
UNIVERSITY OF OSLO
Department of Physics

Path Capacity
Estimation for
Measurement-
based Admission
Control in Military
IP Networks

Master Thesis

Espen Flydahl

May 29, 2012

Abstract

In this thesis, the performance of a state-of-the-art path capacity estimation algorithm is evalu-
ated in terms of its suitability for being part of a measurement-based admission controller in a
military Internet Protocol (IP) network.

The strive towards Network Enabled Capability (NEC) in miltary organizations drives the need
for interconnecting all the actors taking part in an operation. The resulting network is an IP-
based, heterogeneous Wide Area Network (WAN), comprising of a variety of fixed and mobile
communication links with different capacities.

In military IP networks, Quality of Service (QoS) cannot be guaranteed when there is conges-
tion. This is due to the use of IPsec, which forms a cryptographic boundary between the traffic
source and forwarding routers, thus rendering end-to-end resource reservation impossible. This
calls for the implementation of a congestion avoidance policy through Measurement-based Ad-
mission Control (MBAC).

Based on a literature study, the estimation algorithms combining the use of packet-pair disper-
sion and delay analysis, were found to be the most suited for providing low-intrusive, fast and
reliable measurements of the path capacity. One of these algorithms, Ad Hoc Probe, was exten-
sively evaluated in a test bed based on link technologies typically found in military networks.

A number of performance limiting factors were identified, including a lack of support for
Time Division Multiple Access (TDMA)-based links, restrictions on the number of hops in
contention-based Mobile Ad Hoc Networks (MANETs) and a minimum required capacity that
made the algorithm unfit for use in networks containing narrowband, low-capacity links.

Acknowledgements

This thesis concludes my master’s degree in Electronics and Computer Technology at the Uni-
versity of Oslo, Faculty of Mathematics and Natural Sciences, Department of Physics.

The work was funded by Forsvaret (Norwegian Armed Forces), and it was carried out in the pe-
riod January 23 - May 29, 2012 at Forsvarets Forskningsinstitutt (Norwegian Defence Research
Establishment) under the supervision of dr. scient. Mariann Hauge (FFI) and professor Josef
Noll (UNIK).

First and foremost, I would like to thank my main supervisor Mariann Hauge and her coworker
Erlend Larsen for valuable discussions and feedback, and for providing me with an interesting
and challenging assignment. I would also like to extend my gratitude to Josef Noll for taking
on the job as internal supervisor, and for his guidance in the writing process.

Furthermore, a great thanks goes to all the other people at FFI for showing interest in my work
and for their assistance in providing test bed equipment.

Finally, I would especially like to thank my beloved Kari Elise for her support and patience
during the last months.

ii

Acronyms

ARP Address Resolution Protocol

ARQ Automatic Repeat reQuest

BPSK Binary Phase Shift Keying

CDMA Code Division Multiple Access

COMSEC Communication Security

CSMA Carrier Sense Multiple Access

CSMA/CA Carrier Sense Multiple Access Collision Avoidance

CSMA/CD Carrier Sense Multiple Access Collision Detection

CT Ciphertext

CTS Clear-to-send

DCF Distributed Coordination Function

DiffServ Differentiated Services

DSCP Differentiated Services Code Point

DSSS Direct Sequence Spread Spectrum

EF Expedited Forwarding

ESP Encapsulating Security Payload

FDMA Frequency Division Multiple Access

FEC Forward Error Correction

FFI Forsvarets Forskningsinstitutt (Norwegian Defence Research Establishment)

FIFO First In, First Out

IBSS Independent Basic Service Set

iii

ICMP Internet Control Message Protocol

IETF Internet Engineering Task Force

IP Internet Protocol

ISM Industrial, Scientific and Medical

kbps Kilobits per second

MAC Medium Access Control

MANET Mobile Ad Hoc Network

MBAC Measurement-based Admission Control

Mbps Megabits per second

MGEN Multi-Generator

MTU Maximum Transmission Unit

NATO Northern Atlantic Treaty Organization

NEC Network Enabled Capability

OS Operating System

OWD One-Way Delay

PAN Personal Area Network

PER Packet Error Rate

PPD Packet-Pair Dispersion

PT Plaintext

QoS Quality of Service

QPSK Quadrature Phase Shift Keying

RTS Ready-to-send

RTT Round Trip Time

TDMA Time Division Multiple Access

TMC Theoretical Maximum Capacity

TOPP Trains of Packet-Pairs

iv

TRANSEC Transmission Security

TSC Time Stamp Counter

TTL Time to live

UCLA University of California, Los Angeles

UDP User Datagram Protocol

UHF Ultra-High Frequency

UNIK Universitetssenteret på Kjeller

USB Universal Serial Bus

VoIP Voice over IP

VPS Variable Packet Size

WAN Wide Area Network

WLAN Wireless Local Area Network

v

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Scenario . 2

1.3 Scope . 3

1.4 Methods . 4

1.5 Outline . 4

2 Background 5

2.1 Terminology and Definitions . 5

2.1.1 Network Capacity Metrics . 5

2.1.2 Common Terminology . 7

2.1.3 Theoretical Maximum Capacity (Throughput) 8

2.2 Medium Access Control . 8

2.2.1 Carrier Sense Multiple Access . 8

2.2.2 Time-Division Multiple Access . 10

2.2.3 Frequency-Division Multiple Access 10

2.3 Path Capacity Estimator Performance Requirements 11

2.3.1 Qualitative Requirements . 12

2.3.2 Quantitative Requirements . 13

2.3.3 Summary of the Requirements . 16

2.4 Path Capacity Estimation Techniques . 17

2.4.1 Packet Dispersion Analysis . 17

2.4.2 Delay Analysis . 21

2.4.3 Hybrid Approach . 22

2.5 Selecting an Algorithm for Experimental Evaluation 24

2.5.1 Discussion . 24

2.5.2 The Ad Hoc Probe Algorithm . 25

vii

3 Estimating Path Capacity under Ideal Conditions 29

3.1 Experimental Set-up . 29

3.1.1 Test Bed Network Topologies . 29

3.1.2 Link Technologies . 30

3.1.3 Software Configuration . 32

3.1.4 Ad Hoc Probe Parameters . 33

3.1.5 Measuring the True Path Capacity . 33

3.1.6 Summary . 34

3.2 Results . 36

3.2.1 The Effect of Varying the Packet Size 36

3.2.2 The Effect of Varying the Number of Probes Per Measurement 43

3.3 Discussion . 48

3.3.1 Accuracy over CSMA-link . 48

3.3.2 More Causes of Overestimation . 50

3.3.3 Accuracy over a TDMA-link . 54

3.3.4 Accuracy over FDMA Link . 57

3.3.5 IP Fragmentation . 57

3.3.6 Accuracy over a Rate Limited Path 58

3.3.7 Number of Probes Per Measurement 58

3.4 Evaluation . 60

3.4.1 Compliance to Qualitative Requirements 60

3.4.2 Compliance to Quantitative Requirements 61

3.4.3 Conclusive Remarks . 62

4 Estimating Path Capacity under Non-ideal Conditions 65

4.1 Experimental Set-Up . 65

4.1.1 Test Bed Network Topologies . 65

4.1.2 Link Technologies . 67

4.1.3 Sofware Configuration . 67

4.1.4 Ad Hoc Probe Parameters . 67

4.1.5 Cross Traffic Generation . 68

4.1.6 Measurement Procedure . 68

4.1.7 Measuring the True Path Capacity . 68

viii

4.1.8 Summary . 69

4.2 Results . 70

4.2.1 IEEE802.11b Contention . 70

4.2.2 Pure IEEE802.3 . 72

4.2.3 Satellite Link . 75

4.3 Discussion . 77

4.3.1 Accuracy with CSMA Contention . 77

4.3.2 Accuracy when Sharing a FIFO Queue 78

4.4 Evaluation . 80

4.4.1 Modification of the Validity Constraints 80

4.4.2 Conclusive Remarks . 81

5 Conclusions and Future Work 83

5.1 Conclusions . 83

5.2 Future Work . 85

5.2.1 Implementing the Measurement-based Admission Controller 85

5.2.2 Estimation of Other Parameters . 85

5.2.3 Time-Division Multiple Access . 85

5.2.4 Increase the Complexity . 85

5.2.5 Evaluate the Performance of a One-Way variant of Allbest 86

Bibliography 90

Appendices 91

Appendix A Theoretical Maximum Capacity 93

A.1 The TMC of IEEE802.11b . 93

A.2 The TMC of IEEE802.3 Ethernet . 94

Appendix B Details Regarding the Path Capacity Experiments 95

B.1 IPsec Overhead . 95

B.2 Specific Settings in Operating System . 96

B.3 Vyatta Sample Configuration . 97

B.4 Scripts for Measuring the Correct Path Capacity 108

B.5 Ad Hoc Probe Code . 113

B.6 Script for Generating Cross Traffic . 124

ix

Appendix C One-way Implementation of Allbest 125

C.1 Results . 125

C.2 Allbest 1-Way Source Code . 125

x

List of Figures

1.1 Illustration of the thesis scenario . 2

2.1 The hidden node problem . 9

2.2 Illustration of the TDMA concept . 10

2.3 Illustration of the FDMA concept . 11

2.4 Packet dispersion effects . 18

2.5 The packet dispersion effects of cross traffic 19

2.6 Selection of the samples constituting the convex hull 27

3.1 Single-hop test bed topology . 30

3.2 Multi-hop test bed topology . 30

3.3 Path capacity estimation results - IEEE802.11b and IEEE802.3 37

3.4 Path capacity estimation results - multi-hop IEEE802.11b 39

3.5 Path capacity estimation results - tactical UHF radio 40

3.6 Path capacity estimation results - satellite link 41

3.7 Path capacity estimation results - IP fragmentation 42

3.8 Path capacity estimation results - rate limited path 43

3.9 Ad Hoc Probe bias and variance vs number of probes 46

3.10 Theoretical and observed bias for IEEE802.11b 49

3.11 Binary tree of possible transmission sequences 50

3.12 Theoretical and observed path capacity measurement error IEEE802.3 53

3.13 Packet arrival times . 54

3.14 TDMA packet arrival pattern . 54

3.15 TDMA Ad Hoc Probe packet-pair simultaneous arrival pattern 55

3.16 TDMA Ad Hoc Probe packet-pair arrival pattern 55

3.17 Theoretical and observed bias tactical UHF radio 57

3.18 Maximum measurement error for 4 hop IEEE802.11b chain 59

xi

3.19 Required and achieved performance for Ad Hoc Probe 63

4.1 Single-hop test bed topology with cross traffic 66

4.2 Multi-hop test bed topology with cross traffic 66

4.3 Ad Hoc Probe performance with cross traffic - IEEE802.11b 71

4.4 Ad Hoc Probe performance with cross traffic - IEEE802.11b two-hop 73

4.5 Ad Hoc Probe performance with cross traffic - IEEE802.3 74

4.6 Ad Hoc Probe performance with cross traffic - satellite link 76

C.1 Preliminary results for a one-way version of Allbest 126

xii

List of Tables

3.1 Parameters that were varied during the experiments 34

3.2 Parameters that were kept constant during all the experiments 35

3.3 Test bed configuration - IEEE802.11b and IEEE802.3 36

3.4 Test bed configuration - multi-hop . 38

3.5 Test bed configuration - tactical UHF radio 41

3.6 Test bed configuration - satellite link . 42

3.7 Test bed configuration - IP fragmentation . 43

3.8 Test bed configuration - rate limited path . 44

3.9 Test bed configuration - varying number of probes per measurement 45

4.1 Parameters that were varied during the experiments 69

4.2 Parameters that were kept constant during all the experiments 69

4.3 Test bed configuration with cross traffic - IEEE802.11b 70

4.4 Test bed configuration with cross traffic - IEEE802.11b two-hop 72

4.5 Test bed configuration with cross traffic - IEEE802.3 72

4.6 Test bed configuration with cross traffic - satellite link 75

A.1 Parameters - Theoretical Maximum Throughput IEEE802.11b 94

A.2 Parameters - Theoretical Maximum Throughput IEEE802.3 94

B.1 IPsec overhead . 95

xiii

Chapter 1

Introduction

1.1 Motivation

During the last decade, there has been a lot of focus on Network Enabled Capability (NEC)
in military operations. One of the key concepts in this strategy is to strive for Information
Superiority which is defined by the Northern Atlantic Treaty Organization (NATO) as

"... the operational advantage derived from the ability to collect, process, and
disseminate an uninterrupted flow of information while exploiting or denying an
adversary’s ability to do the same." [38]

Information superiority enables the decision-makers to optimize the use of available resources.
Moreover, it leads to a better ability to synchronize the units taking part in an operation, thus
decreasing the time needed for mission execution. The net effect is a greater chance of ac-
complishing the mission. In order to achieve this operational advantage, it is first and foremost
vital that operations are planned and executed based on the “need to share” principle. This is in
contrast to the traditional “need to know” approach. Secondly, technical aids must be available
to facilitate the process of collecting, processing and disseminating information.

The communication systems play a key role among these technical aids, and they must have
the ability to interconnect arbitrary units in the battlefield. Furthermore, it is important that
these units are able to communicate with upper echelons situated outside of the battlefield. The
resulting network is a heterogeneous Wide Area Network (WAN), comprising of a variety of
fixed and mobile communication links with different capacities and technologies for Medium
Access Control (MAC) and physical transmission.

The preferred approach for achieving efficient routing in such a network is to implement packet
switching combined with a common logical addressing scheme that is independent of the tech-
nologies employed for physical transmission and MAC. The obvious candidate protocol for
logical addressing is the Internet Protocol (IP) [42, 13], given its scalability and widespread
deployment in military core networks.

A fundamental challenge in all IP networks is to find ways to share the finite network resources
in a way that makes the traffic flow smoothly, preventing the occurrence of congestion and sub-
sequent severe loss of network throughput. The available resources in a military network are

1

Figure 1.1: Illustration of the thesis scenario

scarce and possibly time varying, thus making it particularly difficult to avoid congestion, driv-
ing the need for mechanisms that prevent the network from collapsing when it is overloaded.
Furthermore, there is the added problem of allocating the currently available network resources
in a way that optimize the combat-effectiveness. The main motivation behind the work pre-
sented in this thesis is to contribute to the efficiency of such mechanisms.

1.2 Scenario

Communication Security (COMSEC) is required in military communications and this is nor-
mally provided by encryption using the Encapsulating Security Payload (ESP) protocol [29],
standardized by the Internet Engineering Task Force (IETF) as part of the IPsec suite. However,
this added security comes with a price.

Military users tend to apply ESP in tunnel mode, where the whole plaintext packet, including IP
header, is encrypted and thereafter encapsulated by a new IP-header. This effectively divides the
network into two routing domains with separate address spaces. No two-way communication is
allowed between the two domains due to the risk of compromising classified information. The
routing domain for the encapsulated ciphertext packets is traditionally termed the red network
while the routing domain for the encapsulating plaintext header is termed the black network.
The black network functions as a transit network, and is in most cases a resource that is shared
by many. The red network enclaves may vary in size, ranging from a single soldier’s Personal
Area Network (PAN) to a large network within the fence of a large military base.

When there is need to communicate between enclaves of the red network, most user applications
are designed to just start sending traffic. Some applications employ a certain flow control where
they, in retrospect, see if the data got through the network at the required rate, delay, jitter, etc. If
the observed behavior met the requirements, all is well and the flow is sustained. Else, the flow
is terminated or the quality is lowered using another codec bit rate, etc. Even if flow control
is used, the "just-send" behavior will in many cases lead to severe instability in the network

2

performance, since temporary network overloads cause congestion and degraded throughput
for already established flows in the network.

The operational consequences of this congestion problem can be alleviated by using Differ-
entiated Services (DiffServ) [40, 4], thus marking the traffic coming from different services
using the Differentiated Services Code Point (DSCP)-field in the IP header. Simply copying†

the DSCP-field from the red to the black header then provides the black network routers with
information to prioritize the forwarding of mission-critical services during congestion, and to
ensure that real-time traffic experiences minimum queuing delay.

Unfortunately, the introduction of traffic prioritization does not solve all the challenges. In a
military heterogeneous network, the maximum achievable capacity from a source to a destina-
tion, the path capacity, will be time-varying due to the presence of mobile nodes. In many cases,
the network cannot possibly provide the performance that is required for typical high priority,
capacity demanding traffic (e.g., real-time video). When relocating a node, the application that
worked in the previous position may not work in the new position due to a reduction in the path
capacity. If the application follows the typical “just send” approach, the network will waste
its scarce resources by prioritizing the forwarding of a flow that never can achieve the required
Quality of Service (QoS). Additionally, this will have a negative effect on already established
flows of same or lower priority.

As an approach to alleviate this problem, DiffServ can be augmented by an admission control
mechanism to ensure that all flows exceeding the path capacity are not allowed into the network.
The admission controller has to be able to communicate with user applications in order to inform
the traffic sources whether or not new flows are admitted, thus providing applications with the
alternative to adjust their required bit rate to the available network resources. Therefore, in
a military network, the admission controllers need to be deployed inside the red networks.
Since the IPsec partitioning removes the possibility to obtain network resource information
from nodes within the black network, the admission controller has to be measurement-based.

Ideally, the measurement-based admission controller should measure the available capacity in
the network path, thus ensuring that already established flows of same or higher priority are not
disturbed. In this thesis, the focus is kept on the estimation of the maximum achievable path
capacity, i.e. the capacity that can be achieved for a single flow over a path if there was no other
traffic in the network.

Measuring the path capacity is non-trivial in a military network with scarce resources. The
obvious approach of flooding the network path with data and measure the average bit rate cannot
be applied since this would congest the network. A lightweight approach is needed.

1.3 Scope

Path capacity estimation has been a research topic for some time, resulting in a variety of tech-
niques. However, most of the techniques were designed for wired links. With the advent of

†This opens a covert channel since a compromised host could use the DSCP-field as information bits and by
doing so disclose secret information into the black network. Nevertheless, the benefits from a better availability of
mission-critical services are in most cases found to outweigh the increased security risk.

3

Wireless Local Area Networks (WLANs) and mobile broadband data services, several new
methods for path capacity estimation were proposed. The aim of this thesis is to gain a deeper
understanding of how the path capacity can be estimated in a lightweight manner, and further to
evaluate if current state-of-the-art estimation techniques can provide satisfactory performance
for Measurement-based Admission Control (MBAC) in military IP networks.

1.4 Methods

The thesis starts with a study of the available literature within the field of path capacity esti-
mation. Based on the findings, a set of requirements for a path capacity estimator fitting the
thesis scenario is developed. A state-of-the-art path capacity estimation algorithm is selected
for performance evaluation in a test bed. By varying the algorithm’s parameters and the test bed
configuration, the performance limitations of the algorithm are found. These results are used to
evaluate the algorithm’s compliance to the set of requirements.

1.5 Outline

Chapter 2 provides the thesis background by covering terminology and definitions, basic theory,
the development of the set of estimator requirements, a review of path capacity estimation
techniques and published algorithms, and finally, the selection and detailed description of the
algorithm selected for performance evaluation. Chapter 3 and 4 are dedicated to an in-depth
performance analysis of the selected algorithm, based on test bed experiments. Lastly, the
thesis is concluded along with suggestions for further work in chapter 5.

4

Chapter 2

Background

In this chapter, the reader is first introduced to the terminology and definitions that will be used
throughout the thesis. Then follows a review of different medium access techniques. Next, there
is a discussion of the path capacity estimator performance requirements. Thereafter, the path
capacity estimation techniques and state-of-the-art algorithms found in litterature are treated.
Finally, the chapter is concluded by selecting one of the published path capacity estimation
algorithms for further in-depth analysis and performance evaluation.

2.1 Terminology and Definitions

2.1.1 Network Capacity Metrics

Over the years, various terms and definitions have been used in literature for metrics describing
network capacity. RFC 5136 [8] proposes a unified nomenclature as a framework for discussion
and analysis within this field. In this thesis, an effort is made to adopt to the proposed nomen-
clature. However, the RFC 5136 framework does not take into account some critical physical
layer nuances. Therefore, a few additional definitions from [45] are provided.

Representing information [45] Every communication system transfers information by the
use of symbols which have been given a prearranged meaning. The size of the set of differ-
ent symbols, the alphabet size M, determine how much information that can be transferred per
symbol. Typical M-values are powers of 2 since, in digital communication systems, the infor-
mation is represented with binary digits, bits, having only two possible values. If one bit is to be
transmitted per symbol, then an alphabet size of two is needed. If two bits are to be transmitted
per symbol, four different symbols are needed since two bits can be combined in four different
ways. Generally, if l bits per symbol are to be transmitted then

M = 2l

5

Equivalently, the number of bits per symbol is given by

l = blog2 Mc (2.1)

where b·c is the floor operator.

The number of symbols transmitted per second, is denoted Rs

Error correction coding [45] Since wireless channels are unstable and prone to bit errors,
most wireless communication links transmit some extra information which allows the erroneous
bits to be recovered from the correctly received bits. This is referred to as Forward Error Cor-
rection (FEC) in literature. The extra information is introduced by a process commonly referred
to as coding, which adds redundancy bits to the information bits.

If a block of k information-bits results in n encoded bits, then the code rate is k/n. The resulting
information bit rate, Rb, that is the upper bound on the amount of bits that can be delivered per
second from the physical to the data link layer, is given by

Rb = l · Rs
k
n
= blog2 Mc Rs

k
n

(2.2)

In many wireless communication systems, the alphabet size (i.e., modulation) and code rate can
be dynamically adapted to the prevailing channel conditions, thus making the information bit
rate a time-varying parameter.

Nodes, links and paths [8] A node N is a device where the input and output data rate can
differ (e.g. hosts, switches, routers), a link L is a connection between two nodes and a path P is
a series of n links (L1, L2, . . . , Ln) connecting a sequence of n + 1 nodes (N1, N2, . . . , Nn+1).

Link capacity [8] The link capacity, C(L, T, I), is in RFC 5136 defined as the maximum
number of IP layer bits of a single traffic type that can be transmitted from the source S and
correctly received by the destination D over the link L during the time interval [T, T + I],
divided by I.

It is important to take into consideration that this metric is an average measure, hence the size
of I has a significant impact. Additionally, the link capacity depends on the type of traffic.
The protocol overhead ratio will vary with packet size and there could be Quality of Service
(QoS) mechanisms that limit the capacity offered to different classes of traffic. Moreover, the
layer 2 Medium Access Control (MAC) scheduling algorithm is important to take into account.
Finally, one should keep in mind that wireless communication links can provide a time-varying
information bit rate.

Path capacity [8] Expanding the rationale started above, RFC 5136 defines the path capacity,
C(P, T, I), as the minimum capacity of the links constituting a path P.

6

However, as pointed out in [7], this is not an optimal definition since the different links of a path
might share the same communication channel in multi-hop wireless networks, thus making the
achievable performance lower than the RFC 5136 definition implies. Considering the key role of
multi-hop communication in tactical military networks, another definition is needed. Modifying
the RFC 5136 definition of link capacity by substituting the link L with the path P, is a good
starting point. However, in order to make the definition complete, the parameters T and I have
to be defined.

As discussed in section 1.2, the path capacity estimate will be used to determine whether or not
to try out a new flow in the network. Herein lies the assumption that the current path capacity
estimate represents the future state of the path.

No real life network path satisfies the assumption of a indefinite steady-state, and this is es-
pecially important to note in mobile wireless communication where the nodes move and radio
channel conditions fluctuate, causing the links in a path to break or change information bitrate,
resulting in a change of the number of wireless hops in the path. The counter-measure for
this behavior is to conduct new measurements for each admission decision, and to monitor the
performance of already accepted flows, terminating these when they no longer satisfy the re-
quirements. However, even if the topology is static and the information bit rates are constant,
the possibly random MAC-protocol do not necessarily provide a stable instantaneous flow of
bits to the IP layer. This, and the unknown flow duration, calls for a long averaging period.

In this thesis, the path capacity is defined as the limit of the maximum number of IP layer bits
of a single traffic type that can be transmitted from the source S and correctly received by the
destination D over the path P in a static network with stable information bit rates, during the
time interval [T, T + I], divided by I, as I approaches infinity.

Note that T is the arrival time of a new flow, and furthermore that this definition makes it
necessary to conduct separate measurements for different types of traffic. I.e., flows of different
packet sizes and/or Differentiated Services (DiffServ)-class are expected to have different path
capacities.

2.1.2 Common Capacity-related Terminology in Literature [8]

The link with the smallest capacity along a path is often termed the narrow link.

Bandwidth is frequently used in literature to refer to what has been described as capacity in the
definitions above. However, bandwidth is an overloaded term within the field of communication
technology since many define bandwidth as the amount of spectral resources occupied by the
communication link, measured in Hertz. These two measures are correlated, but they do not
mean the same. For example, if the modulation method is changed from Quadrature Phase
Shift Keying (QPSK) to Binary Phase Shift Keying (BPSK), the occupied spectral resources
may remain the same, but the bit rate provided to the IP layer is at least halved.

7

2.1.3 Theoretical Maximum Capacity (Throughput)

The Theoretical Maximum Capacity (TMC) is an analytical upper bound for the link capacity.
It does not take into account the effects of real-world performance degrading effects, such as
bit-errors. Theoretical Maximum Throughput is the term most commonly used to describe this
calculation in literature [26]. Nevertheless, following the course laid out in RFC 5136 [8],
capacity will be the term in this thesis. The TMC is defined as the following relation:

TMC =
PSize

E {Transfer time(PSize)}

where E{·} is the expectation operator, PSize the layer 3 packet size and the transfer time
denotes the time period that is needed to complete the transfer of one layer 3 packet. The
reason for the use of the expectation operator is the fact that some link technologies have a
random transfer time. Note that the TMC is a function of the packet size.

Appendix A contains the TMC-calculation for two commonly found link technologies, IEEE802.11b
[20] and IEEE802.3 [19].

2.2 Medium Access Control

When two or more nodes in a network share a common channel† for transmission of informa-
tion, the scheduling of the transmissions must follow certain rules in order to avoid the destruc-
tive interference that occurs if nodes transmit simultaneously. MAC-protocols are formalized
versions of these rules.

Conceptually, there are four different approaches for designing MAC-protocols:

• Carrier Sense Multiple Access (CSMA)

• Time Division Multiple Access (TDMA)

• Frequency Division Multiple Access (FDMA)

• Code Division Multiple Access (CDMA)

CSMA, TDMA and FDMA are the most relevant approaches for this thesis since CDMA is very
rarely used for multiple access in military networks‡.

2.2.1 Carrier Sense Multiple Access

The basic principle behind CSMA is that the individual nodes listen to the channel before they
attempt a transmission. If a busy channel is detected, they defer from transmission until the

†For example, the same radio frequency band or physical wire
‡In fact, the techniques used for CDMA are employed for Communication Security (COMSEC) and Transmis-

sion Security (TRANSEC) in military networks, i.e. for the protection, and not the sharing of channels

8

Figure 2.1: The "hidden node" problem that arises when sharing a wireless channel

medium is detected idle. Upon detection of an idle medium, the nodes do not transmit imme-
diately as this would result in collision if more than one node has traffic to transmit. In stead,
upon sensing the medium as idle, each node sets a backoff timer to a random value. The node
that draws the lowest backoff time "wins" this contention and transmits first.

The nodes that lose the contention stop decrementing their backoff timers until they sense the
medium idle again. At this time, they continue to decrement the timers from the value that they
were at before the last transmission. If the node that won the previous contention has more
traffic to send, it sets its backoff timer to a new random value and joins the contention.

Using this scheme, a fair sharing of the transmission channel is achieved since the nodes that
have been waiting are, on average, more likely to have a lower value in their backoff timer than
the node that just transmitted. The risk of collision is minimized, but there is still a probability
for collision between the if two nodes have picked backoff times resulting in almost coinciding
transmission times. Due to the propagation delay in the physical medium, one of the nodes may
falsely detect the medium as idle even though the other has commenced transmission.

Since the risk of collision is non-negligible in CSMA, it is necessary to implement measures
that reduces the chance of packet loss due to collisions. In a wireless setting, collisions are hard
to detect. Additionally, the so called "hidden node" problem comes into effect. As shown in
figure 2.1, the hidden node problem occurs when node B and C cannot hear each other, while A
hears both. If B is transmitting to A, C will not hear this and assume that the channel is available
when it is in fact busy. A transmission from C at this time will cause collisions at A.

In order to mitigate the problem of collisions in a wireless CSMA scenario, it is common to use
a scheme termed Carrier Sense Multiple Access Collision Avoidance (CSMA/CA). Collision
Avoidance is a preventive approach. The main idea is to transmit very short Ready-to-send
(RTS) and Clear-to-send (CTS) messages to alert nodes within the transmission range of both
the sending and receiving node of a future transmission. Of course, there is still the chance of
colliding RTS messages. Nevertheless, the cost in terms of link efficiency is substantially higher
if a long data frame is lost compared to a short RTS message. In CSMA/CA, the random backoff
time concept is still used. However, if an RTS message is not followed by a CTS message due
to interference or "node out of range", a timeout occurs and the sender node has to reset its
random backoff timer to a new random value. In most cases, the maximum value of the interval

9

Figure 2.2: Illustration of the TDMA concept

from which the node’s random backoff timer is drawn, the so called Contention Window, is set
to a higher value after such a timeout. This ensures that nodes with no problem achieving the
RTS/CTS handshake are prioritized, and it thus reduces the amount of transmission time that is
wasted in attempts to reach nodes that are out of range.

Mobile Ad Hoc Networks Mobile Ad Hoc Network (MANET) is an umbrella term for a
wireless mobile communication system that can be deployed in an ad hoc manner, i.e. with
little or no need for configuration or existing infrastructure. These networks are commonly
used by military personnel and first responders in areas where there is no infrastructure, or
when the existing infrastructure is overloaded or cannot be relied upon due to security reasons.

In a packet switched MANET, all hosts have routing capability, thus making it possible to
extend the network coverage area by multi-hop communication. In most cases, all nodes share
the same channel using CSMA/CA for medium access. Hence, the range extension achieved
through multi-hop communication comes at the cost of reduced capacity, since no more than a
single node can transmit at a time within its interference range with respect to other nodes.

2.2.2 Time-Division Multiple Access

In contrast to the random approach of CSMA, the concept of TDMA is to time-share the channel
in a deterministic manner. As shown in figure 2.2, the channel access schedule is organized into
frames and time slots, where each user is allocated a certain number of time slots per frame. In
most cases the time slots are allocated dynamically, based on which users that currently need
to transmit and their capacity needs. This requires a time slot reservation scheme to ensure
that there is no destructive interference between the users. The coordination can be handled
by a central entity (e.g. a base station or master node) or in a distributed manner, which is
the most common approach in tactical military networks. Either way, the users first have to
communicate that they need channel access. Therefore, TDMA is in most cases combined with
a CSMA signaling channel for access requests/reservations.

