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ABSTRACT

Context. Plasmoid-mediated reconnection plays a fundamental role in different solar atmospheric phenomena. Numerical reproduc-
tion of this process is therefore essential for developing robust solar models.
Aims. Our goal is to assess plasmoid-mediated reconnection across various numerical resistivity models in order to investigate how
plasmoid numbers and reconnection rates depend on the Lundquist number.
Methods. We used the Bifrost code to drive magnetic reconnection in a 2D coronal fan-spine topology, carrying out a parametric
study of several experiments with different numerical resolution and resistivity models. We employed three anomalous resistivity
models: (1) the original hyper-diffusion from Bifrost, (2) a resistivity proportional to current density, and (3) a resistivity quadratically
proportional to electron drift velocity. For comparisons, experiments with uniform resistivity were also run.
Results. Plasmoid-mediated reconnection is obtained in most of the experiments. With uniform resistivity, increasing the resolu-
tion reveals higher plasmoid frequency with weaker scaling to the Lundquist number, obtaining 7.9–12 plasmoids per minute for
S L ∈ [1.8 × 104, 2.6 × 105] with a scaling of S 0.210

L in the highest-resolution resistivity cases, transcending into Petschek reconnec-
tion in the high-S L limit (where the diffusive effects of the resistivity become small compared to the non-uniform viscosity) and
Sweet-Parker reconnection in the low-S L limit. Anomalous resistivity leads to similar results even with lower resolution. The drift-
velocity-dependent resistivity excellently reproduces Petschek reconnection for any Lundquist number, and similar results are seen
with resistivity proportional to current-density though with slightly lower reconnection rates and plasmoid numbers. Among the dif-
ferent resistivity models applied on the given numerical resolution, the hyper-diffusion model reproduced plasmoid characteristics in
closest resemblance to those obtained with uniform resistivity at a significantly higher resolution.

Key words. magnetic reconnection – magnetohydrodynamics (MHD) – methods: numerical – Sun: atmosphere – Sun: corona –
Sun: magnetic fields

1. Introduction

Magnetic reconnection is a promising candidate as a mecha-
nism for heating up the solar corona (e.g. Vaiana et al. 1973;
Heyvaerts & Priest 1984; Parker 1988). In addition, this pro-
cess has been shown to unleash some of the important phe-
nomena in the solar atmosphere that have been successfully
modelled in numerical experiments; these include Ellerman
bombs (EBs) and ultraviolet (UV) bursts (e.g. Hansteen et al.
2017, 2019; Danilovic 2017; Nóbrega-Siverio et al. 2017;
Peter et al. 2019; Ni et al. 2021), surges and coronal jets (e.g.
Yokoyama & Shibata 1995, 1996; Nóbrega-Siverio et al. 2016;
Wyper et al. 2016, 2017; Nóbrega-Siverio & Moreno-Insertis
2022), as well as flares (e.g. Yokoyama & Shibata 2001;
Rempel et al. 2023).

This fundamental mechanism can either be modelled as
steady reconnection or non-steady, plasmoid-mediated recon-
nection. In the former case, one may analytically predict how
the reconnection rate, among other quantities, depends on the

? Movies are available at https://www.aanda.org

Lundquist number S L ≡ LvAi/η, where L is the length of the
current sheet, vAi the inflow Alfvén speed, and η the resistivity
of the medium. In the slow-reconnection model developed by
Sweet (1958a,b) and Parker (1963), where a uniform diffusion
layer is assumed to cover the entire current sheet, the reconnec-
tion rate is predicted to be equal to S −1/2

L . In the fast reconnection
model by Petschek (1964), which assumes a Sweet-Parker diffu-
sion layer that covers only a limited segment of the current sheet,
the reconnection rate is found to be roughly equal to π/(8 ln S L).

Non-steady reconnection is characterised by resistive tear-
ing instability (see Furth et al. 1963), where magnetic islands,
or plasmoids, appear rapidly along the current sheet. Plasmoid
instability occurs when S L > 104 (Loureiro et al. 2007), where
the current sheet gets intrinsically unstable when its inverse
aspect ratio a/L – where a is the current-sheet width – passes
below a threshold value of S −1/3

L (Pucci & Velli 2014), which
for coronal Lundquist numbers is significantly higher than the
Sweet-Parker inverse aspect ratio of S −1/2

L . Therefore, Sweet-
Parker reconnection is not expected to occur commonly in the
upper solar atmosphere, given that any current sheet becomes
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unstable long before obtaining a Sweet-Parker-like aspect ratio.
The Sweet-Parker reconnection rate, given a coronal Lundquist
number, is also far too slow to reproduce any flare (see Priest
2014, and references therein). Petschek-like reconnection rates
have, on the other hand, been successfully reproduced numer-
ically when applying a local enhancement of the resistivity in
the current sheet (Yokoyama & Shibata 1994) or a very low, uni-
form resistivity (Baty et al. 2009), even in the case of non-steady
reconnection.

