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Paper summary 

Paper summary 

This thesis consists of three scientific papers in the main body and two papers in the appendix. 

The main body papers are arranged into a suite consisting of a tool description (Paper 1) and 

two studies concerning anisotropy evolution in systems subject to large deformation (Paper 2 

& 3).  

The first paper presents details of the developed finite element model implementation that al-

lows for solving problems involving more than million degrees of freedom on a desktop com-

puter on a minute scale. This tool is used in the subsequent studies to directly resolve analyzed 

models without introducing uncertainties related to a priori homogenization. In the second pa-

per, we analyze strain pattern development around a rigid circular inhomogeneity embedded in 

a laminated host. Results obtained by direct resolution of isotropic layers are juxtaposed with a 

system evolution where the host is modeled as an equivalent anisotropic fluid. Numerical re-

sults are augmented by an analytical solution describing internal and external fields for an el-

liptical inclusion in an anisotropic medium subject to a uniform load. The original solution that 

is suitable for compressible elastic materials and arbitrary material parameters contrasts has 

been adjusted for the study purposes. In the third paper, we have developed a constitutive 

model for a two-phase composite that incorporates an effective anisotropy development due to 

an emerging shape preferred orientation. The final model combines a model of the shape evo-

lution of an inclusion in an anisotropic host and an effective property scheme for a composite 

comprising aligned stretched inclusions. We have derived these models based on the analytical 

solution for an elliptical inhomogeneity embedded in a homogenous anisotropic host. Model 

predictions have been validated by finite element calculations. 

The papers in the appendix are not directly related to the main topic of the anisotropy. Here, 

we study three-dimensional fold patterns (Paper 4) and analyze alternating direction implicit 

numerical schemes (Paper 5). Marcin Krotkiewski is the first author of the last paper. 

A manuscript documenting my work with the analytical solution for a compressible elliptical 

inclusion in an anisotropic host is under preparation. During the duration of my Ph. D., I have 

worked with the internal and external Eshelby’s solution for ellipsoidal inclusions. Ulrike Ex-

ner from Vienna University is working on a paper, where we have applied the limiting case of 

an elliptical inclusion embedded in a 3D matrix to model flanking structures. I have joined the 

Greenland field campaign organized in 2006 by Ebbe Hartz and a project concerning overpres-

sure related to melting. I have contributed to a plasticity benchmark by Victorya Yarushina 
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with a finite element code based on the consistent tangent approach. Finally, a project with 

Espen Jettestuen devoted to Stokesian dynamics of rigid inclusions under a shear is under de-

velopment. Below short descriptions of the scientific papers included in the thesis are pro-

vided. 

Paper 1: MILAMIN: MATLAB-based FEM solver for large problems 

This paper presents our implementation of a thermal and incompressible Stokes finite element 

solver in two dimensions. In our modeling, we employ unstructured computational meshes that 

are particularly useful in resolving complex geometries of heterogeneous geological materials. 

This ability of directly representing complicated and evolving model geometry, together with 

our tools that allow for an automatic mesh reconstruction during simulations, is crucial in the 

context of our later applications. Here, we are mainly focused on code efficiency. Our simula-

tions involving numerous inclusions and complex anisotropy structures require exceptionally 

high resolutions. In addition, a large number of simulation steps is needed to accurately inte-

grate system evolution to large strains that are often encounter in geological problems.  

Therefore, we have set the goal of implementing an unstructured FEM code that is capable of 

solving thermal and mechanical problems involving one million degrees of freedom on a desk-

top computer in a minute. In the paper, we describe in details how we have accomplished this 

task using MATLAB environment. Firstly, we establish a standard version that already com-

bines all the state of the art components required in a finite element implementation. This in-

cludes among others: efficient pre-processing, fast matrix assembly, exploiting matrix symme-

try for storage, and employing the best available direct solver and reordering packages. Our 

particular formulation allows us to use the efficient Cholesky factorization also for the incom-

pressible Stokes problem. In addition, we present an efficient implementation of boundary con-

ditions. The clear structure of the code serves educational purposes well. Furthermore, in our 

optimized version we have improved the efficiency of the stiffness matrix calculations by 

minimizing the ratio of overhead to computation. Another priority was to avoid unnecessary 

data transfers and promote cache reuse, as memory speed is a major bottleneck on current 

computer architectures. 

The MATLAB environment is especially suited for code development and testing. By paying 

attention to the strategies outlined in this article, MATLAB-based MILAMIN can also be used 

as a production tool for the analysis of two dimensional problems with millions of unknowns 
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within minutes. We provide the complete MILAMIN source code that can be downloaded as 

an electronic supplement to this paper. 

Paper 2: Structure Development around a Rigid Circular Inclusion in an 

Anisotropic Host Subject to Simple Shear 

In this paper, we discuss the structure formation around an inclusion embedded in a layered 

medium during a finite deformation. We study two different model categories: an explicit lay-

ering present in the host and an anisotropic matrix case.  

Firstly, we analyze an instantaneous flow pattern around a rigid circular inclusion subject to a 

simple shear in a layering direction. Provided the host anisotropy factor corresponds to a vis-

cosity ratio of weak and strong layers, the results obtained by the two approaches converge in a 

limit of thin layers. An analytical elastic solution describing internal and external fields for an 

elliptical inclusion embedded in an anisotropic host subject to a uniform far field loads has 

been introduced in details. We have adjusted the solution to a rigid circular inclusion case and 

for incompressible viscous materials. Numerical and analytical flow predictions coincide in a 

small inclusion limit, where effects related to proximity of computational model boundaries 

vanish. Nevertheless, these boundary effects lead to a decrease of the inclusion rotation rate, 

grow in importance with the anisotropy strength and in natural systems may significantly af-

fect the inclusion motion in a presence of shear zone walls.  

Our study of the instantaneous flow pattern provides a starting point for finite deformation 

simulations, where we have subjected the inclusion-host system to a simple shear of a magni-

tude five. Structure formation in the vicinity of the inclusion is automatically taken care of in 

the case of explicitly layered host and we have utilized a director field to model the anisotropy 

reorientation. Due to the structural development, the instantaneous flow pattern predicted for a 

homogeneous layering becomes invalid already after a small deformation. At the beginning, 

this is manifested by breaking of an orthotropic symmetry present in the initial flow field. A 

presence of the host layering has proven to have a pronounced impact on the inclusion rotation 

rate. Strong anisotropy leads to substantially reduced rotation rates once a shear strain magni-

tude of two is reached. This effect and related developments in the structural development in 

the matrix may yield finite strain structures that appear to be the result of substantially lower 

strains. The comparison of layered and anisotropic hosts reveals that the effective approach is 

good when inclusion motion is considered. However, the detailed structural evolution in a lay-
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ered matrix, e.g. development of rootless folds, thickening of strong layers, deformation local-

ization in weak layers can only be studied if the layers are explicitly resolved. 

This study shows how inhomogeneity and anisotropy interact when subject to large deforma-

tion. The structural memory of the anisotropic host material proves essential with respect to the 

inclusion motion leading to the effective inclusion stabilization. The up-scaled behavior of the 

layered host materials can be approximated by the anisotropy in the thin layers limit. The pres-

ence of the coarse host layering results in a limited structure development. These results bear 

important implications for the strain analysis relying on the inclusion-host systems. 

Paper 3: Structural anisotropy development of  a two-phase composite sub-

ject to large deformation 

This paper is devoted to the structural development and related mechanical effects in a two-

phase composite characterized by the inclusion-host type of the geometry. Shape preferred ori-

entation develops in an aggregate consisting of initially circular weak inclusions that has been 

subject to a shear strain. The overall mechanical response of such a medium becomes effec-

tively anisotropic. An extreme case is provided by a perfectly layered medium, where shear 

and normal viscosity components correspond to the lower and upper theoretical bounds im-

posed on the effective viscosity. In this study, we examine shape evolution of an isolated in-

clusion embedded in an anisotropic host and derive a scheme predicting the effective normal 

and shear viscosity of a composite comprising aligned elliptical inclusions. Next, these models 

are combined into a set of ordinary differential equations that describe mechanical evolution of 

a composite rock for arbitrary deformation paths. The analytical predictions are compared to 

results of our finite element modeling, where we have directly resolved the shape and overall 

viscosity evolution for inclusion aggregates under a pure and simple shear. 

We show that the shape evolution of an isolated inclusion is affected by a presence of the ani-

sotropy in the host. In the pure shear case, an analytical formula describing the aspect ratio 

evolution for an initially circular inclusion has been derived. In comparison to the isotropic 

case, it predicts an enhanced inclusion stretching. In the simple shear case, the inclusion stretch 

is again stronger, but the ellipticity-inclination path is affected to a lesser degree. These results 

have been obtained assuming the host anisotropy of a constant strength (unrelated to the inclu-

sion aspect ratio) and an orientation mimicking the inclusion axis. 

The effective mechanical properties of inclusion assemblages have been studied numerically. 

Examined parameters include inclusion concentration, ellipticity and inclusion-host viscosity 
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ratio. We find that the effective viscosity varies non-linearly with inclusion concentration, but 

always falls within the theoretical bounds. For a given phase concentration, the results are sig-

nificantly different depending on if this phase forms the matrix or the inclusions. The numeri-

cal results show that the effective properties of composites with phases interchanged are ap-

proximately reciprocal. Introducing aligned elongated inclusions in the host results in an over-

all anisotropy. Even for strongly elongated shapes, the computed anisotropy factors are signifi-

cantly lower than in the laminate case, especially for large viscosity ratios. In the anisotropic 

case, the alternate effective viscosity components are approximately reciprocal after the phase 

swap. By varying the inclusion-host viscosity ratio, we find that the effective viscosities as-

sume finite values in limiting rigid inclusion or incompressible void cases, even for concentra-

tions of fifty percent. Details of the inclusion configuration exert a limited influence on the ef-

fective properties. 

The numerical results have been utilized to validate analytical schemes predicting effective 

properties of such composites. The model developed by Fletcher (2004) in the spirit of the self-

consistent averaging (SCA) technique provides a valuable contribution in this direction. It is 

free of phenomenological parameters and based on inclusion concentration, ellipticity and in-

clusion-host viscosity ratio predicts the overall normal and shear viscosity. We find that these 

predictions provide a good approximation to the numerical data up to twenty percent concen-

trations. This scheme is inherently symmetric with respect to a phase swap and cannot predict 

the observed dichotomy of the effective properties expressed at most for composites of the 

equal phase abundances. The other deficiency of this model is an unbound prediction for a lim-

iting rigid inclusion case at the concentration of fifty percent and lack of it for higher concen-

trations in this case. We have derived another scheme based on the differential effective me-

dium (DEM) approach that is suitable for the anisotropic composite case. The model is free 

from the shortcomings of the SCA scheme and provides a good prediction to the numerical 

data for a wide range of concentrations. We speculate that the SCA model is more suitable for 

multi-grain aggregates and becomes superior over the DEM scheme in this case.  

The shape evolution model and DEM scheme have been combined into a set of equations that 

describe the shape and mechanical evolution of a two-phase composite rock under arbitrary 

load conditions. In particular, evolution of the stress component needed to drive the system can 

be extracted from the model. We have examined the weak inclusion case in a pure and simple 

shear. The model predicts a monotonous hardening in the pure shear case. In a simple shear, an 

initial hardening phase is followed by a pronounced weakening after a shear strain of magni-
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tude one. We have performed corresponding numerical simulations for different inclusion con-

centrations. Despite complex shapes developing due to inclusion interactions, the analytical 

model captures the effective stress evolution well. Discrepancies are only observed in pure 

shear for densely packed inclusions and after significant strain. This has been attributed to a 

formation of localized deformation bands that may lead to an overall weakening. In a simple 

shear, S-C structures have formed and inclusion shapes are non-elliptical, but the analytical 

model provides a surprisingly good approximation to the overall stress evolution. 

We conclude that our model is capable of predicting the overall shape and mechanical evolu-

tion of a two-phase composite, even for high concentration and large strains. We have ob-

served localization phenomena on a grain scale in the numerical simulations. However, our 

overall constitutive model cannot exclusively explain localization on a larger scale, as long as a 

disconnected topology of an inclusion phase is maintained. 

In this study, we have shown how the anisotropy originates and evolves in an initially isotropic 

but heterogeneous rock subject to finite deformation. The derived up-scaled analytical model 

has been validated by the numerical simulations. The predictions are accurate for high inclu-

sion concentrations and large strains. Our finite strain analytical model improves the rheologi-

cal laws employed in large scale tectonic simulations. The transient effects observed in the de-

formation experiments of heterogeneous materials can be understood better in our model 

framework. Structural development and related strain weakening is shown insufficient to ex-

plain the strain localization for linear materials in the ductile regime. 

Paper 4 (Appendix): Evolution of  large amplitude 3D fold patterns: a FEM 

study 

We study fold patterns developing in three dimensions under different load conditions. The 

problem of the fold interference has been addressed many times in the literature, but mostly 

from a kinematic perspective. Analytical mechanical models proposed for three dimensional 

setups are limited to small amplitudes and cannot resolve the interaction of individual folds 

occurring at later development stages. Here, we present the results of finite element simula-

tions, where we subject a perturbed planar inhomogeneity to perpendicular horizontal loads in 

different proportions. Initial amplification of the instability follows the analytical predictions 

derived by Fletcher (1991). We show that the fold pattern of a layer subject to equal loads is 

not a simple dome and basin structure (egg carton). Instead, a complicated hinge network de-

velops, where individual folds are characterized by the aspect ratios of two. Finally, we specu-
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late that the ellipticity of the folds could be utilized as a measure of the load proportions during 

the deformation. This paper has a strong technical component as the modeling required large 

numerical resolutions to capture sufficiently representative volumes and involved the unstruc-

tured computational meshes that allow integrating system evolution to large strains. Studying 

the incompressible Stokes problem for heterogeneous materials using body-fitting tetrahedral 

meshes in three dimensions necessitates development of tailored numerical schemes. We em-

ploy the minimal residual iterative method to solve a resulting linear system of equations and 

parallel computing is involved at this stage. Our code has been tested on a thousand CPUs and 

shows superb scaling. 

Paper 5 (Appendix): Fractional Steps Methods for Transient Problems on 

Commodity Computer Architectures 

In this paper, we investigate alternating direction implicit (ADI) methods and show an efficient 

implementation for shared memory machines. The ADI methods are characterized by a low 

operation count and our implementation is only limited by a memory bandwidth. We have 

been able to solve transient parabolic and hyperbolic problems involving a billion degrees of 

freedom. We pay a special attention to a material heterogeneity that is inherent to all geologi-

cal models and is challenging from a numerical perspective. In addition, a possibility to em-

ploy the ADI schemes for solving elliptic problems is discussed. We recognize that boundary 

condition treatment becomes crucial in this context. Finally, two large-scale applications are 

presented that rely on real-world reservoir data.  
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Paper 1: MILAMIN: MATLAB-based FEM solver for large 

problems 

Submitted to Geochemistry, Geophysics, Geosystems by  

M. Dabrowski, M. Krotkiewski and D.W. Schmid  

Abstract 

The finite element method (FEM) combined with unstructured meshes forms an elegant and 

versatile approach capable of dealing with the complexities of problems in earth science. Prac-

tical applications often require high resolution models that necessitate advanced computational 

strategies. We therefore developed MILAMIN (“MILlion A MINute”), an efficient MATLAB 

implementation of FEM that is capable of setting up, solving, and post-processing two-

dimensional problems with one million unknowns in one minute on a modern desktop com-

puter. MILAMIN allows the user to achieve numerical resolutions that are necessary to resolve 

the heterogeneous nature of geological materials. In this paper we provide the technical knowl-

edge required to develop such models without the need to buy a commercial FEM package, 

programming compiler-language code, or hiring a computer specialist.  

It has been our special aim that all the components of MILAMIN perform efficiently, provid-

ing a well performing package. While some of the components rely on readily available rou-

tines, we develop others from scratch and make sure that all of them work together efficiently. 

One of the main technical focuses of this paper is the optimization of the global matrix compu-

tations. The performance bottlenecks of the standard FEM algorithm are analyzed. An alterna-

tive approach is developed that sustains high performance for any system size. Applied optimi-

zations eliminate BLAS drawbacks when multiplying small matrices, reduce operation count 

and memory requirements when dealing with symmetric matrices, and increase data transfer 

efficiency by maximizing cache reuse. Applying loop interchange allows us to use BLAS on 

large matrices. In order to avoid unnecessary data transfers between RAM and CPU cache we 

introduce loop blocking.  

The optimization techniques are useful in many areas as demonstrated with our MILAMIN 

applications for thermal and incompressible flow (Stokes) problems. We use these to provide 

performance comparisons to other open source as well as commercial packages and find that 
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MILAMIN is amongst the best performing solutions, both in terms of speed and memory us-

age.  

The corresponding MATLAB source code for the entire MILAMIN, including input genera-

tion, FEM solver, and post-processing, is available from the authors (www.milamin.org) and 

can be downloaded as an electronic supplement. 

Introduction 

Geological systems are often formed by multi-physics processes interacting on many temporal 

and spatial scales. Moreover, they are heterogeneous and exhibit large material property con-

trasts. In order to understand and decipher these systems numerical models are frequently em-

ployed. Appropriate resolution of the behavior of these heterogeneous systems, without the 

(over-) simplifications of a priori applied homogenization techniques, requires numerical mod-

els capable of efficiently and accurately dealing with high resolution, geometry-adapted 

meshes. These criterions are usually used to justify the need for special purpose software 

(commercial FEM packages) or special code development in high performance compiler-

languages such as C or FORTRAN. General purpose packages like MATLAB are usually con-

sidered not efficient enough for this task. This is reflected in the current literature. MATLAB is 

treated as an educational tool that allows for fast learning when trying to master numerical 

methods, e.g. the books by Kwon and Bang [2000], Elman et al. [2005], and Pozrikidis [2005]. 

MATLAB also facilitates very short implementations of numerical methods that give overview 

and insight, which is impossible to obtain when dealing with closed black-box routines, e.g. 

finite elements on 50 lines [Alberty, et al., 1999], topology optimization on 99 lines [Sigmund, 

2001], and mesh generation on one page [Persson and Strang, 2004]. However, while advan-

tageous from an educational standpoint, these implementations are usually rather slow and run 

at a performance that is a fraction of the peak performance of modern computers. Therefore, 

the usual approach is to use MATLAB for prototyping, development, and testing only. This is 

followed by an additional step where the code is manually translated to a compiler language in 

order to achieve the memory and CPU efficiency required for high resolution models. 

This paper presents the outcome of a project called “MILAMIN - MILlion A MINute” aimed 

at developing a MATLAB based FEM package capable of pre-processing, processing, and 

post-processing an unstructured mesh problem with one million degrees of freedom in two di-

mensions within one minute on a commodity personal computer. Choosing a native MATLAB 

implementation allows simultaneously for educational insight, easy access to computational 
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libraries and visualization tools, rapid prototyping and development, as well as actual two-

dimensional production runs. Our standard implementation serves to provide educational in-

sight into subjects such as implementation of the numerical method, efficient use of the com-

puter architecture and computational libraries, code structuring, proper data layout, and solu-

tion techniques. We also provide an optimized FEM version that increases the performance of 

production runs even further, but at the cost of code clearness.  

The MATLAB code implementing the different approaches discussed here is available from 

the authors (www.milamin.org) and can be downloaded as an electronic supplement to this 

paper.  

Code Overview 

A typical finite element code consists of three basic components: pre-processor, processor, 

post-processor. The main component is the processor, which is the actual numerical model that 

implements a discretized version of the governing conservation equations. The pre-processor 

provides all the input data for the processor and in the present case the main work is to gener-

ate an unstructured mesh for a given geometry. The task of the post-processor is to analyze and 

visualize the results obtained by the processor. These three components of MILAMIN are 

documented in the following sections. 

Pre-Processor 

Geometrically complex problems promote the use of interface adapted meshes, which accu-

rately resolve the input geometry and are typically created by a mesh generator that automati-

cally produces a quality mesh. The drawback of this approach is that one cannot exploit the 

advantages of solution strategies for structured meshes, such as operator splitting methods [e.g. 

ADI, Fletcher, 1997] or geometric multigrid [Wesseling, 1992] for efficient computation.  

A number of mesh generators are freely available. However, none of these are written in native 

MATLAB and fulfill the requirement of automated quality mesh generation for multiple do-

mains. DistMesh by Persson and Strang [2004] is an interesting option as it is simple, elegant, 

and written entirely in MATLAB. However, lack of speed and proper multi-domain support 

renders it unsuitable for a production code with the outlined goals. The mesh generator chosen 

is Triangle developed by Shewchuk [2007]. Triangle is extremely versatile and stable, and 

consists of one single file that can be compiled into an executable on all platforms with a stan-

dard C compiler. We choose the executable-based file I/O approach, which has the advantage 

that we can always reuse a saved mesh. The disadvantage is that the ASCII file I/O provided 
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by Triangle is rather slow, which, however,  can be overcome by adding binary file I/O as de-

scribed in the instructions provided in the MILAMIN code repository.  

Processor 

FEM Outline 

In this paper we show two different physical applications of MILAMIN: steady state thermal 

problems and incompressible Stokes flow (referred to as mechanical problem). This section 

provides an outline of the governing equations and their corresponding FEM formulation. The 

numerical implementation and performance discussions follow in subsequent chapters. 

Thermal problem 

The strong form of the steady state thermal diffusion in the two-dimensional domain Ω  is  

 0 in T Tk k
x x y y

⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞ + =⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
Ω  (1) 

where T  is temperature,  is the conductivity, k x  and are Cartesian coordinates. The bound-

ary  of Ω  is divided into two non-intersecting parts: 

y

Γ N DΓ = Γ Γ∪ . Zero heat-flux is speci-

fied on Γ  (Neumann boundary condition) and temperature N T  is prescribed on DΓ  (Dirichlet 

boundary condition).  

The FEM is based on the weak (variational) formulation of partial differential equations, tak-

ing an integral form. For the purpose of this paper we only introduce the basic concepts of this 

method that are important from an implementation viewpoint. A detailed derivation of the fi-

nite element method and a description of the weak formulation of PDEs can be found in text-

books, e.g. Bathe [1996], Hughes [2000], and Zienkiewicz and Taylor [2000].  

In FEM, the domain Ω  is partitioned into non-overlapping element subdomains , i.e. 

, where nel denotes the number of elements. The basic two-dimensional element is 

a triangle. In the case of the thermal problem discrete temperature values are defined for the 

nodal points, which can be associated with element vertices, located on its edges, or even re-

side inside the elements. Introducing shape functions  that interpolate temperatures from the 

nodes  to the domains of neighboring elements, an approximation to the temperature field  

in  is defined as 

eΩ

1

nel

e
e=

Ω = Ω∪

iN

iT T�

Ω
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  (2) 
1

( , ) ( , )
nnod

i
i

T x y N x y T
=

= ∑�
i

where nnod is the number of nodes in the discretized domain.  

Based on the weak formulation that takes the form of an integral over Ω , the problem can now 

be stated in terms of a system of linear equations. From a computational point of view it is 

beneficial to evaluate this integral as a sum of integrals over each element . A single ele-

ment contribution, the so-called “element stiffness matrix”, to the global system matrix in the 

Galerkin approach for the thermal problem is given by 

eΩ

 
e

j je e i i
ij

N NN Nk
x x y yΩ

∂ ∂⎛ ⎞∂ ∂
= +⎜ ∂ ∂ ∂ ∂⎝ ⎠
∫∫K dxdy⎟  (3) 

where  is the element specific conductivity. Note that the shape function index in eqn. ek (3) 

corresponds to local numbering of element nodes and has to be converted to global node num-

bers before element matrix  is assembled into the global matrix .  eK K

Mechanical problem 

The strong form of the incompressible plane strain Stokes flow in Ω  is  

 

4 2
3 3

4 2 in 
3 3

0

y yx x
x

y yx x
y

yx

u uu u p f
x x y y y x x

u uu u p f
y y x x y x y

uu p
x y

μ μ

μ μ

κ

⎛ ∂ ⎞ ⎛ ∂ ⎞⎛ ⎞ ⎛ ⎞∂ ∂∂ ∂ ∂
− + + − =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

⎛ ∂ ⎞ ⎛ ∂ ⎞⎛ ⎞ ⎛ ⎞∂ ∂∂ ∂ ∂
− + + − =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

∂∂
+ + =

∂ ∂

Ω  (4) 

where xu  and  are components of velocity, yu xf and  yf  are components of the body force 

vector field, p is pressure andμ denotes viscosity. In our numerical code the incompressibility 

constraint is achieved by penalizing the bulk deformation with a large bulk modulus . The 

boundary conditions are given as constraint velocity or vanishing traction components. In eqn. 

κ

(4) we adhere to the divergence rather than Laplace form (in the latter different velocity com-

ponents are only coupled through the incompressibility constraint) as we expect to deal with 

strongly varying viscosity. It is also worth noting that even for homogeneous models the com-

putationally advantageous Laplace form may lead to serious defects if the boundary terms are 

not treated adequately [Limache, et al., 2007]. Additionally our formulation, eqn. (4), and its 
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numerical implementation are also applicable to compressible and incompressible elastic prob-

lems due to the correspondence principle.  

In analogy to the thermal problem we introduce the discrete spaces in order to approximate the 

velocity components and pressure 

 

1

1

1

( , ) ( , )

( , ) ( , )

( , ) ( , )

nnod
i

x i x
i

nnod
i

y i
i

np
i

i
i

u x y N x y u

u x y N x y uy

p x y x y p

=

=

=

=

=

= Π

∑

∑

∑

�

�

�

 (5) 

where np denotes number of pressure degrees of freedom and iΠ  are the pressure shape func-

tions, which may not coincide with the velocity ones. In order to ensure the solvability of the 

resulting system of equations [inf-sup condition, see Elman, et al., 2005], special care must be 

taken when constructing the approximation spaces. A wrong choice of the pressure and veloc-

ity discretization results in spurious pressure modes that may seriously pollute the numerical 

solution. Our particular element choice is the seven-node Crouzeix-Raviart triangle  with quad-

ratic velocity shape functions enhanced by a cubic bubble function and discontinuous linear 

interpolation for the pressure field [e.g., Cuvelier, et al., 1986]. This element is stable and no 

additional stabilization techniques are required [Elman, et al., 2005]. The fact that in our case 

the velocity and pressure approximations are autonomous leads to the so-called mixed formu-

lation of the finite element method [Brezzi and Fortin, 1991]. 

Assuming that velocity degrees of freedom are followed by pressure ones in the local element 

numbering, the stiffness matrix for the Stokes problem is given by [e.g., Bathe, 1996] 

  (6) 11
e

e T T TT
e vol

T
vol

dxdy
μ

κκ −−
Ω

⎛ ⎞⎛ ⎞ −Β Π
= = ⎜⎜ ⎟

−ΠΒ − ΠΠ−⎝ ⎠ ⎝ ⎠
∫∫

B DBA Q
K

Q M ⎟

where  is the so-called kinematic matrix transforming velocity into strain rate ε (note the 

engineering convention for the shear strain rate) 

B �
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 (7) 

The matrix  extracts the deviatoric part of the strain rate, converts from engineering conven-

tion to standard shear strain rate, and includes a conventional factor 2. The bulk strain rate is 

computed according to the equation  and pressure is the projection of this field 

onto the pressure approximation space  

D

e
vol voluε = Β�

 1( , ) ( , )Tp x y x y uκ −= Π M Q  (8) 

With the chosen approximation spaces, the linear pressure shape functions Π  are spanned by 

the corner nodal values that are defined independently for neighboring elements. Thus, it is 

possible to invert M  on element level (the so-called static condensation) and consequently 

avoid the pressure unknowns in the global system. Since the pressure part of the right hand 

side vector is set to zero, this results in the following velocity Schur complement  

 ( )  (9) eu fκ+ T -1A Q M Q e=

Once the solution to the global counterpart of (9) is obtained, the pressure can be restored af-

terwards according to (8). The resulting global system of equations is not only symmetric, but 

also positive-definite as opposed to the original system (6). Unfortunately, the global matrix 

becomes ill-conditioned for penalty parameter values corresponding to a satisfactorily low 

level of the flow divergence. It is possible to circumvent this by introducing Powell and Heste-

nes iterations [Cuvelier, et al., 1986] and keeping the penalty parameter κ  moderate compared 

to the viscosity μ  

  (10) 
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In the above iteration scheme the matrices ,  ,  ΜA Q  represent global assembled versions 

rather than single element contributions.  

Isoparametric elements 

In order to exploit the full flexibility of FEM, we employ isoparametric elements. Each ele-

ment in physical space is mapped onto the reference element with fixed shape, size, and orien-

tation. This geometrical mapping between local ( , )ξ η  and global ( , )x y  coordinates of an 

element is realized using the same shape functions  that interpolate physical fields: iN

 
1

( , ) ( , )
nnodel

i
i

ix N xξ η ξ
=

= ∑ η

iy

 (11) 

 
1

y( , ) ( , )
nnodel

i
i

Nξ η ξ
=

= ∑ η  (12) 

where nnodel is the number of nodes in the element. The local linear approximation to this 

mapping is given by the Jacobian matrix : J

 

x x

J
y y
ξ η

ξ η

∂ ∂⎡ ⎤
⎢ ⎥∂ ∂⎢=
∂ ∂⎢ ⎥

⎢ ⎥∂ ∂⎣ ⎦

⎥  (13) 

The shape function derivatives with respect to global coordinates ( , )x y  are calculated using 

the inverse of the Jacobian and the shape function derivatives with respect to local coordinates 

( , )ξ η : 

 

1

i i i i

x x
N N N N

y yx y
ξ η

ξ η
ξ η

−∂ ∂⎡ ⎤
⎢ ⎥∂ ∂⎧ ⎫∂ ∂ ⎧∂ ∂ ⎫ ⎢=⎨ ⎬ ⎨ ⎬ ∂ ∂∂ ∂ ∂ ∂ ⎢ ⎥⎩ ⎭⎩ ⎭
⎢ ⎥∂ ∂⎣ ⎦

⎥  (14) 

Thus, the element matrix from eqn. (3) is now given by: 

 
ref

j je e i i
ij

N NN NK k J d
x x y y

dξ η
Ω

∂ ∂⎛ ⎞∂ ∂
= +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
∫∫  (15) 

where J  is the determinant of the Jacobian, taking care of the area change introduced by the 

mapping, and  is the domain of the reference element. To avoid symbolic integration eqn. refΩ

(15) can be integrated numerically: 
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⎛ ∂ ∂ ⎞⎛ ⎞∂ ∂
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Here the integral is transformed into a sum over  integration points located at nip ( ),k kξ η , 

where the individual summands are evaluated and weighted by point specific . For numeri-

cal integration rules for triangular elements see e.g. [Dunavant, 1985]. The numerical integra-

tion of the element matrix arising in the mechanical case is analogous. 

kW

In the following we first show the straightforward implementation of the global matrix compu-

tation and investigate its efficiency. It proves to be unsuited for high performance computing in 

the MATLAB environment. We then introduce a different approach, which solves the identi-

fied problems. Finally, we discuss how to build sparse matrix data structures, apply boundary 

conditions, solve the system of linear equations and perform the Powell and Hestenes itera-

tions. 

Matrix Computation: Standard Algorithm 

Code Fragment 1: Standard matrix computation.  

