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Abstract

We present the most comprehensive collection of stratified-in-optical-depth thermodynamic models of the lower
solar atmosphere. This database, named IRIS2+, consists of 40,320 synthetic representative profiles (RPs) and their
corresponding representative model atmospheres (RMAs). The latter result from inverting the observed RPs, which
are the result of clustering multiline spectral profiles observed by the Interface Region Imaging Spectrograph in
126 active regions (ARs). Each AR was clustered in 320 RPs considering five solar features: umbra, pore or pore-
like, penumbra, plage, and quiet Sun. The multiline spectral profiles contain 12 lines with encoded physical
information from the top of the chromosphere to the midphotosphere. These 12 spectral lines, six chromospheric
and six photospheric, were simultaneously inverted with the Stockholm Inversion Code. Therefore, the stratified-
in-optical-depth low solar atmosphere models obtained in this study are better constrained than those obtained from
the nonsimultaneous inversion of individual lines. Each tuple in the database contains an inverted RP, its
corresponding RMA, the solar feature label where the observed RP was clustered, its heliocentric angle, and its
date and time of observation. The database may be used as an inversion code for any of the lines present in the RPs,
and the RMAs may be used for synthesizing spectral lines in the chromosphere and photosphere or as mean
constraints for numerical models of the solar atmosphere.

Unified Astronomy Thesaurus concepts: The Sun (1693); Solar photosphere (1518); Solar chromosphere (1479);
Radiative transfer (1335)

1. Introduction

The study of the Sun has played a prominent role in the
knowledge we have about stars and in the development of the
techniques and ideas needed to gain that knowledge. Thanks to
its proximity, we are able to resolve many structures on the
photosphere, chromosphere, transition region, and corona.
Current instrumentation and post-processing data analysis
techniques allow us to recover in great detail the physical
conditions of solar features in scales as small as 100 km, with a
temporal cadence of a few seconds, and with a high accuracy in
the inferred magnetic field and the thermodynamic parameters.

There are two main ways to gain knowledge about the solar
atmosphere. Forward modeling synthesizes the spectra from
thermodynamic or magnetothermodynamic models by solving
the radiative transfer (RT) problem. Then, those spectra are
compared with the observed one in the solar feature that the
models are simulating. It should be noted that the spectra
obtained are unique and rely only on the assumptions made to
create the numerical model and those related to the RT. The
second method, called inversion of spectro(polarimetric) data
recovers a model atmosphere from iteratively fitting an
observed profile to a synthetic profile, which is obtained by
solving the RT from an initial guess model atmosphere and
slight subsequent modifications on it. These small changes in
the parameters of the model atmosphere try to minimize the

difference between the observed profile and the synthetic
profile, which is evaluated through the loss function (see
Equation (1)). This process continues until the loss function
falls below a given threshold or a maximum number of
iterations is reached. This method does not provide a unique
solution, because it sensitively depends on the initial guess
model and could suffer from common issues with least-squares
fitting, such as the solution converging to a local minimum.
Because of that, we (should) say, in the case of a good fit, that
the recovered model atmosphere is compatible with the
observed profile, and therefore that these physical conditions
may occur in the solar atmosphere. A recent comparison
between inferred values using the inversion method in a
numerical model of the solar atmosphere and the actual values
in that model has yielded average differences in the photo-
sphere as small as δ|B|< 50 G, δγ< 20°, δT< 30 K, and
δvlos< 0.3 km s−1 for the magnetic field strength and
inclination, temperature, and line-of-sight (LOS) velocity,
respectively (Quintero Noda et al. 2023). A detailed review
of inversion methods can be found in del Toro Iniesta & Ruiz
Cobo (2016).
These two approaches offer valuable insight into the physical

conditions and processes that govern the solar atmosphere. It is
essential to have a realistic understanding of the physical
conditions of the solar atmosphere, that is, of the assumptions
that are already known to be necessary to reproduce the
observables as accurately as possible. In forward modeling,
these assumptions are derived from previous observations and
theoretical considerations of the problem, such as hydrostatic
equilibrium, ambipolar diffusion (Khomenko et al. 2014;
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Martínez-Sykora et al. 2020), or multifluid interactions
(Wargnier et al. 2023). For inversions, the success of the
results depends, among other factors, on the initial guess model
used to start the inversion and—as with forward modeling—on
the theoretical considerations made while solving the RT
problem, such as the atomic model used to synthesize the
spectral lines, statistical equilibrium, nonlocal thermodynamic
equilibrium, or partial frequency redistribution. It should be
noted that both forward modeling and inversion methods
require solving the RT problem, and both may be limited by
computational resources when certain assumptions are made,
such as considering 3D forward modeling from numerical
simulations or partial frequency redistribution for inversions.
Thus, for instance, including the effect of the ambipolar
diffusion and nonequilibrium ionization (Martínez-Sykora et al.
2023) or considering 3D RT (Sukhorukov & Leenaarts 2017;
Bjørgen et al. 2019) have a direct impact on the shape of the
Mg II k line. Until these realistic considerations are implemen-
ted to efficiently solve the RT in forward modeling and
inversions, we shall work with the available state-of-the-art
codes, accepting and acknowledging their limitations.