For plasmoid-mediated reconnection in an adiabatic medium,
the number of plasmoids has been analytically predicted to scale
with the Lundquist number as S 0.375

L (Loureiro et al. 2007).
For the non-adiabatic case, Sen & Keppens (2022) numerically
found the maximum plasmoid number in a 2D Harris current
sheet to scale as S 0.223

L . In both cases, the number of plas-
moids increases slowly with the Lundquist number. Plasmoids
can therefore be expected to be quite numerous in coronal
current sheets due to the relatively high Lundquist number.
The presence of plasmoids in EBs, UV bursts, surges, and
coronal jets has been shown both observationally (e.g.,
Rouppe van der Voort et al. 2017, 2023; Kumar et al. 2019)
and numerically (Ni et al. 2017, 2022; Nóbrega-Siverio et al.
2017; Hansteen et al. 2019; Peter et al. 2019; Guo et al. 2020;
Liu et al. 2023). Numerical studies of plasmoid-mediated recon-
nection are therefore key to understanding any reconnection
event that may occur in the solar atmosphere.

In our previous paper (Færder et al. 2023, hereafter F2023),
we compared three different anomalous resistivity models by
applying them on a 2D magnetohydrodynamics (MHD) simula-
tion with flux cancellation. There, we found that the models were
all capable of reproducing roughly the same large-scale results in
terms of current-sheet length and Poynting influx. In the present
paper, we analyse the details of the plasmoid instability of these
resistivity models during magnetic reconnection at the null-point
of a 2D fan-spine topology and compare the results to cases
with uniform resistivity. To this end, we perform a paramet-
ric study, employing different resistivity magnitudes and resolu-
tions. The structure of the paper is as follows. Section 2 describes
the code and model equations used for our simulations, the dif-
ferent resistivity models, and the setup for the numerical exper-
iments. In Sect. 3, we look into the results of the experiments
by measuring and comparing the plasmoid frequency, aspect
ratio, and reconnection rate of each simulation case. Finally,
in Sect. 4 we briefly discuss our results and summarise our
conclusions.

2. Numerical model

2.1. Model equations

The simulations of this paper were performed with the 3D MHD
code Bifrost (Gudiksen et al. 2011). This code uses a sixth-order
operator for the spatial derivatives and a third-order scheme
for the time derivatives, allowing us to minimise the numerical
diffusion due to the discretisation of the equations. In particu-
lar, we carried out different 2D simulations focusing on mag-
netic reconnection at coronal heights. We therefore included
Joule heating, viscous heating, and Spitzer conductivity, while
excluding radiative heating and cooling terms. Regarding the
equation of state, we assume a fully singly ionised ideal gas
with a mean molecular weight of 0.616. In addition, gravity
is neglected as the whole computational domain lies in the
corona.

2.2. Resistivity models

To study reconnection, we employed the three anomalous resis-
tivity models described in the F2023 paper, which are sum-
marised below.

2.2.1. Gudiksen-11 model

The Gudiksen-11 model (Gudiksen et al. 2011;
Nordlund & Galsgaard 1995) is the default resistivity model of
Bifrost. This hyper-diffusive model dynamically scales up the
resistivity around gradients in the magnetic field B and velocity
u and can be written as a diagonal tensor, ¯̄ηG11, given by

ηG11,xx =
η3

2
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where

Um,i ≡ ν1cf + ν2|ui| + η3∆xi|∇⊥ui|, (2)
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and cf ≡

√
c2

s + v2
A, with cs and vA denoting the sound speed

and Alfvén speed, respectively. ν1, ν2, and η3 are free scaling
parameters. For this paper, we varied the input value of η3 while
using fixed ν1 = 0.03 and ν2 = 0.2, which should be kept as low
as possible as discussed in Sect. 3.1.5 of F2023.

2.2.2. Syntelis-19 model

The Syntelis-19 model (Syntelis et al. 2019) applies a scalar
resistivity ηS19 proportional to the current density J as follows:

ηS19 =

{
η0, |J | < Jcrit
η0 + η1|J |/Jcrit, |J | ≥ Jcrit

, (4)

where η0, η1, and Jcrit are free parameters. We used η0 = 3.78 ×
10−2 km2 s−1 and Jcrit = 5.00 × 10−4 G km−1 while varying the
input value of η1.

2.2.3. YS-94 model

In the YS-94 model (Yokoyama & Shibata 1994), the resistivity
ηYS94 scales with the electron drift velocity vd = |J |/(neqe), given
the electron density ne and elementary charge qe, as follows,

ηYS94 =

{
0, vd ≤ vc
min(α( vd

vc
− 1)2, ηmax), vd > vc

, (5)

where vc, α, and ηmax are free parameters. We used vc = 8.3 ×
10−6 km s−1 and ηmax = 2000 km2 s−1 while varying the input
value of α.
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2.2.4. Uniform resistivity

In addition to the three aforementioned anomalous resistivity
models, we also used uniform resistivity for comparison pur-
poses,

ηU = η0, (6)

with various input values for η0.