% i) ELEMENT LOOP - MATRIX COMPUTATION 
for iel = 1:nel 
 
    % ii) FETCH DATA OF ELEMENT 
    ECOORD_X = GCOORD(:,ELEM2NODE(:,iel)); 
    ED       =   D(Phases(iel));          % THERMAL 
    EMu      =  Mu(Phases(iel));          % MECHANICAL 
    ERho     = Rho(Phases(iel)); 
 
    % iii) INTEGRATION LOOP 
    K_elem(:) = 0; % THERMAL                           
    A_elem(:) = 0; % MECHANICAL  
    Q_elem(:) = 0;  
    M_elem(:) = 0;        
    Rhs_elem(:) = 0; 
 
    P(2:3,:) = ECOORD_X(:,1:3); 
 
    for ip=1:nip           
 
        % iv) LOAD SHAPE FUNCTIONS DERIVATIVES FOR INTEGRATION POINT 
        Ni       =    N 
; 
        dNdui       = dNdu{ip}; 
       
        % iv b) MECHANICAL: COMPUTE PRESSURE SHAPE FUNCTIONS FOR INTEGRATION POINT 
        Pb(2:3)     = ECOORD_X*Ni;   
        Pi          = P\Pb; 
 
        % v) CALCULATE JACOBIAN, ITS DETERMINANT AND INVERSE 
        J           = ECOORD_X*dNdui; 
        detJ        = det(J); 
        invJ        = inv(J); 
 
        % vi) DERIVATIVES wrt GLOBAL COORDINATES 
        dNdX        = dNdui*invJ; 
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        % vii   NUMERICAL INTEGRATION OF ELEMENT MATRICES 
        weight = Ip_w(ip)*detJ; 
 
        % vii a) THERMAL: STIFFNESS MATRIX 
        K_elem       = K_elem + ED*(dNdX*dNdX’); 
 
        % vii b) MECHANICAL: STIFFNESS MATRIX AND RIGHT HAND SIDE 
        B(1:2:end,1) = dNdX(:,1); 
        B(2:2:end,2) = dNdX(:,2); 
        B(1:2:end,3) = dNdX(:,2); 
        B(2:2:end,3) = dNdX(:,1); 
        Bvol         = dNdX’;  
 
        A_elem = A_elem + weight*EMu*(B'*D*B); 
        Q_elem = Q_elem - weight*Bvol(:)*Pi'; 
        M_elem = M_elem + weight*Pi*Pi’; 
 
        Rhs_elem = Rhs_elem + weight*ERho*G*Ni'; 
    end 
 
    % viii) STATIC CONDENSATION OF PRESSURE DOFS (MECHANICAL) 
    invM_elem      = inv(M_elem); 
    A_elem         = A_elem + PF*Q_elem*invM_elem*Q_elem’; 
 
    % ix) WRITE DATA INTO GLOBAL STORAGE 
    K_all(:,iel)   = K_elem(indx_l); % THERMAL 
    A_all(:,iel)   = A_elem(indx_l); % MECHANICAL 
    Rhs_all(:,iel) = Rhs_elem(:); 
 
    % ix b) MECHANICS: REUSE IN POWELL AND HESTENES ITERATIONS 
    Q_all(:,iel)   = Q_elem(:); 
    invM_all(:,iel)= invM_elem(:); 
end 

 

Algorithm description 

ned in the above code fragment represents the straightforward implementa-

i) The outermost loop of the standard algorithm is the element loop. Before the actual 

The algorithm outli

tion of the section “FEM Outline”. We tried to use intuitive variable and index names; they are 

explained in “Appendix I: Variable Names”. The details of the algorithm are described in the 

following (Roman numbers correspond to the comments in the code fragment).   

matrix computation, general element-type specific data such as integration points 

IP_X and weights IP_w are assigned. The derivatives of the shape functions dNdu 

with respect to the local ( , )ξ η  coordinates are evaluated in the integration points 

IP_X. All arrays used during the matrix computation procedure are allocated in ad-

vance, e.g. K_all. 

ii) Inside the loop over all elements the code begins with reading element-specific in-

formation, such as indices of the nodes belonging to the current element, coordi-

nates of the nodes, and element conductivity, viscosity and density. 
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iii) For each element the following loop over integration points performs numerical in-

tegration of the underlying equations, which results in the element stiffness matrix 

K_elem[nnodel,nnodel]. In the case of mechanical code additional matrices 

A_elem[nedof, nedof], Q_elem[nedof,np] and M_elem[np,np] are re-

quired. All of the above arrays must be cleared before the integration point loop to-

gether with the right hand side vector Rhs_elem. 

iv) Inside the integration point loop the pre-computed shape function derivatives 

dNdui are extracted for the current integration point. b) In the chosen element 

type the pressure is interpolated linearly in the global coordinates. Pressure shape 

functions Pi at an integration point are obtained as a solution of the system 

P*Pi=Pb, where the first equation enforces that the shape functions Pi sum to 

unity. 

v) The Jacobian J[ndim,ndim] is calculated for each integration point by multiply-

ing the element's nodal coordinates matrix ECOORD_X[ndim,nnodel] by  

dNdui[nnodel,ndim]. Furthermore its determinant, detJ, and inverse, 

invJ[ndim,ndim], are obtained with the corresponding MATLAB functions.  

vi) The derivatives versus global coordinates, dNdx[nnodel, ndim], are obtained 

by dNdx = dNdui*invJ according to eqn. (14). 

vii) The element thermal stiffness matrix contribution is obtained according to eqn. (16) 

and implemented as K_elem = K_elem + weight*ED*(dNdX*dNdX’). b) The 

kinematic matrix B needs to be formed, eqn. (7), and A_elem, Q_elem and 

M_elem are computed according to eqn. (6).  

viii) The pressure degrees of freedom are eliminated at this stage. It is possible to invert 

M_elem locally because the pressure degrees of freedom are not coupled across 

elements, thus there is no need to assemble them into the global system of equa-

tions. It is worth noting that for large viscosity variations it may be beneficial to re-

late the penalty factor PF to element’s viscosity to improve condition number of the 

global matrix.  

19 



Processor 

ix) The lower (incl. diagonal) part of the element stiffness matrix is written into the 

global storage relying on the symmetry of the system. b) Q_elem and 

invM_elem matrices are stored for each element in order to avoid re-computing 

them during Powell and Hestenes iterations. 

MATLAB provides a framework for scientific computing that is freed from the burden of con-

ventional high-level programming languages, which require detailed variable declarations and 

do not provide native access to solvers, visualization, file I/O etc. However, the ease of code 

development in MATLAB comes with a loss of some performance, especially when certain 

recommended strategies are not followed: http://mathworks.com/support/solutions/data/1-

15NM7.html. The more obvious performance considerations have already gone into the above 

standard implementation and we would like to point these out: 

1) Memory Allocation / Variable Declaration: Although not formally required, it is advis-

able to explicitly declare variables including their size and type. If variables are not de-

clared with their final size, but are instead successively extended (filled in) during loop 

evaluation, a large penalty has to be paid for the continuous and unnecessary memory 

management. Hence, all variables that could potentially grow in size during loop exe-

cution are pre-allocated; e.g., K_all. Variables such as ELEM2NODE that only have to 

store integer numbers should be declared accordingly, int32 in the case of 

ELEM2NODE instead of MATLABs default variable type double. This reduces both 

the amount of memory required to store this large array and the time required to access 

it since less data must be transferred. 

2) Data Layout: In order to facilitate memory access by the CPU it is important to have a 

proper data layout. For example, the indices of the nodes of each element must be 

stored in neighboring memory locations, and similarly the x-y-z coordinates of every 

node. The actual numbering of nodes and elements also has a visible effect on cache 

reuse inside the element loop, similarly to sparse matrix-vector multiplication problem 

[Toledo, 1997].  

3) Avoid Multiple Data Transfer & Computation: Generally, statements should appear in 

the outermost possible loop in order to avoid multiple transfer and computation of 

identical data. This is why the integration point evaluated shape function derivatives 

with respect to local coordinates are pre-computed outside the element loop (as op-
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posed to inside the integration loop) and the nodal coordinates are extracted before the 

integration loop.  

Performance analysis 

In order to analyze the performance of the standard matrix computation algorithm we run cor-

responding tests on an AMD Opteron system with 64bit Red Hat Enterprise Linux 4 and 

MATLAB 2007a using GoTo BLAS (http://www.tacc.utexas.edu/resources/software). This 

system has a peak performance of 4.4Gigaflops per core, i.e. it is theoretically capable of per-

forming 4.4 billion double precision floating point operations per second (flops). The specific 

element types used are 6-node triangles (quadratic shape functions) with 6 integration points 

for the thermal problem and 7-node triangles with 12 integration points for the mechanical 

problem  

In the case of the thermal problem test results are obtained for an unstructured mesh consisting 

of approximately 1 million nodes and 0.5 million elements. For this model the previously de-

scribed matrix computation took 65 seconds, during which 324 floating point operations per 

integration point per element were calculated. This corresponds to 15 Megaflops (Mflops) or 

approximately 0.4% of the peak performance. Analysis of the code with MATLABs built-in 

profiler revealed that a significant amount of time was spent on the calculation of the determi-

nant and inverse of the Jacobian. Therefore, in further tests these calls were replaced by ex-

plicit calculations of detJ and invJ. The final performance achieved by this algorithm was 30 

Mflops, which is still less than one percent of the peak performance and equivalent to a peak 

CPU performance that was reached by commodity computers more than a decade ago.  

Profiling the improved standard algorithm revealed that most of the computational time was 

spent on matrix multiplications. This means that the efficiency of the analyzed implementation 

depends mainly on the efficiency of dense matrix by matrix multiplications inside the integra-

tion point loop. In order to perform these calculations MATLAB uses hardware-tuned, high 

performance BLAS libraries (Basic Linear Algebra Subprograms, see 

http://www.netlib.org/blas/faq.html and Dongarra et al. [1990]), which reach up to 90% of the 

CPU peak performance; a value from which the analyzed code is far away.  

The cause for this bad performance is that the matrix by matrix multiplications inside the inte-

gration point loop operate on very small matrices, for which BLAS libraries are known not to 

work well due to the introduced overhead (e.g. http://math-

atlas.sourceforge.net/timing/36v34/OptPerf.html). Therefore the same observation can be 
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made when writing the standard algorithm in a compiler language such as C and relying on 

BLAS for the matrix multiplications, albeit the actual performance in this case is higher than in 

MATLAB. In C a possible solution is to explicitly write out the small matrix by matrix multi-

plications, which results in a more efficient code. In MATLAB, however, this is not a practical 

alternative as explicitly writing out matrix multiplications leads to unreadable code without 

substantial performance gains. 

The above performance considerations apply equally to the mechanical code.  

In conclusion, the standard algorithm is a viable option when writing compiler code.  How-

ever, the achievable performance in MATLAB is unsatisfactory and we therefore developed a 

more efficient approach, which is presented in the following section. 

Remark 1: Measuring code performance 

Since no flops measure exists in MATLAB, the number of operations must be manually calculated 

based on code inspection and divided by the computational time. In order to provide more meaningful 

performance measures only the number of necessary floating point operations may be considered, e.g. 

the redundant computations of the upper triangular entries in the standard matrix contribute to the flop 

count, which artificially increases the measured performance. However, it is not necessarily the case 

that the algorithm with the lowest operation count is the fastest in terms of execution time. We therefore 

restrain from adjusting the actual flop counts in this paper.  

Matrix Computation: Optimized Algorithm 

In this section we explain how to efficiently compute the local stiffness matrices. This optimi-

zation strategy is common to both (thermal and mechanical) problems considered. For simplic-

ity we present it on the example of the thermal problem. Overall performance benchmarks and 

application examples are provided for both types of problems in subsequent sections. 

The small matrix by small matrix multiplications in the integration loop nested inside the loop 

over elements are the bottleneck of the standard algorithm. Written out in terms of loops, these 

matrix multiplications represent another three loops, totaling to five. Since the element loop 

exhibits no data dependency, it can be moved into the innermost three (out of five), effectively 

becoming part of small matrix by large matrix multiplication.  

This loop reordering does not change the total amount of operations. However, the number of 

BLAS calls is greatly reduced (ndim*nip versus nel*nip in the standard approach), and the 

amount of computation done per function call is drastically increased. Consequently, the over-

head problem vanishes leading to a substantial performance improvement. Unfortunately, the 

performance decreases once a certain number of elements is exceeded. The reason for this is 
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that the data required for the actual operation does not fit any longer into the CPUs cache, 

which inhibits cache reuse within the integration point loop. The remedy is to operate on 

blocks of elements of the size for which the observed performance is best. Once a block is 

processed, the results are written to the main memory and the data required by the next block is 

copied into the cache. Data required for every block should fit (reside) in the cache at all times. 

The ideal block size depends on the cache structure of a CPU and must be determined system 

and problem specifically. This computing strategy is called “blocking” and is implemented as a 

part of the optimized algorithm. Coincidentally, this entire approach to optimize the FEM ma-

trix computation is similar to vector computer implementations [e.g., Ferencz and Hughes, 

1998; Hughes, et al., 1987; Silvester, 1988]. 

Code Fragment 2: Optimized Finite Element Global Matrix Computation  

 
% i) BLOCK LOOP - MATRIX COMPUTATION 
il = 1; 
iu = nelblo; 
for ib = 1:nblo 
 
    % ii) FETCH DATA OF ELEMENTS IN BLOCK 
    ECOORD_x = reshape( GCOORD(1,ELEM2NODE(:,il:iu)), nnodel, nelblo); 
    ECOORD_y = reshape( GCOORD(2,ELEM2NODE(:,il:iu)), nnodel, nelblo); 
    ED       = D(Phases(il:iu)); 
 
    % iii) INTEGRATION LOOP 
    K_block(:)  = 0; 
    for ip=1:nip 
 
        % iv) LOAD SHAPE FUNCTIONS DERIVATIVES FOR INTEGRATION POINT 
        dNdui       = dNdu{ip};        
 
        % v) CALCULATE JACOBIAN, ITS DETERMINANT AND INVERSE 
        Jx          = ECOORD_x'*dNdui;                                  
        Jy          = ECOORD_y'*dNdui;                                  
        detJ        = Jx(:,1).*Jy(:,2) - Jx(:,2).*Jy(:,1); 
 
        invdetJ     = 1.0./ detJ; 
        invJx(:,1)  = +Jy(:,2).*invdetJ; 
        invJx(:,2)  = -Jy(:,1).*invdetJ; 
        invJy(:,1)  = -Jx(:,2).*invdetJ; 
        invJy(:,2)  = +Jx(:,1).*invdetJ; 
 
        % vi) DERIVATIVES wrt GLOBAL COORDINATES 
        dNdx        = invJx*dNdui'; 
        dNdy        = invJy*dNdui'; 
         
        % vii) NUMERICAL INTEGRATION OF ELEMENT MATRICES - ONLY LOWER TRIANGLE 
        weight      = IP_w(ip)*detJ.*ED; 
        indx = 0; 
        for i = 1:nnodel 
            for j = i:nnodel 
   indx = indx  + 1; 
                K_block(:,indx)  =   K_block(:,indx) + ... 
                    (dNdx(:,i).*dNdx(:,j)+ dNdy(:,i).*dNdy(:,j)).*weight; 
            end 
        end 
    end 
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    % ix) WRITE DATA INTO GLOBAL STORAGE 
    K_all(:,il:iu) = K_block’; 
 
    % READJUST START, END AND SIZE OF BLOCK. REALLOCATE MEMORY 
    il  = il + nelblo; 
    if(ib==nblo-1) 
        nelblo  = nel-iu; 
        K_block = zeros(nelblo, nnodel*(nnodel+1)/2); 
        invJx   = zeros(nelblo, ndim); 
        invJy   = zeros(nelblo, ndim); 
    end 
    iu  = iu + nelblo; 
end 
 

 

Algorithm description 

The above code fragment shows the actual implementation of the optimized matrix computa-

tion algorithm. The key operations are explained and compared to the standard algorithm in the 

following. 

i) The outermost loop of the optimized matrix computation is the block loop. Before this 

loop is entered, required arrays (IP_X, IP_w, dNdu) are assigned and necessary 

variables are allocated.  

ii) Inside the block loop the code begins with reading element specific information. Since 

we simultaneously operate on nelblo elements, all the corresponding global data 

blocks are copied into local arrays ECOORD_x, ECOORD_y, and ED, and are used re-

peatedly inside the integration loop.  

iii) For the entire block of elements, the loop over integration points performs numerical 

integration of the element matrices K_block[nelblo, nnodel*(nnodel+1)/2]. 

iv) As in the standard algorithm, every iteration of the integration point loop begins by 

reading pre-computed dNdu arrays.  

v) The Jacobian of the standard algorithm, J[ndim,ndim], is replaced by ndim matri-

ces; Jx[nelblo,ndim] and Jy[nelblo,ndim], containing the individual rows of 

the Jacobian evaluated at the actual integration point for all elements of the current 

block. Jx and Jy are calculated by multiplying the nodal coordinates by the shape 

function derivatives, e.g. Jx[nelblo,ndim] = ECOORD_x[nnodel, nelblo]’ 

*dNdui[nnodel, ndim]. Thus, instead of nelblo*nip matrix multiplications of 

dNdu[ndim,nnodel] and ECOORD_X[ndim,nnodel], ndim*nip multiplications 
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involving the larger matrices ECOORD_x, ECOORD_y are performed, i.e. the same work 

is done with less multiplications of larger matrices. Once the Jacobian is obtained, its 

determinant, detJ, and inverse, split into invJx and invJy , are explicitly computed 

using simple operations on vectors.  

vi) The derivatives with respect to the global coordinates ( , )x y , 

dNdx[nelblo,nnodel] and dNdy[nelblo,nnodel], are obtained by multiplying 

the invJx and invJy  by the transpose of dNdui. Again, less multiplication calls in-

volving larger matrices are performed.  

vii) The local stiffness matrix contribution for all the elements in the block, 

K_block[nelblo,nnodel*(nnodel+1)/2], is computed according to eqn. (16). 

Note that exploiting symmetry allows for calculation of only the lower triangle of stiff-

ness matrices, which substantially reduces the operation count.  

viii) After the numerical integration of K_block is completed, the results are written into 

the global storage K_all, again exploiting symmetry by storing only the lower trian-

gular part. 

ix) The number of elements remaining in the final block might be smaller than the nel-

blo. Consequently, nelblo and several arrays must be adjusted.  
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Performance analysis 

  
Figure 1 Performance of optimized matrix computation versus block size.  

In order to illustrate the performance of the optimized matrix computation systematic tests 

were run with the same 1 million node problem that was used for the performance analysis of 

the standard algorithm. Since larger matrices resulting from larger block sizes should yield bet-

ter BLAS efficiency, the performance in Mflops is plotted versus the number of elements in a 

block, see Figure 1. This plot confirms the arguments for the introduction of the blocking algo-

rithm. Starting from approximately the performance of the standard algorithm, a steady in-

crease can be observed up to ~350 Mflops, which on the test system is reached for a block with 

~1000 elements for thermal problem. Further increase of the block size leads to a performance 

decrease towards a stable level of ~120 Mflops due to lack of cache reuse in the integration 

point loop. Compared to the standard version, the optimized matrix computation achieves a 20-

fold speedup in terms of flops performance. Since the optimized algorithm performs less op-

erations (computation of only lower triangular part of symmetric element matrix), its execution 

time is actually more than 30 times faster.  

The achieved 350Mflops efficiency corresponds to only ~8 % of the peak CPU performance. 

Profiling the code revealed that for the test problem approximately half of the time was spent 

on reading and writing of variables from and to RAM (e.g. nodal coordinates and element ma-
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trices). This value is constrained by the memory bandwidth of the hardware, which on current 

computer architectures is often a bigger bottleneck than the CPU performance. Compared to C 

implementations, the optimized matrix computation performance is better than the straightfor-

ward standard algorithm using BLAS, but more than a factor 3 slower than what can be 

achieved by explicitly writing out the matrix multiplications. 

In the case of the mechanical code, the peak flops performance is similar. Note that in this case 

the optimal blocksize is smaller due to the larger workspace of the method, see Figure 1. 

Matrix Assembly: Triplet to Sparse Format Conversion 

The element stiffness matrices stored in K_all must now be assembled into the global stiff-

ness matrix K. The row and column indices (K_i and K_j) that specify where the individual 

entries of K_all have to be stored in the global system are commonly known as the triplet 

sparse matrix format [e.g., Davis, 2006]. Since we only use lower triangular entries, special 

care must be taken so that the indices referring to the upper triangle are not created, see Code 

Fragment 3.  Note that K_i and K_j hold duplicate entries, and the purpose of the MATLAB 

sparse function is to sum and eliminate them. 

While creation of the triplet format is fast, the call to sparse gives some concerns. MAT-

LABs sparse implementation requires that K_i and K_j are of type double, which is mem-

ory- and performance-wise inefficient. In addition, sparse itself is rather slow, especially if 

compared to the time spent on the entire matrix computation. The equivalent function sparse2, 

provided by T. Davis within the CHOLMOD package 

(http://www.cise.ufl.edu/research/sparse/SuiteSparse), is substantially faster and does not re-

quire a conversion of the coefficients to double precision. The code fragment below presents in 

detail how to create a global system matrix.  

Code Fragment 3: Global sparse matrix assembly 

% CREATE TRIPLET FORMAT INDICES 
indx_j = repmat(1:nnodel,nnodel,1); indx_i = indx_j'; 
indx_i = tril(indx_i); indx_i = indx_i(:);indx_i = indx_i(indx_i>0); 
indx_j = tril(indx_j); indx_j = indx_j(:);indx_j = indx_j(indx_j>0); 
 
K_i = ELEM2NODE(indx_i,:); 
K_j = ELEM2NODE(indx_j,:); 
 
K_i      = K_i(:);  
K_j      = K_j(:); 
 
% SWAP INDICES REFERRING TO UPPER TRIANGLE 
indx     = K_i < K_j; 
tmp       = K_j(indx); 
K_j(indx) = K_i(indx);  
K_i(indx) = tmp;  
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K_all  = K_all(:); 
 
% CONVERT TRIPLET DATA TO SPARSE MATRIX 
K      = sparse2(K_i, K_j, K_all); 
clear K_i K_j K_all; 

 

The triplet format is converted into the sparse matrix K with one single call to sparse2. As-

sembling smaller sparse matrices for blocks of elements and calling sparse consecutively 

would reduce the workspace for the auxiliary arrays; however, it would also slow down the 

code. Therefore, as long as the K_i, K_j and K_all arrays are not the memory bottleneck, it is 

beneficial to perform the global conversion. Once K is created, the triplet data is cleared in or-

der to free as much memory as possible for the solution stage. In case of the mechanical code 

 and  matrices are stored in sparse format for later reuse in the Powell and Hestenes it-

erations. 

Q 1−M

Remark 2: Symbolic approach to sparse matrix assembly 

It is worth mentioning that in general the auxiliary arrays can be altogether avoided with a symbolic 

approach to sparse matrices. While the idea of sparse storage is the elimination of zero entries, in a 

symbolic approach all possible non-zero entries are stored and initialized to zero. During the computa-

tion of element stiffness matrices, global locations of their entries can be found at a small computational 

cost, and corresponding values are incrementally updated. Also, this symbolic storage pattern can be 

reused between subsequent time steps, as long as the mesh topology is not changed. Unfortunately, this 

improvement can not be implemented in MATLAB as zero entries are automatically deleted. 

Boundary conditions 

The implemented models have two types of boundary conditions: natural and Dirichlet. While 

the former automatically results from the FEM discretization, the latter must be specified sepa-

rately, which usually leads to a modification of the global stiffness matrix. These modifications 

may, depending on the implementation, cause loss of symmetry, changes in the sparsity pattern 

and row addressing of K, all of which can lead to a badly performing code.  

An elegant and sufficiently fast approach is to separate the degrees of freedom of the model 

into Free (indices of unconstraint degrees of freedom) Bc_ind, where Dirichlet boundary 

conditions with corresponding values Bc_val are applied. Since the actual solution values in 

the Bc_ind are known, the corresponding equations can be eliminated from the system of 

equations by modifying the right hand side of the remaining degrees of freedom accordingly. 

This is implemented as: 
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Code Fragment 4: Boundary conditions for the thermal problem 

Free        = 1:nnod; 
Free(Bc_ind)= []; 
TMP         = K(:,Bc_ind) + cs_transpose(K(Bc_ind,:)); 
Rhs         = Rhs -  TMP*Bc_val';   
K           = K(Free,Free); 
T           = zeros(nnod,1); 
T(Bc_ind)   = Bc_val; 

 

Since only the lower part of the global matrix is stored, we need to restore the remaining parts 

of the columns by transposing the adequate rows. 

System Solution 

We have ensured that the global system of linear equations under consideration is symmetric, 

positive-definite, and sparse. It has the form: 

  (17) T RhsK =

where  is the stiffness matrix,  the unknown temperature vector, and  is the right 

hand side. One of the fastest and memory efficient direct solvers for this type of systems is 

CHOLMOD, a sparse supernodal Cholesky factorization package developed by T. Davis 

[Chen, et al., submitted; Davis and Hager, 2005; submitted]; see the report by Gould et al. 

[2007]. Newer versions of MATLAB (2006a and later) use this solver, which is substantially 

faster than the previous implementation. When symmetric storage is not exploited, CHOL-

MOD can be invoked through the backslash operator: 

K T Rhs

T=K\Rhs (make sure that the matrix K is 

numerically symmetric, otherwise MATLABs will invoke a different, slower solver).  

However, it is best to use CHOLMOD and the related parts by installing the entire package 

from the developers SuiteSparse website 

(http://www.cise.ufl.edu/research/sparse/SuiteSparse). This provides access to cholmod2, 

which is capable of dealing with only upper triangular input data and pre-computed permuta-

tion (reordering) vectors. SuiteSparse also contains lchol, a Cholesky factorization operating 

only on lower triangular matrices, which is faster and more memory efficient than MATLABs 

chol equivalent. Reusing the Cholesky factor L during the Powell and Hestenes iterations in 

the mechanical problem greatly reduces the computational cost of achieving a divergence free 

flow solution. 

The mentioned re-use of reordering data is possible as long as the mesh topology remains iden-

tical, which even in our large strain flow calculations is the case for many time steps. The reor-

dering step decreases factorization fill-in and consequently improves memory and CPU effi-
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ciency [Davis, 2006], but is a rather costly operation compared to the rest of the Cholesky al-

gorithm. Different re-ordering schemes can be used, and we compare two of them in Figure 2: 

AMD (Approximate Minimum Degree) and METIS 

(http://glaros.dtc.umn.edu/gkhome/views/metis). While AMD is faster during the reordering 

steps, it results in slower Cholesky factorization and forward and back substitution. If the reor-

dering can be reused for a large number of steps, it is recommended to rely on METIS, which 

is accessible in MATLAB through the SuiteSparse package. 

 
Figure 2 

Performance analysis of the different steps of the Cholesky algorithm with different reorderings for 

our one million degrees of freedom thermal test problem. 

Powell and Hestenes Iterations 

In the case of the thermal code, the solution vector is obtained by calling forward and back 

substitution routines with the Cholesky factor and the adequately permuted right hand side 

vector. During the second substitution phase the upper Cholesky factor is required. However, 

instead of explicitly forming it through the transposition of the stored lower factor, it is advan-

tageous to call the cs_ltsolve that can operate on the lower factor and performs the needed 

task of the back substitution.  

In the MILAMIN flow solver the incompressibility constraint is achieved through an iterative 

penalty method, i.e. the bulk part of the deformation is suppressed with a large bulk modulus 

(penalty parameter) . In a single step penalty method there is a trade off between the incom-κ

30 



Paper 1: MILAMIN: MATLAB-based FEM solver for large problems 

pressibility of the flow solution and the condition number of the global equation system. This 

can be avoided by using a relatively small κ , which ensures a good condition number and then 

iteratively improving incompressibility of the flow. Note that for the chosen Crouzeix-Raviart 

element, pressure is discontinuous between elements and the corresponding degrees of free-

dom can be eliminated element-wise (no global system solution required). Pressure increments 

can be computed with the velocity solution vector and stored Q  and  matrices. These 

pressure increments are sent to the right hand side of the system and accumulated in the total 

pressure. The code fragment for these so-called Powell and Hestenes iterations is given below.  

1−M

Code Fragment 5: Powell and Hestenes iterations  

while (div_max>div_max_uz  && uz_iter<uz_iter_max) 
    uz_iter = uz_iter + 1; 
    %FORWARD AND BACK SUBSTITUTION 
    Vel(Free(perm)) = cs_ltsolve(L,cs_lsolve(L,Rhs(Free(perm)))); 
     
    %COMPUTE QUASI-DIVERGENCE 
    Div = invM*(Q*Vel); 
 
    %UPDATE RHS 
    Rhs = Rhs – PF*(Q’*Div); 
 
    %UPDATE TOTAL PRESSURE  
    Pressure    = Pressure + PF*Div; 
 
    %CHECK INCOMPRESSIBILITY 
    div_max     = max(abs(Div(:)));             
end 

 

Post-Processor 

The results of a numerical model are only useful if fast and precise analysis and visualization is 

possible. One of the main aspects to achieve this is to avoid loops. For triangular meshes 

trisurf is the natural choice for two and three dimensional data visualization as it employs 

the usual FEM structures: connectivity (ELEM2NODE), coordinates (GCOORD), and data (T). 

This allows for visualization of FEM models with more than one million elements in less than 

one second.  

T

A problem that often arises is the visualization of discontinuous data, such as pressure in 

mixed formulations of deformation problems. The remedy is to simply abandon the nodal con-

nectivity and to create a new one, where physical nodes are listed separately for every element 

that accesses them. The same can also be done for other meshes than triangular ones by creat-

ing the corresponding connectivity (ELEM2NODE) and calling:  

Code Fragment 6: Post-processor 
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patch('faces', ELEM2NODE,'vertices',GCOORD','facevertexcdata',T); 
shading interp;  

 

MILAMIN Performance Analysis 

Overall Performance 

 
Figure 3 

Overall performance results for MILAMIN given for total time spent on problem, and the solver 

contribution. 

The overall performance of MILAMIN versus the number of nodes is analyzed in Figure 3. 

The goal of MILAMIN to perform a complete FEM analysis for one million unknowns in one 

minute is reached for the thermal as well as the mechanical problem. All components of MI-

LAMIN scale linearly with the number of nodes; the only exception is the direct solver, which 

shows super-linear scaling. The performance details are discussed in the following sections. 

32 



Paper 1: MILAMIN: MATLAB-based FEM solver for large problems 

Component Performance 

 
Figure 4  

Overall performance of MILAMIN split up into the individual components for thermal and me-

chanical test problems with one million degrees of freedom. The timing for the matrix computation 

is given for the standard (S) and the optimized (O) algorithm. Note that the forward and backward 

(F&B) substitution timing also contains three Powell and Hestenes iterations in the case of the me-

chanical problem. 

Figure 4 shows the total amount of time for the one million degrees of freedom (DOFs) test 

problems split into the individual components of MILAMIN. The contributions of the bound-

ary conditions and post-processor are minor. The time taken by the pre-processor is also not 

relevant, especially if the same (Langrangian) mesh is used for many time steps. A major 

achievement of MILAMIN is the performance of the optimized matrix computation that is 

more than 15-30fold better than the standard algorithm. The matrix assembly done by 

sparse2 is one of the major contributors to the total time, but cannot be optimized without a 

major change in the way MATLAB operates on sparse matrices, see Remark 2. Finally the 

three components of the Cholesky solver take substantial time.  

The time taken by the first part of the Cholesky solver, the reordering, can often be neglected 

for practical applications. During non-linear material and time step iterations the mesh topol-
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ogy remains the same as long as no remeshing is performed, and the permutation vector can be 

reused if the SuiteSparse package is employed.  

The second component of the Cholesky solver is the factorization. This step takes most of the 

total MILAMIN execution time. However, the efficiency achieved by CHOLMOD is close to 

the optimal CPU performance. For further optimization one could consider other types of 

solvers such as iterative ones. Yet, preconditioned iterative methods or algebraic multigrid are 

less robust (especially for large material contrasts as targeted here) and perform better only for 

large systems, see section “Comparison to Other Software” below. These methods are the only 

option in the case of most three-dimensional problems, because the scaling of factorization 

time and memory requirements for direct solvers is much worse than in 2D. However, for two 

dimensional problems direct solvers are the best choice for resolutions on the order of one mil-

lion degrees of freedom, especially for positive definite systems that can be solved with Chole-

sky factorizations. Moreover, it is problems of this size where our optimizations greatly reduce 

the total solution time. Such numerical resolutions are often sufficient in 2D to solve challeng-

ing problems and the achieved performance allows for studies with large number of time steps.  

