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Abstract
This thesis begins with the formulation of supersymmetry. Further on, the concept
of R-parity is introduced, squarks and gluinos that can interact through R-parity
violating couplings are studied, bounds on their masses at 95 % confidence level are
found by use of Monte Carlo simulations for proton–proton collisions at 7 TeV.
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Chapter 1

Introduction

There are a certain number of problems in particle physics today that the Standard
Model (SM) fails to explain; there are no Standard Model candidates for dark
matter, the origin of the Higgs potential is unknown, and in order to explain the
assumed mass of the Higgs boson one needs an extreme fine tuning.

There has been proposed a number of theories which at some level explain one or
several of these problems. One theory that by many physicists is regarded to all of
solve these problems is supersymmetry (SUSY), a symmetry that relates elementary
particles of a given spin to other elementary particles with a spin that differs by one
half. It turns out that supersymmetry is not a symmetry between different particles
in the Standard Model , so one has to introduce additional particles (superpartners
of Standard Model particles), and these are yet to be discovered.

Originally, it was thought that Supersymmetry was an unbroken theory, this is
that for every fermion there should be a boson with the same quantum numbers
except for spin. Throughout the last decades a lot of effort has been spent to find
these particles, but there has been no hint of their appearance in the mass region
where the standard model particles exist. Therefore one has been forced to give up
the idea of an unbroken theory, the difference in mass cannot even be explained by
a spontaneously broken theory at low scales, so instead one introduces an explicit
symmetry breaking, which gives rise to a splitting between the Standard Model
particles and their superpartners. This leads to a lot of free parameters. The
manifestation of SUSY is introduced at the TeV scale, as this can explain both the
behaviour of dark matter and the order of the Higgs mass.

The Standard Model can be extended to involve the superpartners of the Stan-
dard Model particles and their interactions as well. It turns out that some of the
terms that appear in this generalized Lagrangian breaks the so called R-parity sym-
metry, this means that either baryon number and/or lepton number conservation
is broken too. One of the main consequences, at a first glance, is that R-parity
violation would lead to proton decay, which is the most important motivation for
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2 CHAPTER 1. INTRODUCTION

imposing R-parity conservation. However, it turns out that the stability of the
proton can be ensured in other ways.

In this thesis I will discuss my study of the superpartners of quarks (squarks) and
gluons (gluinos) in R-parity violating (RPV) models. I have performed a numerical
study involving production of squarks and gluinos from proton-proton collisions at
7 TeV, with decay through a R-Parity violating coupling. The resulting jets have
been studied, and from results published by the CMS experiment [1] I have been
able to set bounds on squark and gluino masses at 95% confidence level. I begin in
Chapter 2 by discussing the formulation of SUSY and its consequenses. Chapter 3
describes the numerical study of squarks and gluinos. Chapter 4 is concerned with
a radiation process that is treated inaccurately in the numerical simulation. Finally
concluding remarks are contained in Chapter 5.



Chapter 2

Supersymmetry

In this chapter the foundations of Supersymmetry and its consequences are dis-
cussed. It has been shown that Supersymmetry is the largest possible space-time
extension of the Lorentz symmetry [2]. This section is based on A Supersymmetry
primer by Martin [3], the review paper on R-parity violating supersymmetry by
Barbier et al. [4], and the lecture notes from the course Fys 5120 lectured at the
University of oslo.

2.1 The origin of SUSY

2.1.1 The Super-Poincaré algebra

In special-relativity the boosts and translations are described by the Poincaré group.

x
′µ = Λµ

νx
ν + aµ (2.1)

where xµ is a coordinate four-vector, Λµ
ν is the Lorentz boost and aµ is a translation

parameter. The translation is generated by the operator Pµ. Lorentz boosts and
rotations are generated by the operator Mµν . These operators form the Poincaré
algebra

[Pµ, Pν ] = 0 (2.2)

[Mµν ,Mρσ] = −i (gµρMνσ − gµσMνρ − gνρMµσ + gνσMµρ) (2.3)

[Mµν , Pρ] = −i (gµρPν − gνρPµ) (2.4)

which is a Lie algebra. A Lie algebra is an algebra where the the binary operator
[, ] has the following three properties for x, y, z ∈ L.

3



4 CHAPTER 2. SUPERSYMMETRY

[ax+ by, z] = a[x, z] + b[y, z], (2.5)

[x, y] = −[y, x], (2.6)

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0, (2.7)

In 1967 Coleman and Mandula [5] proved that it’s not possible to extend the
space-time symmetries described by the Poincaré group using Lie-algebra in a non-
trivial way. However, in 1975 Haag, Lopuszanski and Sohnius [2] showed that this
indeed can be done be defining a new type of algebra called a graded Lie algebra,
which is defined as follows. The graded Lie algebra or superalgebra is a vector space
L that is a direct sum of two vector spaces L0 and L1 with a binary operation that
has the following properties:

xi ∗ xj ∈ L(i+j)mod2 , (2.8)

xi ∗ xj = − (−1)ij xj ∗ xi, (2.9)

xi ∗ (xj ∗ xk) (−1)ik + xj ∗ (xk ∗ xi) (−1)ji = −xk ∗ (xi ∗ xj) (−1)kj . (2.10)

In order to get a set of generators that are compatible with this algebra one intro-
duces the operator Qa. This operator acts on spins-states, it transforms fermionic
states into bosonic states and vice versa. It can be written in terms of left and right
Weyl spinors QA and QȦ.

Qa =

(
QA

QȦ

)
. (2.11)

In addition to the relations in the Poincaré algebra the super-Poincaré algebra
is defined by these relations

{QA, QB} = 0, (2.12)

{QȦ, QḂ} = 0, (2.13)

{QA, QḂ} = 2σµ

AḂ
Pµ, (2.14)

[QA, Pµ] = 0, (2.15)

[QȦ, Pµ] = 0, (2.16)

[QA,Mµν ] = iσµνB
A QB. (2.17)

Here σµν = σµσ̄ν−σν σ̄µ. Here σµ = (1, ~σ) and σ̄µ = (1,−~σ), where ~σ is a vector
of the three Pauli matrices defined in the Appendix B. The relations above are those
of N = 1 supersymmetry. A N > 1 supersymmetry introduces supermultiplets of
Q operators and particles. I will only consider N = 1 supersymmetry in this thesis.
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2.1.2 Superspace

Superspace is an eight-dimensional manifold that can be constructed from the co-
set space of the Super-Poincaré group SP and the Lorentz group L, SP/L. The
superspace coordinates are given by

zπ =
(
xµ, θA, θ̄Ȧ

)
. (2.18)

An element g in the Super-Poincaré group can be written.

g = exp[−ixµPµ + iθAQA + iθ̄ȦQ
Ȧ − i

2
ωρνM

ρν ]. (2.19)

An element g0 ∈ SP/L can be written in the following way [6]

L (x, θ) = exp[−ixµPµ + iθAQA + iθ̄ȦQ
Ȧ]. (2.20)

The θ coordinates are Grassman numbers and the coordinates of superspace
satisfy these relations:

[xµ, xν ] = [xµ, θA] = [xµ, θȦ] = 0 (2.21)

{θA, θB} = {θA, θḂ} = {θȦ, θB} = {θȦ, θḂ} = 0 (2.22)

The integral is defined over Grassman variables as∫
dθA = 0, (2.23)

∫
dθAθA = 1. (2.24)

The four-Grassman number integral is the one that is used the most, and its
most important property is ∫

dθ4θ2θ̄2 = 1. (2.25)

An element g0 ∈ SP/L acts on superspace coordinate zπ with the mapping

g0e
izπKπ = eiz

′πKπ , (2.26)

were the generators of the group SP/L are Kπ

Kπ =
(
Pν , QB, Q

Ḃ
)
. (2.27)
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By explicit calculation one finds that

g0e
izπKπ = exp

[
i
(
−xµ − aµ + iαµσµ

AȦ
θ̄Ȧ − iθσµ

AȦ
ᾱȦ

)
Pµ

+i
(
θA + αA

)
QA + i

(
θ̄Ȧ + ᾱȦ

)
QȦ

]
. (2.28)

Which leads to (
xµ, θA, θ̄Ȧ

)
→ fi

(
aµ, αA, ᾱȦ

)
=(

xµ + aµ − iαAσµ

AȦ
θ̄Ȧ + iθAσµ

AȦ
ᾱȦ, θA + αA, θ̄Ȧ + ᾱȦ

)
(2.29)

when comparing both sides of Eq. (2.26).
The differential representation of generators at a Lie group are given by

xj =
∂fi

∂aj

∂

∂xi

. (2.30)

This gives an explicit differential representation for the generators

Pµ = i∂µ (2.31)

iQA = −i
(
σµθ̄

)
A
∂µ + ∂A (2.32)

iQ̄Ȧ = −i (σ̄µθ)Ȧ ∂µ + ∂Ȧ. (2.33)

This further motivates for defining the covariant derivative in a SUSY invariant
way

DA = i
(
σµθ̄

)
A
∂µ + ∂A (2.34)

D̄Ȧ = −i (σµθ)Ȧ ∂µ − ∂Ȧ. (2.35)

2.1.3 Superfields

A superfield is a function structure defined on superspace that contains various
component fields, these fields could be fields of fermions, scalars or vector bosons.
A general superfield can be written as

Φ
(
x, θ, θ̄

)
= f (x) + θAϕA (x) + θ̄Ȧχ

Ȧ (x) + θ2m (x) + θ̄2n (x)

+θσµθ̄Vµ (x) + θ2θ̄Ȧλ
Ȧ (x) + θ̄2θAψA (x) + θ2θ̄2d (x) . (2.36)

Here

θ2 = θAθ
A (2.37)
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Component field Type d.o.f
f (x) ,m (x) , n (x) complex pseudo scalar 2
ψA (x) , ϕA (x) left handed Weyl spinors 4

χ̄Ȧ (x) , λ̄Ȧ (x) right handed Weyl spinors 4
Vµ (x) lorentz4-vector 8
d (x) complex scalar 2

Table 2.1: Fields contained in a general superfield

and
θ̄2 = θȦθ̄Ȧ. (2.38)

The properties of the component fields in the expression for the superfield are listed
in Table 2.1

In further calculations 3 kinds of superfields will be important: Left handed
superfields, defined by D̄ȦΦ = 0 . Right handed superfields defined by DAΦ† = 0
and vector superfields defined by Φ = Φ†.

From the covariant derivative one can define the following projection operators:

π+ ≡ −
1

16�
D̄2D2, (2.39)

π− ≡ −
1

16�
D2D̄2, (2.40)

πT ≡
1

8�
D̄2

Ȧ
D̄Ȧ. (2.41)

Where the D’Alembert operator is given by

� = ∂µ∂µ. (2.42)

The operators π+ and π− project of the left handed and the right handed part
of a superfield respectively, that is because:

π+

(
D̄ȦΦ

)
= π−

(
DAΦ†) = 0 (2.43)

The operator πT = 1−(π+ + π−), the three projection operators fulfill the following
relations

π2
±,T = π±,T (2.44)

π+π− = 0 (2.45)

π+πT = 0 (2.46)

π−πT = 0. (2.47)
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In order to eliminate the θ̄ dependence in the left handed superfield one intro-
duces the transformation:

yµ = xµ + iθσµθ̄. (2.48)

This change in coordinate gives

DA = 2iσµ

AȦ
θ̄Ȧ ∂

∂yµ
+ ∂A (2.49)

D̄Ȧ = −∂Ȧ. (2.50)

Using the Eq. (2.50) and the fact that D̄ȦΦ = 0, one gets that the superfield as
function of y cannot contain any θ̄ components and can therefore be written as

Φ (y, θ) = A (y) +
√

2θψ (y) + θ2F (y) . (2.51)

Properties of these fields are shown in Table 2.2. One can do the inverse transfor-

Component field Type d.o.f
A (x) , F (x) Complex scalar 2

ψ (x) Left handed Weyl spinors 4

Table 2.2: Component fields contained in a left handed superfield

mation and obtain the expression for the superfield as a function of x.

Φ
(
x, θ, θ̄

)
= A (x)+i

(
θσµθ̄

)
∂µA (x)−1

4
θ2θ̄22A (x)+

√
2θψ (x)− i√

2
θ2∂µψ (x)+θ2F (x)

(2.52)
Here A is a scalar field, ψ is a fermionic field and F is an auxiliary field. Auxiliary
fields do also appear in vector fields, these fields will be called D. It can be shown
that the auxiliary fields will not appear in kinetic terms in the Lagrangian, they can
thus be eliminated by the use of the Euler-Lagrange equations [3]. This elimination
results in new interactions, for instance the scalar four couplings originates from
the elimination of auxiliary fields. The auxiliary fields also give rise to some of the
terms in the Higgs potential from the Radiative ElectroWeak Symmetry Breaking
(REWSB).

The same procedure can be carried out for the right handed superfield as was
done for the left handed one.
A vector superfield can in general be written

Φ
(
x, θ, θ̄

)
= f (x) + θϕ (x) + θ̄ϕ̄ (x) + θ2m (x) + θ̄2m∗ (x)

+θσµθ̄Vµ (x) + θ2θ̄λ̄ (x) + θ̄2θλ (x) + θ2θ̄2d (x) . (2.53)
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Component field Type d.o.f
f (x) , d (x) Real scalar field 1
ϕ (x) , λ (x) Weyl spinors 4
m (x) Complex scalar field 2
Vµ (x) Lorentz 4-vector 4

Table 2.3: Component fields contained in a vector superfield

Some properties of these component fields are shown in Table 2.3.
The vector field describes vector bosons and superpartners of vector bosons, so

the vector superfield should contain only one left handed spinor λ, one complex
scalar ,and one real vector field Vµ. This can be fixed by introducing the so-called
supergauge transformation of a vector superfield

V
′ (
x, θ, θ̄

)
= V

(
x, θ, θ̄

)
+ Φ

(
x, θ, θ̄

)
+ Φ† (

x, θ, θ̄
)
, (2.54)

where Φ is a left-handed superfield. This leads to concrete transformations of the
component fields, by fixing these transformations in a specific one obtains the Wess-
Zumino gauge for vector superfields

VWZ

(
x, θ, θ̄

)
=

(
θσµθ̄

)
[Vµ (x)+i∂µ (A (x)− A∗ (x))]+θ2θ̄λ̄ (x)+θ̄2θλ (x)+θ2θ̄2D (x) .