2.3. Viscosity in Bifrost

While the resistivity ¯̄η in our simulations is given by one of the
four resistivity models mentioned above, the viscosity tensor ¯̄τ
is always given by Bifrost’s in-built description, namely

τi j =

 ρ∆xiUv,i
∂ui
∂xi
Qi

(
∂ui
∂xi

)
, i = j

ρ
[
∆x jUv, j

∂ui
∂x j
Q j

(
∂ui
∂x j

)
+ ∆xiUv,i

∂u j

∂xi
Qi

(
∂u j

∂xi

)]
, i , j,

(7)

where

Uv,i ≡ ν1cf + ν2|ui| + ν3∆xi|∇ui|, (8)

and ν3 is a free scaling parameter, which is set to 0.3 in our sim-
ulations.

2.4. Model setup

For the initial condition, we imposed a 2D fan-spine
topology in a similar fashion to Peter et al. (2019) and
Nóbrega-Siverio & Moreno-Insertis (2022). In particular, the
horizontal and vertical components of the magnetic field are
respectively given by

Bx = B1e−kz sin(kx), (9)

Bz = B0 + B1e−kz cos(kx), (10)

where B1 = 10 G, k = π/16 Mm−1, and B0 = 3 G. The external
field B0 was set to resemble that of a typical quiet-Sun coronal
hole (Hofmeister et al. 2019). Panels (a) and (b) of Fig. 1 contain
the initial magnetic field topology and Bz(x, z = 0), respectively.
These panels show that the imposed field has a negative parasitic
polarity in a positive background, which leads to a null-point at
z = 6.13 Mm. The initial temperature and mass density were
uniformly set to T0 = 0.61 MK and ρ0 = 3 × 10−16 g cm−3 to
resemble typical values of the lower corona.

Concerning the boundary conditions, the side boundaries
were periodic. The top boundary was treated by an absorbing
layer on all MHD variables in order to ensure that any wave
that hits the boundary is not reflected. At the bottom boundary,
an absorbing layer was applied on the mass density ρ, internal
energy density e, and the vertical velocity uz. For the horizontal
velocity ux, a driving condition was imposed to move the inner
spine of our fan-spine topology with a velocity up to 1 km s−1.
More specifically, ux is a product of two components, similar to
Peter et al. (2019), defined as

ux(x, z = 0, t) = vd(t)v0(x). (11)

The spatial component v0(x) is given by

v0(x) =

(
1 + cos (π(x − Lx)/Lx))

2

)10

, (12)

Fig. 1. Model setup. Panel (a) shows the initial magnetic field topology.
Panel (b) displays the vertical component of this field measured at z = 0.
The inner spine of the magnetic field topology is moved in positive x-
direction with a driving velocity given by a product of a spatial factor,
plotted in panel (c), and a temporal factor, plotted in panel (d).

where Lx = 16 Mm, which is the half-width of the computational
domain. The temporal component vd(t) is as follows

vd(t) = vp


sin (0.5πt/tr) t ∈ [0, tr]
1.0 t ∈ [tr, td − tr]
sin (0.5π(td − t)/tr) t ∈ [td − tr, td]

, (13)

with a peak velocity of vp = 1 km s−1, a ramping time of
tr = 10 min, and a total driving time of td = 40 min. The spa-
tial and temporal components of this driving velocity are shown
in panels (c) and (d) of Fig. 1. The magnetic field at the bottom
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Table 1. Simulations with their respective grid points, resistivity model, and resistivity peak values, ηp (km2 s−1).

Group Resolution Resistivity model ηp (km2 s−1)

S1-5 2048 × 2048 Syntelis-19 125, 87.3, 62.4, 42.7, 24.8
Y1-8 2048 × 2048 YS-94 155, 89.2., 71.7, 57.4, 43.9, 34.2, 26.7, 21.7
G1-7 2048 × 2048 Gudiksen-11 650, 309, 211, 131, 68.3, 36.1, 19.9
U1-4 2048 × 2048 Uniform (η = ηp) 75.6, 37.8, 18.9, 15.1
4kU1-9 4096 × 4096 Uniform (η = ηp) 75.6, 37.8, 18.9, 15.1, 7.56, 3.78, 1.89, 0.945, 0.473
8kU1-11 8192 × 8192 Uniform (η = ηp) 75.6, 37.8, 18.9, 11.3, 7.56, 3.78, 1.89, 0.945, 0.473, 0.378, 0.189

boundary is line-tied to the flow. This was ensured by setting the
magnetic field in the ghost zones to be anti-symmetric around
the boundary value. The same anti-symmetric-around-boundary-
value condition was applied on ux in the ghost zones.