The third part of the Cholesky solver is the forward and backward substitution and does not 

contribute substantially in the case of thermal problems. For mechanical problems several 

Powell and Hestenes iterations are required to enforce incompressibility, each issuing a for-

ward and back substitution call plus other computations. The time spent on the Powell and 

Hestenes iteration is not negligible, but the strategy chosen to deal with incompressibility is 

clearly advantageous to other strategies that would not allow the use of Cholesky solvers, see 

for example the results for FEMLAB using UMFPACK in section “Comparison to Other 

Software” below.  
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Figure 5 

Achieved MILAMIN speedup for all operations that need to be performed for every time step; see 

text for details.  

A final analysis of the overall speedup achieved by MILAMIN is shown in Figure 5where we 

depict the ratio of the total time tstandard/toptimized for the thermal and mechanical code. In this 

speedup analysis we define the total time as the sum of the time needed to compute and as-

semble the global matrix, apply boundary conditions, factorize and solve the system of equa-

tions, and perform the Powell and Hestenes iterations (incompressible Stokes flow). Thus 

mesh generation, post-processing, and reordering, which do not need to be performed for every 

time step, do not enter this analysis. For our target system sizes the achieved speedups reach 

approximately 3 and 4 for the mechanical and thermal codes, respectively. Hence, the per-

formance gains due to the developed MILAMIN package are substantial. The scaling with re-

spect to system size shows that the speedup decreases with increasing number of nodes. This is 

due to the super-liner scaling of the direct solver, which starts to dominate the total execution 

time for very large systems. 
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Memory Requirements 

 
Figure 6  

Memory requirements of the thermal and mechanical versions of MILAMIN.  

Besides CPU performance the available memory (RAM) is the other parameter that determines 

the problem size that can be solved on a specific machine. The memory requirements of MI-

LAMIN are presented in Figure 6. Within the studied range of systems sizes, all data allocated 

during the matrix computation and assembly requires substantially less memory than the solu-

tion stage. Thus, the auxiliary arrays such as K_i, K_j and K_val are not a memory bottle-

neck and it is indeed beneficial to perform conversion to sparse format globally. Note that the 

amount of memory required during the factorization stage depends strongly on reordering 

used. This analysis is only approximate as the workspace of the external routines (lchol, 

sparse2, etc) is not taken into account. On 2Gb RAM computers we are able to solve systems 

consisting of 1.65 and 0.65 million nodes for the thermal and mechanical problems, respec-

tively.  

Comparison to Other Software 

In this section we compare MILAMIN to different available commercial and free software 

solving similar test problems. Table 1 presents run times for a thermal problem with ca. 1 mil-

lion degrees of freedom. The model setup consists of a box with a circular hole (zero flux) and 
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a circular inclusion of ten times higher conductivity than the matrix. The outer boundaries are 

set to Dirichlet conditions representing a linearly varying temperature field.  

Table 1 

Performance results for different software packages for the thermal problem. T1 and T2 stand for 

linear and quadratic triangles, Q1 and Q2 for linear and quadratic quadrilateral elements, respec-

tively.  

 

Software Matrix Computation and 
Assembly 

Solve Solver Type 

ABAQUS, T2 80 260 Proprietary 
FEMLAB, T2 18 40 UMFPACK 

 45 TAUCS 
 52 PARDISO 
 58 SPOOLES 
 240 ICCG 
 500 AMG-CG 
 1000 SSOR-CG 
  2500 PCG 

FEAPpv, fortran, T2 7 712 PCG 
OOFEM, C++, T1 36 400 ICCG 
TOCHNOG, C\C++, T2 15 1711 BiCG 
AFEM@matlab, T1 25 19 MATLAB \ 
IFISS, Q2 999 57 MATLAB \ 
IFISS, Q1 464 30 MATLAB \ 
MILAMIN std, T2 65 24 CHOLMOD2 (AMD) 
MILAMIN opt, T2 5 24 CHOLMOD2 (AMD) 

The software that entered the test are commercial finite element packages, ABAQUS 

[SIMULIA] and FEMLAB [COMSOL], and open source packages FEAPpv [Zienkiewicz  and 

Taylor], OOFEM [Patzak],  and TOCHNOG [Roddeman] for compiler languages, and 

AFEM@matlab [Chen and Zhang], and IFISS [Silvester, et al.] for MATLAB. For the solu-

tion stage we used a wide range of direct solvers including UMFPACK [Davis], TAUCS 

[Toledo, et al.], PARDISO [Schenk and Gärtner], SPOOLES [Ashcraft, et al.], CHOLMOD 

[Davis], and the MATLAB backslash operator (\). We also compared different implementa-

tions of iterative solvers such as Conjugate Gradients preconditioned with Jacobi (PCG), 

Symmetric Successive Over-Relaxation (SSOR-CG), Incomplete Cholesky (ICCG), and Alge-

braic Multigrid (AMG-CG), and a Biconjugate Gradients solver preconditioned with Jacobi 

(BiCG). 

A number of other MATLAB based packages are available, which, however, could not enter 

our table because they are simply incapable of solving the test problem in a reasonable amount 

of time and the amount of RAM available. From the MATLAB packages that entered the per-

formance comparison AFEM seemingly excels with high performance. However, AFEM is 
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specifically developed to operate with linear triangles solving the Poisson problem. This al-

lows AFEM to employ only one integration point and the amount of work performed is sub-

stantially less than for isoparamteric quadratic elements, although the actual number of ele-

ments is higher for the test problem with a fixed number of nodes. IFISS is another MATLAB 

based package capable of solving Poisson and incompressible Navier-Stokes problems based 

on linear and quadratic quadrilateral meshes. Despite its aim of being a vectorized code, the 

performance IFISS is not optimal. This is partly due to a badly performing boundary condition 

implementation. The matrix computation and assembly performance of the compile language 

and commercial codes is quite reasonable, with FEAP being the clear leader. However, none of 

the tested packages is as fast for the matrix computation and assembly as the optimized version 

of MILAMIN and even the standard version of MILAMIN is performing quite reasonably in 

comparison.  

The analysis of the solver times confirms our previous statement that for the studied 2D prob-

lems direct solvers (CHOLMOD, UMFPACK, TAUCS, PARDISO, SPOOLES) are the best 

choice with CHOLMOD being the best in the group. Iterative solvers, even if equipped with 

good preconditioners, like incomplete Cholesky or AMG, are not competitive with respect to 

the direct solvers for the targeted problem size.  

Table 2 

Performance results for different software packages for the mechanical problem.  

Software Matrix Computation 
and Assembly 

Solve Solver Type 

IFISS Q2-P1 (5e5 DOFs) 340 298 MATLAB \ 
66 UMFPACK FEMLAB 3.3 T2+P-1 (2e5 

DOFs) 
7

186 ILU-GMRES 
MILAMIN (opt) T2+P-1 (1e6 
DOFs) 

15 34 CHOLMOD (AMD) 

 

A performance comparison of MILAMIN for a mechanical test problem is given in Table 2. 

The domain is again a box containing a circular hole (free surface) and a circular inclusion 

with a ten times higher viscosity than the matrix. The outer boundaries are set to Dirichlet con-

ditions representing pure shear deformation. The number of available packages to solve in-

compressible Stokes problems with heterogeneous material is greatly reduced compared to the 

thermal problem. In fact the IFISS package is not capable of dealing with heterogeneous mate-

rials and we used here an iso-viscous model. In the case of FEMLAB we had to employ the 

special MEMS module, which provides an incompressible Stokes application mode. However, 
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even with this specialized module we were unable to fit the test problem into the 2Gb RAM 

and therefore the results are provided for a five times smaller problem size. MILAMIN outper-

forms IFISS as well as FEMLAB both in terms of matrix computation and assembly, and the 

solution time. The latter demonstrates that iterative penalty approach chosen in MILAMIN and 

the resulting possibility to use a Cholesky solver (symmetric and positive definite system) is 

superior to other approaches.  

Applications 

 

Figure 7 

Illustration of a one million node application problem modeled with MILAMIN. Steady state diffusion is solved 

in a heterogeneous rock with channels of high conductivity. Heat flow is imposed by a horizontal thermal gradi-

ent; i.e. T(left boundary)=0, T(right boundary)=1,  top and bottom boundary conditions are zero flux.  a) Con-

ductivity distribution. b) Flux visualized by cones and colored by magnitude. Normalization versus flux in homo-

geneous medium with conductivity of the channels. Background color represents the conductivity. Triangular 

grid is the finite element mesh used for computation. Note that this picture only corresponds to a small subdo-

main of a) (see square outline). 

The power of MILAMIN to perform high resolution calculation for heterogeneous problems is 

illustrated with a thermal and a mechanical application example. Figure 7 shows the heat flux 

through a heterogeneous rock requiring approximately one million nodes to resolve it. Figure 8 

shows a mechanical application of MILAMIN. Gravity driven incompressible Stokes flow is 

used to study the interaction of circular inclusions with different densities leading to a stratifi-

cation of the material, see movie. 
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Figure 8 

Mechanical application example. Circular inclusions in box subjected to vertical gravity field. Black (heavy) and 

white (light) inclusions have the same density contrast with respect to the matrix. They are hundred times more 

viscous than the matrix. First row shows (unsmoothed) pressure perturbations, second row maximum shear 

strain rate, and the third row the magnitude of the velocity field with superposed velocity arrows (random posi-

tions). All values are normalized by the corresponding maximum value generated by a single inclusion of the 

same size centered in the same box. The first column shows the entire domain, the second column a zoom-in with 

superposed finite element mesh according to the white square.  

Movie 1 

Time evolution of a model similar to what is shown in Figure 8. Viscosity ratio 1000:1. 

MILAMIN allows not only to study the overall response of the system, but also resolves the 

details of the flow pattern around the heterogeneities. Note that no pressure oscillations prob-

lems can be observed that are often caused by the incompressibility constraint [e.g. Pelletier, et 

al., 1989]. 

The MILAMIN strategies and package are applicable to a much broader class of problems than 

illustrated here. For example, transient thermal problems require only minor modifications to 

the thermal solver. As already mentioned the mechanical solver is devised in a way that com-

pressible and incompressible elastic problems can be easily treated, simply by variable substi-

tution. Coupled thermo-mechanical problems, arising for example in mantle convection, only 

require that the developed thermal and mechanical models are combined in the same time loop. 

This results in an unstructured, Lagrangian mantle convection solver capable of efficiently 

dealing with hundreds of thousands of nodes [cf., Davies, et al., 2007]. 

Conclusions 

We have demonstrated that it is possible to write an efficient native MATLAB implementation 

of the finite element method and achieved the goal to setup, process, and post-process thermal 

and mechanical problems with one million degrees of freedom in one minute on a desktop 

computer.  

In our standard implementation we have combined all the state of the art components required 

in a finite element implementation. This includes among others: efficient pre-processing, fast 

matrix assembly, exploiting matrix symmetry for storage, and employing the best available 

direct solver and reordering packages. MATLAB-specific optimizations include proper mem-

ory management (pre-allocation of arrays) and data structures, explicit type declaration for in-
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teger arrays, and efficient implementation of boundary conditions. In the case of the mechani-

cal application the chosen penalty method together with the particular element type allows us 

to use the efficient Cholesky factorization to solve the incompressible flow problem. The clear 

structure of the code serves the educational purposes well. The results of our software com-

parison show that our standard version performs surprisingly efficient even compared to pack-

ages implemented in compiler languages.  

Furthermore, in our optimized version we have improved the efficiency of the stiffness matrix 

calculations, which resulted in an overall execution speedup of approximately 4 times with re-

spect to the standard version. This has been done by minimizing the ratio of overhead (BLAS 

and MATLAB) to computation. Another priority was to avoid unnecessary data transfers and 

promote cache reuse, as memory speed is a major bottleneck on current computer architec-

tures. Particular optimizations to the matrix computation algorithm include 1) increased per-

formance of the BLAS operations by interchanging loops and operating on large matrices, 2) 

reducing the total operation count by exploiting the symmetry of the system, and 3) facilitating 

cache reuse through the introduction of blocking.  

Our implementation of the matrix computation achieves a sustained performance of 350 

Mflops for any system size. Any further performance improvements to this part of the code are 

irrelevant, since even for smallest systems the matrix computation takes now only a fraction of 

the total solution time, with the solver being the bottleneck.  

By paying attention to the strategies outlined in this article, MATLAB-based MILAMIN can 

not only be used as a development and prototype tool, but also as a production tool for the 

analysis of two dimensional problems with millions of unknowns within minutes. The com-

plete MILAMIN source code is available from the authors and can be downloaded as an elec-

tronic supplement to this paper. 
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Appendix I: Variable Names 

Table 3: MILAMIN variables. Note: “aeib” stands for “all elements in block”. 

Variable 
group 

Variable Size Description 

ndim 1 Number of dimensions 
nel 1 Number of elements 
nnod 1 Number of nodes 
nnodel 1 Number of nodes per element 
nedof 1 Number of thermal or velocity degrees of freedom 

per element 
np 1 Number of pressure degrees of freedom per element 
nip 1 Number of integration points per element 
nelblo 1 Number of elements per block 
nblo 1 Number of blocks 
npha 1 Number of material phases 
nbc 1 Number of constraint degrees of freedom 

Variable 
size 

nfree 1 Number of unconstraint degrees of freedom 
ELEM2NODE [nnodel, nel] Connectivity 
Phases [1, nel] Phase of elements 

Mesh 

GCOORD [ndim, nnod] Global coordinates of nodes 
IP_X [ndim, nip] Local coordinates of integration points 
IP_w [1, nip] Weights of integration points 
N {nip*[ nnodel, 1 ]} Cell array of nip entries of shape functions Ni evalu-

ated at integration points 

Integration 
points, 
shape func-
tions and 
their deriva-
tives 

dNdu {nip*[ nnodel, ndim]} Cell array of nip entries of shape functions deriva-
tives wrt local coordinates dNdui evaluated at inte-
gration points 

ECOORD_X [ndim, nnodel] Global coordinates of nodes in element 
J [ndim, ndim] Jacobian in integration point 
invJ [ndim, ndim] Inverse of Jacobian 
detJ 1 or [nelblo,1] Determinant of Jacobian (or aeib) 
dNdX [nnodel, ndim] Shape function derivatives wrt global coordinates in 

integration point 
ECOORD_x, 
ECOORD_y 

[nnodel, nelblo] Global x and y-coordinates for nodes (aeib) 

Jx, Jy [nelblo, ndim] 1st (x) and 2nd (y) row of Jacobian in integration 
point (aeib) 

invJx, invJy [nelblo, ndim] 1st (x) and 2nd (y) column of inverse of Jacobian 
(aeib) 

Geometry 

dNdx, dNdy [nelblo, nnodel] Shape function derivatives wrt global x and y-
coordinate (aeib) 

Auxiliary 
arrays 

indx_l [nedof*(nedof+1)/2,1] Indices extracting lower part of element matrix 

Free [1, nfree] Unconstraint degrees of freedom 
Bc_ind [1, nbc] Constraint degrees of freedom 

Boundary 
conditions 

Bc_val [1, nbc] Constraint boundary values 
perm [1,nfree] Permutation vector reducing factorization fill-in  
L [nfree, nfree] Sparse lower Cholesky factor of global stiffness 

matrix 

Solution 

Rhs [nfree, 1] Global right hand side vector 
THERMAL 

D [npha,1] Conductivities for different phases Materials 
ED 1 or [nelblo,1] Conductivity of element (or aeib) 
K_elem [nnodel, nnodel] Element stiffness matrix  Matrix cal-

culations K_block [nelblo, nnodel*(nnodel+1)/2] Flattened element stiffness matrices (aeib) 
K_i Row indices of triplet sparse format for K_all 
K_j Column indices of triplet sparse format for K_all 

Triplet stor-
age 

K_all 

[nnodel*(nnodel+1)/2, nel]  
 

Flattened element stiffness matrices for all elements 
K [nfree, nfree] Sparse global stiffness matrix (only lower part) Solution 

stage T [nnod, 1] Unknown temperature vector 
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MECHANICAL 
Mu, Rho [npha,1] Viscosity and density for different phases Materials 
EMu, ERho 1 or [nelblo,1] Viscosity and density of element (or aeib) 
Pi [np,1] Pressure shape functions in integration point 
P [np, np] Auxiliary matrix containing global coordinates of 

the corner nodes 
Pb [np,1] Auxiliary vector containing global coordinates of 

integration point 
B [nedof, ndim*(ndim+1)/2] Kinematic matrix 
A_elem [nedof, nedof] Element stiffness matrix (velocity part)  
Q_elem [np, nedof] Element divergence matrix  
M_elem [np, np] Element pressure mass matrix  
invM_elem [np, np] Inverse of element pressure mass matrix 
Rhs_elem [ndim, nedof] Element right hand side vector 
PF 1 Penalty factor 
GIP_x, GIP_y [1,nelblo] Global x and y-coordinates of  integration point 

(aeib) 
Pi_block [nelblo, np] Pressure shape functions in integration point (aeib) 
A_block [nelblo, nedof*(nedof+1)/2] Flattened element stiffness matrices (aeib) 
Q_block [nelblo, nedof*np] Flattened element divergence matrices (aeib) 
M_block [nelblo, np*(np+1)/2] Flattened element pressure mass matrices (aeib) 
invM_block [nelblo, np*np] Flattened inverses of element pressure mass matri-

ces (aeib) 

Matrix cal-
culations 

Rhs_block [nelblo, nedof] Element right hand side vectors (aeib) 
Rhs_all [nedof, nel] Element right hand side vectors for all elements 
A_i Row indices of triplet sparse format for A_all 
A_j Column indices of triplet sparse format for A_all 
A_all 

[nedof*(nedof+1)/2, nel]  

Flattened element stiffness matrices for all elements 
Q_i Row indices of triplet sparse format for Q_all 
Q_j Column indices of triplet sparse format for Q_all 
Q_all 

[nedof*np, nel] 

Flattened element divergence matrices for all ele-
ments 

invM_i Row indices of triplet sparse format for invM_all 
invM_j Column indices of triplet sparse format for invM_all 

Triplet stor-
age 

invM_all 

[np*np, nel] 

Flattened inverses of element pressure mass matri-
ces for all elements 

A [nfree, nfree] Sparse global stiffness matrix (only lower part) 
Q [np*nel, ndim*nnod] Sparse divergence matrix 
invM [np*nel, np*nel] Sparse pressure mass matrix 
Div [nel*np, 1] Quasi-divergence vector 
Vel [ndim*nnod, 1] Unknown velocity vector 

Solution 
stage 

Pressure [nel*np, 1] Unknown pressure vector 
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Abstract 

We study the initial stages and the finite strain evolution of the behavior of a rigid circular in-

clusion embedded in an anisotropic matrix subjected to anisotropy parallel simple shear. The 

model is two dimensional, plane strain, and linear viscous materials are assumed. The initial 

instantaneous flow stages are studied with an analytical solution that is based on Willis (1964). 

The finite strain evolution of the inclusion and the structural development are studied with a 

finite element method model. This model also allows for studying the effect of explicitly lay-

ered host material and the correspondence to effective anisotropic approximations and sheds 

light on the issue of upscaling versus resolving layered medium. Investigated aspects include 

the inclusion motion, flow field rearrangement and structural development in the host. Our re-

sults show that matrix anisotropy has a first order effect on the motion of a rigid heterogeneity 

subject to shear and the development of structures around it. We are able to demonstrate that 

this is the case for even weakly anisotropic hosts if the total inclusion rotation is considered. 

Strong anisotropy leads to substantially reduced rotation rates once a shear strain magnitude of 

2 is reached. This effect and related developments in the structural development in the matrix 

may yield finite strain structures that appear to be the result of substantially lower strains. Fur-

thermore, perturbation flow ranges are much larger in anisotropic material and therefore 

boundary effects and flow confinement and interaction distances much larger, which also have 

to be considered when interpreting natural structures. The comparison of layered and anisot-

ropic hosts reveals that the effective approach is good when inclusion motion is considered. 

However, the detailed structural evolution in a layered matrix, e.g. development of rootless 

folds, thickening of strong layers, deformation localization in weak layers, and break in 

orthotropic symmetry, can only be studied if the layers are explicitly resolved. 

Introduction 

Most geological materials are heterogeneous, with the heterogeneities ranging from sub-grain 

to kilometer scales. Preferentially oriented crystal lattices of rock forming minerals may give 
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rise to an overall anisotropy (e.g. Kocks et al. 2000), but this effect may be equally well related 

to shape alignment of its heterogeneous constituents or ultimately layering. The relation be-

tween heterogeneity and anisotropy has been recently quantified by Treagus (2003) and 

Fletcher (2004). The study of the deformation in and around heterogeneities and in anisotropic 

materials represents an important cornerstone of structural geology. Examples include rotation 

and shape evolution of inclusions (e.g. Bilby & Kolbuszewski 1977, Eshelby 1957, e.g. 1976, 

Jeffery 1922, Jezek et al. 1996, Marques et al. 2005, Mulchrone 2007, Schmid & Podladchikov 

2004), pattern formation around inclusions (e.g. Bons et al. 1997, Kocher & Mancktelow 2005, 

Mandal et al. 2005, Masuda & Mizuno 1996, Passchier & Simpson 1986, Rosas et al. 2002, 

Schmid & Podladchikov 2005), interactions between heterogeneities (e.g. Arbaret et al. 2001), 

single and multilayer folding (e.g. Biot 1961), chevron folding (e.g. Bayly 1970), formation of 

kink bands or internal instabilities in general (e.g. Cobbold et al. 1971).  

Studies where both a distinct heterogeneity and material anisotropy are present and their mu-

tual interaction is investigated are relatively few (e.g., Kocher & Mancktelow 2006, Kocher et 

al. 2006, Muhlhaus et al. 2002a, Muhlhaus et al. 2002b). In the work of Kocher and Manckte-

low (2006) a flanking structure is approximated as a weak elliptical inclusion that is embedded 

in an anisotropic matrix and consequently subject to shear. A finding is that the motion of such 

an inclusion is identical to the case of a strongly elliptical weak inclusion embedded in an iso-

tropic matrix, which is equivalent to that of a passive marker. This is rather surprising as one 

could expect that the intricate development of the anisotropy structure around such an inclu-

sion could substantially influence its behavior, similar to how matrix anisotropy influences 

folding (Kocher et al. 2006). The question arises to which extent the findings of Kocher and 

Mancktelow (2006) hold for other cases of inclusion-matrix systems.  

We study the behavior of a rigid circular inclusion in simple shear as a function of matrix ani-

sotropy. The initial stages where the trace of the matrix anisotropy is undisturbed are analyzed 

with an analytical solution. This is not possible for the finite strain evolution due to the hetero-

geneous evolution of the anisotropy structure of the matrix and we address these stages with a 

finite element method (FEM) model. In particular we investigate i) the flow evolution in the 

matrix as a function of anisotropy, ii) the motion of the inclusion, iii) the development of struc-

tures in the anisotropic matrix, and iv) the correspondence between explicitly layered matrix 

material and homogenously anisotropic material.  
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Mathematical Model 

 
Figure 1  

Schematic models of the two different categories of inclusion-host systems: a) A rigid circular in-

clusion of a radius r embedded in a homogeneous anisotropic host with the anisotropy trace 

aligned with the x-direction. In the analytical setup the system is loaded at infinity. In the case of 

the numerical setup a rectangular computational domain of a height H and a width L is used and 

loads are prescribed on its boundaries. b) In the second model category, competent and incompe-

tent layers are explicitly present in the host. The number of individual layers across the inclusion is 

varied throughout the model instances. 

We study the flow perturbation around a circular inclusion embedded in a viscous host sub-

jected to a simple shear in two different kinds of setups, namely the homogeneous and explic-

itly layered host cases (see Figure 1). Our analysis is restricted to two-dimensions and the 

plane strain condition is present throughout it. The inclusion is modeled as a rigid object and 

the complete coherence at the inclusion and host interface is assumed. We allow for the me-

chanical anisotropy of a host material given by a shear sμ  and normal nμ  viscosity for the 

shearing parallel and longitudal to the anisotropy trace, respectively. Using the Cartesian coor-

dinate system aligned with the anisotropy direction, the constitutive relationship for an incom-

pressible orthotropic or transversally isotropic medium reads 

 
2

2

2

xx n

yy n yy

xy s xy

p D

p D

D

σ μ

σ μ

σ μ

= − +

= − +

=

xx

 (1) 

where  and p σ  denote pressure and the stress tensor, respectively. The strain rate tensor  is 

defined by the usual kinemetic relations 

D
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where  is the velocity vector field. Throughout the constitutive equations v (1), we have as-

sumed the incompressibility condition complemented by the plane strain assumption that yield 

the following constraints on the strain rate components 

  (3) 0, 0xx yy xz yz zzD D D D D+ = = = =

Finally, the momentum conservation for a homogeneous anisotropic medium with a vanishing 

body force under a creeping flow regime (Stokes flow) and subject to the introduced assump-

tions is given in differential form by 
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It is worth noting that an arbitrarily oriented anisotropy trace with respect to the chosen global 

reference frame necessitates the tensorial transformation of the constitutive relationship (1). 

The latter one is provided in the second part of our paper where we allow for a non-uniform 

evolution of the anisotropy direction in the host during progressive deformation. In this case 

the momentum conservation given by (4) is not valid any more. However, it is automatically 

taken care of in our numerical solver that relies on a general integral formulation of the me-

chanical equilibrium and the appropriate constitutive relationship. 

It has been previously noted that the overall anisotropy of a property such as viscosity may 

stem from an intrinsic mechanical anisotropy of rock constituents or is a collective behavior of 

adequately structured but otherwise isotropic phases. In this study, we presume that the me-

chanical anisotropy in the host is derived from the presence of alternating incompetent and 

competent layers of viscosity 1μ  and 2μ , respectively. In the first category of the studied mod-

els, we postulate that the layer thickness is negligible in comparison to the inclusion size and 

the host layering serves as a microscopic motivation. However, such a layering of a host mate-

rial is indeed present in the second category of our models that is referred as the explicitly lay-

ered host case (see Figure 1).  

We frequently use a conventional anisotropy factor δ defined as a ratio of the normal and 

shear viscosity that provides a measure of the anisotropy strength 
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 n

s

μδ
μ

=  (5) 

It is convenient to relate this anisotropy factor to a viscosity ratio and phase fraction f of the 

weak and strong component in an explicitly layered system in order to make a quantitative link 

between the two different model categories. A simple calculation shows that the overall me-

chanical response of such a layered medium is described by a shear sμ  and normal nμ   viscos-

ity that replace the isotropic viscosities 1μ  and 2μ  (Biot 1965). 
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1 2
1 1 2 2
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The shear and normal viscosity are given by the weighted harmonic and arithmetic mean, re-

spectively. Thus, the normal viscosity is never smaller than the shear viscosity irrespective of 

the phase abundances. In addition, these viscosities coincide with the theoretical lower and up-

per bounds on an effective viscosity in a composite linear medium (Hill 1952). In this study we 

consider equal area fractions of the competent and incompetent phase, i.e. . In 

this particular case, the anisotropy factor of a composite consisting of two predefined phases 

assumes the maximum value that reads  

1 2 0.5f f= =

 
2

1 1
4

m
m

δ ⎛= +⎜
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⎞
⎟
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 (7) 

where we have introduced a viscosity ratio factor 2 /m μ μ= . In order to provide the remain-

ing part of the analyzed link, we invert the relation (7) to obtain  

 1
1

m δ δ
δ δ
+ −

=
− −

 (8) 

where we assume 1δ ≥ . 

Instantaneous flow pattern 

The basis for the understanding of the finite strain evolution around a rigid inclusion in an ani-

sotropic matrix is the initial instantaneous flow stage. We study this with analytical and finite 

element methods. This allows us to establish the basic characteristics of the studied system, 

benchmark the numerical model, quantify boundary effects, and put bounds on the applicabil-

ity of anisotropic material approximation. 
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Analytical solution 

The analytical solution for an elliptical inclusion in an anisotropic matrix, which covers arbi-

trary viscosity ratios, compressibility, and general uniform far field loads was derived by 

Willis (1964). Here, we look at the end member case where a rigid circular inclusion with ra-

dius  is embedded in a homogeneously anisotropic matrix and subjected to a far field simple 

shear with rate 

r

2 xyD∞  that is parallel to the direction of the anisotropy.  

The complete perturbation velocity field outside the inclusion can be derived (see “Appendix I: 

Analytical solution” for details): 

( )( )2 4 4 4 4
4xy

rV iD X X X X X X Xγ γ γ γ γ
γ

∞ + − − + + − −= − − + + − + − + + + + X +  (9) 

Note that we use complex notation for the coordinates, X x iy= + , and perturbation velocity, 

x yV v iv= + . Furthermore, the following coordinate transformation is introduced 

 X X Xγ± = ±  (10) 

and γ  is related to the anisotropy factor by 

 2 1
1

δγ
δ
−

=
+

 (11) 

The strain rate field can be obtained upon differentiation of the eqn. (9) according to the for-

mulas (2).  
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Figure 2  

Velocity perturbation magnitude (a, b and c) and strain rate intensity (d, e and f) fields around a 

rigid circular inclusion embedded in an infinite homogenous anisotropic host and subjected to a 

simple shear with the unit rate at infinity. Columns show results for anisotropy factors 2, 10 and 

100, respectively.  

The magnitude of the flow perturbation field and strain rate intensity for different anisotropy 

factors is depicted in Figure 2. The results show that the anisotropy of the host material has 

strong impact on the characteristics of the perturbation flow around the inclusion. The first col-

umn shows the weak anisotropy case that exhibits relatively smooth variations similar to the 

isotropic case (cf. Schmid & Podladchikov 2003). With increasing anisotropy these fields start 

to focus in the principal directions of the anisotropy. The strain rate maxima adjacent to the 

inclusion are enhanced and gradually spread in the direction of the anisotropy. For high anisot-

ropy factors these maxima merge and form high strain rate segments that follow the outline of 

the bounding square to the inclusion. The interior of this square is shielded from the deforma-
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tion through the mentioned zones of a localized deformation. Thus, effectively the rigid inclu-

sion becomes a square. The secondary strain rate maxima, initially present at some distance 

from the inclusion, are also enhanced with an increasing anisotropy factor and migrate inwards 

towards the corners of the bounding square. Moreover, the initial high strain rate oval regions 

split and penetrate outwards into the host as conjugate bands that sharpen and approach the 

anisotropy direction with increasing its strength. In contrary, the initial secondary low strain 

rate regions extend according to their original elongation that coincides with the anisotropy 

direction. The resulting bands of a suppressed shearing inherit the width of the inclusion.  

It is evident based on a symmetry that the rotation rate of a circular inclusion in an orthotropic 

medium subjected to a pure shear vanishes. Thus, in the case of simple shear the rotation rate 

of a circular inclusion equals the magnitude of the background flow vorticity, which is half of 

the simple shear rate. Furthermore, a general result stating that the rotation rate of an elliptical 

inclusion in an incompressible anisotropic medium mimics the isotropic case has been derived 

(R.C. Fletcher, publication submitted). Later, we will show that the notion of the host homoge-

neity is crucial for this result to hold.  

In order to gain further insights into the characteristics of the perturbation flow we have de-

rived the infinite anisotropy factor limit of eqn. (9). The flow field can now be expressed as  

 

2
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sgn( ) 1 1

0 1
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0 1

xy
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∞
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 (12) 

In this degenerate case only the off-diagonal components of the strain rate tensor survive. The 

strain rate intensity and vorticity of the field (12) is shown in Figure 3 together with the quiver 

plots of the total flow and the corresponding one with the background rotation removed.  
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Figure 3  

Strain rate intensity (a) and vorticity magnitude  field (b) in the limit of the infinite anisotropy 

strength. The flow field is visualized with the overlying quiver plots.in (b) the uniform background 

vorticity component of the simple shear flow is subtracted from both the field values and the vector 

field  

By inspection of the flow field, we identify three distinct regions: 

1. The velocity field vanishes in the square domain that outlines the inclusion. Thus, this 

confirms our observations that in the limit of an infinite anisotropy factor the problem 

of a rigid circular inclusion subjected to a simple shear load aligned with the anisotropy 

direction is equivalent to the problem of a rigid square inclusion.  