(2.55)
Here D is the auxiliary field that can be eliminated as mentioned earlier in this
section.

2.2 Construction of a SUSY Lagrangian

One defines the SUSY action in the following way

S =

∫
d4x

∫
d4θL. (2.56)

One requires that the SUSY action S should be invariant under SUSY transfor-
mations by construction. Which is consistent with the fact that the highest order
component fields in θ and θ̄ in the Lagrangian always transform as derivatives [6].

By demanding that our Lagrangian should give rise to a renormalizable theory,
it can be shown that the Lagrangian cannot contain terms with more than three
powers of scalar superfields φ [7]. It can also be shown that a SUSY Lagrangian
that satisfies the constraints above must be written in the following way

L = Φ†
iΦi + θ̄2W [Φ] + θ2W [Φ†]. (2.57)
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The structure W is called the superpotential, the term with only one field in the
superpotential is called the tadpole term, while the ones with two and three fields
are called the mass term and Yukawa term respectively.

W [Φ] = tiΦi +mijΦiΦj + λijkΦiΦjΦk (2.58)

2.2.1 Gauge theories

The generators of a Lie group G involved in gauge theories are described by the
Lie-algebra

[ta, tb] = if c
abtc. (2.59)

For an element g ∈ G one can write out the unitary representation that transforms
a field Ψ

Ψ
′
= U (g) Ψ. (2.60)

The representation is given as an exponential map

Ψ
′
= e−iαataΨ. (2.61)

Here α is the parameter of the transformation. In order for SUSY to inherit this
transformation from the SM one defines that the left handed superfield transforms
as

Ψ
′
= e−iqΛataΨ. (2.62)

Here the transformation parameter Λa is a left handed superfield and q is the charge
under G of Ψ. For the superpotential to be invariant one must then have the
following identities

gi = 0 if giUir 6= gr, (2.63)

mij = 0 if mijUirUjs 6= mrs, (2.64)

λijk = 0 if λijkUirUjsUkt 6= λrst. (2.65)

In order for the kinetic term to be invariant under the transformation described by
Eq. 2.62, it is defined as

Lkin = Φ†eqV ataΦ. (2.66)

The supersymmetric field-strengths are defined as

WA = −1

4
D̄2e−VDAe

V , (2.67)

W̄Ȧ = −1

4
D2e−V D̄Ȧe

V . (2.68)
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Where the supergauge transformation of a vector-field is given by:

eV
′

= e−iΛ†
eV eiΛ (2.69)

It can be shown that under Eq. (2.69) the expressions Tr [WAWA] and Tr [W̄ȦW
Ȧ]

will be invariant. If WA is expanded in component fields, one can find the well
known expression for the non-abelian field strength in the Standard-Model

F a
µν = ∂µV

a
ν − ∂νV

a
µ + gfa

bcV
b
µV

c
ν . (2.70)

Now one has what is needed in order to write down the complete SUSY-Lagrangian

L = Φ†eqV ataΦ +W [Φ]θ̄2 +W [Φ†]θ2 +
1

4T (R)
Tr

(
WAWA

)
+

1

4T (R)
Tr

(
W̄ȦW̄

Ȧ
)
.

(2.71)
Here T (R) is the Dynkin index of the representation of ta and is defined in Appendix
B.

2.2.2 Soft breaking terms

There is still something missing in the total SUSY Lagrangian. If the sparticles had
the same mass as their standard model particles, they would have been discovered
long ago, so there must be a difference in mass between a given particle in the
Standard-Model an its superpartner. In order to explain these mass differences one
introduces the so-called soft terms. The name soft comes from the fact that these
terms arise from a soft breaking mechanism. It has been shown that such theories
are free of quadratic divergences in quantum corrections to scalar masses to all
orders in perturbation theory [3].

An explicit symmetry breaking originated from an unknown spontaneous break-
ing mechanism is introduced in order to explain the discrepancy between SM par-
ticles and their superpartners. However, this spontaneous breaking has to hap-
pen at a much higher energy scale than the TeV scale, there exists some theories
that explains how this might result in the appearance of soft terms at the TeV
scale. Some of the hottest candidates for SUSY breaking models are the Planck-
Scale-Mediated-Symmetry-Breaking (PSMSB) and the Gauge-Mediated-Symmetry-
Breaking (GMSB). The possible soft terms are
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L1 = − 1

4T (R)
Mθ2θ̄2Tr [WAWA] + h.c, (2.72)

L2 = −1

6
aijkθ

2θ̄2ΦiΦjΦk + h.c, (2.73)

L3 = −1

2
bijθ

2θ̄2ΦiΦj + h.c, (2.74)

L4 = −tiθ2θ̄2Φi + h.c, (2.75)

L5 = −m2
ijθ

2θ̄2Φ†
iΦj, (2.76)

Lsoft = L1 + L2 + L3 + L4 + L5. (2.77)

In addition, the term Lmaybe = −1
2
cijkφ

†
iφjφk that is named “maybe” because it

might give rise to quadratic divergences in loop corrections if there are singlet fields
in the model, and would then not be accepted as a soft term.

2.3 The MSSM

The Standard Model can be extended to involve the superpartners of the Standard
Model particles and their interactions as well. There are some different extensions
that can be realized, the one that has the minimal number of free fields is called
the Minimal Supersymmetric Standard Model MSSM. A left handed superfield S
contains a left handed Weyl spinor and a complex scalar field. To describe a Dirac
fermion one needs both a left handed and a right handed Weyl spinor, so in order to
explain a Dirac fermion one also introduces T̄ † which contains a right handed Weyl
spinor. The fields S† and T̄ describe the anti-fermion. Since each of the superfields
contains a complex scalar field, the two superpartners of the Dirac-fermion and their
antiparticles are described by these four superfields as well.

The Standard Model fermions and their corresponding superfields are shown in
the Table 2.4. The right-handed neutrino fields are not included in the MSSM, they
are only needed for massive neutrinos.

In addition to these fields one has the gauge fields B,W a,Ca and the two Higgs
fields Hu and Hd. As known from SM, the regular SU (2)L Higgs doublet cannot
give masses to particles with isospin I3 = 1/2 corresponding to the upper component
of the left handed doublets, in order to achieve that one introduces the structure

HC ≡ −i
(
H†σ2

)T
. There is no natural way of introducing such constructions in

the superpotential if one only has one Higgs doublet. One can also argue that there
would appear anomalies in the tree level gauge boson couplings if only one Higgs
doublet existed, but when two are introduced these anomalies cancel out. In the
MSSM there are two Higgs doublets giving rise to eight d.o.f, where three of these
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Superfield Li Ē†
i Qi Ū †

i D̄†
i

Particle νiL,liL liR uiL,diL uiR diR

Hypercharge -1 -2 1
3

4
3
−2

3

Superfield L†
i Ēi Q†

i Ūi D̄i

Particle ν̄iR,l̄iR l̄iL ūiR,d̄iR ūiL d̄iL

Hypercharge 1 2 −1
3

−4
3

2
3

Table 2.4: Superfields in the MSSM with hypercharge assignment

are eaten by Z and W s, Leading to five Higgs particles h0,H0,H+,H− and A0. The
superpartners of the Higgses are called higgsinos and the superpartners of the gauge
bosons are called gauginos. These two are

Hu =

(
H+

u

H0
u

)
, (2.78)

Hd =

(
H0

d

H−
d

)
. (2.79)

Two important parameters are the vacuum expectations of the charge-less parts
of the Higgs fields vu = 〈H0

u〉 and vd = 〈H0
d〉. The parameter tan β = vu/vd is

important to SUSY model structure.

To construct the MSSM Lagrangian one introduces superpotential terms, kinetic
terms and gauge terms. The structure of gauge terms were obtained in section 2.2.
The general kinetic terms are defined in Eq. 2.66. Now that the fields that are
involved in the MSSM are known one can start to construct the Lagrangian.

Lkin = L†
ie

1
2
gσaW a− 1

2
g
′
BLi +Q†

ie
1
2
gσaW a+ 1

2
gsλaCa+ 1

6
g
′
BQi

+U †
i e

1
2
gsλaCa− 4

6
g
′
BDi + U †

i e
1
2
gsλaCa+ 2

6
g
′
BDi

+E
2
2
g
′
B

i Ei +H†
ue

1
2
gσaW a+ 1

2
g
′
BHu +H†

de
1
2
gσaW a− 1

2
g
′
BHd. (2.80)

Here σa are the Pauli matrices and λa are the Gell-Mann matrices, which are defined
in Appendix B.

The pure gauge terms can be written:

LV =
1

2
Tr

(
WAWA

)
θ̄2 +

1

2
Tr

(
CACA

)
θ̄2 +

1

2
Tr

(
BABA

)
θ̄2 + h.c (2.81)
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Here

WA = −1

4
D̄2e−WDAe

W , (2.82)

CA = −1

4
D̄2e−CDAe

C , (2.83)

BA = −1

4
D̄2DAB

0, (2.84)

and

W =
1

2
gσaW a, (2.85)

C =
1

2
gsλ

aCa, (2.86)

B0 =
1

2
g

′
B, (2.87)

where g, g
′
and gs are the U (1),SU (2) and the SU (3) couplings in the SM. The

terms in the superpotential must conserve hypercharge, by looking at the hyper-
charge of SM particles one can obtain the structure of the interactions. The abelian
transformation requires that yi + yj = 0 for mass terms, yi + yj + yk = 0 for Yukawa
terms and y = 0 for tadpole terms. Here y is the hypercharges given by the formula
Q = I3 + 1

2
y, Q and I3 are charge and isospin respectively. The superpotential takes

then the following form

W = µHuHd + λe
ijLiHdĒj + λu

ijQiHuŪj + λd
ijQiHdD̄j

+µ
′

iLiHu + λijkLiLjĒk + λ
′

ijkLiQjD̄k + λ
′′

ijkŪiD̄jD̄k. (2.88)

Where

HuHd = H+
u H

−
d −H

0
uH

0
d . (2.89)

and similar for other pairs of SU (2) doublets.
The term in Eq. (2.89) is a higgsino mass term, the structure HuHd also gives

rise to the Higgs mass terms LHM = |µ|2
(
|H0

u|2 + |H+
u |2 + |H0

d |2 + |H−
d |2

)
. By

comparing HuHd and LiHu one could speculate whether the doublet Hd = Li? This
leads to problems with anomaly cancellation, heavy neutrinos and lepton flavor
violation at a high level. The term LiHdĒj gives a Yukawa interaction between a
Higgs, or higgsino, to sleptons and leptons, with the constraint that both baryon
and slepton number are conserved. The terms QiHuŪj and QiHdd̄j give Yukawa
couplings between a Higgs or a higgsino to squarks and quarks, with both baryon
and slepton number conservation.
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The last four terms in the superpotential breaks the so-called R-parity, which is
defined as follows

R = (−1)2s+3B+L . (2.90)

I will return to this in section 2.5.

2.3.1 The particle content in the MSSM

Higgsinos and gauginos mix together and create two charginos and four neutralinos,
while gluinos,and first and second generation squarks are assumed to not be subject
of any kind of mixing. The different particles in MSSM are shown i Table 2.5, the
fermion antiparticles of SM and their superpartners are not shown.

R = 1 R = −1

γZH0h0 A0 χ̃0
1χ̃

0
2χ̃

0
3χ̃

0
4

W±H± χ̃±1 χ̃
±
2

g g̃
e−νeµ

−νµντ ẽrẽlν̃eν̃µν̃τ µ̃rµ̃l

τ− τ̃1τ̃2
udsc ũrũld̃rd̃ls̃rs̃lc̃rc̃l
b b̃1b̃2
t t̃1t̃2

Table 2.5: Particles and sparticles in the MSSM grouped by R-parity

The different gaugino fields that mix into free particle states are the B̃0, W̃ 0, W̃±,

H̃u
+
,H̃u

0
, H̃d

0
,H̃d

−
. Here B̃0 and W̃ 0 are the superpartners of the B0 and the W 0,

which spans out the Z-boson and the photon when rotated an angle θW . Generally
the four neutral gaugino fields can be mixed, spanning out the Neutralinos.

χ̃i
0 = ci1B̃

0 + ci2W̃
0 + ci3H̃u

0
+ ci4H̃d

0
(2.91)

The two positive gaugino fields and the two negative gaugino fields can mix, span-
ning out two negatively and two positively charged charginos. The chargino mixing
is given as

χ̃± = k1+W̃
+ + k2+H̃u

+
. (2.92)
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There is one superpartner for each left handed or right handed first and second
generation fermion. In the sneutrino case only the left handed particles are con-
tained in the MSSM. The superpartners of τR and τL can mix into τ̃1 and τ̃2. The
superpartners of tR and tL can mix into the mass eigenstates t̃1 and t̃2, the same
can be the case for bR and bL as they also have non negligible Yukawa couplings.