2.2.3 Frequency-Division Multiple Access

As the name suggests, FDMA is based on separating the different users in frequency (Hz),
enabling the users to transmit concurrently. However, they do not have access to the entire
available bandwidth as was the case for TDMA and CSMA. With FDMA, the bandwidth is

10

Figure 2.3: Illustration of the FDMA concept

often shared in a prearranged way, offering the users a dedicated channel. This makes the
scheme less effective in terms of bandwidth utilization, and is the reason to why its application
has become less widespread over the years. Nevertheless, it is still the preferred method for
most military satellite links.

2.3 Path Capacity Estimator Performance Requirements

A path capacity estimator must have certain properties in order to qualify for use in a military
scenario as described in section 1.2. In [14], a list of requirements for a wireless home network
path capacity estimation tool is presented as follows:

“The tool must:

1. require adaptation/upgrade only of the server-side of the e2e path. In a home
network that is often the home gateway: services from commercial service
providers enter the home network via the home gateway. This makes the tool
applicable to the current plethora of existing (thin) clients. For most use cases
we can therefore assume the predicting tool to be a service running on the
home gateway, serving various clients in the home network which only need
to have a regular IP stack.

2. be non-intrusive. It should not disrupt other traffic in the home noticeably.
The other traffic in the home may be important to the user.

3. have a short measurement time, i.e. it should have a low convergence time
from an end-user perspective, and it should be fast enough to react to major
changes in the home network traffic pattern. We assume this to be in the order
of a few seconds. This assumption is based on the performance of current
Internet speed tests accepted in the market, and the real-time performance of
discovery protocols of UPnP.

4. not require pre-knowledge of the link-layer network topology. Home net-
works can be very heterogeneous and support many different link-layer topolo-
gies, of which some even may not be standardized or widely known.

5. be accurate enough to make educated predictions about the admission of delay-
and jitter-critical applications. In the case of IPTV and IP telephony that
means an accuracy of 1 Mbit/s and 50 kbit/s respectively.”

11

However, these requirements cannot be applied directly in a military scenario. The next subsec-
tions describe the requirements for a military path capacity estimator, where the requirements
provided in [14] are modified to fit into the thesis scenario, and some new requirements are
added. A set of qualitative requirements are presented first, followed by the quantitative re-
quirements.

2.3.1 Qualitative Requirements

Topology independence Due to the partitioning of the network into two routing domains,
the red and the black network, and the fact that the measurement-based admission controller
needs to be placed in the red network; the estimator must not rely on communication with the
forwarding nodes in the black network.

Since the black network topology is generally regarded as unknown, the path capacity estimator
should ideally be compatible with all MAC protocols. However, such a requirement is impos-
sible to verify. Still, the requirement can be narrowed down: Since the most common MAC
schemes found in military networks are based on CSMA, TDMA or FDMA, the path capacity
estimator must be compatible with at least one of these methods if it is to be of any use.

Furthermore, the estimator should be compatible with wireless multi-hop communication where
the same channel is shared between multiple nodes using CSMA/CA, since this topology is very
relevant in military networks. This is a should-requirement due to the fact that the estimator
would still be useful in networks where there is no multi-hop communication.

Path asymmetry In [14], it is stated that the estimator “must require adaptation/upgrade only
of the server-side of the e2e path”. However, the forward and reverse path capacities of a
military network are in general not equal. For instance, it is very common that satellite commu-
nication systems provide an asymmetric uplink/downlink capacity. Therefore, the path capacity
estimator must not rely on this assumption - the measurements have to be one-way.

Rate-limiters In order to make a packet switched network satisfy the military requirements
for QoS, it is paramount that there are mechanisms in place that ensure that jitter-sensitive flows
like voice and video communication services are subject to minimum queuing delay along the
forwarding path.

For DiffServ enabled networks, there is a per-hop-behavior definition called Expedited For-
warding (EF) [12] that is specifically designed to minimize the queuing delay. It is typically
implemented as a high-priority queue in which a newly arrived packet at most should wait
the time it takes to transfer one packet before being serviced. Rate-limiters are commonly
deployed in order to ensure that the EF-queue does not completely starve the other traffic tran-
siting through a node [12]. rate-limiters typically ensure that the EF-queue arrival bit rate never
exceeds a given fraction of the link capacity.

In order to avoid the futile admission of a flow that exceeds such a rate limit, the path capacity
estimator should be compatible with rate-limited paths. This is a should-requirement because

12

the path capacity estimate would still be useful even if it did not take into account the rate-
limiters. An estimate based on links utilizing their full capacity will still provide an upper
bound that can be used to reject flows.

IP packet fragmentation The presence of IPsec devices makes it impossible to detect the
black network path Maximum Transmission Unit (MTU) from the red network, since the ci-
phertext packets have to be reassembled before they can be deciphered. Due to the variety of
link technologies that exist in military networks, it is expected that the MTU will differ along
a path. This will result in frequent occurrence of fragmentation in the black network. The
path capacity estimator therefore must work even if the estimation traffic is subject to packet
fragmentation.

2.3.2 Quantitative Requirements

Accuracy In, [14], it is stated that the estimator

“must be accurate enough to make educated predictions about the admission of
delay- and jitter-critical applications. In the case of IPTV and IP telephony that
means an accuracy of 1 Mbit/s and 50 kbit/s respectively.”

The approach of setting the accuracy limit to an exact figure (e.g. 50 kbps), is not optimal.
For instance, there are very few cases— if any —where the difference between the capacity
requirements of two Mbps-flows is as low as 50 kbps. However, this will very likely be the
case between flows with bit rates in the order of 100 kbps. Therefore, the accuracy requirement
should be a relative figure, and this is the chosen approach in this thesis.

By requiring that the path capacity estimate is within ±α % of the true path capacity, C, the
reported path capacity estimate, Ĉ, will have a maximum value of

max{Ĉ} =
(

1 +
α

100

)
C

The objective is to avoid allowing flows with bit rate requirements higher than C into the net-
work. Hence, the admission decision should be based on Ĉ normalized to

(
1 + α

100

)
since

Ĉ < max{Ĉ} =
(

1 +
α

100

)
C ⇒ Ĉ

1 + α
100

< C

However, the penalty by doing so is that the decision could potentially be based on a far too low
estimate:

min{Ĉ}
1 + α

100
=

1− α
100

1 + α
100

C

The value of α determines the how much of the path capacity that— in the worst case —will be
left unused. The value chosen in this thesis is

13

α = 20 ⇒
1− α

100
1 + α

100
C =

1− 0.2
1 + 0.2

C =
2
3

C

with the result that 1
3C is left unused in the worst underestimation case and 0.2C if the estimation

is correct, while the entire capacity is being put to use in the worst case of overestimation. The
“expected” underutilization of 20 % is not necessarily a negative consequence since the path
should not be operating at full load, leaving no margin to recover from packet bursts or short-
time capacity degradations.

The accuracy of an estimator is often quantified by its bias and standard deviation, formally
defined as

Bias{Ĉ} = E{Ĉ} − C = µĈ − C σĈ =

√
E
{(

Ĉ− µĈ

)2
}

where Ĉ, is the random variable representing the estimated path capacity, C is a constant repre-
senting the true path capacity and E{·} is the expectation operator. The lower bias and standard
deviation, the better the estimator performs. Ideally, the estimator is unbiased and has a very
low standard deviation.

It is hard to generally define maximum standard deviation and bias due to the fact that the
probability density function (pdf) of the estimator value is unknown. Nevertheless, by assuming
that the estimator value follows a Gaussian distribution it is possible to derive maximum values
that are reasonable.

Formally, one can state that there must be a 95 % chance that a single measurement results in
an estimate that is within 20 % of true path capacity. I.e.,

P(0.8C < Ĉ < 1.2C) = 0.95 (2.3)

Since Ĉ is assumed to have a Gaussian pdf

P(µĈ − 1.96σĈ < Ĉ < µĈ + 1.96σĈ) = 0.95

and
µĈ = Bias{Ĉ}+ C

Then, in order for equation (2.3) to hold

Bias{Ĉ}+ C + 1.96σĈ < 1.2C ⇒ σĈ <
0.2C− Bias{Ĉ}

1.96
(2.4)

and, in addition

Bias{Ĉ}+ C− 1.96σĈ > 0.8C ⇒ σĈ <
0.2C + Bias{Ĉ}

1.96
(2.5)

14

Taking into account that the standard deviation is a positive number or zero:

−0.2C ≤ Bias{Ĉ} ≤ 0.2C

This results in the following accuracy requirements for the path capacity estimator:

−0.2 ≤ Bias{Ĉ}
C

≤ 0.2 (2.6)

σĈ
C

< 0.102− 0.5102 ·
∣∣∣∣∣Bias{Ĉ}

C

∣∣∣∣∣ (2.7)

Measurement Time Ideally, the admission control entity would proactively perform a real-
time estimation of the path capacity, enabling it to make decisions on-the-fly at the arrival of
a new flow. However, this is not scalable since separate flows generally follow separate paths,
i.e. not all traffic is destined for the same red enclave. Taking this into account, the number of
parallel estimations from a potentially large amount of admission controllers would overload the
network if a real-time proactive approach was chosen. The most scalable and precise method is
therefore the reactive approach of only performing estimations at the arrival of a new flow. As
a consequence, the path capacity measurement time should be low in order to reduce the flow
set-up time.

Since many new flows can arrive in a short time interval, there should be a minimum time
between measurements to minimize the amount of measurement traffic in the network. How
long this estimate "lifetime" should be is difficult to decide since this depends on the rate of
topology changes in the network. A network with a high amount of mobile nodes is expected
to have more frequent topology changes and should therefore employ a short lifetime, while a
more stationary topology could use a long lifetime. This design issue is out of scope for this
thesis and is left for further study.

In [22], the mean call set-up time is required to be below 6 seconds for 95 % of all local connec-
tions. This is a reasonable upper bound that corresponds to the time needed for synchronization
using legacy tactical voice encryption devices† that are used in coalition operations today. Us-
ing this as a starting point, and further taking into account that Voice over IP (VoIP) packet sizes
most likely are less than 100 bytes, the requirement chosen in this thesis is that it must take less
than 6 seconds to estimate the path capacity for a flow of 100 byte packets. The specification of
the packet size is necessary, since

Measurement time =
Amount of traffic needed per measurement
Measurement traffic transferred per second

where the amount of traffic per measurement is expected to be proportional to the packet size
of the traffic type in question.

It is important to note that the equation above is only valid if all the sent measurement traffic

†For example, the VINSON familiy of tactical voice encryption devices

15

actually arrive at the measurement point. Hence, this requirement is based on the assumption
that the network there is no packet loss during the measurement.

Intrusiveness The degree of intrusiveness is determined by the estimator’s influence on the
performance of already established flows. This depends on the percentage of the path capacity
that is required by the estimator, and how much of the capacity that is currently in use for the
traffic type in question. In this thesis, it is chosen to require that the estimation traffic must be
kept below 10 % of the path capacity.

2.3.3 Summary of the Requirements

Qualitative requirements The path capacity estimator:

• must not rely on communication with the forwarding nodes in the black network

• must be compatible with CSMA and/or TDMA and/or FDMA

• should be compatible with wireless multi-hop communication where the same channel is
shared between multiple nodes using CSMA/CA

• must not rely on the assumption of symmetric path capacities

• must work even if the estimation traffic is subject to packet fragmentation

• should be compatible with rate-limited paths

Quantitative requirements

• It must take less than 6 seconds to complete a measurement for packet size 100 bytes,
given that there is no packet loss during the measurement.

• Assuming that the path capacity estimator follows a Gaussian distribution, there must be
a 95 % chance that the estimation error is less than ±20 % of the true path capacity. I.e.,

−0.2 ≤ Bias{Ĉ}
C ≤ 0.2

∧ σĈ
C < 0.102− 0.5102 ·

∣∣∣Bias{Ĉ}
C

∣∣∣
• The estimation traffic layer 3 bit rate must not exceed 10 % of the path capacity.

16

2.4 Path Capacity Estimation Techniques

When performing an input/output analysis in a communication network, there is the possibility
of refraining from input generation, and only observe the already existing flows in the network.
This passive approach has the advantage of being non-intrusive, but comes with the risk of very
long measurement times. By chosing the active approach of injecting traffic into the network
(probing), short measurement times can be achieved at the cost of possibly intruding on es-
tablished flows in the network. Considering the requirement for a short measurement time in
section 2.3.2, only techniques and algorithms supporting an active approach are treated in this
section.

There are first and foremost two quantities that are measured by path capacity estimation tech-
niques [28]:

Dispersion The time interval (dispersion) between receiving the last bits of two packets. Also
termed the interarrival time.

Delay The time interval from when the first bit of a packet leaves the sender until the last bit of
the packet has arrived at the receiver

The path capacity estimation techniques described in literature can therefore be divided into
three categories, depending on whether they rely on: 1) packet dispersion analysis, 2) packet
delay analysis or 3) a hybrid approach, using both packet dispersion and delay analysis

The rest of this section is dedicated to presenting the different models that are used within the
different categories of estimation techniques, along with a presentation of the state-of-the-art
algorithms belonging to each category.

2.4.1 Packet Dispersion Analysis

The packet dispersion based techniques described in literature can be divided into three cate-
gories:

1. If the technique is based on measuring the dispersion between two back-to-back† packets,
the technique is said to be based on packet-pairs and a model termed the Packet-Pair
Dispersion (PPD)-model is used to calculate the capacity.

2. If the dispersion between the first and last package of three or more back-to-back packets
is measured, the technique is based on packet-trains and the capacity is calculated using
a relation termed the dispersion rate.

3. Finally, there are techniques based on analyzing the dispersion of Trains of Packet-Pairs
(TOPP), where the packet-pairs are not sent back-to-back, but with a varying initial dis-
persion. A model commonly termed the fluid model is used to calculate the path capacity.

†Back-to-back: Initial time spacing between the packets is ~0

17

Packet-Pair Dispersion model When applying packet dispersion analysis for end-to-end
path capacity estimation, a common approach is to probe the network by sending pairs of pack-
ets to a receiver at the end of the path in question. The packets are sent back-to-back, i. e. the
dispersion between the packets is set as small as possible at the time of transmission. Moreover,
the packets are assumed to follow the same, single path through the network. The PPD model
is used to calculate the path capacity on the basis of packet interarrival time measurements at
the end node. Figure 2.4 illustrates the effects that can occur according to the model when a
packet-pair is forwarded from the i-th to the (i + 1)-th link in a path.

(a) C(Li) = C(Li+1) (b) C(Li) < C(Li+1)

(c) C(Li) > C(Li+1)

Figure 2.4: Packet dispersion effects

If the (i + 1)-th link capacity is the same as the i-th, no effects occur. If the (i + 1)-th link ca-
pacity is greater than the i-th, the transmission time needed to forward the individual packets in
a pair will be shorter, but the time difference between the last bits of the first and second packet
will be the same as upon reception. Furthermore, if the (i + 1)-th link capacity is lower than the
i-th, the required transmission time will be longer and consequently the packet dispersion will
increase. The packet dispersion may yet increase further if an even slower link is encountered
later in the path, but it can never be decreased.

As a result, the interpacket arrival time measured at the end node is the time that it took to
transmit the second packet over the path’s narrow link and the path capacity can be calculated
using the following relation:

Ĉ =
PSize

∆t
(2.8)

where Ĉ is the path capacity estimate, PSize is the packet size and ∆t is the observed packet-
pair dispersion which corresponds to the transmission time of a single packet over the link with
the minimum capacity in the path.

As pointed out in [43], a key assumption for the PPD model is the absence of other traffic on
the path. This is not a realistic assumption, and the effects of cross traffic has to be taken into
consideration in order to provide accurate estimates. Figure 2.5 shows how cross traffic can
influence the accuracy of estimates based on the PPD model.

In the first case shown in figure 2.5a, one or more cross traffic packets can be multiplexed
between the packets in a pair. If ∆tc > ∆tp, the effect is an expansion of the PPD. In accordance
with equation (2.8), this will lead to an underestimation of the path capacity.

18

(a) The expansion effect

(b) The compression (post-narrow link) effect

Figure 2.5: The packet dispersion effects of cross traffic

The second cross traffic effect, the compression effect, is illustrated in figure 2.5b. If cross
traffic causes the transmission queue to be non-empty when the last bit of the first packet has
been received, it has to wait before being forwarded. This leads to a compression of the packet-
pair dispersion and, consequently, an overestimation of the path capacity. The compression
effect is also called the post-narrow link effect [15] since it only will result in overestimation if
the compression occurs after the packet-pair has passed the path’s narrow link.

Taking into account the expansion and compression effect, it is clear that not all packet-pairs
will be dispersed according to the minimum link capacity. As a consequence, sending and
measuring the dispersion of a single packet-pair should not be the preferred approach for path
capacity measurements. In practice, multiple packet-pairs need to be sent under the assumption
that some of these probes make it through the path without being expanded or compressed. The
challenge is to pick out these "good" samples from the rest.

Dispersion rate When using the dispersion between the last received bits of a sequence of M
packets sent back-to-back, the path capacity is calculated using the relation

Ĉ =
(M− 1)PSize

∆t

where Ĉ is the path capacity estimate, PSize is the packet size and ∆t is the observed dis-
persion between the last bit of the 1st and M-th packet. Packet-trains will also be subject to
cross-traffic induced compression and expansion, causing the model to over- or underestimate
the path capacity. In fact, since a packet train is in the path for a longer time than a packet-pair,
it is more likely coincide with cross-traffic, resulting in expansion and underestimation. How-
ever, the impact of compression or expansion will have a smaller influence on the path capacity
estimate, since the relative change in dispersion will be less than in the case of packet-pairs. The
trade-off is clear: Packet-trains deliver lower variance than packet-pairs at the cost of increased
measurement time/overhead.

Fluid model The fluid model was introduced by Melander et al. in [37] in the context of
measuring available capacity, and is based on modeling the cross traffic as a continuous flow of

19

data, and not discrete packets. The cross traffic is assumed be of constant rate, Rc. I.e., during
a time interval of length τ, the amount of arrived cross traffic is given by Rcτ.

When the first packet of a packet-pair with initial dispersion ∆ti > 0 and packet size PSize—
corresponding to an instantaneous rate of Ri = PSize/∆ti —arrives at a transmission queue
with an outgoing capacity C > Rc, the cross traffic will accumulate in the queue during the
time period it takes to forward this first packet, PSize/C, corresponding to an amount of
Rc · PSize/C. If this accumulated amount cannot be serviced— in addition to the continuous
flow —before the second packet in the pair arrives, the packet dispersion will increase. I.e, if

C
(

∆ti −
PSize

C

)
< Rc∆ti

which is equivalent to
⇒ C < Rc + Ri

then the second packet in the pair will be queued for the time it takes to send the "excess" cross
traffic, Rc∆ti − C

(
∆ti − PSize

C
)
, resulting in the relation

∆to = ∆ti +
Rc∆ti − C

(
∆ti − PSize

C
)

C

= ∆ti +
Rc∆ti

C
− ∆ti +

PSize

C

=
Rc∆ti

C
+
PSize

C

=
∆tiRc + ∆tiRc

C

⇒ ∆to

∆ti
(Ri) =

Rc + Ri

C
(2.9)

Note that equation (2.9) is a linear function of Ri, corresponding to a straight line.

By contrast, if the "excess" amount of cross traffic has been serviced when the second packet
arrives, i.e if

C > Rc + Ri

then the packet-pair dispersion will remain unchanged, ∆ti = ∆to. Summarized, this means
that the relation between the output and input dispersion is given by

∆to

∆ti
(Ri) =

{
Rc+Ri

C C < Rc + Ri

1 C > Rc + Ri
(2.10)

By sending trains of packet-pairs with gradually decreasing initial dispersions, the link with
capacity and cross traffic satisfying C < Rc + Ro will impose the dispersion that results in the
linear relationship of equation (2.9). The capacity of this link can be found by observing the
slope of the linear increase in the ratio between the output and input dispersion.

A fair question is whether this capacity represents the minimum link capacity of the path. Again,

20

the cross traffic has the potential to disturb the accuracy of the measurement since the link where
the sum of the cross traffic rate and the packet-pairs instantaneous rate not necessarily is the
same as the link with the minimum capacity. The estimate could represent the capacity of a
heavily loaded link of high capacity.

Algorithms In [16], Dovrolis et al. proposed pathrate is a tool based on the combined use
of packet-pairs and packet trains. The algorithm is founded on the observation that a path ca-
pacity estimates based on the PPD-model will follow a multi-modal distribution where one of
the modes is very close to the true path capacity. However, this is not necessarily the domi-
nant mode since cross traffic may have resulted in that most of the measurements were over-
or underestimations. By further realizing that large packet trains will follow a uni-modal dis-
tribution due to the reduced impact of cross traffic, and that the mode of this distribution is
equal or less than the path capacity, an interval in which the true path capacity resides can be
reported. Pathrate is first and foremost designed for accuracy, not speed. It sends a large amount
of measurement traffic, occupying a large part of the path capacity.

DietTOPP [25] is based on the fluid model and the dispersion rate approach. First, an ap-
propriate range to vary the probing rate is found by calculating the dispersion rate of a single
back-to-back packet train. Next, several trains of packets†, are sent with a gradually increasing
rate, starting at the dispersion rate. The ratio between the input and output rate is assumed to
follow a straight line, as described by the fluid model. Finally, the capacity estimate is based on
using linear regression to find the slope of this line.

2.4.2 Delay Analysis

Delay-based path capacity estimation techniques were first introduced by S. Bellovin [3] and
V. Jacobson [23], and are collectively termed Variable Packet Size (VPS) probing in literature.
The network path is assumed to conform to the one-packet model where the Round Trip Time
(RTT) of a single packet is modeled to be

RTTi(PSize) = X +
N

∑
i=1

PSize+ I
Ci

+ di (2.11)

where

• X is a random variable representing queuing delay
• PSize is the size of a probe packet
• I the size of an Internet Control Message Protocol (ICMP) Time Exceeded Message
• Ci is the link capacity of the i-th link of a path of N hops.
• di is the constant two-way propagation delay of the i-th link

The capacity of the links constituting the path is recursively estimated, starting by sending
single packets of different sizes with the Time to live (TTL) field set to 1 and measure the
time interval between the departure of the packets and the arrival of the ICMP Time Exceeded

†Not trains of packet-pairs (TOPP) as was described to be used in the fluid model

21

Messages. These RTT measurements for different packet sizes cannot be directly inserted into
equation (2.11) due to the stochastic variable X which depends on the amount of cross traffic
in the transmission buffers at the router. However, by observing the fact that the minimum RTT
measurement for each packet size is very likely to represent a case where X = 0, a deterministic
variant of equation (2.11) for i = 1 can be used to estimate C1:

min{RTT1(PSize)} =
PSize+ I

C1
+ d1

This equation contains two unknowns, C1 and d1, which can be found by forming a set of
equations based on two or more minimum RTTs for different packet sizes.

When C1 and d1 is determined, the TTL can be set to 2, and the capacity of the second link can
be calculated by the relation

min{RTT2(PSize)} = (PSize+ I)
(

1
C1

+
1

C2

)
+ d1 + d2

This process is continued until i = N, and the path capacity is defined as mini=1→N{Ci}.

Delay-based capacity estimation relies on that all routers along a path behave correctly in terms
of sending ICMP messages. This is not the case in all of today’s networks. Furthermore, the
model does not take into account store-and-forward layer 2 switches which contribute signifi-
cantly to the transmission delay [43]. Finally, since the algorithm is recursive, errors made in
the first estimations will have degrade the accuracy for all subsequent estimates.

Algorithms Pathchar[23] is was the first tool that found widespread use, and it was further
optimized by Downey in his tool clink [17] and by Mah in the tool pchar [36].

2.4.3 Hybrid Approach

Considering that packet dispersion techniques are accurate, but sensitive to cross traffic, while
the delay-based techniques are inaccurate, but less sensitive to cross traffic - the concept of
combining these two techniques is a promising strategy for providing accurate and cross traffic
insensitive estimates. By using Bellovin and Jacobson’s stochastic approach of assuming that
in a data set of many probes, the probe with the minimum delay has not experienced queuing
in the path, there is a very good chance that applying packet dispersion analysis on this probe
will result in a correct and cross traffic-robust estimate. This is indeed the main idea behind the
latest publications within the field of capacity estimation.

Algorithms CapProbe [28] is based on the concept of combining dispersion and delay anal-
ysis by sending back-to-back packet-pairs of ICMP echo messages to the destination and mea-
suring the arrival times of the ICMP echo-reply messages. The algorithm keeps track of the

22

departure times of each of the packet-pairs, and when the two corresponding ICMP echo-reply†

packets arrive, the RTT of the individual packet in a pair is calculated. The packet-pair with the
minimum RTT sum is selected as the "good" sample, and the path capacity is calculated based
on the packet size and the difference between the arrival times of the ICMP echo-replies. Cap-
Probe is freely available for download from the University of California, Los Angeles (UCLA)
Network Reserch Laboratory website [30].

Ad Hoc Probe [7, 30] is a one-way variant of the CapProbe algorithm based on sending User
Datagram Protocol (UDP)-datagrams in a client-server fashion, requiring specific software in
both ends of the path. Instead of measuring RTTs, it measures One-Way Delays (OWDs). As
the name suggests, it is specifically designed to provide estimates in wireless Ad Hoc networks.

Allbest [14] is a packet-pair based algorithm specifically designed for one-hop IEEE802.11
Wireless Local Area Networks (WLANs) [20]. Similar to CapProbe, it also employs the con-
cept of minimum RTTs for filtering out queued packets, but in stead of basing the capacity
calculation on the minimum RTT sum packet-pair it constructs a "virtual" packet-pair by using
the minimum RTT of the first packets and the minimum RTT of the second packets. I.e., if
RTT1i denotes the RTT based on the i-th received ICMP echo-reply corresponding to the first
packet of a packet-pair of ICMP echos, and RTT2i represents the same for the second packet of
the pair, the path capacity calculation based on n packet-pairs is performed using the following
relation:

Ĉ =
2 · PSize

mini=1→n {RTT2i}+ mini=1→n {RTT1i}
(2.12)

Furthermore, Allbest forms its packet-pairs by sending single packets that are twice the path
MTU, forcing the the packet to fragmented in two parts. The advantage of this approach is that
the receiver node has to wait until the second packet arrives before sending the two fragments
of the ICMP echo-reply message, thus avoiding the CSMA contention that occurs between the
transmissions of the first ICMP echo-reply packet and the second ICMP echo packet. Since the
two fragments of the ICMP echo-reply message are reassembled before they are delivered to
the probing application, only RTT2 is found this way. RTT1 is found by probing with single
packets.

In [1], Alzate et al. introduced an unnamed path capacity estimation algorithm. Based on a
stochastic analysis, the mean path capacity was proposed to conform to the following model
under the conditions of no cross traffic:

C(PSize) =
PSize

α · PSize+ β
(2.13)

where α is a unknown constant representing how much service time‡ the path uses to transmit
a single bit from source to destination, and β is the unknown expected value of the added delay
introduced by lower layer overhead†. By recognizing that α · PSize + β is a linear function of
PSize, representing a straight line, and that the dispersion of a packet-pair that has experi-

†ICMP echo-replies are of same packet size as the corresponding ICMP echo message [41]
‡The “on-air” and/or “on-wire” time
†This overhead can be random

23

enced no queuing delay is a point on this line; α and β can be found by obtaining two of these
points. This can be achieved through sending multiple packet-pairs of two different sizes, and
subsequently using the dispersions of the minimum OWD sum packet-pairs. When α and β is
found, the path capacity for other packet sizes can be found through interpolation.

2.5 Selecting an Algorithm for Experimental Evaluation

Since all of the algorithms presented in the previous section were designed for a civilian con-
text, it was necessary to evaluate their performance in a military scenario before any conclusions
could be made about their suitability for use in a military measurement-based admission con-
troller. Due to the limited time frame for this thesis, there was only time to evaluate one of the
algorithms. Therefore, the choice of the algorithm most likely to yield the best results had to be
made.

Based on the literature review, the most promising algorithms were based on the hybrid ap-
proach of using both dispersion and delay analysis. I.e., the choice stood between the following
candidates:

• CapProbe [28]
• Ad Hoc Probe [7]
• Allbest [14]
• The algorithm by Alzate et al. [1]

Based on their published results, all of these algorithms had the potential of meeting the quan-
titative requirements from section 2.3. However, all did not meet the qualitative requirements.
As a foundation for further discussion, the qualitative requirements derived in section 2.3.1 are
relisted here:

The path capacity estimator:

• must not rely on communication with the forwarding nodes in the black network
• must be compatible with CSMA and/or TDMA and/or FDMA
• should be compatible with wireless multi-hop communication where the same channel is

shared between multiple nodes using CSMA/CA
• must not rely on the assumption of symmetric path capacities
• must work even if the estimation traffic is subject to packet fragmentation
• should be compatible with rate-limited paths

2.5.1 Discussion

CapProbe was based on two-way measurements, thus relying on symmetric path capacities.
However, the one-way variant of CapProbe, Ad Hoc Probe, was indeed promising. In [7],
strong simulation and test bed results were reported, even for multi-hop wireless communica-
tion. Furthermore, the Ad Hoc Probe source code was publicly available, eliminating the need
to use a lot of time on implementing the algorithm.

24

Allbest seemed like a very promising approach, but it had to be modified to be one-way. More-
over, the published results only showed the algorithm’s performance in a single-hop topology.
In contrast to Ad Hoc probe, there was no publicly available source code.

The algorithm by Alzate et al. was based on taking two measurements based on two different
packet sizes, and further interpolate the path capacity for all other packet sizes. This would
for sure not work in the presence of rate-limiting QoS mechanisms that enforce different path
capacities for different traffic types. If the algorithm was modified to make more measure-
ments, it would converge to correspond to Ad Hoc Probe. Furthermore, in [1] only results from
simulations were presented and not any test bed implementations.

Based on these considerations and the limited time frame for the thesis work, Ad Hoc Probe
was chosen as the candidate for further, in-depth performance evaluation.

2.5.2 The Ad Hoc Probe Algorithm

In this section, a detailed walkthrough of the Ad Hoc Probe algorithm is given to provide a basis
for later analysis of the algorithm’s performance.

Basic concept Ad Hoc Probe [7] uses one-way measurements, requiring specific software at
both ends of the path. The algorithm is based on packet-pair dispersion and the observation that
compressed or expanded packet-pairs have been subject to queuing delays somewhere in the
path. The packet-pair with the minimum sum of OWDs is therefore assumed to be the correct
sample, even though its relative frequency may be low compared to other samples if the path is
loaded with heavy cross traffic.

The path capacity estimate calculated using the relation

C =
PSize

∆t

where PSize is the probe packet size and ∆t is the dispersion of the packet-pair with the
minimum OWD sum.

Clock synchronization Since the algorithm is depending on delay measurements, one may
object that this requires clock synchronization between the sender and the receiver. This is
however not the case. Following the reasoning in [7], let Tsndi be the local time that is stamped
on the i-th packet-pair when it is put into the sender’s transmission queue. Further, let the
packet-wise local arrival times at the receiver be Trcv1i and Trcv2i for the first- and second-
arriving packet, respectively. The observed packet OWD sum at the receiver for the i-th packet-
pair is then given by

S′i =
(
Trcv1i − Tsndi

)
+
(
Trcv2i − Tsndi

)
Assuming that the sender and receiver are incrementing their clock at the same rate, the local
time at the sender will be at a constant offset δ from the receiver’s local time. I.e., the "actual"

25

departure time from the receiver’s point of view is

Tsndi + δ

Hence, the true packet delay sum is

Si =
(
Trcv1i −

(
Tsndi + δ

))
+
(
Trcv2i −

(
Tsndi + δ

))
= S′i − 2δ

which clearly shows that if δ is constant, the packet-pair with the minimum observed OWD sum
is the pair with the true minimum OWD sum.