2. Sharp bands forming a cross propagate from the center along the anisotropy directions 

and the width of these bands is dictated by the inclusion size. Neglecting the back-

ground rotational component, flow vectors within these bands are perpendicular to their 

boundaries. At some distance from the inclusion, the increase of the velocity magni-

tude is closely approximated by a linear function and results in a simple shear flow of a 

rate equal to half of the far field value. Consequently, the strain rate intensity and vor-

ticity magnitude assume a quarter of a far field simple shear rate. Towards the rim of 

the inclusion, both the strain rate intensity and vorticity diverge within the bands.  

3. The flow field in the remaining part of the host outside the cross is quickly adjusted to 

the far field uniform simple shear flow. Again, the strain rate and vorticity diverge to-

wards the bands.  
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Numerical solution 

In this section we present results obtained with a modified version of MILAMIN, our implicit 

FEM code that is capable of solving incompressible Stokes flow. In both studied cases, anisot-

ropic and layered matrix, large numerical resolutions are required in order to resolve either 

flow complexities or layer geometry. The optimizations that have been implemented into MI-

LAMIN allow for solving mechanical problems around one million of nodes on a desktop 

computer in the order of a minute (Dabrowski et al. in press). Details of the implementation 

and other numerical considerations can be found in “Appendix II: Finite Element Model”.  

Homogeneous anisotropic host 

 
Figure 4 

Magnitude of perturbation velocity obtained with FEM for anisotropy factor 10. a) Inclusion 

size/box height ratio 0.1, box aspect ratio 1, b) Inclusion size/box height ratio 0.1, box aspect ratio 

2, c) Inclusion size/box height ratio 0.05, box aspect ratio 2. Note: Actual numerical models are al-

ways larger than what is displayed. 

The first set of numerical models investigates the correspondence between the analytically ob-

tained results and the numerical ones, Figure 4. The setup consists of a box with varying aspect 

ratio (width/height) and a circular inclusion located in the center (see Figure 1). The inclusion 

is given a high viscosity so that it effectively behaves like a rigid object (we have used four 

orders higher viscosity than the normal viscosity of the host material). Top and bottom bound-

ary conditions are constant (simple shear) velocities and periodicity is enforced on the lateral 

walls.  

Figure 4 shows that the velocity perturbation patterns display a close resemblance to the distri-

bution predicted analytically (cf. Figure 2b). However, due to the boundaries located at a finite 

distance from the inclusion discrepancies are to be expected. The boundary effect is still quite 
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strong for an inclusion size that corresponds to 10% of the domain height. We have found that 

increasing the aspect ratio of the box from one to two can substantially reduce the boundary 

effect, Figure 4b. However, further reduction of the boundary effect requires changing the in-

clusion size rather than the aspect ratio of the box, Figure 4c.  

It has been noticed that the boundaries also influence the rotation rate of the inclusion. This 

effect is again to be expected, since the lateral and horizontal wall boundary conditions are not 

equivalent in these models. The rotation rate of the inclusion provides an important measure of 

the boundary effect; the analytically predicted value being 0.5. In the case of the anisotropy 

factor 10 and the three setups depicted in Figure 4, the rotation rate is 0.445, 0.485 and 0.492, 

respectively. With increasing strength of anisotropy the boundary effect become stronger; e.g. 

the rotation rate equals 0.435 for the setup in Figure 4c with anisotropy factor 100. 

We conclude that using the inclusion size of 5% of the domain height and the box aspect ratio 

of two provides a sufficient setup to avoid a strong influence of the boundary effects for mod-

erate anisotropy factors while still being able to resolve it numerically.  
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Layered host 

 
Figure 5  

Perturbation flow magnitude around a rigid circular inclusion subjected to simple shear deforma-

tion at the boundaries (not shown on these portions). Inclusion size/box height ratio is 0.05 and box 

aspect ratio is 2 for all models. Isotropic competent and incompetent layers are present in the host 

material. The top-most point of the inclusion is within a competent layer. Number of layers across 

the inclusion is fixed in the columns to 9, 17 and 33. Viscosity ratio of the strong and weak layers is 

constant in the rows and is set to ca. 6, 38, 380; values that correspond to anisotropy factor 2, 10 

and 100, respectively. 
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To study the correspondence between the anisotropic and layered host cases, we compare the 

influence of the finite layer thickness on the perturbation flow pattern by systematically vary-

ing layer thickness/inclusion size ratio. Hence, we introduce equally spaced weak and compe-

tent layers in the host material. Following the findings of the previous section the box has as-

pect ratio two (width/height) and the effectively rigid inclusion is 5% of the box height sub-

jected to the same set of boundary conditions. In order to facilitate comparison with the results 

obtained with the anisotropic code (anisotropy factors 2, 10 and 100), the viscosity ratio of the 

layers has been set to ~6, 38 and 380 according to the eqn. (8). We have analyzed the cases of 

9, 17 and 33 layers across the inclusion, which results in 180, 340 and 660 layers in the whole 

model, respectively. The lower- and uppermost points of the inclusion are located in the mid-

dle of the strong layers. In this symmetric configuration translation of the inclusion is inhib-

ited.  

A comparison of Figure 2 and Figure 5 shows that the perturbation flow converges towards the 

anisotropic host solution in the limit of the thin layering. Already for the analyzed 33 layers 

case, the similarity of the flow perturbation pattern and the anisotropic solution is rather evi-

dent. In addition, weaker viscosity contrast between the layers promotes the applicability of the 

anisotropic medium approach. Similar conditions describing the validity of representation by a 

continuous media were already formulated by Biot (1965, p. 191).  

Our FEM results indicate that up-scaling of the mechanical behavior of a layered medium us-

ing effective anisotropic material properties is a valid approach. Nevertheless, discrepancies 

exist between the two model categories. We find that the major difference between the two is 

the lack of orthotropic symmetry in the layered host case. By introducing explicit layering one 

direction of the anisotropy is favored and it is clearly reflected in the flow perturbation pattern. 

Here, the horizontal high strain band is developed stronger than the vertical one with shearing 

focused into the weak layers. The latter observation suggests the possibility of inclusion-host 

decoupling, which is likely to be strong for coarser layering.  
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Figure 6  

Rotation rate of a rigid circular inclusion embedded in a layered host ffor different anisotropy fac-

tors:a) 2,b) 10, c) 100. Results are shown for strong and weak embedding as a function of number 

of layers across the inclusion. Reference rotation rates obtained for a layer-free anisotropic host, 

which deviate from 0.5 due the influence of boundaries. 

Figure 6 shows the rotation rate of the inclusion as a function of layer thicknesses in the ma-

trix. Apart from the weakly anisotropic model, Figure 6a, the rotation rate decreases with 

coarsening the layers. A decrease in the rotation rate is consistent with the previously men-

tioned shear localization into the weak layers in the vicinity of the inclusion. For completeness, 

we have analyzed the case of the weak embedding when the marginal layers are incompetent. 

This results in consistently lower rotation rates than in the strong embedding case and again 

the rotation rate decreases as the layering coarsens. For anisotropy factor 100, a value as low as 

ca. 0.12 has been obtained. 

Finite strain evolution 

We now analyze the finite strain evolution of the studied models. Due to the structural devel-

opment in the matrix the anisotropy will emerge heterogeneously and it is therefore no longer 

feasible to obtain analytical solutions and we restrict the analysis to FEM models. We first ex-

tend the constitutive relations to the case of an arbitrarily orientated anisotropy trace with re-

spect to the flow directions and present the update rule for the anisotropy orientation that is 

concordant with the finite strain evolution of a layered medium. Then, we present the results of 

numerical experiments where a simple shear deformation of magnitude five is reached. 

Director theory 

The constitutive relationship (1) requires that the anisotropy directions are aligned with the 

axes of the global coordinate system. During progressive deformation the flow perturbation in 

the vicinity of the inclusion will lead to heterogeneous advection and reorientation of the ini-

tially homogeneously oriented anisotropy traces. First, we need to provide the constitutive law 
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for an anisotropic fluid in a form that covers the case of an arbitrarily directed anisotropy. Un-

der our two-dimensional assumptions the normal to the layering or the axis of a transversally 

isotropic host is expected to remain within the analyzed plane. Introducing the inclination ϕ  of 

the anisotropy trace with respect to the global Cartesian coordinate system xy and applying the 

tensorial transformation rules, we obtain the following constitutive relationship for an incom-

pressible transversally isotropic medium:  
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In addition to the constitutive relationship and the usual conservation laws, we require the evo-

lution equation of the anisotropy orientation described in general by the so-called director field 

 that represents the normal to the anisotropy plane. In the context of layered materials, 

the evolution law of the director field that coincides with the material derivative of the normal 

to a surface element is postulated. The transformation of the surface element  under the 

deformation gradient  is given by Nanson’s formula 

( , )n x t

nda

F
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where  is Jacobian that is equal to 1 in the incompressible case. By applying the material 

time derivative and decomposing the velocity gradient into strain rate  and spin W , we ar-

rive at 

J

D

 [ ( )]k
kp mk m p pl l k p
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Dt

= − −  (15)  

Eqn. (15) coincides with the evolution law postulated in the frame of the Ericksen transversely 

istotropic fluid describing uniaxial nematic liquid with the tumbling parameter set to one. 
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Numerical results  

 
Figure 7  

Matrix structures after simple shear deformation of magnitude 5. Small portion of the actual models is dis-

played. The anisotropy factor is constant in columns and the number of layers across the inclusion is fixed in 

rows.  

Finite strain models have been performed for the all instantaneous models that are presented in 

Figure 2 and Figure 5, i.e. for matrix material that is truly anisotropic or has 9, 17 and 33 com-

petent across the inclusion and anisotropy factors 2, 10 and 100. The time integration of the 

anisotropy direction field is based on the director theory that has been described in the previous 

section. The structures developed after a simple shear of magnitude 5 are presented in Figure 

7.  
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The results for an anisotropic host are shown in the bottom row. The pattern developed in the 

weakly anisotropic case (anisotropy factor 2) is expectedly similar to the isotropic case. A dis-

tinct band of tightly folded markers exist, which is predominately inclined at 20 degrees to the 

shear plane. In the vicinity of the inclusion markers and the deformation band are strongly 

wrapped by the inclusion rotation and mimic δ  clast geometry (Passchier & Simpson 1986). 

At a distance of ca. seven times the inclusion radius only slight marker deflections are still pre-

sent in the host. In the anisotropy factor 10 case, the total rotation of the inclusion as indicated 

by the wrapping of the cross-cutting markers is reduced. The structure becomes more angular 

and a second, weaker band of folds is present. The maximum fold amplitude is reduced but the 

perturbation penetrates deeper into the host. The orientation of the main deformation band is 

slightly steeper. For the anisotropy factor 100 even stronger inhibition of the inclusion rotation 

is observed. Fold amplitudes are markedly reduced and the previous deformation bands are 

hardily recognizable. In the sector between ca. 40 and 80 degrees to the shear plane marker 

deflections become ubiquitous and the localization is effectively pervasive.  

Explicit layering of the host material essentially does not affect the total rotation of the inclu-

sion if compared to the anisotropic model. For weak host anisotropy also the structural evolu-

tion is almost identical, because the layers behave as passive markers. However, in hosts with 

stronger anisotropy the presence of layering causes a reduction of the perturbation range and 

smoother fold hinges for thicker layers. In the extreme case of 9 layers and anisotropy factor 

100 the structure formation is restricted to layers that cross cut the inclusion. Contrary, for the 

finest lamination and the anisotropy factor 10 the obtained pattern is very similar to the anisot-

ropic host case, even including the formation of the secondary band of localized deformation.  

 

 

 

Figure 8  

Strain rate intensity field after a simple shear of magnitude 0, 1, 1.6, 2 and 4. The results are shown for the ani-

sotropic and layered host case with 9 and 33 layers across the inclusion. The anisotropy factor equals 10 and 

the viscosity ratio is set accordingly. In the case of the anisotropic host an arbitrarily spaced set of thin lines is 

used as passive markers. Note the difference in the colorbars between the two model categories.  
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In Figure 8 the detailed structural evolution for the models with the anisotropy factor 10 is pre-

sented together with strain rate intensity fields. We analyze the anisotropic host case first.  

• Shear Strain 1: The orthogonal symmetry present in the onset of deformation is visibly 

broken. At this stage the deformation is strongly localized into a distinct band inclined 

at a high angle to the shearing direction. This band coincides with the axis of the most 

prominent structure visible in the host and formed by the gentle flexure of the markers. 

The initially present horizontal pair of the strain rate maxima located in the vicinity of 

the inclusion has disappeared and the horizontal low strain rate band has strengthened.  

• Shear Strain 1.6: A secondary band of localized deformation has developed and links 

the inclusion and the primary high strain rate band. The secondary band is contained 

within a well developed kink band that together with deflections related to the primary 

band encloses a structure similar to a box fold.  

• Shear Strain 2: The high strain rate bands have merged into a more diffuse zone that is 

limited in outreach and inclined at predominantly at 45 degrees to the shearing direc-

tion with a tendency to steepen towards the tips. Two subsidiary high strain rate bands 

have propagated vertically and horizontally from the main band in the neighborhood of 

the inclusion, but these zones are diffuse and the flow is localized to a lesser degree. 

The initially horizontal band of low strain rate is now strongly enhanced. The structure 

is dominated by the kink band that has propagated and broadened partly in expense of 

the box fold interior.  

• Shear Strain 4: The development of numerous diffuse bands of elevated shearing pre-

dominates. The primary kink band has been sheared and reoriented towards the shear 

plane and is associated with a low strain rate. However, the kink band has not actively 

propagated much further into the matrix. A secondary kink band of smaller range and 

amplitude has developed behind the primary kink band. 

The overall patterns of structure evolution and strain rate intensity are retained in the case of a 

layered host. The discrepancies grow with respect to the anisotropic case with increasing strain 

and thickness of the individual layers. The magnitude of the strain rate intensity in the incom-

petent layers is approximately twice higher than in the anisotropic case and virtually vanishes 

in the competent layers. The case of 33 layers across the inclusion mimics even the develop-

ment of a secondary kink band through isoclinal bending of the competent layers. These fold 

stacks are in the subsequent shearing stages pulled apart (in the direction of the axial trace) and 
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less inclined segments escape the tight folding stage. As for the anisotropic matrix no active 

propagation of the deformation bands is visible and even unfolding can be observed. However, 

the presence of the strong layers causes the localized deformation to become less pronounced 

leading to smaller deflections within the folded bands. This effectively results in a shorter per-

turbation range in the structure with increasing the layer thickness, which can be observed in 

the first column of Figure 8. 

For completeness, we performed experiments where the analytical flow field for a homoge-

nously anisotropic host is persistently reused to integrate the structural evolution in the host. 

The results show that for large shear strains virtually no difference between the isotropic and 

anisotropic model develops, which substantiates the approach to analyze the finite strain evolu-

tion with FEM models. 

 

Figure 9  

Rotation rate of the inclusion for the anisotropic and layered host cases. The results are presented 

for (effective) anisotropy factors of 2 (a), 10 (b) and 100 (c). 

We have already noticed that the total rotation of the inclusion is significantly affected by the 

anisotropy. It is not surprising then that the development of the matrix structure as a function 

of accumulated shear has a strong influence on the inclusion rotation rate, Figure 9. a) to c) 

correspond to increasing (effective) anisotropy factors. Anisotropic matrix results are com-

pared with explicitly layered runs of varying number of layers. The rotation rate is character-

ized by a decreasing trend for the studied strain range in all analyzed cases. The deviation from 

the homogenous isotropic case increases with increasing anisotropy and already for a factor ten 

the inclusion effectively stagnates after a shear strain of magnitude 2. It is worth noticing that 

an even antithetic motion is developed in the explicitly layered case corresponding to the ani-

sotropy factor 100. An impact of the finite thickness layering on the inclusion rotation rate is 

noticeable but not substantial. The characteristics observed in the “Instantaneous flow pattern” 
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section such as a slower rotation for the coarsely layered host in the strongly anisotropic case 

are not preserved during finite strain simulations.  

The discrepancy between the curves obtained for an anisotropic host and explicitly layered 

ones in the strongest anisotropy case may be partly explained by numerical problems. The ani-

sotropy structure in the host becomes increasingly complex with strain and is difficult to re-

solve properly during remeshing stages (occasional sharp changes visible on the rotation rate 

curve). We suspect that main cause is the strong (internal) instability that lacks a length scale 

and is therefore mesh-size dependent. 

The rotation rate curves have been integrated in order to inspect the overall rotation of an in-

clusion at the end of the simulations. In an isotropic host the expected rotation of the inclusion 

would be 145° after a shear strain of magnitude 5; the results for the anisotropic host are 100°, 

50° and 20° for the studied anisotropy factors of 2, 10 and 100, respectively. 

Discussion 

Structure development 

We have presented the analytical solution that describes the flow field around a rigid circular 

inclusion embedded in an anisotropic host. The analytical results show that with increasing 

anisotropy factor the flow localizes into narrowing bands that propagate towards the anisotropy 

directions. Performing finite strain simulations up to a simple shear of magnitude 5 by persis-

tently reusing this solution, we have found that the structural development in the host is virtu-

ally insensitive to the anisotropy strength. Yet, the results of our FEM simulations that allow 

for the heterogeneous anisotropy reorientation during the deformation show significant modifi-

cations of the host structure due to the anisotropy. The major differences introduced by the ani-

sotropy include the limited rotation of the inclusion and effectively suppressed wrapping of the 

markers adjacent to it, and sharpening of the marker deflections in the major deformation band.  

During the structural evolution we have noticed the appearance of the subsidiary bands of lo-

calized shearing and the formation and propagation of related kink bands. The kink bands un-

dergo an initial active growth stage that is followed by band stiffening and transposition to-

wards the shearing direction. The fact that the propagation is inhibited at the later stages of the 

band evolution raises the general question of how far structural perturbations can propagate 

orthogonal to the shear plane in anisotropic rocks. One could envision a self-driven chain of 

perturbation–advection events that can propagate endlessly. However, this mechanism cannot 

be observed in our simulations.  
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Another effect is that stronger anisotropy leads to a reduction of fold amplitudes in behalf of a 

more pervasive development of internal instabilities. The latter requires high enough anisot-

ropy factor and favorable orientation of the anisotropy trace. Again, this is only the case in the 

vicinity of the inclusion but not elsewhere.  

Explicit layering in the host remarkably reduces the perturbation range, which is caused by the 

bending stiffness of the stronger layers. However, at no stage the bending of layers seems to be 

one of active folding (cf.  Biot 1961) and we may speculate that either the anisotropy is not 

strong enough (anisotropy factor 10) or the number of explicit layers is not high enough (ani-

sotropy factor 100, 33 layers). In the coarsest models the perturbation range is reduced to a de-

gree that only a few open folds are formed in the inclusion vicinity. Folds like the one present 

in Figure 7 for the anisotropy factor 10 and 9 layers are likely to be transported intact away 

from the inclusion along the weak layers; avoiding isoclinal development. For even larger 

strains these folds may appear rootless. 

The derived analytical solution is strictly only valid for unperturbed host anisotropy. Our ex-

periments show that in the case of simple shear reasonable approximations to the true struc-

tural evolution are limited to shear strains of magnitude <0.5.  

Rotation rate 

In the first part of our study we have presented a closed-form analytical solution describing the 

flow field around a rigid circular inclusion embedded in a homogeneously anisotropic host 

subject to a simple shear flow in the far field. The instantaneous motion of such an object un-

disputedly mimics spinning in the far field. A more general result has previously been derived 

(R.C. Fletcher, submitted) showing that the rotation rate of a rigid elliptical inclusion is not 

affected by the host anisotropy and follows the formula derived by Jeffery (1922). The corre-

sponding FEM models show some deviations from the predicted analytical rotation rates. 

Here, the rigid circular inclusion rotates slower than expected and this effect is strengthened by 

an increase in anisotropy magnitude or inclusion radius as compared to the model size. These 

variations are caused by the relative proximity of the boundaries and by the different treatment 

of lateral (periodic) and top and bottom (impermeable) walls in our numerical setup.  

For an explicitly layered host the rotation rate of an inclusion is additionally affected by layer 

thickness with respect to inclusion size. It also depends on the embedding type, i.e. if the bot-

tom and top-most points of the inclusion are embedded in weak or strong layers. The extreme 

cases are given by a strongly embedded inclusion in a weakly anisotropic host when the rota-
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tion rate slightly exceeds the far field value and a weakly embedded inclusion in a strongly 

anisotropic host with the rotation rate assuming ca. thirty percent of the expected value.  

Marques et al. (2005) have studied the influence confinement on the rotation of rigid elliptical 

clasts in shear zones. They demonstrated that clast stabilization and shape preferred orientation 

result from confinement. Our results concerning the distances over which boundaries influence 

the behavior of inclusions in an anisotropic matrix and the large strain evolution suggest that 

the results obtained by Marques et al. (2005) are even more relevant in anisotropic materials, 

which large strain shear zone rocks often are. Hence, estimation of flow conditions (e.g., 

Marques et al. 2007) should consider possible confinement effects even if impermeable walls 

are not present in the immediate vicinity of clasts.  

Boundary effects are responsible for the slight deviations from the equivalent isotropic matrix 

results at the onset of our simulations. However, the rotation rate evolution for the anisotropic 

matrix case shows marked differences to the isotropic one, Figure 9, which are attributed to 

structure development in the matrix and not to boundary effects. Already an anisotropy factor 

of 2 produces significantly lower rotation rates. With even stronger anisotropy the rotation es-

sentially ceases once a shear strain of 2 is reached. While the actual number of layers across 

the inclusion matter for the initial stages of inclusion rotation the finite strain evolution is 

largely independent of this parameter. As long as the layering is approximately shear plane 

parallel the inclusion may be decoupled from the matrix above and below by the localized 

shearing in the adjacent weak layers. Accumulated deflection due to inclusion rotation deacti-

vates this effect. 

The question arises how inclusions with different aspect ratios or finite viscosity ratio behave 

in an anisotropic matrix. The motion of rigid elliptical inclusion is likely to exhibit a depend-

ence on its initial orientation. Preliminary results show that an elliptical inclusion initially 

aligned with an anisotropy trace exhibits antithetic rotation under simple shear. Moreover, irre-

spective of initial orientation moderately elliptical inclusions stabilize at a shallow antithetic 

angle to the shear plane. For the initial motion of a deformable elliptical inclusion Eshelby’s 

conjecture of an uniform straining within inclusion still holds in an orthotropic surrounding 

medium (Willis 1964). However, it seems unlikely that Eshelby’s conjecture remains applica-

ble during the progressive deformation where the anisotropy in the host is deflected. However, 

it has been reported in the literature that in the extreme case of a flanking structure, modeled as 

an elongated weak elliptical inclusion, embedded in an anisotropic medium the motion of the 

inclusion remains passive as in an isotropic host case (Kocher & Mancktelow 2006).  

69 



Conclusions 

Instability and length scale 

In this study we have used an anisotropy model that is not equipped with a finite length scale 

and corresponds to the case of an infinitely thin layering present in a material. To investigate 

the evolution of the system with a finite layer thickness, we have explicitly resolved individual 

layers. This approach is advantageous as it is free of any built-in uncertainties inherent to all 

up-scaling techniques and yields relevant results to cases where relatively coarse layer-

ing/banding is present. The disadvantage is, however, the need for large numerical resolution. 

A characteristic length scale may be restored by introducing a bending stiffness into the calcu-

lations. Such a scheme, relying on a couple stress (micro-polar) formulation and incorporating 

a bending stiffness, has been proposed (Muhlhaus et al. 2002a). Besides the obvious rationale 

that a definite length scale of the layering exists for real systems, employing such a code cir-

cumvents the mesh sensitivity problem inherent to an anisotropic code lacking a length scale.  

Yet, equipping an anisotropic material with a bending stiffness will only partly solve the prob-

lem of approximating a layered material. Figure 7 shows that the layers in the explicitly lay-

ered matrix change their thickness during the deformation. Furthermore, we have seen that it 

matters how exactly the inclusion is embedded in the layered material, i.e. top and bottom in 

strong or weak layers. These kinds of effects can only be studied by direct resolution of the 

layers; anisotropic upscaling will not be able to give corresponding insight. Nevertheless, some 

parameters such as the rotation rate as a function of strain are largely independent of the exact 

structure development in the matrix and may readily be studied with an upscaling approach. 

One may envision hybrid models where the focus of interest is resolved explicitly and the 

more distal parts are treated with an effective material model.  

Conclusions 

We have studied a rigid circular inclusion embedded in an anisotropic host and subject to far 

field simple shear. At the onset of the simulations the anisotropy in the host is assumed homo-

geneous and a relevant analytical solution has been presented. The system evolution has been 

computed with a finite element code and models with an anisotropic or explicit layered host 

have been employed. Studied aspects include the inclusion motion, flow field rearrangement 

and structural development in the host. 

Our results show that matrix anisotropy has a first order effect on the motion of a rigid hetero-

geneity subject to shear and the development of structures around it. Already an anisotropy 

factor of 2 is sufficient to substantially decrease the total rotation of a rigid circular inclusion. 
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Further increase in the strength of anisotropy leads to an effective cease of rotation once a 

shear strain of magnitude 2 is reached. Cross-cutting markers are consequently markedly less 

deflected in the direct vicinity of the inclusion, giving the impression of smaller accumulated 

strain. Expectedly, box folds and kink bands develop around the inclusion. The range of the 

perturbation flow increases with increasing anisotropy but the amplitude is reduced. For strong 

anisotropy factors the distinct zones of localized deformation disappear in behalf of pervasive 

internal instability with vanishing amplitudes. 

The increased perturbation flow range leads to a stronger sensitivity to the applied boundary 

conditions. Already in the initial stage of a homogenously anisotropic matrix with factor 100 

the rotation rate of the inclusion is reduced by more than 10 percent even when the inclusion 

diameter is only 1/20 of the shear zone width. Explicit layering intensifies this effect.  

The major effect of explicit layering on the structural development is the reduction of the per-

turbation range. In the coarse limit the formation of the band forming isoclinal recumbent folds 

is prevented and open folds result instead. These may in subsequent stages be advected away 

from the inclusion and appear as rootless structures. These and related effects such as compe-

tent layer thickening and deformation localization in weak layers cannot be predicted in the 

frame of the up-scaling anisotropic approach. However, in the limit of thin layering the effec-

tive anisotropy provides a robust representation of a layered medium and the discrepancies be-

tween the two approaches vanish with decreasing viscosity ratio of layer materials.  

Field studies that look at the behavior of heterogeneities in anisotropic materials should con-

sider the following. In anisotropic materials the effects of flow confinement and interaction are 

substantially stronger. Furthermore, inclusion rotation, foliation wrapping, and deflection am-

plitudes may yield severe strain underestimations when natural structures are interpreted with-

out the effects of anisotropy taken into account.  
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Appendix I: Analytical solution 

We provide an outline of a solution strategy for a deformable elliptical inclusion embedded in 

a compressible anisotropic elastic host subject to a uniform straining in the far field. For sim-

plicity, we consider only an isotropic inhomogeneity. For a detailed derivation readers are re-
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ferred to the original work of Willis (1964). The solution builds on the Airy stress function and 

complex coordinates formulation of elasticity (e.g. Green & Zerna 1968), Cauchy’s theory of 

residues and the eigenstrains theory and the Eshelby’s method of an equivalent inclusion (e.g. 

Eshelby 1957, Mura 1987). Readers are encouraged to check the mentioned references for the 

in-depth presentations of the topics. 

The Airy stress function methodology is a classical approach applicable to planar elastostatic 

problems. Upon introduction of the Airy potential Ψ  for the Cartesian coordinates  

 
2 2

2 ,   ,   xx xy yyy x y
σ σ σ∂ Ψ ∂ Ψ ∂ Ψ

= = − =
∂ ∂ ∂

2

2x∂
 (16) 

the mechanical equilibrium equations are identically satisfied for a vanishing body force field. 

The constitutive relationships for a transversally isotropic elastic medium is given by 
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where λ  is the first Lame parameter and nμ and sμ are normal and shear elastic moduli. By 

inverting eqn. (17) and substituting the result into the two-dimensional compatibility equation  
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the Airy stress function is shown to satisfy the following partial differential equation 
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where ( ) ( )3 /nκ λ μ λ μ= + + n . In the Airy stress function approach the vector field problem is 

reduced to the scalar field one, but the order of the partial differential equation is raised. Eqn. 

(19) reduces to the biharmonic equation for the isotropic medium case.  

Introducing the complex coordinates X x iy= +  eqn. (19) can be reformulated as 
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s

 (20) 

where ( ) /( )n s nA μ κμ μ μ= + − .  
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Firstly, we seek for the most general real solution of eqn. (20). This solution admits the follow-

ing form that involves arbitrary functions ( )X XγΩ +  and ( )X Xω γ−  

 ( ) ( ) ( ) ( )X X X X X X Xγ γ ω γ ωΨ = Ω + +Ω + + − + − Xγ  (21) 

where γ  is a root of the equation: 

  (22) 4 22 1Aγ γ− + = 0

The roots are distinct if normal and shear moduli are different, Ifγ is a root then its reciprocal 

and their negatives are roots as well.  

For our particular case, the deviatoric stress components are given by 

 ( )2 22 4 ''( ) ''( ) ''( ) ''( )yy xx xyi X X X X X X Xσ σ σ γ γ γ ω γ γ ω γ− + = Ω + + Ω + + − + − X (23) 

and the displacements are integrated accordingly  
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At this stage, we introduce an auxiliary problem of finding the stress distribution in a planar 

anisotropic medium with an elliptical domain subject to a uniform eigenstrain . The eigen-

strain is a generic name given to non-elastic contributions to a total strain 

0D

  (25) 0elD D D= −

Thermal strains provide an example of eigenstrains. The action of a uniform eigenstrain ap-

plied to any domain is equivalent to loading the system with the layer of body-force over the 

interface between the domain and the host. The second derivatives of Ω  and ω that describe 

the stress response to a body-force x yF F iF= +  located at a point Z of an anisotropic plane 

are 
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where  
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Now, it suffices to integrate the loads corresponding to the eigenstrain around a given contour  

  (28) 1'' AI BIΩ = + 2

where 
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The ''ω is obtained by replacing γ  with γ−  in eqn. (28). In the general case of an elliptical 

inclusion, the integration involves the coordinate transformation. Upon the transformation the 

integrals (29) become 
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where denote ellipse axes, ,a b θ  inclination angle and 
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The integration (31) is taken around the unit circle. By employing the Cauchy’s theory of resi-

dues, it can be shown that within the inclusion 
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and for the points outside the inclusion 
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Eqn. (33) predicts the uniform stress field within the inclusion. Thus, the Eshelby’s conjecture 

holds for an elliptical inclusion also in the anisotropic case. Plugging in (33) into (28) , repeat-

ing it for ''ω  and using (23), the relation between the constrained strain and the prescribed ei-

genstrain is obtained. 

The method of an equivalent inclusion links the auxiliary and the original inhomogeneity prob-

lems. An elliptical inclusion of elastic parameters ,incl inclλ μ different from those of the matrix 

is subject to the eigenstrain and we seek the constrained strain . Finding the eigenstrain 

that produces the similar constrained strain in an ‘equivalent’ inclusion (having host elastic 

properties) and requiring the same stresses in both cases reduces the problem of an inhomoge-

neity to the auxiliary problem. The condition is given by 
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where symbols without indices correspond to the trace of a tensor. Eliminating , we obtain 

the relation between  and . Thus, the inhomogeneity problem is indeed reduced to the 

auxiliary one of the eigenstrain applied to an elliptical region of an anisotropic space. 