2.4 The SUSY breaking terms

The sfermion and gaugino mass terms in the MSSM come from the soft terms: From
Eq. (2.72) one gets the gaugino terms

Lm1 = −1

2
M1B̃B̃ −

1

2
M2W̃ iW̃i −

1

2
M3

˜gaAg̃a
A + c.c. (2.93)

Each of these have 2 free parameters, so they give rise to 6 free parameters in total.
From Eq. (2.73) one gets

Lm2 = −ae
ijL̃iHd

˜e∗jR − q
u
ijQ̃iHu

˜u∗jR − a
d
ijQ̃iHd

˜d∗jR + c.c. (2.94)

This gives rise to 54 free parameters.
From Eq. (2.74) there is one term contributing to the sfermion masses

Lm3 = −bHuHd + c.c. (2.95)

These terms result in 2 free parameters.
From Eq. (2.76) one gets the diagonal sfermion mass terms

Lm4 = −mL2
ij L̃

†
i L̃j −me2

ij Q̃
†
iQ̃j −mu2

ij ũ
∗
iRũjR −md2

ij d̃
∗
iRd̃jR (2.96)

resulting in 47 free parameters.

2.4.1 The hierarchy problem

If one tries to calculate loop corrections to the Higgs mass in the SM, one gets
divergences. However, there has only been performed experiments up to a certain
energy level, so one is allowed to introduce a cut of to regularize the theory, and
the consequences of this are that the divergences disappear. The cut of scale would,
in worst case, be at the Planck scale which is the scale where one knows that the
SM does not work anymore. From the fermionic one-loop corrections shown in
Fig. 2.2, and scalar one-loop corrections shown in 2.1 one gets both positive and
negative contributions to the Higgs mass, with a cut of at the Planck scale the cut-
off corrections are 1016 larger than the energy scale where measurements predict
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Figure 2.1: One-loop scalar contribution to Higgs mass.

the Higgs to be at. In order to have a Higgs mass of order 100 GeV, one has to
introduce an enormous fine tuning.

When the experimental search for Higgs started, it was already known that it
could not have a mass exceeding 1.4 TeV, because unitary would be violated for
certain scattering processes. As the experimental search proceeded the limits were
narrowed down, the LEP experiments [8] sat a lower bound for the Higgs mass at
114.1 GeV at confidence level of 95 %. Nowadays the diphoton search at ATLAS
experiment [9] has placed the Higgs mass in the range 115–134.5 GeV at a 95%
confidence level, while CMS collaboration [10] has excluded a SM Higgs boson in
the range 127–600 GeV at a 95% confidence level. The total one-loop corrections
to the Higgs mass is

∆m2
h = −|λf |2

8π2
Λ2

uv +
λs

16π2
Λ2

uv, (2.97)

where Λuv is the cut-off scale. The particles that dominates this contribution to the
Higgs mass in SUSY are the top-quark and the stop-squark, this is because they
have a much larger Yukawa coupling than other quarks and squarks. In unbroken
SUSY one has that

|λf |2 = λs. (2.98)

SUSY also predicts that there should be twice as many scalars as fermions, so un-
broken SUSY predicts an exact cancellation and does not introduce any fine tuning
at all. However, as mentioned earlier SUSY must be broken and the cancellation is
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Figure 2.2: One-loop fermion contribution to Higgs mass.

not exact, from this the little hierarchy problem arises. The soft terms contribute
at most

∆m2
h = − λs

16π2
m2

s ln
Λ2

uv

m2
s

. (2.99)

Here ms are the masses of the scalar SUSY particles. According to the formula
above, ms cannot be too large compared to the Higgs mass, in order to avoid
getting corrections that blow up, which is one of the reasons for believing that
SUSY is manifested at the TeV scale.

2.4.2 The gluino

The Gluino is a fermion, it is believed to be a majorana fermion, which means that
it is its own anti-particle. Because it is the superpartner of the gluon it inherits the
color octet structure. It has nothing to mix with so its mass is mainly defined by
the strong mass parameter M3. It also gets some of its mass from loop corrections
discussed in the SUSY primer [3]. The loop corrections that are shown in Figure
2.3 and 2.4 give rise to the corrections

mg̃ = M3 (µ)

[
1 +

αs

4π

(
15 + 6 ln

(
µ

M3

)
+ ΣAq

)]
, (2.100)

where

ΣAq =

∫ 1

0

xln

(
xm2

q̃

M2
3

+ 1− x
m2

q

M2
3

− x (1− x)− iε
)

dx. (2.101)
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Figure 2.3: One-loop correction to the gluino mass

Here αs is the strong coupling, mq̃ are squark masses and mq are the corresponding
quark masses, while µ is the energy scale of the renormalization. The sum is taken
over all 12 squark-quark supermultiplets. The numerical factor 15 comes from
the color nature of the gluino. In gauge coupling unification models the following
relations are satisfied

M3 =
αs

α
sin2 θWM2 (2.102)

M3 =
3

5

αs

α
cos2 θWM1. (2.103)

This approximately gives: M3 : M2 : M1 = 6 : 2 : 1, so in this scheme it is reasonable
to believe that the gluino is heavier than the charginos and the neutralinos. In my
study described in chapter 3, either the squarks or the gluinos are assumed to be the
Next-to-Lightest-Supersymmetric-Particle (NLSP), which means that in this model
there is no gauge coupling unification.

2.4.3 The squarks

The squarks are spin–0 particles and carry baryon number, flavor, color and charge.
The diagonal mass terms are

L1L = −m2
FF

†
i Fi, (2.104)



20 CHAPTER 2. SUPERSYMMETRY

Figure 2.4: One-loop correction to the gluino mass

L1R = −m2
f f̃

∗
iRf̃iR, (2.105)

for the squarks in the left handed doublets and the right handed singlets respectively.
The hyperfine terms that come from the ElectroWeak Symmetry Breaking (EWSB)
and theD-term breaking gives rise to the following mass terms, D-terms are removed
by use of Euler-Lagrange’s equation, giving rise to terms in the scalar potential, it
can be showed that SUSY is broken when the minimum of this scalar potential is
greater than zero [3].

∆f =
(
I3Fg

2 − YFg
′2
) (
v2

d − v2
u

)
(2.106)

There are also some F -term contributions after EWSB that comes from Yukawa
terms in the superpotential that give rise to mass terms on the form

L2L =
(
vu/dyf

)2
f̃ ∗iLf̃iL. (2.107)

and

L2R =
(
vu/dyf

)2
f̃ ∗iRf̃iR. (2.108)

These are only important for large Yukawa couplings yf , so they can be neglected
for first and second generation squarks due to the inheritance of Yukawa couplings.
In addition there are also some F-terms that combine scalars from the µHuHd and
Yukawa terms with a Higgs Vacuum expectation value (VEV), which give mas terms

L3RL = −µ∗vu/dyf f̃
∗
Rf̃L + c.c. (2.109)
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Finally, there are some mass terms

L4RL = afvu/df̃Lf̃
∗
R + c.c (2.110)

coming from soft breaking Yukawa terms with F fields and a Higgs VEV. Where
one often assumes that af = Afyf . For first and second generation squarks the
main contributions come from Eq. (2.04), Eq. (2.05), and Eq. (2.06).

2.4.4 Bounds on masses in the R-parity conserving case

The ATLAS collaboration [11] at CERN has excluded important mass scenarios in
the R-parity conserving case. Here µ is the coupling linked to the higgsino mass term
in the superpotential, while A0 is a parameter related to the scale of the symmetry
breaking. The study assumes that tan β = 10, A0 = 0, µ > 0 for 1.04fb−1 data.
When mg̃ = mq̃ in the mSUGRA model the conclusion is that

mq̃ > 950 GeV (2.111)

mg̃ > 950 GeV. (2.112)

When the search assumes that mg̃ 6= mq̃ they got the following constraints

mq̃ > 875 GeV (2.113)

mg̃ > 700 GeV. (2.114)

As mentioned earlier the focus of this thesis has been to set boundaries on squark
and gluino masses in the RPV scheme. These results are presented in Chapter 3
and the limits turns out to be much weaker than what is achieved by the ATLAS
collaboration for the R-parity conserving (RPC) case.

2.4.5 Dark matter

Dark matter is a type of matter that does not interact electromagnetically. The
analysis of galactic motion done by Zwicky in 1933 [12] suggested the existence of
non-luminous matter in addition to the known matter, confirmed much later by a
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study done by Vera Rubin [13] on rotational curves for galaxies. Nowadays there
are many studies in cosmology that support their conclusions. The dark matter
is believed to be the dominant type of matter in the universe. One distinguishes
between cold and hot dark matter. Earlier either one was not preferred but now the
cold dark matter theories are favoured due to cosmological measurements. The three
most important cold dark matter candidates are the Massive Compact Halo Objects
(MACHOS), axions, and the Weakly Interacting Massive Particles (WIMPs). The
MACHOS are large condensed objects believed to be the size of planets. The most
important strategy in the search for MACHOS is to look at effects from gravitational
lensing. Axions are very light particles that are introduced in order to explain why
QCD does not break CP-symmetry. WIMPs are massive particles that interact
trough the weak force and gravitation. Since WIMPs do not interact with either
the strong nuclear force or electromagnetism, they behave like massive neutrinos.

The dark matter candidate in RPV scenarios has to be extremely weakly in-
teracting, otherwise it would rapidly decay. The candidates that are favoured to
constitute dark matter are the gravitiono and the axino. The axino is the super-
partner of the axion. The gravitino is the superpartner of the graviton and it obeys
spin–3/2 statistics. However, there has never been discovered any spin–3/2 particle,
so where is it? As implied earlier the gravitino is a weakly interacting particle with
scattering amplitudes at 10−19 GeV−1 and hence negligible in collider experiments.
The gravitinos are assumed to have been created from the (NLSP) decay or in ther-
mal production gg → g → g̃G̃ at reheating after the cosmic inflation. The gravitino
decay is suppressed by the Planck mass and hence gravitinos are long lived even in
RPV models.

It is even conceivable that colored particles like squarks and gluons could form
bound colorless particles, which again would constitute dark matter, given that
they exist, they have to be hadrons, leading to the name R-hadrons. R-hadrons
would consist of at least one squark with other colored particles, or at least one
gluino with other colored particles. R-hadrons are possible when a colored super-
symmetric particle has a mean lifetime that is longer than the hadronization time.
The hadronization time is the time it takes for a colored particle to form a bound
state together with colored particles of the vacuum. R-hadrons can be systematized
into R-mesons, R-baryons and gluinoballs. R-mesons consist either of g̃q̄q or q̃q̄, R-
baryons consist either of g̃qqq or q̃qq, and gluinoballs consist of g̃g. In the R-parity
violating theories the squarks and gluinos typically have a lifetime that is shorter
than the hadronization time, so then it is not possible to have R-hadrons.However,
if R-parity is very weakly broken, then the colored sparticles could have lifetimes
that are longer than the hadronization time, and formation of R-hadrons might be
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possible.

2.5 R-Parity violating SUSY

Figure 2.5: Generic vertex for the LLE coupling, which breaks lepton number.

The appearance of R-parity violating couplings has been discussed for some
decades. The major problem is that this break lepton or/and baryon number.
They must be considered even in the R-parity conserving theories, because they
arise in the superpotential in a natural way. Hence these theories must justify why
the R-parity violating terms are omitted.

From searches at the LHC it seems that the sparticles in the RPC scheme have
to be close to 1 TeV, this is not the case in the RPV scenario at the present, which
motivates the study of this scenario, but there are some problems that must be coped
with, including the stability of the proton. These theories might also solve some
problems, for instance they provide a LSP candidate, which is weakly interacting,
and hence a good candidate to constitute cold dark matter, although it would not
be stable.

The RPV terms in the superpotential are the four last terms in Eq. (2.88). They
give rise to interactions shown in Fig. 2.5, Fig. 2.6 and Fig. 2.7

These couplings break baryon and/or lepton number conservation, they allow
the superpartners to decay into final states that contain only SM particles, they also
affect parameters that are studied in precision experiments. From this, one can set
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Figure 2.6: Generic vertex for the LQD coupling,which breaks lepton number

limits on the R-parity violating couplings. By requiring gauge invariance one gets
the following

λijk = −λjik, (2.115)

and

λ
′′

ijk = −λ′′

ikj. (2.116)

The LLE, LQD and LH couplings violate lepton number (L) conservation,
while the UDD coupling violate baryon number conservation. There are 3 poten-
tial bilinear µ

′
i couplings which mixes charged leptons with down type Higgses and

breaks lepton number. In the trilinear domain there are 9 λijk, 27 λ
′

ijk couplings

that break lepton number conservation and 9 λ
′′

ijk that break baryon number con-
servation. In addition to the superpotential terms, there are also the soft breaking
R-parity violating terms. These terms introduce about 100 free parameters, some of
these parameters can be eliminated, which parameters can be eliminated depends
on the basis chosen.

2.5.1 Proton decay

One can set boundaries on some of the trilinear couplings by looking at the proton
decay to e+π0. By making use of the couplings λ

′

ijk and λ
′′

ijk, d and u quarks in
the proton could fuse together into a scalar particle, that once more could split
into a lepton and a quark shown in Fig 2.8. From experiments one knows that the
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Figure 2.7: Generic vertex for the UDD coupling, which breaks baryon number.

lifetime of the proton must be greater than 6.6×1033 years [14], which corresponds to
decay rate less than 1.35×10−35 GeV. By analyzing the Feynman diagram involved
and assuming that the mass of the intermediate particle is 1 TeV, one gets that
λ

′

ijkλ
′′

11l < O (10−12), here λ
′

ijk and λ
′′

11l are the involved couplings. The limit is set
on the product of two different couplings, so this does not imply that it is a limit
on the dominant coupling.

