 10−3m/45N ∼ 2 × 10−10m/s. We are now in
a position to estimate k2 as well. We separate k2 from the expression for σ in
equation (3.7):

k2 =
(

1
k3

( v

σ
− 1

)
− 1

k1

)−1

, (3.8)

and insert the values of v = 10 × 10−6m/s, k1=500N/m, k3=30kN/m and
σ = 2 × 10−10m/s into this expression. We then get a value of k2 ∼ k3σ/v ∼
6×10−6

10−5 ∼ 3/5N/m, which means that k3 > k1 À k2. This, rather unexpected
small value for k2 might have its origin in the fact that the total number of
fibers that are connected to the slider is not constant. That is, fibers break and
regrip all the time, altering the value of k2, without us being able to resolve it.

From the Figures 3.12 and 3.13 we observe that the slope is not fully constant
at all times, as it should be according to equation (3.7) if the elastic properties
of the system were constant and linear. Deviation from a linear slope in the
force in time curve show in the figures may have various origins:9

9We would expect a linear slope, according to linear elasticity theory, if we assume that all
force constants in the system were linear (for small strains).
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Figure 3.13: The tension rise is illustrated for a normal experiment where the
slider sticks to the carpet (no-slip case) and the nylon string is fastened to the
wire (thin solid line). The fat solid line is a linear fit, with a slope of about
∼ 8 × 10−7N/s, to the tension rise. We observe slight changes in the slope as
the force increases, indicating that the elastic properties of the system are not
perfectly constant, or we may have nonlinear responses as the stress builds up.
Changes in the slope may also be caused by small slips (this is discussed in more
detail later).

• Possible non-linear elastic properties of components in the apparatus. All
the force constants, k1, k2 and k3 may have strong temperature dependen-
cies. This has not been investigated further.

• Our assumption that the high gear ratio in the gear-box causes the motor
to operate with a torque less than its maximum torque, may not be true,
and the motor can be overloaded for high pulling forces. See Figure 3.14 for
the instantaneous derivative of the signal when the pulling wire is fastened
directly to the slider platform.

• As the force builds up, an increased number of contacts between the slider
and the carpet is possible. This will alter the force constant k2 in the
system and thereby the slope in Figure 3.13.

• The steel wire we have used is practically non-elastic, but small damage,
or bends to the wire may drastically alter its elasticity.
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If we take a closer look at the instantaneous derivatives of the strain gauge
readings in the same experiment as shown in Figure 3.13, we obtain the plot
shown in Figure 3.14. In this plot we find regular fluctuations in the derivative
that perhaps can be ascribed to the total force supplied by the motor. We know
that the wheels inside the gear-box are not perfectly fastened to the gear-box:
if we apply tangential force to a wheel inside the gear-box, we can slightly
displace it. By using a larger and more solid driving system, we might diminish
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Figure 3.14: The derivatives of the strain gauge measurements when the string is

attached directly to the platform. Note the multiple periodicity in the signal, which

may originate from fluctuations in the force that is supplied by the motor.

the unwanted fluctuations in the derivative of the buildup shown in Figure 3.14.
However, we believe the small variations in driving force have a minimal effect
on event sizes we calculate in the experiments.

Noise analysis

The DC signal that we measure (Vout) from the strain gauge ranges from several
mV to about 30 mV for the largest force. The largest pulling force corresponds
to about 50 N. The multimeter gives us a nominal resolution of 1 nV, that
is 1 × 10−9V. The force measurements will therefore theoretically give us a
dynamical range of about 7 orders of magnitude. However, two main source of
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noise – electrical and mechanical – put a limit to the practical dynamic range
we can resolve.

Unwanted signals or noise provide natural limits to the precision that can be
achieved and may have many sources such as pickup from the main power lines,
interference by nearby electrical machinery, spurious signals due to bad electrical
contacts, thermocouples and faulty electronic components. Mechanical sources
of noise can for example be vibrations or faulty components in the experimental
setup or disturbances such as air movement. The mechanical noise is found to
dominate over the electrical noise.

Electronic sources of noise

Thermoelectric effects occur at the junction between two metals. A voltage
V , which is a function of the temperature difference, ∆T , is created over the
junction:

V = k∆T. (3.9)

The value of k can be found from empirical data tables for specific metals.10

A copper-constantan connection produces a voltage about 40 µV/0C while a
copper-solder connection about 3µV/0C. Thermoelectric effects can be reduced
by using similar metals to as high a degree as possible.

Magnetically induced voltages may occur when the wiring is located in a
time varying magnetic field. Examples of typical sources of induced voltages are
electrical equipment like computers, power supplies or other current carrying
wires. Besides moving the wiring as far as possible from the mentioned sources,
using shielded twisted pair cables and forming minimum but equal loop areas
on each side of the fullbridge, helps in controlling these external noise sources.

After reducing the thermocouple and the magnetically induced noise effects
as suggested above, we have undertaken several experiments to locate and quan-
tify other origins of noise in Vout. In these experiments there was no strain ap-
plied to the strain gauge, and the mean amplitude of the noise fluctuations was
measured for different configurations of the circuit and apparatus.

The raw noise-signal for the best configuration (that is, strain gauge dis-
mounted and placed in a thermos bottle) is shown in Figure 3.15 . On average,
and without any special steps taken, such as insulating the strain gauge, we find
for the chosen configuration of the circuit that about 99 % of all noise fluctu-
ations are less than 2 × 10−7 V in amplitude, the mean absolute amplitude of
the noise is about 8× 10−8 V and the standard deviation is about 5× 10−8 V.

If we plot the distribution of these noise amplitudes, we observe in Figures
3.16 (a) and (b) that the noise amplitudes are Gaussian distributed, except for
in the highest absolute amplitudes where it deviates somewhat from the normal
distribution.

By looking at the Fourier-transformed signal, we can tell whether the noise
has some hidden periodic component and whether there are correlations in the
signal. This can be done by calculating the power spectrum density, using the

10Also called the Seebeck coefficient.
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Figure 3.15: Readings from the strain gauge, while the gauge is dismounted and placed
within a thermos bottle.

Periodogram method explained in appendix D. The power spectrum density
of the signal with the chosen configuration, that is dismounted and inside a
thermos bottle, is shown in Figure 3.17. Note that in Figure 3.17 the four round
peaks which have their maximum values at 11,19,27 and 35 mHz. These peaks
do not occur when we use a battery instead of the power supply across Vin. We
therefore believe that these high in frequency, but low in amplitude, components
of the noise arise from the intrinsic noise of the power supply. However, using a
relatively stable supply (a 9V battery) will not diminish the amount of noise in
the output signal, but rather lead to a drift in Vout.

To try and rationalize the observed fluctuations in the signal, we have to
look deeper into the physics of the components of the circuit. Whenever some
parameter of a more or less dynamic system is observed in a thermal environ-
ment, such as moving electrons in a resistor, we must expect to find fluctuations
or noise in that parameter. This noise depends directly on the irreversible “vis-
cosity” or “friction” (here resistance) which that variable is subjected to, and
also on the temperature of the environment. This phenomenon got its name,
“Johnson noise” from experiments done by J. B. Johnson in 1928, and was later
explained by H. Nyquist in 1928 [41, 42]. The magnitude of Johnson noise Vj in
a source resistance is given by (see [43]):

Vj =
√

4kTR∆f, (3.10)

where k is Boltzmann’s constant (1.38× 10−23J/K), T is the absolute temper-
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Figure 3.16: (a) An histogram of noise amplitudes shows in what range of voltage
magnitudes we can expect noise in our system. The amplitudes are calculated by
subtracting values on a baseline that represent a local average (see Figure 3.15(b))
from the raw signal. (b) The cumulative distribution of a pure Gaussian variable is
plotted in dashed line (–), and the noise amplitudes are plotted as crosses (++).
The purpose of a normal probability plot is to graphically assess whether the noise
amplitudes could come from a normal distribution. If the data is normal, the plot will
be linear. Other distribution types will introduce curvature in the plot.

ature of the resistance (assumed to be not much above room temperature, or
300 K), R is the resistance (about 1000 ohms for the individual strain gauge
resistances), and ∆f is the noise bandwidth in Hz (about one half the conver-
sion rate [readings per second] of the integrating digital voltmeter, in this case
about 7 Hz). Thus, for one of the resistances (about 1kΩ), Vj is approximately
1.073 × 10−8 V, more than a full order of magnitude lower than the largest
measured fluctuations. We know that there are at least 4 such sources of noise
(resistors) in the strain gauge, but these couldn’t account for all the observed
noise. The amount of noise can be diminished slightly (by only about 1× 10−8

V) by insulating the strain gauge in a thermosbottle and by waiting at least two
hours after starting the input voltage.

Noise performance specifications for the Keithley 2182 nanovoltmeter (a
more sensitive apparatus than the one we used) indicates that the intrinsic
noise of the apparatus is between 3.5× 10−8 V and 7.0× 10−8 V. We have not
been able to obtain an estimation of the intrinsic noise of the multimeter (2002)
we used, but we have reasons to believe that the amount of intrinsic noise is
slightly higher in the 2002 we used than in the 2182 nanovoltmeter.

The period of time over which the multimeter averages the analog signal
from the strain gauge between each digital output has a significant influence
on the total noise in the signal. When the rate of measurements is doubled on
the Keithley 2002 (our instrument) from 13Hz to 26 Hz, the magnitude of the
largest noise fluctuations is increased by two orders of magnitude. We therefore
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Figure 3.17: The power spectrum of the signal obtained using the periodogram
method , plotted on a single-log plot(along the y axis). Four frequency peaks
are observed, and are believed to arise from the power supply because they do
not show up in experiments where a battery is used as an excitation source.

selected a rate of measuring (as a compromise between resolution and noise) of
13Hz.

To summarize, we believe the least noisy configuration of the electronic com-
ponents in the experiment is achieved using shielded and twisted-pair cables
grounded (only at one place) to the negative input of the multimeter, placing
the system as far as possible from electronic noise sources, using metals on both
sides of connections that are as similar as possible.

Mechanical sources of noise

When we mount the strain gauge, other sources of noise suddenly start to be-
come prominent. Vibrations in the table the experiment rests on, and varying
air movements around the sliding board will cause unwanted strains in the gauge
when the gauge is mounted. When the strain gauge is mounted to the support
but disconnected from the moving board, the mean absolute value and the ab-
solute standard deviation of the noise amplitudes lies close to 2.5×10−7V = 250
nV. When the strain gauge is connected to the moving board as well, as it is
during the experiments, both the standard deviation and mean noise amplitude
increases to about 3.5× 10−7V = 350 nV.

This means that the major source of noise in experiments comes from me-
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chanical sources and temperature variations. Efforts to reduce this kind of noise
could include isolating the whole system in a glass chamber and putting the
whole setup on a stabilized table. This has not been done.

3.3 Simultaneous measurements

As mentioned earlier, we have explored novel methods of acquiring details about
the complex dynamics believed to govern the physics of stick-slip motion and
stick-creep motion. The methods of measuring events discussed in this section
are independent of whether the motion is of the stick-creep or stick-slip type,
and these will be referred to as just “events”.

Using only the force readings from the strain gauge, we are given limited
access to the fine temporal and spatial details of the friction dynamics. We
cannot, for instance, say anything about the geometry of the events. Neither
can we, because of slow reading rate and because of the ever present noise,
resolve the smallest events that are too fast, or too small to be recognized by
our naive way of measuring their magnitude.

In this section we describe a procedure for obtaining simultaneous measure-
ments of displacement, sound, and temperature in the carpet experiment. That
is, to the strain-gauge measurements we have added spatio-temporal measure-
ments of the temperature of fibers in the carpet, using an infrared camera,
as well as the displacement of the slider (also from the camera images), and
the sound produced by the events is measured using a microphone (see Figure
3.19). These simultaneous measurements, when conducted in the regime of very
slowly-driven motion, will enable us to determine more accurately the duration,
geometry and magnitude of the events that occur in SSM and SCM. An estima-
tion of the total energy dissipated in individual events will also be made possible
using these methods.

Difficulty with measuring all events

In the previous section (3.1) we described the procedure used to measure the
magnitudes of the SSM and SCM events from the strain gauge signal, F (t).
This procedure has an important shortcoming. That is, there are many small-
magnitude events that merely modify the otherwise constant slope of the rise in
tension as a motor pulls on the slider when it is stuck. These small events are
examples of stick-creep motion (SCM), in which at least some fibers are at all
times attached to the slider. Since the derivative F ′(t) of the force in time does
not become negative during these minute creep events, they are not counted.11

A more correct method calculating the magnitude of the events would also
include a procedure for quantifying slips where F ′(t) does not become negative.
These attempts at more sophisticated methods for calculating the magnitudes
of events from the F (t) data are frustrated by fluctuations in the slope of the
tension rise that occur for different reasons. The other causes for fluctuations

11see the definition of a event on page 28
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in F ′, apart from the smallest events, can include electrical noise as well as any
marked change in the number of attached asperities, because this will modify
the elastic properties of the interaction between the slider and the carpet.

Noise from the motor

We sometimes find a regular pattern in the fluctuations in F ′ (see Figure 3.18,
and 3.14), which we believe are caused by the wheels in the gear-box. Attempts
at developing more sophisticated methods for measuring event magnitudes, in
which the onset of an event is indicated by a sudden decrease in the value of F ′

instead of a change in sign, have so far been frustrated by these fluctuations.
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Figure 3.18: (a) shows the instantaneous derivatives of experiment A (the exact con-
figuration used to obtain data for experiment A is supplied on page 33). Events can
easily be observed in the signal as clusters of negative values, however, when the signal
is magnified (b) we find wild fluctuations that makes the task of calculating the event
magnitudes very difficult.

Measuring events using a microphone

Sound measurements, obtained using a microphone, 10 mm × 10 mm, mounted
inside the slider immediately above the sandpaper, can be used to detect the
snapping sound (a “click”) of even a single fiber losing its grip to the sandpaper,
or breaking.12 A picture of the slider with the microphone mounted on it can
be seen in Figure 3.19. The sound is sampled at 44.1 kHz, with a resolution
of 16 bits, using a Creative Labs Sound Blaster card in a PC. In Figure 3.20
the sound amplitudes (top) are plotted together with the strain gauge readings
(bottom) for the first big event in a slowly driven experiment.

12The microphone is taken from an Ericsson T-65 mobile telephone.
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Figure 3.19: A picture of the microphone mounted inside one of the holes in the
slider. The microphone is mounted such that the membrane lies right above the
sandpaper without touching it. The microphone is 10x10 mm in size. The two
wires sticking out are connected to a soundcard in a PC.

A practical problem when recording sound at 16 bit and 44kHz, is the huge
amount of sound data that is created. For practical reasons we therefore rely on
methods to extract only the useful sound information, that is, only those sound
amplitudes (samples) that are greater than the sound amplitudes produced by
the background are saved. This is done by thresholding the sound amplitudes
data as follows:

• the sound is recorded into 40 second-buffers which is then read into Matlab
(using wavread).

• In Matlab, all sound amplitudes (absolute values) greater than 0.01, that
is, those that corresponds to the clicking sounds, are kept in a matrix,
while the rest is thrown away. Sound amplitudes lie between -1 and 1, and
when the slider is at rest, all of the amplitudes are less than ±0.01.

• The time, which is the sample number divided by the sampling frequency,
at which the amplitudes occur, is kept in another matrix.
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Figure 3.20: The force in time (bottom) is plotted in solid, while the event magnitudes,

calculated using the scheme described in the text, are plotted with dots. The sound

recorded with a microphone (top) is plotted for the same experiment. Four of the

events are marked and zoomed in on (in the audio data) as shown in Figure 3.21.

This method of sampling drastically reduces the amount of sound data. The
biggest problem regarding this way of “filtering” out the irrelevant data, is
that time is “lost”, due to input/output processes in the recording PC, when
the buffer (which is eventually put to a file before being read into Matlab) is
initiated. Correlating the sound data to the strain gauge reading is, because
of this “loss” of time, hard to accomplish. However, this could be solved by
recording the sound directly into the memory using Matlab, and then treating
the sound data without first writing it to a file.

Clicking sounds produced by breaking fibers

Each “click” (sound) produced by a breaking fiber will produce a characteristic
sound that can be heard when listening carefully. These “clicks” are in great
detail picked up by the microphone. The four “clicks” that are pointed at in
Figure 3.20(top) are shown in Figure 3.21. One see from these figures that the
audio signal is made up of individual pulses that have different shapes (plot 1,2
and 6). Each of these pulses are believed to be the result of a breaking fiber. The
temporal resolution of the audio samples is high enough to discern individual
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breakings of fibers. In plot 4, a region with a seemingly very high density of
pulses, is zoomed in on. In plot 5, a selected region with a high density of events
from plot 4 (marked) is magnified and further zoomed in on in plot 6. This
suggests that we can study how and when individual fibers break.

By comparing the starting times of the pulses obtained from the sound data
and those obtained from F (t), one can use more sophisticated methods of finding
the size and the magnitude of the events. Using the sound data, it is also possible
to decide whether an event is really caused by frictional processes or if it is
just a result of intrinsic noise in the gauge reading. That is, event magnitudes
calculated from F (t) that are smaller than what we assume to be the noise
threshold (about 3.5 × 10−7 V) can be tested against the sound data to see if
really is an event. However, this depends on a correct timing between the clock
of the sound recorder and the clock on the multimeter.

The energy dissipated in a breaking fiber

By integrating over the square of the amplitudes that constitute a pulse, we can
calculate some of the energy that is dissipated when a fiber breaks. When using
only one microphone, attenuation of the sound across the slider is a problem.
The amplitude of a sound wave produced by a breaking fiber (a “click”) which is
received at the microphone, depends on the position of the breaking fiber. That
is, the sound amplitude is proportional to the distance from the microphone. A
calculated “click”-energy will therefore depend on where the breaking fiber is,
relative to the microphone. It is possible to combine several microphones, and
distribute them throughout the slider and then analyze the signal much as is
done in seismic arrays. In this way, we can possibly locate the breaking fiber
and calculate the energy independent of the location of the fiber. This has not
yet been explored and is left for future projects.

Because of the low strain gauge sampling rate (13 Hz), an event calculated
using the strain gauge, will normally consist of a great number of pulses (or
“clicks”). That is, as we saw from the plots in Figure 3.21, the “macroscopic”
events, those event magnitudes measured with the strain gauge, can from the
audio data be divided into a large number of pulses. One could imagine that
there at least has to be a certain number of pulses (fibers breaking) within the
strain gauge sampling interval for us to be able measure it as an event (using
the strain gauge). This number pulses then has to be a function of the sampling
frequency and would therefore be strongly dependent on the force-measuring
apparatus. In the ultimate apparatus we should be able to measure, from F (t)
and its derivative, the magnitude single fibers breaking. The question is then, if
we used only a microphone to determine the event magnitudes, how much time
will we allow between separate pulses in order to merge them into one event
magnitude? Will the distribution of events be dependent on how much time we
allow between pulses? These are questions that will be put on hold for future
projects.

Moreover, these sound measurements can be obtained at rates very much
higher than what is customary for our strain-gauge measurements (44.1 kHz
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as opposed to 13 Hz). Therefore, the sound measurements can be correlated
with the strain-gauge measurements and used to determine more accurately the
starting and ending times of SCM or SSM events. These measurements can
therefore be used to produce an accurate distribution in the time that elapses
between subsequent events (which may also exhibit power-law behavior) and can
assist with computing more accurately the distributions of event magnitudes and
lifetimes from the F (t) measurements.