Clock skew issue Unfortunately, it turns out that the assumption of the same clock incremen-
tation rate is invalid. The clock at both ends of the path will in most cases drift independently
of each other, resulting in a time-varying clock offset δ(t), where t here is the local time at the
receiver. Hence, the resulting OWD sum measurements can be expressed as

S′i = Si + 2δ(Tsndi)

If the clock offset function is assumed to be linear of the form δ(t) = a+ bt, the receiver’s clock
is incrementing at a faster rate than the sender clock. The measured OWD sum would show an
increasing trend, and it could occur that one of the earliest received packet-pairs consequently
was chosen by Ad Hoc Probe as the minimum OWD sample. In the opposite case, if δ(t) =

a− bt, the trend would be negative, and the same could happen except that it would be the latest
samples that were chosen.

This issue could result in serious measurement errors; the worst-case being that the path capac-
ity was calculated on the basis of the dispersion of a compressed or expanded packet-pair. Ad
Hoc Probe deals with this issue by detecting an increasing or decreasing trend in the OWD sum
measurements. Pseudo-code describing the detection method is given in algorithm 2.1

For each of the N received packet-pairs, the counter trend is incremented if the packet-pair that
has a larger OWD sum than the previous, and decremented in the opposite case. This way, a
decreasing trend results in a large negative counter value, while an increasing trend would result
in a large positive value. The counter trend is compared to a predetermined threshold value K
and the trend is reported as increasing, decreasing, or none of these. In the latter case, no clock
skew correction is necessary.

If an increasing or decreasing trend is determined, the algorithm tries to find a set of packet-
pairs that are likely to be minimum delay sum samples. A method based on the convex hull
approach in [47] is used to do this selection. Figure 2.6 shows the concept. The samples that
lie on the upper/lower convex hull are selected according to the reported trend. Since all the
points lying on the convex hull of the data set ΩS′ = (Trcv2i , S′i) not necessarily are minimum
OWD sum samples, the same algorithm is applied to the data set containing the first-packet
OWDs; Ω1 = (Trcv2i , OWD1i). Taking the intersection of Ω′S and Ω1 will filter out some

26

Algorithm 2.1 The Ad Hoc Probe algorithm for detecting trends in the OWD sum measure-
ments

trend← 0
for i = 2 to N do

if S′i > S′i−1 then
trend← trend + 1

else if S′i < S′i−1 then
trend← trend− 1

end if
end for
if trend > K then

Report δ(t) is with increasing trend
else if trend < −K then

Report δ(t) is with decreasing trend
end if

of the compressed packet-pairs, however there is still a significant chance that "bad" packet-
packet-pairs are present in the data set. The final path capacity estimate is therefore given based
on the mean dispersion of the packet-pairs in the set ΩS′ ∩Ω1 in an effort to average out the
effect of bad samples.

(a) Increasing trend (b) Decreasing trend

Figure 2.6: Selection of the samples constituting the convex hull

27

Chapter 3

Estimating Path Capacity under Ideal
Conditions

In the previous chapter, Ad Hoc Probe [7] was chosen as the best candidate for further evalua-
tion. This and the next chapter documents the experiments that were performed to gain a deeper
understanding of how Ad Hoc Probe works, and whether or not it is suitable for being part of a
military Measurement-based Admission Control (MBAC)-scheme.

This chapter will focus on how Ad Hoc Probe performs under the ideal conditions of no cross
traffic. The goal is to evaluate under what constraints— if any —it conforms to the performance
requirements derived in section 2.3. In other words, this chapter is dedicated to evaluating under
what constraints the following hypothesis holds:

Ad Hoc Probe can provide path capacity estimates that comply to the require-
ments in section 2.3 when there is no other traffic present in the network.

The chapter is organized as follows: First, a review of the experiment set-up is given. Next,
the obtained results are presented in a dedicated section in order to lay the foundation for the
following discussion. Finally, the chapter is concluded with an assessment of the hypothesis
above, in the light of the knowledge acquired from the experiments.

3.1 Experimental Set-up

3.1.1 Test Bed Network Topologies

The experiments were conducted at Forsvarets Forskningsinstitutt (Norwegian Defence Re-
search Establishment) (FFI) using the test bed network topologies as shown in figures 3.1 and
3.2. In the first topology, several different technologies were used for the link L in order to test
the algorithm’s compatibility and accuracy.

In the topology illustrated in figure 3.2, the test bed was spread out in different rooms of a large
office environment in an effort to achieve the transmission range pattern as illustrated in the

29

Figure 3.1: Test bed topology for measuring the performance of Ad Hoc Probe [9]

Figure 3.2: Test bed topology for measuring the performance of Ad Hoc Probe in a wireless multi-hop
network [9]

figure. The wireless links were sharing a single channel. Most of the routers were separated by
concrete walls that attenuated the signal significantly. The end-to-end distance in the figure was
approximately 150 m. In such a scenario, there are many strong multipath components that vary
with the position of surfaces like doors and windows, resulting in a time-varying transmission
range. Therefore, a static routing configuration was employed to keep the number of wireless
hops under control. Figure 3.2 shows the case of four wireless hops. In order to vary the number
of wireless hops in the experiments, the physical connection point of the receiving IPsec device
was changed within the wireless chain.

3.1.2 Link Technologies

With the intention of verifying the requirements in section 2.3.1 for compatibility with different
Medium Access Control (MAC)-schemes, the following link technologies were selected:

• IEEE802.3 [19]

• IEEE802.11b [20]

• Commercial satellite modem [10]

• Tactical UHF personal radio [11]

30

IEEE802.3 This wired link technology is in widespread civilian and military use, often sim-
ply referred to as "Ethernet". The main reason for including IEEE802.3 in the experiments
was to evaluate whether Ad Hoc Probe could be used for admission control decisions between
headquarters†, where the path capacity typically is limited by the Ethernet connections.

The IEEE802.3 MAC-protocol is based on Carrier Sense Multiple Access Collision Detection
(CSMA/CD), but since most Ethernet networks are deployed in a star topology where every
connected node has a dedicated physical wire, there will never be any collisions triggering the
random access mechanism built into the MAC-protocol.

IEEE802.11b IEEE802.11b has limited military application due to its physical layer speci-
fications. The use of the unlicensed 2.4 and 5 GHz Industrial, Scientific and Medical (ISM)
frequency bands results in poor long range propagation properties. Additionally, since these
bands are unlicensed, destructive interference from other communication systems or electrical
devices is a significant problem. However, the IEEE802.11b MAC protocol is based on Car-
rier Sense Multiple Access Collision Avoidance (CSMA/CA), which makes it very interesting
to evaluate the estimators performance over this link technology, considering that contention
based medium access is widely deployed in military Mobile Ad Hoc Networks (MANETs).

The experiments were conducted using Alfa Network AWUS036NEH Wireless USB adapters
[39] in IEEE802.11b 1 Mbps Ad Hoc† mode using the Distributed Coordination Function
(DCF) variant of the MAC protocol with Ready-to-send (RTS)/Clear-to-send (CTS) enabled.

Commercial Satellite Modem Considering the key role of satellite communication in mili-
tary networks, and the frequent use of Frequency Division Multiple Access (FDMA) in these
types of links, it was natural to include a satellite link in the experiments.

The employed satellite modems were based on proprietary technology. Consequently, the ac-
cess to technical documentation was limited. However, it was clear that the modems operated as
an Ethernet bridges, relaying traffic that was destined for nodes situated on the other side of the
satellite link. In the experiments, two of these modems were connected via a satellite emulator
that imposed a propagation delay corresponding to what would be the case if the signals passed
through a geostationary satellite transponder. The emulated satellite’s transponder bandwidth
was shared through the use of a static FDMA approach. I.e, the link was allocated a dedicated
part of the transponder bandwidth. The information data rate of the link was set to 2048 kbps,
and the channel was practically noise-free.

Tactical UHF personal radio A battery-powered tactical personal radio operating in the
Ultra-High Frequency (UHF)-band was used for evaluating Ad Hoc Probe over a typical Time
Division Multiple Access (TDMA)-based link found in a military network. There was little doc-
umentation providing the tactical radio specifications. However, a user manual containing some
parameters was available, and by conferring with personnel at FFI the most important properties

†I.e., office environments
†Independent Basic Service Set (IBSS)

31

of the radio were clarified. The radio supports bandwidths of 500 and 1200 Hz; providing an
expected layer 1 information bit rate, Rb, of respectively 135 and 338 kbps. The medium access
scheme is based on TDMA using frames of 125 ms with 8 time slots of equal lengths, of which
6 time slots can be allocated for user data while the other two are reserved for signaling and a
voice break-in channel. The user time slots can be set-up in different combinations to share the
radio capacity between dedicated voice service and packet data transfer.

In these experiments, the radio was used in two configurations. The first a low-capacity mode
using a bandwidth of 500 Hz and 2 of 6 time slots for packet data transfer, resulting in an
average information bit rate of 135/8 · 2 ≈ 30 kbps. In the second configuration, the radio was
operating at full speed - using 6 of 6 time slots over a bandwidth of 1200 Hz with an average
information bitrate of 338/8 · 6 ≈ 250 kbps.

The radio was connected to the involved computers via Universal Serial Bus (USB) revision
2.0.

3.1.3 Software Configuration

The measurements were made using the CapProbe project’s C-implementation of Ad Hoc
Probe, downloaded from the University of California, Los Angeles (UCLA) Network Reserch
Laboratory website [30]. Only minor changes were made to the source code in order to change
parameters without needing to recompile, and to generate output in a more processing friendly
format. The source code that was compiled and installed on the probing and receiving machine
is available in appendix B.5.

In order to use this algorithm for admission decisions, there has to be a feedback connection
from the receiver to the sender. This was not implemented in these experiments since the main
focus was to evaluate the performance of the algorithm, and not to provide a complete imple-
mentation of an admission control scheme.

All computers that were used in the experiments had at least 1.7 GHz CPU, 512 MB RAM. The
end hosts were running Ubuntu Linux [35]. All the routers, including the ones configured as
IPsec end-points, were running a router software based on Vyatta [21]. Static routing and ad-
dress configuration was employed. The router configuration files are of some length and needed
to be changed on a scenario basis. Due to space consideration, only the configuration files for
one of the scenarios is enclosed in appendix B.3. The Vyatta default Quality of Service (QoS)
configuration is based on placing packets into different First In, First Out (FIFO) queues based
on the Differentiated Services Code Point (DSCP)-field in the IP header. In these experiments,
the DSCP-field was the same on all the traffic that was sent, and the Vyatta routers thus acted
as single FIFO queues.

In military networks, the Maximum Transmission Unit (MTU) is not necessarily set to the
IEEE802.3 standard of 1500 bytes. It was therefore interesting to evaluate the effect of frag-
mentation on the accuracy of Ad Hoc Probe. The network path MTU was set to 1200 bytes;
letting ciphertext IP packets up to and including 1200 bytes pass through unfragmented.

Rate limiters are commonly employed QoS mechanisms in civilian and military networks. In
one of the experiments, a token bucket 500 kbps rate limiter with maximum burst size set to

32

0, was configured on one of the routers in the path in order to find out if Ad Hoc Probe could
detect the maximum capacity of a rate limited path.

The Address Resolution Protocol (ARP) caused some cross traffic in the test bed. The capacity
needed for this traffic was however insignificant when the path capacity was in the order of
Mbps. In the case of low capacity channels, the ARP was disabled and the layer 2 addresses
were configured manually.

3.1.4 Ad Hoc Probe Parameters

Ad Hoc Probe has four adjustable parameters; the size of the packets in a packet-pair, PSize,
the number of packet-pairs that constitute an estimate, Numprobes, the length of the packet-
pair interdeparture time†, Int, and the clock skew correction threshold. The quantifiable es-
timator requirements from section 2.3 are threefold, including bounds on the estimator’s accu-
racy, intrusiveness and measurement time.

Since the path capacity inherently varies by PSize due to the varying relative overhead, this
was a parameter that had to be included to allow for considerations of the estimator accuracy.
In military networks, small packets are often used for tactical voice or messages, and it is very
interesting to evaluate Ad Hoc Probe’s accuracy for this kind of traffic.

Considering the path capacity dependence on PSize, this was regarded as a fixed parameter
when it came to evaluating the intrusiveness of the estimator. A key question was how many
packet-pairs of this fixed packet size it was necessary to transmit. Therefore, the estimator
performance for different settings of Numprobes was included in the analysis.

When the network is uncongested, the queuing and transmission delay of a packet pair will be
small compared packet-pair interdeparture time. Therefore, it is a valid assumption that the
measurement time is given by the product of Numprobes and the interdeparture time, given
that the probe rate is much less than the path capacity. In these measurements, the probing
rate was always kept well below the path capacity and the minimum measurement time could
therefore be inferred after determining the minimum Numprobes-value.

The effect of varying the clock skew correction threshold was not investigated in order to limit
the degrees of freedom in the experiment. The default value of 30 from [7] was used, effectively
disabling the clock skew correction algorithm for Numprobes< 30.

3.1.5 Measuring the True Path Capacity

For each test bed configuration, the path capacity was estimated for different IP packet sizes
using a "brute-force" technique based on generating UDP traffic with the Multi-Generator
(MGEN)[18]. For each IP packet size, PSize, a flow of packets, lasting MGENlength, was
sent towards the receiver with a constant packet interdeparture time corresponding to the data
rate MGENrate, set greater than the path capacity. In order to avoid basing the measurement on
data containing transient effects due to transmission buffer emptying/filling, there was a pause

†Time between sending each packet-pair

33

of 10 seconds between flows of different packet sizes and the test script counted received data
for a period of MGENlength−10 seconds, starting 5 seconds into each received flow. The path
capacity was calculated by dividing the count of received bits by (MGENlength−10). See the
BASH and AWK scripts enclosed in appendix B.4 for implementation details.

Following the definition of path capacity in section 2.1.1, MGENlength should have been in-
finitely long. Nevertheless, it is assumed in this thesis that the results from these measurements
were close to the true path capacity, using MGENlength in the order of tens of seconds.

3.1.6 Summary

Tables 3.1 and 3.2 summarize the most important parameters that were introduced in the pre-
vious subsections. In addition, all the different values that were assigned to these parameters
during the experiments, are listed.

Table 3.1: Overview over parameters that were varied during the experiments

Parameter Description Values used in measurements

L Test bed link technologies

IEEE802.11b Rb = 1 Mbps

IEEE802.3 10BASE-T Rb = 10 Mbps

Commercial satellite modem Rb = 2048 kbps

Tactical UHF personal radio 500 kHz 2 of 6 time
slots for packet data transfer Rb ≈ 30 kbps

Tactical UHF personal radio 1200 kHz 6 of 6 time
slots for packet data transfer Rb ≈ 250 kbps

Ratelim Token bucket rate limit 500 kbps, Disabled

PSize
Plaintext (red) IP packet
size

100-1500 bytes

Numprobes
Number of packet-pairs
per Ad Hoc Probe esti-
mate

10-100

Int
Ad Hoc Probe packet-pair
interdeparture time

0.1-2 s

MGENrate

Average layer 3 bit rate
generated by MGEN dur-
ing brute-force measure-
ment

0.5-12 Mbps

MGENlength

Duration of MGEN flow
for each IP packet size
during brute-force mea-
surement

30 s, 250 s (for IEEE802.11b)

34

Table 3.2: Overview over the most relevant parameters that were kept constant during all the experiments

Description Value used in measurements
Largest allowed size of layer 2 payload in path (MTU) 1200 bytes
Number of Ad Hoc Probe estimates per trial 20
Ad Hoc Probe clock skew correction threshold 30

35

3.2 Results

In this section, the results from all experiments are presented along with short comments de-
scribing the key observations. The results are interpreted and analyzed section 3.3.

3.2.1 The Effect of Varying the Packet Size

The results presented in this subsection are 95 % confidence intervals for the Ad Hoc Probe ca-
pacity estimator expected value, E{Ĉ}. Only packet sizes that did not result in packet fragmen-
tation according to table B.1 in appendix B were used. The number of probes per measurement
was fixed to 100 in order to provide a very good probability for obtaining a “good” minimum
One-Way Delay (OWD) sample, thus providing Ad Hoc Probe with the best conditions possi-
ble, resulting in the highest achievable estimation accuracy. The 95 % confidence intervals were
calculated using the sample mean and standard error of 20 observations of Ĉ and the Student-t
distribution with 19 degrees of freedom.

Capacity limited by single-hop Figure 3.3 shows the results obtained for the test bed topol-
ogy illustrated in figure 3.1 where the path capacity was limited by two common open standard
link technologies. The test bed configuration parameters are listed in table 3.3.

Table 3.3: Test bed configuration parameter values

(a) Configuration for results in figure 3.3a

Parameter Value

L
IEEE802.11b
Rb = 1 Mbps

Ratelim Disabled
PSize 100-1100 bytes

Numprobes 100
Int 0.1 s

MGENrate 3 Mbps
MGENlength 250 s

(b) Configuration for results in figure 3.3b

Parameter Value

L
IEEE802.3 10BASE-T
Rb = 10 Mbps

Ratelim Disabled
PSize 100-1100 bytes

Numprobes 100
Int 0.1 s

MGENrate 12 Mbps
MGENlength 30 s

In addition to the path capacity estimations, the plots also show the links’ TMCs; calculated
using equations (A.1) and (A.2) from appendix A, including the IPsec overhead. The TMC
in figure 3.3a is calculated in two variants; one where the average Contention Window size is
included, and one where the Contention Window is set to zero. The MGEN brute-force results
for the IEEE802.11b experiments were based on a flow duration of 250 s in order to reduce the
measurement variance caused by the random medium access.

Common for both link technologies was the fact that Ad Hoc probe consistently overestimated
the path capacity. In the case of IEEE802.11b, the estimates conformed to the TMC not in-
cluding the Contention Window, and the true path capacity gradually diverged from the TMC
including the average Contention Window as the packet size increased. The IEEE802.3 true
path capacity conformed perfectly to the TMC.

36

200 400 600 800 1000
200

300

400

500

600

700

800

900

1000

Packet Size [bytes]

P
a

th
 C

a
p

a
c
it
y
 [

K
b

p
s
]

AHP

MGEN

TMC(CW=0)

TMC(CW>0)

(a) L: IEEE80211b Rb = 1 Mbps

200 400 600 800 1000
4

5

6

7

8

9

10

11

12

Packet Size [bytes]

P
a

th
 C

a
p

a
c
it
y
 E

s
ti
m

a
te

 [
M

b
p

s
]

AHP

MGEN

TMC

(b) L: IEEE802.3 10BASE-T Rb = 10 Mbps

Figure 3.3: Path capacity estimation results. E{Ĉ} with 95 % confidence intervals, MGEN brute-force
method and TMC.

37

Capacity limited by multi-hop Figure 3.4 shows the results obtained for test bed topol-
ogy illustrated in figure 3.2 where the path capacity was limited by a wireless shared-channel
multi-hop topology. The test bed configuration parameters are listed in table 3.4. The TMC-
calculations were based on the single-hop TMC divided by the number of hops [34] .

Table 3.4: Test bed configuration parameter values for results in figure 3.4

Parameter Value

L
1-4 hop IEEE802.11b chain
Rb = 1 Mbps

Ratelim Disabled
PSize 400, 700 bytes

Numprobes 100
Int 0.2 s

MGENrate 1 Mbps
MGENlength 250 s

The key observations from the multi-hop results were that Ad Hoc Probe conformed to the TMC
with no Contention Window up to and including two hops, thereafter following a "delayed"
pattern; converging on the TMC divided by (number of hops−1). Furthermore, the TMC with
no Contention Window converges towards the regular TMC as the number of hops increase.

Tactical link Figure 3.5 shows the results from a scenario where the path capacity was limited
by a link between two tactical UHF radios. The radios were used in two different configurations
as listed in table 3.5; the first configuration providing a very low link capacity, the second the
maximum link capacity of the radio. Only packet sizes in the range 100-700 bytes were used
when the radio was in the low-capacity mode, since larger packet sizes could lead to a probing
rate greater than the path capacity. By increasing the probe interdeparture time, congestion
could have been avoided, but this would have made it impossible to complete the measurement
script within the lifetime of a single battery.

In figure 3.5a, when the radio was configured in the low-capacity mode, Ad Hoc Probe severely
overestimated the path capacity for packet size 100 bytes. For the other packet sizes, the mea-
surement bias followed an increasing trend, starting out with a relatively large underestimation
at packet size 200 bytes and ending up at a relatively large overestimation at 700 bytes.

Severe overestimation was the case for all packet sizes in figure 3.5b. In addition, the estimates
followed a linearly increasing trend until 600 bytes. For the larger packet sizes, there was no
clear pattern.

Satellite link The results for a test bed configuration including a satellite link are presented
in figure 3.6. Table 3.6 contain the text bed configuration parameters that were used.

Even though a relatively small but consistent overestimation was observed, Ad Hoc Probe con-
formed well to the true path capacity.

38

1 2 3 4
0

100

200

300

400

500

600

700

800

900

1000

Number of hops

P
a

th
 C

a
p

a
c
it
y
 [

K
b

p
s
]

AHP

MGEN

TMC(CW=0)

TMC(CW>0)

(a) PSize: 400 bytes

1 2 3 4
0

100

200

300

400

500

600

700

800

900

1000

Number of hops

P
a

th
 C

a
p

a
c
it
y
 [

K
b

p
s
]

AHP

MGEN

TMC(CW=0)

TMC(CW>0)

(b) PSize: 700 bytes

Figure 3.4: Path capacity estimation results for multi-hop test bed topology. E{Ĉ} with 95 % confidence
intervals, MGEN brute-force method and TMC divided by number of hops.

39

100 200 300 400 500 600 700
0

100

200

300

400

500

600

700

800

900

Packet Size [bytes]

P
a

th
 C

a
p

a
c
it
y
 E

s
ti
m

a
te

 [
K

b
p

s
]

AHP

MGEN

(a) L: Tactical UHF radio 500 kHz bandwidth 2/6 time slots

100 200 300 400 500 600 700 800 900 1000 1100
0

500

1000

1500

2000

2500

3000

3500

Packet Size [bytes]

P
a

th
 C

a
p

a
c
it
y
 E

s
ti
m

a
te

 [
K

b
p

s
]

AHP

MGEN

(b) L: Tactical UHF radio 1200 kHz bandwidth 6/6 time slots

Figure 3.5: Capacity estimation results for a path including a tactical UHF radio link. E{Ĉ} with 95 %
confidence intervals and MGEN brute-force measurements

40

Table 3.5: Test bed configuration parameter values

(a) Configuration for results in figure 3.5a

Parameter Value

L

Tactical UHF personal radio
500 kHz 2 of 8 time slots
used for packet data
Rb = 135kbps
Average information bit rate:
135/8 · 2 ≈ 30 kbps

Ratelim Disabled
PSize 100-700 bytes

Numprobes 100
Int 2 s

MGENrate 500 kbps
MGENlength 30 s

(b) Configuration for results in figure 3.5b

Parameter Value

L

Tactical UHF personal radio
1200 kHz 6 of 8 time slots
used for packet data
Rb = 338kbps
Average information bit rate:
338/8 · 6 ≈ 250 kbps

Ratelim Disabled
PSize 100-1100 bytes

Numprobes 100
Int 1 s

MGENrate 500 kbps
MGENlength 30 s

200 400 600 800 1000
1

1.2

1.4

1.6

1.8

2

Packet Size [bytes]

P
a

th
 C

a
p

a
c
it
y
 [

M
b

p
s
]

AHP

MGEN

Figure 3.6: Path capacity estimation results for various plaintext packet sizes over a path including a
satellite link. E{Ĉ} with 95 % confidence intervals and MGEN brute-force measurements.

41

Table 3.6: Test bed configuration parameter values for results in figure 3.6

Parameter Description

L
Commercial satellite modem
Rb ≈ 2048kbps

Ratelim Disabled
PSize 100-1100 bytes

Numprobes 100
Int 0.2 s

MGENrate 5 Mbps
MGENlength 30 s

IP Packet Fragmentation Figure 3.7 shows the results from Ad Hoc Probe, MGEN brute-
force measurements and the TMC for the packet sizes that were observed to result in packet
fragmentation (see table B.1). For packet sizes 1200-1500 bytes, the TMC takes into account the
increased layer 3 overhead for due to fragmentation, and the layer 2 overhead of two Ethernet
frames. Table 3.7 contains the test bed configuration.

900 1000 1100 1200 1300 1400 1500
0

2

4

6

8

10

12

Packet Size [bytes]

P
a

th
 C

a
p

a
c
it
y
 E

s
ti
m

a
te

 [
M

b
p

s
]

AHP

MGEN

TMC

Figure 3.7: Path capacity estimation results. E{Ĉ} with 95 % confidence intervals, MGEN brute-force
measurements and TMC for various packet sizes that resulted in fragmentation.

The Ad Hoc Probe estimates were in accordance with the TMC, and did capture the expected
drop in capacity due to the increased overhead imposed on fragmented packets. By contrast, the
MGEN brute-force estimates did not conform to the TMC, reporting a very low path capacity
for fragmented packets.

42

Table 3.7: Test bed configuration parameter values for results in figure 3.7

Parameter Description

L
IEEE802.3 10BASE-T
Rb = 10 Mbps

Ratelim Disabled
PSize 900-1500 bytes

Numprobes 100
Int 0.1 s

MGENrate 12 Mbps
MGENlength 30 s

Rate limiter In the results presented in figure 3.8, one of the Vyatta routers in the path was
configured to use a token bucket 500 kbps rate limiter with burst size set to zero. Table 3.8 lists
the test bed configuration.

200 400 600 800 1000
200

300

400

500

600

700

800

900

1000

Packet Size [bytes]

P
a

th
 C

a
p

a
c
it
y
 [

K
b

p
s
]

AHP

MGEN

Figure 3.8: Path capacity estimation results for rate limited path. E{Ĉ} with 95 % confidence intervals
and MGEN brute-force measurements.

Ad Hoc probe failed to comply with the true path capacity for the rate-limited path. In stead,
the estimates were equal to the results in figure 3.3a where the same test bed configuration was
used, except that the rate-limiter was disabled.

3.2.2 The Effect of Varying the Number of Probes Per Measurement

Figure 3.9 shows estimates of the Ad Hoc Probe bias and standard deviation as a function of the
number of probes per measurement. The figure shows the results obtained for various links in

43

Table 3.8: Test bed configuration parameter values for results in figure 3.8

Parameter Description

L
IEEE802.11b
Rb = 1 Mbps

Ratelim
500 kbps (set on first router
after L)

PSize 100-1100 bytes
Numprobes 100

Int 0.1 s
MGENrate 3 Mbps
MGENlength 250 s

the topology illustrated in figure 3.1 and the four-hop wireless Carrier Sense Multiple Access
(CSMA) chain illustrated in figure 3.2. The test bed configurations are listed in table 3.9.

Moreover, the tactical UHF radio TDMA-link was not included in these measurements since—
for this link type —Ad Hoc Probe did not provide reasonable estimates for the optimal case
of 100 probes per measurement, and improved performance was not expected if fewer probes
were used. Considering this, it was regarded as not worth-while to vary the number of probes
per measurement over the TDMA tactical radio.

The bias estimates are presented normalized to the true path capacity. I.e.,

Bias{Ĉ}
C

= E

{
Ĉ−C

C

}
=

E{Ĉ}
C
− 1

where Ĉ is the random Ad Hoc Probe path capacity estimator and C is the true path capacity,
assumed to be the estimate provided by the MGEN brute-force method. The same normalization
is applied to the standard deviation estimate.

E{Ĉ} was unknown, and had to be estimated. Therefore, 95 % confidence intervals are pre-
sented, based on the sample mean and standard error of 20 observations of Ĉ and the Student-t
distribution with 19 degrees of freedom.

Since the only one sample was taken of the standard deviation, and the distribution of Ĉ is
unknown, a confidence interval is not provided for the standard deviation estimate. However,
the estimate is calculated by taking the square root of an unbiased estimator of the variance of
Ĉ, so it is expected to be close to the true value.

The results presented in figure 3.9 show no obvious coupling between the number of probes
per measurement and the bias for the single-hop cases. A small improvement can be read from
10 to 30 number of probes per measurement in figures 3.9b and 3.9c, and from 80 to 100 in
figure 3.9c. The standard deviation in the IEEE802.11b case displayed a decreasing trend until
60 probes per measurement, where there was a sudden increase.

In the multi-hop case of figure 3.9d, the bias was increasing with more number of probes per
measurements, while the standard deviation showed a decreasing trend.

44

Table 3.9: Test bed configuration parameter values

(a) Configuration for results in figure 3.9a

Parameter Value

L
IEEE802.11b
Rb = 1 Mbps

Ratelim Disabled
PSize 700 bytes

Numprobes 10-100
Int 0.1 s

MGENrate 3 Mbps
MGENlength 250 s

(b) Configuration for results in figure 3.9b

Parameter Value

L
IEEE802.3 10BASE-T
Rb = 10 Mbps

Ratelim Disabled
PSize 700 bytes

Numprobes 10-100
Int 0.1 s

MGENrate 12 Mbps
MGENlength 30 s

(c) Configuration for results in figure 3.9c

Parameter Value

L
Commercial satellite modem
Rb = 2048 kbps

Ratelim Disabled
PSize 700 bytes

Numprobes 10-100
Int 0.2 s

MGENrate 5 Mbps
MGENlength 30 s

(d) Configuration for results in figure 3.9d

Parameter Value

L
4-hop IEEE802.11b chain
Rb = 1 Mbps

Ratelim Disabled
PSize 700 bytes

Numprobes 10-100
Int 0.2 s

MGENrate 1 Mbps
MGENlength 250 s

45

(a) L: IEEE802.11b Rb = 1 Mbps

(b) L: IEEE802.3 10BASE-T Rb = 10 Mbps

Figure 3.9: Ad Hoc Probe normalized bias and variance versus number of probes per measurement for
various test bed configurations.

46

(c) L: Commercial satellite modem Rb = 2048 kbps

(d) L: IEEE802.11b 4-hop wireless chain. Note the larger scale.

Figure 3.9: Ad Hoc Probe normalized bias and variance versus number of probes per measurement for
various test bed configurations.

47

3.3 Discussion

3.3.1 Accuracy over CSMA-link

Single-hop In figure 3.3a, the MGEN brute-force estimates followed the TMC-curve that
took into account the average backoff time value, while the Ad Hoc Probe estimates were in
accordance with the TMC that did not take this into account. The reason for this was that Ad
Hoc Probe selected the packet-pair with the minimum OWD sum. Hence, the packet-pair that
had the lowest random backoff time sum was chosen as the “good” sample. Since the value
zero is a legal value for the backoff timer [20], the Ad Hoc Probe estimates were very close to
the TMC with the Contention Window set to zero.