2.5.2 Experimental search for R-parity violation at hadron
colliders

The way SUSY can be discovered at colliders crucially depends on the structure of
the model followed by nature. RPV and RPC models could have different signals at
colliders, hence the search strategy in these two scenarios must be different as well.
The phenomenology at colliders in the RPV case turns out to be highly dependent
of couplings, so that for a wide range of couplings the manifestation of RPV SUSY
would be indistinguishable from the RPC case.

Most of the SUSY searches that has been performed the last years have been
done in the RPC scheme, but the RPV scenario gets more and more interesting to
study, as larger and larger parts of the parameter space in the RPC theories are
ruled out. The majority of limitations on the parameters of the sparticles come
from the experimental search at Tevatron, Hera and LEP summarized in the PDG
[15]. In most SUSY models a stable LSP is believed to constitute the dark matter,
so naturally a lot of experiments that have been performed have focused on the
LSP. The production of LSP will lead to missing momentum signals which differ
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Figure 2.8: Diagram contributing to proton decay through the couplings λ
′
112 and

λ
′′
112.

from the signals in the RPC case. In the RPC scenario, the produced particles must
decay in cascades resulting in final states that contain the LSP and SM particles.
In addition, supersymmetric particles (sparticles) must be produced in pairs. While
the presence of R-parity violation affects the phenomenology in supersymmetry
searches, by opening up for decay and production channels that are not allowed in
the RPC case, e.g allowing single production of SUSY-particles.

In the RPV theories some of the trilinear couplings can be different from zero
and hence the supersymmetric particles are allowed to decay directly into final states
containing only standard model particles. For sparticles other than the LSP these
direct decays might be just as important as the cascade decays when it comes to
excluding areas in parameter space. In most of the RPV models with dark matter
the gravitino is assumed to be the LSP. Due to the fact that the gravitino interaction
is suppressed by the Planck mass Mp it cannot be discovered directly at colliders,
which makes the search for the NLSP important.

There are 45 independent trilinear couplings λijk, λ
′

ijk and λ
′′

ijk, and dealing with
the task of testing all the combinations of these possible non-vanishing coupling
combinations, one assumes a strong hierarchy among the couplings. One postulates
that one of the couplings is more dominant than the others in order to simplify
the experimental search, this coupling is named Λ. In order to optimize the search,
strategies must take into account bounds on Λ from precision measurements.

If Λ were to be less than 10−6, the NLSP would be stable in an experiment.
For values of Λ > 10−2 the decay rate would be so large that there would be single
particle production. A possible search strategy in such cases, in this regime, is to
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neglect R-parity contributions at production channels, this can be done if the RPV
couplings are small compared to RPC couplings.

As in the RPC scenario the study of gluinos and squarks at hadron colliders
are very interesting when it comes to setting boundaries on the parameter space.
This is because gluinos and squarks are colored objects and hence their production
cross-section will be dominant compared to other SUSY particles.

In the study I have performed, which is described in Chapter 3 and 4 I have
looked at different squark and gluino masses on a grid where the lightest of them
were assumed to be the NLSP. The dominant coupling can take values in the range
10−6 < Λ < 10−2, so the production is dominated by interactions that conserves
R-Parity. If the gravitino is the LSP, then the decay from the NLSP to a final
state containing the LSP through a RPC coupling is suppressed by Mp. So then
the NLSP will mainly decay through RPV couplings.
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Chapter 3

Production of squarks and gluinos
at the LHC

The main focus of this study is to constrain squark and gluino masses given that
there is a dominant baryon number violating RPV coupling λ

′′
in the range 10−6 <

λ
′′
< 10−2 and that squarks and gluinos are the lightest sparticles except for the

gravitino. Squarks and gluinos are assumed to be produced in proton-proton col-
lisions and can further on decay through R-parity violating channels. The decay
products become hadronic jets. These will be investigated in Monte Carlo simu-
lations by looking for peaks at the points where the squark and gluino mass are
determined to be. A fit to these peaks will be performed, which will be used in the
further ∆χ2 analysis that finally will be used to exclude certain squark and gluino
mass scenarios. A data set for QCD backgrounds and a corresponding fit to the
data which are important components of the ∆χ2 analysis have been adopted from
the article [1].

3.1 A Search done by the CMS collaboration

The main focus of my thesis has been to expand the search for 3-jet resonances
from gluino decay done in [1] to involve squark decay as well. This study assumes
production of gluinos from proton-proton collisions at 7 TeV, where the gluinos are
constrained to decay into 3 quarks. This study used a 35.1 pb−1 of data.

From QCD one knows that colored particles cannot exist freely in nature, but
they can be combined with other colored objects, forming a bound state with zero
color. Colored objects produced in decays at colliders will combine with other
colored objects that are produced in the same collision. The objects are called
hadronic jets and can be seen as energy deposits in the detectors. In numerical
simulations jets can be found by the use of a jet-algorithm.

29
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In this analysis the anti-kT algorithm [16] has been used to reconstruct the
jets, here the cone radius is set to 0.5. Events with 6 or more jets are kept and
the 6 jets with the highest transverse momentum are arranged into triplets. Each
of these jets is required to have transverse momentum greater than 45 GeV and
absolute pseudorapidity less than 3. In addition the transverse momentum of all
the jets in the final state combined is required to exceed 425 GeV. The transverse
momentum used here is the component of the momentum perpendicular to the beam
axis. When θ is the angle between a massless particle direction and the beam axis
the pseudorapidity is given as η = − ln (θ/2). Then, assuming that each of the
produced gluinos resulted in quarks contained in one of these 20 triplets, this makes
the remaining 18 triplets as background. This combinatorial background is not to
be confused with regular QCD background.

In order to pick out the signal triplets one requires that the invariant mass of the
triplets has to be less than the sum of the absolute value in transverse momentum
for each jet minus a variable ∆.

Mjjj <
3∑

i=1

| pjet
T | −∆. (3.1)

Here ∆ is a parameter that can be adjusted to optimize the selection. In the CMS
analysis ∆ is set to 130 GeV. After this selection is performed, a considerable amount
of background from both the uncorrelated triplets in signal events and the regular
QCD processes remains.

The QCD background is the dominant one. A rescaled mass distribution of
triplets form events with Njet = 4 and is used to estimate the shape of the back-
ground. The Mjjj distribution of these triplets is multiplied by the ratio of the
average triplet scalar pT in data, for the Njet > 5 to the Njet = 4 region to account
for expected minor kinematical differences between the two regions. The resulting
Mjjj distribution is then parametrized with the following exponential function

f (x) = eA+Bx, (3.2)

where A = 5.6 and B = −0.0067. Simulated events that satisfy the selection criteria
above are plotted against their 3-jet invariant mass for a model with mg̃ = 250 GeV,
together with data points and the exponential fit function in Fig. 3.6. A maximum
likelihood analysis is performed for the signal, the exponential fit function and the
data points, resulting in an exclusion plot of the cross section at 95 % confidence
level with the actual cross sections shown in Fig. 3.1. The model is excluded at 95%
C.L for a given gluino mass when the observed cross section limit at 95 % C.L lies
below the MSSM cross section, excluding gluino masses in the range 200–280 GeV.
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Figure 3.1: Cross section limits at 95% C.L set by the CMS collaboration [1]

3.1.1 The anti-kt jet algorithm

A jet is a shower of hadrons originated from a shower of quarks and gluons through
hadronization. At hadron-colliders quarks and gluons cannot be detected directly,
the quantities that can be detected are the jets. These are registered in the hadronic
calorimeter. Jet algorithms are used both in event reconstruction at hadron colliders
and in simulations of hadron collisions. The purpose of the jet algorithm is to
identify jets and find the kinematical properties of them, such as energy, momentum
and pseudorapidity as close as possible to the same properties for the quark and
gluon that the originates from.

The anti-KT algorithm is a clustering algorithm, clustering algorithms recon-
struct jets by pair-wise grouping together nearby objects. The anti-KT algorithm
combine highest pT objects first. The algorithm starts with a list of final state
objects. For each object i one defines

di ≡ p−2
Ti . (3.3)

For each pair of objects one defines

dij ≡ min
(
p−2

Ti , p
−2
Tj

) ∆2
ij

R2
(3.4)

where R is the cone radius and

∆2
ij = (yi − yj)

2 + (φi − φj)
2 , (3.5)
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y and φ are the rapidity and the azimuth respectively. Then the algorithm finds the
minimum of all di and dij. If dij is the minimum then objects i and j are merged
into a new object. If di is the minimum then object i is considered a jet. This
procedure is repeated until no objects remain.

3.2 In search of 3-jet resonances from squark and

gluino decay

Now the analysis performed in [1] is extended to involve production and decay
of squarks. I have looked at production of squarks and gluinos in proton–proton
collisions at 7 TeV. I have used Herwig++ 2.5.1 [17] to simulate this production.
This program is a Monte Carlo event generator which simulates both lepton–lepton
and hadron–hadron collisions. Herwig++ also handles the decay of squarks and
gluinos and takes care of the hadronization of the decay products. The program
also takes into account both final and initial state radiation. The squarks involved in
this study are ũR,ũ∗R, d̃R and d̃∗R giving a conservative bound on squark production.
When mq̃ < mg̃ the gluino must decay into 3 quarks through RPV coupling, and
when mq̃ < mg̃ it mainly will decay into a gluon and a squark. When mq̃ > mg̃ the
squark must decay into two quarks, and when mq̃ > mg̃ the squark mainly decays
into a quark and a gluino.

The squarks and gluinos are assumed to be so heavy that they can decay into
states of multiple quarks. In this study I vary in having gluinos or squarks as
the NLSP. What is important, as discussed in the decay chapter, is that the when
the gravitino or the axino are assumed to be the LSP, then the decay into these are
suppressed so the R-parity violating decay are the dominant one. So that is the only
one affecting the lifetime of the NLSP. Also because the NLSP must decay through
the R-parity violating coupling the observables are insensitive to the value of λ

′′
in

the range 10−6 < λ
′′
< 10−2. The final states will mainly contain quarks and gluons,

and these will become jets trough hadronization processes. I have used FastJet [18]
and the anti-KT algorithm [16] to find jets that are produced in Herwig++. Decay
tables and masses are obtained by reading in Susy Les Houches Accord (SLHA) files
[19]. The selection criteria for jets, QCD background and an integrated luminosity
of 35.1 pb−1, are inherited from the article [1] by the CMS collaboration.

There is a small splitting between mũR
and md̃R

in the SLHA files created from
the mass grid. The hyperfine splitting term in Eq. (2.106) gives rise to this splitting
due to the difference in charge between the particles. The mass grid values are
given by the soft mass (SUSY breaking) parameters mū3 = md̄3

= m3, which is the
parameter I set bounds on, while both particles get the same one-loop correction
to their mass. For m3 = 200 GeV the hyperfine splitting is about 5 GeV and the
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one-loop correction is of order 10 GeV giving the physical masses mũR
≈ 205 GeV

and md̃R
≈ 210 GeV.

The coupling λ
′′

is assumed to be in the range 10−2–10−6. The lower limits comes
from the fact that the particle has to decay before it reaches the detector, otherwise
it would not be possible to register hadronic jets in the detector. it is reasonable to
assume that

Γ ≈ |λ′′|2m (3.6)

where m is the mass of the decaying particle. The lifetime of the particle is given
as

τ =
~
Γ
. (3.7)

Thus

|λ′′| ≈
√

~
τm

. (3.8)

The distance from the point of collision to the detector is approximately 5 cm and
the speed of the decaying particle is of order speed of light, which implies τ ≈ 10−10.
Then if the mass is of order 100 GeV, one gets that:

|λ′′| ≈
√

10−16

10−101011
≈ 10−7.5 (3.9)

The review article [4] operate with a lower value of λ
′′

of 10−6. This is a reasonable
agreement since a non-prompt decay can be identified from tracks originating some
distance before the detector.

If one look at the production of squarks and gluinos at LHC the most important
production channels are the following

• gg → g̃g̃,q̃iq̃j
∗

• qg → g̃q̃i

• qq̄ → g̃g̃,q̃iq̃j
∗

• qq → q̃j q̃i

The leading order Feynman diagrams describing these processes are shown in Fig. 3.2
and Fig. 3.3.
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Figure 3.2: Feynman diagrams for squark and gluino production through gluon-
gluon fusion and gluon-quark fusion taken from A Supersymmetry Primer [3]

3.2.1 Event generation

I have looked at gluino and squark masses on a grid in the range 160 GeV to 420
GeV. The reason for choosing 160 GeV as lower limits is because the article [1] ex-
cluded a model with gluinos in the range 200–280 GeV. The upper limit in masses
is chosen to be 420 GeV, this is because it is clear that the model cannot be ex-
cluded any longer when gluino and squark masses reach this value as we will see in
figure 3.8. The grid resolution is 20 GeV, so the total number of mass scenarios are
196. This search according to [1] assumes that gluinos and squarks are produced
giving rise to at least 6 final state jets. The produced neutrinos are omitted from
the event because they cannot be detected at LHC and are therefore considered
missing energy.

For each grid point, I have chosen to generate 500000 events with the Monte-
Carlo generator, where a few thousand events survives the selection criteria intro-
duced by [1]. As mentioned the number of events is plotted against the 3-jet in-
variant mass, this plot contains peaks around both the gluino mass and the squark
mass. A plot for masses mg̃ = 400 GeV and mq̃ = 260 GeV, with belonging fits
shown in Fig 3.4. The fits are performed in the regions 255.5–284.5 GeV for mq̃ and
384.5–407.5 GeV for mg̃. The selection criteria eliminates a lot of the combinatorial
background, so the peaks are not smeared out, and hence easy to distinguish from
each other as long as the gluino mass is not close to the squark mass. A Gaussian fit
is done to the peaks in order to determine the expected shape and normalization,
and this fit is used in the further statistical analysis. The fit procedure is most
difficult when the squark and gluino mass differ by 20 GeV, this is because the
excitations overlap. In the further statistical analysis the fits to both the gluino
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Figure 3.3: Feynman diagrams for squark and gluino production through quark-
quark fusion taken from— A Supersymmetry Primer [3]

excitation and the squark excitation are normalized to the Next-to-Leading-Order
(NLO) order cross section generated by Prospino [20]. Prospino is a Fortran pro-
gram that calculates both Leading Order and NLO production cross section for
squarks and gluinos at hadron colliders. The ratio between NLO and LO cross
sections for the 196 grid points were located in the range 1.4–1.8.