The numerical experiments span a 32 × 32 Mm2 physical
domain and were run for 40 min. In particular, we performed 44
different simulations grouped as follows: (1) the 2k simulations,
that is, 24 cases with a resolution of 2048 × 2048 grid points,
using either uniform, Syntelis-19, YS-94, or Gudiksen-11 resis-
tivity with various input values for the scaling parameters; (2)
the 4k simulations, that is, nine experiments, each with a reso-
lution of 4096 × 4096 grid points, all using a uniform resistiv-
ity with different values of η0; and (3) the 8k simulations, that
is, 11 runs with an 8192 × 8192 resolution, also using a uni-
form resistivity with different values of η0. The details of all
the cases are listed in Table 1; models are labelled with a let-
ter, which denotes the chosen resistivity model, and a number
that decreases with increasing resistivity. The fourth column dis-
plays the peak value ηp, the meaning of which is as follows. For
the uniform-resistivity cases, ηp is equal to the uniform value η0.
For any of the anomalous resistivity cases (S1-5, Y1-8, G1-7),
ηp denotes the maximum resistivity in the current sheet averaged
over the time period t ∈ [15, 35] min and is directly propor-
tional to the input value of the scaling parameter of the resistivity
model applied in the given case.

In the 2k simulations, the scaling parameter for each resistiv-
ity model varied from the minimum required for stability up to
1–2 orders of magnitude above, or to a level that entirely pre-
vents plasmoid formation (resulting in a few cases of steady
reconnection). Similar variations were applied in the 4k and
8k simulations. Notably, in these cases, the resistivity could be
set considerably lower than in the 2k simulations while main-
taining stability. On the other hand, if the resistivity terms are
completely removed, the simulations become numerically unsta-
ble. This fact indicates that the numerical diffusion due to the
discretisation of the equations is negligible with respect to the
explicit resistivity terms in the small regions with large gradi-
ents or jumps in the variables, as in current sheets.

3. Results

3.1. Overview

In all simulations, the inner spine undergoes a positive x-
directional displacement due to the boundary driving velocity.
As a consequence, the null-point collapses, leading to a tilted
current sheet between the inner and outer spine. Following the
behaviour of the driver, the length of the current sheet increases
during the first 15 min of the simulation; it then remains roughly
constant for 20 min before finally decreasing during the final
5 min of the simulations. At the current sheet, reconnection
occurs continuously, significantly heating the plasma. As a rep-

Fig. 2. Temperature and magnetic field topology taken from simulation
case 8kU6. A movie of the time evolution of the map for t ∈ [0, 40] min
is available online.

resentative example, Fig. 2 shows the temperature of the 8kU6
case at t = 26.7 min with the magnetic field topology super-
imposed. An animation of the full time evolution of the map is
available online. In all the simulations, the temperature profile
has roughly the same shape as shown in the image, albeit with
distinct peak temperatures, which range from 0.72 to 0.83 MK.

The differences between the simulations are more evident
regarding other physical quantities such as mass density, which
is displayed in Fig. 3 at t = 26.7 min for six of the 8k cases
(see also associated animation). For instance, in case 8kU1, no
evident plasmoids are seen, while plasmoids appear frequently
in the other cases, moving in either direction along the cur-
rent sheet. In some cases, several plasmoids merge together, a
phenomenon referred to as coalescence instability (Finn & Kaw
1977). In the following, we analyse the characteristics of the
reconnection in all simulation cases listed in Table 1.

3.2. Data analysis method

3.2.1. The current sheet

As a first step of our analysis, we define our current sheet as the
region with a characteristic length LB ≡ (|J |/|B|)−1 ≤ 20 km, fil-
tering away any cells that belong to the spines and fan surfaces.
The LB ≤ 20 km threshold ensures that we consider elements
with a characteristic length larger than the lowest resolution we
have (∆x = ∆z = 15.6 km in the 2k cases). As an example, the
top panel of Fig. 4 contains a density map within the current
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Fig. 3. Mass density and magnetic field topology around the current sheet for six of the 8k simulation cases. A movie of the time evolution of the
maps for t ∈ [25, 30] min is available online to show how plasmoids and shocks originate along the current sheet.

sheet in the 8kU6 simulation. The current-sheet axis is found
through a linear fit of the cells fulfilling the aforementioned con-
dition, and the current-sheet length, L, is then measured as the
distance between its extremes, labelled P0 and P1, as shown
in the figure. Having located the current-sheet axis, we define
a coordinate system centred at the middle of the current sheet,
using the distances along (d‖) and perpendicular to the current
sheet (d⊥); see Fig. 4 for coordinate axes.