In this paper, we provide a collection of thermodynamic,
nonmagnetic model atmospheres for active regions (ARs). We
consider an active region as the nonexclusive combination of
umbra, pore or pore-like structure, penumbra, plage, and the
neighboring quiet Sun. There are many solar atmosphere
models available:6 some of them, mostly in the photosphere,
are devoted to a particular solar feature, e.g., the HSRA quiet
Sun model (Gingerich et al. 1971), the hot sunspot model
(Collados et al. 1994), and the penumbra model (del Toro
Iniesta et al. 1994); others consider a general behavior of some
features in active regions (quiet Sun cell center, quiet Sun
network, active network, penumbra, umbra, faculae, and plage)
both in the photosphere and the chromosphere (Vernazza et al.
1981; Fontenla et al. 1999, 2006). Some of these models are
considered as the standard model for their corresponding
features. In the case of inversions, these models are mostly used
as initial guess models. The IRIS2+ database provides a set of
40,320 representative model atmosphere (RMA) and their
corresponding RPs. This database provides the most diverse set
of profiles and models with a simultaneously constrained
stratification in optical from the top of the chromosphere to the
midphotosphere for the most relevant features of the ARs.
Thus, each RP–RMA pair is labeled with the solar feature
where it was observed (e.g., “plage”; see Section 2.2), its
location on the solar disk, and the recording date.

The method followed to build the IRIS2+ database is
conceptually the same as for IRIS2 (Sainz Dalda et al. 2019).
However, the RPs are now more evenly distributed among
solar features and consider six lines in the chromosphere and
six in the photosphere, while the models are more accurate in
terms of optical depth sampling. To create IRIS2+, we have
enforced a more uniform distribution of clusters per solar
feature detected in a data set, while in IRIS2 the number of
clusters was given for the entire data set. As a result, in IRIS2,
the number of RPs associated with the quiet Sun after
clustering the data set was much larger than the number
associated with the umbra in some cases. Moreover, the
selection of spectral lines sensitive to the thermodynamics at

different layers of the chromosphere and photosphere allows us
to obtain more accurate RMAs. We note that here “accurate”
does not refer to the uncertainty associated with the RMA
obtained after the fit between an observed profile and the
closest RP in the database. By “accurate in terms of optical
depth sampling,” we refer to the quality of thermodynamic
sampling along the optical depth, i.e., the thermodynamics
values are simultaneously inferred at a larger, better sampled
optical depth range. Therefore, the inferred models are better
constrained in optical depth in IRIS2+ than in IRIS2, although
the latter considers a larger variety of solar features.
In Section 2, we detail the main characteristics of the IRIS

data that we have used in our study, the spectral lines that we
have selected for the inversions, the formation height of these
lines, and the response of them to changes in the solar
atmosphere. We explain how we have selected the different
areas for the features in the AR data, i.e., umbra, pore-like,
penumbra, plage, and surrounding quiet Sun. We justify the
need to cluster these data and how we treated the spectral lines
to be simultaneously inverted. In Section 3, we show some of
the inferred/inverted model atmospheres and their associated
synthetic spectra. As an example of the utilization of the
IRIS2+ database, we show the available RMAs in an interval of
a heleiocentric angle for each solar feature in the ARs
considered in this study. In Section 4, we discuss the reliability
and usability of the IRIS2+ database.

2. Data

One of the most critical parts of this project is to select a set
of data that properly represent the variety of active regions in
the Sun. As we have already mentioned, by “active region” we
mean the nonexclusive combination of umbra, pore, penumbra,
plage, and quiet Sun (which may or may not be affected by the
neighboring structures). This relaxed definition does not
diminish the goal of this study: to provide a comprehensive
collection of RPs and RMAs that characterizes the thermo-
dynamics of the main elements of the ARs. To this aim, we
have selected 126 IRIS data sets located at different positions
on the solar disk, observed with different exposure times, and
containing different active regions observed in the time range
from 2013 July (the beginning of the IRIS mission) to 2021.
Figure 1 shows the distribution of the selected ARs with
respect to the observing date (left panel), the location on the
solar disk given by ( )m q= cos , with θ the heliocentric angle
(center panel), and the exposure time (right panel). The size of
the field of view was ´128 130 arcsec2 for 104 data sets,

´128 175 arcsec2 for 14 data sets, ´140 175 arcsec2 for
three data sets, ´112 124 arcsec2 for three data sets,

´64 175 arcsec2 for one data set, and ´64 124 arcsec2 for
one data set. Thus, this selection of data sets is a good
representation of the data observed by IRIS on the solar disk,
with different signal-to-noise ratios, stages of the solar cycle,
and pixel sizes (and thus numbers of profiles) per data set.