Analyzing the events using the sound data

We have analyzed the sound data recorded in the experiment shown in Figure
3.20. Because of the large temporal resolution of the sound data (44kHz) it
is not clear how much time, ∆T , we shall allow between two pulses (“clicks”)
in order to merge them into one event. One pulse is a sequence of the sound
amplitudes that is greater than the background noise. Examples of pulses are
shown in Figure 3.21 1,2 and 6.

We have studied how the distribution of event magnitudes, waiting times and
duration times varies with ∆T . The values chosen for ∆T are 1,10,100,1000,10000,
25000 and 50000 samples (one sample is 1/44100 second). This yields respec-
tively about 150000, 98000, 73000, 23000, 8000 and 2500 events. The event
magnitudes are calculated by summing the absolute values of all the sound
amplitudes in the merged pulses.
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Figure 3.21: The figures are named according to the marked events in Figure
3.20. Each of numbered event are zoomed in on. In plot 4, a range of “clicks”
has been magnified, and one can observe the great number of “clicks”, or pulses
which constitute the signal. A marked region (1) in plot 4 has been further
magnified and plotted in plot 5. A single pulse in plot 5 has been selected and
magnified in plot 6. We believe the pulses seen in plot 1,2,3 and 6 are produced
by the breaking of single fibers.
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Figure 3.22: Probability density of event magnitudes, waiting times and lasting
times are plotted figure 1,2 and 3 respectively. We see that the value of ∆T
increases from the bottom curve (∆T = 1) and to the top curve (∆T = 50000).
In figure 4 the scaled (with m0.7) cumulative distribution of event magnitudes
is plotted. For the largest events and the largest value of ∆T the distributions
resemble power laws. It is striking that the slope of the power law is close to
the values found from the force in time data when ∆T is close to the sampling
rate from the strain gauge (1/13 s).
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Measuring the dissipation using an infrared camera

In order to measure the temperature of the carpet fibers in real-time we used
a semi-transparent slider consisting of a rigid metal grid that is coated with
sand grains that have been glued on using an epoxy adhesive. The square holes
in the grid are approximately 2.5 mm in diameter, whereas the grid lines are
approximately 0.5 mm in thickness. The entire grid is just 5 cm by 5 cm in total
size. A frame was constructed from LEGOTM components and was mounted on
the metal frame supporting the grid, and this was used to carry a load of 400g.
An infrared camera with 300x240 pixel resolution was used to take six images
per second as the slider was dragged across the carpet surface. This camera
is very expensive and was rented for a week. Normal temperature resolution
is ±0.010C. In this way we measured the range in temperatures on the carpet
surface in time (Figure 3.24), as well as the mean temperature as in Figure 3.25.
This makes it possible to estimate the amount of energy dissipated in the form
of heat.

These measurements also enable us to visualize the geometry of the regions
of asperities involved in events as in Figures 3.27 and 3.28. These regions are not
contiguous and do not seem to propagate, in contrast to previous suggestions
[7, 25]. It must be remembered, however, that the motion is not driven slowly
enough that we should expect this kind of behavior. In order to determine
exactly the geometry of regions involved in stick-creep motion (SCM) and stick-
slip motion (SSM) events, a relatively smooth carpet would be needed: that
is, fiber and fiber-bundles of the same height, so that it becomes possible for
neighboring asperities to attach themselves to the slider. Moreover, a larger grid
is needed in order to increase the number of fibers that are gripping at any given
time. A camera with greater temporal resolution could then be used to visualize
the geometry of slipping regions and the manner in which these regions evolve
on short time-scales.

We found a characteristic infrared signature that corresponds to the edge
of the grid in each image (Figure 3.29). The camera position was adjusted in
just one direction after each event, and therefore it was possible to use the
image data to measure the displacement of the grid in time (Figure 3.30). These
displacement measurements provide still another way to quantify the magnitude
of events and to get a glimpse of the dissipation in the system.

Unfortunately, since the camera we used had a spatial and temporal resolu-
tion that was relatively small (6 frames per second, 4 pixels/mm), the displace-
ment that occurs in the vast majority of small events cannot be measured in this
way. Using special hardware, it is possible to take pictures as fast as 40 frames
per second. When taking pictures so rapidly, one must develop smart methods
for triggering the camera to start recording only when an event is under way.
This triggering can be accomplished using information from the microphone or
the force data.

The infrared camera was also used to capture the regions left behind by the
slider after massive stick-slip events. The camera was not moved with respect
to the carpet, so that product images could be used to determine which of the
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fibers become hot in subsequent events. In this way it was discovered that many
of the same fibers are involved in subsequent events, probably owing to their
greater height with respect to neighboring fibers (see Figure 3.31).

In the remaining sections of this thesis we refer only to the strain gauge mea-
surements, obtained using the opaque sandpaper slider driven at 10 µm/second.

Figure 3.23: Sound (top) and force (voltage measured across a strain-gauge, bot-
tom) recorded while driving the “grid-sandpaper” across 35 cm at 1.6 mm/sec.
Twenty prominent events are labeled in this figure. The same events are also
labeled in Figures 3.24 and 3.30.
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Figure 3.24: Maximum temperature range of each infrared image in a series of 1015
images, acquired at the rate of approximately six per second.
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Figure 3.25: Mean temperature in time for the grid region only, in forty images (here
numbered 1 through 40) that correspond to images 367 through 407 in the entire set
of 1015 images. (N.B. “quake” means the same as “slip” or “event”.)
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Figure 3.26: Maximum range for the mean temperature of five images centered around
each of the twenty labeled events (for the grid region only). (N.B. “quake” means the
same as “slip”.)
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1 2 3 4
Quake number 1, Threshold is 23.2 C Quake number 2, Threshold is 23.2 C Quake number 3, Threshold is 23.2 C Quake number 4, Threshold is 23.2 C

5 6 7 8
Quake number 5, Threshold is 23.2 C Quake number 6, Threshold is 23.2 C Quake number 7, Threshold is 23.2 C Quake number 8, Threshold is 23.2 C

9 10 11 12
Quake number 9, Threshold is 23.2 C Quake number 10, Threshold is 23.2 C Quake number 11, Threshold is 23.2 C Quake number 12, Threshold is 23.2 C

13 14 15 16
Quake number 13, Threshold is 23.2 C Quake number 14, Threshold is 23.2 C Quake number 15, Threshold is 23.2 C Quake number 16, Threshold is 23.2 C

17 18 19 20
Quake number 17, Threshold is 23.2 C Quake number 18, Threshold is 23.2 C Quake number 19, Threshold is 23.2 C Quake number 20, Threshold is 23.2 C

Figure 3.27: Infrared pictures taken after or during each of the twenty numbered
events in Figure 3.23, in which all temperatures greater than 23.2 oC are shown in
black.
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4 4b 6 6b
Quake number 4, Threshold is 23.2 C Quake number 4, Aftermath. Quake number 6, Threshold is 23.2 C Quake number 6, Aftermath.

7 7b 8 8b
Quake number 7, Threshold is 23.2 C Quake number 7, Aftermath. Quake number 8, Threshold is 23.2 C Quake number 8, Aftermath.

9 9b 13 13b
Quake number 9, Threshold is 23.2 C Quake number 9, Aftermath. Quake number 13, Threshold is 23.2 C Quake number 13, Aftermath.

16 16b 17 17b
Quake number 16, Threshold is 23.2 C Quake number 16, Aftermath. Quake number 17, Threshold is 23.2 C Quake number 17, Aftermath.

18 18b
Quake number 18, Threshold is 23.2 C Quake number 18, Aftermath.

Figure 3.28: Pairs of successive thresholded images of events where the first picture
is taken while the frame is in motion, and the second after the motion has stopped.
The threshold was chosen large enough so that the grid does not appear in the images
(that is, 23.2 oC).
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Figure 3.29: Two sample temperature profiles used to find the leading edge of the
LEGO frame (called the LEGO “window” in these plots). Note that the profile in the
second plot is obtained from an image taken during an event.
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Figure 3.30: The first plot shows the position of the leading edge of the Lego frame,

used to support the load in each image, where the time axis is given in terms of

image number which is about 6 per second. The second plot shows the total positive

displacement of the leading edge in time, also in terms of image number.
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A1 A2 A3

B1 B2 B3

C1 C2 C3

Figure 3.31: Pictures taken immediately after an event. Events are provoked by in-
creasing the force quickly (about 0.25 kg/sec). The slider is removed immediately after
the event and a picture is taken with the IR-camera. The first two pictures in each
series (A,B,C) show separate events, and are taken in the same position. The rightmost
picture in each series shows the product of the two previous images (both are intensity
images, where each pixel has a value on a scale from 0 to 1). Using this technique we
can find out whether the same fibers make contact each time (for example, overlapping
pixels each with large values are reinforced (become brighter), and overlapping pixels
each with small values are diminished (become darker)). The A and B series show that
some of the asperities are involved each time (light areas in A3 and B3). C1 and C2
are taken at different places on the carpet, to show that the product shows no bright
regions (no correlation).
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Chapter 4

Analysis of strain gauge
measurements

In section 3.1 we described the manner in which event magnitudes are calculated
from the strain gauge measurements: if the signal is called F (t), the magnitudes
are given by the change in force from any time, t1, when the force derivative
becomes negative (F ′(t1) < 0) until some later time, t2, when this derivative
becomes positive again (F ′(t2) > 0). The event magnitude, ∆F , is given by
F (t1)−F (t2). An example of the source code used to calculate these magnitudes
is supplied in appendix H (embedded in the source code for a numerical model
that describes the triggering and propagation of creep events). In Figure 3.4 an
event from the data in Figure 3.3 has been magnified, and an event magnitude
and the corresponding event duration time are labeled.

We have also in section 3.2 explained why this method is not totally satis-
fying, but hard to improve because of large fluctuations in the derivative F ′(t).
For this reason we have not improved this “naive” method for calculating event
magnitudes, accepting that very small magnitude events will not be counted. A
more stable motor might in the future allow us to improve the current method.
Since excess noise (that is, at the line frequency) will cause the method to count
a false event, we have tried to remove this noise.

One way to do this is to use a mean filter on the signal before the events
are calculated. The mean filter used was a two point moving average filter.1 A
second way of removing the noise is to assume that the noise will produce the
shortest lasting events: that is, those events with a duration time equal or to
less than 1/f , where f is the sampling frequency (about 13 Hz). A third method
is to remove all events with magnitude less than the noise level suggested on
page 45: that is, those event magnitudes less than 3.5× 10−7V .

Since the main results from the analysis did not depend on the method we

1In Matlab this is done by using the convolution command conv on the signal S. The filter
used was the array A = [1/2 1/2] which is then convoluted with S. The new signal is then Sn
= conv(A,S).
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used, we have chosen to use the latter method. This is because this method
yielded the largest number of events above the noise threshold (3.5× 10−7V ).

In this chapter we will in section 4.1 illustrate with examples from the ex-
periments how we statistically can characterize the data. In section 4.2 we will
look further into how the statistics of the system vary with different experiment
parameters.

4.1 Statistics of the stick – slip data

We allow time for the system to forget its initial conditions before comput-
ing the event magnitudes. That is, we select a time interval in the F (t) signal
that corresponds to the period after the slider has been totally displaced from
its starting position. By this time the signal has stabilized around some mean
value, normally following an initial sharp rise and a correspondingly dramatic
drop in strain gauge deflection. Sample data from one of the experiments where
the analyzed region is marked with vertical dashed lines, is shown in Figure 3.3.
In this section we present data from, in the case of experiment A, 5 consecutive
experiments with all parameters kept constant. This has only been done with
one configuration, namely the one described on page 33 as experiment A. This
corresponds to about 60 000 events that were greater than the noise thresh-
old. When referring to experiment A in other sections, we refer to only one
experiment (about 10 000 events) if nothing else is specified.

For each experiment we obtain the probability density function (PDF) p(x),
and the cumulative distribution function 2 (CDF) P (X > x) as functions of the
event magnitude x.

The PDF is defined in the following way: p(x)dx is the probability that we
find the stochastic variable X to have values in the range [x, x + dx〉

The cumulative distribution bears the following relationship to the PDF:

P (X ≤ x) =
∫ x

x0

dx′p(x′) , (4.1)

where p(x) is defined for x′ ∈ [x0, x]. For practical reasons we have chosen
to define the cumulative distribution as P (X ≥ x), that is, the probability
for a randomly selected sample, X, to be larger than x. This corresponds to
subtracting equation (4.1) from unity, and will not alter the properties of the
CDF.

Calculating the cumulative distribution function

The cumulative distribution function (CDF) can be calculated by first sorting
all event magnitudes in increasing order, and then for each member x of the

2The CDF is actually P (X < x), but the method stems from Pareto [5]. Pareto was
interested in the distribution of income. Instead of asking what the r’th largest income is, he
asked how many people have an income greater than x. Pareto’s law is given in terms of the
cumulative distribution function (CDF), i.e. the number of events larger than x is an inverse
power of x.
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ranked list, counting the number n of event magnitudes that are greater than x.
The probability P that a given X is greater than x is P (X > x) = n/N , where
N is the total number of events in the ordered set.

Calculating the probability density function

There are various ways to estimate the probability density function (PDF) from
experimental data. The difference between the methods lies in the manner in
which the samples are counted and assigned to the intervals (bins). The method
we have chosen to use, is based on logarithmic bin sizes. That is, the ratio of
the maximum to the minimum limit of a bin is a constant, a. This will yield
a discrete number of bins, ni. The probability density function can then be
calculated like this:

• For all j, the sample xj belongs to bin ni, where i = floor
(

log10(xj)
log10(a)

)
. The

Matlab command floor(), rounds down to nearest integer.

• The value of ni is then equal the number samples that belong to bin i.

• The estimate for the PDF for bin i is p(xi) = ni

dxN where N is the total
number of samples, and dx = ai+1 − ai is the “width” of the bin.

• The PDF is then given as (〈xi〉, p(xi)), where 〈xi〉 is the average magnitude
of the values in bin i.

The error estimate of the value of bin pi is assumed to be proportional to
√

ni

where ni is the number of samples in bin i. In order to justify this assumption we
must show that the values in bin i are Poisson distributed. That is, if we divide
the data set (experiment) into smaller sets, and then bin the values in each set
with logarithmic bins (as described earlier), the distribution of the number of
samples in bin i would follow a Poisson distribution. The standard deviation of
a Poisson distributed random variable is ∼ √

n̄i where n̄i is the average number
of values in bin ni. We take n̄i = ni. This justifies our assumption about the
uncertainty in p(xi). However, plotting the standard deviation in bin p(xi) on
a log–log plot is barely visible.

Properties of the event distributions

In Figure 4.1(bottom) we have plotted the probability density of event magni-
tudes for experiment A in a double logarithmic plot. The figure shows a power
law (straight line in a log-log plot) spanning several orders of magnitude in both
dimensions.
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Figure 4.1: (top) The cumulative distribution function (CDF) and (bottom) the prob-

ability density function (PDF) are shown for experiment A (stick-creep motion). Each

of these exhibits a power law spanning more than 3 orders of magnitude in the x dimen-

sion. The exponents have been found by a regression on the interval [10−6V, 10−3V ].

The exponents found from the regression, α = 0.68(±0.05) (top) and β = 1.66(±0.05)

(bottom) agree according to the expression α = β − 1 (equation (4.4)). The PDF is

plotted using bin ratio = 1.2 (see page 65). The results in these plots are obtained

from 5 identical experiments: that is about 60000 events above the “noise threshold”.
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That is, we can write the probability p(x)dx that a randomly chosen event
magnitude, X, lies in the interval |x, x + dx〉 according to the law:

p(x)dx ∼ x−βdx. (4.2)

The value of β can be found by calculating the slope of the straight line in
the double logarithmic plot in Figure 4.1(bottom) ,with the result 1.66(±0.05).
This is done using a least squares fit procedure in Matlab, over the region
[10−6V, 10−3V ]. The source of uncertainty in the value of β (and other power
law exponents) lies mainly in the range that we perform the fit. The exact value
of the power law coefficients calculated in this thesis is not of crucial importance,
but we estimate the values within an uncertainty of ±0.05.

Since the cumulative distribution can be obtained by integrating the PDF,
as shown by the definition in equation (4.1), the value of β can also be found by
inspecting the slope in a plot of the cumulative distribution (Figure 4.1 (top)).
If we assume the CDF is also given as a power law, which is natural in the light
of equation (4.1), the probability that an event with magnitude X is greater
than x is given by

P (X > x) ∼ x−α. (4.3)

We can then write the scaling relation

−α = −β + 1 → α = β − 1. (4.4)

To illustrate the validity of the power law, we have in Figure 4.2 plotted the
scaled P (X>x)

x−α with α = 0.66.
The CDF and PDF for an experiment with a different kind of carpet (exper-

iment B), are shown in Figure 4.3. These power laws exhibit exponents that are
different from what is found in the case of experiment A, and illustrate that we
can obtain power laws with other exponents by changing the type carpet. For
experiment A we find α ∼ 0.68± 0.05 and β ∼ 1.66± 0.05, and for experiment
B we find α ∼ 0.45± 0.05 and β ∼ 1.48± 0.05

As we shall see later, the difference can be ascribed to the fundamentally
different kinds of motion that occur in each case. In particular, experiment A
was conducted on a surface (Figure 3.8 (a)) which exhibits only stick-creep
motion (SCM) in which motion occurs only by means of stretching fibers that
are attached to the slider. Experiment B was conducted on a surface (Figure 3.8
(b)) in which a combination of SCM and a second kind of motion occurs, stick-
slip motion (SSM). In our definition of stick-slip motion, events are triggered
when all fibers lose their grip on the slider, and the slider then slides across the
surface until it becomes stuck again.

Finite-size effects and scaling

When properties of a system can be described by a power law [28] (as in equation
(4.2)), we expect this power law to be valid only within a limited range of
event magnitudes. For critical systems [31], the limits of the valid range are the
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Figure 4.2: A scaled version of the CDF, P (X>x)
x−α with α = 0.66, is plotted in

order to illustrate the power law.

only scales, and they are set by physical extents of the system. In the carpet-
sandpaper system, the low magnitude range is limited by the scale of minimum
event that we can measure.3 The maximum event magnitude is described by
a characteristic scale (event magnitude), x∗. Close to this scale the power law
should, according to the theory of critical systems and SOC, make a sharp,
exponential-like cutoff. The power law shape of the distribution of events (and
duration times) defined in equation 4.2, could therefore have the form:

p(x) ∼ x−βe−(x/x∗)a

, (4.5)

where a is exponent that describes the “sharpness” of the cutoff. The value
of x∗ will in our system therefore be expressed through a characteristic event
magnitude, or event duration time for which a sharp decay from a power law
will take place. That is, if we make a Taylor expansion of equation (4.5) we see

3We can not measure events less than 10−8V in magnitude. Due to problems of separating
the noise from “real” events, we have chosen to use only those events larger than 3.5×10−7V.
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that if

x ¿ x∗ → p(x) ∼ x−β
(
1− (

x

x∗
)a + . . .