CD
0D *D

0D

In the instance of uniform loads σ ∞  prescribed at infinity, perturbation fields around the inclu-

sion may be considered as originating from a particular eigenstrain applied to it. This eigen-

strain corresponds to the misfit between the far field strains D∞  and strains that inclusion 

would acquire if subjected directly to the far field stress σ ∞ . The final relations become now 
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In the rigid inclusion case  we arrive at the expected result of perturbation 

strain compensating the far field one i.e.:

incl inclλ μ= →∞

C
ij ijD D∞= − . Under the assumptions of a circular in-

clusion and an incompressible viscous flow case (velocity field is identified with displace-

ments and ), we arrive at the following eigenstrain component 1κ → 0
xyD  (in our simple shear 

setup diagonal entries of the far field strain rate are set to zero) 

 0 1
xyD δ

δ xyD∞+
= −  (37) 

The external velocity and stress (strain rate) fields can be now obtained by plugging in the cal-

culated eigenstrain into eqn. (34), (28), repeating it for ''ω and using formulas (23) and … 

Appendix II: Finite Element Model 

A large number of required timesteps and high discretization level exceeding million degrees 

of freedom present in our models necessitate the use of an efficient implementation of FEM. In 

this study we have utilized our unstructured mesh FEM code MILAMIN implemented entirely 

in MATLAB. We have employed the mixed formulation of FEM that allows us to tackle in-

compressible flow problems. In this formulation pressure field is approximated independently 

from the velocity field and corresponding degrees of freedom are explicitly present in the 

model. A particular element type that we have utilized is the seven-node Crouzeix-Raviart tri-

angle with the pressure field interpolated by a discontinuous linear function. The incompressi-

ble constraint is enforced through the penalty approach and performing Hestenes-Powell itera-

tions allows us to use a moderate penalty factor. By eliminating the pressure degrees of free-

dom on the element level, we gain the possibility to operate on a positive-definite global ma-

trix. The direct solvers are tailored for such systems and Cholesky factorizations are well 

known for their high performance. Details concerning implementation and applied optimiza-

tions have been describe in our other paper (Dabrowski et al. in press). 

A reliable mesh generator is required to create high quality unstructured meshes fitting internal 

and external interfaces present in computational models. For this purpose, we have chosen 

TRIANGLE software developed by Shewchuk (2007). We find this software fast, robust and 

flexible. The file input/output facilitates the coupling with our MATLAB code. Furthermore, a 

possibility of an element area control existing in TRIANGLE allows us to utilize better the 

power of an unstructured mesh approach employed in this study. Specifically, finite element 
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meshes have been strongly refined around the inclusion to facilitate resolution of flow patterns 

around the inclusion in detail.  

Technical issues that have arisen during finite strain runs need some attention. By employing 

an unstructured mesh FEM, we have a possibility to update the mesh geometry according to 

the computed velocity field and continue with calculations. This Lagrangian approach has been 

used in both categories of the studied models. Advantageously, the advection of the material 

properties defined in integrations points such as anisotropy trace inclination is automatically 

taken care of. But a computational mesh must be occasionally regenerated to improve its qual-

ity that deteriorates after a number of updates. For the layered host case, we only need to track 

internal and external interfaces. However, inclinations of the anisotropy trace need to be inter-

polated to new integration points during this stage for the other category of our models. We 

have implemented an interpolation scheme in a spirit of krigging methods. The utilized scheme 

relies on identifying a prescribed amount of neighboring integration points (belonging to an 

old mesh), forming a radial basis functions and computing the corresponding weights in a way 

that enforces a collocation. Next, the radial basis functions are evaluated for the point of inter-

est (i.e. new integration point) and together with the computed weights and inclinations de-

fined in old integration points are used to compute a new value of the anisotropy orientation. 

During computations some precautions need to be taken to avoid the ambiguity around [0 180] 

transition. 
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Abstract 

Evolution of overall mechanical properties has been demonstrated in large strain deformation 

experiments. Strain softening is frequently employed in geodynamic simulations. In this paper, 

we quantify the structural and mechanical evolution of a two-phase composite rock subject to 

pure and simple shear. An inclusion-host type of geometry is assumed, we focus on the weak 

inclusion scenario and both materials obey a linear viscous behavior. Finite deformation leads 

to a shape preferred orientation development that results in an overall mechanical anisotropy. 

We derive the shape evolution model based on an analytical solution for an isolated elliptical 

inclusion embedded in an anisotropic host and subject to a uniform far field load. The presence 

of a strong anisotropy in the host leads to an enhanced inclusion stretching. A differential ef-

fective medium type of scheme predicting an overall anisotropic viscosity of a composite con-

sisting of aligned elliptical inclusions is proposed and validated by finite element modeling. A 

comparison with an existing self-consistent averaging scheme is given and the new scheme is 

shown to provide an improved estimate of the effective normal and shear viscosity for high 

inclusion concentrations. The two models are combined into a final set of equations describing 

evolution of a two-phase rock under a shear. Hardening is predicted in pure shear. In simple 

shear, the hardening phase is followed by a pronounced softening after a shear strain of one, 

irrespective of inclusion concentration. Numerical simulations resolving evolution of inclu-

sion-host systems under pure and simple shear demonstrate the high accuracy of our model 

prediction. The shape evolution model provides a sufficient approximation to the shape pre-

ferred orientation developing in an aggregate of interacting inclusions. Both in pure and simple 

shear, deformation localizes into conjugate trails of inclusions leading to formation of complex 

sigmoidal inclusion shapes. The strain weakening due to the structural development in a two-

phase material obeying a linear viscous rheology is insufficient to explain alone strain localiza-

tion in rocks that are heterogeneously populated with inclusions. 
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Introduction 

Introduction 

Material heterogeneity and deformation are manifested and interlinked on virtually all scales in 

geology. Structures present on a grain, rock or continent scale evolve during tectonic episodes 

and in turn deformation paths are influenced by the structural development. For a given scale 

in the hierarchy, models are sought that provide an overall description of such mechanical and 

structural coupling and alleviate the need for direct resolution of complex underlying proc-

esses. Constitutive laws provide a particularly useful example of the up-scaling technique, 

where the atomistic approach is replaced by the continuum mechanics framework. The rock 

sample scale are particular in this hierarchy of scales. Processes operating at this level become 

complex due to the presence of grain boundaries and multi-phase components. The steady-

state regime is usually only achieved after a long transient stage and is not expected to provide 

a sufficient description framework alone. The overall characteristics of the transient regime are 

of first-order importance with regard to large scale geodynamic processes. However, material 

models employed in the global tectonic simulations are typically based on phenomenological 

strength-strain laws. Quantifying the mechanical evolution during the transient stage and relat-

ing it to intrinsic system properties provides a clear improvement of the large-scale models. 

In a plethora of geological structures originating during deformation episodes, a shape (SPO) 

or lattice (LPO) preferred orientation of rock constituents are of primary importance. The bulk 

of crustal materials shows penetrative compositional layering and crystal lattices of rock-

forming minerals like quartz or feldspars are often clustered in sheared rocks. The anisotropy 

of the seismic wave velocity observed in subcrustal rocks can be attributed to the alignment of 

olivine grains emerging in a mantle flow (Dawson & Wenk 2000, McNamara et al. 2002). 

Strong compositional layering has been described in peridodite bodies (Spengler et al. 2006) 

and numerical models predict the formation of layered structures for the lower parts of the 

mantle (Madi et al. 2005). 

In this study we focus on mechanical effects of the phase geometry rearrangement during the 

progressive straining of a two-phase composite. It has been recognized that the overall me-

chanical response of a heterogeneous rock may become anisotropic due to the SPO develop-

ment. In the limiting case, a laminate of equal phase abundances exhibits a maximal degree of 

the anisotropy, where shear and normal viscosities assume values corresponding to the lower 

(Reuss) and upper (Voigt) theoretical bounds (Biot 1965). This material model is not suited to 

study the transient stage of the anisotropy evolution during the SPO build up and other analyti-

cal estimates of the overall anisotropy incorporating a finite magnitude of SPO have been de-
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veloped (Fletcher 2004, Treagus 2003). A stiffening in a pure shear has been suggested for a 

two-phase particulate and an oscillatory evolution of the overall anisotropy has been antici-

pated for deformable competent inclusions in a simple shear flow (Treagus & Treagus 2002). 

Quantification of the mechanical response evolution of a two-phase composite subject to dif-

ferent deformation paths is a primary goal of this study.  

Structure development in a composite rock provides an interesting problem on its own. The 

impact of the developing mechanical anisotropy and grain interaction on the phase geometry 

evolution remains poorly constrained. Strain localization, instability development and inclu-

sion-host topology reversals are particularly important regarding the effective mechanical 

properties of a composite medium. Additionally, structures developed in composite rocks may 

be employed for strain magnitude estimates. 

An important aspect of SPO development is related to strain localization on a larger scale in a 

heterogeneous rock mass. Formation of ductile shear zones is a long-standing topic in the geo-

sciences (e.g. Bruhn & Burlini 2005, Regenauer-Lieb & Yuen 2003). Advocated mechanisms 

promoting strain localization in a ductile regime apart from LPO or SPO development include: 

shear heating, grain-size reduction, metamorphic reactions or partial melting. Whereas differ-

ent observation and models substantiate particular mechanisms, strain localization in rock ma-

terials is likely to emerge from a synergy of several processes. Tackling this complex phe-

nomenon requires the quantification and assessment of individual mechanisms in the first 

place. Here, we study the localization potential of the developing SPO and related anisotropy. 

Isolated inclusion in an anisotropic host subject to pure and simple shear  

In this section, we investigate the instantaneous response of an elliptical inclusion immersed in 

an anisotropic host and subject to a pure and simple shear using an analytical solution. The 

rates of ellipticity and inclination change are integrated to obtain finite strain evolution paths 

for an isolated inclusion under different load conditions. Inclusion and host are modeled as in-

compressible linear viscous materials.  

The ultimate goal of this paper is to derive a model of a composite rock consisting of aligned 

inclusions, where the anisotropy is entirely determined by the inclusion orientation and aspect 

ratio. However, at this point we assume that the anisotropy is independent of the inclusion el-

lipticity to facilitate the study of its impact on the inclusion motion. Alternatively, an intrinsic 

anisotropy may be present in the host, but then the anisotropy reorientation rate is not necessar-

ily coincident with that of an inclusion. 

83 



Isolated inclusion in an anisotropic host subject to pure and simple shear 

Using a Cartesian coordinate system aligned with the anisotropy direction, the constitutive re-

lationship for an incompressible anisotropic medium reads 

 2 , 2 , 2xx n xx yy n yy xy s xyτ μ ε τ μ ε τ μ ε= = =� � �  (1) 

where τ  denotes the deviatoric stress and nμ  and sμ  are normal and shear components of vis-

cosity. The strain rate tensor ε�  is defined by the usual kinemetic relations.  
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where  is the velocity vector field. The incompressibility condition complemented by the 

plane strain assumption yield the following constraints on the strain rate components 

v

 0, 0xx yy xz yz zzε ε ε ε ε+ = = = =� � � � �  (3) 

The elastic problem of an elliptical inclusion embedded in an anisotropic host of and subject to 

a uniform far field load admits an analytical solution (Willis 1964). This solution predicts a 

constant strain rate within the inclusion. In our study, it suffices to discuss the incompressible 

limit, and an isotropic elliptical inclusion embedded coaxially with the host anisotropy direc-

tions. The elastic and viscous solutions coincide in this case according to the correspondence 

principle. The inclusion strain rate components are (e.g., Fletcher submitted to JSG) 
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and the vorticity magnitude is given by 
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where /host host
n sδ μ μ= denotes the host anisotropy factor defined as a ratio of a normal and 

shear viscosity, /incl host
nR nμ μ= is the inclusion-host viscosity ratio, σ is the aspect ratio of the 

inclusion, and the upperscripts in and cl ∞  indicate inclusion and far field strain rate compo-

nents, respectively. The inclusion and far field strain rate components are given in the inclu-

sion axis reference system. 

84 



Paper 3: Mechanical Anisotropy Development of a Two-Phase Composite Subject to Large Deformation 

 
Figure 1  

Inclusion strain rate components incl
xxε�  a) and incl

xyε�  (b) as a function of inclusion ellipticity and host 

anisotropy (individual curves). Inclusion viscosity is set to 0.01 of host
nμ in (a) and host

sμ  in (b). 

Inclusion strain rate components are shown in Figure 1 as a function of inclusion ellipticity and 

host anisotropy factor for an inclusion that is 100 times weaker than the host normal (a) and 

shear (b) viscosity. The normal strain rate component decreases, while the shear component 

increases with increasing the inclusion ellipticity. The presence of the host anisotropy counter-

acts the effect of ellipticity. Further increasing the inclusion-host viscosity contrast has no sig-

nificant impact on the curves. The normal strain rate component in the anisotropic case yields 

values not admissible in the isotropic case. 

We now focus on the finite deformation of an initially circular inhomogeneity embedded in an 

anisotropic host. An elliptical object subject to a uniform strain rate remains elliptical and this 

allows us to reuse the analytical solution during the integration. For a general homogeneous far 

field shear, the motion of an elliptical inclusion is governed by the following equations (e.g., 

Bilby & Kolbuszewski 1977) 

 2 incl
xxσ σε= ��  (7) 
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where ϕ is the inclination of the inclusion. The far field strain rates need to be transformed to 

the current inclusion reference system, before the inclusion strain rate components and vortic-

ity can be evaluated according to (4), (5) and (6).  
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Figure 2  

Shape evolution of an initially circular inclusion subject to pure (a) and simple (b) shear. The in-

clusion viscosity is 0.01 of the normal viscosity in the host. The results are obtained for the anisot-

ropy factors 1, 10 and 100. In the simple shear case, the inclination-ellipticity paths are shown to-

gether with markers indicating the unit increment of a simple shear 

The aspect ratio evolution of an initially circular inclusion subject to a pure shear of a rate q  

has been found upon integration to follow 

�
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The inclusion angle ϕ  is constant in time and is determined by the extension direction. Note 

that the result presented by Bilby et al. (1975) can be reproduced by taking the isotropic limit 

of (9) 

 1ln ( 1) 2
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R qσσ
σ
−

+ − =
+

 (10) 

where /incl hostR μ μ=  is the ratio of the isotropic viscosities. The pure shear shape evolution in 

the weak inclusion case is presented in Figure 2a for anisotropy factors 1, 10 and 100. The re-

sults show that due to the anisotropy of the host the inclusion stretching is enhanced as ex-

pected based on the instantaneous rates. After a shorting of 50% an initially circular inclusion 

assumes aspect ratio of 10 in the isotropic case. In the anisotropic cases of factors 10 and 100, 

the ellipticity yields 20 and 60, respectively. 
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In the simple shear case, a numerical integration of (7) and (8) has been performed. The far 

field strain rate components for a simple shear of a rate s  resolved in the inclusion reference 

frame are given by  

�

 ( ) ( )sin 2 , cos 2 ,
2 2xx xy
s sε ϕ ε ϕ ω∞ ∞= =
� �� �

2
s∞ = −
�

 (11) 

and consequently, eqn. (7) and (8) are coupled. The results are shown in Figure 2b. Again, the 

presence of the host anisotropy enhances inclusion stretching. In the initial deformation stages, 

the total rotation of the inclusion is also amplified if we compare the isotropic and anisotropy 

factor ten curves. Unlike in the aspect ratio case, further strengthening of the anisotropy has no 

significant impact on the inclusion rotation. The increased rotation rate of the inclusion in the 

anisotropic cases reduces time spent by the inclusion in the vicinity of the instantaneous 

stretching direction of the flow. Thus, the anisotropy impact on the inclusion stretching is not 

as pronounced as in the pure shear case. The inclination-ellipticity path for the anisotropy fac-

tor hundred is significantly different than the remaining ones and in comparison a higher ellip-

ticity is reached for a given inclination. 

Effective anisotropy of  a composite consisting of  aligned elliptical inclu-

sions 

Our goal in this paper is to develop a quantitative model of the structural and mechanical evo-

lution for a two-phase composite initially consisting of circular weak inclusions. Above we 

have found that the shape evolution of an isolated inclusion is significantly affected by the host 

anisotropy both in pure and simple shear. However, these findings rely on a constant anisot-

ropy in the host that is unrelated to SPO. In this section, we study the relation between the el-

lipticity σ  and concentration f  of the isotropic inclusions of viscosity inclμ  embedded in the 

isotropic host of viscosity hostμ  and the overall normal eff
nμ  and shear eff

sμ  viscosity of the 

composite. We introduce an existing scheme predicting the overall behavior of such a medium, 

derive a new method and compare the two approaches to our finite element results  
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The effective viscosities are defined in terms of spatial averages of stress and strain rate com-

ponents 
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where the coordinate system is aligned with the inclusion axes and the spatial averaging de-

noted by  is over a representative domain containing sufficient number of inclusions. The 

effective anisotropy factor 

〈 〉…
effδ  is defined as a ratio of the overall viscosities /eff eff

n sμ μ . Pre-

scribing uniform overall strain rate ijε〈 〉�  in the model, the kinematic boundary conditions be-

come 

 i ijv jxε= 〈 〉�  (13) 

The relation between inclusion inclμ  and host hostμ  viscosity, inclusion concentration f  and 

the effective viscosity effμ  can be obtained now 

  (14) ( ) ( )host eff host incl incl
ijkl ijkl kl ijkl ijkl klfμ μ ε μ μ ε− 〈 〉 = − 〈� 〉�

〉This is an exact result showing that only the average inclusion strain rate  is required to 

evaluate the effective viscosity (e.g., Nemat-Nasser & Hori 1993).  

incl
ijε〈 �

Analytical models: SCA and DEM 

A number of techniques predicting overall properties of heterogeneous materials has been de-

rived (Christensen 2005, Nemat-Nasser & Hori 1993). In the paper, we focus on the self-

consistent averaging (SCA) and the differential effective medium (DEM) approaches.  

In the dilute limit, individual inclusions may be considered as effectively isolated objects. In 

this case the inclusion strain rate is given by taking the isotropic limit of the analytical solution 

(4) and (5). The normal and shear viscosity of a dilute composite consisting of aligned inclu-

sions of ellipticity σ can be estimated by plugging 
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into eq. (14), where ( 11 2 )η σ σ −= +  is the shape factor. 
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The SCA has been recently applied to a composite consisting of aligned ellipses by Treagus 

(2003) and Fletcher (2004). In this approach, the viscosity ratios in (15) are evaluated with re-

spect to the effective medium and not the original host material. In the Fletcher’s work, inclu-

sion strain rate has been evaluated according to eqn. (4) and (5) taking into account the overall 

anisotropy. The effective normal viscosity normalized by the viscosity of the host 
eff host

n nβ μ μ=  and the effective anisotropy factor effδ  are determined by solving a system of 

non-linear equations  
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The system is solved numerically. For high concentrations and viscosity ratios, auxiliary in-

termediate steps are recommended when moderate parameter values are used and the obtained 

solution is utilized as an initial guess in the final calculation. 

For circular inclusions, the SCA estimate of the effective isotropic viscosity effμ  is a solution 

of the quadratic equation  

  (17) 2 (1 2 )( 1) 0f R Rβ β+ − − − =

where eff hostβ μ μ= . We note that in the isotropic case the SCA results in the geometrical 

mean of the host and inclusion viscosities for composites with equal phase concentrations irre-

spective of which phase (strong or weak) forms the inclusions. This continuity at the concen-

tration of fifty percent stems from the inherent equivalence of the inclusions and the host in the 

SCA method.  

In the DEM another approach is taken to adjust the estimate at high concentration for evolving 

overall properties. Here, the medium is constructed in an iterative manner by placing individ-

ual inclusions into the host and reevaluating the host properties afterwards (e.g., Berryman et 

al. 2002). In the isotropic case, this process is described by the following differential equation 

 ( )1
1 1

d R
df f R

2β β
β

= −
− +

 (18) 

and the initial condition is given by 1. 
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For circular inclusions, we find that the normalized effective viscosity β  is a solution of 

 (1 )( 1) 0f R Rβ β+ − − − =  (19) 

Thus, the DEM prediction can be obtained by taking the SCA estimate, eqn. (17), in a zero to 

fifty percent concentration range, scaling the concentration by two and squaring the result. In 

the DEM case, the overall properties of composites of equal phase abundances are sensitive to 

the mechanical character of the inclusion forming phase. Such aggregates with competent in-

clusions exhibit a smaller effective isotropic viscosity than cases where the strong phase is the 

structure supporting host. 

We have modified the DEM scheme to take into account the anisotropy according to (4) and 

(5). The effective viscosities are obtained by integrating the two coupled ordinary differential 

equations 
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where eff host
s sβ μ μ=  and the initial values of both nβ  and sβ  are 1. This system is again 

solved numerically.  

In the rigid inclusion limit, i.e. , we have been able to obtain a closed-form solution R →∞
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Both SCA and DEM schemes can be shown to respect the reciprocity relation 
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that links alternating effective viscosities of composites obtained by a phase swapping. This 

allows to obtain the incompressible void limit of (21) and (22).  
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FEM model 

 
Figure 3  

Examples of model setups used in effective viscosity calculations a) aspect ratio 2, concentration 

20% b) aspect ratio 8, concentration 30% 

To validate the SCA and DEM schemes, a finite element model (FEM) that allows us to di-

rectly resolve the mechanical response of composites consisting of numerous inclusions of a 

constant size and orientation has been employed (see Appendix for FEM details). We have 

systematically scanned through the parameter space of the inclusion concentration (up to 

50%), ellipticity (up to 16) and viscosity ratio (between 1/1000 to 1000). Non-overlapping in-

clusions of equal size have been seeded randomly in the computational domain (see Figure 3). 

For a given ellipticity and concentration, ten samples of different inclusion configuration have 

been analyzed. The effective normal and shear viscosity are measured by applying appropriate 

kinematic boundary conditions. 

Numerical results for models consisting of circular inclusions are presented in Figure 4. It is 

evident in Figure 4a that the presence of the strong host results in a higher effective viscosity 

for a composite of equal phase concentrations. The scatter of the overall property due to chang-

ing the composite configuration increases with the inclusion concentration. However, even in 

densely packed cases, the spread is rather small and the data presented at 5% concentration in-

crements overlap minimally in terms of effective viscosity. In the circular inclusion case, the 

anisotropy factor has not exceeded a magnitude of 1.1. We note that the results in Figure 4a 

show that the reciprocity relation is satisfied only approximately. 
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Figure 4  

Effective viscosity of composites consisting of 256 circular non-overlapping inclusions. Open and 

filled bars correspond to models with weak and strong inclusion, respectively. Bottom and top of 

the bars are given by minimal and maximal values recorded for 10 samples. Upper (Voigt) and 

lower (Reuss) bounds, self-consistent average (SCA) and differential effective medium estimate for 

strong (DEM-sh) and weak host (DEM-wh) are given. a) Viscosity ratio is set to 100 and concen-

tration refers to the strong phase b) Concentration is fixed at 50% and inclusion-host viscosity ratio 

is varied. 

The impact of the viscosity ratio on the effective property is depicted in Figure 4b for models 

of equal host and inclusion concentration. The effective viscosity is virtually insensitive to in-

clusion or host viscosity changes once the strong to weak phase viscosity ratio exceeds several 

hundred. We find that the limiting values corresponding to rigid inclusions or incompressible 

voids are not precisely reciprocal. 

In all cases, the effective viscosity falls between the theoretical bounds given by the weighted 

arithmetic (Voigt) and harmonic (Reuss) averages of the phase viscosities. The SCA provides 

a good estimate of the effective viscosity for inclusion concentrations below thirty percent. The 

continuity of the SCA estimate prevents it from predicting the saturation effect for high con-

centrations and towards large viscosity ratios. The DEM estimate is capable of capturing the 

effective viscosity saturation and provides a very good fit to the numerical results, especially in 

the weak inclusion case. 

Selected results obtained for models consisting of aligned elliptical inclusions are presented in 

Figure 5. Numerical simulations show that the effective normal viscosity is systematically 
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greater than the shear viscosity (see Figure 5a). The data scatter for a given concentration is 

larger for the normal viscosity in the strong inclusion case. The reciprocal relation again pro-

vides a good approximation, but it is not satisfied exactly. Both overall viscosities saturate with 

respect to the viscosity ratio changes (see Figure 5b). In the weak inclusion case, the effective 

normal viscosity shows a relatively small and quickly flattening increase with the inclusion 

ellipticity, whereas the shear viscosity exhibits a substantial drop still ongoing at the aspect ra-

tio of sixteen (see Figure 5c). For a composite of the equal phase content, the overall normal 

viscosity of the strong inclusion configuration becomes larger than the overall shear viscosity 

of the weak configuration for the ellipticity larger than 8. The degree of the anisotropy grows 

with the inclusion aspect ratio and inclusion-host viscosity ratio (see Figure 5d). Enhancing the 

viscosity ratio for a given ellitpicity results in a limited increase of the anisotropy factor. The 

anisotropy factor achieved for the aspect ratio of sixteen and the viscosity ratio of a thousand 

yields a magnitude of ten. The anisotropy factor is not exactly symmetric with respect to the 

phase swap again reflecting the approximate character of the reciprocity relation in the sys-

tems.  

The overall viscosities respect the theoretical upper and lower bounds in all simulation runs. 

The DEM provides a good fit to the numerical data over the whole range of the concentrations, 

whereas a quality of the SCA estimate deteriorates for densely packed composites (see Figure 

5a). The normal viscosity in the weak case (or the shear viscosity in the strong case) is particu-

larly precisely estimated. The remaining overall viscosities are better predicted in weak inclu-

sions models, similarly to the isotropic case. The DEM again captures a limited change of the 

effective viscosities for the extreme viscosity ratios (see Figure 5b). The advantage of the 

DEM technique is clearly visible in Figure 5c, where the SCA fails to distinguish the weak and 

the strong inclusion scenario. The anisotropy factors are to some extent underestimated by the 

DEM method (see Figure 5d), The SCA fails to estimate the overall anisotropies for high in-

clusion concentrations, but it still provides a relatively good prediction of the anisotropy factor. 

During the presentation of the numerical results, we have focused on the concentration 50% 

case to analyze a performance of the averaging schemes in this difficult limit. Averaging-

related errors substantially drop for both schemes with decreasing the concentration. At con-

centrations of 35% the numerical results and the DEM estimate are virtually indistinguishable 

in the weak case. At 10% inclusion concentration both DEM and SCA practically coincide 

with the FEM results. 
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Figure 5 

Effective normal and shear viscosity for composites consisting of 256 non-overlapping elliptical in-

clusions. Data bars are like in Figure 4 and normal viscosity is always above shear viscosity. Up-

per (Voigt) and lower (Reuss) bounds, self-consistent average (nSCA, sSCA ) and differential effec-

tive medium estimate for strong (nDEM-sh, sDEM-sh) and weak host (nDEM-wh, sDEM-wh) are 

given Prefices n and s indicate normal and shear viscosity. a) Viscosity ratio is set to 100, ellipticity 

set to 4 and concentration refers to the strong phase b) Concentration is fixed at 50%, ellipticity set 

to 4 and inclusion-host viscosity ratio is varied.c) Viscosity ratio is set to 100, concentration is fixed 

at 50% and inclusion ellipticity is varied. d) Concentration is set to 50% and inclusion-host viscos-

ity ratio is varied; computed anisotropy factors are plotted for aspect ratios 4 (lower values) and 16 

(higher values). 
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Effective anisotropy of  a two-phase composite subject to large deformation 

We have so far derived the uncoupled shape evolution and overall anisotropy models. The 

shape evolution model treats an isolated elliptical inclusion coaxially embedded in a host with 

a constant anisotropy. The anisotropy model predicts the shear and normal viscosity of a com-

posite consisting of aligned elliptical inclusions. Here, we combine them into a final set of 

equations describing the effective viscosity evolution for a two-phase composite subject to a 

large deformation. Finite element simulations of composites containing numerous deformable 

inclusions under pure and simple shear allow us to validate the analytical model. 

Analytical model 

We assume that a rock consisting of initially circular weak inclusions develops an overall 

shape fabric that evolves identically to an isolated inclusion. The SPO formation results in a 

change of an effective viscosity and the developing anisotropy feeds back to the shape evolu-

tion of the inclusions. The system is driven by a combination of far field pure and simple shear 

of rates q  and s , respectively. This combined far field condition is characterized by the vortic-

ity of 

� �

2s− �  and instantaneous shearing rate of ( )22 2q s+� � with stretching axis inclined at 

( )( 2arctan 1 1 2 1ISA s qϕ = + � � )− . Due to the anisotropy the overall stress is not necessarily 

coaxial with the overall strain rate tensor. In the bulk mechanical characterization, we use the 

work performing coaxial effective stress component normalized by the strain rate intensity, i.e.  

the effective anisotropic viscosity is resolved in the instantaneous stretching axis and the nor-

mal component for the normal load is taken. We refer to it as the ISA viscosity. By combining 

the previous models, a final set of equations is obtained 
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Figure 6  

Composite of initially circular inclusions 100 times weaker than host under pure and simple shear. 

Inclusion concentrations of 10, 20, 30 and 40% are analyzed. Evolution of effective viscosity in 

pure shear (a) and simple shear (b). In the simple shear case, markers are plotted after a time 

needed to achieve shear strain of 0.25, 0.5, 0.75 and 1 in a pure host assuming a constant stress for 

all composites. c) Ellipticity evolution in pure shear case. d) Inclination-ellipticity paths in simple 

shear. Here, markers are plotted for unit increments of overall strain. Simple shear strain of magni-

tude 5 corresponds to overall shortening of ca. 80%. 

The system of eqn. (24) and (26) is integrated numerically employing the effective properties 

evaluated according to the DEM model (27). For a given concentration f  and inclusion-host 

viscosity ratio R , the effective viscosities can be precomputed for an expected range of the 

inclusion ellipticity σ . The overall mechanical response is obtained by the tensorial transfor-

mation of the anisotropic viscosity according to eqn. (28). 
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We present model predictions for weak inclusions ( R =0.01) of concentrations of 10, 20, 30 

and 40 % under pure and simple shear in Figure 6. In the pure shear case, the effective me-

chanical resistance is given by the overall normal viscosity. The analytical model predicts a 

stiffening behavior of a magnitude that increases for higher inclusion concentrations. For a 

given concentration, the increase of the overall viscosity is bound by the corresponding Voigt 

limit representing the response of a perfect bilaminate. The strengthening saturates quicker for 

smaller concentrations (see Figure 6a). We find that the influence exerted by the developing 

host anisotropy on the inclusion shape evolution is relatively weak and only becomes notice-

able for high strains. This is corroborated by the fact that the anisotropy factors achieved after 

a shortening of fifty percent yield values of only 1.5, 2.5, 4 and 6.5 for the analyzed concentra-

tions, respectively. The anisotropy that is relatively low in magnitude and emerges only at the 

late deformation stages is unlikely to have a significant impact on the shape evolution. In addi-

tion, in the high concentrations and large strains regime interaction effects are expected to be 

of major importance. Therefore, we suggest that the anisotropy feedback on the inclusion mo-

tion can be neglected.  

In the simple shear case, the overall mechanical resistance of a two-phase system exhibits an 

initial hardening stage that is followed by a pronounced softening. The level of hardening 

again increases with the concentration (up to fifteen percent of the initial viscosity for the 

densest analyzed composite) and the peak strength is reached after a strain of around one. This 

transitional strain increases slightly with the concentration. The Reuss bound in the system 

yields 1/9 1/13, 1/15 and 1/15 of the initial viscosity for the studied concentration of 10, 20, 30 

and 40%, respectively. We notice that the lower bound for 50% is given by 1/13 of the initial 

effective viscosity and the softening potential is lower in this case. The final degree of the sof-

tening (after a simple shear of 5) relative to the initial viscosity is approximately the same for 

the 20, 30 and 40% concentrations. We find that that the softening rate is enhanced for higher 

concentrations, but it is counteracted by a stronger initial hardening in these cases.  

The inclination-ellipticity paths are virtually indistinguishable for different inclusion concen-

trations. The anisotropy influence is also minor in terms of the inclination-and ellipticity-

change with strain. Similarly to the pure shear case, we propose that the model could be sim-

plified by assuming the shape evolution of an inclusion embedded in a homogeneous host.  

Strain evolution in 1D heterogeneous column 

Assuming a 1D profile of varying concentrations subject to simple shear (a constant shear 

stress in the profile), we observe that denser composites pass through the transition strain be-
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fore the dilute portions that are still subject to the hardening (see Figure 6b). The weakest parts 

in the column exhibit the largest strain that promotes the effective viscosity softening. How-

ever, the strain localization is practically determined by the initial viscosity profile. 