An analytical expression giving a lower bound of the measurement bias, Bias[Ĉ], normalized to
the true path capacity, C, can be derived by observing that the true path capacity never exceeded
the TMC, while the mean Ad Hoc Probe estimates complied to the TMC with the Contention
Window set to zero.

min

(
Bias[Ĉ]

C

)
≈ TMCnoCW − TMC

TMC
=

TMCnoCW

TMC
− 1 (3.1)

Figure 3.10 is a plot of equation (3.1) for various data rates using the IEEE802.11b TMC for-
mula given in equation (A.1), including the extra overhead from IPsec. The observed normal-
ized bias is also plotted. Judging from these findings, the lower bound of the bias is substantial
for high data rates, resulting in overestimation errors in the order of 20 %. The measured bias
corresponds well with the theoretical lower bound. Moreover, the theoretical lower bound is
approximately equal to the real bias for small packet sizes, but is much lower than the measured
bias for large packets.

Note that it is the size of the Contention Window that governs the relation TMC/TMCnoCW.
Ad Hoc Probe may display an improved or worsened bias when used with other CSMA-based
links.

The path capacity achieved by MGEN brute forcing diverged from the TMC at large packet
sizes. Since the TMC assumes that no retransmissions occur, the difference was most likely
caused by the fact that the layer 2 frame error rate will increase with packet size [32], given a
constant bit error rate.

Multi-hop In a wireless multi-hop chain scenario, it is expected that the path capacity is
inversely proportional with the number of wireless hops for chains with four or less hops [34].
The MGEN brute-force results in figure 3.4 comply to this expectation, while Ad Hoc Probe
diverged from this behavior when there was more than two wireless hops. For these cases,
Ad Hoc Probe reported the path capacity as the no-Contention-Window TMC for (number of
hops−1).

A likely explanation for this can be found by analyzing the possible sequence of transmission
events that can take place in a FIFO-based wireless CSMA chain. The binary trees in figure

48

0 200 400 600 800 1000 1200
0

0.05

0.1

0.15

0.2

0.25

Packet Size [bytes]

N
o

rm
a

liz
e

d
 b

ia
s

1 Mbps

2 Mbps

5.5 Mbps

11 Mbps

Measured 1 Mbps

Figure 3.10: Theoretical lower bound and observed Ad Hoc Probe IEEE802.11b bias, normalized to the
path capacity

3.11 show that there are several cases that will lead to overestimation of the path capacity
- each having the same minimum OWD sums as the correct case. Ad Hoc Probe will only
provide the correct path capacity if the second packet is held back until the first packet has been
relayed through all nodes that cannot transmit at the same time without causing destructive
interference†. The four-hop binary tree is not included due to its large size, but it is safe to
conclude that there are many more branches representing overestimation in that case. This
issue is also briefly mentioned in [2].

Figure 3.11 does not provide the probabilities connected with each sequence of events. How-
ever, the results in figure 3.4 indicate that the error branch of the two-hop case is very unlikely.
Considering the results from the three- and four-hop case, it is evident that the probability of
the correct branch is small compared to the branches that respectively end with {P22, P23} and
{P22, P23,P24}.

The occurrence of this overestimation problem can most likely be avoided if the algorithm is
modified to always select the packet-pair with the least first-packet OWD and the least OWD
sum. In Ad Hoc Probe, this is only a requirement if the clock skew correction algorithm is
triggered, and not in the “regular” cases. In [7], this behavior is not reported. This could be
due to that the authors consequently used 200 probes per measurement, most likely always
triggering the clock skew correction algorithm.

If this behavior could be avoided, Ad Hoc Probe would converge towards the TMC without the
Contention Window, and considering that this again converges towards the regular TMC as the

†Based on the transmission ranges illustrated in fig. 3.2 this is three hops, but due to the fact that the interference
range is longer than the transmission range, it can be as many as seven hops [34].

49

P22P21

P12

P22P12

P2 1
P11

(a) Two hops

P23P22P21

P1
3

P23P22

P13

P23P13

P22

P2 1
P1

2

P23P13

P22

P23P22

P13
P12

P2
1

P11

(b) Three hops

Figure 3.11: Binary tree showing the possible transmission sequences for a packet-pair over a wireless
CSMA multihop chain. The branches that are terminated with a red dot correspond to cases of overesti-
mation. P1i: First packet transmitted over i-th hop, P2i: Second packet transmitted over i-th hop

number of hops increase, the performance in terms of bias would be improved. The reason for
the convergence between the TMC without and with Contention Window is that the difference
between these are divided by the number of hops as well since

A
i
− B

i
=

1
i
(A− B)

3.3.2 More Causes of Overestimation

Figures 3.9b and 3.9c clearly suggest that Ad Hoc Probe also is biased for links not employing a
random backoff time. In addition, three other interesting observations can be made out of figure
3.3:

• In figure 3.3b, the Ad Hoc Probe expected value was considerably higher than the TMC
and MGEN brute-force results.

• There is a trend in the expected value of figure 3.3b which indicates that large packet-pairs
provides better accuracy than small packet-pairs

50

• Taking into account the analysis in section 3.3.1, then the results in figures 3.3a and 3.3b
suggest that a large true path capacity leads to greater inaccuracy than a small true path
capacity.

In the case of the wired IEEE802.3 10BASE-T scenario of figure 3.3b, the packet-pairs have
not suffered any compression or expansion along the path since no random backoff time is
employed when the medium is sensed idle [19]. Therefore, Ad Hoc Probe’s minimum OWD
sum algorithm should be unnecessary, since every packet-pair should arrive at the receiver with
a dispersion in compliance with the Packet-Pair Dispersion model

PSize

∆t
=

PSize

Trcv2 − Trcv1

The packet size, PSize, is a constant which always will be measured correctly by the receiver,
but the measured packet arrival times, Trcv2 and Trcv1, will in most cases come with errors

Ĉ =
PSize

(Trcv2 + e(Trcv2))− (Trcv1 + e(Trcv1))

where e(t) is a random process representing the time measurement error at time t, receiver time.
For convenience, hereafter the notation e1 and e2 is respectively used for e(Trcv1) and e(Trcv2).

The measurement bias, Bias{Ĉ}, normalized to the true path capacity C can be expressed as
follows

Bias{Ĉ}
C

= E

{
Ĉ−C

C

}
= E

{
PSize

C(Trcv2 + e2)−C(Trcv1 + e1)
− 1
}

Since Trcv2 = Trcv1 + PSize/C,

E
{

PSize

C(Trcv1 + PSize/C + e2)−C(Trcv1 + e1)
− 1
}

=
PSize

PSize+ C (E{e2} − E{e1})
− 1 (3.2)

By taking a closer look at equation (3.2), it is clear that it describes the effect of a local packet-
pair compression or expansion at the receiver. The case e1 > e2 leads to overestimation while
the opposite case leads to underestimation. If e1 = e2, the packet dispersion is unaffected and
the estimate will be correct. A large packet size will reduce the impact of timing error, while a
high true path capacity will make the accuracy very sensitive to timing errors.

In general, the time measurement errors e1 and e2 can be caused by different reasons; the
most important being finite clock resolution and/or Operating System (OS) overhead due to
scheduling/context-switches.

51

Clock resolution The Ad Hoc Probe implementation used for these measurements conducts
time measurements by reading the Time Stamp Counter (TSC) CPU-register; a 64-bit counter
that is incremented every clock cycle. Further, the counter value is divided by the CPU clock
frequency to obtain the measurement in seconds. I.e., the clock resolution is dependent on
the speed of the CPU. In this case, the CPU clock frequency was 1.7 GHz, providing a clock
resolution of 1/1.7 ns. Assuming that the oscillator circuits provide perfect frequency stability,
e(t) will be stationary in the mean, and the per packet time stamp error would be uniformly
distributed in the interval [0, 0.6] ns. This is a very accurate time reading and it should not lead
to a biased path capacity estimate as shown in figure 3.3b since

E{e2} − E{e1} = 0.3− 0.3 ns = 0 ns

OS Overhead As analyzed in [27], the OS overhead can have significant impact on packet-
pair based capacity estimates. Operating systems such as Linux share CPU resources between
user space applications in order to make multitasking possible. This is done by the use of
a scheduling algorithm implemented in the OS kernel. The algorithm swaps processes and
threads in and out of execution in accordance with a priority scheme, and the act of swapping
a process or thread is referred to as a context switch. Since the Ad Hoc Probe receiver is a user
space application, it will be swapped out of execution at time intervals determined by the OS
scheduling. If a packet arrives during the time interval when the receiver application is swapped
out of execution, the result will be an error in the measured arrival time since this measurement
is performed first after the application is allowed to resume execution. The error introduced by
this will be at least the time it takes to perform a context switch. In [33], measurements of the
context switch overhead was performed on hardware with similar specifications as the test bed
used for experiments in this thesis. The time needed for a context switch was found to vary in
the range of a few to over a thousand µs, depending on the need to swap data in and out of the
Level 1 and 2 cache and the data access pattern.

Figure 3.3b indicates that the path capacity tends to be consistently overestimated by Ad Hoc
Probe. The same tendency was reported for a slow computer in [27]. This could be due to
the fact that context switching, in most cases, cause error in the first packet arrival time mea-
surement since the receiver application is very likely to be swapped out of execution during the
relatively long packet-pair interdeparture time. In cases where the true path capacity is several
Mbps, the second packet should in most cases not be affected by context switching due to the
high likelihood of that the receiver application still "owns" the CPU when second packet arrives
very shortly after the first. This reasoning leads to the conclusion that E{e1} > E{e2} for high
capacity paths, and consequently a measurement bias resulting in a consistent overestimation
for these cases.

The operating system scheduler is in most cases a complex algorithm, resulting in that the
context switch delay depends on many factors, e.g. user activity, the number of processes
running, process priorities, the CPU clock frequency, available memory etc. In general, the time
measurement error process is non-stationary in the mean. It is therefore very hard to generally
determine the bias of Ad Hoc Probe due to context switching, since this also consequently will
be time varying.

52

It is important to point out that the Ad Hoc Probe minimum OWD sum algorithm mitigates
the problem of packet-pair compression and expansion caused by context switch delay since
packets that have been subject to waiting by a context switch will be measured with an increased
OWD. However, the results in figure 3.3b suggest that the context switching in many cases
affected all of the 100 packet-pairs that made up a single measurement. This is not unrealistic
considering that corresponding behavior was reported for 600 probes per measurement in [27].

Figure 3.12 shows the maximum observed Ad Hoc Probe estimates of the data sets presented in
figure 3.3, normalized to the true path capacity. The theoretical measurement error was obtained
by substituting equations (A.1) and (A.2)† into equation (3.2) using e2 − e1 = −55µs. This
value seems to roughly correspond to the maximum context switch delay error made by Ad
Hoc Probe for these two particular data sets. Comparing the two link technologies, it is clear
that context switching has the greatest impact if the true path capacity is in the order of several
Mbps.

200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Packet Size [bytes]

N
o

rm
a

liz
e

d
 M

e
a

s
u

re
m

e
n

t
E

rr
o

r

Measured 802.3

Theoretical 802.3

Measured 802.11b

Theoretical 802.11b

Figure 3.12: Maximum Ad Hoc Probe estimates compared to theoretical measurement error for
IEEE802.3 10BASE-T and IEEE802.11b. e2 − e1 = −55 µs

The observed overestimation error for high capacity non-CSMA paths have now been given
a likely explanation. The theory could be evaluated by modifying the Ad Hoc Probe source
code so that the kernel performed the time-stamping, using the SO_TIMESTAMP socket option
[44]. The expected results from such an experiment would be a significant reduction in the
measurement bias for links with dedicated medium access, since the context switch delay no
longer would play a role for the time measurement error.

†Contention Window set to zero. This is also used as the true path capacity when calculating the observed
normalized measurement error for IEEE802.11b in order to separate the effect of the bias caused by the algorithm
and this implementation-caused bias.

53

3.3.3 Accuracy over a TDMA-link

As can be observed in figure 3.5, Ad Hoc Probe did not provide accurate estimates when the
TDMA-based tactical UHF radio was limiting the path capacity. In figure 3.5a, the estimates
were completely wrong for probe packet size 100 bytes, and biased for the other packet sizes.
Furthermore, in the case of the 1200 kHz mode of operation shown in figure 3.5b, Ad Hoc
Probe failed to provide any reasonable estimates.

100 110 120 130 140 150
4

4.5

5

5.5

6

6.5

Packet Number

A
rr

iv
a

l
T

im
e

 [
s
]

Packet Arrival

(a) Packet size 100 bytes

100 110 120 130 140 150
6

6.5

7

7.5

8

8.5

9

9.5

10

Packet Number

A
rr

iv
a

l
T

im
e

 [
s
]

Packet Arrival

(b) Packet size 200 bytes

Figure 3.13: A selection of packet arrival times from MGEN brute-force measurements when the path
capacity was limited by the tactical UHF radio.

In order to understand the results in figure 3.5a, a comparison of the packet arrival times from
the MGEN brute-force measurement is beneficial. Figure 3.13 shows that there was a special
pattern in the receive times. The 100 bytes packets were consistently delivered three at a time,
while the 200 bytes packets were mainly delivered two at a time with occasional single-packet
deliveries. The time difference between packet arrivals within the triplets or doublets was 1-5
ms; much smaller than the time that passed between the arrival of each triplet or doublet.

The explanation of this behavior lies in the fact that the tactical radio used TDMA. If the sum of
the packet size PSize and the overhead H from IPsec and lower layer headers, is less than the
amount of data D that can be fitted into a single time slot of length T at layer 1 information bit
rate Rb, then two or more consecutively sent packets will often be delivered to layer 3 at nearly
the same time, since the radio seem to complete processing of all the received data in a single
time slot before delivering data to higher layers.

Figure 3.14: Illustration of the packet arrival pattern for PSize+H
D = 4

7

54

Figure 3.14 shows an example of how two "last bit received" events can occur in a data block
corresponding to a single time slot. The number of packets completely received during process-
ing of a single time slot will follow a cyclic pattern whose period in bits is given by the least
common multiple of (PSize+ H) and D. The period of the cyclic pattern can potentially be
large, especially if one or both of these numbers are primes.

Figure 3.15: Illustration of the Ad Hoc Probe packet-pair arrival pattern if 2(PSize+ H) < D.

This insight into the packet delivery process can be used to explain the Ad Hoc Probe results.
Figure 3.15 illustrates the arrival pattern in the case where a packet-pair fits into a single time
slot. When the packet-pair is delivered at the same time to higher layers, there is no correla-
tion between the resulting packet dispersion and the link capacity, but it most likely represents
the radio’s processing speed or the capacity of the USB connection between the radio and the
computer. This explains the large Ad Hop Probe estimate for packet size 100 bytes in figure
3.5a, and shows that PSize+ H must be greater than half the size of D for Ad Hoc Probe
to provide results that are correlated to the link capacity of a TDMA-based link. In the 1200
kHz mode of operation of figure 3.5b, the radio operated at a higher bit rate and used all time
slots for data transfer, making D larger than 2(PSize+ H) for all packet sizes, resulting in
unusable estimates.

Figure 3.16: Illustration of the Ad Hoc Probe arrival pattern if 2(PSize+ H) > d

As shown in figure 3.16, if 2(PSize+ H) > D, the measured packet dispersion will be a
multiple of the length of a time frame F minus the length of the unused part of the last time
slot. Since Ad Hoc Probe sends packet-pairs with a relatively large time spacing in between,
and taking into account that there was no cross traffic present, the last time slot used to send a
packet-pair was non-full†. Consequently, Ad Hoc Probe can be expected to deliver estimates
according to equation (3.3) when there is no other traffic than the packet-pairs going through
the radio.

†In the case of the MGEN brute-force measurements, the transmission queue was always full at the radio,
causing it to never "lack" data to fill an entire time slot

55

Ĉ =
PSize

∆t
=

PSize(⌈
2(PSize+H)

D

⌉
−
⌈
(PSize+H)

D

⌉)
F−

(
D−2(PSize+H)−D

(⌈
2(PSize+H)

D

⌉
−1
)

Rb

)
=

PSize⌈
2(PSize+H)

D

⌉
(F− T)−

⌈
(PSize+H)

D

⌉
F + 2(PSize+H)

Rb

, (PSize+ H) >
D
2

(3.3)

where d·e is the ceiling operator.

By defining the MGEN brute-force estimates as the true path capacity, C, an expression for the
measurement bias can be found. Let N be the number of packets that have been received by the
MGEN application, and e < F be the time from the last received frame to the end of the data
counting period. Then,

C =
N · PSize⌈

(PSize+H)·N
D

⌉
F + e

(3.4)

Since ⌈
(PSize+ H)N

D

⌉
≈ (PSize+ H)N

D

for a large N, and considering that

e < F � (PSize+ H)N
D

then e can be disregarded. As a result, equation (3.4) can be simplified

C ≈ N · PSize
(PSize+H)·N

D F
=

N · PSize
(PSize+H)·N

D F
=

PSize · D
(PSize+ H)F

(3.5)

The bias, normalized to the Ad Hoc Probe estimate is given by

Bias{Ĉ}
C

=
Ĉ− C

C
=

Ĉ
C
− 1 (3.6)

In figure 3.17, equation (3.6) is plotted using equations (3.3) and (3.5) for respectively Ĉ and C ,
taking into account the overhead caused by IPsec and the layer 2 Ethernet header. The measured
normalized bias is also included in the plot and it corresponds well to the theoretical value. The
small deviation is most likely caused by the fact that the layer 1 overhead (e.g., synchronization
preamble) is not included.

In accordance with figure 3.5a, plaintext packet sizes 200-400 represent cases of underestima-
tion, while plaintext packet sizes 500-700 results in overestimation. When the ciphertext packet
size plus the layer 2 header add up to D = 125/8 · 2 · 135 ≈ 530 bytes, somewhere between
plaintext packet size 400 and 500 bytes, the bias is zero.

56

200 300 400 500 600 700
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Packet Size [bytes]

N
o

rm
a

liz
e

d
 b

ia
s

Measured

Theoretical

Figure 3.17: Normalized Ad Hoc Probe bias for the TDMA-based tactical radio. F = 125 ms, T =
125/8 · 2 = 31.25 ms, Rb = 135 kbps

3.3.4 Accuracy over FDMA Link

As can be observed in figure 3.6, Ad Hoc Probe provides reasonably accurate estimations when
used over a FDMA-based link. The reason for this is that there is no need for buffering or
collision avoidance mechanisms such as in TDMA and CSMA links. The transmission of a
packet-pair can therefore be initiated immediately after the first packet has arrived at the modem
as long as the transmission queue is empty. The second-packet is sent directly after the first,
causing the link to comply with the Packet-Pair Dispersion model.

Ad Hoc Probe was accurate within the overestimation error that can be expected due to context
switching. The maximum overestimation errors in these measurements correspond to e2− e1 ≈
−75 µs, which is not too far from the maximum delay experienced in the IEEE802.3 10BASE-T
case.

3.3.5 IP Fragmentation

When considering the results presented in figure 3.7, a key observation is that Ad Hoc Probe
was in far better accordance with the TMC than the MGEN brute-force estimates during the
packet fragmentation that took place for packet sizes 1200-1500 bytes. The reason for this
is that the latter method overloaded the narrow link by sending traffic at a rate exceeding the
narrow link capacity, causing congestion to occur at the outgoing 10BASE-T interface. The
layer 2 transmission queue associated with this interface works in a droptail fashion; discarding
packets that arrive when the queue is full. Since each packet was divided into two fragments
before being placed in this queue, there were many cases where the first fragment was dropped,

57

but not the second and vica versa. Consequently, a great part of the path capacity was wasted
on sending IP fragments that never could be reassembled and delivered to the MGEN receiver
application. These unassembled fragments were therefore never accounted for, even though
they were correctly transferred.

In today’s wired military networks, an MTU of 1500 bytes is normal both in the red and black
parts of the network. Since the IPsec devices introduce overhead that makes the packets larger
than the black network’s MTU, a considerable amount of fragmentation is occurring in the black
network. Considering this, one should be careful trusting path capacity estimates based on UDP
flooding in such settings since this method potentially results in serious underestimation.

In the case of Ad Hoc Probe, the packet fragmentation results in an increase in the packet-pair
dispersion observed at the receiver due to the extra overhead. The resulting estimate therefore
takes into account the reduction in capacity that occur due to the fragmentation.

3.3.6 Accuracy over a Rate Limited Path

Figure 3.8 shows that Ad Hoc Probe overestimated the path capacity. In fact, it provided the
same estimations as in figure 3.3a where no rate limiter was in use. The results indicate that
the packet-pair probes were sent straight through the Vyatta rate limiter even though the token
bucket allowed burst size was set to zero. It seems that the Vyatta rate limiter does not operate
on a per packet basis. Given the fact that most rate limiters are configured with a non-zero
allowed burst size, it is very likely that packet-pairs, in general, will not be influenced by such
mechanisms; causing Ad Hoc Probe to consistently overestimate the capacity of rate limited
paths. This is also reported to be the case for another packet dispersion based tool in [31].

3.3.7 Number of Probes Per Measurement

The results presented in figure 3.9 indicate that the bias of Ad Hoc probe under these ideal con-
ditions is nearly independent on the number of probes per measurement. A small improvement
can be read from 10 to 30 number of probes per measurement in figures 3.9b and 3.9c, and
from 80 to 100 in figure 3.9c. These improvements are most likely caused by a higher probabil-
ity for the occurrence of a low context switch error when increasing the number of probes per
measurement.

There is a steady decrease in the IEEE802.11b standard deviation curve up to 60 probes per
measurement, where there is a sudden increase. This could be caused by the clock skew correc-
tion algorithm, which is likely to be activated in the vicinity of the standard deviation increase.
Since the variance of the minimum CSMA backoff time is expected to decrease as the number of
probes increase, it should be very small for 70 or more probes per measurement. However, the
variance of the average dispersion of the packet-pairs picked out by the clock skew correction
algorithm† is not necessarily as small.

In the multi-hop case of figure 3.9d, the bias is showing an increasing trend with an increasing
number of probes per measurement. By contrast, the variance is showing a decreasing trend.

†The clock skew correction algorithm is explained in section 2.5.2

58

Judging from figure 3.4, the Ad Hoc Probe estimate is expected to converge on the zero con-
tention window TMC divided by 3 in this case. This corresponds to a normalized bias of 0.71,
which is higher than the observed bias.

Considering that each packet draws four random backoff times, the probability that the mini-
mum sum of these samples is approximately zero is much less than in the single-hop case where
there is only one random backoff time sample per packet. However, as the number of probes per
measurement is increased, there is an increased probability for a lower delay sum and a smaller
chance for high delay sums. Consequently, the variance is reduced when increasing the number
of probes, since most minimum OWD sums will be small in this case.

Although the Ad Hoc Probe average measurement error (bias) is under the upper bound of 0.71
for 10-100 probes per measurements, it is still expected that a few cases of a very low delay sum
will occur even though this is unlikely. The maximum observed estimates in the 4 hop chain
experiment are plotted in figure 3.18, and they do indeed approach the upper bound of 0.71.

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of probes per measurement

N
o

rm
a

liz
e

d
 m

e
a

s
u

re
m

e
n

t
e

rr
o

r

Figure 3.18: Maximum measurement error for 4 hop IEEE802.11b chain

59

3.4 Evaluation

In this section the validity of the hypothesis stated in the beginning of the chapter will be eval-
uated in the light of the knowledge obtained by experiments and analysis. The hypothesis was
as follows:

Ad Hoc Probe [7] can provide path capacity estimates that comply to the re-
quirements in section 2.3 when there is no other traffic present in the network.

First, the qualitiative requirements from section 2.3 are treated, followed by the quantitative
requirements. Lastly, a brief summary of the evaluation is given.

3.4.1 Compliance to Qualitative Requirements

The qualitative requirements developed in section 2.3.1, were that the path capacity estimator:

• must not rely on communication with the forwarding nodes in the black network
• must be compatible with CSMA and/or TDMA and/or FDMA
• should be compatible with wireless multi-hop communication where the same channel is

shared between multiple nodes using CSMA/CA
• must not rely on the assumption of symmetric path capacities
• must work even if the estimation traffic is subject to packet fragmentation
• should be compatible with rate-limited paths

Ad Hoc Probe is based on end-to-end probing, not relying on communication with the forward-
ing nodes.

During the course of the experiments presented in this chapter, it became clear that Ad Hoc
Probe was incompatible with TDMA links. If both packets in a pair fitted into a single time
slot, there was no correlation between the packet dispersion and the path capacity. If the packet-
pair could not fit into a single time slot, there was correlation, but the estimates were biased to
severely over- or underestimate the path capacity for packet sizes that did not correspond to
the size of a time slot. In general, the amount of data that fits into a time slot will be link-
dependent, making the Ad Hoc Probe estimate completely unreliable for TDMA-links. By
contrast, the algorithm provided reasonably accurate estimates for FDMA and CSMA links.

Ad Hoc Probe was able to capture the path capacity reduction in wireless multi-hop networks
sharing a single channel.

The algorithm is based on one-way measurements, thus not relying on a symmetric path capac-
ity.

In the case of packet fragmentation, Ad Hoc Probe outperformed the MGEN brute-force method,
and provided estimates that took into account the reduced capacity due to the extra overhead.

Ad Hoc Probe is not compatible with paths where the capacity is limited by a rate-limiter due
to the fact that these in most cases allow the forwarding of small bursts at a higher rate than the
limit.

60

3.4.2 Compliance to Quantitative Requirements

The quantitative requirements developed in section 2.3.2, were as follows:

• It must take less than 6 seconds to complete a measurement for packet size 100 bytes,
given that there is no packet loss during the measurement.

• Assuming that the path capacity estimator follows a Gaussian distribution, there must be
a 95 % chance that the estimation error is less than ±20 % of the true path capacity. I.e.,

−0.2 ≤ Bias{Ĉ}
C ≤ 0.2

∧ σĈ
C < 0.102− 0.5102 ·

∣∣∣Bias{Ĉ}
C

∣∣∣
• The estimation traffic layer 3 bit rate must not exceed 10 % of the path capacity.

Measurement time and intrusiveness The IP layer bit rate needed by Ad Hoc Probe is tightly
coupled to the measurement time. A fast measurement requires the sending of many packet-
pairs in a short period of time, thus increasing the chance of disturbing other flows. The results
presented in figure 3.9 show that— in this ideal scenario with no cross traffic —there is very
little to gain by increasing the number of probes probes from the minimum value of 10.

Since

Measurement time ≈ 2 · PSize
Probing rate

· Numprobes =
2 · 100 · 8

Probing rate
· 10 < 6 s

then
min{Probing rate} = 2 · 100 · 8

6
· 10 = 2.67 kbps

Additionally, since
Probing rate < 0.1C

then

min{C} = min
{

Probing rate
0.1

}
=

2.67
0.1

= 26.67 kbps (3.7)

The minimum requirement for path capacity given by equation (3.7) corresponds to requiring a
information bit rate in the order of†

Rb ≈
26.67

IPsec overhead ratio
=

26.67
0.60

= 44.4 kbps

for the case where the path capacity is equivalent to the path’s minimum link capacity. If the
path capacity is limited by a multi-hop wireless network, then the required information bit rate
of each wireless link in the chain needs to be approximately 90 kbps for two-hop, and 135 kbps
for three-hop. The one- and two-hop cases are within the range of what can be expected of
a medium-range tactical narrowband link dedicated to data traffic [24, 6], while three or more
hops requires wideband links.

†Using the entry for plaintext packet size 100 bytes in table B.1 and excluding layer 2 overhead

61

Accuracy By extending the use of the assumption that the accuracy is approximately the
same for 100 and 10 probes per measurement, the results in figures 3.3, 3.4 and 3.6 are valid
for evaluating whether the bias and variance for the CSMA and FDMA links meet the require-
ments. Figure 3.19 shows the maximum bias inferred from the calculated confidence intervals.
Furthermore, the observed standard deviation of the estimator and the accuracy requirements
are included. All curves are normalized to the true path capacity given by the results from the
MGEN brute-force method.

Ad Hoc Probe provided sufficient accuracy for all plaintext packet sizes when the path capacity
was limited by a single-hop 1 Mbps IEEE802.11b link. However, considering the calculations
in figure 3.10, the bias is expected to be increased for higher information bit rates. This leads to
the conclusion that the maximum bit rate for CSMA links using the IEEE802.11b Contention
Window size, should not be greater than 2 Mbps for Ad Hoc Probe to meet the accuracy re-
quirements.

The accuracy was insufficient for flows of 100 byte packets when the path was limited by an
IEEE802.3 10BASE-T link. Taking into account equation (3.2), this inaccuracy is expected to
be worse for higher path capacities. For the FDMA based satellite link, the accuracy met the
requirements, however the inaccuracy is expected to increase with higher capacities in this case
as well.

Finally, the accuracy of Ad Hoc probe was not acceptable when the number wireless hops
exceeded two in a multi-hop IEEE802.11b scenario.

3.4.3 Conclusive Remarks

Based on the experimental results and analysis provided in this chapter, it can be concluded that
Ad Hoc Probe meets the performance requirements in section 2.3 if:

a) the network consists of only CSMA- and/or FDMA-based links
b) the path capacity is not limited by a wireless chain of more than two hops
c) the information bit rate of the slowest link is at least 44.4 kbps in cases where the path

capacity is limited by the path’s minimum link capacity, and minimum 90 kbps per link if
the path capacity is limited by a two-hop wireless chain

d) the path capacity is not limited by a faster IEEE802.3-link than 10BASE-T, or a CSMA-link
operating at a information bit rate higher than 2 Mbps, using the IEEE802.11b minimum
Contention Window size

However these results are only valid in the case of no other traffic in the network. Clearly, this
is not the conditions in which an admission controller will operate. Therefore, the performance
of Ad Hoc Probe under more realistic conditions is treated in the next chapter.

62

100 200 300 400 500 600 700 800 900 1000 1100
0

0.05

0.1

0.15

0.2

0.25

0.3

Packet Size [bytes]

N
o

rm
a

liz
e

d
 B

ia
s
 /

 S
td

.
d

e
v

Measured Max. Bias

Bias Req.

Measured Std. dev.

Std. dev. Req.

(a) L: IEEE802.11b Rb = 1 Mbps

100 200 300 400 500 600 700 800 900 1000 1100
0

0.05

0.1

0.15

0.2

0.25

0.3

Packet Size [bytes]

N
o

rm
a

liz
e

d
 B

ia
s
 /

 S
td

.
d

e
v

Measured Max. Bias

Bias Req.

Measured Std. dev.

Std. dev. Req.

(b) L: IEEE802.3 10BASE-T Rb = 10 Mbps

Figure 3.19: Achieved and required performance for Ad Hoc Probe over various link technologies

63

100 200 300 400 500 600 700 800 900 1000 1100
0

0.05

0.1

0.15

0.2

0.25

0.3

Packet Size [bytes]

N
o

rm
a

liz
e

d
 B

ia
s
 /

 S
td

.
d

e
v

Measured Max. Bias

Bias Req.

Measured Std. dev.