)
(4.6)

x À x∗ → p(x) ∼ e−(x/x∗)a

. (4.7)

A possible cutoff effect, and cutoff scale can be seen in the Figures 4.1 and
4.3 (bottom) where the power law probability density function makes a sharp
bend downwards for the largest event-bin.

The theory of critical systems (and the hypothesis of self-organized critical
systems) assumes that all perturbations to the system will be transformed into
a change in the length (or time) -scale x∗. For values of x much less than x∗ the
system will not know the existence of this characteristic scale and behave as if
was infinite. On the other hand, close to x∗ the system “feel” its prescence and
no longer be scale invariant.

We have performed several experiments where we have perturbed the system
by changing parameters such as the normal force, the grain size on the sand-
paper, and the elastic constants in the pulling string (only one parameter is
changed at a time). The effects of these parameter variations should, according
to the theory, alter the value of x∗ in a systematic way. The probability density
of event magnitudes is then a function of two parameters: the event magnitude,
x, and the varied parameter L, and it can be represented graphically p(x) as a
function of x for a sequence of different values of L. The scaling hypothesis (for
critical systems) [31] predicts that all the curves of this family can be collapsed
onto a single curve, provided one plots a scaled p(x) (p(x) divided by L to some
power) as a function of a scaled x (x divided by L to some different power). In
critical systems that are found to obey such a scaling law [38, 7, 22, 28, 25],
it is the physical extent of the system (the value of L) that decides the value
of x∗. In such systems, where the events, or avalanches, are based on a local
propagation of events, such as in spring-block models [7, 25] and in sandpiles
models [39, 28], the biggest events will propagate until they reach the perimeter
of the system. When these events reach the physical extent of the system, they
will terminate. Thus, it is the physical extent of the system that determines the
magnitude of the biggest events, and therefore the magnitudes of these events
will be underestimated (compared to a bigger system where they would have
propagated further). This will lead to an exponential-like (sharp) cutoff, as seen
in equation (4.5), for the events that will feel the size of the system.

In the carpet-sandpaper system, we have had problems with observing finite-
size effects on the form of equation (4.5).4 We believe reasons for this could be
that the events (“avalanches” of breaking fibers) do not seem to propagate
through a local distribution of force or energy, but rather through a global
distribution of the force (see chapter 5). If this assumption, of a global dis-
tribution of forces in the sandpaper-carpet system is correct, it is not directly

4Note that the exponential-like cutoff seen in the cumulative distribution (Figure 4.1), is
in the nature of the CDF. This is discussed further in appendix B
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the physical extent of the system that determines the magnitude of the biggest
event magnitudes, but rather the number of fibers that are gripping. The ability
for the system re-grip fibers during the events also limits the maximum event
magnitudes. This means that it is a possibility that the biggest events in our
experiments are not “falsely” terminated by the physical extent of the system,
and that the power law distribution of events can have an abrupt ending, with-
out a crossover to a sharp cutoff. It is likely that if we had a much larger system,
the system would start to “feel” the system size and that the local interactions
between fibers would start to matter.

Although varying parameters such as the normal force, the sandpaper rating
or the surface type might alter the maximum event magnitude (see section 4.2),
this does not necessarily lead to a scaling law on the form described in equation
(4.5). Instead of the exponential decay of the power law as in equation (4.5),
the power law will decay as a step function. The earlier described data collapse
of the scaled probability density function, will in cases like this be based on
the maximum measured event. Compared to the method of scaling the proba-
bilities using the cutoff effect, this latter method of scaling the distributions is
more subjected errors due to statistical effects. In section 4.2 where we report
from experiments where we have varied different parameters, we discuss some
techniques for reducing this error.
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Figure 4.3: (top)The probability density function (PDF) and (bottom) the cumulative

distribution function (CDF) of event magnitudes are plotted for experiment B. Each

exhibits a power law spanning more than 3 orders of magnitude. The exponents α =

−0.45(±0.05) (from the top plot)) and β = 1.48(±0.05) (from bottom plot)) are

obtained from a linear regression on the interval [1e-6, 1e-3]. The data for these plots

are obtained from only one experiment, that is, about 5000 events. Note the difference

in β between this experiment and experiment A in Figure 4.1, that is, α = −0.45

instead of −0.68 as in experiment A.
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CDF versus PDF

Now let us consider the properties of the cumulative distribution (CDF) and
probability density function (PDF) and evaluate the relative importance or re-
liability of each method. The CDF seems at first to have important advantages.
By comparison, this function does not fluctuate wildly, which is what happens
if we choose bins that are too small for the PDF, and there are no problems
regarding how best to choose the limits of the bins. On the other hand, the
PDF is more sensitive to finite-size effects. In particular, in the high-magnitude
regime the PDF exhibits a downward trend only in the case where a finite-
size effect (FSE) is noticed: that is, a transition from power law behavior to
exponential decay at the “crossover scale” (see page 69). On the other hand,
the CDF departs from power law behavior for three reasons, two of which are
non-physical. In addition to a possible finite-size effect, the magnitude at which
the CDF departs from power law behavior depends upon the sample size (the
number of event magnitudes) as discussed in section B. Moreover, a downward
trend in the high-magnitude regime is an expected analytical result, obtained
from integrating a PDF that is defined on a finite domain.5 To see this trend, let
us assume we can write the PDF as a power law, as in equation (4.2). Then, the
probability that a randomly chosen magnitude X is greater than the magnitude
x, is given by the cumulative distribution function (CDF) P (X > x):6

P (X > x) =
∫ c

x

p(x′)dx′ =
1

c−α
(c−α − x−α) , (4.8)

where we have selected x ∈ [10−8, 10−2] as the domain of p(x). From Figure 4.4,
we can see that fitting a line on this domain close to the cutoff c will give an
inaccurate measurement of the exponent for α. For this reason, a straight line
fit to the CDF is less apt to give accurate results for the exponent α as long as
the high-magnitude regime is included.

5In our experiments this domain is bounded by the magnitude of noise, with mean value
of about 3.5× 10−7 V in the low end, and the maximum event size (∼ 10−2V) for the upper
bound.

6Note that the traditional definition of the cumulative distribution is P (X < x).
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Figure 4.4: A plot of the cumulative distribution function (equation 4.8). Notice
how the cumulative probability for high magnitudes goes to 0. The value of α
is set to 0.66, which is commonly observed in experiments.

The distribution of event duration times

We have also studied the distribution of event duration times: that is, the time
it takes for F ′(t) to go from negative to positive again. In Figure 3.4 this corre-
sponds to t2 − t1. In Figure 4.5 the PDF and the CDF of event duration times
for experiment A have been plotted. The plots resemble power laws just like
the distribution of the event magnitudes, but now with the new exponent τ (for
PDF). This means that we can roughly write the probability of an event lasting
time t as follows (see Figure 4.5 top):

p(t) ∼ t−τ . (4.9)

The cumulative distribution of event duration times, that is, the probability of
measuring an event with duration time T greater than t, is given as (see Figure
4.5 bottom)

p(T > t) ∼ t1−τ . (4.10)

The exponent τ takes a value near to 2 (τ = 1.95(±0.05)) and (1 − τ =
0.97(±0.05)). It should be noted that a power law in the duration time plot only
occurs for experiments where the events are relatively long-lasting, often longer
than 100 seconds, as happens only in stick-creep motion (that is, experiment
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Figure 4.5: The probability density function (top) and cumulative distribution func-

tion (bottom) for event duration times in experiment A. The value of τ = 1.95(±0.05)

in equation 4.9, is found from a linear fit (–) in the interval t ∈ [5× 10−1s, 5× 101s].

The value of 1− τ = 0.97(±0.05) (equation (4.10)) in the same interval.
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A). In Figure 4.6 we have plotted the event duration time CDF for experiment
B, and we see that the shape of the curve is not a well defined power law
distribution. Experiment A is the only surface for which we have found a well
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−7

−6.5

−6

−5.5

−5

−4.5

−4

−3.5

−3

Event duration time,t(s)

P
(T

 >
 t)

Figure 4.6: The CDF for event duration times for experiment B (more SSM behavior)

plotted on logarithmic axes. The round shape of the distribution does not very well

correspond to a power law.

defined power law distribution of event duration times. However, we cannot
exclude that there is a power law for event duration in stick-slip motion – we
may just be unable to resolve the scaling behavior.

The event duration time as a function of event magnitude

Beside from calculating the distributions (4.2) and (4.9), it is instructive to
define the joint distribution p(x, t) such that,

P (a ≤ x ≤ b, c ≤ t ≤ d) =
∫ b

a

∫ d

c

p(x, t)dxdt, (4.11)

which in practice means finding a joint histogram in the event duration time (t),
and event magnitude (x) space. In Figure 4.7 the event duration times versus
the event magnitudes are plotted for experiment A.
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The events are first sorted in increasing order, then 20 consecutive events are
averaged in both time and event magnitude. The average time, and the average
event magnitude for the 20 events is then plotted. From the figure, one may gain
insight into the joint probability, as it is proportional to the number of points
per unit area in the plane marked with ’–’.

One can see from Figure 4.7 that for small event magnitudes (x < 10−6V)
the corresponding pairs of quantities are not related to each other through a
trivial expression. On the other hand, one can see from the figure that each
pair of event duration times and magnitudes greater than ∼ 10−6V displays a
significant linear correlation in the log–log plot. From this fact can we assume
validity in the following expression :

t ∼ xκ, (4.12)

where κ takes the value of the slope calculated in Figure 4.7. For experiment A
the value of κ is close to 0.70. For events in experiment B, the duration times
are shorter (more SSM) than in experiment A, and as we saw in Figure 4.6 the
distribution of duration times did not follow a power law.
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Figure 4.7: The duration time of events as a function of the event magnitudes for
experiment A. The event magnitudes are first sorted, then series of 20 consec-
utive events (sorted) are selected and the mean event magnitude and duration
time is plotted. A linear regression to the interval m ∈ [10−6V, 10−3V ] (-.) yields
a slope of about 0.70, that is, κ ∼ 0.70± 0.05. The error bounds (corresponding
to 99 % confidence) for the first order polynomial is plotted as (–) .
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Figure 4.8: The duration time of an event as a function of the event magnitude
for experiment B. We observe that for small event magnitudes the shape of the
points can resemble a power law (the fit has a slope = 0.55). For larger events,
we see that the events tend to decrease in duration time and deviate strongly
from the power law. About 3000 data points are used in the plot, and 10 data
points are averaged for each point plotted.

Linear correlation coefficient

To test whether the assumption in equation (4.12) is valid, we can check the
corresponding linearity in the log-log plot in Figure 4.7. This is done by finding
the linear correlation coefficient ν [44]. This method, which can be used on
variables that are ordinal, that is, on a discrete but ordered set, goes as follows:7

ν =
∑

i(xi − x)(ti − t)
√∑

i(xi − xi)2
√∑

i(ti − ti)2
, (4.13)

where x and t are the mean of the event magnitudes xi and event duration
times ti. The value of ν lies between -1 and 1, where 1 means that there is is
“complete positive correlation”, and the points {xi, ti} should lie on a perfect
straight line. If ν is equal to -1 the points will lie on a straight line with negative
derivative; this is called “complete negative correlation”. A value of ν close to

7also called the product-moment correlation coefficient, or Pearson’s ν. See chapter 14.5 in
[44].
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0 indicates that the variables (here t and x) are uncorrelated.
The value of ν is found in experiment A found to be ∼ 0.8 which strongly

supports a linear correlation between t and x in equation (4.12).

The relation between τ , β and κ

We now have the three power law exponents α, β and κ that each can be
estimated by experiments, and we want to establish the relationship between
them. We assume that the probability of an event with duration in the interval
[t, t + dt] is given as p(t)dt, and the probability of an event with magnitude in
[x, x + dx] is given as p(x)dx. The probability of an event in the range [t, t + dt]
and [x, x+dx] is given by the joint probability (equation 4.12) p(x, t)dxdt. Using
equation (4.2) and (4.3) we have:

p(t) ' t−τ , (4.14)
p(x) ' x−β . (4.15)

From the power law shape of these equations, we assume validity of the following
scaling ansatz for the joint distribution (equation 4.11):

p(x, t)dxdt = λ−δp(
x

λ
,

t

λκ
)d(

x

λ
)d(

t

λκ
) , (4.16)

where δ is a new scaling exponent. We then integrate equation (4.16) with
respect to t:

p(x)dx = λ−δd(
x

λ
)
∫ ∞

0

d(
t

λκ
)p(

x

λ
,

t

λκ
)

=
λ=x

x−(δ+1)dx

∫ ∞

0

du p(1, u) , where u =
t

λκ

∼ x−(δ+1) ∼ x−β , (4.17)

where we have used equation (4.15) in (4.17). It then follows that

δ + 1 = β. (4.18)

Next we integrate equation (4.16) with respect to x:

p(t)dt = λ−δd(
t

λκ
)
∫ ∞

0

d(
x

λ
)p(

x

λ
,

t

λκ
)

=
λ=t1/κ

t−
δ+κ

κ dt

∫ ∞

0

du p(u, 1) , where u =
x

λ

∼ t−
δ+κ

κ ∼ t−τ , (4.19)

where we have used equation (4.14) in (4.19). We can then write τ = (κ+ δ)/κ.
This means we have the following expression for the exponents

τ =
β + κ− 1

κ
. (4.20)
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Until now we have assumed that κ is just a scaling parameter for the joint
distribution (equation 4.16) and we argue that κ is the exponent we extracted
from Figure 4.7, the plot of the event duration as a function of event magnitude
(equation (4.12)). In the p(x, t)-space, the maximum (largest) probabilities will
trace out a sharp “ridge”, where the t(x)-curve (equation 4.12) will consist of
the points on this edge. Consider the plot “designed” in Figure 4.9: the solid
line in the figure represents the solid line fitted in Figure 4.7, while the points
(marked with ’*’) represent the scattered points obtained from experiments. We
locate a local maximum at p(x0, t0) (inside the triangle somewhere). According
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Figure 4.9: A “designed” plot in order to illustrate the interpretation of the
exponent κ.

to equation (4.16) we have :

λδ+1+κp(x0, t0) = p(
x0

λ
,

to
λκ

). (4.21)

If we let x0 → x0
λ and t0 → t0

λκ , we move to the other maximum probability
in Figure 4.9. That is, we let x = x0

λ → λ = x0
x , which means that we let

t = t0
λκ = t0( x

x0
)κ, which again is the relation we suggested in equation 4.12.

Thus, the κ we use in as scaling parameter in equation (4.16) is equal to the κ
we measure in Figure 4.7.

In order to test whether equation (4.20) is satisfied in the experiments, we
fill in the approximate obtained values for β ∼ 1.7, κ ∼ 0.7 and τ ∼ 2 for
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experiment A. From equation 4.20, τ = β+κ−1
κ = (1.7 + 0.7− 1)/0.7 = 2, which

is approximately the value we have measured for τ in Figure 4.7.

Time between events

Are the events statistically independent? We assume that the probability of
measuring an event magnitude in the range [M, M + ∆M ] is given as PM =
p(M)∆M , where p(M) is the event probability density. It is then possible to cal-
culate the average time (or number of events) between two events in this range.
In order to simplify the problem, we regard the events in time as a stochastic
process where we have a well defined average time between events, ṅ.8 Given
that an event in this range has just occurred, we may ask: how many events
will occur before we measure another event with a similar magnitude (that is,
in the range [M,M + ∆M ])? The average time between events, ṅ〈T (M)〉, can
then be found by calculating the following sum :

〈ṅT (M)〉 = ṅ

∞∑
n=1

nPn , (4.22)

where Pn is the probability that the next event in the range [M, M + ∆M ],
occurs after n events. For example, in order to calculate Pn=3, we must have 2
events that are not in the range, followed by 1 event that is within the range. If
the events are statistically independent, we can write this probability as P3 =
(1− PM )2PM . We therefore write the sum in equation (4.22) as follows :

〈T (M)〉 = PM + 2PM (1− PM ) + 3PM (1− PM )2 . . .

= PM

∞∑
n=0

(n + 1)(1− PM )n . (4.23)

For convenience we write x = 1− PM , and continue equation (4.23):

〈T (M)〉 = (1− x)

[ ∞∑
n=0

nxn +
∞∑

n=0

xn

]

= (1− x)
[
x

∂

∂x

1
1− x

+
1

1− x

]

=
x

1− x
+ 1 =

1
1− x

=
1

PM
, (4.24)

where we have used that the geometric sum

∞∑
n=0

xn =
1

1− x
. (4.25)

8The number of seconds per event (that are above the noise threshold) was fairly constant,
and close to 6 seconds for experiment A.
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By estimating ∆M ∼ M , and p(M) ∼ M−β (from equation (4.2)) we find that:

〈T (M)〉 =
1

PM
=

1
p(M)∆M

∼ Mβ−1. (4.26)

In Figure 4.10 we have plotted the average time between events as a function
of event magnitude, M , for experiment A. The magnitude range, ∆M , is chosen
so that Mmax/Mmin = 1.2 (that is, ∆M ∼ M) within each bin. With a linear
regression to the linear trend in the plot, we obtain a slope of 0.66± 0.05 which
is what we should expect when we combine the results obtained for β in Figure
4.1 and equation (4.26). That is, according to equation (4.26), β−1 ∼ 1.66−1 =
0.66, which is what we find in Figure 4.10. We conclude that the time between
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Figure 4.10: The mean time between events 〈ṅT (M)〉 within a given event
magnitude interval (o). The magnitude intervals are calculated by choosing
Mmax/Mmin = 1.2 for each bin. A linear regression to the plot yields an ex-
ponent of 0.66±0.05 which is as expected according to equation (4.26) and the
value for β in Figure 4.1

events is consistent with the events being statistically independent.
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Overview of power law exponents

A short overview of the different exponents, where they are available, for ex-
periment A and B is presented in table 4.1. The value of κ for Experiment B
is a based on a very “short” power law (Figure 4.8), and its validity might be
questioned. The values of κ are checked with the basis of the relation in equation
(4.20).

Table 4.1: Values and description of the various exponents for experiment A and
experiment B (the difference of the two is explained on page 33). Uncertainties
in the exponents are estimated to ±0.05. The exponents in the column label
“Rain” are obtained from [45], where event magnitudes correspond to mm of
rain, and the duration time is the lasting (in minutes) of the rain event. The rain
data is collected, through 6 months, on the Baltic coast in Zingst (Germany)
using a Micro Rain Radar. The value of κ is calculated from (equation (4.20))
κ = β−1

τ−1 , and confirmed through re-plotting of the data used in [45]. The values
κ in the other columns are also confirmed through this relation.

Exponent Exp. A Exp. B Rain Explanation Equation
β 1.66 1.48 1.4 PDF for magnitudes 4.2
α 0.68 0.45 CDF of magnitudes 4.3
τ 1.95 1.9 (?) 1.6 PDF for duration times 4.9
κ 0.7 0.55 (?) 1.2 joint probability 4.12

4.2 Other experimental results

With the statistical tools described in the last section, we have obtained and
analyzed event magnitudes data from over 100 experiments. We have varied
parameters such as normal force, sandpaper coarseness, string thickness, type
of surface (carpet), and driving speed. We will in this section summarize some
of the observational trends from these experiments, and along the way propose
what are the future prospects of other experiments of this type.