Numerical model 

To verify our finite strain analytical model, we have numerically studied the structural evolu-

tion of linear viscous composites initially comprising circular inclusions under pure and simple 

shear. Inclusion concentrations of 10 and 30% have been analyzed and are referred as sparse 

and dense case, respectively. We have focused on the incompetent inclusion scenario with in-

clusions hundred times weaker than the host material. The system evolution has been inte-

grated to 70% of shortening in the pure shear case and a simple shear of magnitude 3. The 

computational domain is square in the pure shear case. Virtual load steps are introduced during 

the pure shear simulations to measure the effective shear viscosity (see Appendix). The rectan-

gular domain of the width to height ratio of two has been utilized in the simple shear case. The 

velocity on the lateral walls is assumed periodic. We present the effective viscosity and overall 

shape evolution together with the predictions of the finite strain analytical model using the 

DEM scheme. The second strain rate invariant maps are shown at certain deformation stages. 

The results obtained for the sparsely populated aggregate in the pure share case are shown in 

Figure 7. We find that the computed evolution of the effective normal viscosity closely follows 

the analytical prediction. The composite undergoes the hardening stage of about 10% and at 

60% shortening the effective response is virtually given by the upper Voigt bound for this sys-

tem. The analytical model predicts a nearly two-fold decrease of the effective shear viscosity at 

the end of the simulation. The shear viscosity measured during the virtual steps of the simula-

tion show a small discrepancy compared to the analytical estimate. The anisotropy factor 

yields approximately 2 after the shortening of 60%. 

The numerical model shows that the mean ellipticity of the individual inclusions assumes 

smaller values than predicted even in the isotropic host case. Thus, the effect of the developing 

anisotropy on the shape evolution is completely obliterated by the inclusion interaction. At the 

final stages, the standard deviation of the long axis orientation from the horizontal direction 

yields 3 degrees and the variation reaches as much as 8 degrees. The dispersion of the inclu-

sion axes results in an even smaller ellipticity measure based on the overall shape (12 com-

pared to predicted 18). The higher effective shear viscosity observed in the numerical simula-

tion may be explained by the difference between the shape evolution prediction and computa-

tion.  
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In the dense composite case analyzed in Figure 8, the effective normal and shear viscosity at 

the simulation onset differ by several percent. This initial weak anisotropy can be attributed to 

the inclusion center configuration. The overall normal viscosity is predicted to raise around 

30% after 60% of shortening. The numerical result shows an increase of around 20% that is 

followed by stagnation after 40% of shortening and even a weak decrease afterwards. The ef-

fective shear viscosity is predicted to drop more than has been recorded in the numerical simu-

lation. The analytical model estimate approaches the Reuss bound towards the simulation end 

and results in more than 10-fold drop of the property. The final value recorded in the FEM 

simulation is only twice lower than the initial viscosity. The computed anisotropy factor yields 

between two and three, while the model predicts even three times stronger anisotropy after 

60% shortening. 

The shape evolution results corroborate our previous finding that the interaction reduces the 

inclusion stretch. The overall ellipticity is twice lower than analytical prediction for the iso-

tropic host at the simulation end. The long axis inclination of the fitting ellipses can reach as 

much as 14 degrees from the horizontal direction with standard deviation of the axes disper-

sion given by 5 degrees. Despite the strong growth reduction, the inclusion aspect ratio still 

increases monotonically with shortening. The effective normal viscosity stagnation or even 

reduction after a considerable amount of strain indicate that the composite develops a complex 

structure and the simple elliptical SPO measure cannot be used to calculate the effective me-

chanical properties. 

Inspecting the strain rate intensity maps shown in Figure 8, we find that an interesting pattern 

of localized deformation forms at the late stage of the simulation. After 60% of shortening, 

conjugate zones of localized shearing become apparent. These segments are oriented at ap-

proximately 30 degrees to the horizontal direction. The strain rate intensity within the bands 

locally exceeds the background rate by factor 5. The formation of the bands can be traced back 

to the earlier stages showing the band propagation and reorientation towards the shallower in-

clinations.  

The bands are formed by inclusion trails with the intense shearing focused into their middle 

segments. The inclination of the central inclusion parts is steeper then the overall inclusion ori-

entation that is below 14 degrees. The rim portions of these inclusions are horizontal. Conse-

quently, the inclusions involved in the band formation are characterized by the complex sig-

moidal shapes. We note that the stretch measured along the inclusion is substantially larger 

than if obtained by the ellipse fitting.  
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Figure 7 

Finite element results for a two-phase composite with 10% of initially circular inclusions subject to 

pure shear. Inclusions viscosity is 0.01of host viscosity. Strain rate intensity (second strain rate in-

variant) map is shown at initial step and after 30% and 60% of shortening. The results are plotted 

with higher transparency in the host. Background strain rate intensity is equal to 1. Effective nor-

mal and shear viscosity is shown in the upper plot together with the DEM predictions and Reuss 

and Voigt bounds. The inclusion ellipticity evolution is shown in the lower plot. Ellipticity is given 

for individual inclusions (mean value and standard deviation) and for effective shape (for details 

see Appendix). The anisotropic and isotropic model predictions are given for comparison.  
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Figure 8 

Finite element results for a two-phase with 30% of initially circular inclusions subject to pure 

shear. See caption below Figure 7 for more details. 

The network of the localized deformation bands encloses rhomboidal domains that still contain 

the inclusions. The deformation rates within the inclusions entrapped in these domains are low 

and often exhibit values below the background strain rate. These inclusions, effectively de-

tached from the far field loads, are characterized by the ellipticity as low as 5 at the end of the 

simulation. For comparison, the ellipticity of a passive isolated initially circular inclusion 

would assume more than 6 in this case. 
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Figure 9  

Finite element results for a two-phase composite consisting of 10% of weak inclusions subject to a 

simple shear. Inclusions viscosity is 0.01 of host viscosity. Strain rate intensity (second strain rate 

invariant) map is shown at initial step and after simple shear of magnitude 1, 2 and 3. Background 

strain rate intensity is 0.5 (half of simple shear rate). Ellipticity-inclination data are shown in the 

left plot (individual inclusions after unit increments of strain, effective shape, model prediction, ref-

erence passive evolution). ISA viscosity computation and model estimate are presented in the right 

plot. 
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Figure 10  

Finite element results for a two-phase consisting of 30% of weak inclusions subject to a simple 

shear. See caption below Figure 9 for more details. 

In the second set of our numerical experiments, a simple shear of magnitude 3 has been 

reached at the end of the simulations. We provide the reference inclination-ellipticity paths of 

an initially circular passive object, while discussing the inclusion shape evolution. The overall 

deformation accumulated at the end of the simulation runs is characterized by the 70% shorten-

ing and the finite strain ellipse long axis is inclined at 15 degrees to the simple shear direction.  

For the sparse composite (see Figure 9), the ISA viscosity measured during the simulation fol-

lows the analytical prediction. Thus, the system undergoes the initial hardening followed by 

the weakening after the strain of magnitude one. The ISA viscosity at the simulation end yields 
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60% of the initial value. Unlike in the pure shear case, there is no discrepancy between the 

numerical result for the dense aggregate (see Figure 10) and the finite strain analytical model 

prediction. Here, the ISA viscosity exhibits a two-fold drop over a simple shear of magnitude 3 

and the magnitude of the hardening phase yields 10% of the initial value. 

The inclination-ellipticity plots show that the SPO ellipticity development is suppressed in 

comparison with the analytical prediction, but to a lesser degree than in the pure shear case. In 

comparison with the analytical prediction, the average inclination is shifted towards the shal-

lower values typical of an initially circular passive object evolution. The inclinations of the in-

dividual inclusion are strongly dispersed and the data is not even contained between the curves 

given by the analytical prediction curve and the passive inclusion paths. The data scatter in-

creases with concentration, but the dilute case is already strongly affected by the interaction 

effects. 

The strain rate intensity maps clearly show that the shearing is progressively focused into the 

inclusions during the deformation. The inclusions pervasively develop complex sigmoidal 

shapes and overall model appearance after simple shear strain of 2-3 resembles of an asymmet-

ric S-C structure. The strongly sheared middle parts of the inclusions (C) are transposed in the 

horizontal directions, whereas the inclusion tips (S) are even steeper than 45% and show a ten-

dency to the antithetical rotation.  

Discussion 

We have derived an analytical model of the effective viscosity evolution for a two-phase rock 

characterized by the inclusion-host geometry type. The model consists of coupled equations 

describing rates of the ellipticity and inclination for an isolated inclusion in the anisotropic host 

that represents a developing SPO in the composite. The anisotropy is directly related to the 

SPO and we have derived and numerically validated the differential effective medium ap-

proach to model the overall normal and shear viscosity of a composite consisting of aligned 

elliptical inclusions. Model predictions have been analyzed for the pure and simple shear de-

formation paths for composites with initially circular weak inclusions. Analytical considera-

tions have been supplemented by a finite element modeling. The following discussion is di-

vided into a three major topics: inclusion shape evolution, effective properties of a composite 

comprising aligned elliptical inclusions and effective viscosity evolution during a finite defor-

mation. 
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Shape evolution 

The motion of an isolated elliptical inclusion embedded in the anisotropic host and subject to a 

uniform far field strain rate can be entirely described in the ellipticity-inclination space. This is 

due to the fact that an elliptical object uniformly sheared remains elliptical. Assuming constant 

host anisotropy with the inclination determined by the inclusion orientation, we have obtained 

the evolution paths for an initially circular inclusion subject to a pure or simple shear. In the 

pure shear case, a closed-form solution has been presented. The presence of strong anisotropy 

in the host substantially enhances the inclusion stretching and also leads to elevated rotation 

rates at the initial stages of a simple shear.  

The analytical finite strain model predicts moderate anisotropy factors for a composite consist-

ing of initially circular inclusions hundred times weaker than the host even after a considerable 

amount of strain. In particular, the anisotropy is too weak to exert any significant effect on the 

inclusion motion until the late deformation stages. The FEM modeling shows that in fact the 

inclusion interaction strongly overprints the effect of the anisotropy. The average inclusion as-

pect ratio is reduced and this effect is particularly prominent in the pure shear case. In this 

case, the inclusions residing within the domains enclosed by the localized deformation bands 

may exhibit ellipticity even smaller than that of a passive marker. This indicates that caution is 

needed while inferring overall strain based on the aspect ratios of weak inclusions occurring in 

a non-dilute composite rock.  

The band forming inclusions develop complex sigmoidal shapes both in pure and simple shear 

cases. Other stretch measures could be used for these objects, since the ellipse fitting provides 

only a crude approximation to the shape in this case. The inclusions involved in the band for-

mation may ultimately split into multiple objects and consequently bias the strain analysis. We 

note that the inclinations of the bands in the pure shear case and S segments in the simple shear 

case undergo a complex evolution with strain. 

The motion of a weak inclusion entrapped or grown in an intrinsically anisotropic material is 

prone to follow the predictions of our shape evolution model for anisotropic materials. Porphy-

roblast grown in a medium with a pre-existing lamination of strongly contrasting materials 

provides a viable setup in this respect. In this case, the anisotropy factor is given by the ratio of 

the arithmetic and harmonic means weighted by phase compositions and may assume much 

higher values than analyzed here. Another possible scenario is given by an inclusion contained 

in a crystal. The viscosity of quartz crystals has been reported to vary around hundred times 

depending on a load direction (Linker et al. 1984). The inclusions in both cases are subject to a 
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constant strong anisotropy from the deformation onset, but the interaction effects may be still 

significant. The flow perturbation around an inhomogeneity results in a local stirring of the 

anisotropy orientation. The corresponding effects have been shown to have a large impact on 

the inclusion rotation for the rigid objects subject to a far field simple shear (Dabrowski & 

Schmid, submitted to JSG) 

Effective anisotropy of a composite of aligned elliptical inclusions  

We have developed a differential effective medium scheme for a composite consisting of 

aligned ellipses based on an analytical solution describing strain rates in an elliptical inclusion 

embedded in an anisotropic host and subject to a uniform far field loads. An existing scheme 

relying on the self-consistent averaging technique derived by Fletcher (2004) has been ana-

lyzed for a comparison. Both schemes are free of phenomenological input parameters and the 

output is provided in terms of the overall normal and shear viscosity. FEM results obtained for 

a wide range of inclusions ellipticity, concentrations and host-inclusion viscosity ratios have 

been utilized to validate the schemes. 

The developed DEM model provides better estimate over the SCA for higher concentrations. 

The discrepancies between the scheme predictions reflect a fundamental difference between 

the two methods: the DEM is designed for inclusion-host systems, whereas the SCA is more 

suitable for a poly-grain medium, where none of the phases can be considered as inclusions. 

This statement is corroborated by the FEM results that are predicted by the DEM scheme with 

a high accuracy up to large concentrations irrespective of the inclusion aspect ratio. 

Our FEM results show that choosing a weak or strong inclusion forming phase leads to signifi-

cantly different effective properties. This is in agreement with the notion of a load-bearing 

framework that has been previously suggested in the geological literature (e.g., Handy 1990). 

Existing theoretical models often have difficulties in predicting the overall viscosity in this 

transitional regime between the weak and strong phase supported structures (Ji et al. 2001). For 

example, the SCA scheme cannot predict the observed discontinuous transition between the 

two composite types, because it treats the host equivalently to the inclusions. Consequently, for 

a two-phase composite of the equal phase concentration the overall viscosity is the geometrical 

mean in the isotropic case, and the alternate viscosities have to match during the phase ex-

change in the anisotropic case. The DEM scheme is well capable of differentiating the weak 

and strong phase supported structures and we suspect it may explain experimental data both in 

isotropic and anisotropic case. 
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The other characteristic of the SCA scheme is an unbound behavior of the overall viscosity at 

the critical concentration of fifty percent if the inclusion phase is assumed to be rigid or infi-

nitely weak. In this case, the DEM model predicts finite viscosities for any concentration and 

provides a good approximation to the corresponding FEM measurements. Extreme viscosity 

contrast is typical for melt-crystal systems, where the crystal phase additional exhibits the non-

linear rheology (e.g., Arbaret et al. 2007). The advantage of the DEM scheme is two fold in 

this case. It not only captures the high concentration behavior better than the SCA, but also in-

corporating non-linear flow laws for the inclusions is straightforward. 

We conclude that our DEM scheme provides a high-quality prediction of the overall properties 

for composites consisting of aligned elongated objects. We emphasize that our DEM scheme 

similarly to the SCA is free of unconstrained phenomenological parameters and provides an 

output in a suitable form of the normal and shear viscosity. 

Both DEM and SCA scheme satisfy the reciprocity rule. This rule has been proven to hold ex-

actly for the effective thermal conductive of composites with inclusions located on a periodic 

lattice (Keller 1987)). In general, an exact constraint on the effective viscosity dependence on 

the inclusion-host ratio for an arbitrary microstructure (or a particular microstructure such as 

inclusion-host geometry) is sought in this context. For example, is it possible to predict exactly 

an overall property for an arbitrary value of the viscosity ratio, if we know the answer for the 

infinitely weak and stiff inclusion cases? We have found that the reciprocity rule is not pre-

cisely satisfied in our simulations, but still provides a good approximation.  

Finally, we note that our two-dimensional composite model consisting of cylindrical inclusions 

can be considered only as an approximation to a real poly-phase rock. The extension of the 

DEM to the three-dimensional ellipsoidal anisotropic case is rather straightforward, although 

in general the interior strain rates are not given in a closed form (e.g., Mura 1987). However, in 

the dilute limit the effect of the inclusion non-cylindricity on the effective properties can be 

easily evaluated by invoking the solution derived by Eshelby (1957) for an ellipsoidal inclu-

sion embedded in the isotropic host. For instance, we find that for a spherical inclusion that is 

hundred times more viscous than the host, the effective viscosity increase with concentration in 

a dilute limit is around 40% stronger than in the cylindrical case. 

Viscosity evolution due to structural development in a two-phase composite 

Our finite deformation simulations show that a structural evolution in composites consisting of 

weak inclusions results in evolving overall viscosity both in pure and simple shear. In the pure 

shear case, the inclusion-host system exhibits a weak and quickly saturating hardening phase. 
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In the simple shear case, an initial hardening phase is followed after a unit strain by a pro-

nounced weakening and this softening behavior is still active at a strain of three. We have at-

tributed this rheological evolution to overall anisotropy emergence that is related to a develop-

ing shape preferred orientation. An analytical model that combines the shape evolution of an 

isolated elliptical inhomogeneity and the differential effective medium estimate for the overall 

anisotropy of a two-phase composite consisting of aligned elliptical inclusions has been de-

rived. The FEM results can be reproduced with our analytical model to high accuracy even for 

densely packed composites up to large strain, despite complex inclusion shape development. 

The largest discrepancy is observed in the pure shear case, where the formation of localized 

deformation bands after a considerable amount of strain is manifested by the onset of weaken-

ing. The analytical model can be adapted for multiple phases and is suitable for any deforma-

tion paths. An ad hoc ductile strain softening rules are often employed in geodynamic simula-

tions and our scheme provides an improvement in that respect. 

A similar study employing a different numerical technique has been performed for regular ar-

rays of square inclusions subject to a simple shear (Takeda & Griera 2006). Stress-strain 

curves in the weak inclusion scenario (strong phase supported structure) reported therein ex-

hibit a similar sequence of hardening and softening behavior with a transition point located 

also around a shear strain of a magnitude one. We suggest that our model, although derived for 

circular inclusions, can provide a reasonable approximation to a finite deformation evolution 

of the effective mechanical property in the square inclusion case. 

Multi-phase materials often exhibit a pronounced weakening after an initial transient stage of a 

stress build-up in simple shear laboratory experiments. The examples include experiments per-

formed in shear apparatus (Holyoke & Tullis 2006) and or in torsion (Barnhoorn et al. 2005). 

Several models have been invoked to explain this behavior. Dynamic recrystallization resulting 

in a grain size reduction that enhances the diffusional creep mechanism provides a commonly 

used explanation. The related transient effects for different grain size reduction models have 

been analyzed by Montesi & Hirth (2003). The dynamic recrystallization model can also ex-

plain strain softenening mono-phase materials. However, the grain size reduction due to sub-

grain rotation and grain boundary migration is counteracted by the competing grain growth 

(Herwegh et al. 2005). Another typically invoked mechanism explaining the strain weakening 

in the ductile regime is the formation of LPO (e.g., Pieri et al. 2001). The stress evolution 

model proposed by Montesi (2007) for shear zones operating in the brittle-ductile regime relies 

on the anisotropy development due to the structural transformation. Similarly to the recrystalli-
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zation model, the Montesi’s structural model predicts no initial hardening phase in simple 

shear.  

Processes resulting in strain weakening are often considered important with regard to ductile 

shear zone formation (for a review of mechanisms see e.g.. Bruhn & Burlini 2005, Regenauer-

Lieb & Yuen 2003). The localization in a 1D column has been recently discussed by Paterson 

(2007) and the assessment of selected mechanisms including material non-linearity has been 

performed for two-dimensional setups by Kaus & Podladchikov (2006). Modeling of a shear 

zone development in inclusion-host systems shows a more marked impact of strain weakening 

than strain rate (host power-law rheology) weakening effects (Mancktelow 2002). His work 

shows that allowing for a 5-fold viscosity drop over a strain of 20% only results in a limited 

degree of localization that is far from explaining strongly focused zones occurring in natural 

settings. Takeda & Griera (2006) proposed a localization model in a rock column of a varying 

inclusion content based on a hardening and softening behavior observed for a two-phase me-

dium in simple shear. Their key observation is that the softening phase is reached earlier in 

weaker portions, while deformed to a lesser degree stronger parts are still subject to hardening. 

We have applied our analytical model to a similar setup to quantify the degree of localization. 

A viable localization mechanism is expected to lead to substantial viscosity contrasts in a 

slightly perturbed material already after a small strain. However, the strain distribution in the 

profile is virtually determined by the initial concentration related viscosity variations even after 

a considerable strain. The initial viscosity contrasts are insufficient to explain the observed 

shear zone profiles in relatively homogeneous materials and we conclude that the structural 

softening cannot account for the ductile localization alone. 

The question arises if introduction of unequally sized inclusions, intrinsic anisotropy or a non-

linear rheology for the host or inclusions could enhance the strain weakening to a degree that a 

strong localization could occur in a perturbed zone. To avoid qualitative speculations, we focus 

on an example of a power-law fluid forming the inclusions. Our analytical model can be ex-

tended to include this case without a problem, since any rheology can be prescribed to inclu-

sions subject to a constant strain rate in the model. During a simple shear the deformation is 

evidently focused into the inclusion phase. Hence, a decrease of the apparent viscosity results 

for inclusions following a power-law rheology. We have shown that the effective properties of 

a two-phase composite saturate with respect to the viscosity ratio variations (see e.g. Figure 

5b). The shape evolution of an inclusion that is hundred times weaker than the host is virtual 

undistinguishable from the incompressible hole case. Consequently, for inclusions which are 
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significantly weaker than the host (more than a hundred) already at the deformation onset, the 

effects related to the power-law introduction are minor in the model. We note that this hy-

pothesis may not hold in the FEM runs, where inclusions interact and develop complex shapes. 

The FEM results show that in densely packed composites, the weakening behavior takes over 

after the initial hardening phase in the pure shear case. We have attributed this transition to the 

formation of the localized deformation bands. The effective viscosity may be significantly re-

duced due to the development of the pervasive rhomboidal network of weak bands effectively 

resulting in the change of the composite topology. Inclusion-host geometry reversal has been 

suggested as an efficient localization mechanism (e.g., Handy 1994). In the simple shear case, 

the formation of the prominent S-C structure is surprisingly not manifested in the stress-strain 

curves for the studied deformation magnitude. In our simulations, we have seen only the onset 

of the inclusion phase merging and the additionally strain required to bring the localization to 

the completion is difficult to assess. In the localization context, we seek a mechanism that 

could explain the abrupt topology reversal after a small strain. We admit that processes such as 

dynamic recrystalization that are prone to accelerate the weak phase coalescence are not taken 

into account in our simulations. Further studies are required to constrain the onset and duration 

of the topology reversal as a function of inclusion concentrations and other relevant factors. 

Conclusions 

The combined shape and mechanical evolution model for a two-phase rock consisting of inclu-

sions subject to large deformation has been derived. We have utilized the analytical solution 

for an isolated elliptical inclusion embedded in an anisotropic matrix to model the shape pre-

ferred orientation development. The emergence of shape preferred orientation in a rock results 

in an overall mechanical anisotropy. A scheme based on the differential effective medium ap-

proach predicting mechanical properties of a composite consisting of aligned elliptical inclu-

sions has been proposed and numerically validated. The scheme is free of phenomenological 

parameters and provides a good fit to the numerical data in a wide range of inclusion concen-

tration, ellipticity and inclusion-host ratio. In particular, the weak and strong supporting phase 

cases are distinguished by the model leading to an improved estimate for compositions higher 

than 20 percent in comparison with the SCA. The anisotropic DEM scheme also removes the 

deficiency of an unbound prediction in the limit of extremal viscosity ratios for high concentra-

tions. The evolving anisotropy is allowed to influence the shape development. The inclusion 

stretch is significantly enhanced if a strong host anisotropy is present. 
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In the pure shear case, flattening of weak initially circular inclusions results in an increasing 

normal viscosity and an effective hardening. The viscosity growth respects the Voigt bound 

and yields maximally fifty percent relative to an initial value for densely populated inclusion. 

In the simple shear case, the anisotropy emerges along the instantaneous stretching direction 

and is progressively transposed into a shearing direction. Consequently, a weak initial harden-

ing phase occurs and after a strain of around unit magnitude, irrespective of inclusion concen-

tration, a pronounced softening follows towards the Reuss bound. In both cases, feedback of 

the evolving anisotropy on the shape evolution is irrelevant. 

Numerical simulations directly resolving a finite deformation evolution of a composite consist-

ing of numerous weak inclusions have been performed. The numerical results show that ana-

lytical model can capture the anisotropy emergence and overall normal and shear viscosity de-

velopment up to high inclusion concentrations and strains. Both in pure and simple shear, flow 

localizes into favorably oriented conjugate arrays of inclusions leading to the development of 

sigmoidal inclusion shapes. However, the shape evolution model relying on an isolated inclu-

sion solution provides a satisfactory approximation to the shape preferred orientation devel-

opment in an interacting inclusion aggregate. The localization on an inclusion scale is mani-

fested in the overall system behavior only in the pure shear case after a considerable amount of 

strain. 

Our model provides a viable explanation of a strain weakening observed in poly-phase materi-

als. However, it cannot explain alone localization in a rock mass heterogeneously populated 

with inclusions. The model can be run for any deformation paths and constrains constitutive 

laws incorporating structural evolution factor that are often employed in large geodynamic 

simulations.  

Appendix 

A large number of inclusions needed for a sufficiently representative composite area results in 

a high discretization level exceeding million degrees of freedom present in our models. It ne-

cessitates the use of an efficient implementation of FEM. In this study we have utilized our 

unstructured mesh FEM code MILAMIN implemented entirely in MATLAB. We have em-

ployed the mixed formulation of FEM that allows us to tackle incompressible flow problems. 

In this formulation pressure field is approximated independently from the velocity field and 

corresponding degrees of freedom are explicitly present in the model. A particular element 

type that we have utilized is the seven-node Crouzeix-Raviart triangle with the pressure field 
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interpolated by a discontinuous linear function. The incompressible constraint is enforced 

through the penalty approach and performing Hestenes-Powell iterations allows us to use a 

moderate penalty factor. By eliminating the pressure degrees of freedom on the element level, 

we gain the possibility to operate on a positive-definite global matrix. The direct solvers are 

tailored for such systems and Cholesky factorizations are well known for their high perform-

ance. Details concerning implementation and applied optimizations have been describe in our 

other paper (Dabrowski et al. in press). 

For the instantaneous models, numerical setup consists of a square box containing 256 inclu-

sions of varying concentration and ellipticity that are aligned and elongated in x-direction (see 

Figure 3). We have studied concentrations in the range between 0.02 and 0.50 in 0.02 incre-

ments and inclusion aspect ratios of 1, 2, 4, 8 and 16. During the input model generation inclu-

sions are sequentially seeded in the computational domain in random locations, and accepted 

only if the minimum distance to all other inclusions exceeds 5% of the short axis length. All 

studied models have been run for the viscosity ratio /incl hostr μ μ=  10, 100, and 1000. Concen-

trations higher than 50% are achieved by the phase swap (inclusions become weak in this case) 

and consequently the viscosity ratios of 0.1, 0.01 and 0.001 are then analyzed. For a given el-

lipticity, concentration and viscosity ratio 10 samples have been analyzed to assess the de-

pendence on the inclusion network configuration. Each model instance is subject to two differ-

ent modes of pure shearing given by average strain rates 1xx yyε ε= − =� � and 1xy yxε ε= =� � . Both 

horizontal and vertical components of the velocity field on the domain boundaries are pre-

scribed according to the average strain rates. The effective normal and shear viscosity is com-

puted based on the mean value of the appropriate stress component.  

In the finite deformation models, we have utilized a rectangular computational domain of the 

width to height ratio of 2 in the simple shear case and a square one in the pure shear case. In 

the pure shear case, we have prescribed kinematically determined boundary conditions on all 

walls. In the simple shear case, we have applied appropriate velocities on the bottom and top 

walls and enforced periodic velocities on the lateral walls. The inclusion geometry has been 

explicitly updated according to the current velocity field with the time step adjusted in the pure 

shear case to take into account the changing box geometry. We used 0.5% shortening incre-

ments in the pure shear case and 0.01 simple shear unit increments. The dilatational component 

of the displacement at the inclusion interfaces has been subtracted to ensure constant phase 

concentrations. In both cases, we have was frequently recreated the computational mesh to 

maintain its high quality. 
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The inclusion shape and effective viscosity evolution have been monitored during simulation 

runs. Several different measures of the inclusions shape have been tested. We have found that 

computing the second polygon moments is superior to the least-square ellipse fitting, because 

it is not biased by a non-uniform distribution of the inclusion boundary nodes. Eigenvalues and 

eigenvectors have been computed for all shape matrices to find ellipticity and inclination of the 

individual inclusions. In addition, the overall shape has been estimated by performing eigen-

vector analysis on the arithmetic mean of the individual shape tensors. The relevant compo-

nents of the effective viscosity have been computed by averaging adequate stress components 

over the whole computational domain. For the pure shear case, the effective normal viscosity 

component is supplemented by the effective shear component. This requires an additional vir-

tual step of calculations when boundary conditions are changed to a pure shear oriented at 45 

degrees. The results obtained in this step have been used to compute the overall shear viscos-

ity, but the model geometry has not been updated according to them. 

References 

Arbaret, L., Bystricky, M. & Champallier, R. 2007. Microstructures and rheology of hydrous 
synthetic magmatic suspensions deformed in torsion at high pressure. Journal of Geo-
physical Research-Solid Earth 112(B10), -. 

Barnhoorn, A., Bystricky, M., Kunze, K., Burlini, L. & Burg, J. P. 2005. Strain localisation in 
bimineralic rocks: Experimental deformation of synthetic calcite-anhydrite aggregates. 
Earth and Planetary Science Letters 240(3-4), 748-763. 

Berryman, J. G., Pride, S. R. & Wang, H. F. 2002. A differential scheme for elastic properties 
of rocks with dry or saturated cracks. Geophysical Journal International 151(2), 597-
611. 

Bilby, B. A., Eshelby, J. D. & Kundu, A. K. 1975. Change of Shape of a Viscous Ellipsoidal 
Region Embedded in a Slowly Deforming Matrix Having a Different Viscosity. Tec-
tonophysics 28(4), 265-274. 

Bilby, B. A. & Kolbuszewski, M. L. 1977. Finite Deformation of an Inhomogeneity in 2-
Dimensional Slow Viscous Incompressible-Flow. Proceedings of the Royal Society of 
London Series a-Mathematical Physical and Engineering Sciences 355(1682), 335-
353. 

Biot, M. A. 1965. Mechanics of incremental deformations : theory of elasticity and viscoelas-
ticity of initially stressed solids and fluids, including thermodynamic foundations and 
applications to finite strain. Wiley, New York. 

Bruhn, D. & Burlini, L. 2005. High-strain zones : structure and physical properties. Geologi-
cal Society, London. 

Christensen, R. M. 2005. Mechanics of composite materials. Dover Publications, Mineola, 
N.Y. 

Dabrowski, M., Krotkiewski, M. & Schmid, D. W. in press. MILAMIN: MATLAB-based 
FEM solver for large problems. Geochemistry, Geophysics, and Geosystems in press. 

Dawson, P. R. & Wenk, H. R. 2000. Texturing of the upper mantle during convection. Phi-
losophical Magazine a-Physics of Condensed Matter Structure Defects and Mechani-
cal Properties 80(3), 573-598. 

113 



References 

Eshelby, J. D. 1957. The Determination of the Elastic Field of an Ellipsoidal Inclusion, and 
Related Problems. Proceedings of the Royal Society of London Series a-Mathematical 
and Physical Sciences 241(1226), 376-396. 

Fletcher, R. C. 2004. Anisotropic viscosity of a dispersion of aligned elliptical cylindrical 
clasts in viscous matrix. Journal of Structural Geology 26(11), 1977-1987. 

Handy, M. R. 1990. The Solid-State Flow of Polymineralic Rocks. Journal of Geophysical Re-
search-Solid Earth and Planets 95(B6), 8647-8661. 

Handy, M. R. 1994. Flow Laws for Rocks Containing 2 Nonlinear Viscous Phases - a Phe-
nomenological Approach. Journal of Structural Geology 16(3), 287-301. 

Herwegh, M., de Bresser, J. H. P. & ter Heege, J. H. 2005. Combining natural microstructures 
with composite flow laws: an improved approach for the extrapolation of lab data to 
nature. Journal of Structural Geology 27(3), 503-521. 

Holyoke, C. W. & Tullis, J. 2006. Mechanisms of weak phase interconnection and the effects 
of phase strength contrast on fabric development. Journal of Structural Geology 28(4), 
621-640. 