I have also reproduced the results obtained by the CMS collaboration in their
study [1]. This is done to ensure that the procedure that is used in my analysis is
not biased. In this analysis only the gluinos were produced as in the study by the
CMS collaboration [1]. The gluino pairs produced by Herwig++ were constrained
to decay into 3 quarks trough R-parity violating couplings. In Herwig++[17] this
is incorporated by reading in SLHA files [19], which contain SUSY and Standard
Model parameters, masses and decays tables. The jet triplets that survive the
selection criteria described in [1] are as an example plotted against Mjjj.

A plot of the three jet invariant mass distribution for a gluino with mass 280
GeV is shown in Fig 3.5. The plot is created from an analysis with 250000 events in
Herwig++. From the plot one can see that the peak is located around Mjjj = 280
GeV as expected. The plot also contain a fit which is of importance in the further
delta-chi-square analysis. This Gaussian fit has been performed in the region 268.1–
287.9 GeV. I have used 6/GeV bins in the plots where the fit has been performed.
Later on, the fit is rescaled in order to be comparable with the background that is
binned with 10/GeV. In this analysis I scale my signal with a factor n, which is the
free parameter in this analysis. The theoretical model consists of both the scaled
signal and the exponential fit-function.



36CHAPTER 3. PRODUCTION OF SQUARKS AND GLUINOS AT THE LHC

Figure 3.4: Number of signal triplets for model with peaks at mg̃ = 400 GeV and
mq̃ = 260 GeV as a function of invariant mass. Two Gaussian fits to the resonances
are also shown in the plot.

3.3 The statistical procedure

Now the ∆χ2 analysis is used to obtain constraints on squark and gluino masses in
the assumed model. The expression for the χ2 is the following.

χ2 =
59∑
i=1

(Oi − FT )2

δ2
i

, (3.10)

where the theoretical model is given by

FT (x) = f (x) + nf g̃
s (x) + nf q̃

s (x) . (3.11)

The function f and the CMS data points Oi are shown in Fig. 3.6 taken from the
article[1]. Here, FT is the total signal that is compared to the data points in the
∆χ2 analysis. The quantities f g̃

s and f g̃
s are the gluino peak and the squark peak

contributions respectively. The function f is described in Eq. (3.2). The quantities
δi are the error on the data points. The parameter n is a free parameter that scales
the signal.

I now want to find the value of n when ∆χ2 has exceeded a value ∆χ2 = 3.84 at
the right side of the minima for χ2, this corresponds to a p-value of 5%. These are
the ingredient in a so-called one tailed chi squared test, the p-value is the probability
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Figure 3.5: Three jet invariant mass distribution for a gluino with mass 280 GeV
with a Gaussian fit.

of having a test statistic at least as extreme as the one observed. The χ2 is calculated
for FT with the CMS data points. This is done for 59 data points in the range 165
GeV to 805 GeV with a resolution of 10 GeV. As an example the χ2 as a function
of n is shown for mg̃ = 260 GeV and mq̃ = 220 in Fig. 3.7. This minimization
procedure was performed using the MIGRAD algorithm in the package TMinuit
[21].

The scaling factor n is found for every mass point in the grid and is plotted in a
Fig. 3.8 against both squark and gluino mass. The model is then excluded at 95%
C.L where this scaling factor is below 1, as the signal would be too large compared
to the background.
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Figure 3.6: Plot of CMS data and the background model found in [1]

Figure 3.7: Chi square is plotted against n for mg̃ = 260 Gev And mq̃ = 220 GeV,
the line where exclusion of the model starts is located at n = 0.9986.
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Figure 3.8: Scaling factor n at 95% C.L.
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The areas in Fig. 3.8 that are not excluded are light red or red. All values above
2 are set to be red, while those below 0.002 are set to be light green. The number
of points in both mq̃ and mg̃ direction are set to 50. Originally there were 14 points
in each direction,in order to achieve the new points root uses Delaunay’s triangle
interpolation technique. From the plot it is clear that the exclusion is strongest for
the gluinos with the lowest masses, grid points up to (mq̃, 360 GeV) are excluded
except for some points close to the diagonal for masses greater than 260 GeV, and
some points included in a small area close to mq̃ = 400 GeV and mg̃ = 320 GeV.
The CMS collaboration excluded gluinos in the range 200–280 GeV, while I exclude
gluino masses up to 320 GeV more or less, this is not surprising as the squarks
also contribute in my study. The fact that the exclusions are best for low gluino
masses seems reasonable taking into account that the peak around the gluino is
larger than the one around the squark. This can clearly be seen for mg̃ = 400 GeV
and mq̃ = 260 GeV in Fig. 3.4.

There are two main reasons for this, the first one is that at the LHC the gluon-
gluon fusion contributes much more at the production level than does fusion between
quarks. The cross section for producing two gluinos from gluon–gluon fusion is
higher than the cross section for production of q̃ and ¯̃q from gluon–gluon fusion,
so the cross section for production of two gluinos is higher than the one for two
squarks.

The other argument is that the jet reconstruction is better suited to the gluinos
than the squarks. The squarks will either decay into two quarks directly, or four
quarks through q̃ → q1g̃ and g̃ → q2q3q4. The jet reconstruction of the decaying
particles combine 3-jets, the gluino is constrained to decay into three quarks or into
a squark and a gluino with the squark decaying into two quarks. So more events
from the gluino decay will survive after the reconstruction than what is the case
for the decaying squarks. What is prominent with the plot, is that the exclusion
is weak in the areas where mg̃ are a little greater than mq̃. This can be explained
by the fact that the q from the process g̃ → q̃q for small mass differences between
squarks and gluinos is so soft that it is difficult to detect.

A similar statistical procedure has been performed in the reproduction of results
done in [1]. The signal assumption is

Ft (x) = f (x) + nfs (x) . (3.12)

χ2 =
59∑
i=1

(Oi − Ft)
2

δ2
i

(3.13)

The same analysis as was done in the case with both gluinos and squarks are now
done for about 15 gluino masses in the range 200 GeV to 340 GeV, the squark
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masses are set to 1 TeV so that their influence are removed. The scaling factor n
is obtained for every mass, when this value is smaller than 1, the signal is too large
compared to the background, and the gluino mass is excluded at 95% C.L level.

The ratio between NLO and LO cross sections were located in the range 1.7–2.2.
A similar analysis is done by the CMS collaboration in the maximum likelihood
scheme, here the events are generated by Pythia 6.4 [22].

mg̃ [GeV] Cross section at 95%
C.L [pb]

Cross section at 95%
C.L in article [1] [pb]

200 479 383
210 331 273
220 252 214
230 238 200
240 227 184
250 167 132
260 108 88
270 75 72
280 79 73
290 86 79
300 95 86
310 98 89
320 93 87
330 91 82
340 87 80

Table 3.1: Cross section limits for gluino cross section at 95 % C.L.

As one can see in Table 3.1, the 95% cross sections that I have produced in my
study and the ones produced by [1] are similar, but there are deviations there that
must be accounted for. These deviations may in part be explained by the fact that
in the article [1] Pythia is used to generate the events, while I have used Herwig++.
In addition it is reasonable to assume that their statistical likelihood analysis is
more optimized than mine.

For a given gluino mass the model is excluded at a 95 % C.L when the actual
cross section lies above the bounds in Table 3.1 , the cross section bounds I have
found are larger than those produced by [1], so my exclusions are more conservative
than the ones in the CMS article, hence the analysis with both gluinos and squarks
can be trusted to be conservative.
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Chapter 4

NLO improved squark decay

The number of jet-triplets coming from the process q̃ → q1q2g will be underesti-
mated in Herwig++ because these gluons come from resumed leading logarithmic
contributions included in the shower handler. This motivates an analytical study
of this decay since the process is crucial for the efficiency of reconstructing squarks
in the CMS analysis. I have performed a calculation of this process for hard gluons
and compared the result, after similar cuts, to simulation results from Herwig++
for grid points where squark and gluino masses are close to exclusion.

4.1 Width for the gluon radiation process

In this section I calculate the width of a squark decaying into two squarks through
a R-parity violating coupling, and the width of the same process with hard gluon
radiation. The ratio of the width between the radiation process and the total
width will be calculated, the result will be used to estimate the number of jet
triplets coming from the process q̃ → q1q2g, which is compared to the same quantity
calculated by Herwig++. From this it is possible to discuss the rate at where jet
triplets production on Herwig++ is underestimated, and to quantify how much
improvement on the bounds the NLO corrections grants.

The Feynman rules that have been used in the following calculations are listed
in appendix A. The Lagrangian terms that are involved in the decay calculation is
LUDD = −λ′′

ijkd
∗
kuipRdj. The three possible radiation diagrams are shown i Figs.

4.1–4.3 with reading direction for the fermion lines. The index 1 is associated with
ū and the index 2 is associated with d̄. The mass of the squark is m, the quark
masses will be neglected, the four-momenta of particle 1, 2 and the gluon will be
named p1, p2 and k respectively. The spin-sum over the total square of the Feynman

43
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Figure 4.1: Diagram a, d̄ emits a gluon

amplitude can be written

Σs1,s2,µ,ν |M |2 = Σs1,s2,µ,ν |Ma +Mb +Mc|2

= Σ1,2,r,t|Ma|2 + |Mb|2 + |Mc|2

+2<(M∗
aMb) + 2<(M∗

bMc) + 2<(M∗
aMc). (4.1)

The formula for the sum over polarization states is given in AppendixB. From the
Feynman rules I get

Ma =
−igsλ

′′

ijkū2γ
µta

(
/p2 + /k

)
pRv1ε

r
µ

(p2 + k)2 , (4.2)

which gives

Σ1,2,r,t|Ma|2 =
4g2

s |λ
′′

ijk|2gµνTr
(
pLγ

µγν/k /p1

)
2p2k

3 (p2 + k)4 (4.3)

where the sum is taken over spin and polarization for quarks and gluons respectively.
The factor 4/3 comes from averaging over colors in the initial state and the sum
over final state colors. Evaluating the trace gives

Tr (tata) = 4 (4.4)

which leads to

Σ1,2,r,t|Ma|2 =
64g2

s |λ
′′

ijk|2 (p1k) (p2k)

3 (p2 + k)4 . (4.5)
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Figure 4.2: Diagram b, ū emits a gluon

The calculation of |Mb|2, |Mc|2 and the interference terms are similar to the
calculation above and will therefore not be done in the same detail. From

Mb =
−igsλ

′′

ijkū2pR

(
/p1 + /k

)
γµtav1ε

r
µ

(p1 + k)2 , (4.6)

I get

Σ1,2,r,t|Mb|2 =
64g2

s |λ
′′

ijk|2 (p2k) (p1k)

3 (p1 + k)4 , (4.7)

and from

Mc =
igsλ

′′

ijkū2pRv1 (p1 + p2 + k) εrµt
a

(p1 + p2)
2 −m2

, (4.8)

I get

Σ1,2,r,t|Mc|2 =
32g2

s |λ
′′

ijk|2 (p1p2) ((p1k) + (p2k) + 2 (p1p2))

3
(
(p1 + p2)

2 −m2
)2 . (4.9)

The interference terms are
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Figure 4.3: Diagram c, d̃ emits a gluon

Σ1,2,r,t2<(MaM
∗
c ) =

−32g2
s |λ

′′

ijk|2 (p1p2) (kp1)

3
(
(p1 + p2)

2 −m2
)
(p1 + k)2 , (4.10)

Σ1,2,r,t2<(MaM
∗
b ) =

−64g2
s |λ

′′

ijk|2 (p2k) (p1k)

3 (p1 + k)2 (p2 + k)2 , (4.11)

Σ1,2,r,t2<(McM
∗
b ) =

−32g2
s |λ

′′

ijk|2 (p1p2) (kp2)

3
(
(p1 + p2)

2 −m2
)
(p2 + k)2 . (4.12)

The total amplitude is then

Σ1,2,r,t|M |2 =
64g2

s |λ
′′

ijk|2 (p1k) (p2k)

3 (p2 + k)4 +
64g2

s |λ
′′

ijk|2 (p2k) (p1k)

3 (p1 + k)4

+
32g2

s |λ
′′

ijk|2 (p1p2) ((p1k) + (p2k) + 2 (p1p2))

3
(
(p1 + p2)

2 −m2
)2

−
32g2

s |λ
′′

ijk|2 (p1p2) (kp1)

3
(
(p1 + p2)

2 −m2
)
(p1 + k)2

−
64g2

s |λ
′′

ijk|2 (p2k) (p1k)

3 (p1 + k)2 (p2 + k)2

−
32g2

s |λ
′′

ijk|2 (p1p2) (kp2)

3
(
(p1 + p2)

2 −m2
)
(p2 + k)2 . (4.13)
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When Dalitz kinematics is used, the differential width for a three-body decay
can be written

dΓ =
¯|M |2dm2

12dm
2
23

(2π)3 32m3
. (4.14)

The variables m12 and m23 are the invariant mass between particles 1 and 2 and
2 and 3 respectively. The invariant mass between two mass-less particles can be
written as

m2
ij = 2pipj = 2EiEj (1− cos θij) . (4.15)

I denote the invariant mass between the two quarks by m12, the invariant mass
between the gluon and quark 1 is m1k and the invariant mass between the gluon
and quark 2 is m12. In the case where the quarks have zero mass the following
relation is satisfied

m2 = m2
12 +m2

1k +m2
2k. (4.16)

From these kinematical equations I get the following expression for the differen-
tial decay rate

dΓ3 =
g2

s |λ
′′

ijk|2dm2
1kdm

2
2kA (m2

1k,m
2
2k)

(2π)3 6m3
. (4.17)

Where the dimensionless mass function A is defined as

A
(
m2

1k,m
2
2k

)
=

m2
1k

m2
2k

+
m2

2k

m2
1k

+
m2 (m2 −m2

1k −m2
2k)

(m2
1k +m2

2k)
2

+
m2 −m2

1k −m2
2k

2 (m2
1k +m2

2k)
− 1. (4.18)

One can see from Eq. (4.15) that the expression above diverges both when the
energy goes to zero and when the angle between the particles goes to zero. The
divergences that appear when the energy goes to zero are called soft and those
which appear when the angle goes to zero are called collinear. In order to cope
with these divergences I introduce a cut in the invariant mass. The alternative
is to calculate the NLO loop diagrams that regulate the divergence, however, the
experiments have a limited resolution on the gluon jets that this cut emulates, so
this is sufficient for looking at the radiation processes.