Two types of motion at low sliding velocities

As mentioned before, the motion of the slider on different surfaces (carpets) can
be classified using two categories. One of these is stick-slip motion (SSM), in
which occasionally all attached fibers are released and the slider is allowed to
glide rapidly over the surface until a critical number of fibers has gripped again
or else microscopic friction halts the motion. The second kind of motion is called
stick-creep (SCM), which occurs whenever a single fiber lets go while the others
remain attached. In this case the slider moves slowly by increasing the strain on
fibers that remain attached. Most carpet surfaces exhibit a combination of SCM
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and SSM, as in experiment B, whereas some exhibit only SCM, as in experiment
A (compare Figure 4.1 and 4.3).

Carpets that are dominated by a combination of stick-slip and stick-creep
motion exhibit a value of α (equation 4.3) in the range from -0.5 to -0.35, whereas
carpets in which only stick-creep occurs normally produce values of α from -0.6
to -0.75. In some cases it may happen that a surface is worn so thoroughly that
stick- slip motion emerges where previously there was only stick-creep motion.
An example of this can be seen in figure 4.11 where the distribution exponent of
events goes from being SCM to SSM. The longest lasting event for the unworn
carpet is about 80 seconds, while the longest event for the worn is about 20
seconds. The value of α is higly reproducible for one type of carpet, but the
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Figure 4.11: Cumulative distributions of event magnitudes for two experiments
where the same carpet has been used twice. The distribution of the unused
carpet is marked with squares and the used carpet is marked with ’+’. A quan-
titative difference in the distribution can be seen as a result of wear. If we assume
the distributions are given as a power law in the high magnitude regime, they
have exponents α ∼ 0.4 for the worn (+), and α ∼ 0.6 for the unworn carpet
(squares).

carpet must not be worn in order to achieve this.
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Inhomogeneities in the stick-slip data

If we plot the event magnitudes versus the event number (see figure 4.12(top))
we see that there are periods in the experiment where the density of events are
much lower than other places. Take for example the dense region in the top plot,
form event number 0 to about 2000. This corresponds, in the bottom plot, to the
region 1−1.3×105s. That is, the number of events per second in the first cluster
(0-2000 events) is about 3 times as low as in the rest of the experiment. The
clustering observed in Figure 4.12(top) is often observed in our experiments,
and does not always occur at the beginning: at times the clusters appear at the
midpoint or near the end of the experiment. However, whether these clusters
of lower density of small events are present or not, does not affect the overall
properties of the distributions.

We have undertaken several adjustments to the experiments to find out the
reasons for this clustering. We have tried to fasten the carpet to the board using
double sided tape (this became the standard way), putting pipettes between the
solid board and the moving board (now also the standard) and assuring there
are no disturbances such as temperature differences, air current or other such
factors. We have diminished somewhat the clustering effect, but not fully. We
believe the difference in large-magnitude event density (number of big events /
number of small events) is guessed to be caused by either:

• changing gripping conditions in different regions of the carpet surface: for
example, the number of asperities that can become attached to the slider
in a given region (this depends on the local topography of fibers). We have
tried to ensure that conditions are homogeneous and constant throughout
the experiment, and for this reason we believe that the clustering may
arise because of local inhomogeneities in the carpet itself.

• the actual noise, either from the motor, electronic sources or other mechan-
ical/thermodynamic sources is not constant throughout the experiment.
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Figure 4.12: (top) Plot of event magnitude versus event number. This plot shows

clustering of events at the beginning of this experiment, a feature that is not visible

in (bottom), a plot of event magnitudes in time. In the clustered regions there are

relatively few small events between larger events. After about 2000 events (top) we

see that the number of small events increases and that big events therefore are farther

apart. In the bottom plot this corresponds to the region 1 − 1.3 × 105s. The number

of events per second is 0.3 in the first region (lasting 0-2000 seconds), and 0.8 events

per second afterwards.
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The effect of varying the normal force

From the classical friction laws one expect that the friction force should increase
with the normal force, but it is not clear how this will affect the distribution
of event magnitudes. We have carried out several experiments where the only
parameter varied has been the normal force.

For both experiment A (Figure 4.14) and of experiment B (Figure 4.13), the
exponent of the power law distribution of event magnitudes seems to be fairly
unaffected by a change in the normal force, although the mean force required to
pull the slider increases with the normal force. The number of small magnitude
events also increases with the normal force. This can be observed in Figure
4.14 where a “hump” in the low magnitude regime becomes more prominent for
higher normal forces. From the discussion regarding finite-size effects on page

10
−6

10
−5

10
−4

10
−3

10
−2

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Event magnitude x (V)

p(
x)

0.2 kg
0.5 kg
1  kg
1.5 kg
2.5 kg
3.0 kg

Figure 4.13: Probability densities of event magnitudes (x) for different normal forces.

These results were obtained from experiment B. The value of β lies between 1.33 and

1.40, and there does not seem to be a systematic trend in these values. The maximum

event magnitude seems to increases with the normal force. See plot 4.15 for more

details about this trend.

68, we learned that all perturbations of the system (such as a variation of the
normal force) should result in a change of a characteristic event scale, a∗. It is
therefore interesting to learn how and if this scale is altered when the normal
force is changed in our experiments. Thus, the event scale, a∗, can be “mapped”
to a characteristic length scale, L, of the system. For systems of finite size, the
shape (or dynamical range) of the event distribution will depend on L, as well
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Figure 4.14: Probability densities of event magnitudes (x) for different normal forces

for experiment A (only stick-creep motion). The values of β lie between 1.60 and 1.70,

and there does not seem to be a clear trend in these values. There does not seem to be

a correlation between the maximum event magnitude and the normal force, but from

Figure 4.16 we see that the maximum event magnitude decreases with the normal

force.

as the event magnitude x. The scaling hypothesis states that, if the probability
density of events is a power law, it can be written as: 9

p(x, L) ∼ L−φG(
x

Lζ
) , (4.27)

where G is a suitable scaling function, and φ and ζ are critical exponents de-
scribing the scaling of the distribution function. There could as well be other
length scales than L, but it is believed that the effects of these will be averaged
out by the system [47].

A variation in, for example the normal force should “transform” into a change
in L. According to this scaling assumption, the probability density of event
magnitudes for different values of L can be expressed in terms of the scaling form
in equation (4.27). If this equation provides a valid description of the geometric
scaling properties, then plots of Lφp(x, L) against x/Lζ for different values of
normal forces will fall on a common curve (data collapse), G(y). However, in
order to be able to do this data collapse and find the value of φ and ζ, we believe

9we’re assuming that p(x, L) then is a homogeneous function [46]
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we need far more data points to obtain a well defined crossover at the cutoff
scale in the probability density function. It might also be that the system is
too small for any length scale to be prominent. In Figure 4.1 (bottom), where
we have used 5 times more data points than in any other event magnitude
probability density plot, the crossover scale is still not well defined. On page 69
we discussed the possibility that the finite-size (or finite number of contacts)
effects are not visible as a crossover to an exponential decay in the power law.
Instead we proposed that the scaling of the system could be found by inspecting
the maximum event magnitudes of the experiments. We have therefore looked
at the maximum event magnitude as a function of the normal force. Because
the dynamical range of the varied normal force is only one order of magnitude,
we have not tried to get an estimate for φ and ζ, but we have rather got a
“glimpse” of how and whether there is characteristic scale in the system and if
this is affected by this perturbation.

In Figure 4.13 we see that the maximum event size for experiment B increases
with the normal force, while for experiment A (see Figure 4.14) there is no
obvious trend (however, in Figure 4.16 there is a trend). In Figure 4.15 we have
plotted the maximum event size as a function of normal force for experiment
B. We see that the maximum event size increases with the normal force. When
the same plot is performed for experiment A (see Figure 4.16), we observe that
the maximum event magnitude decreases with increasing normal force. That

0 0.5 1 1.5 2 2.5 3
2

3

4

5

6

7

8

9

10

11
x 10

−3

Normal force (kg)

M
ax

. e
ve

nt
 m

ag
ni

tu
de

 (
V

)

Figure 4.15: The maximum event magnitude as a function of the normal force for

experiment B. We see that the maximum event magnitude increases with the normal

force (with a few exceptions).
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Figure 4.16: The maximum event magnitude as a function of the normal force for

experiment A. We see that the maximum event magnitude decreases with the normal

force.

is, changing the normal has the opposite effect in experiment A and B. This
interesting result may originate from the fact that experiment A is pure stick-
creep motion (that is, events with long duration times), while experiment B is
basically stick-slip motion (that is, short event duration times). Once a creep
event is initiated (experiment A), the probability for fibers to re-grip, or for
new fibers to make contact (causing the slider to halt) may increase with the
normal force. For slip events (experiment B), the low density of gripping fibers
may cause the varying normal force to have a less dominant halting effect.
Increasing the normal force should rather result in that a greater number of
fibers actually hook on to the slider before the events and therefore causing
greater event magnitudes. This is not an explanation of the observed effect, but
mere a suggested factor that can cause this effect, namely the type of surface
that is used. It would therefore be interesting to perform the same experiments
with other types of surfaces (such as paper, silicon, metals etc.) to test whether
the different observed trends in Figures 4.15 and 4.16 are not just special for
“friction” in the carpet experiment.

In Figure 4.15 and 4.16 we selected the largest event magnitude from each
experiment. To test whether the observed trend in these figures is just a co-
incidence, or just an effect of how many event there were in the experiment,
we divided each experiment into shorter segments and then found the average
maximum event magnitude in these segments. In Figure 4.17 we have plotted
the average maximum event magnitude in segments of duration 0.5 hours (left)
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and 8 hours (right), as a function of normal force. From these figures we see
that the trend observed in Figure 4.15 is preserved irrespective of the length of
the segment, and that the average maximum event magnitude increases with
the length of the segment. In Figure 4.18 we have plotted the average maximum
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Figure 4.17: The mean maximum event magnitude within segments of duration 0.5

hours (a) and 8 hours (b), as a function of the normal force (for experiment B). We see

that the trend seen in Figure 4.15 is preserved for both lengths of the segments. The

vertical bars represents the standard deviation of the maximum event magnitudes.

event magnitude as a function of the length of the segment, for three different
normal forces. We see that for segment longer than about 4 hours, the average
maximum event magnitude levels of. It is possible that we could fit a tanh t/t∗

function to the data, and from that estimate a characteristic time, t∗, of the
system. However, this has not been explored.
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Figure 4.18: The mean maximum event magnitude as a function of segment length

plotted for three different normal forces. We see that for segment longer than about 4

hours, the average maximum event magnitude levels of. Note, that the data sets have

been scaled in order to fit into the same plot: the 0.3kg set has been multiplied by 5,

and the 1.0 kg data set has been multiplied by 3.
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The effect of varying the sandpaper grain size

One would guess that by increasing the sandpaper grain size, the slider would
get a “better” grip to the carpet, but how will this alter the event magnitudes?
We have performed several experiments where the sandpaper rating (average
grain size) is the only parameter that has been varied. Sandpaper coarseness is
rated according to an industry convention defined by FEPA (Federation of Eu-
ropean Producers of Abrasives).10 The mean size of the grains on the sandpaper
decreases with the characteristic number. That is, for sandpaper 180, the mean
grain size is 82 µm, while for sandpaper 60, the mean grain size is 269µm. The
four coarseness ratings used in the experiments are 60, 80, 120, 180.

In Figure 4.19 we have plotted the probability densities of the event magni-
tudes for different sandpaper ratings for experiment A. From the figure it looks
as if the slope of the power law (β ∼ 1.65 ± 0.05) is unaffected by the sandpa-
per coarseness. In Figure 4.20 we have plotted the maximum event magnitudes
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Figure 4.19: The probability densities of event magnitudes for experiment A, where

the only parameter varied is the sandpaper coarseness. The sandpaper ratings are listed

in the legend, and these values are proportional to the average grain size. Varying the

sandpaper coarseness does not seem to have any effect on the exponent β. The value

of β is 0.65± 0.05 as in the earlier reported values of β for experiment A. Except from

the experiment with sandpaper 60, the maximum event magnitude increase with the

sandpaper grain size, that is, decreasing sandpaper rating (see Figure 4.20 for more

details).

10For details see http://www.fepa-abrasives.org/fepap-e.htm
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for different sandpaper ratings, and we see that the maximum event magnitude
increases roughly with decreasing sandpaper rating. In principle, increasing the
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Figure 4.20: The maximum event magnitude is plotted for different sandpaper ratings.

We see that the maximum event magnitude decreases when the sandpaper rating

increases. However, this is not true for rating 60, where the maximum event magnitude

is seen to be lower than rating 80. We have no reasonable explanation for this effect.

coarseness increases the number of asperities, and the quality of their “grip”
on the opposing surface – that is, the threshold of total strain that is toler-
ated before a release happens. On the other hand, a smaller average grain size
would grip less effectively onto the “fiber bundles” that make up the surface
in experiment A. In Figure 4.20 we see that the maximum event magnitudes,
for experiments with sandpaper rating 60, are less than in the data set from
sandpaper rating 80. This deviation from the trend is not a statistical coinci-
dence: when performing the same plot, but averaging over different length of
the segments, we obtain the same deviation independently of the length of the
segment. An explanation for this effect is not clear. We have not performed a
variation of the sandpaper rating for other surfaces than in experiment A. It
would also be interesting to see how the maximum event magnitude depends on
the roughness of other surfaces, such as paper, silicon, rock and metals. These
questions remain to be answered in future projects.
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The effects of varying the elastic properties of the pulling
string

We have also studied the effect of varying the elastic properties of the nylon
string (fishing line) used to pull the slider. Stick-slip motion is normally damped
by using a “stiffer”, or less elastic loading apparatus. This effect is illustrated in
figure 4.21, where the stick-slip motion resulting from a paper-on-paper system
is plotted for different values of the stiffness of the system (labeled K in the
figure). The spring elongation, which is proportional to the pulling force, is
labeled ∆x in the figure. One can see from the figure that the amplitude of

Figure 4.21: The force, which is proportional to the spring elongation ∆x, required

to pull a paper on paper is plotted for different pulling spring stiffness K (slider mass

(M) and velocity are kept constant). The event magnitudes decrease with K, while

a rounding of the signal increases with K. That is, the duration time of the event

magnitudes increases with K. The figure is taken from [14].

the stick-slip motion decreases by increasing the force constant K (M is kept
constant). This happens because Hooke’s law states that the friction force (Fc)
to be reached before triggering of an event, is Fc = K∆x, and therefore

∆x =
Fc

K
. (4.28)

Assuming that Fc is constant and independent of K we can rationalize the
decreasing stick-slip amplitude as seen in Figure 4.21. There is a problem with
the last assumption: for constant driving velocity, the time of static contact
(stick) between two surfaces decreases with K. This will cause Fc to decrease
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with increasing K since the static friction is often observed to be dependent on
the time of contact (see equation (2.6)). However, in our experiments the mean
value of the pulling force before events are triggered does not depend on K ′ and
is fairly constant, and therefore the static aging of the contact is guessed to play
a minor role.

In Figure 4.22 we have plotted the event magnitude PDF’s for different
lengths of the pulling string (see the legend in the plot). Note that the basic
configuration is experiment A, but that the string thickness is 0.9mm instead of
0.6mm as described on page 33. This change in the diameter of the string did
not affect the validity of the power law nor the value of the coefficient β (for the
longest string), but the maximum event magnitude was reduced compared to
the experiments with a more elastic string (see for example Figure 4.16 (0.5kg)
where a 0.6mm in diameter string is used). For shorter string lengths we see that
there is a “rounding” of the power law and that the maximum event magnitude
decreases with decreasing string length.

In Figure 4.23 we have plotted the maximum event magnitudes as a function
of the force constant of the pulling string. We assume that the inverse of the
length of the string is the effective spring constant, K ′, of the pulling string. We
see from the figure that the maximum event magnitude decrease approximately
as 1/K, as described in equation (4.28).
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Figure 4.22: The event magnitude (x) probability density, p(x), is plotted for different

values pulling string length (experiment A). The elastic string used in these experi-

ments has a diameter of 0.90 mm (0.60 mm is the standard in experiment A), and

a varying length from 1m to 5cm (see legend). For the experiment with the string of

length 1m, p(x) is a well defined power law with β ∼ 1.65±0.05 (the slope of the thick

solid line). For shorter strings, we observe that there is a “rounding” of the distribution

and that p(x) no longer is a well defined power law.
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Figure 4.23: The maximum event magnitude as a function of the inverse of the length

of the pulling string (assumed to be the effective spring constant of the pulling spring).





Chapter 5

A numerical model of event
triggering and propagation.

In this chapter we describe a simple model for the stick-creep motion (SCM)
that we observe in the carpet experiment. Previous studies have described the
carpet as a quasi-elastic medium [7], so that avalanches of slipping asperities
are propagated mainly through a process of local force redistribution. Our own
experiments using the Feder-Feder (the carpet experiment) apparatus indicate
that avalanches in this sense probably do not occur. Instead, we suggest that
the medium is effectively rigid, and that all of the important consequences of
a local slip are communicated by the rigid slider in a global perturbation. For
a narrow range of realistic parameters, our own “hooked-spring rigid-medium”
model produces a power law distribution for event sizes that spans several orders
of magnitude, and which has an exponent α ∼ 0.66 that corresponds to what
is measured for surfaces in which only SCM is observed (see Figure 4.1). An
analytical solution to a similar model has been proposed in [48], where they
calculate a value for α = 1/2.

Computational models have been proposed for friction phenomena in a va-
riety of experimental contexts [17, 49, 20, 7, 12, 50, 25]. It has been shown that
the elastic properties of the interacting materials will often play a hugely im-
portant role in the dynamics of sliding friction [4, 10]. It is nevertheless possible
to find materials for which the elasticity of the medium between the asperities
is unimportant. In particular, there are materials for which the individual as-
perities are far more elastic than the supporting medium. In such cases, if the
opposite sliding surface is sufficiently rigid, then its motion will communicate
globally and almost instantly the important effects of a single slipping asperity.
We suggest that the carpet surfaces used in the carpet experiment belong to
this category.

This category of systems can be described as a limiting version of a spring-
block model, shown in Figure 5.1 [25], where kc >> kl. This limiting case can
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Figure 5.1: A schematic view of a spring block model, from [25].

also be viewed as a fiber-bundle model, with equal load sharing rules [51, 52] 1.
Both spring-block [25] and fiber-bundle models [52] are known to exhibit clear
signs of belonging to the class of SOC-systems.

5.1 The SCM model

In this section we describe a model in which the elastic properties of the sup-
porting medium (mat) of the carpets are ignored. We have called into question
the assumed quasi-elasticity of the carpet mat for several reasons. First, we have
observed that even carpets with a very rigid mat, such as the surface used in
experiment A, can exhibit power law behavior for slip magnitudes (Figure 4.1
and 4.3), a behavior that was thought possible only for relatively elastic mats
[7, 10].

In the experiments we observe a very clear difference in the exponent of
the power law for different carpets, however, this difference can be ascribed
to many properties aside from just the elasticity of the mat: for example, these
include the elastic properties of the fiber-loops, the arrangement and orientation
of these loops, and roughness in the elevation of loops, etc. Moreover, some
carpets exhibit only stick-creep motion (SCM), in which the slider moves only
by stretching the fibers that are momentarily attached, at times stopping totally,
and others exhibit a combination of SCM and stick-slip motion, SSM, during
which all fibers become detached and the slider glides across the surface. These

1see Figure 5.2 for schematic view of SCM model.
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two kinds of surfaces, used respectively in experiment A and B, have been shown
to exhibit different exponents (compare Figures 4.1 and 4.3).