Ji, S. C., Wang, Z. C. & Wirth, R. 2001. Bulk flow strength of forsterite-enstatite composites 
as a function of forsterite content. Tectonophysics 341(1-4), 69-93. 

Kaus, B. J. P. & Podladchikov, Y. Y. 2006. Initiation of localized shear zones in viscoelasto-
plastic rocks. Journal of Geophysical Research-Solid Earth 111(B4), -. 

Keller, J. B. 1987. Effective Conductivity of Periodic Composites Composed of 2 Very Un-
equal Conductors. Journal of Mathematical Physics 28(10), 2516-2520. 

Linker, M. F., Kirby, S. H., Ord, A. & Christie, J. M. 1984. Effects of Compression Direction 
on the Plasticity and Rheology of Hydrolytically Weakened Synthetic Quartz Crystals 
at Atmospheric-Pressure. Journal of Geophysical Research 89(Nb6), 4241-4255. 

Madi, K., Forest, S., Cordier, P. & Boussuge, M. 2005. Numerical study of creep in two-phase 
aggregates with a large rheology contrast: Implications for the lower mantle. Earth and 
Planetary Science Letters 237(1-2), 223-238. 

Mancktelow, N. S. 2002. Finite-element modelling of shear zone development in viscoelastic 
materials and its implications for localisation of partial melting. Journal of Structural 
Geology 24(6-7), 1045-1053. 

McNamara, A. K., van Keken, P. E. & Karato, S. I. 2002. Development of anisotropic struc-
ture in the Earth's lower mantle by solid-state convection. Nature 416(6878), 310-314. 

Montesi, L. G. J. 2007. A constitutive model for layer development in shear zones near the 
brittle-ductile transition. Geophysical Research Letters 34(8), -. 

Montesi, L. G. J. & Hirth, G. 2003. Grain size evolution and the rheology of ductile shear 
zones: from laboratory experiments to postseismic creep. Earth and Planetary Science 
Letters 211(1-2), 97-110. 

Mura, T. 1987. Micromechanics of defects in solids. Kluwer Academic Publ., Dordrecht. 
Nemat-Nasser, S. & Hori, M. 1993. Micromechanics : overall properties of heterogeneous 

materials. North-Holland, Amsterdam. 
Paterson, M. S. 2007. Localization in rate-dependent shearing deformation, with application to 

torsion testing. Tectonophysics 445(3-4), 273-280. 
Pieri, M., Burlini, L., Kunze, K., Stretton, I. & Olgaard, D. L. 2001. Rheological and micro-

structural evolution of Carrara marble with high shear strain: results from high tem-
perature torsion experiments. Journal of Structural Geology 23(9), 1393-1413. 

Regenauer-Lieb, K. & Yuen, D. A. 2003. Modeling shear zones in geological and planetary 
sciences: solid- and fluid-thermal-mechanical approaches. Earth-Science Reviews 
63(3-4), 295-349. 

114 



Paper 3: Mechanical Anisotropy Development of a Two-Phase Composite Subject to Large Deformation 

Spengler, D., van Roermund, H. L. M., Drury, M. R., Ottolini, L., Mason, P. R. D. & Davies, 
G. R. 2006. Deep origin and hot melting of an Archaean orogenic peridotite massif in 
Norway. Nature 440(7086), 913-917. 

Takeda, Y. T. & Griera, A. 2006. Rheological and kinematical responses to flow of two-phase 
rocks. Tectonophysics 427(1-4), 95-113. 

Treagus, S. H. 2003. Viscous anisotropy of two-phase composites, and applications to rocks 
and structures. Tectonophysics 372(3-4), 121-133. 

Treagus, S. H. & Treagus, J. E. 2002. Studies of strain and rheology of conglomerates. Journal 
of Structural Geology 24(10), 1541-1567. 

Willis, J. R. 1964. Anisotropic Elastic Inclusion Problems. Quarterly Journal of Mechanics 
and Applied Mathematics 17(2), 157-&. 

 
 

115 



References 

 

116 

MarcinD
Rectangle



Paper 4: Evolution of Large Amplitude 3D Fold Patterns: a FEM Study 

Paper 4: Evolution of Large Amplitude 3D Fold Patterns: a 

FEM Study 

Submitted to Physics of the Earth and Planetary Interiors by  

M. Dabrowski, D.W. Schmid, and M. Krotkiewski 

Abstract 

The study of three dimensional (3D) fold patterns requires numerical models with large num-

bers of degrees of freedom (≥100’000’000). We have developed BILAMIN, an unstructured 

(geometry fitted) mesh implementation of the finite element method for incompressible Stokes 

flow that is capable of solving such systems. All repetitive and computationally intensive steps 

are fully parallelized. One of the main components is the iterative solver. We chose the mini-

mum residual method (MINRES) because it allows operating directly on the indefinite systems 

resulting from the incompressibility condition. We use BILAMIN in a case study of fold pat-

tern evolution. Folds are ubiquitous in nature, and contain both mechanical and kinematic in-

formation that can be deciphered with appropriate tools. Our results show that there is a rela-

tionship between fold aspect ratio and in-plane loading conditions. We propose that this find-

ing can be used to determine the complete parameter set potentially contained in the geometry 

of three dimensional folds: mechanical properties of natural rocks, maximum strain, and rela-

tive strength of the in-plane far-field load components. Furthermore, we show how folds in 3D 

amplify and that there is a second deformation mode, besides continuous amplification, where 

compression leads to a lateral rearrangement of blocks of folds. Finally, we demonstrate that 

the textbook prediction of dome and basin (egg carton) structures resulting from folding insta-

bilities in constriction is incorrect. The fold patterns resulting in this setting are curved, elon-

gated folds with random orientation.  

Introduction 

Folds on all scales form millimeters to kilometers may be the result of the mechanical instabil-

ity that arises when a mechanically stratified system is subjected to layer-parallel compression. 

While the resulting fold patterns are three dimensional, their geometries are often simplified by 

assuming that there is no shape variation in the third dimension. This facilitates the analysis 

and has resulted in a large number of studies that investigate the folding instability for a variety 

of rheologies: viscous (e.g., Biot, 1961; Fletcher, 1977; Smith, 1975), visco-elastic (Biot, 1961; 
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Muhlhaus et al., 2002b; Schmalholz and Podladchikov, 1999), visco-elasto-plastic (Gerbault et 

al., 1999), power-law (Fletcher, 1974; Smith, 1977), and anisotropic (Biot, 1965; Fletcher, 

2005; Kocher et al., 2006; Muhlhaus et al., 2002a). Studies of three dimensional folding have 

mostly focused on kinematic models and resulted in the classification of fold interference pat-

terns caused by the superposition of folds of different generations (e.g., Grasemann et al., 

2004; Ramsay, 1967; Thiessen and Means, 1980). Mechanical studies of viscous single layer 

3D folding were performed by Fletcher (1991; 1995) who derived the dispersion relationships 

for the 3D folding instability in viscous materials using the thick-plate analysis. These small 

strain results were elaborated on by Kaus and Schmalholz (2006) who used the finite element 

method to achieve large strains and developed an expression for the finite amplitude develop-

ment in analogy with the results that were obtained by Schmalholz and Podladchikov (2000). 

While their 3D folding study nicely illustrates the finite strain evolution of a few folds, it can-

not illustrate the natural patterns that emerge out of randomly perturbed layers where many 

folds interact with each other. Furthermore, in these relatively small models the boundary con-

ditions seriously affect the results. The employed free slip boundary conditions allow for large 

strain fold development even at the boundaries. However, the free slip condition corresponds 

to vertical planes of symmetry, which are either axial planes or cross-sections through quasi-

cylindrical folds. Hence, these boundaries, although relatively “soft”, force the locations of the 

folds. If fold patterns out of random noise are to be studied, this effect must be considered and 

the modeled area must be large relative to the one that is affected by this type of boundary ef-

fect, which is what we do in this study. Our focus in this paper is to show and quantify the pat-

tern evolution of 3D folding as a function of different loading conditions. Furthermore we pro-

pose that the aspect ratio of folds in map view may be used to infer the relative strength of the 

two principal in-plane loads. 
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Numerical Code: Model, Implementation, Performance, and Benchmark 

The mechanical model we solve for is incompressible Stokes flow for Newtonian fluids in the 

absence of gravity 
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where  represent the three spatial directions, 1,2,3i = ix  are the coordinates,  are the veloci-

ties, 

iv

ijε  is the strain rate tensor, ijσ  is the stress tensor, 3iip σ= −  is the pressure, and η  is 

the viscosity. The governing equations are solved with BILAMIN, a self developed Lagran-

gian finite element code that employs a mixed velocity-pressure approach (Brezzi and Fortin, 

1991). The element used is a 15-node Crouzeix-Raviart tetrahedron with discontinues linear 

shape functions for pressure and pseudo cubic continuous velocities, see e.g. Bertrand et al. 

(1992). In order to solve large systems of equations that arise in modeling of 3D problems, it is 

crucial to employ an iterative method, as memory and time requirements of direct solvers be-

come unrealistic for large systems. The penalty method approach, although robust and accurate 

for large enough penalty parameter values (e.g., Powell and Hestenes iterations, Cuvelier et al., 

1986), is too costly if used together with iterative methods, as the condition number of the 

global system of equations deteriorates. In order to alleviate this limitation, incomplete Uzawa 

type of the methods are usually utilized; for discussion see e.g. Bertrand and Tanguy (2002). 

The idea is to perform conjugate gradient (CG) iterations that operate on the symmetric posi-

tive-definite pressure Schur complement of the global system. The pressure Schur complement 

involves the inverse of the velocity part of the global matrix. However, the action of this opera-

tor is applied only inexactly through several inner CG iterations. In our code we follow a dif-

ferent approach and employ the minimum residual iterative method (MINRES, Paige and 

Saunders, 1975). Thus, we directly operate on the symmetric indefinite system resulting from 

the discretization of incompressible Stokes flow equations (Elman et al., 2006; Wathen et al., 

1995). In order to accelerate the convergence we use a block preconditioning approach for this 

saddle point problem (Elman, 2002; Silvester and Wathen, 1994).  
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The unstructured, geometry-adapted meshes are generated by T3D, a tetrahedron mesh genera-

tor developed by D. Rypl (2007). Mesh generation and node reordering are both sequential, 

and are treated as a pre-processing stage of the solver that must only be performed every time a 

new mesh is used. The matrix assembly is implemented using a symbolic approach to sparse 

matrices, where a symbolic matrix representation (the non-zero pattern) resulting from the 

mesh topology is created. Our implementation is memory efficient, as we do not explicitly cre-

ate the connectivity arrays, but directly the non-zero structure. Symbolic structure preparation, 

matrix computation, and matrix assembly are fully parallel in terms of computations and 

memory usage. Communication between the processes is implemented over the message pass-

ing interface (MPI). The system of linear equations is explicitly constructed in order to speed 

up the iterative solver. The basic parallel building blocks of the solver are dot product and 

sparse matrix by vector multiplication, the latter being a challenge from the point of view of 

per-CPU performance. Reverse Cuthill-McKee (RCM) reordering is used in order to gain best 

per-CPU cache reuse and at the same time decent inter-CPU data exchange during sparse ma-

trix - vector product.  

 

Figure 1 

Performance results in GFLOPS obtained by the BILAMIN implementation of the MINRES solver 

for systems with approximately 3’000’000 degrees of freedom per CPU. Code benchmarks were 

performed on an InfiniBand connected Opteron cluster located at the University of Minnesota, 

Minneapolis (1192 CPUs). Each node of the cluster consists of two dual-core CPUs and 8 GB of 

DDR2/666MHz RAM. 
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We have tested BILAMIN on large clusters and successfully solved systems with more than 

100’000’000 degrees of freedom and meshes consisting of 26’000’000 nodes (6’000’000 ele-

ments). See Figure 1 for performance scaling. The efficiency on 1000 CPUs is around 65% 

starting from a close to optimal sequential implementation.  

The model studied in this paper consists of a viscous layer overlying a less viscous matrix (vis-

cosity ratio 50:1). The top boundary is a free surface; all other boundaries are free slip bounda-

ries, which are specified in terms of normal velocities that result in constant strain rates. The 

vertical velocity of the bottom is zero, while the normal velocities of the lateral walls are var-

ied to systematically test the influence of different compressive regimes. The thickness of the 

matrix relative to the layer thickness is twice the analytically predicted dominant wavelength 

and the perturbation velocities do not feel the restriction due to the bottom boundary (infinite 

half space, cf Ramberg, 1961). The accuracy of the numerical code and the chosen model con-

figuration are shown in Figure 2. With BILAMIN it is possible to reproduce the analytical pre-

dictions with less than 2% error even at low resolutions with 19x7x7 elements. 

While the results in Figure 2 are obtained by looping through single sinusoid configurations of 

varying wavelength to thickness ratio, the actual pattern study runs were performed with ran-

domly perturbed layers. The red noise used is scaled so that the amplitude is maximally 1/50 of 

the layer thickness (routine modified after Yearsley, 2004).  

a) b) 
Figure 2 

Comparison of analytical (a) versus numerical (b) growth rate spectrum for an embedded layer 

with viscosity ratio 100:1 between layer and matrix. 
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Results 

An illustration of the 3D folding results is shown in Figure 3. The mechanical instability re-

sults in finite amplitude folds of limited length that interact with each other. A detailed com-

parison of fold patterns resulting from different loading conditions is shown in Figure 4. a) 

shows the initial random perturbation of the model with the corresponding spectra. These spec-

tra are averages of the spectra in the x and y direction. b) to e) show the results of different 

loading conditions, symbolized by arrows, at an identical shortening in the x direction of 30%.  

 

 

Figure 3 

3D illustration of a 1.00, 0.00xx yyε ε= − =  run.  
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Figure 4 

Fold patterns developed out of the same initial perturbation (a) for different loading conditions 

(b-d) given for the same shortening in x-direction (30%). Spectra show averaged 1D Fourier 

analyses in x and y direction. b) 1.25, 0.25xx yyε ε= − = + , c) 1.00, 0.00xx yyε ε= − = , 

d) 0.75, 0.25xx yyε ε= − = − , e) 0.50, 0.50xx yyε ε= − = − . 
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Analysis of the patterns confirms the finding of Fletcher (1995) that most folds ought to be cy-

lindrical. As long as there is a preferential compression direction (b-c) the resulting folds have 

elongated shapes that are oriented approximately orthogonal to the maximum compression di-

rection. However, using the plane strain experiment (c), corresponding to the typically em-

ployed simplified 2D models, as an example, it is obvious that the folds are clearly elongated, 

but are far from being perfectly cylindrical and seem to have a specific aspect ratio (fold 

length/width). The only exception to the finding that folds are elongated and oriented orthogo-

nal to the maximum compression direction is shown in e) where actually no unique maximum 

compression direction exists, as the normal loading in all in-plane directions is identical. The 

textbook (e.g., Ramsay, 1967; Twiss and Moores, 1992) prediction for this loading is the de-

velopment of dome and basins, resembling an egg carton, that often would be interpreted as 

the superposition of two sequential folding events. No distinction of deformation events is re-

quired to interpret the results in Figure 4e, as it certainly is one event. However, a regular egg 

carton pattern cannot be observed; the folds show clear elongations, but no preferred orienta-

tion. The fold patterns in all the presented finite strain models resemble each other, especially 

the ones where a principal compression direction exists. The pattern relation with respect to the 

initial perturbation is less obvious and demonstrates the selectivity of the folding instability, 

which amplifies out of the initial perturbation only the components that exhibit the fastest 

growth rate. Note though that the top and bottom interface have different initial perturbations. 

This should be taken into account when analyzing the fold pattern evolution with respect to the 

initial perturbation.  

The comparison of the initial and the finite strain spectra also shows how the folding instability 

amplifies the fastest growing components (folds). The finite strain spectra are plotted with 

identical vertical axes and reveal that for the same given shortening in the x-direction the fold 

amplitudes are furthest developed in e), which is because here the shortening in the y-direction 

is strongest and contributes most to the fold development. A comparison of the amplitude evo-

lution is shown in Figure 5, which reproduces the findings of Schmalholz and Podladchikov 

(2000). Initially the folds amplify exponentially, as predicted by the classical theories. How-

ever, with increasing strain the growth rates slow down and are controlled by the layer length. 

For the model in Figure 4e this transition is reached at a shortening of 20%, for the other mod-

els the transition occurs later in terms of maximum shortening because the relative contribution 

from the y-direction is less. This finding is also a confirmation of the finite amplitude theory of 

Kaus and Schmalholz (2006) for large random systems.  
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Figure 5 

Normalized amplitude evolution for the different loading conditions. 

 

Figure 6 

Fold aspect ratio as a function of maximum shortening and loading condition.  

The averaged spectra in the y-direction presented in Figure 4b)-Figure 4d) show no selectivity 

within the size of the modeled system. This was predicted by the thick plate analysis of 

Fletcher (1995). Yet, the folds in this runs show distinct aspect ratios. These aspect ratios are a 

function of the maximum amount of shortening, as well as the loading condition, see Figure 6. 

They are determined by finding the absolute deviation of the top model surface from its aver-
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age value, contouring this field at the intermediate level, and calculating the average aspect 

ratio of the resulting closed contours.  

The finding of a relationship between loading and folds aspect ratio is potentially very useful. 

2D, cross-section based analyses with all possible corrections such as layer thickening 

(Sherwin and Chapple, 1968) can be used to infer the mechanical rock properties, as well as 

the strain in the maximum shortening direction (e.g. Schmalholz and Podladchikov, 2001; 

Schmalholz et al., 2002). For a complete 3D analysis only the relative strength of the maxi-

mum to the minor in-plane compression remains to be determined, which can be achieved with 

a diagram such as shown in Figure 6. Since the total maximum strain as well as the viscosity 

ratio are known, only the fold aspect ratio must be determined and a unique result for the in-

plane loading conditions can be obtained. Since the relationships shown in Figure 6 can, at the 

moment, not be predicted analytically, a large number of numerical runs is required in order to 

produce these relationships for different mechanical properties and ranges. Furthermore, the 

robustness of the relationship must be investigated, especially with respect to the initial pertur-

bation of the strong layer and possibly with respect to numerical parameters such as resolution. 

 

Figure 7 

Fold pattern evolution in the -0.50 -0.50 run at 25% (a) and 40% (b) shortening. Domains are 

scaled to have the same size in order to facilitate comparison. Remeshing was required for b).  

The fold amplitude evolutions shown in this paper bear many of the characteristics of 2D mod-

els and the results from 2D analysis are mostly applicable to 3D, as discussed above. However, 

in 2D models folds become mechanically ineffective once the fold limbs are close to isoclinal. 

In such large strain cases the folded layer will start to behave as an effective layer with the fold 

height as the layer thickness and a second generation of larger (absolute) wavelength folds will 
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grow. In large strain 3D models the folded layer has more possibilities, as shown in Figure 7. 

Note that the shown 40% shortening would not be considered extreme in a 2D model. How-

ever, for the given 3D model even overhanging fold shapes result (fan folds, interlimb angle 

<0º). A comparison of Figure 7a) and b) shows that the progressive strain leads to fold amplifi-

cation and merging of neighboring fold hinges. However, the folds also have the possibility to 

migrate laterally. This effect can be seen in the regions marked 1 and 2 in Figure 7b but also 

elsewhere in this model. Kaus and Schmalholz (2006) discuss how the folding instability leads 

to a softening of the system. While this conclusion can be drawn for the entire system, it may 

be that the observation of migrating folds is an indication that at large strains folds become 

structurally stiff and rather move with respect to each other than amplify further. Finally we 

would like to point out that also at the largest strains we have calculated (Figure 7b) the fold 

patterns have no resemblance with egg carton structures, but are densely packed, curved, elon-

gated folds with random orientations.  

Conclusions 

We have used our implementation of the finite element method for incompressible Stokes flow 

to study the evolution of fold patterns resulting from large, randomly perturbed domains. Large 

physical model sizes are required in order to obtain patterns with many (dominant) fold wave-

lengths that allow comparison with natural fold patterns. This causes the use of numerical 

models with resolutions of approximately 100’000’000 degrees of freedom, which can only be 

solved with massively parallel iterative solution strategies. MINRES is a particularly useful 

choice for this because it allows operating directly on indefinite symmetric systems resulting 

from the discretization of eqn. (1). Furthermore, the implementation must be efficient so that a 

large number of time steps can be calculated in order to achieve large strains. The latter also 

requires the possibility of performing remeshing steps. All of these criteria are met by BI-

LAMIN, the code we used in this paper. 

The study of the fold patterns confirm the theory developed by Fletcher (1995), which states 

that there is no wavelength selectivity in the  direction orthogonal to the maximum compres-

sion direction. This can be seen in the spectral analysis of the fold patterns. Despite this the 

folds can be characterized in the physical domain with an aspect ratio that depends on strain 

and relative strength of the in-plane far-field loading. This observation, combined with previ-

ously developed theories (e.g., Kaus and Schmalholz, 2006; Schmalholz and Podladchikov, 

2001) could be used to determine complete parameter set potentially contained in the geometry 

of three dimensional folds: mechanical properties of natural rocks, maximum strain, and rela-
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tive strength of the in-plane far-field loading conditions. While the finiteness of the folds is 

confirmed by patterns in natural rocks, it is unclear how robust the relationship between fold 

aspect ratio and maximum strain and loading conditions is. Further investigations should focus 

on analyzing a broad class of mechanical stratifications and verify the influence of the initial 

perturbation.  

The model runs show that the same initial perturbation will be selectively amplified in a simi-

lar fashion by a variety of different loading conditions. As long as there is a unique maximum 

compression direction the fold patterns are similar. Given that in 3D models both principal in-

plane directions may contribute to the fold amplification, large amplitude folds can be devel-

oped substantially faster in constrictional settings compared to the 2D plane strain simplifica-

tions. This also causes a faster transition from active (exponential) folding to layer controlled 

growth (Schmalholz and Podladchikov, 2000). Another difference between 2D and 3D models 

is that in 3D folds may react to large compression not only by fold amplification, but also by 

lateral rearrangement of blocks of folds. The fold patterns resulting from constrictional ex-

periments with randomly perturbed layers do not result in egg carton shaped dome and basins 

such as proposed in textbooks; curved, elongated fold shapes are formed instead. The interpre-

tation of natural fold patterns, and the identification of interference patterns and several stages 

of deformation must be performed with care. The complexity of fold patterns resulting from 

our single deformation event models should be kept in mind. 

Acknowledgements 

We would like to thank Daniel Rypl for making T3D, the mesh generator used in this paper, 

available. We would also like to thank the Minnesota Supercomputing Institute (MSI) and the 

Norwegian High Performance Computing (NOTUR) network to grant us machine access for 

development and production.  

References 

 
Bertrand, F. and Tanguy, P.A., 2002. Krylov-based Uzawa algorithms for the solution of the 

Stokes equations using discontinuous-pressure tetrahedral finite elements. Journal of 
Computational Physics, 181(2): 617-638. 

Bertrand, F.H., Gadbois, M.R. and Tanguy, P.A., 1992. Tetrahedral Elements for Fluid-Flow. 
International Journal for Numerical Methods in Engineering, 33(6): 1251-1267. 

Biot, M.A., 1961. Theory of folding of stratified viscoelastic media and its implications in tec-
tonics and orogenesis. Geological Society of America Bulletin, 72(11): 1595-1620. 

Biot, M.A., 1965. Mechanics of Incremental Deformations. John Wiley & Sons, Inc., New 
York. 

128 



Paper 4: Evolution of Large Amplitude 3D Fold Patterns: a FEM Study 

Brezzi, F. and Fortin, M., 1991. Mixed and hybrid finite element methods. Springer, New 
York etc., IX, 350 pp. 

Cuvelier, C., Segal, A. and Steenhoven, A.A., 1986. Finite element methods and Navier-
Stokes equations. Reidel, Dordrecht a. o., XVI, 483 pp. 

Elman, H.C., 2002. Preconditioners for saddle point problems arising in computational fluid 
dynamics. Applied Numerical Mathematics, 43(1-2): 75-89. 

Elman, H.C., Silvester, D.J. and Wathen, A.J., 2006. Finite elements and fast iterative solvers 
with applications in incompressible fluid dynamics. Oxford University Press, New 
York, 400 pp. 

Fletcher, R.C., 1974. Wavelength selection in the folding of a single layer with power-law 
rheology. Am. J. Sci., 274(11): 1029-1043. 

Fletcher, R.C., 1977. Folding of a Single Viscous Layer - Exact Infinitesimal Amplitude Solu-
tion. Tectonophysics, 39(4): 593-606. 

Fletcher, R.C., 1991. 3-Dimensional Folding of an Embedded Viscous Layer in Pure Shear. 
Journal of Structural Geology, 13(1): 87-96. 

Fletcher, R.C., 1995. 3-Dimensional Folding and Necking of a Power-Law Layer - Are Folds 
Cylindrical, and, If So, Do We Understand Why. Tectonophysics, 247(1-4): 65-83. 

Fletcher, R.C., 2005. Instability of an anisotropic power-law fluid in a basic state of plane 
flow. Journal of Structural Geology, 27(7): 1155-1167. 

Gerbault, M., Burov, E.B., Poliakov, A.N.B. and Daignieres, M., 1999. Do faults trigger fold-
ing of the lithosphere? Geo. Res. Lett., 26(2): 271-274. 

Grasemann, B., Wiesmayr, G., Draganits, E. and Fusseis, F., 2004. Classification of refold 
structures. Journal of Geology, 112(1): 119-125. 

Kaus, B.J.P. and Schmalholz, S.M., 2006. 3D finite amplitude folding: Implications for stress 
evolution during crustal and lithospheric deformation. Geophysical Research Letters, 
33(14): -. 

Kocher, T., Schmalholz, S.M. and Mancktelow, N.S., 2006. Impact of mechanical anisotropy 
and power-law rheology on single layer folding. Tectonophysics, 421(1-2): 71-87. 

Muhlhaus, H.B., Dufour, F., Moresi, L. and Hobbs, B., 2002a. A director theory for visco-
elastic folding instabilities in multilayered rock. International Journal Of Solids And 
Structures, 39(13-14): 3675-3691. 

Muhlhaus, H.B., Moresi, L., Hobbs, B. and Dufour, F., 2002b. Large amplitude folding in 
finely layered viscoelastic rock structures. Pure And Applied Geophysics, 159(10): 
2311-2333. 

Paige, C.C. and Saunders, M.A., 1975. Solution of Sparse Indefinite Systems of Linear Equa-
tions. Siam Journal on Numerical Analysis, 12(4): 617-629. 

Ramberg, H., 1961. Contact strain and folding instability of a multilayered body under com-
pression. Geol. Rdsch., 51: 405-439. 

Ramsay, J.G., 1967. Folding and fracturing of rocks. International series in the earth and plane-
tary sciences. McGraw-Hill, New York, 568 pp. 

Rypl, D., 2007. T3D - Tetrahedron mesh generator. 
Schmalholz, S.M. and Podladchikov, Y., 1999. Buckling versus folding: Importance of viscoe-

lasticity. Geophysical Research Letters, 26(17): 2641-2644. 
Schmalholz, S.M. and Podladchikov, Y.Y., 2000. Finite amplitude folding: transition from ex-

ponential to layer length controlled growth (vol 179, pg 363, 2000). Earth and Plane-
tary Science Letters, 181(4): 619-633. 

Schmalholz, S.M. and Podladchikov, Y.Y., 2001. Strain and competence contrast estimation 
from fold shape. Tectonophysics, 340(3-4): 195-213. 

129 



References 

Schmalholz, S.M., Podladchikov, Y.Y. and Burg, J.-P., 2002. Control of folding by gravity and 
matrix thickness: Implications for large-scale folding. Journal of Geophysical Research 
B: Solid Earth, 107(B1): 10.1029/2001JB000355. 

Sherwin, J.A. and Chapple, W.M., 1968. Wavelengths of Single Layer Folds - a Comparison 
between Theory and Observation. American Journal of Science, 266(3): 167-179. 

Silvester, D. and Wathen, A., 1994. Fast Iterative Solution of Stabilized Stokes Systems Part 
.2. Using General Block Preconditioners. Siam Journal on Numerical Analysis, 31(5): 
1352-1367. 

Smith, R.B., 1975. Unified Theory of Onset of Folding, Boudinage, and Mullion Structure. 
Geological Society of America Bulletin, 86(11): 1601-1609. 

Smith, R.B., 1977. Formation of Folds, Boudinage, and Mullions in Non-Newtonian Materials. 
Geological Society of America Bulletin, 88(2): 312-320. 

Thiessen, R.L. and Means, W.D., 1980. Classification of Fold Interference Patterns - a Reex-
amination. Journal of Structural Geology, 2(3): 311-316. 

Twiss, R.J. and Moores, E.M., 1992. Structural Geology. W. H. Freeman and Company, New 
York. 

Wathen, A., Fischer, B. and Silvester, D., 1995. The Convergence Rate of the Minimal Resid-
ual Method for the Stokes Problem. Numerische Mathematik, 71(1): 121-134. 

Yearsley, J., 2004. spatialPattern. MATLAB File Exchange. 
 
 

130 



Paper 5: Fractional Steps Methods for Transient Problems on Commodity Computer Architectures 

Paper 5: Fractional Steps Methods for Transient Problems 

on Commodity Computer Architectures 

 

Submitted to Physics of the Earth and Planetary Interiors by  

M. Krotkiewski, M. Dabrowski, and Yu.Yu.Podladchikov 

Abstract 

Fractional Steps methods are suitable for modeling transient processes that are central to many 

geological applications. Low memory requirements and modest computational complexity fa-

cilitates calculations on high-resolution three dimensional models. An efficient implementation 

of Alternating Direction Implicit/Locally One Dimensional schemes for an Opteron-based 

shared memory system is presented. The memory bandwidth usage, the main bottleneck on 

modern computer architectures, is specially addressed. High efficiency of above 2 GFlops per 

CPU is sustained for problems of 1 billion degrees of freedom. The optimized sequential im-

plementation of 1D sweeps is comparable in execution time to copying the data in the mem-

ory. Scalability of the parallel implementation on up to 8 CPUs is close to perfect. Performing 

one timestep of the Locally One Dimensional scheme on a system of 1000^3 unknowns takes 

only 11 seconds. We present an application of the methods to parabolic and hyperbolic prob-

lems using high-resolution, real-world oil reservoir data. 

Introduction 

Geological systems are usually heterogeneous and exhibit large material property contrasts. 

They are often formed by multi-physics processes interacting on many temporal and spatial 

scales. In order to understand these systems numerical models are frequently employed. Ap-

propriate resolution of the behavior of these heterogeneous systems, without the (over-) simpli-

fications of a priori applied homogenization techniques, requires numerical models capable of 

efficiently and accurately dealing with high resolution models.  

A popular technique is the finite element method (FEM) combined with unstructured meshes 

capable of dealing with the geometrical complexities of geological problems. In these methods 

a linear system of equations is assembled and solved. While it can be successfully done for two 

dimensional models with high resolution even on a modern desktop computer, three dimen-

sional problems require supercomputers and sophisticated numerical methods. Direct solvers 
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are unfeasible due to enormous memory requirements and large computational times. Iterative 

solvers (like Conjugate Gradients) are an available alternative, but require good precondition-

ers that can be efficiently parallelized.  

Methods based on structured meshes, although less accurate in terms of geometry representa-

tion, are often employed. The known structure of the mesh makes them cheaper in terms of 

memory requirements, and can significantly decrease the computational cost. Powerful meth-

ods like geometrical multigrid exist for structured meshes, however available implementations 

are far from theoretical CPU performance (Adams et al., 2003). 

Classical explicit methods are usually impractical for high-resolution problems due to severe 

timestep restriction. Operator splitting techniques try to overcome this limitation. The general 

idea is to divide a single timestep into a sequence one-dimensional implicit sweeps through the 

domain. The computational cost of such schemes is comparable to explicit methods, but the 

timestep restriction can be avoided.  