To measure the current-sheet width, we projected the mag-
netic field onto the coordinate system of the current sheet. Its
component parallel to the sheet, B‖, has a Harris (1962) current
sheet-like profile in its variation with d⊥, having nearly oppo-
sitely equal values on each side of the sheet. We therefore found
the current-sheet width a by fitting B‖ with a hyperbolic tangent.
Panel (c) of Fig. 4 depicts the method, showing B‖ (blue curve) at
d‖ = 0, and its fit Bfit (red curve) as functions of d⊥. The variation
of the width along the current sheet is given in Panel (b) (green
curve). The large peaks in this curve correspond to plasmoids, as
evidenced by the density variations along the current sheet (ρCS)
shown in black in the same panel. In subsequent sections, we use
the average width over the whole current sheet ā to estimate the
inverse aspect ratio ā/L (Sect. 3.4), as well as density variations
along the current sheet to measure the frequency of plasmoids
(Sect. 3.3).

To illustrate how the different anomalous resistivity models
work on the current sheet, Fig. 5 maps the resistivity ηCS along
the current sheet for three 2k simulation cases (S3, Y4, and G5),
which all reach a peak value of around 60 km2 s−1. The resistivity
of S3 has a weaker variation along the current sheet than the
other two cases here, which is due to the fact that the resistivity
of the Syntelis-19 model is only linearly proportional to current
density. Therefore, one might expect the results of this resistivity
model to lie closer to those of uniform resistivity (for the same
resolution). Case G5, on the other hand, shows by far the most
variation in the resistivity along the sheet out of these three cases;
this is due to the more dynamic behaviour of the Gudiksen-11
model.

3.2.2. The diffusion region

The diffusion region of the reconnection site was defined as the
region around the current sheet delimited by |d‖| ≤ 0.50L and
|d⊥| ≤ 60 km, marked by a magenta dashed rectangle in the top
panel of Fig. 4. We chose to set the diffusion region half-width
to 60 km for two reasons: (a) this threshold is slightly bigger
than the peak value of the sheet width a measured in the largest
plasmoids in our simulation cases, and (b) it ensures that the
magnetic Reynolds number Re ≡ LB|u|/η is always larger than
100 outside this region. Thus, this diffusion region marks the

area where the resistivity has a significant effect on the plasma.
The mean resistivity of the diffusion region, ηd, is used when
estimating the effective Lundquist number.

3.2.3. The inflow regions

The inflow regions of the reconnection site were defined as the
areas delimited by |d‖| ≤ 0.25L and 60 km ≤ |d⊥| ≤ 300 km,
marked by green dotted rectangles in the top panel of Fig. 4.
This threshold ensures that the inflow regions lie just outside the
diffusion region (so Re > 100), and the Alfvén speed here is
more or less constant with distance from the sheet. The delimi-
tation of |d‖| ≤ 0.25L is to avoid the areas near the endpoints of
the current sheet where the Alfvén speed fluctuates more rapidly.

With this definition, the inflow Alfvén speed vAi was mea-
sured as the mean Alfvén speed within the green dotted rectan-
gles. Similarly, the inflow velocity vi was measured as the mean
absolute value of the velocity u⊥ perpendicular to the current
sheet within the inflow region. In panels (d) and (e) of Fig. 4, we
show both quantities as a function of d⊥. The black curve plots
the average values taken over |d‖| ≤ 0.25L, while the blue area
shows the ranges within one standard deviation. The estimated
(equilibrium) values for the inflow Alfvén speed and the inflow
velocity (at a given time and for a given case) is computed as the
mean value of these black curves for 0.06 Mm ≤ |d⊥| ≤ 0.3 Mm,
which is printed in the upper right corners of the panels.

Finally, the reconnection rate MAi in each simulation case
can be estimated as the mean of vi/vAi, which is analysed in
Sect. 3.5. Similarly, the effective Lundquist number S L is esti-
mated as the mean of LvAi/ηd, which is a central part of the
analysis in the following sections. For both quantities, the mean
values are time averages over t ∈ [15, 35] min due to the fact that
the current-sheet length is approximately stable during that time
period.

3.3. Frequency of plasmoids along the current sheet

The frequency of plasmoids in the current sheet is studied here
through the variation in mass density ρCS measured along the
sheet (Fig. 4, panel b), which, for our case, was found to be
easier than detecting null-points following the method described
by Huang & Bhattacharjee (2010). To demonstrate this, ρCS is
mapped against d‖ and time in Fig. 6 for (top panels) the same six
8k simulation cases as in Fig. 3, along with six 2k cases with the
YS-94 resistivity (middle panels) and six with the Gudiksen-11
resistivity (bottom panels). Plasmoids are here identified as dark
red stripes tilted either upwards to the left or to the right, depend-
ing on which way the plasmoids move along the current sheet. In
agreement with the movie of Fig. 3, no plasmoids appear in case
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Fig. 4. Characteristics of the current sheet (case 8kU6). Panel (a): Mass
density ρ in the current sheet, mapped for LB ≤ 20 km. The dashed line
with endpoints P0 to P1 marks the current sheet, with coordinate axes
for d‖ and d⊥ plotted in. Diffusion and inflow regions are delimited by
magenta and green rectangles, respectively. Panel (b): Average density
ρCS (black curve) and width a (green curve) of the current sheet. Panel
(c): Parallel component of magnetic field, B‖ (blue), across the current
sheet and the best-fit (red) curve used to estimate a at d‖ = 0. Panels
(d) and (e): Alfvén velocity vA (d) and perpendicular velocity u⊥ (e)
across the current sheet. Blue area maps the ranges of all values for
|d‖| ≤ 0.25L, and black curve plots the average. Estimated inflow region
mean values are printed in top right corner.