I start by integrating out the variable m2k with m2
2min = m2

min as the lower limit
and m2 −m2

1k as the upper limit. The upper limit is the standard boundary of a
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Dalitz plot, found in the PDG booklet [15], demanding that Eq. (4.16) is fulfilled I
get

dΓ3 = dm2
1k

∫ m2−m2
1k

m2
min

g2
s |λ

′′

ijk|2dm2
2kA (m2

1k,m
2
2k)

(2π)3 6m3
. (4.19)

This gives

dΓ3 = dm2
1k

αs|λ
′′
112|2

12π2m3
K

(
m2

1k

)
, (4.20)

where the mass function K is defined as

K
(
m2

1k

)
≡ m2

1k log
m2 −m2

1k

m2
min

+
1

2m2
1k

((
m2 −m2

1k

)2 −m4
min

)
−m2 +

m4

(m2
1k +m2

min)
− m2

2
log

m2

(m2
1k +m2

min)

−3

2

((
m2 −m2

1k

)
−m2

min

)
. (4.21)

Then we finally integrate out m1k with m2
1min = m2

min as lower limit and m2 −
m2

1min as upper limit and obtain the total width:

Γ3 =
αs|λ

′′

ijk|2

12π2m3
B (m,mmin) (4.22)

Where

B (m,mmin) =

∫ m2−m2
min

m2
min

dm2
1kK

(
m2

1k

)
. (4.23)

B (m,mmin) = m4 log

(
m2 −m2

min

m2
min

)
− m4

min

2
log

(
m2 −m2

min

m2
min

)
−m2

minm
2 log

(
2m2

min

m2

)
+m4 log

(
m2

2m2
min

)
− 4m4

− 3m4
min +
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When mmin << m the terms that contain m4
min and m2

minm
2 can be neglected.

The terms −m2
minm

2 log
(

2m2
min

m2

)
and −m4

min

2
log

(
m2−m2

min

m2
min

)
are investigated with

L’Hospital’s rule and it approaches zero as m2
min goes to zero. So one gets

B (m,mmin) ' m4 log

(
m2 −m2

min

m2
min

)
+m4 log

(
m2

2m2
min

)
− 4m4. (4.25)

I plot Γ3/|λ
′′

ijk|2 in Fig. 4.4 as a function of the choice of cut on invariant mass
m2

min for mq̃ = 180 GeV. This shows that the width only varies much when the
cut is close to zero due to the divergences then, so for appropriate cuts Γ3 stays
relatively constant, which implies that it is not necessary to calculate Γ3 for more
than one value of mmin when I later compare to similar cuts in the Monte Carlo
simulation.

Figure 4.4: Γ3

|λ′′
ijk|2

plotted against mmin for mq̃ = 180GeV

I set the cut at m2
min = 0.01m2 as done in [23] and get

Γ3 =
4.5mαs|λ

′′

ijk|2

12π2
. (4.26)

The value that is interesting in this study is the ratio between the width of the
radiation process I have studied and the width of a squark decaying into two quarks.
The Feynman amplitude for the tree level diagram shown in Fig. 4.5 is

M = −iλ′′

ijkv1PRū2. (4.27)
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Figure 4.5: Squark decaying into two quarks

This gives the spin averaged squared amplitude

Σ1,2|M |2 = 2|λ′′

ijk|2p1p2 = |λ′′

ijk|2m2. (4.28)

In the rest frame of the decaying particle the width is given as:

Γ2 =
|~p||M |2

8πm
(4.29)

When the two particles in the final state are mass-less |~p| = m/2. This gives a
width for the two body decay of

Γ2 =
|λ′′

ijk|2m
16π

. (4.30)

Thus the ratio that will be used to estimate the number of jet triplets coming from
the process q̃ → q1q2g is

Γ3

Γ2 + Γ3

=
17.86αs

3π + 17.86αs

(4.31)

4.2 Analysis of scenarios close to exclusion

As mentioned in the beginning of this chapter, the grid points of squark and gluino
masses that are close to exclusion will be further investigated. I call the number
of jet triplets coming from the squark decay which is generated by Herwig++ for
E. This number can be estimated by taking the area of the peak above the combi-
natorial background shown in Fig. 4.6. This is done by finding a linear fit to the
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combinatorial background and then finding the area in between this linear function
and the Gaussian fit function of the peak described in chapter 3. The trapezoidal
method has been used in order to obtain this integral, the integration limits are
the points where the Gaussian and the linear fit intercept. For the concerned grid
points mg̃ > mq̃, this means that jet triplet states that are produced by the squarks
comes from the process q̃ → q1q2g.

Figure 4.6: Plot of triplet invariant mass where the estimate of the area E is shown
for mq̃ = 240 GeV and mg̃ = 400 GeV.

The number of such events can also be estimated analytically. The analytical
width of the radiation process was calculated with a cut in invariant mass, while
the cuts in the numerical simulations are taken in transverse momentum and pseu-
dorapidity when reconstructing the jets. The process of translating these cuts into
a cut in invariant mass is difficult and can only be done on an event by event basis,
because the system where the squark is at rest is achieved by Lorentz boosting the
lab system two times,once for the hard scatter and once for the longitudinal boost of
interacting gluons and quarks. However, it turns out this is not necessary because
Γ3 is relatively insensitive to m2

min.
One can see from the plot for mg̃ = 180 GeV in Fig. 4.4 that Γ3 varies slowly

when mmin is not close to zero. One might also wonder whether the transverse
energy of the gluon with this invariant mass cut is large enough to be picked up
by the selection criteria used in the simulation. When the jets originated from the



52 CHAPTER 4. NLO IMPROVED SQUARK DECAY

two quarks are separated from each other, it can be argued from m2
min > km2,

m2
12 ≈ 2E1TE2T (1− cos θ12) and m2 = m2

12 +m2
1k +m2

2k that E1T and E2T cannot
exceed a certain value. Further, one can use that m2

1k ≈ 2E1TEkT (1− cos θ1k) to
obtain a lower boundary on EkT .

With expressions for both Γ2 and Γ3 at hand, one can obtain a more accurate
estimate for the value E, this quantity will be called A. It is given by

A =
2NΓ3ε

Γ2 + Γ3

. (4.32)

Here N is the total number of events generated by the Monte Carlo simulation
and ε is the efficiency for reconstructing a squark decaying into three well separated
partons. Given that the kinematical cuts are the same for the gluino and the squark
one can do the estimate ε = B/2N , where B is the area of the peak around the
gluino mass when the mass of the gluino and the squarks are swapped. The value
of αs runs so slowly, that one can use the value αs (µ) ≈ αs (mZ) ≈ 0.11, where µ
is the energy scale of the interaction.

Figure 4.7: Plot of triplet invariant mass where the estimate of the area B is shown
for a model with mq̃ = 400 GeV and mg̃ = 240 GeV.

The quantity B is in the same way as E obtained by integrating out the area be-
tween the linear and the Gaussian fit. The expected number A of jet triplets events
coming from squark decay and gluon emission can be found once B is extracted. As
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mg̃ [GeV] mq̃ [GeV] B E A A/E σA/E

400 160 6181 356 1062 2.98 0.18
400 180 5762 364 990 2.72 0.17
400 200 5755 456 989 2.17 0.12
400 220 5727 482 983 2.04 0.12
400 240 4601 387 791 2.04 0.13
400 260 3091 256 512 2.07 0.15
400 280 2762 237 473 1.99 0.15
400 300 2496 229 429 1.87 0.15
400 320 1755 184 301 1.64 0.15
400 340 1678 174 288 1.66 0.16
400 360 1001 108 172 1.59 0.19

Table 4.1: Effective number of events from the radiation processes using a simulation
of N = 500000 events, the quantities in this table are defined in the text.

one can see from Table 4.1 there is a clear tendency that the number of expected
jet triplets is greater than the same quantity calculated in Herwig++.

According to this result it should be possible to obtain stronger limits on the
masses by incorporating the NLO decay rate in the simulation. From Table 4.1
one can also observe that the ratio A/E is decreasing when the squark mass is
increasing, the squark is produced with low pT on average so a lot of the energy
in the gluons is originated from the mass of the squark. When the squark mass is
small the energy that goes into the gluons will be even more underestimated by the
shower calculation in Herwig++, which leads to the behaviour shown in Fig. 4.1.
As one can observe in Fig. 3.8 the points were mg̃ = 400 GeV and 320 > mq̃ > 200
GeV are the points closest to exclusion. For these grid points the ratio A/E in
Table 4.1 are between 1.8–2.2 and the scaling factor at 95 % C.L vary in the range
between 1.1 and 1.5. The number of events in the peak around the squark are larger
than the number of events in the peak around the gluino mass for these masses, so
it is reasonable to believe that a numerical study with NLO improvements would
exclude these points at a 95 % confidence level.
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Chapter 5

Conclusion

I have simulated proton–proton collisions with production of gluinos and squarks.
The lightest one of them was assumed to be the NLSP, with a possible gravitino or
axino LSP, and could only decay through a R-Parity violating channel due to the
suppression of the R-parity conserving decay of the NLSP to the LSP. The products
of these decays were mainly two or three colored particles that would shower and
hadronize before reaching the detector, which motivated the search for jet triplets
resonances.

I defined a grid of squark and gluino masses in the range 160–420 GeV. The
simulation was done for all of these points, with the number of events plotted
against the jet triplet invariant mass following an analysis published by the CMS
collaboration [1]. Gaussian curves were fitted to the peaks around the gluino and
squark masses. These fit points were used in a ∆χ2 analysis where the result was
a plot of the limit on the scaling of the against squark and gluino cross section at
95% confidence level. Masses are excluded when the corresponding scaling factor is
below 1. It turned out I could exclude up to about 360–380 GeV in gluino mass,
except for points close to the diagonal, when masses were greater than 260 GeV and
some points included in a small area close to mq̃ = 400 GeV and mg̃ = 320 GeV.
The CMS article [1] excludes gluino masses in the range 200–280 GeV, while my
study excludes gluino masses up to 320 more or less, which is reasonable because of
contributions from the squarks.

I argued that the number of events in the peak around the squark mass was
underestimated, a calculation of this number in the NLO scheme was performed,
this number was compared to the ones I got from the simulation for grid points
where mg̃ = 400 GeV and mq̃ < 380 GeV. The points where mg̃ = 400 GeV and
320 > mq̃ > 200 GeV were most interesting to discuss because these grid points
had enhancements in the number of events that could balance the worse limits on
the scaling factor. For these points the values A/E in Table 4.1 were in the range
1.8–2.2 and the limit on the scaling factor varied in the range 1.1–1.5. In addition,
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the peak around the squark are larger than the peak around the gluino mass for
these grid points, so it is reasonable to believe that a numerical study with the NLO
improvements included would exclude these points at a 95 % confidence level as well.
This analysis can be extended to also involve proton–proton collisions at 14 TeV if
LHC results are published. However, one has to be aware of that backgrounds and
selection criteria will be different from what was used in this study.



Appendix A

Feynman rules

Figure A.1: R-parity violating vertex between a squark and two quarks from the
ŪD̄D̄ operator.

The vertex in Fig. A.1 is −λ′′

ijkPR The PR is consistent with a clockwise reading
direction. The squark is a spin-less object so there are no spinor related to it.

The fermion propagator is

S (p) =
/p+m

p2 −m2 + iε
(A.1)

where m is the mass of the propagator and p is its four-momentum. The spinor of
an incoming quark line is

−→
→

= ū2 (p2, s2) . (A.2)
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Figure A.2: The vertex between a gluon and two quarks

The spinor of outgoing quark number 1 is

←−
→

= v1 (p1, s1) . (A.3)

The arrow above is the fermion flow and the arrow below is the reading direction.
The sum over polarization states for massless gluons are

Σr,tε
r
µε

s
ν = −gµν . (A.4)
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Figure A.3: The vertex between a gluon and two squarks
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Appendix B

Formulae

The metric tensor used in particle physics is:

gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


.