2.1. Selection of Spectral Lines

Another important issue is the selection of the photospheric
spectral lines. We have tried different combinations of
photospheric lines located in the near-ultraviolet (NUV)
spectral range observed by IRIS. The bottom panel of
Figure 2 shows the full spectrum taken by IRIS in its NUV
channel. In the top panel of this figure, an average profile of the

6 An excellent set of solar atmosphere models has been collected by Dr.
Basilio Ruiz Cobo. They are available at https://github.com/BasilioRuiz/SIR-
code/tree/master/models.
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quiet Sun observed at the center of the solar disk is shown. The
selected photospheric lines are indicated by orange vertical
lines in the bottom panel and orange labels in the top panel,
while the chromospheric lines, i.e., the Mg II h and k lines and
the Mg II UV triplet lines, are similarly indicated in violet. The
spectrum in the bottom panel of this figure is intended to aid in
comparisons with the IRIS linelist images,7 which illustrate the
combination of spectral ranges selected in an IRIS observation.
Table 1 shows which of the selected lines are available in the
IRIS linelists. In addition to the lines observed in the NUV
channel, we also considered the C II 1334 and 1335Å
chromospheric lines recorded in the far-ultraviolet (FUV)
channel.

The selection of photospheric lines is intended to recover as
accurately as possible the stratification of the thermodynamic
variables from the bottom to the top of the photosphere. This
region, in optical depth, is derived from the response function (RF;
Mein 1971; Landi Degl’Innocenti & Landi Degl’Innocenti 1981)
of the intensity profiles to a perturbation in a given physical
parameter. For a given RP–RMA pair, their corresponding RFs are
calculated by STiC. The left panel of Figure 3 shows the RF of the
intensity (for a multiline RP in the database) to a perturbation in the
temperature. We note that the optical depth range where a spectral
line is sensitive to a change in a physical parameter is slightly
different for different solar features (e.g., umbra, penumbra,
filament, and plage), and it is also different for the various physical
parameters (temperature, electron density, LOS velocity, and
microturbulence). The right panel of Figure 3 shows the average
optical depth ranges where the selected lines in IRIS2+ are
sensitive to perturbations in the temperature for most of the solar
features observed in the database.

2.2. Multiline Representative Profiles

We now prepare the selected spectral lines for clustering. The
need for clustering our data is due to the computational resources
needed to recover the physical information encoded in the spectral
lines, specifically when we are working with the C II 1334 and
1335Å and the Mg II h and k lines. The C II 1334 and 1335Å
lines were inverted taking into account non-LTE and complete
frequency redistribution of the scattered photons, while non-LTE
and partial frequency redistribution were taken into consideration
for the Mg II h and k lines. On average, the inversion of a Mg II h
and k profile with STiC under these conditions requires 1.5 CPU
hours. Therefore, we follow the same approach introduced by

Sainz Dalda et al. (2019), which was extended by Woods et al.
(2021) for the multiline case of C II 1334 and 1335Å lines and
Mg II h and k (including Mg II UV2 and 3 lines), and more
recently by Sainz Dalda & De Pontieu (2023) for the multiline case
of C II 1334 and 1335Å lines, Mg II h and k, and all Mg II UV
triplet lines. Now, in addition to the set of chromospheric lines
used by the latter authors, we include six photospheric lines.
Therefore, identical chromospheric profiles can now be associated
with photospheric profiles that are quite different, or vice versa.
We must consider this degeneracy between the chromospheric and
photospheric sets of lines when clustering them. Thus, compared to
inversions that are based on fewer lines, we need to consider a
larger number of clusters and RPs to properly capture that
degeneracy. Using the elbow method, we have determined that
320 clusters per data set are capable of adequately representing
most of the data sets considered in our study. This number of
clusters, i.e., RPs, is also an optimal number of RPs to be inverted
in a midsize 320 core server, without the need to get access to
larger supercomputer facilities. We note that inverting a multiline
profile, such as the one mentioned above, requires 6 CPU hours. In
this investigation, the average number of profiles per data set is
50,000. Inverting all profiles would require 50,000× 6 CPU
hours× 126 data sets, that is, ≈38 million CPU hours or ≈14 yr
on a 320 core server. Therefore, we have followed the approach of
IRIS2: we invert just 320 RPs per data set, obtaining the
corresponding 320 RMAs per data set in 6 hr on a 320 core server,
that is, in ≈31 days for the 126 data sets.
In this investigation, because we are interested in obtaining