The model that we propose in this section is meant to describe SCM in
carpets for which only this kind of behavior occurs, however, it has implications
for the understanding of SSM also. That is, the model can be used to understand
the mechanism that triggers SSM events, because, as mentioned, that kind of
motion occurs whenever all asperities have slipped (see Figure 5.5). (N.B. in the
following discussion, the word “slip” will often refer to the “release” of individual
asperities, which is of course a basic mechanism in both stick-slip (SSM) and
stick-creep motion (SCM).)

As mentioned, if all of the attached asperities have slipped, the slider then
glides across the surface until it is halted. The mechanism for halting SSM
events is discussed in the next section 6. In SCM, it never happens that all
asperities have slipped, and events develop and terminate without causing any
rapid motion of the slider.

The FF [7] and OFC [25] models describe a friction interaction in quasi-
elastic media, and therefore posit a primarily local redistribution of force when-
ever a single asperity has slipped. These models therefore predict an avalanche-
like propagation of slips. These avalanches form contiguous “domains” that con-
nect the asperities involved in SSM and SCM events. Our experimental obser-
vations suggest that slipping events probably do not occur in this way. In SCM,
we observe that the sound of consecutive slipping events for individual asperities
can originate from all portions of the region that is beneath the slider. Moreover,
an infrared camera was used to identify the [slightly hotter] asperities involved
in large SSM events on carpets for which this kind of motion dominates. It was
found that regions involved in SSM events are not contiguous at all. Instead, the
slipping asperities are normally isolated, and they are distributed throughout the
region that was in contact with the slider (Figures 3.27 and 3.31). It should be
acknowledged, however, that these images were not obtained in an experiment
for which the slider velocity was slow enough to produce a power law distri-
bution of event magnitudes. Also, it must be acknowledged that some surfaces
are far more rough than others, so that neighboring fibers are not necessarily
gripping on the slider. Thus, for many surfaces we cannot expect contiguous
domains to appear in the infrared images because the gripping asperities are
not themselves connected. The idea of using a grid as a contacting surface (as
in Figure 3.27) is does not necessarily give the right dynamics of the sliding.

5.2 A detailed description of the model

The hooked-spring rigid-medium model that we propose for SCM in the carpet
experiment is illustrated in Figure 5.2. The fiber-loop asperities are represented
as hooked springs that are fastened at the base to a rigid plane. The slider
is represented by a rigid plane that is dotted with inelastic attachment sites
(analogous to the sand grains on the sandpaper). In the calculation, N springs
are represented by elements in a list, having a strain ε, and a strain-threshold

101



εth. In the first time step, some elements are assigned a small initial strain εi, as
well as a strain-threshold εith

that represents the robustness of their grip on an
attachment site in the opposite surface. Both quantities are chosen according to
a uniform distribution. If a spring is not gripping, then its strain is 0.

In each macro-step, the strain on all of the gripping springs (Ng in total)
is increased by a constant amount of strain ν divided evenly between gripping
springs:

εi → εi + ν/Ng, ∀εi > 0. (5.1)

If an individual spring εj exceeds the strain threshold that was assigned to its
current grip (we assume that ν is so small, and εth so large that only one spring
exceeds its threshold at each macro-step), then its strain is set to zero (not
gripping):

εj → 0, ∀εj ≥ εjth
, (5.2)

and some fraction υ of this strain is redistributed evenly to all gripping springs
simultaneously:

εi → εi +
υεj

Ng − 1
, ∀εi > 0. (5.3)

This process is repeated within a so-called micro-step until the consequences of
all slips have been calculated, and the slipping has stopped (this represents the
end of a single SCM or “creep” event). Also, in each micro-timestep, each non-
gripping spring is given a chance to grip again, based upon some constant and
uniform probability. The total force needed to pull the slider (top layer in Figure
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Figure 5.2: Schematic of a one-dimensional cross-section of the hooked-spring rigid-
medium model. The slider (top) is here shown moving to the right.

5.2) is then proportional to the sum of the strains of all the gripping fibers. The
event magnitudes are then calculated according to the scheme described on page
28.

5.3 Simulation results

The model exhibits several behaviors that are consistent with what is observed
for surfaces exhibiting only SCM in the carpet experiment. For a narrow range
of realistic parameter values, we obtain power law behavior in the cumulative
probability distribution and the density function for event magnitudes (Figure
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5.3). The model produces exponents between -0.75 and -0.65 for the longest
power laws that so far have been obtained, spanning about three orders of
magnitude in event size and probability. The exponents obtained in our exper-
iments for SCM-dominated carpets are within this range (compare Figures 5.3
and 4.1). Plots of creep event magnitude versus creep event number as well as
total-strain-in-time are qualitatively similar to what is observed for experimen-
tal data (where instead the applied force is measured).

In experiments we sometimes observe an unusually steep rise in tension after
massive events, and this is observed in the model also. It is incorrect, however, to
make a direct comparison between these observations. In the model, this feature
can be ascribed to the effect of many asperities re-gripping suddenly. That is,
the effective spring-constant of the total carpet surface is changed suddenly, and
the overall strain and resisting force rises sharply (see Figure 5.4). The events
that exhibit this feature in the experiments are probably not SCM events at all.
Normally this feature is observed at the end of SSM events, and this probably
represents the stretching of asperities that have halted the slider motion, and
which have a larger effective spring constant than the nylon string (and hence
cause a steeper rise in the strain gauge measurements). Once these fibers have
stretched to nearly their limit of strain, the usual slope resumes, which reflects
the stretching of the nylon string.

The model predicts that for even large numbers of springs (for example,
100), it can happen that all of the springs let go in the course of a single event.
This represents the onset of stick-slip motion – the ”triggering” of a stick-slip
event. When all the springs have lost their grip, the slider is free to move and
is halted by a separate mechanism that is described in the next section. Figure
5.5 shows a calculation in which all of 100 springs lose their grip within a single
macro time-step.

Finally, the spatial distribution of asperities involved in major SSM and
SCM events is consistent with the infrared observations shown in Figure 3.27.
That is, these asperities do not form contiguous domains, and they are instead
isolated from one another.

The shape of the slip distribution is apparently not sensitive to the initial
conditions or to the probability that individual springs will grip again. The
distribution of slips is very sensitive to the fraction υ of force that is redistributed
to other gripping springs after a single spring has slipped. It is difficult to guess
exactly what this quantity should be. Since we posit that the effects of each
slip are communicated almost instantly to all gripping springs by the slider, we
expect υ to be not far from 1, the conservative case. The model in [7] is based on
nearest-neighbor interactions, but it also takes into account that when a loop in
the carpet loses its grip not all the force is transferred to the neighboring loops.
Force is not conserved. Our model, with υ ∼ 1 represents therefore the extreme
non-conservative case for a rigid mat in the Feder-Feder [7] model.

In figure 5.7 (top) we show how the distribution changes for values of υ in a
range from 0.85 to 1.0. That is, the distribution changes from a rounded shape
to a power law, and then to a “bent” distribution. All three shapes are observed
in our experiments, for different configurations (Figure 5.7 (bottom)).
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It is unclear how exactly the model parameters should vary with normal
load. The number of asperities or effective contact area should increase with
increasing load, however, the effect upon υ is not known. Changing the number
of asperities alone does not indicate the trend observed in our experiments.
That is, in our experiments there is almost no change with decreasing load,
until some critical load is reached, after which there is shallowing and rounding
of the distribution; the high-magnitude cut-off also decreases with decreasing
load (see Figures 4.14 and 4.13).

5.4 Conclusions from the model

In summary, the hooked-spring rigid-medium model is a promising description
of the stick-creep motion (SCM) that we observe for some carpets in the carpet
experiment, as well as the triggering of stick-slip motion (SSM) events (when
all springs are released). We have plans to extend this model to incorporate
stick-slip motion, which occurs whenever all asperities are released in a single
event (see next section). The model could be extended to incorporate the effects
of the slider moving into regions with different numbers of asperities. We hope
that this will help us to account for features in the experimental results that
are not yet explained. These include, for example, the “clustering” phenomenon
observed in plots of creep magnitude versus creep number (Figure 4.12 (a)).

Finally, the model and the experiment illustrate that power law behavior
can be observed in non-equilibrium systems for which system-wide communi-
cations occur automatically, by means of a global perturbation, and not as the
consequence of a self-organizing process.
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Figure 5.3: Results from the hooked-spring rigid-medium model. Probability density
(bottom) function p(x) for the magnitude of events in an interval x+dx, with exponent
β = 1.62(±0.03) . The cumulative distribution (top) for event magnitude X > x (the
exponent is α = 0.66± 0.03). The exact parameter values used for this calculation are
supplied on page 163, after the source code for the model in appendix H.
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Figure 5.4: Vertical jumps that represent the re-gripping of asperities after massive
events, seen here in the total strain versus time for the model calculation (top) and the
total applied force versus time for the experiment (bottom). In the case of the exper-
iment, however, this feature is probably the consequence of the asperities stretching
after halting the motion of a stick-slip event. (see text)
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Figure 5.5: This plot shows a triggering of a stick-slip event in a simulation, in which
the total strain on all asperities drops to zero. That is, all asperities release their grip
on the slider, so that it moves rapidly over the surface. The mechanism for halting
stick-slip events is described in chapter 6.
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Figure 5.6: Cumulative distribution of event magnitudes x at different values of ν in
the model calculation. We observe a shallowing and shortening of the power law as ν
increases (from bottom to top of the plots).
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Figure 5.7: Cumulative probability distribution of event magnitudes (simulation) for
υ = 0.85 (- -), υ = 0.94 (–), υ = 0.97 (− · −) (top). An example of the “bent”
distribution that is sometimes observed in our experiments (bottom). This experiment
was carried out on a surface with very low density of loops, and where the loops were
relatively thick (a doormat). This shape of the distribution is characteristic for this
kind of carpets.





Chapter 6

A numerical model for
halting events in stick-slip
motion

We have defined stick-creep motion (SCM) as motion that occurs by stretching
looped fibers that have attached to the grains on the rigid slider. In SCM,
at least one fiber is gripping on the slider at all times. This kind of motion
is called stick-creep because the slider often halts totally (becomes stuck). In
our experiments using the Feder-Feder apparatus, we have encountered surfaces
on which only this kind of motion occurs (experiment A). On the majority of
surfaces, however, we observe also a second kind of motion, that we call stick-
slip motion (SSM). Slipping motion occurs whenever all fibers lose their grip on
the grains in the slider. The tension in the nylon string then causes the slider
to slide over the surface of fibers until the motion halts again. SCM events
last much longer than SSM events, although they have comparable magnitudes.
There are two mechanisms for halting this motion, and we shall describe them
in the following discussion.

6.1 Separating slips from creeps

So far we have supplied a qualitative definition of SSM and SCM that is based on
the physical processes that govern the motion. We now propose a quantitative
definition that can be used to distinguish these two kinds of motion in our
experimental results. As we have mentioned already, in SCM we find that the
event lifetimes are a power law function of the event sizes and that this power law
spans three orders magnitude (see Figures 6.1 and 4.7). For the vast majority of
surfaces we find a combination of SSM and SCM. In this combined behavior we
expect the SCM events to be slowest (lasting longest), since the slider in that
case moves only by stretching the attached fibers. Therefore, we can expect
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the SSM events to always lie below the power law that appears in Figure 6.1,
indicating that they are relatively fast. Indeed, in experiments exhibiting the
combined behavior we find many events that lie below this line. Our quantitative
definition for SSM, therefore, is that SSM events of magnitude m (in V) and
duration time λ (s) obey approximately the following rule:

λm−0.65 ≤ 103.8V. (6.1)

For one surface used in a large number of experiments we find that a small
fraction of events, about 1 %, are SSM events. Figure 6.2 (top) shows a typical
plot of individual event duration time versus magnitude for an experiment in
which a combination of SCM and SSM occurs. A line is drawn that corresponds
roughly to equation (6.1). A histogram of magnitudes for the events below this
line is shown at the bottom of figure 6.2. Since the broad base in the lower left
of the duration time vs. magnitudes plot in figure 6.1 probably contains only
SCM events, and since this broadening appears also in the equivalent plot for
SSM motion shown in Figure 6.2, we conclude that equation (6.1) applies only
“roughly” in the low-magnitude regime. In Figure 6.3 we have drawn two lines
to separate the SSM and SCM events. The distribution of magnitudes for the
events below these lines is shown in the bottom-left of Figure 6.3. The same
procedure was conducted for several experiments, and the histograms of SSM
event magnitudes are shown at the bottom of Figure 6.3. Note that there is a
rise in the number of SSM events toward the high magnitude regime.

Whereas we have shown that the magnitudes of SCM events clearly follow
a power law distribution spanning several orders, from these figures it is clear
that SSM event magnitudes do not follow a power law, but rather a distribution
more like a Gaussian.

It has been suggested that power law distributions of event magnitudes in
friction motion indicate that slowly-driven friction is a self-organized critical
(SOC) process, such as occurs in other systems that are very slowly driven from
their equilibrium states (see section 2.5). We suggest that this may in fact be
the case in the context of SCM, where the triggering and comparatively slow
propagation of events are perhaps a manifestation of self-organized criticality.

On the other hand, the magnitude of SSM events depend mostly upon the
process that arrests the motion of the slider – a process that occurs over com-
paratively short time scales. It should not be surprising, therefore, that SSM
does not exhibit evidence of self-organized criticality. In their original paper re-
garding the experiment [7], Feder and Feder did not make a distinction between
stick-slip and stick-creep, and so it is not known which kind of motion was more
prevalent on the surfaces they examined.

A successful model for SSM in the Feder-Feder apparatus (carpet experi-
ment) should anticipate roughly the distributions shown in Figures 6.2 and 6.3.
In particular, it should anticipate a clustering of events in the high-magnitude
regime, with a small number of events in the middle range of magnitudes. The
distribution in the low-magnitude regime is unclear, since this may overlap with
the low magnitudes of SCM motion, as discussed earlier.
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Figure 6.1: Event duration time vs. magnitudes in stick-creep motion. About 50, 000
events are plotted individually (no averaging in contrast to Figure 4.7). The banding
in the lower left of the plot is a consequence of limiting measurement resolutions in
time and magnitude (the event below the noise threshold have not been sorted out).

6.2 The SSM halting model

In the remainder of this chapter we shall develop a simple model which may
account for the manner in which the SSM events are halted, and therefore also
the distribution in magnitudes of SSM events.

An “analytical” expression for a slip

First let us consider a simple system in which a slider with mass m is pulled by
the tension of a stretched nylon string with an effective spring constant knl along
a smooth rigid surface. The string is initially stretched an amount xnl from its
equilibrium length. In the simplest case, the motion of the slider is opposed only
by a constant friction term Ffr.1 The equation that governs the displacement x

1As discussed in section 2.4 this friction term is a function of velocity.
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Figure 6.2: Top: Event duration time vs. magnitudes in an experiment that exhibits
a combination of SSM and SCM. A line is drawn that corresponds roughly to equation
(6.1). Bottom: A histogram of event magnitudes for events below the line drawn
above.
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Figure 6.3: Top: Event duration times vs. event magnitudes in an experiment that
exhibits a combination of SSM and SCM. The magnitudes corresponding to the events
below the two lines are SSM events, and a histogram of these magnitudes is plotted
below at the far left. Bottom: Histograms of SSM event magnitudes for several exper-
iments, chosen according to the scheme shown above. The plot at the left corresponds
to the experiment whose events are shown above. The other are taken from a separate
experiment.

of the slider from equilibrium is just:

mẍ = knl(xnl − x)− Ffr. (6.2)
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Letting α ≡ knlxnl − Ffr, and ω ≡
√

knl
m , equation (6.2) becomes:

ẍ + ω2x =
α

m
. (6.3)

If ẋ(0) = 0 and x(0) = 0 the solution is given by:

x(t) =
α

k
(1− cosωt). (6.4)

The motion stops at a time τ when the velocity becomes zero, ẋ(τ) = 0. The
duration time τ and the total displacement ∆x (a measure of the event magni-
tude), are given by:

τ = π

√
m

knl
, (6.5)

∆x = 2(xnl − Ffr

knl
). (6.6)

Not surprisingly, the event magnitude (proportional to ∆x) depends on the
microscopic friction, the elastic properties of the nylon string, and the amount by
which the string was initially stretched from its equilibrium length (where knlxnl

is greater than the force of static friction on the slider). The event duration time
τ , however, depends only on the slider mass and knl. Therefore, if this simple
model were correct, then all events measured for a single experiment with the
same mass and nylon string would last the same amount of time. Of course
we know that this is not true, and therefore clearly another mechanism aside
from microscopic friction is needed to account for the halting of the slider in the
carpet experiment.

We suggest that a moving slider is stopped by two processes. First, the elastic
fiber loops occasionally become attached to grains in the slider and can snap
or otherwise let go. If the slider velocity is small enough and the attachments
are strong enough, then the attached loops can halt the motion of the slider.
The second mechanism is the microscopic friction that was just illustrated, and
which occurs between the unattached fibers and the slider. If no fibers become
attached to the slider, then this microscopic friction can halt the slider’s motion.
In the absence of this microscopic friction, the tension in the nylon string could
disappear totally and the slider would continue moving at a constant velocity.
In our model, the microscopic friction is represented by a constant term, even
though in reality it has been shown to have a velocity dependence (see text in
section 2.4, and Figure 2.8).

First we provide a general description of our model, and then we list all of
the steps in the algorithm used to process each time step. All parameters and
variables in the model are listed in Table A.2. Note that variables whose values
change in time are represented as functions of tn, where tn represents the time
at time-step number n.

116



A detailed description of the halting model

The model consists of a rigid slider that is covered with small attachment sites,
and a rigid surface that is covered with hooked springs that may hook onto
(become attached to) the attachment sites on the slider. There is a net force F
pulling on the slider at the start of the event, supplied by tension in the nylon
string, given by knlxnl. All quantities are positive in the direction of motion, and
xnl is the amount by which the nylon string is stretched from its equilibrium
length. Changes in velocity and position are calculated at the beginning of each
time step based on the current value of the net force F . Initially there are no
springs attached to the slider2 (Ngrip = 0), so that the total force is just the
nylon spring tension minus the constant microscopic friction force Ffr.

A list is maintained of Nhs springs and their displacement-from-equilibrium-
lengths (that is, xi for i = 1, 2, ..., Nhs). In every time step, each of these has
an equal probability of becoming attached to the slider, given by pgrip. If the
displacement-from-equilibrium-length xi of spring number i that happens to be
attached (so that xi > 0) exceeds the maximum allowed length δxmax, then this
spring releases or snaps, so that once again xi = 0. The force is re-calculated at
the end of each time step as the sum of the nylon string tension, the microscopic
friction, and the sum of tension in all of the Ngrip attached springs. In what
follows, the steps in the algorithm for processing each time step are listed in
detail. Before the motion begins, x(0) = 0, v(0) = 0, Ngrip(0) = 0, and F (0) =
knlxnl − Ffr.