Std. dev. Req.

(c) L: Commercial satellite modem Rb = 2048 kbps

1 2 3 4

0

0.5

1

1.5

Number of hops

N
o

rm
a

liz
e

d
 B

ia
s
 /

 S
td

.
d

e
v

Measured Max. Bias

Bias Req.

Measured Std. dev.

Std. dev. Req.

(d) L: Multihop IEEE802.11b Rb = 1 Mbps. Packet size 700 bytes. Note the scale.

Figure 3.19: Achieved and required performance for Ad Hoc Probe over various link technologies

64

Chapter 4

Estimating Path Capacity under Non-ideal
Conditions

When there was no other traffic present in the network, Ad Hoc Probe was found to achieve
an acceptable performance under certain constraints. In this chapter, the focus is on how much
these constraints change when other traffic sources are introduced. The performance is expected
to worsen, but the challenge is to find out if the algorithm still can be used for Measurement-
based Admission Control (MBAC), and, if so, under what constraints?

Stated otherwise, the goal of the experiments presented in this chapter was to evaluate the
validity of the following hypothesis:

Ad Hoc Probe [7] can provide path capacity estimates that comply to the re-
quirements in section 2.3, even when the network is under load from other traffic
sources.

The chapter follows the same structure as chapter 3, starting with a presentation of the exper-
imental set-up before continuing with the obtained results, the discussion of these and, lastly,
the chapter is concluded with an evaluation of the hypothesis based on the findings.

4.1 Experimental Set-Up

4.1.1 Test Bed Network Topologies

The experiments were conducted at Forsvarets Forskningsinstitutt (Norwegian Defence Re-
search Establishment) (FFI) and were based on the same test beds that were presented in chapter
3, with the added complexity of a cross traffic source and sink as shown in figures 4.1 and 4.2.

In the experiments using the topology in figure 4.1, the links L1 and L2 were varied in order to
create different scenarios.

Considering that two-hop configuration was the only one providing satisfactory results without
cross traffic, the topology illustrated in figure 4.2 was the only multi-hop topology evaluated in

65

Figure 4.1: Test bed topology for measuring the performance of Ad Hoc Probe with cross traffic (CT)
present in the path

Figure 4.2: Test bed topology for measuring the performance of Ad Hoc Probe over multi-hop topology
with cross traffic (CT) within the contention domain

66

these experiments. The transmission ranges that are indicated in the figure cannot be guaranteed
due to the unpredictable channel conditions in an office environment. Nevertheless, since all
the wireless transmitters were within two-hops, the Ready-to-send (RTS)/Clear-to-send (CTS)
mechanism most likely prevented the occurrence of on-air collisions.

4.1.2 Link Technologies

The following link technologies were included in the experiments

• IEEE802.3 [19]

• IEEE802.11b [20]

• Commercial satellite modem [10]

The link technologies where used in the same configuration as in chapter 3. Only Carrier Sense
Multiple Access (CSMA) and Frequency Division Multiple Access (FDMA) links were in-
cluded since Ad Hoc Probe was proven to be incompatible with Time Division Multiple Access
(TDMA) links in chapter 3.

4.1.3 Sofware Configuration

The software configuration was the same as in the experiments presented in chapter 3, with the
exception that no rate limiters where configured.

4.1.4 Ad Hoc Probe Parameters

Of the four Ad Hoc Probe parameters, only the number of probes per measurement, Numprobes
was varied in these experiments. This reduction was necessary since the introduction of a vary-
ing cross traffic increased the degree of freedom in the experiments, and thus one of the other
parameters had to be set constant in order to adapt the number of required measurements to
the thesis time frame. This raised the question of which parameter to set constant, and to what
value?

The cross traffic was expected to cause compression or expansion of the packet-pairs and thus
influence the estimator variance, but not the bias, which was expected to be the same as observed
in the ideal case of no cross traffic in chapter 3. Most likely, the variance would increase with
the packet size since small packet-pairs spend less time in the path than large packet-pairs, and
thus will have a lower probability for coinciding with other traffic [16]. However, taking into
consideration the effect of context-switch delays on the small packet-pairs, the variance would
not necessarily have its minimum at the smallest packet size. Nevertheless, packet sizes much
greater than 100 bytes were expected to result in a "worst-case" variance which could be used to
find the minimum number of probes per measurement that was necessary to meet the accuracy
requirements.

67

Having found that the packet size could be set constant, its value was yet to be decided. Consid-
ering that large packets have a greater Packet Error Rate (PER) in wireless networks [32], and
consequently, that content codecs should operate sending slices in separate, small packets [5],
it is a fair assumption that most non-best-effort flows use a packet size of less than 700 bytes,
and that it is reasonable to use this packet size to provide a worst-case performance.

4.1.5 Cross Traffic Generation

Cross Traffic was generated by Multi-Generator (MGEN) [18] using the script enclosed in
appendix B.6. The cross traffic was 1200 byte packets with Poisson-distributed interdepar-
ture times. The mean interdeparture time was set according to the desired layer 3 bit rate,
CrossRate. In most of the experiments, this rate was varied in steps of 20 % of the minimum
information bit rate on the path between the cross traffic generator and sink.

Ideally, the effect of the cross traffic packet size should have been evaluated by varying this
parameter in the experiments. However, it was yet again neccessery to reduce the degrees of
freedom to meet the thesis timeframe. Therefore, a worst-case behavior approach was chosen
in this case as well. A large cross traffic packet size was expected to result in a large estimator
variance, since such packets would have the greatest effect in terms of compression or expansion
of the packet-pairs [16].

4.1.6 Measurement Procedure

The measurements conducted during cross traffic followed the procedure given in algorithm
4.1.

Algorithm 4.1 Procedure for measurements with cross traffic
for CrossRate← 0 to 0.8Rbmin in steps of 0.2Rb do

Start Ad Hoc Probe packet-pair generator(PSize← 700 bytes:, Int� 2PSize/Rb)
Start MGEN cross traffic(packet size←1200 bytes, CrossRate)
for Numprobes← 10 to 100 in steps of 10 do

for i← 1 to 20 in steps of 1 do
Start Ad Hoc Probe packet-pair receiver(Numprobes , clock skew detection thresh←30)

end for
end for
Stop MGEN cross traffic generator
Stop Ad Hoc Probe packet-pair generator

end for

4.1.7 Measuring the True Path Capacity

The results from the MGEN-based brute-force method provided in chapter 3 were reused.

68

4.1.8 Summary

Tables 4.1 and 4.2 summarize the most important parameters that were introduced in the pre-
vious subsections. In addition, all the different values that were assigned to these parameters
during the experiments, are listed.

Table 4.1: Overview over parameters that were varied during the experiments

Parameter Description Values used in measurements

L1 Test bed link technologies

IEEE802.11b Rb = 1 Mbps

IEEE802.3 10BASE-T Rb = 10 Mbps

Commercial satellite modem Rb = 2048 kbps

L2
Test bed cross traffic link
technologies

IEEE802.11b Rb = 1 Mbps

IEEE802.3 10BASE-T Rb = 10 Mbps

CrossRate
Average layer 3 bit rate of
cross traffic

0-80 % of minimum Rb of path from cross traffic
generator to sink in steps of 20 %

Numprobes
Number of packet-pairs
per Ad Hoc Probe esti-
mate

10-100

Int
Ad Hoc Probe packet-pair
interdeparture time

0.1, 0.2 s

Table 4.2: Overview over the most relevant parameters that were kept constant during the experiments

Description Value used in measurements
Plaintext probe IP packet size 700 bytes (1400 bytes per packet-pair)
Largest allowed size of layer 2 payload in path (MTU) 1200 bytes
Distribution of interdeparture times between cross traffic packets Poisson
IP packet size of cross traffic 1200 bytes
Number of Ad Hoc Probe estimates per trial 20
Ad Hoc Probe packet-pair interdeparture time 0.1 s
Ad Hoc Probe clock skew correction threshold 30

69

4.2 Results

In the following subsections, the observed Ad Hoc Probe bias and standard deviation is pre-
sented normalized to the true path capacity given by the MGEN brute force estimate. The plots
also show the accuracy requirements that were derived in section 2.3:

−0.2 ≤ Bias{Ĉ}
C

≤ 0.2
∧ σĈ

C
< 0.102− 0.5102 ·

∣∣∣∣∣Bias{Ĉ}
C

∣∣∣∣∣ (4.1)

E{Ĉ} was unknown, and had to be estimated. Therefore, 95 % confidence intervals are pre-
sented, based on the sample mean and standard error of 20 observations of Ĉ and the Student-t
distribution with 19 degrees of freedom. In order to consider the worst-case performance, the
presented results are the maximum values of these confidence intervals.

Since the only one sample was taken of the standard deviation, and the distribution of Ĉ is
unknown , a confidence interval is not provided for the standard deviation estimate. However,
the estimate is calculated by taking the square root of an unbiased estimator of the variance of
Ĉ, so it is expected to be close to the true value.

4.2.1 IEEE802.11b Contention

Single-hop Figure 4.3 shows the Ad Hoc Probe performance where L1 and L2 in figure 4.1
were IEEE802.11b-links. The cross traffic was sent on the same wireless channel as the packet-
pairs, and the cross traffic generator and the Ad Hoc Probe packet-pair generator were within
transmission range of each other. Table 4.3 lists the test bed configuration. The MGEN brute
force path capacity estimate for packet size 700 bytes was 699 kbps.

Table 4.3: Configuration for results in figure 4.3

Parameter Values used in measure-
ments

L1 IEEE802.11b Rb = 1 Mbps
L2 IEEE802.11b Rb = 1 Mbps

CrossRate
0-80 % of 1 Mbps in steps of
20 %

Numprobes 10-100

Ad Hoc probe was well within the performance requirements for all cross traffic intensities and
number of probes per measurement. In fact, Ad Hoc Probe showed the same accuracy as when
there was no other traffic in the network†.

†See the results for packet size 700 bytes in section 3.4.1

70

10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of probes per measurement

N
o

rm
a

liz
e

d
 b

ia
s

No CT

0.2 Mbps CT

0.4 Mbps CT

0.6 Mbps CT

0.8 Mbps CT

Bias req.

(a) Poisson cross traffic - bias

10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

Number of probes per measurement

N
o

rm
a

liz
e

d
 s

t.
 d

e
v

No CT

No CT req.

0.2 Mbps CT

0.2 Mbps CT req.

0.4 Mbps CT

0.4 Mbps CT req.

0.6 Mbps CT

0.6 Mbps CT req.

0.8 Mbps CT

0.8 Mbps CT req.

(b) Poisson cross traffic - standard deviation

Figure 4.3: Achieved and required performance for Ad Hoc Probe over IEEE802.11b with cross traffic
(CT) on the same channel

71

Two-hop Figure 4.4 shows Ad Hoc Probe’s performance for the two-hop scenario illustrated
in figure 4.2. The cross traffic was sent on the same channel as the Ad Hoc Probe traffic.
Considering the that the Theoretical Maximum Capacity (TMC) of the path was expected to be
half of the single-hop case, the cross traffic intensity was varied in the interval 0.1-0.4 Mbps
in stead of steps of 20 % of the minimum link capacity. The MGEN brute force path capacity
estimate for packet size 700 bytes was 305 kbps.

Table 4.4: Configuration for results in figure 4.4

Parameter Values used in measure-
ments

L
IEEE802.11b Rb = 1 Mbps
(for all links)

CrossRate
0.1-0.4 Mbps in steps of 0.1
Mbps

Numprobes 10-100

With 0.1 Mbps Poisson cross traffic, the accuracy requirements were met with very little margin
for 30 or more probes per measurement. In the case of 0.2 Mbps cross traffic, Ad Hoc Probe
needed 90 probes per measurements to perform within the requirements.

The bias at 0.3 Mbps cross traffic was close the requirement, while in the 0.4 Mbps case, the
estimator was biased to overestimate the path capacity. However, the standard deviation always
exceeded the requirements‡ for both these cases.

4.2.2 Pure IEEE802.3

In this scenario, the path capacity was limited by IEEE802.3 10 Mbps links. The results are
shown in figure 4.3 and the specific test bed configuration are given in table 4.5. The MGEN
brute force path capacity estimate for packet size 700 bytes was 8.76 Mbps in this case.

Table 4.5: Configuration for results in figure 4.5

Parameter Values used in measure-
ments

L1
IEEE802.3 10BASE-T
Rb = 10 Mbps

L2
IEEE802.3 10BASE-T
Rb = 10 Mbps

CrossRate
0-80 % of 10 Mbps in steps
of 20 %

Numprobes 10-100

Ad Hoc Probe complied to the accuracy requirements except for the case of 10 probes per
measurement with 8 Mbps cross traffic, where the standard deviation exceeded the required

‡According to equation 4.1, the std. dev. requirement is ~0 if the bias requirement is barely satisfied

72

10 20 30 40 50 60 70 80 90 100
−0.5

0

0.5

1

1.5

Number of probes per measurement

N
o

rm
a

liz
e

d
 b

ia
s

No CT

0.1 Mbps CT

0.2 Mbps CT

0.3 Mbps CT

0.4 Mbps CT

Bias req.

(a) Poisson cross traffic - bias

10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Number of probes per measurement

N
o

rm
a

liz
e

d
 s

t.
 d

e
v

No CT

No CT req.

0.1 Mbps CT

0.1 Mbps CT req.

0.2 Mbps CT

0.2 Mbps CT req.

0.3 Mbps CT

0.3 Mbps CT req.

0.4 Mbps CT

0.4 Mbps CT req.

(b) Poisson cross traffic - standard deviation

Figure 4.4: Achieved and required performance for Ad Hoc Probe over two-hop IEEE802.11b with cross
traffic (CT) on the same channel

73

10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of probes per measurement

N
o

rm
a

liz
e

d
 b

ia
s

No CT

2 Mbps CT

4 Mbps CT

6 Mbps CT

8 Mbps CT

Bias req.

(a) Poisson cross traffic - bias

10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

Number of probes per measurement

N
o

rm
a

liz
e

d
 s

t.
 d

e
v

No CT

No CT req.

2 Mbps CT

2 Mbps CT req.

4 Mbps CT

4 Mbps CT req.

6 Mbps CT

6 Mbps CT req.

8 Mbps CT

8 Mbps CT req.

(b) Poisson cross traffic - standard deviation

Figure 4.5: Achieved and required performance for Ad Hoc Probe over IEEE802.3 path with cross traffic
(CT)

74

maximum value. The standard deviation quickly decayed as the number of probes were in-
creased.

4.2.3 Satellite Link

Figure 4.6 shows the observed Ad Hoc Probe accuracy when the path was limited by a satellite
link. The test bed configuration details are listed in table 4.6. The MGEN brute force path
capacity estimate for packet size 700 bytes was 1.8 Mbps.

Table 4.6: Configuration for results in figure 4.6

Parameter Values used in measure-
ments

L1
Commercial satellite modem
Rb = 2048 kbps

L2
IEEE802.3 10BASE-T
Rb = 10 Mbps

CrossRate
0-80 % of 10 Mbps in steps
of 20 %

Numprobes 10-100

The Ad Hoc Probe bias was within the requirements in all cases, while the standard deviation
was within the requirements for 20 or more probes per measurement.

75

10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of probes per measurement

N
o

rm
a

liz
e

d
 b

ia
s

No CT

2 Mbps CT

4 Mbps CT

6 Mbps CT

8 Mbps CT

Bias req.

(a) Poisson cross traffic - bias

10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

Number of probes per measurement

N
o

rm
a

liz
e

d
 s

t.
 d

e
v

No CT

No CT req.

2 Mbps CT

2 Mbps CT req.

4 Mbps CT

4 Mbps CT req.

6 Mbps CT

6 Mbps CT req.

8 Mbps CT

8 Mbps CT req.

(b) Poisson cross traffic - standard deviation

Figure 4.6: Achieved and required performance for Ad Hoc Probe over satellite link path with cross
traffic (CT)

76

4.3 Discussion

4.3.1 Accuracy with CSMA Contention

Capacity limited by single-hop The results from the single-hop case in figure 4.3 shows that
Ad Hoc Probe performed remarkably well in this scenario. One might have expected that the
performance decreased as the cross traffic intensity increased, leaving less and less “room” for
the probes. However, the accuracy was nearly unaffected by the amount of cross traffic that was
generated.

When the cross traffic intensity was high, Ad Hoc Probe needed to win the contention two times
in a row to perform with the same accuracy as in the case of no cross traffic. In other words, the
packet-pair sender needed to consecutively draw two backoff times whose sum was less than
the contending node’s backoff time counter at the time of the drawings. Judging from these
results, the probability for this to occur within 10 attempts is very high.

Capacity limited by multi-hop As shown in figure 4.4, Ad Hoc Probe’s performance was
not as impressing when the path capacity was limited by a two-hop CSMA-link. It is safe to
conclude that the algorithm’s accuracy was strongly correlated to the cross traffic intensity. As
long as the combined rate of the cross traffic and probes† stayed under the path capacity of
300 kbps, the standard deviation decreased as the number of probes increased and the estimates
converged to the same accuracy as in the case of no cross traffic. By contrast, the estimator
accuracy was severely reduced when the network was overloaded.

Why was the performance so degraded with the introduction of an additional hop? Much like
the single-hop scenario, Ad Hoc Probe always had to contend for medium access when the col-
lective load on the network exceeded the capacity. To get the correct estimate, it was necessary
to gain access to the medium four times, in this specific order:

1. first packet first hop (always the case)
2. first packet second hop
3. second packet first hop
4. second packet second hop (always the case)

where it is especially important that the no other nodes win the contention between steps 2
to 3 and 3 to 4 as this would cause packet-pair expansion and consequently underestimation.
At step 2, the first packet also has to contend with the first transmission of the second packet,
introducing the possibility of interchanging step 2 and 3— a case which Ad Hoc Probe fails to
detect unless the clock skew correction algorithm has been triggered — with the result that the
minimum One-Way Delay (OWD) sum packet-pair is very likely to be compressed. In sum,
Ad Hoc Probe dependent on a very unlikely sequence of events when every medium access
was based on contention, thus resulting in the poor performance observed for high cross traffic
intensities.

In the case of 0.3 Mbps cross traffic, the results indicate that the minimum OWD sum packet-
pair was equally likely to suffer from packet expansion as compression since the bias was close

†The probing rate was ~120 kbps

77

to zero in many cases. With 0.2 and 0.4 Mbps cross traffic, compression of the minimum OWD
sum packet-pair appears to have been the most likely case considering the large positive bias
observed in the majority of the measurements.

4.3.2 Accuracy when Sharing a FIFO Queue

Capacity limited by IEEE802.3 Figure 4.5 shows that Ad Hoc Probe performed solidly over
the IEEE802.3 limited path. Nevertheless, there was a deviating behavior at 10 probes per
measurement during 8 Mbps cross traffic. Under these conditions, Ad Hoc Probe varied too
much to be reliable and, on average, overestimated the path capacity.

This behavior was unexpected since there was no cross traffic destined for the red network
which could have caused packet-pair compression at the second router. Again, the most likely
reason behind this error is the context switch delay, which is the time between the arrival of a
packet at the receiver’s network interface and the timestamping that is first performed when the
user space receiver application is switched into execution.

From chapter 3, the bias imposed by context switching is expected to be according to

Bias{Ĉ}
C

=
PSize

PSize+ C (E{e2} − E{e1})
− 1 (4.2)

where e1 and e2 are the random time measurement errors caused by context switching. In this
case, a bias of 10 % of the 8.76 Mbps path capacity was observed. Based on equation (4.2), this
would correspond to

E{e2} − E{e1} =
PSize

C

(
1

Bias{Ĉ}/C + 1
− 1

)

=
700 · 8
8.76e6

(
1

0.10 + 1
− 1
)

= −58 µs

which matches the maximum value of ~55 µs that was observed in the case of no cross traffic
in figure 3.12.

Why is this not a problem for the other cross traffic intensities? The answer is that in the other
cases, there most likely was a larger supply of packet-pairs that did not experience delay in the
shared First In, First Out (FIFO)-queue, and that one of these were likely to obtain the same
minimum context switch delay as in the case of no cross traffic.

In contrast, when the cross traffic intensity was high, more packet-pairs were likely to experi-
ence delay† in the FIFO-queue, thus the number of “good” packet-pairs was reduced, making it
more likely that a packet-pair with a severe‡ context switch delay was the minimum OWD sum
sample used to calculate the path capacity.

† The time needed to transmit a 1200 bytes packet on a 10 Mbps link is~1 ms
‡ In the order of tens of microseconds, thus a great deal less than what is imposed on a packet-pair through

queuing behind a 1200 byte packet

78

Capacity limited by satellite link The satellite link scenario satisfied the measurement re-
quirements for 20 or more probes per measurement for all cross traffic cases. As shown in
figure 4.6, the deviating cases were for the two highest cross traffic intensities, 6 and 8 Mbps,
where the standard deviations exceeded the requirement for 10 probes per measurement. The
bias curve shows that the estimator had the potential to overestimate the path capacity in both
these cases, and this overestimation was larger than in the case of the pure IEEE802.3 path.

The context switch error’s dependence on the true path capacity C makes it very unlikely that
it should cause greater overestimation than in the case of a IEEE802.3 path with a capacity of
8.76 Mbps. Indeed, the bias curve in figure 4.6 require that the measurement error would have
to be

E{e2} − E{e1} =
PSize

C

(
1

Bias{Ĉ}/C + 1
− 1

)

=
700 · 8
1.8e6

(
1

0.15 + 1
− 1
)

= −405 µs

which is far more than the maximum error observed in chapter 3, indicating that the context
switch delay is unlikely to be the only source of error here.

Compared to the pure IEEE802.3 scenario, the packet-pairs were far more "stretched out" time,
leading to an increase in the probability of that the second packet in a pair was queued under
the same cross traffic conditions. Therefore, the number of unqueued packet-pairs arriving at
the receiver was likely to be less in this case. When using only 10 probes per measurement,
the results suggest that there were many cases where all packet-pairs in a measurement had
experienced some degree of either expansion or compression, and consequently the standard
deviation was high.

Since the minimum OWD sum packet-pair was equally likely to be compressed or expanded,
one might have expected that the bias was centered around zero, However, by considering the
fact that lim∆t→0

PSize
∆t = ∞, the observed bias is a natural result of that the packet-pair

dispersion model is more sensitive to severe compression errors than expansion.

79

4.4 Evaluation

In this section the validity constraints of the hypothesis stated in the beginning of the chapter
will be evaluated based on the conclusions that can be drawn in the light of the performed
experiments and discussions.

Hypothesis

Ad Hoc Probe [7] can provide path capacity estimates that comply to the re-
quirements in section 2.3, even when the network is under load from other traffic
sources.

Validity constraints - ideal conditions When there was no other traffic sources in the net-
work, Ad Hoc Probe was found to satisfy the performance requirements if†:

a) the network consisted only of CSMA- and/or FDMA-based links
b) the path capacity was not limited by a wireless chain of more than two hops
c) the information bit rate of the slowest link was at least 44.4 kbps in cases where the path

capacity was limited by the path’s minimum link capacity, and minimum 90 kbps per link if
the path capacity was limited by a two-hop wireless chain

d) the path capacity was not limited by a faster IEEE802.3 link than 10BASE-T, or a CSMA-
link operating at a information bit rate higher than 2 Mbps, using the IEEE802.11b Con-
tention Window size.

The question is how much more stringent these constraints became when there was other traffic
sources in the network.

4.4.1 Modification of the Validity Constraints

MAC technique Restriction a) from the list above can be left unmodified since Ad Hoc Probe
still provided usable results for both CSMA- and FDMA-based links.

Measurement time and intrusiveness Ad Hoc Probe provided very impressing results in the
IEEE802.11b single-hop topology when contending with another node for medium access. The
same accuracy as in the case of no cross traffic was observed. For two-hops, 90 probes per
measurement were necessary to satisfy the accuracy requirements when the the network was on
the verge of congestion, while 30 probes per measurement sufficed when the load was about 80
% of what the network could handle.

In the cases of IEEE802.3 and the commercial FDMA satellite link, the required number of
probes per measurement were 20, and the same performance as in the case of no cross traffic
was observed for 30 or more probes per measurement.

†See section 3.4.3

80

By accepting that the requirements are not strictly met for the two-hop topology when the
network load is very high, these results suggest that 30 probes per measurement will result in
a performance that is equivalent to the case of no cross traffic. This result makes it possible to
calculate a minimum required probing rate based on the requirements in section 2.3, where it is
stated that the measurement time for a flow of 100 byte packets must not exceed 6 seconds.

min{Probing rate} = 2 · PSize
max{Measurement time} ·min{Numprobes}

=
2 · 100 · 8

6
· 30

= 8 kbps

Furthermore, since the probing rate was required to at most be equal to 10 % of the path capacity,
a requirement for a minimum path capacity can be found.

min{C} = min{Probing rate}
0.1

= 80 kbps

Taking into account the IPsec overhead ratio of 0.68 for 100 byte packets, a lower bound on the
information bit rate of the slowest link in the network can be derived for the single-hop case.

min{Rb} =
min{C}}

0.68
= 117.6 kbps

For the two-hop case, double the information bit rate is needed on the individual links.

Accuracy Since Ad Hoc Probe converged to the same performance as the no cross traffic
case, there is no reason to modify the constraint d) in the list.

4.4.2 Conclusive Remarks

Based on the experimental results and analysis provided in this chapter, it can be concluded that
Ad Hoc Probe meets the performance requirements in section 2.2 if:

a) the network consists only of CSMA- and/or FDMA-based links
b) the path capacity is not limited by a wireless chain of more than two hops
c) the information bit rate of the slowest link is at least 117 kbps in cases where the path

capacity is limited by the path’s minimum link capacity, and minimum 234 kbps per link if
the path capacity is limited by a two-hop wireless chain

d) the path capacity is not limited by a faster IEEE802.3 link than 10BASE-T, or a CSMA-link
operating at a information bit rate higher than 2 Mbps, using the IEEE802.11b minimum
Contention Window size.

81

The minimum requirements for information bit rate are very unlikely to be achieved in nar-
rowband communication links [24]. If MBAC is to be deployed in a scenario where such low-
capacity links are part of the black network, the probing rate has to be lowered in order to avoid
congesting the network with probing traffic. This would increase the measurement time to way
above the requirement of 6 seconds.

However, if the black network is based on short-to-medium range wideband communication
links (e.g., [46]), the constraints are not "showstoppers", and Ad Hoc Probe can successfully be
implemented as part of a measurement-based admission controller.

82

Chapter 5

Conclusions and Future Work

The aim of this thesis was to gain a deeper understanding of how the path capacity can be
estimated in a lightweight manner, and further to evaluate if current state-of-the-art estimation
techniques could provide satisfactory performance for Measurement-based Admission Control
(MBAC) in military IP networks.

5.1 Conclusions

During the course of this thesis, the problem of finding a satisfactory path capacity estimation
algorithm has been dealt with thoroughly. A set of requirements for a path capacity estimator
in a military context was derived, after which a candidate estimation algorithm, Ad Hoc Probe
[7], was selected for in-depth evaluation. The selection was based on a literature review of
estimation techniques and current state-of-the-art algorithms.

The performance of Ad Hoc Probe was analyzed by conducting experiments in a test bed. Dur-
ing the analysis of these results, several insights into the performance limitations of the algo-
rithm were gained. By filtering queued packet-pairs through the use of the minimum One-Way
Delay (OWD) sum approach, the algorithm failed to capture the average behavior of unqueued
packet-pairs, resulting in overestimation in cases where the path capacity was limited by Carrier
Sense Multiple Access (CSMA)-based links.

Furthermore, the operating system descheduled the receiver application between the arrival of
packet-pairs, causing time measurement errors that especially degraded the performance for
small packet sizes in combination with a true path capacity in the order of several Mbps.

Ad Hoc Probe was incompatible with Time Division Multiple Access (TDMA)-based links. If
both packets in a pair fitted into a single time slot, there was no correlation between the packet
dispersion and the path capacity. If the packet-pair could not fit into a single time slot, there was
correlation, but the estimates were biased to severely over- or underestimate the path capacity
for packet sizes that did not correspond exactly to the size of a time slot. In general, the amount
of data that fits into a time slot will be link-dependent, making the Ad Hoc Probe estimator unfit
for use in networks where the path capacity is limited by TDMA-based links.

83

Ad Hoc Probe failed to detect the presence of a rate-limiter, since the packet-pairs were too short
to exceed the burst size that was allowed to pass through unshaped. By contrast, in the case of
IP fragmentation along the path, Ad Hoc Probe performed much better than the traditional
brute-force method, capturing the effect of the added overhead.

The results from the wireless multi-hop experiments showed that the Ad Hoc Probe algorithm
failed to filter the packet-pairs that had been scheduled for transfer in a non-ideal order, causing
it to overestimate the path capacity for Carrier Sense Multiple Access Collision Avoidance
(CSMA/CA)-based multi-hop networks with more than three hops.

When cross traffic was introduced into the experiments, the number of packet-pairs needed to
obtain an unqueued packet-pair increased. Ad Hoc Probe converged to the same performance as
in the case of no cross traffic when the number of packet-pairs per measurement was increased
to 30.

The evaluation of these findings versus the set of requirements resulted in the conclusion that
Ad Hoc Probe can be used as a path capacity estimator for MBAC in a military IP network if:

a) the network consists only of CSMA- and/or Frequency Division Multiple Access (FDMA)-
based links

b) the path capacity is not limited by a wireless chain of more than two hops

c) the information bit rate of the slowest link is at least 117 kbps in cases where the path
capacity is limited by the path’s minimum link capacity, and minimum 234 kbps per link if
the path capacity is limited by a two-hop wireless chain

d) the path capacity is not limited by a faster IEEE802.3-link than 10BASE-T, or a CSMA-link
operating at a information bit rate higher than 2 Mbps, using the IEEE802.11b minimum
Contention Window size.

Based on these insights and results, it is fair to conclude that the aim of the thesis was achieved.

84

5.2 Future Work

5.2.1 Implementing the Measurement-based Admission Controller

Although a candidate algorithm for path capacity estimation has been found, the job of imple-
menting it as part of an admission controller still remains. Even though the discussions in this
thesis provide some direction in the design choices that must be made, there are still unanswered
questions. Among these are:

• How long is the lifetime of a single path capacity measurement?
• How to deal with drops in the path capacity. Is preemption the responsibility of the

admission controller or user application?
• Where in the red network should the admission controller be situated?

5.2.2 Estimation of Other Parameters

The path capacity is not the ideal parameter for MBAC. The “holy grail” is the available ca-
pacity. Moreover, other parameters such as propagation delay and jitter are also of interest for
MBAC.

5.2.3 Time-Division Multiple Access

The challenge of estimating the capacity of paths limited by TDMA-based links remains un-
solved. Packet-pair dispersion analysis cannot be used alone due to the risk of not “filling” more
than a single time slot. It would be interesting to evaluate whether or not minimum OWD sum
packet-trains could be used a supplement to the packet-pairs for detecting and calculating the
capacity of TDMA-based links.