thermodynamic models for the ARs, we have stratified the data
before clustering. This means that we have first identified those
locations where the profiles belong to an umbra (or a pore), a
penumbra, a plage, or the quiet Sun. These four regions are
determined using different intensity thresholds in the recon-
structed intensity map at 2810.58Å of the data set to be
clustered. The first three panels in the top row of Figure 4 show
the intensity spectroheliogram or map for an AR at Mg II k,
Ti II 2785.46Å and at 2832.04Å (photospheric continuum),
respectively. The fourth panel shows the areas identified as
umbra, penumbra, plage, and quiet Sun. Once these areas are
determined, we impose the number of clusters for each region
to be clustered. The number of clusters for each region is based
on the average area covered by these regions and on the
variability of different physical conditions in these areas. For
instance, the quiet Sun occupies more area in most of the data
selected compared to the penumbra. On the other hand, the
physical conditions are likely more variable in the latter,
although this is not necessarily true in the chromosphere. We
have attempted to find a trade-off between the hardware
limitations (to consider at most 320 RPs per data set) and

Figure 1. Distribution of the selected data in the IRIS2+ database with respect the observation date (left), ( )m q= cos —with θ being the heliocentric angle (middle),
and the exposure time (right).

7 Once an IRIS observation has been selected at https://iris.lmsal.com/
search/, the linelist is shown in the “raster” column. The linelist is used for
telemetry reasons, i.e., to minimize the volume of data downloaded from IRIS
to the ground base facility.
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achieving a meaningful representation of the physics of the
selected areas in each data set. The number of clusters for the
umbra, penumbra, plage, and quiet Sun are 30, 50, 80, and 160,
respectively. If there is no umbra in a given data set, the
features detected are usually pores, orphan penumbras, or
naked sunspots. In this case, the numbers of clusters for the
penumbra are incremented up to 80, and the associated RPs are
labeled as “pore-like.” If there is neither umbra nor penumbra,
the numbers of clusters for the plage and quiet Sun are 144 and
176 respectively. In total, the IRIS2+ database has 2280 RPs
associated with umbra, 800 RPs with pore-like features, 3800
RPs with penumbra, 12,640 with plage, and 20,800 RPs with

quiet Sun. To cluster the original IRIS profiles, we created a
joint profile by cropping the selected lines and concatenating
them together. The joint profiles are now scaled: at a given
wavelength, the intensity value is scaled between 0 and 1 to the
minimum and maximum of all the intensity values at that given
wavelength. This is done for all the wavelengths in the joint
profile. For example, if we do not adjust the C II 1334 and
1335Å lines at the same order of magnitude as Mg II h and k
before clustering, the information from C II 1334 and 1335Å
would be mostly ignored when the Euclidean distance is used
to cluster the data, as the C II 1334 and 1335Å lines are, in

Figure 2. Top: Average profile of the quiet Sun at the disk center showing the spectrum around the Mg II h and k lines observed by IRIS in its near-ultraviolet camera.
The core of the photospheric and chromospheric lines selected in this investigation are marked by dashed lines. The photospheric lines are labeled in orange, while the
chromospheric are in violet. The values in parentheses indicate the approximate height (in megameters) above the optical depth at 500 nm equal to 1 sampled by the
velocity line shifts, and the uncertainty associated with the fact that the formation occurs in a corrugated layer, as obtained by Pereira et al. (2013). Bottom: The
spectrum as seen on the detector is shown for a better comparison with the IRIS linelist files, e.g., v36_01, which show all the spectral ranges selected for a given
observation. It should be noted that the wavelength increases toward the left in this panel.
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physical units, several orders of magnitude smaller than the
Mg II h and k lines. As a result, we would be mainly clustering
the Mg II h and k lines and mostly neglecting the C II 1334 and
1335Å lines. After this, the cropped, scaled joint profiles are
clustered in 320 clusters. Once the clusters are defined, that is,
all profiles are associated with a cluster label, we calculate the
actual RPs (centroids) as the mean of the original profiles
belonging to a cluster. It should be noted that we are now using
the original observed profiles, which are not scaled, that is, they
preserve the physical units (specific intensity given in
erg cm−2 s−1 sr−1Å−1). At this point, the RPs preserve the
original spectral sampling, the original spectral range of the
selected lines (not just the cropped lines of interest), and the
physical units. They are ready for the inversion.