1. The velocity and position are calculated from the force in the previous
time-step, n− 1:

v(tn) = v(tn−1) +
1
m

F (tn−1)δt (6.7)

x(tn) = x(tn−1) + v(tn)δt. (6.8)

2. Then, for each spring i of Nhs springs that are allowed to grip:

• (a) if xi(tn−1) = 0 (that is, not attached), then a random number
R ∈ [0, 1] is chosen. If R > 1 − pgrip then xi(tn) = v(tn)δt (that is,
now attached).

• (b) If instead xi(tn−1) > 0 (that is, attached), then xi(tn) = xi(tn−1)+
v(tn)δt. However, if xi(tn) > δxmax (that is, spring snaps) then we
set xi(tn) = 0.

3. The force is then updated as follows:

F (tn) = knl(xnl − x(tn))− Ffr − khs

Nhs∑

i=1

xi. (6.9)

4. The total time is updated: tn+1 = tn + δt, and the next time step begins.
2Remember, this is the definition of a slip in SSM.
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Simulation results

Plots showing the behavior in time of the velocity v and position x of the
slider, as well as the force F on the slider and the number of gripping springs
Ngrip are displayed for a typical calculation in Figures 6.4 - 6.7. The force and
velocity decline sharply whenever a spring manages to grip on the slider. Nearing
half the total duration of the event, the slider’s inertia overwhelms individual
springs that attach and let go, and the motion continues. The velocity eventually
reaches a maximum value, after which the microscopic friction force overwhelms
the string tension, and the slider begins to slow down. When one or two springs
manage to grip in this low-velocity phase, they are more likely to maintain their
grip and halt the motion (as happens in this case). It is of course possible for
several springs to become attached in the high-velocity phase, and of course the
motion is more likely to stop also in the low-velocity phase at the start of the
motion.
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Figure 6.4: Force in time for a calculation with the following parameter settings:
m = 0.0001, δt = 0.0001, pgrip = 0.002, Nhs = 5, khs = 100.0, knl = 0.05, xnl = 12.0,
Ffr = 5.0, δxmax = 0.05. Other plots for the same calculation are shown in Figures 6.5
through 6.7. Sharp negative excursions represent individual springs attaching on the
slider, and in the first several cases these subsequently lose their grip or break.

We have plotted histograms of 10 000 event magnitudes for constant xnl

and for different values of the gripping probability pgrip These magnitudes are
measured in terms of total slider displacement, which is proportional to the
net change in the nylon string tension (which in the experiment is inferred from
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Figure 6.5: Velocity in time for the same calculation as shown in Figure 6.4 (see the
corresponding caption for parameter settings). Sharp negative excursions represent in-
dividual springs attaching on the slider and then losing their grip. The velocity reaches
a peak and then begins to diminish when the nylon string tension is overwhelmed by
the microscopic friction term. In the low-velocity regime near the end of the event,
two springs become attached and remain attached and halt the motion of the slider.

the strain gauge measurements). These histograms are shown in Figure 6.8. The
exact values of pgrip that are used to produce histograms of these shapes depend
upon the values of other parameters such as the slider mass m, the number of
springs Nhs, and the starting force value F (0) (these values are supplied in the
caption to Figure 6.8). When pgrip is too small, nearly all events are halted by
microscopic friction, and there is a tall and narrow distribution of events in the
high-magnitude regime. On the other hand, when pgrip is too large, barely any
events are able to surmount the first low-velocity phase. That is, if the gripping
probability is too high, then all events are halted before the slider is able to
accelerate very much. If pgrip is somewhere between these two extremes, then
the situation resembles our experiment, in which the microscopic friction and
the hooked springs combine to halt events of all magnitudes.

The model is able to reproduce the cluster of high-magnitude events observed
Figures 6.2 and 6.3. Notice that in the range of values for pgrip that is relevant
to our experiment, there is also a cluster of events in the low magnitude regime.
Recall that when we count all events that obey equation (6.1) in an experiment,
such as was done in the case of Figure 6.2, we observe a cluster of low-magnitude
events for SSM in the experiment also.
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Figure 6.6: Slider displacement in time for the same calculation as shown in Figure
6.4 (see the corresponding caption for parameter settings).

The model is able to confirm the important qualitative features of the event
magnitude distributions that are observed in experiments. Recall, however, that
we obtain this distribution for a single value of xnl. That is, the starting force
value F (0) is constant in these calculations.

The starting force values in reality (from experiments) follow an approx-
imately Gaussian distribution. So far we have not tried selecting xnl from a
Gaussian distribution, however, we expect that this will have the effect of smear-
ing the distribution in magnitudes and duration times. Moreover, when this step
is taken, it may be interesting to plot the individual event duration times versus
individual event magnitudes, where this might be expected to resemble what is
found in experiments.

In sum, we have shown that the distribution in magnitudes observed in
stick-slip motion (SSM) does not follow a power law distribution, and instead
exhibits clustering in the high-magnitude regime. Moreover, we have presented
a simple model that suggests a mechanism for the manner in which SSM events
might be halted, and which reproduces an event magnitude distribution that
is similar to what is observed in experiments. The MATLAB source code for
this model is listed in Appendix E, with some of the variable names changed.
There are several improvements that should be undertaken in the future. First,
the gripping probability pgrip is constant in the model, although in reality it is
a function of time and velocity. In particular, we expect that this probability is
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Figure 6.7: Number of attaching springs in time for the same calculation as shown in
Figure 6.4 (see the corresponding caption for parameter settings).

inversely proportional to the slider speed.
Finally, one may speculate about the relevance of this model to the case of

microscopic friction. In that case, one might imagine a much larger number of
hooked springs representing atomic asperities (that is, in our calculations we
normally use around 20), and the microscopic friction force would of course
be omitted. For this last reason alone, one could expect the behavior to be
very different. That is, in the microscopic case, halting of the motion would
be accomplished by scores of hooked springs gripping and snapping, and there
would not be a constant force term opposing the motion.
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Figure 6.8: Histograms of SSM event magnitudes for several calculations. For all
of these calculations, the following parameters have the same value: m = 0.0001,
δt = 0.0001, Nhs = 5, khs = 100.0, knl = 0.05, xnl = 12.0, Ffr = 5.0, δxmax = 0.05.
From left to right, the values of pgrip are, respectively: 0.0005, 0.001, 0.00125, 0.0025,
0.005.



Chapter 7

Discussion and conclusions

In this chapter we begin by evaluating of the methods used in obtaining and
analyzing data from the experiments. A discussion regarding uncertainties and
errors in the data and their effect on the general results are presented. We
also discuss possible improvements or changes to the different apparatuses and
methods we have used. Possible conclusions and new hypotheses drawn from our
experiments are discussed in section 7.2. Suggestions for further work related to
the carpet experiment are presented in section 7.4.

7.1 The “quality” of data from experiments

Before we started the experiments, thorough investigations of fluctuations in the
signal were made in order to understand and minimize these. In general, there
are two kinds of errors, systematic and random errors. In section 3.2, where
we discussed the noise in the system, we did not discern between these two
groups of errors and referred to them both as noise. Without systematic errors,
random errors will tend to spread successive readings about the true value of
the quantity. If systematic errors are present the reading will spread about some
displaced value.

Systematic errors might arise because the experimental arrangement is dif-
ferent from that assumed in the theory, and no correction factor is taken into
account. Most of the proposed sources of noise in the experiments, can be cate-
gorized as systematic errors. Methods of reducing these was described in section
3.2. Because our experimental results have been described in a rather qualita-
tive way, uncertainties in the slip magnitudes caused by systematic errors or
random errors are believed to be of little importance. One reason for this is that
whenever we calculate the exponent of the power-laws, we perform the regres-
sion for magnitudes greater than what is believed to be the noise threshold. By
calculating the exponents using both the density function and the cumulative
function we can roughly estimate the value within ±0.05. The main source of
uncertainty in the power-law exponents does not originate from the estimation
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of the probability density or the cumulative distribution, but rather in the range
that we choose to fit the linear regression. The few judgments made on the basis
of different values of the power-law exponents, have been well justified within
this uncertainty.

However, there remain experimental observations that have not been ex-
plained, and which might be related to systematic errors in the experiments.
For example, in most experiments there are clusters where the density (in time)
of low magnitude slips1 is much lower, or higher than in other parts of the ex-
periment. Possible physical mechanisms for this phenomenon were discussed in
section 4.2. A strong candidate for the cause of these effects, is the motor that
is used to pull the slider. A more powerful and robust pulling system should
be a natural upgrade of the experimental apparatus. A linear motor, connected
directly to the elastic string could be a good substitute for the current method
of pulling.

In section 3.3 we described novel methods of recording information from the
carpet experiment. These were: a microphone for recording the sound produced
by the breaking fibers, and an IR-camera for measuring, among other things,
dissipation. It is important to stress that these methods of exploring friction are
only exploratory, and the results that have been presented in this thesis were
only in order to show the feasibility of the methods. Additional improvements
of these methods must be made before they can be used to extract more useful
information. Such improvements will be discussed in section 7.4.

7.2 Strange kinds of friction

Through experiments, observations and simulations we have found that the fric-
tional mechanisms in the carpet experiment can be described through a “hooked-
spring rigid-medium” model. This makes the carpet experiment a rather “hard
to grasp” -analogy to sliding friction, for several reasons:

• In the carpet experiment, the otherwise very complex mechanism of junction-
interactions 2 is replaced by stretching, breaking and re-gripping of nearly
elastic springs (fibers).

• Interactions between the asperities on each surface, that is, between sand
grains and between carpet fibers, are extreme. That is, the interaction
among the asperities is based upon the principle of equal load sharing, a
mean field type of interaction.

• The bulk of the contacting materials is of little importance: only the prop-
erties at the contact interface appear to matter.

On the other hand, our experiments show many of the same properties as sliding
friction do. First of all, the dissipation when an asperity breaks or loosen its

1slips less than the estimated “noise threshold”.
2which in general friction might involve mechanisms such as both plastic and elastic defor-

mation, plowing, adhesion, work hardening, aging, and even the total history of the sliding.
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grip, is easily heard or measured with an IR-camera. As in normal friction, the
real contact area is much smaller than the apparent contact area (as visualized
with the IR-camera) and the normal friction force resisting relative motion,
stems from the details at the interface between the surfaces. The behavior in
the first part of our experiments, namely when the force builds up and then
suddenly drops to a steady state regime, is quite characteristic for normal friction
experiments (compare Figure 2.5 and 3.4).

Other friction experiments

Other stick-slip friction experiments have also found a power-law distribution of
slips using surfaces with similar properties as in the carpet experiment. In [24]
the surfaces have a well defined artificial roughness and elasticity. The roughness
is created by steel spheres (d = 2mm). The spheres are mounted rigidly onto one
surface, and into silicon rubber on the other. The elastically mounted spheres
are allowed to move only in the plane of the surface. Whether the spheres in
silicon can be said to interact on a local or purely global scale is not sure, but
a power-law distribution of slips, with an exponent β ∼ 1.6− 1.8 was reported.
Power-law distributions of slip magnitudes have also been reported for paper
on paper [20] and steel on steel [17], although with a dynamical range of the
power-laws spanning only ∼ 1.5 orders of magnitude. Therefore, it is no doubt
that a power-law distribution of slips is not restricted to the special friction case
in the carpet experiment: it might be that this special property of friction must
be added to the list of refined friction laws on page 18.

Other simulation results

The authors in [20, 24] suggest that the stick-slip dynamics observed on rocks
and paper, is well described by phenomenological state- and rate-dependent
friction model (SRF). That is, at a multi-contact interface (MCI) they use the
revised friction laws (described on page 18) for each contact point. The SRF
model has been extensively validated on very different materials, such as paper
and polymer glasses [49].

The much sited Olami-Feder-Christensen model (OFC) [25], also mentioned
in section 5, is known to produce events that are power-law distributed. The
events (or avalanches) in this model, take place through contiguous domains of
moving blocks. It is known that the power-law exponent of events in the OFC-
model can be tuned by varying the dissipation factor [53].3 It is interesting to
note that in the carpet experiments we are also able to “tune” the power-law
exponent by changing the carpet type. Although we have found power-laws
for only two different types of carpet, we believe it is possible to obtain other
exponents by tuning the surface types. Of great relevance to this, is the fact that
the Guthenberg-Richter law of earthquakes does give a power-law exponent that

3However, this is the case only for certain boundary conditions [53], where there is a
convergence towards a constant exponent for various values of the dissipation factor. Whether
or not the OFC model is critical or not, is also heavily debated.
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is not universal. That is, the exponent b (equation 3.1), is highly dependent on
both the size of the event and its location worldwide. Smaller earthquakes tend
to be described by a smaller value of b, than bigger events do. It is not clear
what decides the value of the exponent, but it has certainly something to do
with the nature of the surfaces in contact. A more systematic study of the value
of β in our experiments might tell us something about the connection between
surface properties and the value of the exponent.

Different classes of stick-slip friction

The statistical distinction we have made between stick-creep motion (SCM)
and stick-slip motion (SSM) (see definition on page 82) has not been extensively
studied by others. These fundamentally different definitions of a slip-event might
represent a way to categorize different stick-slip systems, as we have seen from
the fundamentally different slip statistics of the two systems. Both SCM- and
SSM-systems have been reported, as well as a mixture of these. It would be
interesting to find out whether the reported experiments that produce power-
law distributions of slips [20, 24] consist of SCM or SSM (or a mixture of both),
and whether the temporal aspects of the slips has been investigated. Another
interesting avenue is to explore earthquake data and determine whether there
is a fundamental difference in both the spatial and temporal propagation in
earthquakes, depending on which fault zone is investigated.

7.3 Conclusions

The first aim of this thesis was to reproduce the experimental results obtained
in [7]. Slight modifications to the original experimental setup were introduced,
such as keeping the elastic string at constant length and fastening the carpet
with a double sided tape. Other type of carpets were also explored.

For several surfaces (carpets) we found a power-law distribution of (slip and
creep) event magnitudes, although with a lower exponent β than reported in
[7]. No clear dependence has been found between the value of β and parameters
other than carpet type. For the carpet with the high density of gripping loops
(experiment A) we found β ∼ 1.65 ± 0.05, while for the carpet with the lower
density of loops (experiment B) we found β ∼ 1.45± 0.05. In addition to repro-
ducing the results found in [7], we have also explored the temporal properties
of the events. For surfaces with a high number of gripping points (like experi-
ment A) the distribution of event duration times is equally well described with
a power-law. We have also found that the slips are statistically independent
by calculating the waiting time between the slips. A relationship between the
event magnitude and its duration time has also been found to be described by a
power-law. The value of the exponent for this relation is found to be consistent
with a scaling relation for the joint distribution.

The observed stick-slip motion has been divided into two classes, stick-creep
motion(SCM) and stick-slip motion(SSM), where only systems exhibiting SCM
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(experiment A) or a mixture of SCM and SSM (experiment B) will produce a
well defined power-law distribution of slips.

The broad range of event magnitudes that we observe in our experiments,
can be attributed to a self-similarity, where the friction laws look the same
at different length scales. This self-similarity is expressed through power-laws,
and should lead to a method for scaling experimental data. In the general case
this leads to universal scaling functions – where some predict the real power
lies [6]. By varying parameters such as the normal force, sandpaper rating, and
pulling string elasticity we have investigated how the characteristic length scale
of the system has responded to these perturbations. A data collapse of the event
distributions and possible universal scaling laws has however not been found.
There are two possible reasons why a scaling law of the distributions has not
been found :

• There is too little data. Data from several identical experiments must be
collected in order to obtain a well defined crossover scale. This is necessary
in order to do a data collapse.

• Because of the mean-field character of the system, the finite-size effects of
the system are only visible as a constraint to the maximum event mag-
nitude, and not as a crossover scale to an exponential-like decay of the
power-law.

• The system might simply not be large enough for finite-size effects to be
prominent.

Although no finite-size scaling function of the event distributions has been found,
we have observed how the maximum event magnitude in most cases varies sys-
tematically with the changed parameter, without altering the power-law expo-
nent. This can be taken as a sign that we really observe a finite-size effect and
that a scaling function should be possible to find with more data available. A
further discussion of whether this is the case or not, is out of the scope of this
thesis, but in the next section we propose several experiments with the aim of
exploring this.

By investigating the slips using both a microphone and an IR-camera, we
have gained insight into the fine temporal details, the dissipation and the geome-
try of the slips. Based on observations using these techniques, we have developed
a model of SCM. This model reproduces the experimentally observed results,
not including the temporal domain since this is not included in the model as
yet. We have also produced a model that describes the halting of SSM events.

From the SCM model and our experimental results we have found that sys-
tems that respond globally to a local perturbation might exhibit many of the
same properties as SOC-systems do. We are also the first to report of a power-law
distribution of event duration times in connection with stick-slip phenomena.
Most explanations for the connection between SOC and friction have taken the
form of spring-block models where local interactions are held responsible for the
scale invariance observed in simulations [7, 54, 25]. This lack of local interactions
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in our model and most probably the experiments might supply new insight to
the discussion regarding whether friction can be sufficiently modeled and sim-
ulated without the complex interaction between the contacting asperities and
the rest of the material [50].

7.4 Future projects

Many of the topics, experimental methods, models, and theories presented in
this thesis have, because of limited time and unlimited curiosity, not become
fully developed and explored. A lot of ideas and projects are therefore ready to
be carried on. Some of the projects have already been mentioned in the text,
but we will try to summarize them in this section.

Experimental projects

– Improvements to the experimental apparatus include a bigger and more
stable motor and driving system. A linear motor would be perfect for this
job. A mechanism for avoiding the platform to drift should be added as
well.

– Attempts at finding finite-size effects or crossover scales should be carried
out in a more rigorous fashion. Selecting only a few parameters to be
explored and then run multiple identical experiments (at least 5) to collect
enough data for good statistics, is important. The parameters that should
be varied are:

• The area of the slider
• The normal force
• The slider speed
• The elasticity in the pulling string, for finding a crossover between

power-law and another distribution of slips.

Different strain gauges for higher or lower loads are available at the lab
and should be used to optimize the dynamical range

– We have not conducted experiments at higher pulling velocities to see
if the classical and the refined laws of friction (see section 2.4), that is,
whether velocity weakening and strengthening, is valid with the carpet
experiment.

– Recording the sound from the experiments has proven very interesting, but
because of attenuation of the sound over the slider, several microphones (at
least 3) are needed in order to correctly assign sound amplitudes to both
slip localizations and slip magnitudes. Techniques of real-time filtering out
only the interesting “clicks” (cutting off the background noise) have been
developed, but must be improved if a perfect correlation with the force
readings should succeed.
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– The methods of recording the dissipation with an IR-camera should be
improved a lot, and should be tested on other material combinations as
well.

– Using a slider/sandpaper which is much more elastic in both the plane of
sliding and in bulk could be interesting in connection to the localization
and propagation of slips (and IR recording of them), and how this will
affect the distribution of slips.

– Stick-slip experiments should be carried out with different materials to
explore the validity of the SSM halting model. High speed recording of
both force, audio and IR should then collect very interesting information
about single slips. A high speed video recording would also be interesting
to find out more about the halting mechanism.

Simulation projects

– Find out whether the amount of parameters in the SCM model can be
reduced without a loss of validity.

– Introduce time into the SCM model. In this way the temporal aspect of
the experimental results can be more rationalized and tested. Since there
is no time scale in our SCM model, the effects of velocity and time on
friction, have not been studied.