A Dirac spinor φ can be written:

φa =

(
χA

ψȦ

)
, where χA and φȦ are left and right handed Weyl-spinors respectively. Products of
weyl spinors ψ and χ can be defined as

ψ̄χ̄ = ψ̄Ȧχ̄
Ȧ = εȦḂψ̄

ḂχȦ. (B.1)

ψχ = ψAχA = εABψBχA (B.2)

In particular:

ψ2 = ψAψA = εABψBψA = ψ2ψ1 − ψ1ψ2 = −2ψ1ψ2, (B.3)

ψ̄2 = ψ̄Ȧψ̄
Ȧ = εȦḂψ̄

ḂψȦ = 2ψ1̇ψ2̇ (B.4)

The lowering operator used here is expressed as

εAB = εȦḂ =

(
0 −1
1 0

)
, while the raising operator is given by:

εAB = εȦḂ =

(
0 1
−1 0

)
.
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The definition of the commutator is

[A,B] = AB −BA. (B.5)

The anti-commutator is defined by

{A,B} = AB +BA. (B.6)

The Pauli matrices are:

σ1 =

(
0 1
1 0

)

σ2 =

(
0 −i
i 0

)

σ3 =

(
1 0
0 −1

)
The eight Gell-Mann matrices of SU (3) are

λ1 =

 0 1 0
1 0 0
0 0 0


,

λ2 =

 0 −i 0
i 0 0
0 0 0


,

λ3 =

 1 0 0
0 −1 0
0 0 0


,

λ4 =

 0 0 1
0 0 0
1 0 0


,

λ5 =

 0 0 −i
0 0 0
i 0 0


,
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λ6 =

 0 0 0
0 0 1
0 1 0


,

λ7 =

 0 0 0
0 0 −i
0 i 0


,

λ8 =
1√
3

 1 0 0
0 1 0
0 0 −2


.

The generators are

ta =
λa

2
. (B.7)

From this one gets Eq. (4.4) The Dynkin index of a representation is given by

Tr [ta, tb] = T (R) δab. (B.8)

The γ matrices satisfy the following anti-commutation relation

{γµ, γν} = 2gµν . (B.9)

Where the Feynman slash notation is

/a = γµaµ. (B.10)

It is useful to define the product of gamma matrices

γ5 = iγ0γ1γ2γ3. (B.11)

The operators left and right handed projection operators are

pL =
1

2

(
1− γ5

)
, (B.12)

pR =
1

2

(
1 + γ5

)
. (B.13)

The trace of any product of an odd number of γµ is zero. Furthermore,

Tr (γµγν) = 4gµν , (B.14)

Tr (γµγνγργσ) = 4 (gµνgρσ − gµρgνσ + gµσgνρ) , (B.15)

Tr
(
γ5

)
= Tr

(
γµγνγ5

)
= 0. (B.16)
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Spinor contractions can be rewritten as traces by using

ūNu = Tr (Nuū) (B.17)

where N are some product of gamma matrices. The Dirac spinors u and v satisfy
the completeness relations

Σsu (s, p) ū (s, p) = /p+m, (B.18)

Σsv (s, p) v̄ (s, p) = /p−m (B.19)

where m and p is the mass and the four-momentum of the particle respectively.



Appendix C

Codes

C.0.1 Code used to obtain jet information

This program is linked to Herwig++ and produces a ROOT file which contains
information abaout the jets in the final state for all the generated events. Root [24]
has also been used for plotting.

1//Thisprogramisbasedontherootsimple.ccanalysisfileintheHerwig++distribution.3#include”TTree.h”#include”TFile.h”5#include”TStyle.h”#include”TH1F.h”7#include<cmath>9#include<fstream>11#include”col.h”#include”ThePEG/Repository/EventGenerator.h”13#include”ThePEG/EventRecord/Particle.h”#include”ThePEG/Vectors/ThreeVector.h”15#include”ThePEG/EventRecord/Event.h”#include”ThePEG/PDT/EnumParticles.h”17#include”ThePEG/Interface/ClassDocumentation.h”#include”ThePEG/Persistency/PersistentOStream.h”19#include”ThePEG/Persistency/PersistentIStream.h”#include”fastjet/ClusterSequence.hh”21#include<iostream>usingnamespacefastjet;23usingnamespacestd;usingnamespaceMyName;2565
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voidcol::analyze(tEventPtrevent,long,int,int){29//the4−momentumforeachparticle31Lorentz5Momentump5;//getthefinal−stateparticlesintheevent33tPVectorfinalstate=event−>getFinalState();vector<PseudoJet>particles;35//loopoverallthefinalstateparticlesfor(intiii=0;iii<finalstate.size();iii++){37//putthemomentumofthecurrentparticleinthe4−vectorp5=finalstate[iii]−>momentum();39//fillintheobjectsarraywiththenecessarycomponents//objects[0][iii]=p5.e()/GeV;41if(abs(finalstate[iii]−>id())!=12&&abs(finalstate[iii]−>id())!=14&&abs(finalstate[iii]−>id())!=16&&abs(finalstate[iii]−>eta())<5.0){particles.pushback(PseudoJet(p5.x()/GeV,p5.y()/GeV,p5.z()/GeV,p5.e()/GeV));43}}4547doubleR=0.5;49JetDefinitionjetdef(antiktalgorithm,R);//runtheclustering,extractthejets51ClusterSequencecs(particles,jetdef);vector<PseudoJet>jets=sortedbypt(cs.inclusivejets());53//vector<fastjet::PseudoJet>sortedbypt(constvector<fastjet::PseudoJet>&jets);numparticles=0;55//cout<<jets[0].px()<<endl;57for(intj=0;j<jets.size();j++){if(jets[j].perp()>=20){numparticles+=1;}59if(jets[j].perp()<20)break;objects[0][j]=jets[j].e();61objects[1][j]=jets[j].px();objects[2][j]=jets[j].py();63objects[3][j]=jets[j].pz();objects[4][j]=jets[j].perp();65objects[5][j]=jets[j].eta();}676971
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;

73objects[5][14]=Crossection∗(pow(10.0,31.0));Data−>Fill();75}7779//putthedataintheROOTtree//thisistheinitalizationfunction,putanynewbranchesyouwanttocreatehere,remembertodeclarethemintherootsimple.hfileaswell81intcol::prepareroottree(){std::cout<<”PreparingRootTree”<<endl;83dat=newTFile(”hpp355.root”,”RECREATE”);Data=newTTree(”Data”,”DataTree”);85Data−>Branch(”objects”,&objects,”objects[6][15]/D”);Data−>Branch(”numparticles”,&numparticles,”numparticles/I”);87return1;}89//writetheroottreetoafile(hpp.rootbydefault)91intcol::writeroottree(){Data−>GetCurrentFile();93Data−>Write();dat−>Close();95//cout<<1000000<<endl;cout<<”Aroottreehasbeenwrittentoafile”<<endl;97return1;}99101NoPIOClassDescription<col>col::initcol;//Definitionofthestaticclassdescriptionmember.103voidcol::Init(){105//std::cout<<”ROOTSimpleAnalysisv1.00(110210)”<<endl;107109//staticClassDocumentation<rootsimple>documentation//(”Therootsimpleclassprints4−momentandIDsofall”111//”final−stateparticles”);113}115voidcol::dofinish(){AnalysisHandler::dofinish();117writeroottree();cout<<”Totalcrosssection=”<<objects[5][14]<<””<<
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119}/mn/felt/u8/haavass/col/col.ccC.0.2CodeusedtoobtainfitparametersThisprogramreadsinrootfilesandproducestextfileswhichcontainescrosssectionsandtheparametersofthefittotheexcitationsintheeventsplot.1//Thisprogramisbasedontheratt.cppanalysisfileintheHerwig++distribution.#include<TROOT.h>3#include<TChain.h>#include<TFile.h>5#include<TTree.h>#include<TH1.h>7#include<TH2.h>#include<TGraph.h>9#include<TCanvas.h>#include<TRandom.h>11#include<TRandom3.h>#include<TLorentzVector.h>13#include<TString.h>#include”TopHist.h”15//Afewstandardheaders#include<iostream>17#include<fstream>#include<utility>19#include<cmath>#include<string>21#include<time.h>#include<vector>23#include”TFitResult.h”#include”TF1.h”25#include<cstdlib>#include<stdio.h>27#include<math.h>usingnamespacestd;29intipow(inta,intb){31intc=1;while(b>0){33if(b%2)c∗=a;a∗=a;35b/=2;}37returnc;
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}

39intimult(inta,intb){intc=0;41while(b>0){if(b%2)c+=a;43a∗=2;b/=2;45}returnc;47}49voidanalysis(char∗rootfile1);voidanalysisonce(char∗rootfile1);51doublesqr(doublex);53//declareafewglobalvariables,usedtotakethebranchesdoubleobjects[6][15];55intnumparticles=0;//doubleCrossection;57//cuts5961//themainfunctionintmain(intargc,char∗argv[]){6365char∗infile=””;67if(argv[1]){infile=argv[1];}//else{cout<<”Use:./ratt[input][output]”<<endl;exit(1);}69//calltheanalysiscode71analysis(infile);//cout<<”done!wrotetopdraweroutputin”<<outfile<<endl;7375}77voidanalysis(char∗rootfile1){79FILE∗pFile;81pFile=fopen(rootfile1,”r”);charstr[20];8385for(inti=0;i<1;i++){fscanf(pFile,”%s”,str);
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analysisonce(str);8991}93fclose(pFile);}9597voidanalysisonce(char∗rootfile1){99cout<<”analysing”<<rootfile1<<endl;TFile∗f=newTFile(”plots.root”,”recreate”);101//settheentriesoftheobjectsarrayto0;103//StringsurgeryonfilenameTString∗s=newTString(rootfile1);105TString∗s1=newTString(rootfile1);intiMass;107intiMass2;s−>Remove(0,3);109s−>Remove(3,4);iMass=s−>Atoi();111s1−>Remove(0,6);s1−>Remove(6,4);113iMass2=s1−>Atoi();//cout<<”Mass”<<iMass<<endl;115for(intfff=0;fff<6;fff++){for(intaaa=0;aaa<15;aaa++){objects[fff][aaa]=0;}}117TChaint(”Data”);//addtherootfilegiveninthecommandline119t.Add(rootfile1);121//settheaddressesoftheROOTbranchest.SetBranchAddress(”objects”,&objects);123t.SetBranchAddress(”numparticles”,&numparticles);//t.SetBranchAddress(”Crossection”,&Crossection);125127//gettheeventnumbers129intEventNumber=0;EventNumber=int(t.GetEntries());131cout<<”contains:”<<EventNumber<<”events”<<endl;133TH1F∗histo;histo=newTH1F(””,””,175,0,1000);
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;

histo3=newTH1F(”test”,”Plot”,1000,0,1000);137TH1F∗histo2;histo2=newTH1F(”test”,”Plot”,1000,0,1000);139//TH1F∗histo4;//histo4=newTH1F(”test1”,”Plot”,100,0,1000);141//intm=0;143//loopovereventsfor(intii=0;ii<EventNumber;ii++){145if(ii%100==0){cout<<”Eventnumber:”<<ii<<”\r”<<flush;}147//cout<<ii<<endl;t.GetEntry(ii);//getentriesfromtherootfile149//m+=numparticles;doubleMa[numparticles][numparticles][numparticles];151doublea;doubleb;153155b=0;157for(intj=0;j<numparticles;j++){if(numparticles>=6){159b+=objects[4][j];for(intk=j+1;k<numparticles;k++){161for(intl=k+1;l<numparticles;l++){Ma[l][k][j]=sqrt(pow((objects[0][j]+objects[0][k]+objects[0][l]),2)−pow((objects[1][j]+objects[1][k]+objects[1][l]),2)−pow((objects[2][j]+objects[2][k]+objects[2][l]),2)−pow((objects[3][j]+objects[3][k]+objects[3][l]),2));163a=abs(objects[4][j])+abs(objects[4][k])+abs(objects[4][l]);if(abs(objects[5][j])<3&&abs(objects[5][k])<3&&abs(objects[5][l])<3){165if(abs(objects[4][j])>45&&abs(objects[4][k])>45&&abs(objects[4][l])>45){if(Ma[l][k][j]<a−130&&b>425){167histo−>Fill(Ma[l][k][j]);169}}171}}173}}175}177
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}

179//endofloopoverevents(for(ii))181doublepi=3.1415;doublex[2000];183doubley1[2000];doubley[2000];185for(inti=1;i<2000;i++){x[i]=0.02∗i;y1[i]=ipow(180,4)∗log((ipow(180,2)−x[i]∗x[i])/x[i])−0.5∗x[i]∗x[i]∗x[i]∗x[i]∗log((ipow(180,2)−x[i]∗x[i])/x[i]∗x[i])−x[i]∗x[i]∗ipow(180,2)∗log((2∗x[i]∗x[i])/ipow(180,2))+ipow(180,4)∗log((ipow(180,2))/(2∗x[i]∗x[i]))−4∗ipow(180,4)−3∗x[i]∗x[i]∗x[i]∗x[i]+9.25∗x[i]∗x[i]∗ipow(180,2);187y[i]=y1[i]∗(0.11/(ipow(180,3)∗12∗ipow(pi,2)));//cout<<x[i]<<endl;189}191TCanvas∗can=newTCanvas(””,””);193histo−>Sumw2();histo−>Draw(””);195Doubletpar[2];197TF1∗g1=newTF1(”g1”,”gaus”,(double)iMass−10,(double)iMass+10);TF1∗g2=newTF1(”g2”,”gaus”,(double)iMass2−5,(double)iMass2+25);199TF1∗total=newTF1(”total”,”gaus(0)+gaus(1)”,(double)iMass−10,(double)iMass+10);total−>SetLineColor(2);201histo−>Fit(g1,”R”);histo−>Fit(g2,”R+”);203g1−>GetParameters(&par[0]);g2−>GetParameters(&par[1]);205total−>SetParameters(par);histo−>Fit(total,”R+”);207/∗209TFitResultPtrr=histo−>Fit(”pol1”,”S”,””,(double)iMass−60,(double)iMass+60);TMatrixDSymcov=r−>GetCovarianceMatrix();//toaccessthecovariancematrix211Doubletchi2=r−>Chi2();//toretrievethefitchi2Doubletpar1=r−>Parameter(1);//retrievethevaluefortheparameter0213Doubleterr0=r−>ParError(0);//retrievetheerrorfortheparameter0r−>Print(”V”);//printfullinformationoffitincludingcovariancematrix215r−>Write(”plots.root”);//storetheresultinafile
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217∗/219histo−>GetXaxis()−>SetTitle(”Jetinvariantmass[GeV]”);221histo−>GetYaxis()−>SetTitle(”Numberofevents/10GeV”);histo−>SetStats(0);223can−>SaveAs(”plot2.png”);histo−>Print(”plot2.png”);225f−>Write(”histo”);227deletecan;deletehisto;229231TCanvas∗can3=newTCanvas(”plot”,””);233histo3−>Draw(”E0”);can3−>SaveAs(”plot3.eps”);235deletecan3;deletehisto3;237TCanvas∗can2=newTCanvas(”plot”,””);239histo2−>Draw(”E0”);can2−>SaveAs(”plot3.eps”);241243TGraph∗gr3=newTGraph(2000,x,y);TCanvas∗c2=newTCanvas(”c2”,””,200,100,600,400);245gr3−>SetLineColor(4);247gr3−>SetTitle(””);gr3−>GetXaxis()−>SetTitle(”Cutininvariantmass[GeV]”);249gr3−>GetYaxis()−>SetTitle(”Width[GeV]”);gr3−>Draw(”AL”);251c2−>SaveAs(”plot5.png”);253255/∗ofstreammyfile(”Info4.txt”,ios::app);257if(myfile.isopen()){259myfile<<r−>Parameter(0)<<””<<par1<<””<<r−>Parameter(2)<<””<<objects[5][14]<<endl;261263}
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∗