2.3. Inversion of the Multiline Representative Profiles

We have used the multiatom STockholm inversion Code
(STiC; de la Cruz Rodríguez et al. 2016, 2019) to invert the
RPs of our selected data. STiC is a Message Passing Interface–
parallel non-LTE inversion code that utilizes a modified
version of RH (Uitenbroek 2001) to solve the atomic
population densities assuming statistical equilibrium and
plane-parallel geometry, and it allows including partial
frequency redistribution effects of scattered photons (Leenaarts
et al. 2012). The RT equation is solved using cubic Bezier
solvers (de la Cruz Rodríguez & Piskunov 2013). The
inversion engine of STiC includes an equation of state
extracted from the SME code (Piskunov & Valenti 2017).8

Accounting for the significant intensity difference between
spectral lines is critical for a successful multiline inversion.
This is particularly important for the C II 1334 and 1335Å
lines, because their intensity is much lower than the rest of the
lines of this study. Therefore, during the inversion, the lines are
weighted to account for this difference when the loss function
(χ2; see Equation (1)) is evaluated. We have also considered
this weighting for the Mg II UV triplet and photospheric lines
with respect to the Mg II h and k lines. To determine the
weights, we calculate the most frequent value of the intensity in
a spectroheliogram map in the Mg II h and k k3, and we weight
the C II 1334 and 1335Å lines to that value. That means we
adjust the C II 1334 and 1335Å lines to the same relative
intensity level as the Mg II h and k lines. For the rest of the
lines, we found that the relative intensity with respect to that of
the Mg II h and k lines for different data sets has a small
standard deviation; therefore, we applied the same combination

of weights for all data sets. The final relative weights are
wMgII UV triplet: wMgII h and k: wphotos= 3:1:2.
For each data set, STiC only accepts a single wavelength-

dependent weight and noise value for all profiles. For
simplicity, a noise value (standard deviation in a spectral range,
σI(λ)) is considered for the FUV data (C II 1334 and 1335Å
lines, with σI(λ) calculated between 1333.0� λ[Å] � 1333.5),
while the NUV data (Mg II h and k, Mg II UV triplet lines, and
the photospheric lines, with σI(λ) calculated between 2800.20�
λ[Å] � 2800.55) also have their noise. We note that any other
investigation considering different lines from the FUV channel
should calculate the noise for those lines independently.
The merit function used to quantify the quality of the fit

between the observed ( )lI i
obs and the inverted ( )l MI ,i syn

profile is

( ( ) ( ) ) ( )åc
n

l l
s

= -
=

MI I
w1

, , 1
i

q

i i
i

i

2

1

obs syn 2
2

2

with i= 1,K,q the sampled wavelengths, wi their weights, σi
uncertainties of the observation, and ν the number of degrees of
freedom, that is, the difference between the observables (q) and
the free parameters in the model M or nodes during the
inversion. We use a unique value of wi/σi per data set. As it has
been mentioned above, different weights are given for different
spectral ranges, and we assume that σi is the same for all i at
each spectral channel. That is, we have used wCII/σCII,
wMgII/σNUV, wMgII/σNUV, and wphotos/σNUV. We have used
four cycles with different numbers of nodes for the physical
variables in the model. These values are detailed in Table 2. In
addition, another free parameter is considered to adjust the
boundary gas pressure. Thus, the inversion code can increase
the gas pressure in the top boundary to higher values, which
allows the observed line core of the chromospheric lines to be
reproduced properly without affecting the photospheric lines
(see Section 3.2 in de la Cruz Rodríguez et al. 2019 for more
details). This particular combination of nodes has proven to be
quite satisfactory in most inverted profiles. Naturally, a larger
number of nodes would provide a better fit for the profiles, but
at the expense of overfitting and generating nonrealistic model
atmospheres. We note that the stratified-in-optical-depth
electron density (ne) and gas pressure (pg) are derived assuming
hydrostatic equilibrium, and therefore, they do not contribute to
the total number of nodes used during the inversion. We used
the FALC quiet-Sun model (Fontenla et al. 1993) as the initial
guess model for all the inversions. Ideally, we should invert

Table 1
Availability of the Spectral Lines (Wavelengths in Angstroms) Considered in IRIS2+ for Each Observation IRIS Linelist

IRIS Linelist Fe I Ni II C I Fe I Mg II h Mg II UV3 and 2 Mg II k Fe I Mg II UV1 Ti II
2827.33 2815.18 2810.58 2809.15 2803.53 2798.85&.72 2796.35 2793.22 2791.60 2785.46

v36_00 and v38_00 ✓ ✓ ✓ ✓ ✓ ✓ ✓

v36_01 and v38_01 ✓ ✓ ✓ ✓

v36_02 and v38_02 ✓ ✓ ✓

v36_03 and v38_03 ✓ ✓ ✓ ✓ ✓ ✓ ✓

v36_04 and v38_04 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

v40_00 ✓ ✓ ✓ ✓

v40_02 ✓ ✓

v40_09 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Note. The C II 1334 and 1335 Å lines, not included in the table, are always included and thus considered by IRIS2+.

8 STiC is available at https://github.com/jaimedelacruz/stic/.
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each profile considering several initial guess models and
choose the solution that best fits the observation. This approach
has recently become possible thanks to the optimization of
inversion codes; for example, the DeSIRe code (Ruiz Cobo
et al. 2022) has this capability. Because the Mg II h and k lines
need to account for the PRD effects, inverting them requires a
significant amount of computing time; therefore, this inversion
strategy is not feasible with the currently available inversion
codes and computational resources. For this reason, we only
consider one initial guess model.