5.2.4 Increase the Complexity

The results obtained in this thesis are based on a series of assumptions. Among these, the most
important are that:

• all packets in a flow follows the same path through the network
• all flows were unicast, and not multi- or broadcast
• within each Differentiated Services (DiffServ)-class, the transmission queues are First In,

First Out (FIFO)
• the path capacity does not decrease during the time it takes to complete an estimation

Removing one or more these preconditions is suggested for future work. This will increase
the complexity of the path capacity estimation problem, and Ad Hoc Probe will not necessarily
perform as well.

85

5.2.5 Evaluate the Performance of a One-Way variant of Allbest

When selecting an algorithm for in-depth analysis, Allbest [14] was found to be promising, but
Ad Hoc Probe was chosen instead since a lot of time would be saved by not having to implement
the estimation algorithm from scratch.

However, during the last days of the thesis work, there was found time to modify the Ad Hoc
Probe source code into a one-way variant of Allbest. Moreover, the time stamping at the receiver
was moved from user to kernel space by using the SO_TIMESTAMP socket option. Some
preliminary results from this implementation can be found in appendix C. Unfortunately there
was no time for further evaluation of this implementation, and this is therefore suggested as
future work.

86

Bibliography

[1] M.A. Alzate, M.P. Salamanca, N.M. Pena, and M.A. Labrador. End-to-end mean band-
width estimation as a function of packet length in mobile ad hoc networks. In Computers
and Communications, 2007. ISCC 2007. 12th IEEE Symposium on, pages 415 –420, july
2007.

[2] M.A. Alzate, M.P. Salamanca, N.M. Pena, and M.A. Labrador. End-to-end mean band-
width estimation as a function of packet length in mobile ad hoc networks. In Computers
and Communications, 2007. ISCC 2007. 12th IEEE Symposium on, pages 415 –420, july
2007.

[3] Steven M. Bellovin. A best-case network performance model. Technical report, AT&T
Bell Laboratories, February 1992.

[4] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An Architecture for
Differentiated Service. RFC 2475 (Informational), December 1998. Updated by RFC
3260.

[5] M. Brown, D. Bushmitch, K. Kerpez, D. Waring, and Y. Wang. Low-bit rate video codec
parameter evaluation and optimization. In Military Communications Conference, 2009.
MILCOM 2009. IEEE, pages 1–20. IEEE, 2009.

[6] E. Casini, M. Street, P. Vigneron, and R. Barfoot. SDR-Ready Standardized Waveforms
for Tactical VHF and UHF Communications for NATO. In Information Systems and Tech-
nology Panel (IST) Symposium, 2010.

[7] Ling-Jyh Chen, Tony Sun, Guang Yang, M. Sanadidi, and Mario Gerla. AdHoc Probe:
end-to-end capacity probing in wireless ad hoc networks. Wireless Networks, 15:111–
126, 2009. 10.1007/s11276-007-0047-4.

[8] P. Chimento and J. Ishac. Defining Network Capacity. RFC 5136 (Informational), Febru-
ary 2008.

[9] Everaldo Coelho, YellowIcon, George Shuklin, and Ford prefect. Respectively creators of
Laptop icon (License: LGPL v2.1), Router icon (License: GFDL v1.2) and IPSec device
icon (License: CC-BY). http://commons.wikimedia.org.

[10] Comtech EF Data Corporation. DMD20 Universal Satellite Modem. http://www.

comtechefdata.com/files/datasheets/ds-DMD20.pdf.

87

http://commons.wikimedia.org
http://www.comtechefdata.com/files/datasheets/ds-DMD20.pdf
http://www.comtechefdata.com/files/datasheets/ds-DMD20.pdf

[11] Harris Corporation. RF-7800S Secure Personal Radio. http://rf.harris.com/

capabilities/tactical-radios-networking/rf-7800s/default.

asp.

[12] B. Davie, A. Charny, J.C.R. Bennet, K. Benson, J.Y. Le Boudec, W. Courtney, S. Davari,
V. Firoiu, and D. Stiliadis. An Expedited Forwarding PHB (Per-Hop Behavior). RFC
3246 (Proposed Standard), March 2002.

[13] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6) Specification. RFC 2460
(Draft Standard), December 1998. Updated by RFCs 5095, 5722, 5871, 6437.

[14] A. Delphinanto, T. Koonen, Shuang Zhang, and F. den Hartog. Path capacity estimation in
heterogeneous, best-effort, small-scale ip networks. In Local Computer Networks (LCN),
2010 IEEE 35th Conference on, pages 1076 –1083, oct. 2010.

[15] C. Dovrolis, P. Ramanathan, and D. Moore. What do packet dispersion techniques mea-
sure? In INFOCOM 2001. Twentieth Annual Joint Conference of the IEEE Computer and
Communications Societies. Proceedings. IEEE, volume 2, pages 905 –914 vol.2, 2001.

[16] C. Dovrolis, P. Ramanathan, and D. Moore. Packet-dispersion techniques and a capacity-
estimation methodology. Networking, IEEE/ACM Transactions on, 12(6):963 – 977, dec.
2004.

[17] Allen B. Downey. Using pathchar to estimate internet link characteristics. SIGCOMM
Comput. Commun. Rev., 29(4):241–250, August 1999.

[18] Naval Research Laboratory (NRL) PROTocol Engineering Advanced Networking (PRO-
TEAN) Research Group. Multi-Generator (MGEN). http://cs.itd.nrl.navy.

mil/work/mgen/.

[19] IEEE Standard for Information Technology–Telecommunications and Information Ex-
change Between Systems–Local and Metropolitan Area Networks–Specific Requirements
Part 3: Carrier Sense Multiple Access With Collision Detection (CSMA/CD) Access
Method and Physical Layer Specifications - Section One. IEEE Std 802.3-2008 (Revi-
sion of IEEE Std 802.3-2005), pages 49,56 and 91, 26 2008.

[20] IEEE Standard for Information Technology - Telecommunications and Information Ex-
change Between Systems - Local and Metropolitan Area Networks - Specific Require-
ments - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications. IEEE Std 802.11-2007 (Revision of IEEE Std 802.11-1999), page 270 and
547, 12 2007.

[21] Vyatta Inc. Vyatta Core software (VC). http://www.vyatta.org.

[22] Network grade of service parameters and target values for circuit-switched services in the
evolving ISDN. ITU-T Recommendation E.721, page 5, 1999.

[23] Van Jacobson. Pathchar: A tool to infer characteristics of internet paths. ftp://ftp.
ee.lbl.gov/pathchar/, April 1997.

88

http://rf.harris.com/capabilities/tactical-radios-networking/rf-7800s/default.asp
http://rf.harris.com/capabilities/tactical-radios-networking/rf-7800s/default.asp
http://rf.harris.com/capabilities/tactical-radios-networking/rf-7800s/default.asp
http://cs.itd.nrl.navy.mil/work/mgen/
http://cs.itd.nrl.navy.mil/work/mgen/
http://www.vyatta.org
ftp://ftp.ee.lbl.gov/pathchar/
ftp://ftp.ee.lbl.gov/pathchar/

[24] V. Jodalen, B. Solberg, and S. Haavik. NATO Narrowband Waveform (NBWF)-overview
of link layer design. Technical Report 2009/01894, Forsvarets Forskningsinstitutt (Nor-
wegian Defence Research Establishment), 2011.

[25] A. Johnsson, B. Melander, and M. Björkman. Diettopp: A first implementation and evalu-
ation of a simplified bandwidth measurement method. In Second Swedish National Com-
puter Networking Workshop, page 5, 2004.

[26] Jangeun Jun, P. Peddabachagari, and M. Sichitiu. Theoretical maximum throughput of
ieee 802.11 and its applications. In Network Computing and Applications, 2003. NCA
2003. Second IEEE International Symposium on, pages 249 – 256, april 2003.

[27] R. Kapoor, L.J. Chen, MY Sanadidi, and M. Gerla. Accuracy of link capacity estimates
using passive and active approaches with CapProbe. In Computers and Communica-
tions, 2004. Proceedings. ISCC 2004. Ninth International Symposium on, volume 2, pages
1085–1090. IEEE, 2004.

[28] Rohit Kapoor, Ling-Jyh Chen, Li Lao, Mario Gerla, and M. Y. Sanadidi. Capprobe: a
simple and accurate capacity estimation technique. SIGCOMM Comput. Commun. Rev.,
34:67–78, August 2004.

[29] S. Kent. IP Encapsulating Security Payload (ESP). RFC 4303 (Proposed Standard), De-
cember 2005.

[30] UCLA Network Research Laboratory. Website for downloading CapProbe and Ad Hoc
Probe. http://www.cs.ucla.edu/~nrl/CapProbe/download.htm.

[31] Karthik Lakshminarayanan, Venkata N. Padmanabhan, and Jitendra Padhye. Bandwidth
estimation in broadband access networks. In Proceedings of the 4th ACM SIGCOMM
conference on Internet measurement, IMC ’04, pages 314–321, New York, NY, USA,
2004. ACM.

[32] P. Lettieri and M.B. Srivastava. Adaptive frame length control for improving wireless link
throughput, range, and energy efficiency. In INFOCOM ’98. Seventeenth Annual Joint
Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE,
volume 2, pages 564 –571 vol.2, mar-2 apr 1998.

[33] Chuanpeng Li, Chen Ding, and Kai Shen. Quantifying the cost of context switch. In
Proceedings of the 2007 workshop on Experimental computer science, ExpCS ’07, New
York, NY, USA, 2007. ACM.

[34] Jinyang Li, Charles Blake, Douglas S.J. De Couto, Hu Imm Lee, and Robert Morris.
Capacity of Ad Hoc wireless networks. In Proceedings of the 7th annual international
conference on Mobile computing and networking, MobiCom ’01, pages 61–69, New York,
NY, USA, 2001. ACM.

[35] Canonical Ltd. Ubuntu operating system. http://www.ubuntu.com.

89

http://www.cs.ucla.edu/~nrl/CapProbe/download.htm
http://www.ubuntu.com

[36] B.A. Mah. Pchar: Child of pathchar. In DOE NGI testbed workshop, berkeley, ca, vol-
ume 21, 1999.

[37] B. Melander, M. Bjorkman, and P. Gunningberg. A new end-to-end probing and analysis
method for estimating bandwidth bottlenecks. In Global Telecommunications Conference,
2000. GLOBECOM ’00. IEEE, volume 1, pages 415 –420 vol.1, 2000.

[38] NATO. What is NNEC? http://nnec.act.nato.int/Test/NNEC_

WhatisNNEC_TextOverview.pdf. Retrieved 26. Jan 2012.

[39] Alfa Networks. AWUS036NEH Wireless USB adapter. http://www.alfa.com.

tw/in/front/bin/ptdetail.phtml?Part=AWUS036NEH&Category=

105483.

[40] K. Nichols, S. Blake, F. Baker, and D. Black. Definition of the Differentiated Services
Field (DS Field) in the IPv4 and IPv6 Headers. RFC 2474 (Proposed Standard), December
1998. Updated by RFCs 3168, 3260.

[41] J. Postel. Internet Control Message Protocol. RFC 792 (Standard), September 1981.
Updated by RFCs 950, 4884.

[42] J. Postel. Internet Protocol. RFC 791 (Standard), September 1981. Updated by RFC 1349.

[43] R. Prasad, C. Dovrolis, M. Murray, and KC Claffy. Bandwidth estimation: metrics, mea-
surement techniques, and tools. Network, IEEE, 17(6):27–35, 2003.

[44] A. Shipalov, C.D. Guerrero, M.A. Labrador, and M. Alzate. On the implementation of a
capacity estimator for wireless ad hoc networks. In Southeastcon, 2009. SOUTHEAST-
CON ’09. IEEE, pages 242 –247, march 2009.

[45] B. Sklar. Digital communications: fundamentals and applications. Prentice Hall Com-
munications Engineering and Emerging Technologies Series. Prentice-Hall PTR, 2001.

[46] Kongsberg Defence Systems. TacLAN. http://www.kongsberg.com/en/kds/
products/defencecommunications/taclan.

[47] L. Zhang, Z. Liu, and C. Honghui Xia. Clock synchronization algorithms for network
measurements. In INFOCOM 2002. Twenty-First Annual Joint Conference of the IEEE
Computer and Communications Societies. Proceedings. IEEE, volume 1, pages 160–169.
IEEE, 2002.

90

http://nnec.act.nato.int/Test/NNEC_WhatisNNEC_TextOverview.pdf
http://nnec.act.nato.int/Test/NNEC_WhatisNNEC_TextOverview.pdf
http://www.alfa.com.tw/in/front/bin/ptdetail.phtml?Part=AWUS036NEH&Category=105483
http://www.alfa.com.tw/in/front/bin/ptdetail.phtml?Part=AWUS036NEH&Category=105483
http://www.alfa.com.tw/in/front/bin/ptdetail.phtml?Part=AWUS036NEH&Category=105483
http://www.kongsberg.com/en/kds/products/defencecommunications/taclan
http://www.kongsberg.com/en/kds/products/defencecommunications/taclan

Appendices

91

Appendix A

Theoretical Maximum Capacity

A.1 The TMC of IEEE802.11b

The following relation can be used to find the Theoretical Maximum Capacity (TMC) of IEEE802.11b
[20] links using Ready-to-send (RTS)/Clear-to-send (CTS) for Collision Avoidance:

TMC =
PSize

DIFS+ CWmin
2 + 4(Pre+ PLCP) + RTS+CTS+ACK

BR + 3 · SIFS+ L2H+PSize
R

(A.1)

where

• DIFS is the minimum time the medium has to be sensed idle before transmission

• CWmin is the minimum contention window size, and the expected value of the backoff
time is one half of this time since it is a uniformly distributed random variable from the
range [0− CWmin]

• Pre is the size in bits of the synchronization sequence before the layer 1 header

• PLCP is the size in bits of the layer 1 header

• RTS, CTS, ACK is the number of bits in the respective layer 2 control frames

• SIFS is the time to wait between RTS/CTS/ACK

• L2H is the number of bits in the layer 2 data frame header

• BR is the information data rate used to transmit the Pre, layer 1 header and layer 2 control
frames.

• Rb is the information data rate used to transmit the layer 2 data frame

It is important to note that this calculation indeed provides an upper bound since some of the
channel capacity will be used for signaling traffic; for instance the beacon signal that advertizes

93

the presence and capabilites of the network or handshakes for associating/disassociating. More
important, since Automatic Repeat reQuest (ARQ) is part of the IEEE802.11b Medium Access
Control (MAC)-protocol, there will always be time consuming retransmissions due to bit errors
caused by varying channel conditions.

In this thesis, the Direct Sequence Spread Spectrum (DSSS) variant of IEEE802.11b with data
rate will be used. The values for the parameters above are listed in table A.1.

Table A.1: Parameter values for calculating the Theoretical Maximum Throughput for IEEE802.11b

DIFS 50 µs
CWmin 620 µs
Pre 144 µs
PLCP 48 µs
RTS 160 bits
CTS 136 bits
ACK 136 bits
SIFS 10 µs
L2H 272 bits
BR 1 Mbps
Rb 1,2,5.5,11 Mbps

A.2 The TMC of IEEE802.3 Ethernet

The following relation can be used to find the TMC of an IEEE802.3 [19] link

TMC =
PSize

(IPG+ L2H+ PSize)/Rb
(A.2)

where IPG is the minimum interpacket gap measured in bits, L2H is the number of bits in the
layer 2 data frame header and Rb is the information data rate used to transmit the layer 2 data
frame. Equation equation (A.2) is purely deterministic and is valid for cases where there is no
contention for medium access.

Table A.2 lists the parameter values that are used in this thesis for calculation of the TMC for
Ethernet 10BASE-T links.

Table A.2: Parameter values for calculating the Theoretical Maximum Throughput for IEEE802.3

IPG 96 bits
L2H 208 bits
R 10 Mbps

94

Appendix B

Details Regarding the Path Capacity
Experiments

B.1 IPsec Overhead

IPsec and packet fragmentation introduce a packet size dependent overhead. Since calculation
of the TMC for various link technologies require that the size of the layer 2 payload is known, it
was necessary to find the mapping between the Plaintext (PT) and Ciphertext (CT) packet sizes.
Table B.1 shows the observed difference in packet size between PT and CT IP packets.

Table B.1: The layer 3 overhead (OH) for various PT packet sizes. All values except the overhead ratio
are in bytes

Red PSize Black PSize
Black ESP ESP PT PSize

(PT PSize+OH)IP Header const. OH Padding
100 168 20 10 38 0.60
200 264 20 10 34 0.76
300 358 20 10 28 0.84
400 472 20 10 42 0.85
500 568 20 10 38 0.88
600 664 20 10 34 0.90
700 760 20 10 30 0.92
800 872 20 10 42 0.92
900 968 20 10 38 0.93
1000 1064 20 10 34 0.94
1100 1160 20 10 30 0.95
1200 P1: 1196 P2: 96 40 20 32 0.93
1300 P1: 1196 P2: 192 40 20 28 0.94
1400 P1: 1196 P2: 288 40 20 24 0.94
1500 P1: 1196 P2: 384 40 20 20 0.95

Small packets were especially exposed to overhead. IPsec overhead varied in size since the

95

plaintext data had to fit specific block sizes given by the implementation-specific cryptographic
algorithm. Fragmentation took place for 1200-1500 bytes plaintext packets.

B.2 Specific Settings in Operating System

The system default Path MTU Discovery was disabled at the sender using the command

echo 1 > / p roc / s y s / n e t / i pv4 / i p _ n o _ p m t u _ d i s c

due to the fact that the Vyatta IPsec router copied the Don’t Fragment bit from the inner to the
outer IP header, thereby making the black network routers discard all packets of length larger
than the path’s minimum Maximum Transmission Unit (MTU). I did not find a way to disable
this behavior in Vyatta.

Dynamic CPU Speed Throttling proved to cause severe clock skew problems in the order of
several seconds. This was due to the fact that the timing in the Ad Hoc Probe implementation
depends on the x86 CPU-register Time Stamp Counter that is incremented once per clock cycle.
The tool rcconf was used to to disable the ondemand CPU Frequency Scaling governor in
Ubuntu Linux. Figure B.1 shows the resulting improvement in clock skew performance.

0 50 100 150 200
−1

0

1

2

3

4

5

6

7

Packet Pair

D
e
la

y
 S

u
m

 I
n
c
re

a
s
e
 w

rt
 1

s
t
P

a
c
k
e
t−

P
a
ir
 [
s
]

Dynamic CPU Speed

Static CPU Speed

(a) Comparison

0 50 100 150 200
−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

Packet Pair

D
e
la

y
 S

u
m

 I
n
c
re

a
s
e
 w

rt
 1

s
t
P

a
c
k
e
t−

P
a
ir
 [
m

s
]

(b) Zoomed in on "Static CPU speed" curve.
Note the millisecond time scale.

Figure B.1: The effect of dynamic CPU Throttling on the clock skew

96

B.3 Vyatta Sample Configuration

B.3.1 Vyatta1

1 i n t e r f a c e s {
e t h e r n e t e t h 0 {

3 a d d r e s s 1 9 2 . 1 6 8 . 0 . 1 / 2 4
du p l ex a u t o

5 hw−i d 0 0 : 2 1 : 9 1 : 8 c : ca : b2
s m p _ a f f i n i t y a u t o

7 speed a u t o
}

9 e t h e r n e t e t h 1 {
a d d r e s s 1 0 . 0 . 2 . 1 / 2 9

11 dup l e x a u t o
hw−i d 0 0 : 1 3 : 2 1 : 6 8 : 0 1 : ed

13 s m p _ a f f i n i t y a u t o
speed a u t o

15 }
l o o p b a c k l o {

17 a d d r e s s 1 0 . 0 . 0 . 1 / 3 2
}

19 }
p r o t o c o l s {

21 s t a t i c {
r o u t e 0 . 0 . 0 . 0 / 0 {

23 next−hop 1 0 . 0 . 2 . 2 {
}

25 }
}

27 }
s e r v i c e {

29 s s h {
p o r t 22

31 p r o t o c o l−v e r s i o n v2
}

33 }
sys tem {

35 c o n f i g−management {
commit−r e v i s i o n s 20

37 }
c o n s o l e {

39 d e v i c e t t y S 0 {
speed 9600

41 }
}

43 hos t−name v y a t t a 1
l o g i n {

45 u s e r v y a t t a {
a u t h e n t i c a t i o n {

47 e n c r y p t e d−password 1XQyI9wAj$WzxA6mn / jZ3GpkyNmlkPk0
p u b l i c−keys G e n e r e r t _ 2 3 . 0 1 . 2 0 1 2 _ E s p e n _ F l y d a h l {

97

49 key AAAAB3NzaC1yc2EAAAABJQAAAIEApa76gP+4
xjOP7Pqf53e8uDpqjDnDZRye5Yqg0e222ES2G / pKcnX6jgMRG7B+
U6OnOUFjp0VPYa9+
Lo8l5rzGLVO3oP3JVB7U67XighLifW4NULvueESaj /
ssUeC8j7ShpAPGSGxso7TDktVngOxJBaXThukhZtnmi6EMWVz5PUc
=

type ssh−r s a
51 }

}
53 l e v e l admin

}
55 }

n t p {
57 s e r v e r 0 . v y a t t a . poo l . n t p . o rg {

}
59 s e r v e r 1 . v y a t t a . poo l . n t p . o rg {

}
61 s e r v e r 2 . v y a t t a . poo l . n t p . o rg {

}
63 }

package {
65 auto−sync 1

r e p o s i t o r y community {
67 components main

d i s t r i b u t i o n s t a b l e
69 password " "

u r l h t t p : / / p a c k a g e s . v y a t t a . com / v y a t t a
71 username " "

}
73 }

s y s l o g {
75 g l o b a l {

f a c i l i t y a l l {
77 l e v e l n o t i c e

}
79 f a c i l i t y p r o t o c o l s {

l e v e l debug
81 }

}
83 }

t ime−zone GMT
85 }

vpn {
87 i p s e c {

esp−group ESP {
89 c o m p r e s s i o n d i s a b l e

l i f e t i m e 1800
91 mode t u n n e l

p f s enable
93 p r o p o s a l 1 {

e n c r y p t i o n aes128
95 hash sha1

}

98

97 }
ike−group IKE {

99 l i f e t i m e 3600
p r o p o s a l 1 {

101 e n c r y p t i o n aes128
hash sha1

103 }
}

105 i p s e c− i n t e r f a c e s {
i n t e r f a c e e t h 1

107 }
s i t e−to−s i t e {

109 p e e r 1 0 . 0 . 2 . 2 6 {
a u t h e n t i c a t i o n {

111 mode pre−sha red−s e c r e t
pre−sha red−s e c r e t t e s t

113 }
c o n n e c t i o n−type i n i t i a t e

115 d e f a u l t−esp−group ESP
ike−group IKE

117 l o c a l−i p 1 0 . 0 . 2 . 1
t u n n e l 1 {

119 al low−na t−n e t w o r k s d i s a b l e
a l low−p u b l i c−n e t w o r k s d i s a b l e

121 l o c a l {
s u b n e t 1 9 2 . 1 6 8 . 0 . 0 / 2 4

123 }
remote {

125 s u b n e t 1 9 2 . 1 6 8 . 1 . 0 / 2 4
}

127 }
}

129 }
}

131 }

133
/ * Warning : Do n o t remove t h e f o l l o w i n g l i n e . * /

135 / * === v y a t t a−c o n f i g−v e r s i o n : " vrrp@1 : c o n t e n t−i n s p e c t i o n @ 3 : ipsec@3 : dhcp−
relay@1 : zone−policy@1 : qos@1 : dhcp−server@4 : c o n f i g−management@1 : webproxy@1
: quagga@2 : wanloadbalance@3 : system@5 : f i r e w a l l @ 4 : c l u s t e r @ 1 : webgui@1 : nat@3 :
c o n n t r a c k−sync@1 " === * /

/ * R e l e a s e v e r s i o n : 9 9 9 . mtnapa .10181129 * /

B.3.2 Vyatta2

i n t e r f a c e s {
2 e t h e r n e t e t h 0 {

a d d r e s s 1 0 . 0 . 2 . 2 / 2 9
4 dup l e x a u t o

hw−i d 00 :0 e : 7 f : 6 0 : b9 : b2

99

6 s m p _ a f f i n i t y a u t o
speed a u t o

8 }
e t h e r n e t e t h 1 {

10 a d d r e s s 1 0 . 0 . 2 . 9 / 2 9
du p l ex a u t o

12 hw−i d 0 0 : 3 0 : 4 f : 6 d : a5 : e8
s m p _ a f f i n i t y a u t o

14 speed a u t o
}

16 e t h e r n e t e t h 2 {
a d d r e s s 1 0 . 0 . 2 . 1 7 / 2 9

18 dup l e x f u l l
hw−i d 0 0 : 3 0 : 4 f : 6 d : 9 4 : 7 2

20 mtu 1200
s m p _ a f f i n i t y a u t o

22 speed 10
}

24 l o o p b a c k l o {
a d d r e s s 1 0 . 0 . 0 . 2 / 3 2

26 }
}

28 p r o t o c o l s {
s t a t i c {

30 r o u t e 0 . 0 . 0 . 0 / 0 {
next−hop 1 0 . 0 . 2 . 1 8 {

32 }
}

34 r o u t e 1 0 . 0 . 0 . 1 / 3 2 {
next−hop 1 0 . 0 . 2 . 1 {

36 }
}

38 }
}

40 s e r v i c e {
s s h {

42 p o r t 22
p r o t o c o l−v e r s i o n v2

44 }
}

46 sys tem {
c o n f i g−management {

48 commit−r e v i s i o n s 20
}

50 c o n s o l e {
d e v i c e t t y S 0 {

52 speed 9600
}

54 }
domain−name v y a t t a 1

56 hos t−name v y a t t a 2
l o g i n {

58 u s e r v y a t t a {

100

a u t h e n t i c a t i o n {
60 e n c r y p t e d−password $1$4XHPj9eT$G3ww9B / pYDLSXC8YVvazP0

p u b l i c−keys G e n e r e r t _ 2 3 . 0 1 . 2 0 1 2 _ E s p e n _ F l y d a h l {
62 key AAAAB3NzaC1yc2EAAAABJQAAAIEApa76gP+4

xjOP7Pqf53e8uDpqjDnDZRye5Yqg0e222ES2G / pKcnX6jgMRG7B+
U6OnOUFjp0VPYa9+
Lo8l5rzGLVO3oP3JVB7U67XighLifW4NULvueESaj /
ssUeC8j7ShpAPGSGxso7TDktVngOxJBaXThukhZtnmi6EMWVz5PUc
=

type ssh−r s a
64 }

}
66 l e v e l admin

}
68 }

n t p {
70 s e r v e r 0 . v y a t t a . poo l . n t p . o rg {

}
72 s e r v e r 1 . v y a t t a . poo l . n t p . o rg {

}
74 s e r v e r 2 . v y a t t a . poo l . n t p . o rg {

}
76 }

package {
78 auto−sync 1

r e p o s i t o r y community {
80 components main

d i s t r i b u t i o n s t a b l e
82 password " "

u r l h t t p : / / p a c k a g e s . v y a t t a . com / v y a t t a
84 username " "

}
86 }

s y s l o g {
88 g l o b a l {

f a c i l i t y a l l {
90 l e v e l n o t i c e

}
92 f a c i l i t y p r o t o c o l s {

l e v e l debug
94 }

}
96 }

t ime−zone GMT
98 }

100
/ * Warning : Do n o t remove t h e f o l l o w i n g l i n e . * /

102 / * === v y a t t a−c o n f i g−v e r s i o n : " c l u s t e r @ 1 : c o n f i g−management@1 : c o n n t r a c k−
sync@1 : c o n t e n t−i n s p e c t i o n @ 3 : dhcp−relay@1 : dhcp−server@4 : f i r e w a l l @ 4 :
ipsec@3 : nat@3 : qos@1 : quagga@2 : system@5 : vrrp@1 : wanloadbalance@3 : webgui@1 :
webproxy@1 : zone−policy@1 " === * /

/ * R e l e a s e v e r s i o n : 9 9 9 . mtnapa .10181129 * /

101

B.3.3 Vyatta3

1 i n t e r f a c e s {
e t h e r n e t e t h 0 {

3 a d d r e s s 1 0 . 0 . 2 . 2 5 / 2 9
du p l ex a u t o

5 hw−i d 00 :1 a : 4 b : 3 6 : f6 : c8
s m p _ a f f i n i t y a u t o

7 speed a u t o
}

9 e t h e r n e t e t h 1 {
a d d r e s s 1 0 . 0 . 2 . 3 3 / 2 9

11 dup l e x a u t o
hw−i d 0 0 : 2 1 : 9 1 : 8 c : c8 : 9 c

13 s m p _ a f f i n i t y a u t o
speed a u t o

15 }
e t h e r n e t e t h 2 {

17 a d d r e s s 1 0 . 0 . 2 . 1 8 / 2 9
du p l ex f u l l

19 hw−i d 0 0 : 2 1 : 9 1 : 8 c : c7 : ad
mtu 1200

21 s m p _ a f f i n i t y a u t o
speed 10

23 }
l o o p b a c k l o {

25 a d d r e s s 1 0 . 0 . 0 . 3 / 3 2
}

27 }
p r o t o c o l s {

29 s t a t i c {
r o u t e 0 . 0 . 0 . 0 / 0 {

31 next−hop 1 0 . 0 . 2 . 1 7 {
}

33 }
r o u t e 1 0 . 0 . 0 . 4 / 3 2 {

35 next−hop 1 0 . 0 . 2 . 2 6 {
}

37 }
}

39 }
s e r v i c e {

41 s s h {
p o r t 22

43 p r o t o c o l−v e r s i o n v2
}

45 }
sys tem {

47 c o n f i g−management {
commit−r e v i s i o n s 20

49 }
c o n s o l e {

51 d e v i c e t t y S 0 {

102

speed 9600
53 }

}
55 hos t−name v y a t t a 3

l o g i n {
57 u s e r v y a t t a {

a u t h e n t i c a t i o n {
59 e n c r y p t e d−password 1zREsATH7$ / tHbr1jBjP6CdjLnGlKwf /

p u b l i c−keys G e n e r e r t _ 2 3 . 0 1 . 2 0 1 2 _ E s p e n _ F l y d a h l {
61 key AAAAB3NzaC1yc2EAAAABJQAAAIEApa76gP+4

xjOP7Pqf53e8uDpqjDnDZRye5Yqg0e222ES2G / pKcnX6jgMRG7B+
U6OnOUFjp0VPYa9+
Lo8l5rzGLVO3oP3JVB7U67XighLifW4NULvueESaj /
ssUeC8j7ShpAPGSGxso7TDktVngOxJBaXThukhZtnmi6EMWVz5PUc
=

type ssh−r s a
63 }

}
65 l e v e l admin

}
67 }

n t p {
69 s e r v e r 0 . v y a t t a . poo l . n t p . o rg {

}
71 s e r v e r 1 . v y a t t a . poo l . n t p . o rg {

}
73 s e r v e r 2 . v y a t t a . poo l . n t p . o rg {

}
75 }

package {
77 auto−sync 1

r e p o s i t o r y community {
79 components main

d i s t r i b u t i o n s t a b l e
81 password " "

u r l h t t p : / / p a c k a g e s . v y a t t a . com / v y a t t a
83 username " "