8kU1. On the other hand, plasmoids appear frequently in cases
8kU4, 8kU6, and 8kU8. In case 8kU4, a roughly equal number
of plasmoids move upwards to the left along the current sheet as
those moving downward to the right, while in cases 8kU6 and

Fig. 5. Evolution of the resistivity ηCS along the current sheet for the
S3, Y4, and G5 models. The three cases shown are 2k simulations with
anomalous resistivity with ηp = 60 km2 s−1.

8kU8, the majority move in the latter direction. In cases 8kU10
and 8kU11, the dark stripes are very thin and barely visible,
which indicates that most of the plasmoids have diminished and
in such a way that they are only visible as outward-propagating
shocks, which is also seen in the movie. These cases are not
perfectly shock-mediated, as plasmoids still occur (though the
larger plasmoids occur only rarely here), but they are signif-
icantly closer to the shock-mediated regime than cases 8kU4-
9. Therefore, the 8k cases seemingly cover three different types
of reconnection: steady (Sweet-Parker-like), plasmoid-mediated,
and (nearly) shock-mediated (Petschek-like) reconnection. In all
8k cases, the current-sheet length, as measured in the figure as
the width of the coloured region, lies roughly around 2 Mm.
The corresponding maps for the 4k cases (not shown in the
figure) appear very similar to the 8k cases, though with a slightly
shorter current-sheet length. Similar plasmoid patterns are also
found in the 2k uniform resistivity cases for a narrower range of
Lundquist numbers.

Among the YS-94 resistivity cases (see Fig. 6, middle row),
the number of plasmoids (as seen as the dark stripes in the maps)
clearly increases from Y3 to Y5. The plasmoids are more diffi-
cult to detect by eye in cases Y6-8, but a closer look reveals a
significant number of very thin stripes. Hence, the plasmoids as
reproduced with the YS-94 model seem to diminish in size (but
not necessarily in number) as the resistivity gets sufficiently low.
This indicates that reconnection reproduced with this resistivity
model may approach steady Petschek reconnection – which is
characterised by shocks instead of plasmoids – as the resistivity
decreases. In all of the Gudiksen-11 cases, the plasmoids are rel-
atively large in size, and are clearly more numerous in the lower-
resistivity cases (especially in G5-7) than in the higher-resistivity
cases. Among the Syntelis-19 cases, which are not shown in the
figure, a minor decrease in plasmoid size is seen from cases
S4 to S5, similar to that of the YS-94 cases, but of a lesser
degree. All the 2k cases have a shorter current sheet than the
8k (and 4k) cases, which is due to a higher numerical diffusion
that sets a stricter limit on the current-sheet length. The current-
sheet length in the Gudiksen-11 cases increases as the resistiv-
ity decreases, in agreement with the discussion in Sect. 3.1.5 of
F2023 on how current-sheet length depends on the scaling of
the anomalous resistivity models. A similar but weaker scaling
between current-sheet length and resistivity is found in the YS-
94 and Syntelis-19 cases.

In order to measure the frequency of plasmoids for each
simulation case, we picked specific locations along the current
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Fig. 6. Evolution of mass density ρCS along the current sheet over time for selected simulation cases. Dashed lines mark the locations where a peak
detection algorithm was used to count the number of plasmoids occurring per time.

sheet where we measure the density as a function of time. These
locations are marked with dashed vertical lines in each panel of
Fig. 6. For most of the cases, plasmoids move in either direc-
tion, and so we picked two locations for measuring the density
curves. These locations were picked in such a way that each
plasmoid passes through one of the locations, but not both. Plas-
moids passing through one of those points are then detected as
spikes in the density curves. Hence, the total number of plas-
moids generated along the current sheet is given by the total
number of spikes in the density curves. In the shock-mediated
cases 8kU10-11 and Y6-8, the shocks are also seen as spikes in
these curves.

The frequency of plasmoids for the different simulation cases
– measured as the total number of plasmoids found in each case
in the time interval t ∈ [15, 35] min divided by 20 min – is plotted
against Lundquist number in Fig. 7. The results are grouped into
different panels by resistivity model and resolution. For a cer-
tain range of Lundquist number within each group of cases, the
plasmoid frequency increases roughly with Lundquist number
by a power law S p

L, and we used curve fitting to find the best-
fitting value of p, and the best-fit curves are plotted as dashed
lines. For the shock-mediated cases, we use the term “shock fre-
quency” instead of “plasmoid frequency”, as the majority of the
spikes found in the density curves in those cases are seen only as
shocks propagating out of the reconnection site.