The C II 1334 and 1335Å lines and the Mg II UV triplet lines
were inverted considering non-LTE conditions and complete
frequency redistribution, while for the Mg II h and k lines, non-
LTE and partial frequency redistribution were considered. All
photospheric lines were inverted considering LTE conditions.
We note that the lines of Fe I and Fe II are affected by the
overionization due to the near-UV radiation (Athay &
Lites 1972). As a consequence, the Fe I are underpopulated
and a few Fe II levels are overexcited. Shchukina & Trujillo
Bueno (2001) found that, for the low-excitation Fe I, the errors

in the kinetic temperature in the granules are significant if these
lines are not considered under non-LTE conditions. More
recently, Smitha et al. (2020) found that inverting the Fe I
6301Å and 6302Å lines under 1D LTE conditions, i.e.,
neglecting the non-LTE, can introduce errors up to 13% in
temperature and as high as 50% both in the vlos and B. Smitha
et al. (2021) also found that the horizontal RT, i.e., considering
3D non-LTE, also has an impact in the temperature errors,
although this impact is more localized in specific regions of the
atmosphere. As Shchukina & Trujillo Bueno (2001) pointed
out, the inversion fits of the Fe I lnes are apparently equally
good in both cases, LTE and non-LTE, and this is due to the
capability of the inversion code to compensate the non-LTE
effects by changing the derived iron abundance in the LTE
inversion. Therefore, although the inversion fits for the Fe I in
the IRIS2 database are rather good, we should be aware that
they may introduce an error in the photospheric atmosphere.
However, it would be possible to consider the Fe I lines in 1D
non-LTE during the inversion and to investigate the differences
with the results presented in this paper. That study will be done
in future developments of IRIS2.

Figure 3. Left: Response function (RF) of the intensity to perturbations in T of the selected lines in an RP of the IRIS2+ database. The intensity profiles (white) are
shown as a reference. The meanings of the values in parentheses are given in the caption of Figure 2. Right: Optical depth ranges where these lines are on average
sensitive to a perturbation in T for the solar features included in the IRIS2+ database. These ranges may slightly vary for each solar feature and for the other physical
parameters in the database.
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3. Results

Figures 4 and 5 show the inversion of a multiline RP in the
penumbra and the outer part of the plage of the NOAA 12681,
respectively, both on 2017 September 26 at 05:09:50UT. In
addition to the observed RP (in fuchsia) and its corresponding

inverted, synthetic RP (best fit obtained by STiC, in black), the
temperature (T), line-of-sight velocity (vlos), the velocity of
turbulent motions or microturbulent velocity (vturb), and the
logarithm of the electron density (ne) are shown in the last row
of these figures. The rest position of the lines is indicated with a

Figure 4. First row: Spectroheliogram map for Mg II h and k k3, Ti I 2785.46 Å, the photospheric continuum at 2832.04 Å, and a map of the various types of features
that were identified: umbra (light blue), penumbra (green), plage (orange), and quiet Sun (brown). The other rows are the results of an inversion for the location
marked with a white cross on the map “Selected areas” to the right of the top row. From the second to the sixth row, from left to right, the observed (solid dotted in
fuchsia) and the inverted profile (black) are shown. The value in parentheses is the average height (in megameters) at optical depth equal to 1. The gray shaded areas
around the inverted lines show the spectral ranges considered for the calculation of the uncertainties. The bottom row shows the temperature (T, orange), the logarithm
of the electron density (ne, blue), velocity of turbulent motions or microturbulent (vturb, green), and the line of sight (vlos, violet). The colored shaded area in these
panels represents the uncertainty of each variable as described in the text (see Equation (2)).
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vertical dashed line. The inset plots in the fourth row show the
core of the Mg II h and k and Mg II UV2 and 3 lines.

As a result of the strategy presented in this article, we have
an indexed and labeled database. Thus, each inverted synthetic
RP has an associated representative model atmosphere (RMA),
as well as the following metadata: the IRIS filename and the
solar feature (“umbra,” “penumbra,” “pore-like,”
“plage,” or “quiet Sun”) where the RP was clustered,
the heliocentric angle of the original observed profiles
associated with the RP’s cluster, the exposure time, and the
observation date and time. Because information is attached to
the RP–RMA pair in IRIS2+, one can search for RMAs for a
given solar feature (e.g., “plage”), at a given time in the solar
cycle (e.g., “2014-01-01” < date_obs < “2014-05-31”),
and at given heliocentric angle on the Sun. Figure 6 shows an
example of a search of the RMAs for all the solar features
located at 0.65< μ< 0.70. As one would expect, the RMAs
show, for a given physical parameter, some variation both
within the same solar feature (e.g., the vturb for the RMAs in the
plage), and between solar features (e.g., umbra versus
penumbra). In this example search, only two umbras
(30 RMA/umbra) and two penumbras (50 RMA/penumbra)
were observed and included in the database. In fact, these two
umbras and two penumbras observations belong to the same
AR, and for that reason the dispersion between the RMAs for
the different physical variables is rather small in these solar
features. Several plages and quiet Sun areas belonging to
different ARs are, however, found in this search, and for that
reason their associated RMAs show a larger variability. We
remind the reader that the term “quiet Sun” here refers to
regions within an active region that are not plage, umbra, pores,
or penumbra. It is not evident that such regions are, in fact,
identical to quiet-Sun regions that are not part of an active
region. This is because the overlying large-scale magnetic field
topology and the associated canopy can affect the chromo-
sphere of these regions, which are perhaps more like the quiet
Sun at the photosphere.