/

265267f−>Close();269}//endofvoidanalysis()/mn/felt/u8/haavass/col/AnalysisCode/ratt.cppC.0.3Codeforperformingthe∆χ2procedureThisprogramreadsininformationaboutthefitandthedatapoint,performrsthestatisticalanalysisandplotsthecolorplotofthescalingfactor.1//ThisprogramisbasedonanexamplefromtheROOTtutorialswebsite#include<iostream.h>3#include<TChain.h>#include<TFile.h>5#include<TTree.h>#include<TH1.h>7#include<TH2.h>#include<TGraph.h>9#include<TGraph2D.h>#include<TCanvas.h>11#include<TRandom.h>#include<TRandom3.h>13#include<TLorentzVector.h>#include”TopHist.h”15//Afewstandardheaders#include<fstream>17#include<utility>#include<cmath>19#include<time.h>#include<vector>21#include”TFitResult.h”#include”TF1.h”23#include<cstdlib>#include<stdio.h>25#include<TROOT.h>#include<TMinuit.h>2729constintiNum=255;constintiNum2=59;31Floattz[59],x1[196],x2[196],errorz[59];Floattp0[196],p1[196],p2[196],cross[196],Pro[196];33FloattP0[196],P1[196],P2[196],mass[59];
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35//thisisthefunctionusedforthefit//par:vectorwiththefitparameters37Doubletfitfunction(floatmass,floatp0,floatp1,floatp2,floatcross,floatP0,floatP1,floatP2,floatPro,Doublet∗par){39doublevalue=exp(5.6−0.00667∗mass)+cross∗Pro∗0.0702∗1.75∗par[0]∗(p0∗exp(−0.5∗(pow((mass−p1),2)/pow(p2,2)))+P0∗exp(−0.5∗(pow((mass−P1),2)/pow(P2,2))));returnvalue;41}4345Doubletfitfunc(floatmass,floatp0,floatp1,floatp2,floatcross,floatP0,floatP1,floatP2,floatPro,floatn){47doublevalue=exp(5.6−0.00667∗mass)+(p0∗0.0702∗1.75∗cross∗Pro∗n∗exp(−0.5∗(pow((mass−p1),2)/pow(p2,2)))+P0∗Pro∗0.0702∗1.75∗cross∗n∗exp(−0.5∗(pow((mass−P1),2)/pow(P2,2))));returnvalue;49}515355staticintkj;5759voidcalcchisquare(Intt&npar,Doublet∗gin,Doublet&f,Doublet∗par,Inttiflag)61{doublechisq=0;63for(inti=0;i<iNum2;i++){//chisquareisthequadraticsumofthedistancefromthepointtothefunctionweightedbyitserror65doubledelta=(z[i]−(fitfunction(mass[i],p0[kj],p1[kj],p2[kj],cross[kj],P0[kj],P1[kj],P2[kj],Pro[kj],par)))/errorz[i];chisq+=delta∗delta;67}f=chisq;69return;}7173doublechisquare(floatq0,floatq1,floatq2,floatCROSS,floatQ0,float
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{75doublechisq=0;for(inti=0;i<iNum2;i++){77//chisquareisthequadraticsumofthedistancefromthepointtothefunctionweightedbyitserrordoubledelta=(z[i]−(fitfunc(mass[i],q0,q1,q2,CROSS,Q0,Q1,Q2,PRO,N)))/errorz[i];79chisq+=delta∗delta;}81returnchisq;}838587main(){899193vector<vector<float>>P;P=vector<vector<float>>(10,vector<float>(255,0));95for(inti=0;i<255;i++){for(intj=0;j<10;j++){97scanf(”%e”,&P[j][i]);//cout<<P[1][i]<<endl;99}}101103for(intk=0;k<59;k++){105mass[k]=P[0][k+196];z[k]=P[1][k+196];107errorz[k]=P[2][k+196];//cout<<errorz[k]<<endl;109}111for(intk=0;k<196;k++){x1[k]=P[0][k];113x2[k]=P[1][k];p0[k]=P[2][k];115p1[k]=P[3][k];p2[k]=P[4][k];117P0[k]=P[5][k];P1[k]=P[6][k];119P2[k]=P[7][k];
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;

121Pro[k]=P[9][k];//cout<<”P0”<<P0[k]<<endl;123//cout<<”p0”<<p0[k]<<endl;if(x1[k]==x2[k]){125P0[k]=0.5∗P0[k];p0[k]=0.5∗p0[k];127}129}131DoubletVec[196];133DoubletCro[196];DoubletMass[196];135DoubletMASS[196];137for(kj=0;kj<196;kj++){139TMinuit∗ptMinuit=newTMinuit(59);//initializeTMinuitwithamaximumof59params141////selectverboselevel:143//default:(58linesinthistest)//−1:minimum(4linesinthistest)145//0:low(31lines)//1:medium(61lines)147//2:high(89lines)//3:maximum(199linesinthistest)149//ptMinuit−>SetPrintLevel();151//settheuserfunctionthatcalculateschisquare(thevaluetominimize)153ptMinuit−>SetFCN(calcchisquare);155157Doubletarglist[10];Inttierflg=0;159arglist[0]=1;161ptMinuit−>mnexcm(”SETERR”,arglist,1,ierflg);163//SetstartingvaluesandstepsizesforparametersstaticDoubletvstart[1]={1};165staticDoubletstep[1]={1};ptMinuit−>mnparm(0,”a1”,vstart[0],step[0],0,0,ierflg);
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1

6

7

169//Nowreadyforminimizationstep171arglist[0]=500;arglist[1]=1.;173ptMinuit−>mnexcm(”MIGRAD”,arglist,1,ierflg);175//Printresults177cout<<”\nPrintresultsfromminuit\n”;doublefParamVal;179doublefParamErr;ptMinuit−>GetParameter(0,fParamVal,fParamErr);181cout<<”a1=”<<fParamVal<<”\n”;183//ifyouwanttoaccesstotheseparameters,use:185Doubletamin,edm,errdef;Inttnvpar,nparx,icstat;187ptMinuit−>mnstat(amin,edm,errdef,nvpar,nparx,icstat);189191//voidmnstat(Doublet&fmin,Doublet&fedm,Doublet&errdef,Intt&npari,Intt&nparx,Intt&istat)//∗−∗−∗−∗−∗Returnsconcerningthecurrentstatusoftheminimization∗−∗−∗−∗−∗193//∗−∗=========================================================//∗−∗User−called195//∗−∗Namely,itreturns://∗−∗FMIN:thebestfunctionvaluefoundsofar197//∗−∗FEDM:theestimatedverticaldistanceremainingtominimum//∗−∗ERRDEF:thevalueofUPdefiningparameteruncertainties199//∗−∗NPARI:thenumberofcurrentlyvariableparameters//∗−∗NPARX:thehighest(external)parameternumberdefinedbyuser201//∗−∗ISTAT:astatusintegerindicatinghowgoodisthecovariance//∗−∗matrix:0=notcalculatedatall203//∗−∗1=approximationonly,notaccurate//∗−∗2=fullmatrix,butforcedpositive−definite205//∗−∗3=fullaccuratecovariancematrix//∗−∗−∗−∗−∗−∗−∗−∗−∗−∗−∗−∗−∗−∗−∗−∗−∗−∗−∗−∗−∗−∗−∗−∗−∗−∗−∗−∗−∗−∗−∗−∗−∗−∗−∗−∗−∗
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2

0

7

/

∗

cout<<”\n”;209cout<<”Minimumchisquare=”<<amin<<”\n”;cout<<”Estimatedvert.distancetomin.=”<<edm<<”\n”;211cout<<”Numberofvariableparameters=”<<nvpar<<”\n”;cout<<”Highestnumberofparametersdefinedbyuser=”<<nparx<<”\n”;213cout<<”Statusofcovariancematrix=”<<icstat<<”\n”;215cout<<”\n”;∗/217ptMinuit−>mnprin(3,amin);//∗−∗−∗−∗Printsthevaluesoftheparametersatthetimeofthecall∗−∗−∗−∗−∗219//∗−∗===========================================================//∗−∗alsoprintsotherrelevantinformationsuchasfunctionvalue,221//∗−∗estimateddistancetominimum,parametererrors,stepsizes.//∗−∗223//∗−∗AccordingtothevalueofIKODE,theprintoutis://∗−∗IKODE=INKODE=0onlyinfoaboutfunctionvalue225//∗−∗1parametervalues,errors,limits//∗−∗2values,errors,stepsizes,internalvalues227//∗−∗3values,errors,stepsizes,firstderivs.//∗−∗4values,parabolicerrors,MINOSerrors229//∗−∗whenINKODE=5,MNPRINchoosesIKODE=1,2,or3,accordingtoISW(2)//∗−∗−∗−∗−∗−∗−∗−∗−∗−∗−∗−∗−∗−∗−∗−∗−∗−∗−∗−∗−∗−∗−∗−∗−∗−∗−∗−∗−∗−∗−∗−∗−∗−∗−∗−∗−∗231doubleNu=fParamVal;doublechis=amin;233//cout<<chis<<endl;235while((chis−amin)<=3.84){237Nu+=0.00001;chis=0;239for(inti=0;i<iNum2;i++){//chisquareisthequadraticsumofthedistancefromthepointtothefunctionweightedbyitserror241doubledelta=(z[i]−fitfunc(mass[i],p0[kj],p1[kj],p2[kj],cross[kj],P0[kj],P1[kj],P2[kj],Pro[kj],Nu))/errorz[i];chis+=delta∗delta;243}
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2

4

5

}247cout<<Nu<<””<<chis−amin<<endl;249251253//cout<<”Num”<<chi−amin<<endl;255Cro[kj]=cross[kj]∗Pro[kj];257Vec[kj]=Nu;Mass[kj]=x2[kj];259MASS[kj]=x1[kj];}261for(inti=0;i<196;i++){263cout<<i<<””<<Vec[i]<<endl;}265FloattN1[400];267FloattC1[400];FloattC2[400];269FloattC3[400];271for(inti=0;i<400;i++){N1[i]=−2+0.01∗i;273C1[i]=chisquare(p0[74],p1[74],p2[74],cross[74],P0[74],P1[74],P2[74],Pro[74],N1[i]);C2[i]=0.9986;275C3[i]=i;}277279TCanvas∗c2=newTCanvas(”c”,”Graph2Dexample”,0,0,700,600);281Inttnp=196;TGraph2D∗dt=newTGraph2D(”dt”);283TRandom∗r=newTRandom();285for(InttN=0;N<np;N++){dt−>SetPoint(N,Mass[N],MASS[N],Vec[N]);287cout<<Mass[N]<<””<<MASS[N]<<””<<Vec[N]<<endl;}289//gStyle−>SetPalette(1);gPad−>SetLogz();291dt−>SetNpx(50);dt−>SetNpy(50);
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;

dt−>GetYaxis()−>SetTitle(”GluinoMass[GeV]”);295dt−>SetTitle(””);dt−>SetMaximum(2.0);297dt−>SetMinimum(0.002);dt−>Draw(”colz”);299c2−>SaveAs(”plot3.png”);301TFile∗f=newTFile(”are.root”,”recreate”);f−>Write(”dt”);303f−>Close();305c2−>SaveAs(”plot3.eps”);307309TCanvas∗c3=newTCanvas(”c3”,””,0,0,700,600);311TGraph∗gr3=newTGraph(400,N1,C1);TGraph∗gr2=newTGraph(400,C2,C3);313gr3−>SetLineColor(4);315//gr3−>Draw(”AL”);gr3−>GetXaxis()−>SetTitle(”n”);317gr3−>GetYaxis()−>SetTitle(”Chisquared”);gr3−>Draw(”AL”);319gr2−>Draw(””);gr3−>SetTitle(””);321c3−>SaveAs(”plot1.eps”);323returnEXITSUCCESS;325//returnNu;327}/mn/felt/u8/haavass/rootsimple/AnalysisCode/ratt.cpp
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