– The halting model should be explored further, together with the new ex-
periments (see experimental projects).
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Appendix A

List of symbols

Latin

F The friction force
F (t) The pulling force
F ′(t) The derivative of the pulling force
x The event magnitude in our experiments
N The normal force
M Mass of slider and platform (all moving parts in the experiment), page 37
g Gratviational constant
m The seismic moment of an earthquake
b The Guthenberg-Richter exponent
P Cumulative probability function
p Probability density
Aa The apparent area of contact
Ar The real area of contact
K Material parameter for elastic contact
pm Yield pressure of material
pS Shear strength of material
R Radius of adhering sphere
v Sliding speed
k1 Spring constant of the nylon string
k2 Total spring constant of the gripping fibers
k2’ Combined spring constant
k3 Effective spring constant for strain gauge, slider and platform
x1 The elongation of the nylon string
x3 Deflection of the strain gauge
x Position of the slider on the platform, page 37
x∗ Characteristic event scale of the system 68
a Exponent setting the “sharpness” of the cutoff effect 68
ẍ Accelleration of the platform relative to the ground, page 37
v Pulling speed
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v∗ The velocity for which velocity strengthening occur
D0 characteristic slding length for which all contacts have been renewed
t time
f frequency
∆L Change of length in the conductor(strain gauge)
R Resistance of the conductor in strain gauge
Vout/inVoltage in and out of the strain gauge
k Boltzmann constant
T Temperature
∆T Quiet-time allowed between pulses in order to merge into one event (page 51)
rline Thickness of the elastic string
G(x) suitable scaling function
ṅ Average time between events
E Energy stored in an elastic string
Fc The pulling force required for an event to be triggered
K spring constant for measuring device in Figure 4.21
K ′ The effective spring constant of the pulling string in the experiments
∆x Spring elongation in measuring device in Figure 4.21
A Amplitude of ground motion measured with seismograph (page 148)
T dominant wave period from earthquake (page 148)
MS Seismic magnitude
M0 Seismic moment

Greek

µ coefficient of friction (dynamic)
µs The (static) coefficient of friction at the onset of sliding
µk The coefficient of friction while sliding (dynamic)
ε Surface energy in connection with adhesion theory
β Exponent event the magnitude probability density
α Exponent in cumulative event magnitude distribution
τ Exponent in event duration time probability density
ι Exponent in event duration time CDF
κ Power-law exponent for describing the relation between event magnitude and event duration time
ϕ Exponent for describing the power-spectrum in SOC systems
δ Scaling exponent for the joint distribution of event magnitudes and duration time
α Material parameter – adhering properties of material (page 11)
ε strain
σ Slope of F(t) – elasticity in the pulling system
∆f noise bandwidth
φ Examples of critical exponents describing the scaling of the distribution function

131



Abbreviations, SCM-model paramters and descrip-
tion of experimental components

Table A.1: Abbreviations used in the text

Abbr. Description
SSM Stick-slip motion
SCM Stick-creep motion
CDF Cumulative distribution function
PDF Probability density function
SOC Self-organized criticality
FSE Finite Size Effects

Table A.2: SSM and SCM - model parameters and variables

Variable Description
ε Strain in fiber.
εth Strain threshold in fiber.
Ng Number of gripping fibers.
ν Strain update in each macro timestep.
υ The fraction of strain that is distributed to the other fibers.
F (tn) Force on the slider in time step n.
v(tn) Velocity of the slider.
Ngrip(tn) Number of springs that are attached.
xi(tn) Amount by which spring i is stretched from equilibrium length.
xnl Amount nylon string is initially stretched from equilibrium length.
Ffr Constant microscopic friction force.
Nhs Number of asperities that may be attached at a given time.
pgrip Constant probability in time that a single spring becomes attached.
khs Spring constant of the hooked springs.
knl Spring constant of the nylon string.
δxmax Maximum displacement length of hooked springs before snapping.
L Characteristic length of the system
δt Constant time-step size.
m Mass of the slider.
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Table A.3: Details about the components in the experimental setup

Component Description Details
LCL-010 Strain gauge Obtained from Omega, costs about 60$
Metrix AX322 Power supply
Keithley 2002 Multimeter Keithley instruments
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Appendix B

Explorations in sampling
from a power law
distribution

In this section we investigate how the shape of a measured power law distri-
bution is influenced by sample size (number of events) and the presence of a
limiting magnitude (which might for example be the consequence of a finite-size
effect). We discuss some simple calculations that involve sampling random num-
bers from a power law distribution. These calculations demonstrate under what
conditions it is possible to infer accurately the limiting magnitude cutoff (that
is, the largest magnitude) from distributions of measured event magnitudes in
the Feder-Feder experiment.1

Sampling from a power-law

A power law distribution can be sampled using a random number generator
for a uniform probability distribution [46]. Let R represent a random number
chosen from such a distribution, on the interval from 0 to 1. Let us assume a
power law density function that has the form x−b for b > 1. In order to populate
a cumulative distribution of the form x1−b with N points, we must find values
of x for N different values of R. These values for x are thus obtained from the
equation:

x(R) = ((R2 −R1)R + R1)
−1
b−1 . (B.1)

where R2 > R1 and xmin ≡ R
−1
b−1
2 and xmax ≡ R

−1
b−1
1 are the smallest and largest

magnitudes in the desired distribution, respectively (see Figure B.4). First we set
R1 = 0 (that is, xmax → ∞) and plot the cumulative distribution for different
values of N , where b = 3

2 (see Figure B.1). It is clear from these plots that there

1We have later learnt, and confirmed, that the results we have found in this section are
very well described by a “branch” of statistics called “Order statistics”.
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Figure B.1: Sampled cumulative distributions (loglog scale on axis) with no high-
magnitude cutoff imposed, for different values of the sample size N .

is no obvious transition to a different behavior in the high-magnitude regime.
Instead, the distribution extends in a straight line as the value of N increases
(with some noise amid the highest magnitudes).

In reality there is always a high-magnitude cutoff that “feels” the size of the
system. That is, in the real world R1 > 0 and xmax is finite. We are interested to
find the difference between a measured cutoff (the largest value obtained) and
the imposed high-magnitude cutoff xmax for different values of xmax and N . We
have plotted these distributions for different values of N and xmax (Figures B.2
and B.3). There is an obvious change in behavior in the vicinity of xmax. The
value of x at which there is a departure from power law behavior approaches
the high-magnitude cutoff as N increases and xmax decreases.

It is clear (and not surprising) that the difference between a measured cutoff
and xmax diminishes with increasing N and increases with increasing xmax. In
order to examine the competition between these two effects, we have also plotted
the distribution in measured cut-offs for 104 generated distributions, for differ-
ent values of N and xmax. These distributions in measured cutoffs are plotted
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Figure B.2: Sampled distributions with a high-magnitude cutoff imposed, for different
values of the sample size N and the cutoff xmax. (In this figure, xmax is represented
by Mmax.) The axes have been rescaled according to the total domain and range in
each set of values.

as histograms in Figure B.5. From this we can see that the center of the distri-
bution for measured cutoffs shifts from the low- to the high-magnitude regime
for increasing N and constant xmax, and this trend is reversed for constant N
and increasing xmax.

In Figure B.6 we have plotted these distributions for the range in N and xmax

that is relevant to measurements obtained for the Feder-Feder experiment. In
that case, an experiment of average duration will have about N = 40, 000 events
and the event magnitudes will span a range from about 10−8 to 10−2 (which
is the corresponding range we expect event magnitudes be in). In this regime,
the distribution in measured cutoffs is centered in the high-magnitude region,
meaning that we can accurately estimate the high-magnitude cutoff, as well as
the error of our estimate. For example, the error for a measured high-magnitude
cutoff where N = 10, 000 and xmax = 10 mV is about 2 mV.

These sampling calculations do not take into consideration and cannot ac-
count for the presence of a finite-size effect, which is purely physical. That is, in
these calculations there is no crossover length at which the probability density
function makes the transition from power law behavior to exponential decay.
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Figure B.3: Sampled distributions with a high-magnitude cutoff imposed, for different
values of the sample size N and the cutoff xmax. (In this figure, xmax is represented
by Mmax.) The same axis scale has been used in each case.

Therefore, the conclusions drawn from this discussion are strictly valid only in
the case where the crossover length (that is, crossover magnitude) is very close
to the magnitude cutoff.

Analytical result of the high magnitude cutoff

The aforementioned trend in N and xmax can be anticipated by a simple ana-
lytical result. If we impose a high-magnitude cutoff xmax then the cumulative
probability function P (X > x), which gives the probability that a sampled value
X exceeds x, is given by:

P (X > x) = (x1−b − x1−b
max) (B.2)

where x ∈ [x0, xmax]

and x0 ≡ (1 + x1−b
max)

1
1−b

so that P (X > x0) = 1
and P (X > xmax) = 0.
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The probability that N − 1 sampled points are less than x is given by:

P (max({X0, X1, ...XN−1}) < x) = (1− P (X > x))N−1
. (B.3)

The probability density function pmax(x) for the probability that in N sampled
points there is just one value that exceeds x is then given by:

pmax(x) ≡ α−1p0(x),

where p0(x) ≡ P (X > x) (1− P (X > x))N−1

=
(
x1−b − xmax

) (
1 + x1−b

max − x1−b
)N−1

, (B.4)

where α is a normalization constant,

α ≡
∫ xmax

x0

p0(x)dx. (B.5)

The function p0(x) is plotted in Figure B.7 for several values of N and xmax.
The trends observed in Figure B.5 are apparent in these plots also. If we do not
impose a cutoff then the cumulative distribution function P ∗(X > x) is just:

P ∗(X > x) = x(1−b) (B.6)
where x ∈ [1,∞)

so that P ∗(X > 1) = 1
and lim

x→∞
P ∗(X > x) = 0.

(B.7)

The unnormalized probability density function p∗0(x) corresponding to p0(x) is
given by:

p∗0(x) = x1−b(1− x1−b)N−1 (B.8)

It can be seen in Figure B.8 that this expression produces a trend in N that is
similar to what is found in the former case for p0.
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Figure B.4: Cumulative distribution (solid line) and the bounds R1 and R2 imposed
upon R, and the resulting bounds xmin and xmax of x.
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Mmax=5e−5 Mmax=1e−4 Mmax=5e−4 Mmax=1e−3 Mmax=5e−3 Mmax=1e−2 Mmax=5e−2 Mmax=1e−1

Figure B.5: Histogram distributions of the measured high-magnitude cutoff for differ-
ent values of xmax (displayed as Mmax) and different values of N . From top to bottom,
the calculations in each row were generated using sample sizes N = 10, 100, 1000, 5000,
and 10000, respectively.
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experiment.

141



0 5 10
0

0.01

0.02

0.03

0.04

N
 =

 1
0

x
max

 = 10

0 50 100
0

0.01

0.02

0.03

0.04

x
max

 = 100

0 500 1000
0

0.01

0.02

0.03

0.04

x
max

 = 1000

0 5000 10000
0

0.01

0.02

0.03

0.04

x
max

 = 10000

0 5 10
0

1

2

3

4
x 10

−3

N
 =

 1
00

0 50 100
0

1

2

3

4
x 10

−3

0 500 1000
0

1

2

3

4
x 10

−3

0 5000 10000
0

1

2

3

4
x 10

−3

0 5 10
0

0.5

1

1.5

2

2.5

3
x 10

−4

N
 =

 1
00

0

0 50 100
0

1

2

3

4
x 10

−4

0 500 1000
0

1

2

3

4
x 10

−4

0 5000 10000
0

1

2

3

4
x 10

−4

Figure B.7: Plots of equation (B.4) for p0(x). The trends observed in Figure B.5 are
apparent here also.
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143



Appendix C

Calculation of the output
voltage in the strain gauge

Equation 3.3 can be found by using the basic rules of electromagnetism. All
variables refer to figure 3.9. We know that the voltage drop from A to C is,

Vin = VABC = VADC ⇒ IABC(R2 + R1) = IADC(R3 + R4). (C.1)

From Ohm’s law we have that:

VAB = R2IABC = R2
Vin

R1 + R2
(C.2)

VAD = R3IADC = R3
Vin

R3 + R4
. (C.3)

The voltage drop across any closed path in the circuit equals 0 (known as Kirch-
hoff’s second rule):

Vout = VAB − VAD = Vin
R2R4 −R1R3

(R1 + R2)(R3 + R4)
= Vin

[
R2

R1 + R2
− R3

R3 + R4

]

(C.4)
which is the same as equation 3.3. In the experiments we look at changes in the
resistances of the gauges. Suppose we measure a change ∆Vout. That is:

Vout + ∆Vout = Vin
(R2 + ∆R2)(R4 + ∆R4)− (R1 + ∆R1)(R3 + ∆R3)
(R1 + ∆R1 + R2 + ∆R2)(R3 + ∆R3 + R4 + ∆R4)

(C.5)

To find out how the change in Vout depends on the change in resistances, we set
Vout = 0 in equation C.4 and find that

R2R4 = R1R3 ⇒ R2

R3
=

R1

R4
= r (C.6)

This can further be used to simplify equation C.4 (when Vout = 0) and we get

∆Vout =
r

(1 + r)2

[
∆R1

R1
− ∆R2

R2
+

∆R3

R3
− ∆R4

R4

]
(1 + ν)Vin (C.7)
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where
ν =

1
1 + 1+r

∆R1/R1+∆R4/R4+r(∆R2/R2+∆R3/R3)

(C.8)

When the resistance changes are small (< 5%) the value of ν is approximately
0 and can be ignored. Equation C.7 can be simplified by assuming that the
resistances have almost equal values that is R1 ∼ R2 ∼ R3 ∼ R4 = R, and we
can write r ∼ 1. This finally gives us a practically looking answer for the change
in Vout when there is a change in the variable resistances.:

∆Vout ∼ ∆R1 −∆R2 + ∆R3 −∆R4

R
Vin (C.9)

From this equation we see that if for example R1 and R3 are in compression
(positive ∆), and R2 and R4 are in tension (negative ∆) the total change in
Vout is proportional to the sum of all the strains measured separately. Since the
gauges are very sensitive to changes in temperature the Wheatstone bridge acts
as temperature compensater as well as an amplifier for small changes in the
resistances.
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Appendix D

The Periodogram method
for calculating the power
spectrum

By inspecting the power spectrum of the signal it is possible to learn something
about the temporal correlations in the signal, and therefore a much used tool
in signal analysis. The power spectrum, or power spectral density, of a function
c(t) can be estimated by taking the modulus-squared of the Fourier transform
of the function. This is basically the same thing that is done in the periodogram
method we have used, but some attention will be focused on the details. The
periodogram method goes as follows. We pick out a sample of N-points (ci, ..., cN

) ,at equal intervals from c(t), and use the FFT (fast Fourier transform ) to
obtain the Fourier coefficients:

Ck =
N−1∑

j=0

cje
2Πijk/N , k = 0, ..., N − 1 (D.1)

Note that the coefficients Ck are periodic in k, with period N. This means that
C−k = CN−k for n = 1, 2, ..... See [44] for more information about the FFT.
The periodogram estimate (P (fk)) of the power spectrum is defined at N/2+1
frequencies as:

P (0) = P (f0) =
1

N2
|C0|2 (D.2)

P (fk) =
1

N2
(|Ck|2 + |CN−k|2), k = 1, 2, ..., (N/2− 1) (D.3)

P (fc) = P (fN/2) =
1

N2
|CN/2|2 (D.4)

Equation D.2 is normalized so that the sum of the N/2 + 1 values of P is equal
to the mean squared amplitude of the signal c(t) (see [44] for details). The
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frequencies fk are defined only for the positive values

fk ≡ k

N∆
= 2fc

k

N
, k = 0, 1, ..., N/2 (D.5)

where ∆ is the number of samples recorded per second, and fc is the Nyquist
frequency given by fc ≡ 1

2∆ . If the signal c(t) is not bandwidth limited to less
than fc, it turns out that all of the power spectral density outside fc is moved
into to the frequency range D.5. This effect is called aliasing, and is hard to do
anything with once you have sampled the signal. One way to find out to what
degree aliasing has happened is to see whether the Fourier transform approaches
0 when the frequencies approach fc. If the Fourier transform closes in on some
finite value for frequencies near fc can we assume that frequencies outside fc

has been folded back over into the critical range of frequencies. The variance
of the PSD at a given fk ,calculated using the described periodogram method,
is always equal to the square of the expectation value at that frequency. This
means that the standard deviation is always 100% of the PSD value, independent
of the number of sampled points N. One way to reduce the standard deviation
is to split the signal into K segments of contiguous sample points, and FFT
each separate segment. Say we want M discrete frequencies in the range 0 to
fc, then the segments should each contain 2M points. The power spectrum is
then found for each segment using D.2, and finally the segments are averaged
at each frequency. This procedure reduces the standard deviation by

√
K, and

makes the calculation of the power spectrum faster since it’s more efficient to
take many short FFT’s than one big. The number of sample points, M , should
be a power of two, because this increase the speed of the FFT algorithm a great
deal.
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Appendix E

The seismic magnitude and
moment

The surface-wave magnitude caused by an earthquake, MS (measured with a
seismograph), is given by

MS ∼ log10(
A

T
) , (E.1)

where A(µm) is the amplitude of ground motion, and T (s) is the dominant
wave period. The ratio A/T is a measure of the strain amplitude in a seismic
wave, while the flux of elastic energy passing any point is proportional to its
square. By integrating complete seismic waveforms, an empirical relationship
between magnitude and energy, E (joules), is obtained [18]:

MS ∼ log10(E) = 1.44MS + 5.24 , (E.2)

For very large earthquakes (MS > 8), the MS scale saturates and does not
discriminate between different earthquakes. Another measure for characterizing
earthquakes has therefore been introduced, namely the seismic moment, M0:

M0 =
∫

A

µSda ' µS̄A (joules) , (E.3)

where µ is the shear modulus of the faulted medium, and S̄ is the average
slip across a fault area A. A revised scale for magnitudes, based on the seismic
moment, has been developed,

M0 = 0.69log10(MS)− 6.4 . (E.4)
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Appendix F

Autocorrelation function,
power spectra and 1/f noise

Some signals occurring in nature, and in laboratories, show in their frequency
domain very similar behaviors called “1/f noise”. The term arises due to the
fact that by looking at the absolute squared of the signal Fourier-transformed,
called the power spectrum or spectral density, the frequencies will distribute
themselves approximately as f−ϕ where the value of ϕ normally takes a value
between 1 and 2. Signals first shown to exhibit this kind of behavior were sam-
pled in the context of studying current fluctuations of electronic emission in a
thermionic tube (1925), therefore the term “1/f noise”. Another term also used
is “flicker noise”. Later the same type of current spectrum was also found in
carbon microphones, various semiconductor devices and superconductors. For
many classes of conductors the properties of “1/f noise” is known, but the prob-
lem in general can be said to be considerably unsolved. Other systems in nature
which shows “1/f noise” are for example sunspot activity, the flow of rivers,
total activity in sandpiles, turbulence, and friction [55]. Some of the mentioned
systems also exhibit, in addition to scaling in time (1/f noise), scaling in space.
This spatio-temporal scaling behavior has been proposed as a condition for self-
organized criticality (SOC), but this has been hotly debated [56, 28].