The quality of the inversion is not always easy to evaluate
from the value of χ2 in the profiles of IRIS2+. This is due to the
behavior of the Euclidean distance when applied to high-
dimensional samples such as our profiles. In many cases, a bad
fit in the core of the Mg II h and k lines penalizes the value of
χ2 too much (see Section 3 of Sainz Dalda & De Pontieu 2023
for a more detailed discussion). Also, we now use multiple
lines. This increases the possibility of having a bad χ2 value
when one or a few lines are poorly fitted, but the rest are well
fitted. Of course, when all lines are well fitted, the χ2 is good
(i.e., low). We have verified that the large majority of profiles
are well fitted, and for the minority of RPs with some badly
fitted lines, several of the other lines are still well fitted.

We have calculated the uncertainties associated with the
inverted profile and its corresponding model atmosphere. For
each physical variable in the bottom panels of Figures 4 and 5,

the uncertainty is displayed as a shaded area. The uncertainties
were calculated using the following expression:
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where nm+ r is the total number of free parameters used
during the inversion, corresponding to n nodes along the
optical depth in m variables (3× 13), with r being the number
of variables or free parameters considered constant along the
optical depth (r= 1 corresponds to the upper boundary gas
pressure). Rp(λi) is the response function of the intensity to a
perturbation in the physical parameter p of the model
atmosphere M. The formal derivation of this expression can
be obtained by using the equations of Section 2.3 in Sánchez
Almeida (1997) and of Sections 6.2 and 6.3 in Bellot Rubio
et al. (1998). The meanings of the other symbols in
Equation (2) are the same as those in Equation (1).
The gray shaded areas in Figures 4 and 5 indicate the

spectral range considered in the calculation of uncertainties in
the physical parameters. This range is slightly different from
the one used for the inversions. The weights used for the
inversions include some spectral positions between the lines, to
take into account the general shape of the profile—for example,
the bump between the Mg II k and Mg II h lines, or between the
lines Fe I 2809.15Å, C I 2810.58Å.

4. Discussion

In the example of the IRIS2+database shown in Figure 4, the
inverted profiles fit the observed profiles quite well. Therefore,
we can be confident with the RMA obtained. Regarding the
temperature and the electron density, the uncertainties are
relatively small. As for vlos, the uncertainty is mostly acceptable
at ( )t < -log 1. However, vturb has a very large uncertainty at
any value of ( )t > -log 5.8. In Figure 5, the profiles of the
C II 1334 and 1335Å, Mg II h and k, and Mg II UV triplet lines
are relatively broad. The fit of these lines is good, although
some features are missing in the C II 1334 and 1335Å lines and
in the Mg II UV triplet lines. The fit of the photospheric lines is
also acceptable, but not as good as the chromospheric lines.
The uncertainties of temperature and ne are within acceptable
limits. However, for vlos, it has large uncertainties at some
optical depths, and for vturb, it again has very large uncertainties
for ( )t > -log 2, but acceptable ones for ( )t < -log 4. We
cannot offer a plausible explanation for these very high
uncertainties, other than the possibility that the uncertainties in
vlos and vturb are overstated due to the poor sensitivity of the
lines to these variables at such heights. As suggested by Sainz
Dalda & De Pontieu (2023), to infer the uncertainties of the
model, we can also run a Monte Carlo experiment on the
synthetic inverted profile by adding random noise and inverting
the noisy synthetic profile 25 times (five times for five different
noisy profiles). The uncertainty associated with the model is the
standard deviation of the model resulting from the 25
inversions. These authors used this method for the entire
IRIS2 database, considering several exposure times. In total,
approximately 1.25 million inversions were made to provide
the uncertainties associated with RMAs. A similar approach
would require approximately 7.5 million CPU hours for the

Table 2
Number of Nodes in Each Cycle for the Thermodynamics Variables

Considered during the Inversions

No. Cycles 1 2 3 4

T 4 7 9 13
vturb 2 4 8 13
vlos 2 4 8 13
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IRIS2+ database. Due to this computationally expensive
process, we were unable to provide the associated uncertainties
with the RMAs of the IRIS2+ database at the time of
publication of this paper.