}
85 }

s y s l o g {
87 g l o b a l {

f a c i l i t y a l l {
89 l e v e l n o t i c e

}
91 f a c i l i t y p r o t o c o l s {

l e v e l debug
93 }

}
95 }

t ime−zone GMT
97 }

t r a f f i c −p o l i c y {
99 r a t e−c o n t r o l n a r r o w _ l i n k {

103

bandwid th 64 k b i t
101 b u r s t 15k

d e s c r i p t i o n " Narrowband l i n k "
103 l a t e n c y 50ms

}
105 r a t e−c o n t r o l w i d e _ l i n k {

bandwid th 2 mbi t
107 b u r s t 15k

d e s c r i p t i o n " Wideband l i n k "
109 l a t e n c y 50ms

}
111 }

113
/ * Warning : Do n o t remove t h e f o l l o w i n g l i n e . * /

115 / * === v y a t t a−c o n f i g−v e r s i o n : " quagga@2 : c o n n t r a c k−sync@1 : dhcp−relay@1 :
webgui@1 : zone−policy@1 : f i r e w a l l @ 4 : webproxy@1 : qos@1 : dhcp−server@4 :
system@5 : c o n t e n t−i n s p e c t i o n @ 3 : c o n f i g−management@1 : ipsec@3 :
wanloadbalance@3 : nat@3 : c l u s t e r @ 1 : vrrp@1 " === * /

/ * R e l e a s e v e r s i o n : 9 9 9 . mtnapa .10181129 * /

B.3.4 Vyatta4

i n t e r f a c e s {
2 e t h e r n e t e t h 0 {

a d d r e s s 1 9 2 . 1 6 8 . 1 . 1 / 2 4
4 dup l e x a u t o

hw−i d 0 0 : 2 6 : 5 a : 8 1 : a1 : 0 4
6 s m p _ a f f i n i t y a u t o

speed a u t o
8 }

e t h e r n e t e t h 1 {
10 a d d r e s s 1 0 . 0 . 2 . 2 6 / 2 9

du p l ex a u t o
12 hw−i d 0 0 : 1 1 : 8 5 : 7 9 : f1 : 8 d

s m p _ a f f i n i t y a u t o
14 speed a u t o

}
16 l o o p b a c k l o {

a d d r e s s 1 0 . 0 . 0 . 4 / 3 2
18 }

}
20 p r o t o c o l s {

s t a t i c {
22 r o u t e 0 . 0 . 0 . 0 / 0 {

next−hop 1 0 . 0 . 2 . 2 5 {
24 }

}
26 }

}
28 s e r v i c e {

104

s s h {
30 p o r t 22

p r o t o c o l−v e r s i o n v2
32 }

}
34 sys tem {

c o n f i g−management {
36 commit−r e v i s i o n s 20

}
38 c o n s o l e {

d e v i c e t t y S 0 {
40 speed 9600

}
42 }

hos t−name v y a t t a 4
44 l o g i n {

u s e r v y a t t a {
46 a u t h e n t i c a t i o n {

e n c r y p t e d−password 1uP8V1n6Y$SS . wfEGlH0cl8ybPmxBA5 /
48 p u b l i c−keys G e n e r e r t _ 2 3 . 0 1 . 2 0 1 2 _ E s p e n _ F l y d a h l {

key AAAAB3NzaC1yc2EAAAABJQAAAIEApa76gP+4
xjOP7Pqf53e8uDpqjDnDZRye5Yqg0e222ES2G / pKcnX6jgMRG7B+
U6OnOUFjp0VPYa9+
Lo8l5rzGLVO3oP3JVB7U67XighLifW4NULvueESaj /
ssUeC8j7ShpAPGSGxso7TDktVngOxJBaXThukhZtnmi6EMWVz5PUc
=

50 type ssh−r s a
}

52 }
l e v e l admin

54 }
}

56 n t p {
s e r v e r 0 . v y a t t a . poo l . n t p . o rg {

58 }
s e r v e r 1 . v y a t t a . poo l . n t p . o rg {

60 }
s e r v e r 2 . v y a t t a . poo l . n t p . o rg {

62 }
}

64 package {
auto−sync 1

66 r e p o s i t o r y community {
components main

68 d i s t r i b u t i o n s t a b l e
password " "

70 u r l h t t p : / / p a c k a g e s . v y a t t a . com / v y a t t a
username " "

72 }
}

74 s y s l o g {
g l o b a l {

76 f a c i l i t y a l l {

105

l e v e l n o t i c e
78 }

f a c i l i t y p r o t o c o l s {
80 l e v e l debug

}
82 }

}
84 t ime−zone GMT

}
86 vpn {

i p s e c {
88 esp−group ESP {

c o m p r e s s i o n d i s a b l e
90 l i f e t i m e 1800

mode t u n n e l
92 p f s enable

p r o p o s a l 1 {
94 e n c r y p t i o n aes128

hash sha1
96 }

}
98 ike−group IKE {

l i f e t i m e 1800
100 p r o p o s a l 1 {

e n c r y p t i o n aes128
102 hash sha1

}
104 }

i p s e c− i n t e r f a c e s {
106 i n t e r f a c e e t h 1

}
108 s i t e−to−s i t e {

p e e r 1 0 . 0 . 2 . 1 {
110 a u t h e n t i c a t i o n {

mode pre−sha red−s e c r e t
112 pre−sha red−s e c r e t t e s t

}
114 c o n n e c t i o n−type i n i t i a t e

d e f a u l t−esp−group ESP
116 ike−group IKE

l o c a l−i p 1 0 . 0 . 2 . 2 6
118 t u n n e l 1 {

a l low−na t−n e t w o r k s d i s a b l e
120 al low−p u b l i c−n e t w o r k s d i s a b l e

l o c a l {
122 s u b n e t 1 9 2 . 1 6 8 . 1 . 0 / 2 4

}
124 remote {

s u b n e t 1 9 2 . 1 6 8 . 0 . 0 / 2 4
126 }

}
128 }

}

106

130 }
}

132

134 / * Warning : Do n o t remove t h e f o l l o w i n g l i n e . * /
/ * === v y a t t a−c o n f i g−v e r s i o n : " webproxy@1 : nat@3 : quagga@2 : c o n n t r a c k−sync@1 :

ipsec@3 : zone−policy@1 : c o n t e n t−i n s p e c t i o n @ 3 : dhcp−server@4 : system@5 :
f i r e w a l l @ 4 : c o n f i g−management@1 : c l u s t e r @ 1 : dhcp−relay@1 : qos@1 : vrrp@1 :
wanloadbalance@3 : webgui@1 " === * /

136 / * R e l e a s e v e r s i o n : 9 9 9 . mtnapa .10181129 * /

107

B.4 Scripts for Measuring the Correct Path Capacity

B.4.1 Traffic Generation

! / b i n / bash
2

E . F l y d a h l − S c r i p t f o r t e s t i n g t h e pa th c a p a c i t y w i t h mgen
4

maxps ize =100 # Maximum IP p a c k e t s i z e (b y t e s)
6 m i n p s i z e =100 # Minimum IP p a c k e t s i z e (b y t e s)

p s i z e i n t =100 # I n c r e a s e i n p a c k e t s i z e per run (b y t e s)
8 r u n t i m e =30 # How long each run l a s t s (s e c o n d s)

wait =5 # How long t o w a i t be tween runs (s e c o n d s)
10 b i t r a t e =12 # Layer 3 o u t p u t b i t r a t e (Mbps)

12 r e c e i v e r i p =" 1 9 2 . 1 6 8 . 1 . 2 "
d s t p o r t =5001

14 s r c p o r t =5001
o v e r h e a d =28 # IP header 20 b y t e s + UDP header 8 b y t e s

16
c o n t r o l _ c ()

18 {
echo " E n a b l i n g Pa th MTU D i s c o v e r y "

20 echo 0 > / p roc / s y s / n e t / i pv4 / i p _ n o _ p m t u _ d i s c

22 echo " T e r m i n a t i n g "

24 i f [$1 −eq 0]
then

26 e x i t 0
f i

28 s s h $2 " k i l l $1 "

30 i f [$? −ne 0]
then

32 echo " Could n o t k i l l s i n k p r o c e s s " >&2
e x i t 1

34 f i
e x i t 0

36 }

38 i f [$EUID −ne 0]
then

40 echo " P l e a s e run as r o o t "
e x i t 1 ;

42 f i

44 i f [! −x mgen]
then

46 echo " Cannot f i n d / e x e c u t e mgen i n c u r r e n t d i r e c t o r y " >&2
e x i t 1

48 f i

108

50 i f [! −x / u s r / b i n / bc]
then

52 echo " Cannot f i n d / e x e c u t e bc " >&2
e x i t 1

54 f i

56 echo " D i s a b l i n g Pa th MTU D i s c o v e r y "
echo 1 > / p roc / s y s / n e t / i pv4 / i p _ n o _ p m t u _ d i s c

58
echo " S t a r t i n g s i n k p r o c e s s a t $ r e c e i v e r i p "

60 # S t a r t s i n k , " r e t u r n " PID
s i n k p i d =$ (s s h $ (echo $ r e c e i v e r i p ’ nohup mgen e v e n t "LISTEN UDP ’ $ d s t p o r t ’ "

> mgenout . d r c 2> / dev / n u l l < / dev / n u l l & echo $! ’))
62 i f [$? −ne 0]

then
64 echo " Could n o t s t a r t s i n k p r o c e s s a t $ r e c e i v e r i p " >&2

e x i t 1
66 f i

trap " c o n t r o l _ c $ s i n k p i d $ r e c e i v e r i p " SIGINT
68

echo " S t a r t i n g t r a f f i c g e n e r a t i o n "
70

p s i z e = $ m i n p s i z e
72 whi le [$ p s i z e − l e $maxps ize]

do
74 echo " Sending IP p a c k e t s o f s i z e $ p s i z e b y t e s a t r a t e $ b i t r a t e Mbps f o r

$ r u n t i m e s e c o n d s "
echo " $ b i t r a t e * 1 0 ^ 6 / ($ p s i z e−$overhead) / 8 " | bc − l

76 # echo " ($ p s i z e−$overhead) * 8 " | bc − l
. / mgen e v e n t " $ w a i t ON $ p s i z e UDP SRC $ s r c p o r t DST $ r e c e i v e r i p / $ d s t p o r t

PERIODIC \
78 [‘ echo " $ b i t r a t e * 1 0 ^ 6 / ($ p s i z e *8) " | bc −l ‘ ‘ echo " $ p s i z e−$ove rhead " | bc −l

‘] " \
e v e n t " $ [$ r u n t i m e + $ w a i t] OFF $ p s i z e "

80
p s i z e =$ [$ p s i z e + $ p s i z e i n t]

82
done

84 echo " T r a f f i c g e n e r a t i o n c o m p l e t e "

86 echo " E n a b l i n g Pa th MTU D i s c o v e r y "
echo 0 > / p roc / s y s / n e t / i pv4 / i p _ n o _ p m t u _ d i s c

88
echo " K i l l i n g s i n k p r o c e s s "

90 s s h $ r e c e i v e r i p " k i l l $ s i n k p i d "
i f [$? −ne 0]

92 then
echo " Could n o t k i l l s i n k p r o c e s s a t r e c e i v e r " >&2

94 e x i t 1
f i

96 s i n k p i d =0
trap " c o n t r o l _ c $ s i n k p i d $ r e c e i v e r i p " SIGINT

109

98
echo " Compress ing t r a c e f i l e a t $ r e c e i v e r i p "

100 s s h $ r e c e i v e r i p " g z i p −f mgenout . d r c "
i f [$? −ne 0]

102 then
echo " Could n o t compress o u t p u t d a t a a t r e c e i v e r " >&2

104 e x i t 1
f i

106
f i l e n a m e =$ (d a t e "+mgenout_%Y%m%d_%H%M%S . d r c . gz ")

108 echo " Copying t r a c e f i l e t o $ (pwd) / $ f i l e n a m e "
scp $ r e c e i v e r i p : mgenout . d r c . gz $ f i l e n a m e

110 i f [$? −ne 0]
then

112 echo " Could n o t copy t r a c e f i l e from r e c e i v e r " >&2
e x i t 1

114 f i

116 echo " D e l e t i n g t r a c e f i l e from $ r e c e i v e r i p "
s s h $ r e c e i v e r i p " rm mgenout . d r c . gz "

118 i f [$? −ne 0]
then

120 echo " Could n o t d e l e t e t r a c e f i l e a t r e c e i v e r " >&2
e x i t 1

122 f i

124
f i l e n a m e 2 =$ (d a t e "+ p a t h _ c a p _ $ (echo $ b i t r a t e) _%Y%m%d_%H%M%S")

126 echo " P r o c e s s i n g t r a c e f i l e and s a v i n g f i n a l r e s u l t i n $ (pwd) / $ f i l e n a m e 2 "
z c a t $ f i l e n a m e | gawk −f p r o c e s s . awk > $ f i l e n a m e 2

128 i f [$? −ne 0]
then

130 echo " Could n o t p r o c e s s t r a c e f i l e " >&2
e x i t 1

132 f i
echo

134 c a t $ f i l e n a m e 2
echo

136
echo " E x i t i n g "

138 echo −e " \ a " >&2
e x i t 0 ;

The receiver must have a SSH-server with the sender’s public key installed for passwordless
login in order to make the script work as intended.

B.4.2 Trace File Analysis

1 # E . F l y d a h l − Awk s c r i p t t o p r o c e s s mgen t r a c e f i l e . D e l i v e r s p s i z e ,
c a p a c i t y , MB, t r a n s f e r r e d , p a c k e t l o s s p e r c e n t a g e , p a c k e t c o u n t

110

3 BEGIN{
s t a r t d e l a y = 5 ; # How f a r i n t o t h e f l o w b e f o r e s t a r t i n g measurements (

s e c o n d s)
5 d u r a t i o n = 2 0 ; # How long t o measure t h e f l o w

}
7

{
9

i f ($2=="RECV")
11 {

s p l i t ($1 , tmp , " : ") ;
13 t r c v = tmp [1]*60*60+ tmp [2]*60+ tmp [3] ;

s p l i t ($4 , tmp , ">") ;
15 f low =tmp [2] ;

s p l i t ($5 , tmp , ">") ;
17 seq =tmp [2] ;

19 # R e g i s t e r f l o w
found = 0

21 f o r (f i n r c v d f l o w s)
{

23 i f (f low == f) { found = 1 ; }
}

25 i f (found == 0)
{

27 r c v d f l o w s [f low] = 1 ;
tmin [f low] = t r c v + s t a r t d e l a y ;

29 tmax [f low] = tmin [f low]+ d u r a t i o n ;
}

31
Count r e c e i v e d and l o s t p a c k e t s

33 i f (f low i n r c v d f l o w s && t r c v >= tmin [f low] && t r c v < tmax [f low])
{

35 i f (! r c v [f low]) { n e x t s e q [f low]= seq ; }
r c v [f low] + + ;

37 i f (seq >= n e x t s e q [f low])
{

39 p l o s s [f low] = p l o s s [f low]+ seq−n e x t s e q [f low] ;

41 # i f (seq−n e x t s e q [f l o w] >0)
{

43 # p r i n t f (" When r c v i n g s e q n r %d,%d p a c k e t s l o s t a t t i m e %f from f l o w
%d \ n " , seq , seq−n e x t s e q [f l o w] , t r c v , f l o w) > " / dev / s t d e r r " ;

}
45 n e x t s e q [f low]= seq +1;

}
47 e l s e

{
49 p l o s s [f low]−−;

p r i n t f (" seq %d from f l o w %d rcvd o u t o f o r d e r \ n " , seq , f l o w) > " /
dev / s t d e r r " ;

51 }
}

111

53
}

55
}

57 END{
S o r t i n d i c e s i n s e p a r a t e a r r a y i n d

59 j =1 ;
f o r (i i n r c v)

61 {
i n d [j]= i ;

63 i n d [j] + + ; i n d [j]−−; # " Cas t " t o i n t e g e r
j ++;

65 }
n= a s o r t (i n d) ;

67
P r i n t o u t da ta

69 f o r (i =1 ; i <=n ; i ++)
{

71 p r i n t f ("%d %.2 f %.1 f %.3 f %d \ n " , i n d [i] , r c v [i n d [i]] * i n d [i] * 8 / d u r a t i o n ,
r c v [i n d [i]] * i n d [i]*1024^(−2) , p l o s s [i n d [i]] / (n e x t s e q [i n d [i]]−1) , r c v
[i n d [i]]) ;

}
73 }

112

B.5 Ad Hoc Probe Code

B.5.1 Sender Source Code

1 # i n c l u d e < s t d i o . h>
i n c l u d e < s t d l i b . h>

3 # i n c l u d e < s t r i n g . h>
i n c l u d e < u n i s t d . h>

5 # i n c l u d e < s y s / t y p e s . h>
i n c l u d e < s y s / shm . h>

7 # i n c l u d e < s y s / t ime . h>
i n c l u d e < s y s / s e l e c t . h>

9 # i n c l u d e < s y s / param . h>
i n c l u d e < s y s / t y p e s . h>

11 # i n c l u d e < s y s / s o c k e t . h>
i n c l u d e < a s s e r t . h>

13 # i n c l u d e < n e t i n e t / i n . h>
i n c l u d e < a r p a / i n e t . h>

15 # i n c l u d e < n e t d b . h>
i n c l u d e < s i g n a l . h>

17 # i n c l u d e < t ime . h>

19 # d e f i n e PORT_F 15000
d e f i n e PORT_B 15000

21 # d e f i n e MAXBUFLEN 100000

23 / / IP : 20 b y t e s UDP: 8 b y t e s
d e f i n e HEADER_SIZE 28

25
_ _ i n l i n e _ _ unsigned long long r d t s c () {

27 unsigned long long i n t x ;
__asm__ v o l a t i l e (" . b y t e 0 x0f , 0x31 " : "=A" (x)) ;

29 re turn x ;
}

31
s t r u c t s o c k a d d r _ i n a d d r _ f ; / / c o n n e c t o r ’ s a d d r e s s i n f o r m a t i o n

33
i n t main (i n t argc , char * a rgv []) {

35 char * add r = NULL;
i n t p o r t = −1;

37 i n t s e n d _ s o c k e t ;
s t r u c t h o s t e n t * he ;

39
i n t i ;

41 i n t *DATA;
i n t PACKET_SIZE ;

43 i n t numbytes ;

45 unsigned long long CPU_HZ = 0 ;
s t r u c t t i m e s p e c req , rem ;

47 i f (a r g c != 4) {

113

f p r i n t f (s t d e r r , " usage : %s hostname PACKET_SIZE (b y t e s) INTERVAL(ms) \ n " ,
a rgv [0]) ;

49 e x i t (1) ;
}

51

53 i n t i n t e r v a l _ m s = a t o l (a rgv [3]) ;
i n t i n t e r v a l _ s = i n t e r v a l _ m s / 1 0 0 0 ;

55 i n t e r v a l _ m s −= i n t e r v a l _ s *1000 ;

57 r e q . t v _ s e c = i n t e r v a l _ s ;
r e q . t v _ n s e c = 1000000 * i n t e r v a l _ m s ; / / I n t e r v a l be tween packe t−p a i r s

59

61

63 i f ((he= ge thos tbyname (a rgv [1])) == NULL) { / / g e t t h e h o s t i n f o
p e r r o r (" ge thos tbyname ") ;

65 e x i t (1) ;
}

67
PACKET_SIZE = a t o l (a rgv [2]) ;

69 PACKET_SIZE −= HEADER_SIZE ;
/ / PACKET_DELAY = a t o l (argv [2]) ;

71 / / TEST_TIME = a t o l (argv [3]) ;

73 i f ((s e n d _ s o c k e t = s o c k e t (AF_INET , SOCK_DGRAM, 0)) == −1) {
p e r r o r (" s o c k e t ") ;

75 e x i t (1) ;
}

77 a d d r _ f . s i n _ f a m i l y = AF_INET ; / / h o s t b y t e o r d e r
a d d r _ f . s i n _ p o r t = h t o n s (PORT_F) ; / / s h o r t , ne twork b y t e o r d e r

79 a d d r _ f . s i n _ a d d r = * ((s t r u c t i n _ a d d r *) he−>h_addr) ;
memset (&(a d d r _ f . s i n _ z e r o) , ’ \ 0 ’ , 8) ; / / z e r o t h e r e s t o f t h e s t r u c t

81

83 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
/ / read / proc / c p u i n f o i n f o r m a t i o n

85 / /

87 FILE * Proc ;
char buf [3 0 0] ;

89 char buf2 [3 0 0] ;

91
Proc = fopen (" / p roc / c p u i n f o " , " r ") ;

93 whi le (f g e t s (buf , 2 5 5 , Proc)) {
i f (s t r s t r (buf , " cpu MHz")) {

95 buf [s t r l e n (buf)−1]= ’ \ 0 ’ ;
CPU_HZ = a t o f (buf +11) *1000000;

97 break ;
}

99 }

114

f c l o s e (Proc) ;
101 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

103
double t ;

105 double *dd ;
i n t sn = 1 ;

107 DATA = (i n t *) ma l l oc (PACKET_SIZE) ;
memset (DATA, ’ 0 ’ ,PACKET_SIZE) ;

109 dd = (double *) (DATA + 1) ;

111 whi le (1) {
DATA[0] = sn ;

113 t = r d t s c () / (double)CPU_HZ ;
dd [0] = t ;

115 i f ((numbytes= s e n d t o (s e n d _ s o c k e t , DATA, PACKET_SIZE , 0 , (s t r u c t
s o c k a d d r *)&addr_ f , s i z e o f (s t r u c t s o c k a d d r))) == −1) {

p r i n t f (" E r r : send sn=%d \ n " , sn *2−1) ;
117 }

119 DATA[0] = sn +1;
i f ((numbytes= s e n d t o (s e n d _ s o c k e t , DATA, PACKET_SIZE , 0 , (s t r u c t

s o c k a d d r *)&addr_ f , s i z e o f (s t r u c t s o c k a d d r))) == −1) {
121 p r i n t f (" E r r : send sn=%d \ n " , sn *2) ;

}
123

sn +=2;
125 sn %= 10000 ;

n a n o s l e e p (& req , &rem) ;
127 }

f r e e (DATA) ;
129 e x i t (0) ;

}

B.5.2 Receiver Source Code

/ *
2 ** l i s t e n e r . c −− a datagram s o c k e t s " s e r v e r " demo

* /
4

i n c l u d e < s t d i o . h>
6 # i n c l u d e < s t d l i b . h>

i n c l u d e < s t r i n g . h>
8 # i n c l u d e < u n i s t d . h>

i n c l u d e < e r r n o . h>
10 # i n c l u d e < s t r i n g . h>

i n c l u d e < s y s / t ime . h>
12 # i n c l u d e < s y s / t y p e s . h>

i n c l u d e < s y s / s o c k e t . h>
14 # i n c l u d e < n e t i n e t / i n . h>

i n c l u d e < a r p a / i n e t . h>

115

16 # i n c l u d e < t ime . h>

18 # d e f i n e MYPORT 15000 / / t h e p o r t u s e r s w i l l be c o n n e c t i n g t o

20 # d e f i n e MAXBUFLEN 100000

22 # d e f i n e HEADER_SIZE 28

24 / / # d e f i n e CPU_HZ 501125000

26 _ _ i n l i n e _ _ unsigned long long r d t s c () {
unsigned long long i n t x ;

28 __asm__ v o l a t i l e (" . b y t e 0 x0f , 0x31 " : "=A" (x)) ;
re turn x ;

30 }

32 double g e t c p u s p e e d ()
{

34 / / read / proc / c p u i n f o i n f o r m a t i o n
/ /

36 FILE * Proc ;
char buf [3 0 0] ;

38
Proc = fopen (" / p roc / c p u i n f o " , " r ") ;

40 whi le (f g e t s (buf , 2 5 5 , Proc)) {
i f (s t r s t r (buf , " cpu MHz")) {

42 buf [s t r l e n (buf)−1]= ’ \ 0 ’ ;
re turn a t o f (buf +11) *1000000;

44 break ;
}

46 }
f c l o s e (Proc) ;

48 re turn −1;
}

50

52 double CPU_HZ ;

54 double c a p _ r t t 1 [1 0 0 0 0] ;
double c a p _ r t t 2 [1 0 0 0 0] ;

56 double cap_C ;
double cap_RTT ;

58 double px [5 0 0 0] ;
double py [5 0 0 0] ;

60 double pd [5 0 0 0] ;
double p i [5 0 0 0] ;

62
double px1 [5 0 0 0] ;

64 double py1 [5 0 0 0] ;
double pd1 [5 0 0 0] ;

66 double p i 1 [5 0 0 0] ;

68 i n t num = 0 ;

116

70 i n t main (i n t argc , char * a rgv [])
{

72 i n t s o c k f d ;
s t r u c t s o c k a d d r _ i n my_addr ; / / my a d d r e s s i n f o r m a t i o n

74 s t r u c t s o c k a d d r _ i n t h e i r _ a d d r ; / / c o n n e c t o r ’ s a d d r e s s i n f o r m a t i o n
i n t a d d r _ l e n , numbytes ;

76 char buf [MAXBUFLEN] ;
i n t *DATA;

78 i n t run = 1 ;

80 / / E . F l y d a h l : De termine i f number o f runs i s s p e c i f i e d as argument

82 i f (a r g c < 3) { p r i n t f (" Usage : %s NUMBEROFRUNS PROBESPERRUN\ n " , a rgv [0])
; e x i t (EXIT_FAILURE) ; }

i n t numbruns = a t o i (a rgv [1]) ;
84 i n t p r o b e s p e r r u n = a t o i (a rgv [2]) ;

86 i f ((s o c k f d = s o c k e t (AF_INET , SOCK_DGRAM, 0)) == −1) {
p e r r o r (" s o c k e t ") ;

88 e x i t (1) ;
}

90
my_addr . s i n _ f a m i l y = AF_INET ; / / h o s t b y t e o r d e r

92 my_addr . s i n _ p o r t = h t o n s (MYPORT) ; / / s h o r t , ne twork b y t e o r d e r
my_addr . s i n _ a d d r . s _ a d d r = INADDR_ANY; / / a u t o m a t i c a l l y f i l l w i t h my IP

94 memset (&(my_addr . s i n _ z e r o) , ’ \ 0 ’ , 8) ; / / z e r o t h e r e s t o f t h e s t r u c t

96 i f (b ind (sockfd , (s t r u c t s o c k a d d r *)&my_addr ,
s i z e o f (s t r u c t s o c k a d d r)) == −1) {

98 p e r r o r (" b ind ") ;
e x i t (1) ;

100 }

102 a d d r _ l e n = s i z e o f (s t r u c t s o c k a d d r) ;

104 cap_C = 0 ;
cap_RTT = 1000000000;

106
CPU_HZ = g e t c p u s p e e d () ;

108 i f (CPU_HZ == −1) { p e r r o r (" F a i l e d t o r e a d CPU speed i n / p roc / c p u i n f o ") ;
e x i t (EXIT_FAILURE) ; }

110 s t r u c t t i m e v a l t _ s t a r t , t _ e n d ;
i n t i ;

112
whi le (run <=numbruns) {

114
i f ((numbytes= r e c v f r o m (sockfd , buf , MAXBUFLEN−1, 0 ,

116 (s t r u c t s o c k a d d r *)&t h e i r _ a d d r , &a d d r _ l e n)) == −1) {
p e r r o r (" r e c v f r o m ") ;

118 e x i t (1) ;
}

117

120 numbytes += HEADER_SIZE ;
DATA = buf ;

122
/ / E . F l y d a h l : S e t s t a r t t i m e

124 i f (num==0) { g e t t i m e o f d a y (& t _ s t a r t ,NULL) ; }

126 i = (DATA[0] − 1) / 2 ;

128 i f (DATA[0]%2==1) {
double t = (double) r d t s c () / CPU_HZ ;

130 double * dd = DATA + 1 ;
c a p _ r t t 1 [i] = t − dd [0] ;

132 } e l s e i f (c a p _ r t t 1 [i] ! = 0) {
double t = (double) r d t s c () / CPU_HZ ;

134 double * dd = DATA + 1 ;
double d i sp , r t t _ s u m , C , p r e _ r t t _ s u m , o f f s e t _ x , o f f s e t _ y ;

136 i n t t r e n d ;
c a p _ r t t 2 [i] = t − dd [0] ;

138 d i s p = c a p _ r t t 2 [i] − c a p _ r t t 1 [i] ;
r t t _ s u m = c a p _ r t t 1 [i] + c a p _ r t t 2 [i] ;

140 i f (d i sp >0) { / / E . F l y d a h l : Comment t o Capprobes i m p l e m e n t a t i o n :
Av o i d s c a l c u l a t i n g on t h e b a s i s o f r e o r d e r e d p a c k e t s
C = (double) (numbytes * 8) / d i s p ; / / bps

142
{

144 i f (num>0) {
i f (r t t _ s u m > p r e _ r t t _ s u m) t r e n d ++;

146 e l s e i f (r t t _ s u m < p r e _ r t t _ s u m) t r e n d −−;
} e l s e {

148 t r e n d = 0 ;
o f f s e t _ y = r t t _ s u m ;

150 o f f s e t _ x = t ;
}

152 p r e _ r t t _ s u m = r t t _ s u m ;

154 / / E . F l y d a h l : Comment t o Capprobes i m p l e m e n t a t i o n :
/ / The s e t Omega_S ’ o f (t ime , d e l a y sum i n c r e a s e / d e c r e a s e wr t 1 s t

sample . packe t−p a i r d i s p e r s i o n , i n d e x) :
156 px [num] = t − o f f s e t _ x ;

py [num] = r t t _ s u m − o f f s e t _ y ;
158 pd [num] = d i s p ;

p i [num] = num ;
160

/ / E . F l y d a h l : Comment t o Capprobes i m p l e m e n t a t i o n :
162 / / The s e t Omega_1 o f (t ime , f i r s t p a c k e t i n p a i r OWD. packe t−p a i r

d i s p e r s i o n , i n d e x) :
px1 [num] = t − o f f s e t _ x ;

164 py1 [num] = c a p _ r t t 1 [i] ;
pd1 [num] = d i s p ;

166 p i 1 [num] = num ;
}

168
/ / E . F l y d a h l : Comment t o Capprobes i m p l e m e n t a t i o n :

118

170 / / I n c r e m e n t packe t−p a i r i n d e x
num++;

172
/ / E . F l y d a h l : Comment t o Capprobes i m p l e m e n t a t i o n :

174 / / I f t h i s packe t−p a i r ’ s d e l a y sum l e s s than c u r r e n t minimum ,
up da t e c u r r e n t minimum d e l a y sum and c a p a c i t y e s t i m a t e :

i f (r t t _ s u m <cap_RTT) {
176 cap_RTT = r t t _ s u m ;

cap_C = C ;
178 }

}
180

c a p _ r t t 1 [i] = 0 ;
182 c a p _ r t t 2 [i] = 0 ;

184 / / E . F l y d a h l : Comment t o Capprobes i m p l e m e n t a t i o n :
/ / End−of−run p r o c e d u r e :