What makes the power spectrum such a useful tool in studying what seem
to be random signals, is its connection to the autocorrelation function. The
autocorrelation function is given by:

G(τ) = 〈N(τ0)N(τ0 + τ)〉τ0 − 〈N(τ0)〉2τ0
, (F.1)

where N(τ) is the value of the signal at time τ and the square brackets means
the average is taken over all τ0s. The power spectrum of the signal is given by:

S(f) = lim
T→∞

1
2T

∣∣∣∣∣
∫ T

−T

dτN(τ)e2iπfτ

∣∣∣∣∣ , (F.2)
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and this is related to the autocorrelation function through the Wiener-Khintchine
theorem:

S(f) = 2
∫ ∞

0

dτG(τ) cos(2πfτ). (F.3)

If we assume that S(f) ∼ f−ϕ and G(τ) ∼ τ−β it follows from (F.3) that
ϕ ∼ 1− β. When we observe a power spectrum with ϕ close to 1, it means that
G(τ) decays very slowly, almost logarithmic. This again means that there exist
long time correlations in the signal for which the power spectrum has a slope
close to unity. As a general rule it can be said that the temporal correlation
in the signal decreases with increasing ϕ. What may be the causes that “1/fϕ

noise” shows up in many different natural phenomena? It can be shown that
a 1/f power spectrum can be constructed by superimposing weighted Poisson
processes [6]. That is, assuming we know the functional form of the individual
correlation functions for the different processes, and the probability density of
the correlation times, we get:

S(f) =
∫ ∞

0

dτ0Sτ0(f)P (τ0), (F.4)

where,

Sτ0(f) =
4Aτ0

1 + (2πfτ0)2
∼ lim

τ→fc

1
1 + ( f

fc
)2

(F.5)

is the power spectrum (F.2) of the individual correlation functions that make
up the signal:

G(τ0) = Ce−
τ

τ0 . (F.6)

The density of the correlation times P (τ0) must be formed in a rather ad hoc
way to produce a power spectrum S(f) with ϕ ∼ 1. In the case of sandpiles
where grains added cause avalanches, we can construct time profiles fAi(τ) of
how many sites are toppled (dissipation rate) at time step τ for the individual
avalanches of type Ai, and say that the total activity in the sandpile (J(τ)) is
a super-position of all time profiles randomly started:

J(τ) =
∑
τi<τ

fAi(τ − τi) (F.7)

In the spirit of equation (F.4), we can construct the power spectrum of J:

SJ(f) =
C

f2

∫ ∞

0

dτL(τ)sin2(fτπ) ∼ C

f2

∫ ∞

0

dτe−
τ

τ0 τasin2(fτπ) (F.8)

and using the distribution of avalanche lifetimes L(τ). This will give a power
spectrum:

SJ (f) ∼
{

f−(3+a) : a < −1
f−2 : a > −1

(F.9)

In (F.7) it is required that all the avalanches are statistically independent. Ques-
tions can be raised as to whether this is the case in a real sandpile (or in the
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carpet experiment). Even though we in our experiments observe a power spec-
trum S(f) ∼ f−ϕ with ϕ ∼ 2 (see figure F.1), it is dangerous to make an anal-
ogy between the carpet experiment and sandpiles, and with a super-position of
randomly-started and uncorrelated Poisson processes.
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Figure F.1: The power spectrum calculated for experiment A and B, using the Peri-
odogram method with 50 frequencies averaged in each bin. The plots resembles power-
laws and a linear regression over the log-log linear region yields ϕ = 2.8 for experiment
A, and ϕ ∼ 2.0 for experiment B.

There is an abundance of systems showing 1/fϕ with ϕ > 2 in their power
spectrum, and in many of these cases the behavior can be ascribed to a high
frequency limit of some Poisson process as in (F.6), and with a spectrum as
described in equation (F.5). Despite the heavily debated correlation between
SOC systems and an observed power-law in the power-spectrum we have chosen
to not discuss the issue in this thesis.
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Appendix G

Source code for the SSM
model

% qarr_ver2.m -- Quake Arrest, version 2.0

% For Matlab version 5.3

%

% A model for arresting quake events in stick-slip motion.

% Version 2, for the looped-fiber and sandpaper system.

% Microscopic friction is added as a constant term.

%

% W.A. Watters Farfan & Haakon Nordhagen.

% 6 juin 2001

%

% ---- Generating the asperities list --------------------------------------

for j = 1: N_asp,

Asps(j) = 0;

end

% ---- Primary loop --------------------------------------------------------

while del_x > 0 , % i.e., Continue as long as the slider is moving.

del_v = (1/m) * F_total * del_t;

v_total = v_total + del_v;

v_vals(t) = v_total;

del_x = v_total * del_t; % Finds del_x based on v_total

% from current timestep.
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x_total = x_total + del_x;

x_vals(t) = x_total;

%.... Calculation of N(t), managing asperities

.............................

N = 0;

total_fiber_force = 0;

for j = 1: N_asp,

if Asps(j) == 0

p = rand(1,1);

if p > (1-prob_grip)

Asps(j) = Asps(j) + del_x;

end

else

Asps(j) = Asps(j) + del_x;

if Asps(j) > max_strain;

Asps(j) = 0;

end

end

if Asps(j) > 0

total_fiber_force = total_fiber_force + kf*Asps(j);

N = N + 1;

end

end

% .... Updating changes in total force

......................................

x_fromequil = x_fromequil - del_x;

F_total = ks * x_fromequil - total_fiber_force - F_fr;

F_vals(t) = F_total;

if x_fromequil > 0

onoff = 1;

else

onoff = 0;

if N == 0

F_total = 0;

if terminate_when_relaxed == 1

fprintf(1,’\n\nDriving force has relaxed totally!\n\n’);

pause;

end

end

end

N_vals(t) = N;

t = t + 1;

total_time = t*del_t;
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end % End of quake-arresting program

%----------------------------------------------------------------------------

%

%

% Modular script that contains input parameter settings to qarr_ver2.m

% W.A. Watters Farfan and H. O. Nordhagen

% 13 juin, 2001

%

%

%----- Global parameters

----------------------------------------------------

debug = 0; % Whether debug mode is engaged (1 if yes)

prob_grip = 0.00005; % Probability of inidividual asperities

gripping;

del_t = 0.0001; % Timestep size

m = 0.0001; % Mass of slider

max_strain = 0.05; % Maximum strain allowed before slip of

% individual asperities.

ks = 0.5; % String/strain gauge combined spring

constant.

kf = 100; % Asperity spring constant.

terminate_when_relaxed = 1; % Terminate when the string relaxes totally if

1.

N_asp = 20; % Total number of asperities that can grip.

% ---- Initial conditions

---------------------------------------------------

N = 0; % Initial number of gripping asperities

(zero).

t = 1; % Initial value of timestep counter.

F_total = 6; % Total force counter (initial value gives

% initial total force value).

F_fr = 5; % Constant friction force.

v_total = 0; % Initial velocity (zero).

x_total = 0; % Initial displacement (zero).

del_x = 100000000; % Changed immediately after loop is entered.

x_fromequil = F_total / ks; % Distance from equilibrium position of

string.

F_total = F_total - F_fr; % Subtracting the constant friction force.
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% ---- Vector initializations

-----------------------------------------------

F_vals = [];

x_vals = [];

v_vals = [];

N_vals = [];
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Appendix H

Source code for the SCM
model

/*

* NW_model.c ver4 (with variable asperity strain thresholds and different

* gripping probabilities for macro and micro time steps), and conservation

* of overstrain on/off.

*

* Module containing function definitions for use in NW_model.c,

* Haakon Nordhagen and Wesley Andres Watters Farfan, juin 2001

*

*/

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include "lib.h"

/* first argument to main should be the input file */

int main (int argc, char *argv[])

{

/* Variables ******************************************************** */

double new_num;

/* Local variables */

int i, j, k, count4shrink = 0;

int asp_num,TOTAL_TIME,wait_time;

long start_time;

int is_slip, is_quake, is_creep = 0,num_slips, new_num_slips,

asp_num_gripping, is_first;
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double total_strain, chosen_num, strain_redist, new_strain,

strain_threshold;

double last_total_strain, peakval, bottval;

/* Variables that will be passed to this function.

************************/

int asp_num_active, start_index, end_index, shrink_factor,

conserve_overstrain;

double max_strain_threshold, fraction_redist, strain_update, p_grip_micro,

p_grip_macro;

double P_GRIP, MAX_INIT_STRAIN;

double max_init_strain_macro,max_init_strain_micro;

long idum; /* Random number generator */

double **asp_list; /* Contains the list of the asperities and their

properties */

char out_filename[50], trial_label[10], file_mags[50];

FILE *force_out, *params_in, *mags_outfile; /* in-out files

/* End variables

********************************************************** */

/* Opening and reading in the parameters from filename given at command

line */

if((params_in = fopen(argv[1],"r")) == NULL) {

printf("Cannot open output file for writing.\n");

exit(1);

}

fscanf(params_in,"%*s %s\n",&trial_label); /* The experiment number */

fscanf(params_in,"%*s %lf\n",&fraction_redist); /* How much is conserved

when one snaps */

fscanf(params_in,"%*s %lf\n",&strain_update); /*The speed, or strain

update in macrotimesteps */

fscanf(params_in,"%*s %lf\n",&max_strain_threshold);/* the max. strain

before springs snap */

fscanf(params_in,"%*s %d\n",&asp_num); /* Number of active,possibly

gripping sites */

fscanf(params_in,"%*s %lf\n",&P_GRIP); /* prob. of gripping at initial

conditions */

fscanf(params_in,"%*s %lf\n",&p_grip_micro); /* prob. of gripping in micro

timestep */

fscanf(params_in,"%*s %lf\n",&p_grip_macro); /* prob. of gripping in macro

timestep */

fscanf(params_in,"%*s %lf\n",&MAX_INIT_STRAIN); /*% of The maximum strain
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at initial cond. */

fscanf(params_in,"%*s %lf\n",&max_init_strain_micro);/*% of max strain

assigned asperity in mts */

fscanf(params_in,"%*s %lf\n",&max_init_strain_macro);/*% of max strain

assigned asperity in mats*/

fscanf(params_in,"%*s %d\n",&TOTAL_TIME); /* How many macro timesteps to

run */

fscanf(params_in,"%*s %d\n",&wait_time); /* How many timesteps to run

before start recording */

fscanf(params_in,"%*s %ld\n",&idum); /* The random number generator seed

used */

fscanf(params_in,"%*s %d\n",&shrink_factor); /* how many times to shrink

the raw signal output */

fscanf(params_in,"%*s %d\n",&conserve_overstrain);/*if strain on asperity

exceeds its threshold

conserve the excess strain (1) og do not (0) */

/* Max_strain_threshold is given in % of MAX_INIT_STRAIN to assign

asperities */

MAX_INIT_STRAIN = MAX_INIT_STRAIN * max_strain_threshold;

TOTAL_TIME = TOTAL_TIME + wait_time; /* For initializing system, for the

macro-loop to work */

/* asp_list goes as:

col0 : row_number (unused, no geometry)

col1 : strain

col2 : strain_threshold

col3 : number of connected sites (unused, no geometry)

*/

asp_list = (double **) matrix(asp_num,4, sizeof(double));

/* In future, this will be supplied by the movement function*/

start_index = 0; /* but now all sites are active */

end_index = asp_num - 1;

/* ***************** Open the magnitude and raw data files *********** */

sprintf(file_mags,"magsmod%s",trial_label);

if((mags_outfile = fopen(file_mags,"w")) == NULL) {

printf("Cannot open the mags output file for writing.\n");

exit(1);

}

sprintf(out_filename,"slips_mod%s.dta",trial_label);

if((force_out = fopen(out_filename,"w")) == NULL) {

printf("Cannot open output file for writing.\n");

exit(1);
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}

/* ******************* First generating the points on the surface for the

initial

conditions. Every asperity grips with probability P_GRIP and is assigned

a random threshold */

for(i = start_index; i <= end_index; i++)

{

chosen_num = ran0(&idum);

if ( chosen_num > (1-P_GRIP)) new_num = ran0(&idum)*MAX_INIT_STRAIN;

else new_num = 0;

asp_list[i][0] = 1; /* row number (unused for now) */

asp_list[i][1] = new_num*ran0(&idum); /* The initial strain */

asp_list[i][2] = new_num; /* The strain threshold */

asp_list[i][3] = 0; /* Connected sites (not used) */

}

/* ********************* End generating the asp_list for initial

conditions ************** */

/* ---- Start of macro-timestep loop (loop will be eliminated) ---*/

for (j=0; j<TOTAL_TIME ; j++)

{

/* ---- Start of macro time-step procedures

------------------------------------------- */

is_slip = 0; /* Switch that indicates a slip event */

num_slips = 0; /* Used to count the number of slip events. */

new_num_slips = 0; /* Used to count the number of slip-provoked

slips.*/

/* This loop visits all asperities in the list and counts the number that

are gripping.

This is needed in order to calculate the strain that must be added to

all gripping

asperities in the next loop. New asperities that make contact are also

counted */

asp_num_gripping = 0;

for(i = start_index; i <= end_index; i++) /* go through all asperities

*/

{

chosen_num = ran0(&idum);

if ( asp_list[i][1] > 0.0 ) asp_num_gripping++;
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else if( chosen_num > (1 - p_grip_macro) ) /* give the asperity a chanse

to grip */

{

asp_list[i][2] = ran0(&idum)*max_strain_threshold; /*assign random

strain threshold */

asp_list[i][1] =

ran0(&idum)*asp_list[i][2]*max_init_strain_macro;/*ass rand. strain*/

asp_num_gripping++;/* count the number of asperities gripping */

}

} /* end giving chance to grip for nongripping asperities*/

/* This for loop visits all asperities in the list and updates their

strains(by strain_update)

if they are gripping, and checks to see if they have started

gripping otherwise. */

for (i = start_index; i < end_index + 1; i++) {

/* If this site is gripping (strain greater than 0), then update the

strain. */

if (asp_list[i][1] > 0) asp_list[i][1] += ((double) strain_update)/

((double)asp_num_gripping);

/* Checks to see if we have the beginning of a creep */

if ( asp_list[i][1] > asp_list[i][2] ) is_slip = 1; /*at least one

asperity exceeds thre.*/

}

/* --- Commencing updates for micro-timesteps

-----------------------------------

micro-timestep only run if is_slip == 1, i.e at least one asperity has

exceeded its

threshold */

is_quake = 0; /* Switch that indicates a quake event */

is_first = 1; /* Used in microtimestep as a switch (not important) */

/* Run until there are no more asperities exceeding their thresholds */

while( is_quake == 0 && is_slip == 1) /*is_quake used only for SSM

(always == 0) */

{

/* The first for loop counts and resets all asperities that have slipped,

and counts the number that are gripping. The total amount of strain to

be

redistributed bacuse of slipping asperities is also calculated.

*/

num_slips = 0;

is_slip = 0;

asp_num_gripping = 0;

strain_redist = 0;

/* Go through all asperities (could be more than one asperity which
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has

slipped. Start_index and end_index stay constant*/

for(i = start_index; i <= end_index; i++)

{

/* If an asperity is not currently gripping, then find out if it

starts gripping now. If so, then assign to it a random

strain < its threshold.*/

if (is_first == 0) { /* Only run this for the first slipping asperity

*/

if( asp_list[i][1] == 0 ){

chosen_num = ran0(&idum);

if ( chosen_num > (1-p_grip_micro))

{

asp_list[i][2] = ran0(&idum)*max_strain_threshold;/*Assign random

threshold*/

asp_list[i][1] =

ran0(&idum)*asp_list[i][2]*max_init_strain_micro;/*strain */

}

}

} /* end of if(is_first) */

/* If a site exceeds the strain_threshold, then reset and count as

slip.*/

if (asp_list[i][1] > asp_list[i][2])

{

if(conserve_overstrain == 1) /* What to do with the overstrain ??*/

strain_redist += asp_list[i][1]; /* distribute the total strain on the

asperity*/

else strain_redist += asp_list[i][2]; /* or only the asperity threshold

*/

asp_list[i][1] = 0; /* Asperity is no longer gripping */

num_slips++; /* for counting slips in this macrotimestep */

}

/* Checks if gripping, and counts if that is so. */

if (asp_list[i][1] > 0) asp_num_gripping++;

} /* end for counting the redistribution of strain after some have

slipped */

is_first = 0;

/* The second loop redistributes the strain calculated in the last for

loop,and decides

if there are any new slips. */

for(i = start_index; i < end_index + 1; i++) /* Spread strain on all

gripping asps */
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{

if (asp_list[i][1] > 0) /* Is it gripping? */

{

/* assign its part of the global perturbation caused by slipping

asperities */

asp_list[i][1] += ( (double)fraction_redist * (double)strain_redist) /

((double) asp_num_gripping);

if (asp_list[i][1] > asp_list[i][2]) is_slip = 1;/*Is this

causeing a new slip ?*/

}

} /* for i = ... */

} /* end (while(is_slip == 1)) of micro time-step */

/* micro-step continues until is_slip == 0 */

/* ------- End of micro timestep loop --------------------------------

*/

last_total_strain = total_strain; /* used in picking out mags */

total_strain = 0.0;

/* This loop sums the total strain contained in all asperities

for the current macro time-step */

for(i = start_index; i < end_index + 1; i++) total_strain +=

asp_list[i][1];

/* get_mags: Check to see if a decrease in strain is underway */

if( total_strain < last_total_strain && is_creep == 0) /* An event has

started */

{

is_creep = 1;

start_time = j;

peakval = last_total_strain;

bottval = total_strain;

}

else if (total_strain <= last_total_strain && is_creep == 1)

{

bottval = total_strain; /* Strain in the system is still decreasing */

}

else if (total_strain > last_total_strain && is_creep == 1) /*Are we at

bottom of event ? */

{

is_creep = 0; /* total strain is no longer decreasing, all asps are stuck

*/

/* Print out the calculated magnitude */

fprintf(mags_outfile,"%.2lf %lf %.2lf %lf %ld %ld\n", (double)j-1, peakval

- bottval, (double)((j-1) - start_time), peakval, j-1,

start_time);

}
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/* If the requisite number of counts has passed, then print a line of

"raw" data.

This is for looking at the "raw" data, and so that this file does

not become too big */

count4shrink++;

if (j > wait_time && count4shrink >= shrink_factor) {

fprintf(force_out,"%.2lf %lf\n",(double)j,total_strain);

count4shrink = 0;

}

/* ------- End of macro timestep procedures --------------------*/

} /* End of macro timestep for loop */

/* Close all files that has been written to or read from */

fclose(force_out);

fclose(params_in);

fclose(mags_outfile);

} /* End main! ********************************************** */

SCM Model parameters used

frac_redist=0.940,

%update = 800.0

max_strain_threshold=100000.0

asp_num(number of asperities)=500,

P_GRIP(prob. of regripping at initial

conditions) = 1.0

p_grip_micro(gripping_prob_microstep) = 0.5

p_grip_macro(gripping_prob_macrostep) = 0.1

MAX_INIT_STRAIN(max_start_strain_initial_cond) = 1.0

max_init_strain_micro(fraction_of_threshold) = 0.05

max_init_strain_macro = 0.01

total_time = 500000

wait_time(init_time) = 100000

idum(seed_for_ran0) = -1

shrink_factor = 20

conserve_strain(1=yes,0=no) = 0.
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