Among the uniform resistivity cases, as seen in the top pan-
els of Fig. 7, cases U1, 4kU1-2, and 8kU1-2 follow steady

reconnection, and therefore no plasmoids occur, as indicated
by their label placed to the left of the vertical blue line in
each panel. The other cases are plasmoid-mediated or shock-
mediated (8kU10 and 8kU11). As for the 2k cases, plasmoid-
mediated reconnection is reproduced only for a narrow range of
Lundquist numbers given by 3.5 ≤ log S L ≤ 4.0, below which
steady reconnection occurs, and above which numerical insta-
bility occurs. Within the plasmoid-mediated regime, given by
cases U2-U4, the plasmoid frequency ranges from 2.0 to 4.7
plasmoids per minute, with a scaling with Lundquist number
given by S 0.811

L , which is much stronger than the S 0.375
L scal-

ing found by Loureiro et al. (2007) for an adiabatic medium.
Regarding the plasmoid-mediated 4k cases (4kU3-9), the plas-
moid number ranges from 4.5 to 11 plasmoids per minute for
Lundquist numbers of 3.9 ≤ log S L ≤ 5.6 with a scaling of
S 0.240

L , which is weaker than the above-mentioned adiabatic scal-
ing, and is relatively close to the S 0.223

L scaling found in the
non-adiabatic cases of Sen & Keppens (2022). Regarding the 8k
cases, the plasmoid frequency ranges from 6.9 to 12 plasmoids
per minute for Lundquist numbers of 4.2 ≤ log S L ≤ 5.4 with
scaling of S 0.210

L , which is even weaker than the scaling of the
plasmoid-mediated 4k cases and is even closer to the scaling
of Sen & Keppens (2022). In the shock-mediated cases 8kU10
and 8kU11, the measured frequency of shocks is lower than the
plasmoid frequencies of 8kU7-9. These two cases fit well to the
(dotted) line for the S 0.375

L scaling, indicating that the frequency
of shocks generated in this type of (Petschek-like) reconnection
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Fig. 7. Plasmoid frequency, measured as the number of plasmoids generated along the current sheet per minute, plotted against Lundquist number
S L for each simulation case. Results are displayed for cases with uniform resistivity (top panels, with 2k, 4k, and 8k cases in separate panels)
and anomalous resistivity (bottom panels, with Syntelis-19, YS-94, and Gudiksen-11 cases in separate panels). For cases within a certain range
of Lundquist numbers, the plasmoid frequency scales roughly with Lundquist number by a power law S p

L, and best-fit curves for these cases are
plotted as dashed lines in each panel. The curve for the adiabatic power law S 0.375

L is plotted as a dotted line for the cases where a nearly adiabatic
scaling between plasmoid number and Lundquist number occur. A vertical line marks the Lundquist number below which steady reconnection
occurs and above which plasmoid-mediated reconnection occurs. Cases U1, 4kU1-2, 8kU1-2, S1, and Y1 have no plasmoids, as indicated by the
label placed inside the steady-reconnection regime.

scales adiabatically with Lundquist number. Case 8kU3 is seem-
ingly in an intermediate state between the steady-reconnection
regime and the plasmoid-mediated regime, and case 8kU9 is
in an intermediate state between the plasmoid-mediated and
shock-mediated regimes. By comparing the results for uniform
resistivity with the three different resolutions, we see that the
plasmoid frequency tends to converge towards higher values
with a weaker scaling with Lundquist number as the resolution is
increased. The difference is smaller between the 4k and 8k cases
than between the 2k and 4k cases.

Among the 2k cases with the Syntelis-19 resistivity model
(bottom left panel), steady reconnection occurs for log S L < 3.4
(case S1). For 3.4 ≤ log S L ≤ 4.5 (cases S2-5), the plasmoid
frequency ranges from 0.8 to 3.2 plasmoids per minute with a
scaling of S 0.641

L , a significantly stronger scaling than the adia-
batic one, though weaker than the 2k cases with uniform resistiv-
ity (for higher Lundquist number, numerical instability occurs).
Among the YS-94 cases (bottom centre panel), Y1 has steady
reconnection, and in cases Y2-8, the plasmoid frequency (or
shock frequency for Y6-8) ranges from 1.1 to 5.0 plasmoids (or
shocks) per minute for 3.6 ≤ log S L ≤ 5.2 with a scaling of
S 0.408

L . With the (dotted) line for adiabatic scaling S 0.375
L added

to the panel, we see that the YS-94 resistivity model is capable
of reproducing a nearly adiabatic scaling between plasmoid (or
shock) frequency and Lundquist number. As for the Gudiksen-

11 cases (bottom right panel), the plasmoid frequency ranges
from 4.2 to 7.6 plasmoids per minute for 2.6 ≤ log S L ≤ 4.3
with a scaling of S 0.142

L . Therefore, with the 2k resolution, the
Gudiksen-11 model reproduces the highest plasmoid frequency
with the weakest scaling to Lundquist number. Moreover, the
Gudiksen-11 cases are the only 2k cases where plasmoid fre-
quency is found to scale more weakly with Lundquist num-
ber than the adiabatic scaling, and is closer to the scaling of
Sen & Keppens (2022) than the other 2k cases.