We note that the simultaneous inversion of spectral lines
sensitive to different conditions in the solar atmosphere
represent a numerical challenge in a high-dimensional space.
In this case, Equation (1) for the evaluation of the goodness of
fit has some flaws, since a large value of χ2 can be associated

with a fit having some lines fitted quite well and others not.
Graphically, we can see this in Figure 5. There, the lines Fe I
2793.22Å, Fe I 2809.15Å, C I 2810.58Å, and Ni I 2815.18Å
show some mismatch, while the other lines fit quite well. In this
case, we should consider the values at optical depths
−3< ( )tlog <− 1 with some caution, because only the
photospheric Fe I 2827.33Å fits the observed profile quite
well, in addition to the chromospheric lines. Therefore, we

Figure 5. Same as Figure 4 for a multiline RP and RMA in the outer plage (marked with a white cross in the “Selected areas” panel). Both the inverted profile and the
representative model atmosphere (RMA) are included in the IRIS2+, and they are both labeled as “plage” in the database.
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suggest maintaining a critical attitude when analyzing the
inversions. On the other hand, how does the fit between the
observed and the inverted affect the IRIS2+database? Strictly
speaking, it does not. The IRIS2+database is a relational
database between model atmospheres and their synthetic
profiles. The physics encoded in the latter is strictly due to
the values in the model atmosphere and the considerations
made to solve the RT problem. Practically speaking, it has an
impact if the fit is consistently bad, which is not the case. If so,
that would mean that the synthetic inverted RPs and the RMAs
are not representing well the observations, i.e., the solar lower
atmosphere.

IRIS2+ can be used in different ways. The RMAs can be
used as a set of reference model atmospheres for the various
types of features within ARs. They can be used to synthesize
photospheric and chromospheric spectral lines that can be
compared either with observed lines or with the ones obtained
from the synthesis of numerical simulations of these features.
Although the stratifications of the atmosphere in the numerical
simulations are rather different from those obtained by the
inversions, with the former showing very variable behavior and
the latter a smoother one, the values obtained from the
inversions may help to constrain the mean behavior in some
regions in the stratification of the numerical models. The
IRIS2+ database can be used as a look-up table to invert the
multiline IRIS data that contain any combination of the lines
used in this article (see Table 1). A new database of synthetic
RPs of chromospheric or photospheric lines can be created to

invert observations made in the lines of interest. In both cases,
the inversion time using the RP-RMAs database is considerably
smaller compared to the time required to invert these lines by
iteratively solving the RT problem considering either LTE or
non-LTE. If the computational time required to invert the lines
of interest is not too high (a few CPU minutes or less), the
solution of the inversion proposed here can be used as an initial
guess for the classical inversion of each profile of the
observation.

5. Conclusions

The extraordinary multiline capabilities of IRIS has allowed
us to create a database of 40,320 synthetic representative
profiles and their corresponding representative model atmo-
spheres that convey the essential thermodynamic information
of active regions from the bottom of the photosphere to the top
of the chromosphere.
Thanks to the state-of-the-art multiline and multiatom STiC

inversion code, we were able to recover the stratification of
physical parameters encoded in six chromospheric lines and six
photospheric lines. Using the k-means technique, we have
clustered multiline IRIS spectral data. This helps us to
overcome the task of inverting all the profiles considered in
this work, which would require very significant computational
resources (≈38 million CPU hours).
Achieving an accurate representation of thermodynamics in

the lower solar atmosphere is of great importance. The
accuracy of the fits directly correlates with the quality of the

Figure 6. Using IRIS2+ database to find and visualize the different models of umbra, penumbra, plage, and quiet Sun at a given interval of ( )m q= cos , with θ being
the heliocentric angle.
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representation. However, synthetic profiles that display poor
fits with respect to the observed RP may still exist in the solar
atmosphere. Despite this, the IRIS2+ database is probably the
most accurate and comprehensive set of stratified depth models
and profiles in the chromosphere and the photosphere, as a vast
majority of inversions calculated to build the database exhibit
rather good fits.

IRIS2+ is a unique database that combines a large number of
spectral lines that are sensitive to thermodynamics in the lower
layers of the solar atmosphere. We are constantly working to
improve the observational capabilities of IRIS by considering
more lines, applying better inversion methods, and utilizing
advanced machine-learning techniques. IRIS2+ has high
potential to be used in various ways to gain knowledge about
the low solar atmosphere. Both the IRIS2+ and IRIS2 databases
are available to the public in different formats, readable both
with IDL (Landsman 1993) and Python (Van Rossum &
Drake 1995). We encourage the community to take advantage
of IRIS2+, to help answer open questions about the low solar
atmosphere.
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