186 i f (num>= p r o b e s p e r r u n) {
i n t i , j , k , k1 , k _ f i n a l ;

188 k = 1 ;
k1 = 1 ;

190
/ / E . F l y d a h l : Comment t o Capprobes i m p l e m e n t a t i o n :

192 / / I f t h e r e i s c l o c k skew , f i n d t h e da ta p o i n t s t h a t are p a r t o f
bound c u r v e

i f (t r e n d >=30) { / / i n c r e a s i n g t r e n d
194 f o r (i =2 ; i <num ; i ++) {

i f (py [i] <(py [k] + (py [k]−py [k−1]) * (px [i]−px [k]) / (px [k]−px [k−1]))
) { / / p [i] i s under t h e l i n e

196 px [k] = px [i] ;
py [k] = py [i] ;

198 pd [k] = pd [i] ;
p i [k] = p i [i] ;

200 } e l s e {
k ++;

202 px [k] = px [i] ;
py [k] = py [i] ;

204 pd [k] = pd [i] ;
p i [k] = p i [i] ;

206 }
}

208 f o r (i =2 ; i <num ; i ++) {
i f (py1 [i] <(py1 [k1] + (py1 [k1]−py1 [k1−1]) * (px1 [i]−px1 [k1]) / (px1 [

k1]−px1 [k1−1]))) { / / p [i] i s under t h e l i n e
210 px1 [k1] = px1 [i] ;

py1 [k1] = py1 [i] ;
212 pd1 [k1] = pd1 [i] ;

p i 1 [k1] = p i 1 [i] ;
214 } e l s e {

k1 ++;
216 px1 [k1] = px1 [i] ;

py1 [k1] = py1 [i] ;
218 pd1 [k1] = pd1 [i] ;

119

p i 1 [k1] = p i 1 [i] ;
220 }

}
222 } e l s e i f (t r e n d <=−30) { / / d e c r e a s i n g t r e n d

f o r (i =2 ; i <num ; i ++) {
224 i f (py [i] >(py [k] + (py [k]−py [k−1]) * (px [i]−px [k]) / (px [k]−px [k−1]))

) { / / p [i] i s above t h e l i n e
px [k] = px [i] ;

226 py [k] = py [i] ;
pd [k] = pd [i] ;

228 p i [k] = p i [i] ;
} e l s e {

230 k ++;
px [k] = px [i] ;

232 py [k] = py [i] ;
pd [k] = pd [i] ;

234 p i [k] = p i [i] ;
}

236 }
f o r (i =2 ; i <num ; i ++) {

238 i f (py1 [i] >(py1 [k1] + (py1 [k1]−py1 [k1−1]) * (px1 [i]−px1 [k1]) / (px1 [
k1]−px1 [k1−1]))) { / / p [i] i s above t h e l i n e

px1 [k1] = px1 [i] ;
240 py1 [k1] = py1 [i] ;

pd1 [k1] = pd1 [i] ;
242 p i 1 [k1] = p i 1 [i] ;

} e l s e {
244 k1 ++;

px1 [k1] = px1 [i] ;
246 py1 [k1] = py1 [i] ;

pd1 [k1] = pd1 [i] ;
248 p i 1 [k1] = p i 1 [i] ;

}
250 }

} e l s e t r e n d = 0 ;
252

i f (t r e n d ! = 0) {
254 d i s p = 0 ;

k _ f i n a l = 0 ;
256 / / E . F l y d a h l : Comment t o Capprobes i m p l e m e n t a t i o n :

/ / Choose measurements t h a t are on t h e bound c u r v e o f bo th t h e
minimum d e l a y sum s e t Omega_S ’ and t h e 1 s t p a c k e t minimum one
−way d e l a y s e t

258 f o r (i =1 , j =1 ; i <=k , j <=k1 ; i ++ , j ++) {
f o r (; j <=k1 ; j ++) {

260 i f (p i [i]== p i 1 [j]) {
d i s p += pd [i] ;

262 k _ f i n a l ++;
break ;

264 }
}

266 }
i f (k _ f i n a l ==0) { d i s p = pd [0] ; }

120

268 e l s e {
d i s p /= (double) (k _ f i n a l) ;

270 }
C = (double) (numbytes * 8) / d i s p ; / / bps

272 } e l s e {
C = cap_C ;

274 k _ f i n a l = −1;
k = −1;

276 k1 = −1;
}

278
i f (t r e n d ! = 0) {

280 f o r (i =1 , d i s p =0; i <=k ; i ++) {
d i s p += pd [i] ;

282 }
d i s p /= (double) (k) ;

284 C = (double) (numbytes * 8) / d i s p ; / / bps
}

286
/ / E . F l y d a h l : Get end t i m e

288 g e t t i m e o f d a y (& t_end ,NULL) ;
p r i n t f (" %.2 f %.2 f " , C , t _ e n d . t v _ s e c − t _ s t a r t . t v _ s e c + (double) (

t _ e n d . t v _ u s e c− t _ s t a r t . t v _ u s e c) * 0 . 0 0 0 0 0 1) ;
290 / / f p r i n t f (in ,"==> CAP = %3.3 l f k= %d %d %d \ n " ,C , k _ f i n a l , k , k1) ;

292 cap_C = 0 ;
cap_RTT = 1000000000;

294 num = 0 ;
run ++;

296 }
}

298 }
c l o s e (s o c k f d) ;

300 re turn 0 ;
}

B.5.3 Script for Measurements

! / b i n / bash
2

E . F l y d a h l − S c r i p t t o measure per fo rmance o f Ad Hoc Probe
4

6 s t a r t p s i z e =100 # S t a r t IP p a c k e t s i z e [b y t e s]
e n d p s i z e =1100 # End p a c k e t s i z e [b y t e s]

8 p s i z e i n c =100 # Number o f b y t e s t o i n c r e a s e t h e p a c k e t s i z e be tween
measurements

r u n s =100 # The number o f runs t o per fo rm f o r each p s i z e , numprobes
c o m b i n a t i o n

10 s t a r t n u m p r o b e s =10 # S t a r t number o f packe t−p a i r s
endnumprobes =100 # End number o f packe t−p a i r s

121

12 numprobes inc =10 # I n c r e a s e i n number o f p r obe s
i n t =1000 # I n t e r v a l be tween p a c k e t p a i r s

14 r e c e i v e r I P =" 1 9 2 . 1 6 8 . 1 . 2 "
s e n d e r I P =" 1 9 2 . 1 6 8 . 0 . 2 "

16 p a t h t o s e n d e r =" / home / l a b u s e r / e f l y / p r o b i n g _ t o o l s / adhocprobe / s e n d e r "

18 p s i z e = $ s t a r t p s i z e
numprobes= $ s t a r t n u m p r o b e s

20
m t u d i s c =$ (s s h $ s e n d e r I P c a t / p roc / s y s / n e t / i pv4 / i p _ n o _ p m t u _ d i s c)

22 i f [$? −ne 0]
then

24 echo " Could n o t check i f MTU D i s c o v e r y was d i s a b l e d a t s e n d e r " >&2
e x i t 1

26 f i
i f [$ m t u d i s c −ne 1]

28 then
echo " P l e a s e d i s a b l e MTU D i s c o v e r y a t s e n d e r " >&2

30 echo " Run \ " echo 1 > / p roc / s y s / n e t / i pv4 / i p _ n o _ p m t u _ d i s c \ " a s r o o t " >&2
e x i t 1

32 f i

34 # I n t e r r u p t r o u t i n e
c o n t r o l _ c ()

36 {
i f [$1 −eq 0]

38 then
e x i t 0

40 f i
echo " T e r m i n a t i n g " >&2

42 s s h $2 " k i l l $1 "

44 i f [$? −ne 0]
then

46 echo " Could n o t k i l l packe t−p a i r g e n e r a t o r a t s e n d e r " >&2
e x i t 1

48 f i
e x i t 0

50 }

52 echo " S t a r t i n g t e s t r o u t i n e between s e n d e r $ s e n d e r I P and r e c e i v e r
$ r e c e i v e r I P " >&2

echo " IP P a c k e t S i z e i n b y t e s : $ s t a r t p s i z e − $ e n d p s i z e i n s t e p s o f
$ p s i z e i n c " >&2

54 echo " Number o f p r o b e s p e r measurement : $ s t a r t n u m p r o b e s − $endnumprobes i n
s t e p s o f $numprobes inc " >&2

echo " Number o f r u n s t o pe r fo rm f o r each p s i z e , numprobes c o m b i n a t i o n : $ r u n s
" >&2

56
whi le [$ p s i z e − l e $ e n d p s i z e]

58 do

60 # S t a r t packe t−p a i r g e n e r a t o r w i t h c o r r e c t p a c k e t s i z e , " r e t u r n " PID

122

echo " S t a r t i n g p a c k e t g e n e r a t o r . P s i z e : $ p s i z e b y t e s I n t : $ i n t " >&2
62 s e n d e r p i d =$ (s s h $ (echo $ s e n d e r I P ’ nohup ’ $ p a t h t o s e n d e r ’ ’ $ r e c e i v e r I P ’ ’

$ p s i z e ’ ’ $ i n t ’ > / dev / n u l l 2>&1 < / dev / n u l l & echo $! ’))
i f [$? −ne 0]

64 then
echo " Could n o t s t a r t packe t−p a i r g e n e r a t o r a t s e n d e r " >&2

66 e x i t 1
f i

68
trap " c o n t r o l _ c $ s e n d e r p i d $ s e n d e r I P " SIGINT

70
echo −e " \ a " >&2

72 read −p " S t a r t c r o s s t r a f f i c and p r e s s a key "
whi le [$numprobes − l e $endnumprobes]

74 do
echo −n " $ p s i z e $numprobes "

76 # S t a r t r e c e i v e r
echo " S t a r t i n g r e c e i v e r . Numprobes : $numprobes " >&2

78 . / r e c e i v e r $ r u n s $numprobes
i f [$? −ne 0]

80 then
echo " Could n o t s t a r t packe t−p a i r r e c e i v e r " >&2

82 e x i t 1
f i

84 numprobes=$ [$numprobes+ $numprobes inc]
echo

86 done

88 echo −e " \ a " >&2
read −p " Stop c r o s s t r a f f i c and p r e s s a key "

90 # K i l l packe t−p a i r g e n e r a t o r
echo " K i l l i n g p a c k e t g e n e r a t o r " >&2

92 s s h $ s e n d e r I P " k i l l $ s e n d e r p i d "
i f [$? −ne 0]

94 then
echo " Could n o t k i l l packe t−p a i r g e n e r a t o r a t s e n d e r " >&2

96 e x i t 1
f i

98 s e n d e r p i d =0
p s i z e =$ [$ p s i z e + $ p s i z e i n c]

100 numprobes= $ s t a r t n u m p r o b e s
done

The sender must have a SSH-server with the receiver’s public key installed for passwordless
login in order to make the script work as intended.

123

B.6 Script for Generating Cross Traffic

! / b i n / bash
2

E . F l y d a h l − S c r i p t t o g e n e r a t e c r o s s t r a f f i c
4

s i n k I P =" 1 0 . 0 . 2 . 3 4 "
6 d s t p o r t =5002

s r c p o r t =5002
8 o v e r h e a d =28 # UDP and IP h e a d e r s

p s i z e =$1
10 b i t r a t e =$2

type =$3
12

c o n t r o l _ c ()
14 {

echo " T e r m i n a t i n g "
16 s s h $2 " k i l l $1 "

18 i f [$? −ne 0]
then

20 echo " Could n o t k i l l s i n k p r o c e s s " >&2
e x i t 1

22 f i
e x i t 0

24 }

26
Check i n p u t

28 i f [" $ p s i z e " == " "] | | [" $ b i t r a t e " == " "] | | [" $ t y p e " == " "]
then

30 echo " Usage : $0 IPPACKETSIZE (b y t e s) BITRATE (kbps) PERIODIC | POISSON"
e x i t 1

32 f i

34 # S t a r t s i n k , " r e t u r n " PID

36 s i n k p i d =$ (s s h $ (echo $ s i n k I P ’ nohup mgen5 e v e n t "LISTEN UDP ’ $ d s t p o r t ’ " > /
dev / n u l l 2>&1 < / dev / n u l l & echo $! ’))

i f [$? −ne 0]
38 then

echo " Could n o t s t a r t packe t−p a i r g e n e r a t o r a t s e n d e r " >&2
40 e x i t 1

f i
42

trap " c o n t r o l _ c $ s i n k p i d $ s i n k I P " SIGINT
44

mgen5 e v e n t " 0 . 0 ON 1 UDP SRC $ s r c p o r t DST $ s i n k I P / $ d s t p o r t $ t y p e [$ (echo "
$ b i t r a t e *1000 / $ p s i z e / 8 " | bc − l) $ [$ p s i z e−$ove rhead]] "

The sink must have a SSH-server with the traffic generator’s public key installed for password-
less login in order to make the script work as intended.

124

Appendix C

One-way Implementation of Allbest

C.1 Results

Figure C.1 shows the preliminary results obtained from a one-way implementation of Allbest
[14]. The time stamping is performed by the kernel and, judging from the IEEE802.3 results, the
problems with context switch delay are no longer an issue. The implementation does not have
any clock skew correction, which most likely degrades its performance in this measurements
since 100 hundred probes per measurement were used.

C.2 Allbest 1-Way Source Code

C.2.1 Sender Source Code

/ *
2 * s e n d e r . c − One−way d e l a y v e r s i o n o f A l l b e s t

*
4 * /

6 # i n c l u d e < s t d i o . h>
i n c l u d e < s t d l i b . h>

8 # i n c l u d e < s t r i n g . h>
i n c l u d e < u n i s t d . h>

10 # i n c l u d e < s y s / t y p e s . h>
i n c l u d e < s y s / shm . h>

12 # i n c l u d e < s y s / t ime . h>
i n c l u d e < s y s / s e l e c t . h>

14 # i n c l u d e < s y s / param . h>
i n c l u d e < s y s / t y p e s . h>

16 # i n c l u d e < s y s / s o c k e t . h>
i n c l u d e < a s s e r t . h>

18 # i n c l u d e < n e t i n e t / i n . h>
i n c l u d e < a r p a / i n e t . h>

20 # i n c l u d e < n e t d b . h>
i n c l u d e < s i g n a l . h>

125

100 200 300 400 500 600 700 800 900 1000 1100
4

5

6

7

8

9

10

11

12

13

Packet Size [bytes]

P
a

th
 C

a
p

a
c
it
y
 E

s
ti
m

a
te

 [
M

b
p

s
]

AHP

MGEN

TMC

Allbest 1−way

(a) IEEE802.3 results

3 4
0

0.5

1

1.5

Number of hops

N
o

rm
a

liz
e

d
 b

ia
s
/s

td
.

d
e

v

Bias AHP

Bias Allbest 1−way

TMC CW=0

Std. dev AHP

Std. dev Allbest 1−way

(b) Multi-hop results

Figure C.1: Preliminary results for a one-way version of Allbest compared to Ad Hoc Probe. 95 %
Student-t confidence interval.. Packet size: 700 bytes. Number of probes per measurement: 100. Number
of measurements: 20 per data point

126

22 # i n c l u d e < t ime . h>

24 # d e f i n e PORT_F 15000
d e f i n e PORT_B 15000

26 # d e f i n e MAXBUFLEN 100000

28 / / IP : 20 b y t e s UDP: 8 b y t e s
d e f i n e HEADER_SIZE 28

30
s t r u c t s o c k a d d r _ i n a d d r _ f ; / / c o n n e c t o r ’ s a d d r e s s i n f o r m a t i o n

32
i n t main (i n t argc , char * a rgv []) {

34 char * add r = NULL;
i n t p o r t = −1;

36 i n t s e n d _ s o c k e t ;
s t r u c t h o s t e n t * he ;

38
i n t i ;

40 i n t *DATA;
i n t PACKET_SIZE ;

42 i n t numbytes ;

44 unsigned long long CPU_HZ = 0 ;
s t r u c t t i m e s p e c req , rem ;

46 i f (a r g c != 4) {
f p r i n t f (s t d e r r , " usage : %s hostname PACKET_SIZE (b y t e s) INTERVAL(ms) \ n " ,

a rgv [0]) ;
48 e x i t (1) ;

}
50

i n t i n t e r v a l _ m s = a t o l (a rgv [3]) ;
52 i n t i n t e r v a l _ s = i n t e r v a l _ m s / 1 0 0 0 ;

i n t e r v a l _ m s −= i n t e r v a l _ s *1000 ;
54

r e q . t v _ s e c = i n t e r v a l _ s ;
56 r e q . t v _ n s e c = 1000000 * i n t e r v a l _ m s ; / / I n t e r v a l be tween packe t−p a i r s

58 i f ((he= ge thos tbyname (a rgv [1])) == NULL) { / / g e t t h e h o s t i n f o
p e r r o r (" ge thos tbyname ") ;

60 e x i t (1) ;
}

62
PACKET_SIZE = a t o l (a rgv [2]) ;

64 PACKET_SIZE −= HEADER_SIZE ;
/ / PACKET_DELAY = a t o l (argv [2]) ;

66 / / TEST_TIME = a t o l (argv [3]) ;

68 i f ((s e n d _ s o c k e t = s o c k e t (AF_INET , SOCK_DGRAM, 0)) == −1) {
p e r r o r (" s o c k e t ") ;

70 e x i t (1) ;
}

72 a d d r _ f . s i n _ f a m i l y = AF_INET ; / / h o s t b y t e o r d e r
a d d r _ f . s i n _ p o r t = h t o n s (PORT_F) ; / / s h o r t , ne twork b y t e o r d e r

127

74 a d d r _ f . s i n _ a d d r = * ((s t r u c t i n _ a d d r *) he−>h_addr) ;
memset (&(a d d r _ f . s i n _ z e r o) , ’ \ 0 ’ , 8) ; / / z e r o t h e r e s t o f t h e s t r u c t

76
double t ;

78 double *dd ;
s t r u c t t i m e v a l t s n d ;

80 i n t sn = 1 ;
DATA = (i n t *) ma l l oc (PACKET_SIZE) ;

82 memset (DATA, ’ 0 ’ , PACKET_SIZE) ;
dd = (double *) (DATA + 1) ;

84
whi le (1) {

86 DATA[0] = sn ;

88 g e t t i m e o f d a y (& tsnd , NULL) ;
t = (double) t s n d . t v _ s e c + ((double) t s n d . t v _ u s e c) * 0 . 0 0 0 0 0 1 ;

90 dd [0] = t ;
i f ((numbytes= s e n d t o (s e n d _ s o c k e t , DATA, PACKET_SIZE , 0 , (s t r u c t

s o c k a d d r *)&addr_ f , s i z e o f (s t r u c t s o c k a d d r))) == −1) {
92 p r i n t f (" E r r : send sn=%d \ n " , sn *2−1) ;

}
94

g e t t i m e o f d a y (& tsnd , NULL) ;
96 t = t s n d . t v _ s e c +(double) t s n d . t v _ u s e c * 0 . 0 0 0 0 0 1 ;

DATA[0] = sn +1;
98 i f ((numbytes= s e n d t o (s e n d _ s o c k e t , DATA, PACKET_SIZE , 0 , (s t r u c t

s o c k a d d r *)&addr_ f , s i z e o f (s t r u c t s o c k a d d r))) == −1) {
p r i n t f (" E r r : send sn=%d \ n " , sn *2) ;

100 }

102 sn +=2;
sn %= 10000;

104 n a n o s l e e p (& req , &rem) ;
}

106 f r e e (DATA) ;
e x i t (0) ;

108 }

C.2.2 Receiver Source Code

/ *
2 ** r e c e i v e r . c One−way d e l a y v e r s i o n o f A l l b e s t

* /
4

i n c l u d e < s t d i o . h>
6 # i n c l u d e < s t d l i b . h>

i n c l u d e < s t r i n g . h>
8 # i n c l u d e < u n i s t d . h>

i n c l u d e < e r r n o . h>
10 # i n c l u d e < s t r i n g . h>

i n c l u d e < s y s / t ime . h>

128

12 # i n c l u d e < s y s / t y p e s . h>
i n c l u d e < s y s / s o c k e t . h>

14 # i n c l u d e < n e t i n e t / i n . h>
i n c l u d e < a r p a / i n e t . h>

16 # i n c l u d e < t ime . h>

18 # d e f i n e MYPORT 15000 / / t h e p o r t u s e r s w i l l be c o n n e c t i n g t o

20 # d e f i n e MAXBUFLEN 100000

22 # d e f i n e HEADER_SIZE 28

24 t y p e d e f s t r u c t {
double t ;

26 double owd ;
} p o i n t ;

28
i n t main (i n t argc , char * a rgv [])

30 {
i n t s o c k f d ;

32 s t r u c t s o c k a d d r _ i n my_addr ; / / my a d d r e s s i n f o r m a t i o n
s t r u c t s o c k a d d r _ i n t h e i r _ a d d r ; / / c o n n e c t o r ’ s a d d r e s s i n f o r m a t i o n

34
/ / E . F l y d a h l : De termine i f number o f runs i s s p e c i f i e d as argument

36 i f (a r g c < 3) { p r i n t f (" Usage : %s NUMBEROFRUNS PROBESPERRUN\ n " , a rgv [0]) ;
e x i t (EXIT_FAILURE) ; }

i n t numbruns = a t o i (a rgv [1]) ;
38 i n t p r o b e s p e r r u n = a t o i (a rgv [2]) ;

40 i f ((s o c k f d = s o c k e t (AF_INET , SOCK_DGRAM, 0)) == −1) {
p e r r o r (" s o c k e t ") ;

42 e x i t (1) ;
}

44
/ / E . F l y d a h l : Enable Ke rn e l t i m e s t a m p i n g t o a v o i d i n a c c u r a c y due t o

packe t−p a i r c o m p r e s s i o n or i n f l a t i o n caused by c o n t e x t s w i t c h
46 i n t t imestampOn = 1 ;

i n t e r r o r ;
48 i f ((e r r o r = s e t s o c k o p t (sockfd , SOL_SOCKET , SO_TIMESTAMP, (void *) &

timestampOn , s i z e o f (t imestampOn))) == −1)
{

50 p e r r o r (" s e t s o c k o p t (SO_TIMESTAMP) f a i l e d ") ;
e x i t (EXIT_FAILURE) ;

52 }

54 my_addr . s i n _ f a m i l y = AF_INET ; / / h o s t b y t e o r d e r
my_addr . s i n _ p o r t = h t o n s (MYPORT) ; / / s h o r t , ne twork b y t e o r d e r

56 my_addr . s i n _ a d d r . s _ a d d r = INADDR_ANY; / / a u t o m a t i c a l l y f i l l w i t h my
IP

memset (&(my_addr . s i n _ z e r o) , ’ \ 0 ’ , 8) ; / / z e r o t h e r e s t o f t h e
s t r u c t

58

129

i f (b ind (sockfd , (s t r u c t s o c k a d d r *)&my_addr , s i z e o f (s t r u c t
s o c k a d d r)) == −1) {

60 p e r r o r (" b ind ") ;
e x i t (1) ;

62 }

64 / / E . F l y d a h l : Dec lare and i n i t i a l i z e b u f f e r s f o r r e c e p t i o n o f da ta and
t i m e s t a m p

char r c v b u f [MAXBUFLEN] ;
66 char m s g _ c o n t r o l [MAXBUFLEN] ;

s t r u c t i o v e c msg_iov = {&rcvbuf , MAXBUFLEN} ;
68 memset (r cvbu f , ’ 0 ’ , MAXBUFLEN) ;

memset (msg_con t ro l , ’ 0 ’ , MAXBUFLEN) ;
70 s t r u c t msghdr msg={

&t h e i r _ a d d r ,
72 s i z e o f (t h e i r _ a d d r) ,

&msg_iov , 1 ,
74 &msg_con t ro l ,

MAXBUFLEN,
76 0

} ;
78

/ / E . F l y d a h l : V a r i a b l e s f o r main loop
80 i n t *DATA;

i n t run = 1 ;
82 i n t num1 = 0 ;

i n t num2 = 0 ;
84 i n t seq =0;

i n t l a s t s e q 1 =0;
86 i n t numbytes =0;

double t =0 ;
88 double * dd ;

s t r u c t cmsghdr * cmsg ;
90 s t r u c t t i m e v a l * t r c v ;

double cap_C =0;
92 p o i n t p1 [1 0 0 0 0] ; / / E . F l y d a h l : Array t o save p a c k e t 1 da ta

p o i n t p2 [1 0 0 0 0] ; / / E . F l y d a h l : Array t o save p a c k e t 2 da ta
94 s t r u c t t i m e v a l t _ s t a r t , t _ e n d ;

96
whi le (run <=numbruns) {

98 / / E . F l y d a h l : S e t s t a r t t i m e
i f (num1==0) { g e t t i m e o f d a y (& t _ s t a r t ,NULL) ; }

100
i f ((numbytes=recvmsg (sockfd , &msg , 0)) == −1) {

102 p e r r o r (" r e c v f r o m ") ;
e x i t (1) ;

104 }
numbytes += HEADER_SIZE ;

106
/ / E . F l y d a h l : Read t i m e s t a m p

108 f o r (cmsg=CMSG_FIRSTHDR(&msg) ; cmsg !=NULL; cmsg=CMSG_NXTHDR(&msg , cmsg
))

130

{
110 i f (cmsg−>c m s g _ l e v e l ==SOL_SOCKET && cmsg−>cmsg_type ==SO_TIMESTAMP)

{
112 t r c v = (s t r u c t t i m e v a l *)CMSG_DATA(cmsg) ;

break ;
114 }

}
116 i f (cmsg==NULL)

{
118 p e r r o r ("SO_TIMESTAMP n o t e n a b l e d o r c o n t r o l b u f f e r t o s m a l l o r I /O

e r r o r ") ;
e x i t (EXIT_FAILURE) ;

120 }

122 t = (double) t r c v −>t v _ u s e c *0.000001+ t r c v −>t v _ s e c ;

124 DATA = (i n t *) r c v b u f ;
dd = (double *) (DATA + 1) ;

126 seq = DATA[0] ;

128
/ / E . F l y d a h l : R e g i s t e r OWD sums and i n c r e m e n t p a c k e t c o u n t e r

130 i f (seq %2==1){
p1 [num1] . owd = t − dd [0] ;

132 p1 [num1] . t = t ;
num1++;

134 l a s t s e q 1 = seq ;
} e l s e i f (seq%2 == 0 && seq−l a s t s e q 1 ==1) { / / E . F l y d a h l : Only c o l l e c t

2nd p a c k e t i f f i r s t p a c k e t o f t h e p a i r has been r e c e i v e d as l a s t
p a c k e t

136 p2 [num2] . owd = t − dd [0] ;
p2 [num2] . t = t ;

138 num2++;
}

140
/ / E . F l y d a h l : End−of−run p r o c e d u r e :

142 i f (num2== p r o b e s p e r r u n) {

144
double min_owd1 =10000000;

146 f o r (i n t k =0; k<num1 ; k ++)
{

148 i f (p1 [k] . owd<min_owd1)
{

150 min_owd1=p1 [k] . owd ;
}

152 }

154 double min_owd2 =10000000;
f o r (i n t k =0; k<num2 ; k ++)

156 {
i f (p2 [k] . owd<min_owd2)

158 {

131

min_owd2=p2 [k] . owd ;
160 }

}
162

cap_C = numbytes * 8 / (min_owd2−min_owd1) ; / / E . F l y d a h l : C a p a c i t y
e s t i m a t e

164
/ / E . F l y d a h l : Get end t i m e

166 g e t t i m e o f d a y (& t_end ,NULL) ;

168 / / E . F l y d a h l : Outpu t
p r i n t f (" %.2 f %.2 f " , cap_C , t _ e n d . t v _ s e c − t _ s t a r t . t v _ s e c + (double) (

t _ e n d . t v _ u s e c− t _ s t a r t . t v _ u s e c) * 0 . 0 0 0 0 0 1) ;
170

172
/ / E . F l y d a h l : R e s e t f o r new run

174 cap_C =0;
num1 =0;

176 num2 =0;
run ++;

178 }
}

180 c l o s e (s o c k f d) ;

182 re turn 0 ;
}

132

	Introduction
	Motivation
	Scenario
	Scope
	Methods
	Outline

	Background
	Terminology and Definitions
	Network Capacity Metrics
	Common Terminology
	Theoretical Maximum Capacity (Throughput)

	Medium Access Control
	Carrier Sense Multiple Access
	Time-Division Multiple Access
	Frequency-Division Multiple Access

	Path Capacity Estimator Performance Requirements
	Qualitative Requirements
	Quantitative Requirements
	Summary of the Requirements

	Path Capacity Estimation Techniques
	Packet Dispersion Analysis
	Delay Analysis
	Hybrid Approach

	Selecting an Algorithm for Experimental Evaluation
	Discussion
	The Ad Hoc Probe Algorithm

	Estimating Path Capacity under Ideal Conditions
	Experimental Set-up
	Test Bed Network Topologies
	Link Technologies
	Software Configuration
	Ad Hoc Probe Parameters
	Measuring the True Path Capacity
	Summary

	Results
	The Effect of Varying the Packet Size
	The Effect of Varying the Number of Probes Per Measurement

	Discussion
	Accuracy over CSMA-link
	More Causes of Overestimation
	Accuracy over a TDMA-link
	Accuracy over FDMA Link
	IP Fragmentation
	Accuracy over a Rate Limited Path
	Number of Probes Per Measurement

	Evaluation
	Compliance to Qualitative Requirements
	Compliance to Quantitative Requirements
	Conclusive Remarks

	Estimating Path Capacity under Non-ideal Conditions
	Experimental Set-Up
	Test Bed Network Topologies
	Link Technologies
	Sofware Configuration
	Ad Hoc Probe Parameters
	Cross Traffic Generation
	Measurement Procedure
	Measuring the True Path Capacity
	Summary

	Results
	IEEE802.11b Contention
	Pure IEEE802.3
	Satellite Link

	Discussion
	Accuracy with CSMA Contention
	Accuracy when Sharing a FIFO Queue

	Evaluation
	Modification of the Validity Constraints
	Conclusive Remarks

	Conclusions and Future Work
	Conclusions
	Future Work
	Implementing the Measurement-based Admission Controller
	Estimation of Other Parameters
	Time-Division Multiple Access
	Increase the Complexity
	Evaluate the Performance of a One-Way variant of Allbest

	Bibliography
	Appendices
	Appendix Theoretical Maximum Capacity
	The TMC of IEEE802.11b
	The TMC of IEEE802.3 Ethernet

	Appendix Details Regarding the Path Capacity Experiments
	IPsec Overhead
	Specific Settings in Operating System
	Vyatta Sample Configuration
	Vyatta1
	Vyatta2
	Vyatta3
	Vyatta4

	Scripts for Measuring the Correct Path Capacity
	Traffic Generation
	Trace File Analysis

	Ad Hoc Probe Code
	Sender Source Code
	Receiver Source Code
	Script for Measurements

	Script for Generating Cross Traffic

	Appendix One-way Implementation of Allbest
	Results
	Allbest 1-Way Source Code
	Sender Source Code
	Receiver Source Code