We first present the class of Fractional Steps methods for transient parabolic and hyperbolic 

problems. The suitability of contemporary shared memory, Opteron-based commodity archi-

tecture for this approach is investigated. We focus on high resolution problems with up to 

1000^3 degrees of freedom and heterogeneous material properties. An optimized algorithm for 

efficient computation and solution of tridiagonal systems of linear equations on an 8 Dual-core 

Opteron machine is presented.  

Fractional step method 

Consider an initial-boundary value parabolic problem of the heat conduction 

 

0

( ) in

on
in for 0

pc k f
t

T
t

Tϕρ ϕ

ϕ ϕ
ϕ ϕ

Γ

∂
= ⋅ + Ω×

∂
= ∂Ω×
= Ω =

div grad

 (1) 

where ϕ  denotes temperature, is thermal conductivity, k f is heat generation term, and pcρ is 

a product of density and specific heat capacity. Thermal field ϕΓ  is prescribed on the boundary 

and initial conditions T∂Ω× 0ϕ are given in the whole spatial domain Ω . 

In the case of three-dimensional homogeneous media, the finite difference (FD) discretization 

A of the operator on the uniform Cartesian grid yields 1( ) (pc kρ − ⋅div grad…)

132 



Paper 5: Fractional Steps Methods for Transient Problems on Commodity Computer Architectures 

 
2 ( )

( )

x y z

x x x

A A A A

A
h
κ

= + +

= Δ
Δ

∇

z

 (2) 

where  is thermal diffusivity, / pk cκ ρ= h x yΔ = Δ = Δ = Δ is a grid spacing and 

1( ) , ( ) 1x i i i x i iT T T T T−Δ = − ∇ = − iT+

z

denote backward and forward difference operator in the x 

direction, respectively. The operators ,yA A are analogous to xA and A  is the standard 7-point 

stencil for the Laplacian scaled by 2/( )hκ Δ . For heterogeneous materials and non-uniform 

grids we use the finite volume spatial discretization that in one dimensional case is stated as  
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where fractional indices correspond to the center of the edge between two neighboring points 

in the x direction. Since in our approach the conductivity k is defined in the centers of the 3D 

cells, it has to be averaged in that mid-edge point. The simplest approach is the arithmetical 

average 
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 (4) 

and is computed analogously.  1/ 2ik +

The classical explicit scheme used to integrate (1)   

 
1i i

iAϕ ϕ ϕ
τ

+ −
= + f  (5) 

is second order accurate in spatial coordinates, first order in time and is stable under the restric-

tion 
2( )

6
hτ
κ

Δ
≤ (Courant et al., 1967). The maximum admissible integration step crτ becomes 

very small for refined grids, and in the case of non-uniform grid spacing it is determined by the 

size of the smallest cell. Moreover, in heterogeneous materials crτ  is restricted by the strongest 

heterogeneity, even if it is insignificant in size. The computational complexity of explicit 

methods per integration step is small, but due to the timestep restriction they may require a 

large number of iterations to integrate the evolution of the system. 
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In order to alleviate the timestep restriction an implicit approach can be used. The second order 

accurate in time Crank-Nicholson scheme 

 
1

11 ( )
2

i i
i iAϕ ϕ ϕ ϕ

τ

+
+−

= + f+  (6) 

is unconditionally stable (no restriction onτ ). It requires solving a system of linear equations  

 1( ) ( )
2 2

i iA A fτ τϕ ϕ τ+Ι − = Ι + +  (7) 

which is symmetric and sparse, i.e. most of the matrix entries are zeros. For 1D problems the 

resulting system matrix is tridiagonal and can be easily solved using the Thomas Algorithm. In 

the 2D case it is practical to use variants of the well known Guassian elimination, e.g. the Cho-

lesky factorization for symmetric positive definite systems, LU factorization with pivoting for 

non-symmetric systems, or a generalized Thomas Algorithm for block tridiagonal matrices. 

Sparse direct solvers are easy to use, robust, and very efficient on modern computers. Unfortu-

nately, they can not be applied to large 3D problems because of extreme memory requirements 

and computational complexity. The number of new non-zero entries introduced during the fac-

torization is much higher than in the 2D case. Various iterative methods, like Conjugate Gradi-

ents usually used with some preconditioner, can be used instead. However, for strongly hetero-

geneous problems the convergence rate deteriorates. Moreover, preconditioners are problem 

dependent and finding a good, parallelizable one is often difficult. 

The fractional step methods described in this paper combine the advantages of the two men-

tioned strategies for time integration of system (1): low computational cost of the explicit 

scheme, and the stability of the implicit approach. The general idea is to replace a complex op-

erator  by simpler ones that are used in sequence (fractional steps) during integration of the 

parabolic system like 

A

(1). In the context of the heat diffusion operator the split is naturally dic-

tated by the spatial components , ,x yA A Az . During every fractional step many one dimen-

sional, and thus tridiagonal systems of equations have to be solved.  

Alternating Direction Implicit schemes 

The Alternating Direction Implicit (ADI) scheme for two dimensional parabolic problems was 

proposed by Peaceman and Rachford (1955) and Douglas (1955) 
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In order to define the stability, we introduce the difference step operator ( , )C hτ Δ  that is de-

fined as the action of the scheme in the whole step  

 1 ( , )i C h iϕ τ+ = Δ ϕ  (9) 

The stability of the scheme requires that ( , ) 1C hτ Δ ≤ . The algorithm (8) is unconditionally 

stable, i.e. it is stable for any 0τ ≥ . In addition to the truncation error of the Crank-Nicholson 

implicit scheme (6), the error term related to the splitting is 2( )O τ . Thus, ADI approximates 

the original problem with the same order of accuracy. However, the additional error term may 

be large and the improvements to the original scheme were suggested, e.g. (Douglas and Kim, 

2001).  

The 2D ADI scheme is also applicable as an iterative solver for the steady-state variant of the 

problem (1). In whole steps, using two-layer difference scheme notation (Janenko, 1971) it is 

given by 
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+
Ω = −

+
Ω = +

 (10) 

It is clearly seen that the relation 1A 2= Ω +Ω  is satisfied for any τ , which assures that the 

scheme converges to the steady-state solution independently of the value of the pseudo-

timestep. This condition is referred to as the complete consistency. The choice of an optimal 

parameter sequence 1 nτ τ…  as well as other techniques accelerating the convergence are sum-

marized e.g. in (Marchuk, 1990). 

The operators ,x yA A obtained for the homogeneous media on uniform grids commute, i.e. 

 x y yA A A A= x  (11) 

In practice the commutativity condition (11) proves to be important in deriving properties of 

the fractional step schemes like stability and consistency. The convergence of the two-
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dimensional ADI scheme without the requirement of the commutativity of the operators 

,x yA A was discussed by Birkhoff and Varga (1959). Further considerations related to the rate 

of convergence and parameter choice can be found in (Pearcy, 1962; Widlund, 1966). 

The simple extension of the ADI scheme to three dimensional cases results in loss of uncondi-

tional stability (Janenko, 1971). The stable version was proposed by Douglas and Rachford 

(1956) 
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The scheme is proven to be unconditionally stable for homogeneous media and is completely 

consistent. The second order accurate in time version was suggested later by Douglas (1962).  

The pair-wise commutativity is required for the stability of the classical ADI schemes in 3D, 

thus they are not stable for heterogeneous materials. This limits their use as iterative solvers for 

steady state problems. For non-commuting positive-definite operators multistage alternating 

direction method was suggested (Douglas et al., 1966). The absolutely stable scheme (multi-

component method of alternating directions) preserving the complete approximation property 

was presented in (Abrashin et al., 2001; Abrashin and Mukha, 1992). 

Locally One Dimensional schemes 

The splitting algorithms belong to the other class of fractional step techniques.   
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)  (13) 

In the above, each of the equations involves only one-dimensional difference operators and the 

scheme is therefore categorized as locally one dimensional (LOD). A similar, fully implicit 

variant of (13) is possible. Both algorithms are unconditionally stable (Janenko, 1971).  

The two-dimensional variant of the scheme (13) is second order accurate in time for homoge-

neous media, but this property is lost for non-commutative operators ,x yΑ Α . It can be re-
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stored by introducing two-cycle splitting (xy sweeps followed by reversed order yx sweeps) 

(Marchuk, 1990).  

The two dimensional version of the LOD scheme (13) for homogeneous media is identical in 

whole steps with ADI. However, this equivalence holds only unless boundary conditions are 

considered. Imposing boundary conditions onto one-dimensional sweeps in (13), leads to the 

finite approximation error at points located next to the boundaries. The resulting scheme in 

whole step yields 

 11 1 1 1( )( ) ( )( )
2 2 2 2

n n
x y x y nI I u I I uτ τ τ τ+− Α − Α − + Α + Α = R  (14) 

where everywhere inside the computational domain, expect in the points near the 

boundaries. The method of undetermined functions is an elegant and efficient way of imposing 

boundary conditions. An auxiliary right-hand side vector is introduced that is determined by 

the requirement of the vanishing 

0nR =

nR . Similar considerations apply to the heat generation term 

that needs to be modified before it enters the LOD scheme.  

The two dimensional LOD scheme is strongly consistent (Janenko, 1971). This property is lost 

for three-dimensional case and the scheme (13) cannot be directly used in order to obtain 

steady-state solution. 

Similar approaches have been proposed for hyperbolic type of equations in (Marchuk, 1990). 

The problem of acoustic wave propagation and locally one dimensional scheme in this case are 

given by 
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Tridiagonal systems of  equations 

Fractional step methods consist of a sequence of implicit one dimensional sweeps through the 

domain. Forming a system of equations for a discretized one dimensional PDE results in a 

tridiagonal matrix A: 

  (16) 
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where n denotes the number of points in the discretization. The simplest algorithm to solve 

such a system is the Thomas Algorithm (TA), which is in fact the simplest case of the Gaussian 

elimination, or LU decomposition (Conte and Boor, 1980).  

Thomas Algorithm 

The Thomas algorithm consists of two phases: forward elimination and backward substitution, 

described by first order linear and non-linear recurrences presented in equations (17) and (18), 

e.g. 1(i ip f p −= . Basic implementation of TA requires 8n floating point operations, two vec-

tors of length n (x, the result and rhs, the right-hand side), two auxiliary vectors of length n (p 

and q) used during the factorization process, and the tridiagonal matrix A of size 3n. TA can 

not be parallelized due to the existence of first order recurrences. The forward elimination 

phase is described by the following  
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and the backward substitution phase can be written as 

 1i i i i nx = q x p x = q+− ⋅  (18) 

The above formulas directly reflect the steps taken during the Gaussian elimination applied to 

this kind of matrices.  

Parallel Tridiagonal Solvers 

The drawback of TA is that it is strictly sequential. Many parallel algorithms for solution of 

tridiagonal systems of equations have been developed. Cyclic reduction was proposed by 
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Hockney (1965) and has since been widely used on distributed machines (Allmann et al., 

2001). The idea is to recursively reduce the number of equations by 2 until a system of only 2 

equations is obtained. Even in sequential case it is often preferred to the TA because of its 

natural ability to handle periodic boundary conditions. Divide and conquer algorithm is a simi-

lar approach (Gander and Golub, 1997). Recursive doubling was proposed by Stone (1973) 

and its suitability for hypercube architectures was investigated in (Egecioglu et al., 1989). This 

algorithm is based on recursive doubling solutions of linear recurrence relations, which in the 

case of tridiagonal systems allow to compute LU decomposition of the matrix in O(log2(p)) 

parallel steps, where p is the number of processors. Solving tridiagonal systems on distributed 

architectures in the context of ADI-type of methods has been studied in (Wakatani, 2004), 

where a pre-propagation scheme for solving first order recurrences has been proposed. As in 

the case of all the previously mentioned approaches, parallelization of the solver has been done 

at the expense of at least doubling the computational complexity.  

Other known methods include iterative relaxation schemes, like Gauss-Seidel, Jacobi, Red-

black line relaxation and segment relaxation.  

In the cases of where many tridiagonal systems of equations have to be solved (like ADI-type 

of methods), there have been attempts to parallelize TA for distributed machines through pipe-

lining, e.g. (Povitsky, 1999). For a comparison of the performance of many of the above algo-

rithms, see (Hofhaus and VandeVelde, 1996).  

Since our interest are ADI-type of methods for 3D problems on shared memory architectures, 

for our parallel implementation we chose to use the TA because of its optimal computational 

complexity and modest memory requirements. As shown later in the performance analysis sec-

tion, we were able to obtain a scalable parallel implementation without the need to use the 

pipelining approach.  

Implementation 

Large class of numerical methods discretizing PDEs on structured meshes, such as Finite Dif-

ferences implemented as stencil operations, only require a small number of floating point op-

erations per a memory access. During the recent years a growing discrepancy between the 

memory and the CPU speeds is observed (McCalpin, 1991-2007), which results in the memory 

bandwidth being a bottleneck, and not the CPU speed.  The theoretical peak performances of 

modern CPUs are only achievable for algorithms that are computationally heavy compared to 

the memory bandwidth requirements (e.g. BLAS Level3 operations (Whaley et al., 2001)).  
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In the following section we demonstrate how to efficiently implement a wide class of 

ADI/LOD methods for three dimensional problems under these constraints. For all our per-

formance tests we use an 8-way Opteron system with 2.4GHz DualCore CPUs and DDR333 

memory. The code is written in C and compiled using the Intel C compiler. 

Performance measurements 

A common measure of computational efficiency is flops (Floating Point Operations per Sec-

ond). Different approaches can be used to estimate this value. The number of floating point 

operations required by a best known algorithm can be computed, but since the operations are 

often not the bottleneck, this can be meaningless. Another way is to add all the operations per-

formed explicitly in the code. Unfortunately, because of heavy optimizations performed by the 

compiler this number may differ from what the CPU actually executes. Hardware counters ca-

pable of tracking performance statistics, like cache misses and the actual number of flops per-

formed by a CPU recently became popular (Browne et al., 2000). They are very useful when 

identifying performance problems in the code, but this analysis can be complex. In our paper 

we chose to present values estimated directly from the fastest obtained sequential implementa-

tion. In particular, we include all the compulsory operations that can not be removed by the 

compiler (e.g. 8n in the Thomas Algorithm), and we include operations that could potentially 

be pre-computed before the execution and stored in auxiliary arrays, but it is not done since it 

would either significantly increase the total memory requirements (threefold in the case of the 

conductivity parameter k), or even increase the execution time due to higher memory band-

width requirements. As we show later, averaging the conductivity on the fly does not increase 

execution time much. Since our numbers are probably slightly higher than the real ones due to 

compiler optimizations, we also provide the CPU time spent on the computations and compare 

it to simplest unimprovable cases, such as making a copy of a memory area. 
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Operations on multidimensional data 

 
Figure 1 

Three dimensional array placement in computer’s memory. 

Three dimensional arrays are stored linearly in computers memory, as shown in Figure 1. The 

data is transferred from the main memory to the CPU cache in blocks called cache lines (usu-

ally 64 bytes), thus the cost of accessing a whole cache line is the same as that of accessing a 

single value. Using all the values from a given cache line at least once before it is removed 

from the cache back to the main memory significantly decreases the cost per value. The fol-

lowing pseudo-code fragments show two possible implementations of the difference operator 

in the Z dimension. The only difference is the order of the loops: 

for i=0:nx 
 for j=0:ny 
  for k=0:nz-1 
    diffz[k*nx*ny + j*nx + i] = T[(k+1)*nx*ny + j*nx + i] - T[(k+0)*nx*ny + j*nx + i]; 
  done 
 done 
done 
 
for k=0:nz-1 
 for j=0:ny 
  for i=0:nx 
    diffz[k*nx*ny + j*nx + i] = T[(k+1)*nx*ny + j*nx + i] - T[(k+0)*nx*ny + j*nx + i]; 
  done 
 done 
done 

 
Because of the loop order, first implementation will be referred to as ijk, the second one – kji. 

Traversal of the 3D array for both of these implementations is presented in Figure 2 and Figure 

3 respectively. The innermost loop in the kji version is consistent with the linear memory lay-

out, thus it is made sure that all the values from every loaded cache line are used at least once. 
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The importance of this practice is best reflected in the following performance comparison. For 

a 3D array of size nx=ny=nz=1000 and single precision floating point numbers, the kji imple-

mentation of the difference operator in the Z direction takes 6.9 seconds, while the ijk takes 95 

seconds. For a difference operator in the X direction, the execution time is 4.9 seconds, the 

same as just copying an array of this size from one place to another in the memory.  

 
Figure 2 

Direction of memory access during the Z difference operator, ijk loop order. 

 
Figure 3 

Direction of memory access during the Z difference operator, kij  loop order. 
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REMARK. In our performance tests we use single precision floating point numbers because 

they require twice less memory than double precision, and the computations are faster. In 

the case of our implementation and the inspected architecture this results in more than two-

fold speedup. Using single precision for computations wherever possible grows more and 

more popular, especially with the introduction of high performance GPUs, FPGAs, or the 

Cell processor, on which the performance difference reaches one order of magnitude 

(Langou et al., 2006). Although single precision floats may not provide enough accuracy for 

certain problems, it is recently widely studied how to combine them with double precision 

computations only for accuracy critical parts of the code, and obtain a full double precision 

result (Kurzak and Dongarra, 2007; Strzodka and Göddeke, 2006). With some care this ap-

proach can also be applied to ADI-type of methods. It is beyond the scope of this paper. For 

now, our implementation can run in full double precision mode when required. All our per-

formance considerations also hold for this case. 

On modern architectures the cost of accessing RAM is further decreased by assuring that the 

data is constantly read while the CPU is busy performing computations. This technique is 

known as prefetching, and is automatically activated by the CPU or a compiler, provided that 

subsequent cache lines are processed in order. We refer to this approach as the linear memory 

access. In the kji implementation we traverse the array along the direction of the memory (i 

index), therefore prefetching will be used during execution.  

Most modern CPUs are capable of limited vectorization of the floating point operations as long 

as the vector elements are located next to each other in the memory. On x86 architecture it is 

realized through the SSE2 instruction set, which makes it possible to perform 4 single preci-

sion or 2 double precision operations at the same time. This feature usually has to be activated 

using special compiler flags. With icc we use the ‘-xW –O3’ flags. In a common vector nota-

tion, the second loop would be executed by the CPU as: 

for k=0:nz-1 
 for j=0:ny 
  for i=0:4:nx 
    diffz(i:i+3,j,k) = V(i:i+3,j,k+1) – V(i:i+3,j,k); 
  done 
 done 
done 
 

To make vectorization possible, the vectors operated on need to be stored linearly in the mem-

ory. Although the performance improvement is negligible for a simple difference operator, it 

becomes much more pronounced in a more computationally heavy code presented later.  
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Cache reuse 

As noted in the previous section, one should always use all the data from a cache line at least 

once. However, this simple approach does not assure that a given cache line will not be loaded 

from RAM again during later computations. A common efficient programming paradigm is 

based on maximizing the cache reuse, i.e. using every cache line in all or most of the required 

computations. In the case of stencil operations this leads to so called blocking or tiling (Rivera 

and Tseng, 2000). In short, a 3D grid is divided into smaller cubes that fit completely into the 

CPUs cache. All required operations on a given block are performed before moving to the next 

one. 

During the past years lots of work has been done on designing cache-friendly algorithms. As 

described in (Kamil et al., 2005), many of them have become ineffective on modern architec-

tures due to the increased importance of data prefetching and linear memory access on the 

overall performance. Our results agree with these findings. In the simple example of the differ-

ence operator, with optimal cache reuse for the Z direction one could only hope to decrease the 

execution time from 6.9 seconds to 4.9 seconds. For problems with relatively more computa-

tions per data access the possible gains are even smaller. While Kamil and others concentrate 

on local stencil operations, we show how to efficiently handle Fractional Steps/ADI type of 

algorithms, where 1D implicit sweeps have to be completed in sequential order and need to 

access the data along a whole dimension, which is in general not consistent with the linear 

memory layout. 

LOD/ADI  

A general engine of any ADI/LOD type of algorithms looks as follows: 

for X, Y, Z dimensions in turns 
   for all equations in given dimension 

- create tridiagonal matrix A 
- create right-hand side, possibly with a source term and (depending on the 

scheme used) explicit differences in other dimensions 
- call Thomas Algorithm to solve the equations 
- store the result in the three dimensional array 

 

A simple implementation of every 1D sweep consists of three nested loops over i, j and k indi-

ces for X, Y and Z dimensions respectively, where the innermost loop is iterated along the di-

rection of the sweep. Here we study the simplest LOD scheme presented in equation (13). In 

our implementation, during the tridiagonal matrix assembly material parameters K assigned to 

cells are averaged on the fly. rhoCp is assigned directly to the nodes. The right-hand side con-

sists of the old temperature values (a fully implicit scheme) and the source/sink term G applied 

only during the X sweep. Effectively during the X sweep we operate on four 3D arrays of size 
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nx*ny*nz (where temperatures are both read and written), and during Y/Z sweeps three arrays 

are used. We perform ca. 50 operations per point, where most of the operations are related to 

averaging of the K properties. While this step could be performed before running the solver, 

this would increase the total memory requirements for K array threefold, and increase the per-

sweep memory requirements three times for the schemes requiring derivatives in the other di-

mensions. Moreover, we show that computing these values during the sweeps does not affect 

the execution times much.  

For the X sweep the best order of the loops is kji. For the Y sweep we can choose between ikj 

and kij. Similarly, for the Z sweep we can use either ijk, or jik implementation. Only in the case 

of the X sweep the linear memory access is obtained. Performance results of all these imple-

mentations for a model of size nx=ny=nz=1000 are presented in Table 1. 

Table 1 Performance of the naive implementation of the implicit LOD method. 

 X sweep, kji Y sweep, ikj Y sweep, kij Z sweep, ijk Z sweep, jik 
Time (s) 29 288 85 337 212 
MFlops 1750 169 572 144 229 

 

Compared to the difference operator, we use more than twice the memory amount (not taking 

into account the matrix A, the right-hand side and the TA workspace), and perform much more 

computations. Assuming that the computations take no time, best achievable performance es-

timated based on the time required to read and write the data in memory is around 10 seconds 

for X sweep, and around 8 seconds for Y/Z sweeps.  

Improving the Y and Z sweeps requires obtaining linear memory access, i.e. implementing the 

loop order as kji and jki respectively. The idea is presented in Figure 4. Instead of building and 

solving a single tridiagonal system, we build and solve a whole plane of systems of equations. 

The pseudocode for the Z sweep is presented below: 

for j=1:ny-1 
  for k=1:nz-1 
    for i=1:nx-1 
      compute row k in tridiagonal matrix A =f(Ti,k i,j

      compute entry k in right-hand side vector rhs
,k,K) 
i,k=f(Ti,j,k,K) 

    end 
  end 
  call Thomas Algorithm (A, x, rhs) for nx systems of equations simultaneously 
  store results xi=1:nx-1,k=1:nz-1 in the three-dimensional array Ti=1:nx-1,j,k=1:nz-1 
end 
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Figure 4 

In order to obtain linear memory access during the Z sweep a whole plane of systems of equations 

has to be simultaneously created and solved. 

Described loop transformation assures linear memory access during the Y and Z sweeps, and 

allows the use of SSE vectorization for the matrix computation. Moreover, as a natural conse-

quence of solving a plane of systems of equations, SSE can also be used to implement a vec-

torized Thomas Algorithm. On the other hand, in the unchanged X sweep vectorization is only 

used during the matrix computation. Using a vectorized TA also in this case would require 

transposing the A matrices and rhs vectors after they have been computed, which is memory-

wise inefficient and brings no speedup. The importance of using vectorization wherever possi-

ble can be verified by compiling and running the code with and without SSE2 support (see 

Table 2). 

Table 2 The impact of SSE vectorization on execution time. 

 X sweep 
not vectorized 

X sweep 
SSE vectorized 

Y sweep, kji 
not vectorized

Y sweep, kji 
SSE vectorized 

Z sweep, jki 
not vectorized 

Z sweep, jki 
SSE vectorized

Time (s) 48 29 45 32 47 33 
MFlops 1039 1750 1073 1491 1028 1452 

 

146 



Paper 5: Fractional Steps Methods for Transient Problems on Commodity Computer Architectures 

Presented approach requires additional storage for nx tridiagonal matrices, right-hand side vec-

tors and the factor. Since these arrays are of considerable size and do not fit into CPUs cache 

for large problems, they decrease the overall performance of the algorithm. It can be noticed 

that every entry of the A matrix is only used once during the forward elimination stage of TA. 

Including this stage into the matrix building loop and factorizing the matrix A on the fly elimi-

nates the need to store and later read its entries. Doing so also allows us to use the rhs vector in 

place of the q vector from equation (17). Finally, in the fully implicit case the temperature val-

ues themselves can be used as the rhs vector. These improvements can also be applied in the 

Crank-Nicolson schemes, and the schemes that require explicit derivatives in the other dimen-

sions by using an auxiliary vector of size nx instead of nx*nz.  

Table 3 Performance of SSE vectorized code with integrated TA solver. 

 memcpy explicit 
scheme 

X sweep, kji vectorized  
Y sweep, kji 

vectorized  
Y sweep, kji 
integrated TA 

vectorized Z 
sweep, jki 

vectorized 
Z sweep, jki 
integrated TA 

Time (s) ~8-10 37 29 32 20 33 22 
MFlops 0  1750 1491 2428 1452 2229 

 

The performance results for the methods described above are summarized in Table 3. It is 

worth noticing that best Y and Z sweeps implementations are faster than the X sweep. This is 

due to the SSE vectorization of the TA, which is a natural consequence of presented approach, 

but can not be efficiently implemented for the X sweep. For comparison, the table also in-

cludes the time needed to perform a single step of our implementation of the explicit finite dif-

ference scheme with variable material coefficients, SSE vectorization and proper memory ac-

cess.  
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Figure 5 

Flops performance of the optimized sequential implementation of 1D sweeps in all special direc-

tions depending on the problem size. 

Figure 5 presents the flops performance of the optimized code depending on the system size. 

High efficiency is sustained for large problems and for sweeps in all spatial directions. Note 

that the flops performance is up to 30% higher for small systems, which exhibit some cache 

reuse of the K properties array between the solves done on subsequent planes, and the factor 

and rhs during forward and backward stages of the TA. This also indicates that for large sys-

tems the code is relatively slower due to the heavier memory requirements and not the CPU 

speed.  

Parallel implementation 

In the simplest approach ADI/LOD methods are parallelized by dividing the outermost loop 

between the threads. This assures locality of most of the data used during the sweeps in 2 di-

mensions, the exception being the material properties K, for which neighboring CPUs share 

the border. On the other hand, the sweep in the third dimension accesses the data across all the 

CPUs, which involves communication and a performance hit, which on a shared memory sys-

tem is considerably lower than on distributed memory architectures. Starting from a close to 

optimal sequential performance we show that this simple approach yields very good results for 

the studied computer architecture. 
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On shared memory machines the whole memory of the system can be allocated and addressed 

directly as a single array. This way there is no need to explicitly program the communication, 

which is performed automatically by the CPU while accessing the required data in the global 

memory space. On NUMA (Non-Uniform Memory Access) capable architectures every CPU 

has its private memory bank, which assures parallelization of not only the computations, but 

also the memory bandwidth. On these systems in order to obtain scalable code it is important 

to assure that the data accessed by a thread belongs to the private memory bank of the CPU the 

thread is executed on. For scientific applications it is commonly achieved by binding threads to 

specific CPUs and using a technique called first touch for data allocation. Basically, every 

thread initializes (e.g. sets to 0) only this part of an array, which it will later use during the 

computations. The operating system then assigns all parts of the array to the proper memory 

banks.  

 
Figure 6 

Flops performance of parallel execution of the optimized implementation for a constant problem 

size of nx=ny=nz=1000. 

Figure 6 presents scaling of the optimized code on model of size nx=ny=nz=1000. Speedup of 

the X and Y sweeps on up to 8 CPUs is linear and close to perfect. The Z sweep suffers a small 

but acceptable performance penalty due to the communication between CPUs. Using more 

CPUs requires switching to the second core, in which case limited speedup can only be ob-

served for the X sweep. On a multi-core NUMA system all cores of a CPU share the same 

149 



Implementation 

memory bus, which results in the threads competing for the memory bandwidth. Since in the 

case of Y and Z sweeps most of it was already used by a single thread (for smaller problems 

computations are done faster, which indicates that the implementation is memory bounded for 

larger problems), no speedup is to be expected. On the other hand, the TA solver in the sequen-

tial X sweep was not vectorized, and the computations took relatively longer time, leaving 

some memory bandwidth to be utilized by the second core. For studied problem size, the X, Y 

and Z sweeps on 8 CPUs take 3.8, 3.0 and 4.2 seconds respectively. 

 
Figure 7 

Parallel efficiency of the method on 8 Opteron CPUs depending on problem size 

Figure 7 shows parallel efficiency of the code for 8 CPUs. An interesting observation can be 

made for small problems (nx=ny=nz=~200), for which not only the sequential performance of 

Y and Z sweeps is higher (see Figure 5), but also the parallel efficiency. This means that the 

cache reuse also limits the data exchange between the CPUs. It indicates possible improve-

ments to the parallel code involving duplication of the material parameters matrix K at the 

CPU boundaries. This however would require allocation of a separate K matrix for the Z di-

mension. For small enough problems some speedup is also observed for all the sweeps when 

using the second core. In this case the code spends relatively more time on computations, leav-

ing some memory bandwidth unused. It brings us to a conclusion that although cache reuse 

plays much smaller role for sequential codes, it may yet prove to be important for utilizing the 
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parallel computational power of multi-core systems. A more in-depth analysis is beyond the 

scope of this paper. 

Numerical examples 

The LOD scheme for parabolic problems shown in equation (13) has been used to compute 

pressure evolution in an oil reservoir. We have used real-world data with resolution around 

800x800x30. Figure 8 presents the three dimensional model and the porosity data. In our mod-

els we have assumed zero permeability in the matrix, i.e. around the reservoir. Figure 9 shows 

a horizontal cut through the model. Figures 10 and 11 present the results of our computation of 

the pressure inside the reservoir. Two sources have been used, one with positive and one with 

negative pressure values. The LOD scheme for hyperbolic problems shown in equation (15) 

has been used to model P-wave hitting the Gullfaks reservoir. The wave has been initiated 

through a Gaussian initial pressure distribution. Non-reflecting boundary conditions are used. 

A frame from the simulation is presented in Figure 12. 

Figure 8 

The Gullfaks oil reservoir. Three dimensional model, spatial 800x1000x70 resolution. Different 

shades show porosity data (darker shade = higher porosity value). 

151 



Numerical examples 

 
Figure 9 

A horizontal cut through the Gullfaks reservoir model at half depth. Different shades show porosity 

data (darker shade = higher porosity value). 

 
Figure 10 

Pressure evolution inside the reservoir, initial stages. Figure present iso-contours of chosen pres-

sure values. Darker contours denote negative pressure values, brighter – positive pressure values.  
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Figure 11 

Pressure evolution inside the reservoir, final stage. Figure present iso-contours of chosen pressure 

values. Darker contours denote negative pressure values, brighter – positive pressure values.  

 
Figure 12 

P-wave hitting a reservoir. 800x1000x70 resolution, non-reflecting boundaries, initial conditions 

implemented as Gaussian pressure distribution. 
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Conclusions 

We have presented an efficient implementation of ADI/LOD type of methods for three dimen-

sional problems on modern commodity architectures. Special attention has been paid to opti-

mization of the memory bandwidth usage. High efficiency is sustained for problems of 1 bil-

lion and more degrees of freedom. Optimized sequential implementation of the Y and Z 

sweeps is comparable in execution time to just copying the data in the memory. The time 

needed to perform one LOD iteration is approximately twice the time of an explicit scheme. 

Efficiency of the parallel implementation on a NUMAcc shared memory system with 8 CPUs 

is close to perfect. Scalability when using the second core is limited because of memory band-

width starvation. Computing one timestep of the LOD scheme on a system of 1000^3 un-

knowns on 8 CPUs takes 11 seconds. Applications of the methods to parabolic and hyperbolic 

problems have been presented using high-resolution, real-world oil reservoir data. 
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