The key findings of this plasmoid analysis are as follows:
we observe that with uniform resistivity and a sufficiently high
resolution (4k and 8k cases), the dependency between plas-
moid formation and Lundquist number may be divided into three
regimes: (1) a steady-reconnection regime, for Lundquist num-
bers lower than 104; (2) a plasmoid-mediated regime with a sub-
adiabatic scaling between plasmoid number and Lundquist num-
ber similar to that of Sen & Keppens (2022) for Lundquist num-
bers between roughly 104 and 4× 105; and (3) a shock-mediated
regime for Lundquist numbers above roughly 4× 105, where the
frequency of shocks follows an adiabatic scaling with Lundquist
number similar to that predicted by Loureiro et al. (2007). With
uniform resistivity, very high resolution (as in our 8k cases,
∆x = ∆z = 3.9 km) is needed to obtain numerically stable sim-
ulations with a Lundquist number high enough to reproduce the
latter, shock-mediated regime.
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For lower resolutions (as in our 2k cases, ∆x = ∆z =
15.6 km), uniform resistivity is not a suitable resistivity model
for studying plasmoid formation, as plasmoid-mediated recon-
nection is reproduced only within a narrow range of Lundquist
numbers (between 3 × 103 and 104) without breaking numerical
stability along the current sheet. Within this range, the plasmoid
number increases rapidly with Lundquist number. The Syntelis-
19 resistivity model allows numerically stable simulations with
plasmoid-mediated reconnection for a slightly wider range, but
still with a significantly strong scaling between plasmoid number
and Lundquist number. The YS-94 model is capable of reproduc-
ing plasmoid- or shock-mediated reconnection for a relatively
wide range of Lundquist numbers and shows an almost perfectly
adiabatic scaling between plasmoid or shock frequency and
Lundquist number. The Gudiksen-11 model is capable of repro-
ducing plasmoid frequencies closer to those seen in the high-
resolution high-S L cases (G7 having ∼7.6 plasmoids per minute,
and the 8kU4-8 having about 7–12 plasmoids per minute), and
the scaling between plasmoid number and Lundquist number is
weaker than in the adiabatic case, which is in fair agreement with
the scaling seen in our higher-resolution cases as well as with the
scaling found by Sen & Keppens (2022).

3.4. Aspect ratio of the current sheet

In all of our simulation cases, the inverse aspect ratio ā/L
is initially infinitely high, as the current sheet starts at zero
length. During the first 15 min of the simulation, the aspect ratio
decreases rapidly as the current sheet increases in length, reaches
an equilibrium value of between 0.005 and 0.05 depending on
the simulation case, and remains roughly constant throughout
the reconnection phase. For the first 5–10 min of each simula-
tion, ā/L is higher than the ideal tearing instability threshold
value S −1/3

L , and the current sheet is stable during this phase (i.e.
no plasmoid instability occurs). Shortly after ā/L passes below
S −1/3

L , the current sheet becomes unstable in most of the simu-
lation cases, and plasmoids therefore rapidly appear. However,
in a few cases (S1, Y1, U1, 4kU1-2, and 8kU1-2, as discussed
below) where the Lundquist number is sufficiently low (<104),
the current sheet remains stable even when ā/L < S −1/3

L , allow-
ing steady reconnection to occur. Amongst those cases, in the
cases with uniform resistivity (U1, 4kU1-2, and 8kU1-2), ā/L
reaches an equilibrium value of close to S −1/2

L , indicating the
occurrence of Sweet-Parker reconnection.

In Fig. 8, we show the equilibrium value that ā/L reaches in
each case, which is computed as an average taken over the time
interval t ∈ [15, 35] min. The Sweet-Parker value aSP/L ≡ S −1/2

L
is plotted as a dashed line, and the ideal tearing instability thresh-
old athr/L ≡ S −1/3

L as a dotted line. All the uniform resistiv-
ity cases (top panels) are scattered in a similar manner. The
inverse aspect ratio clearly drops below the ideal tearing instabil-
ity threshold, allowing plasmoids to appear rapidly in all cases
except for those with a sufficiently low Lundquist number to
maintain steady reconnection. Those steady-reconnection cases,
namely U1, 4kU1, 4kU2, 8kU1, and 8kU2, all lie just below
the Sweet-Parker value in the figure, confirming that these cases
indeed follow Sweet-Parker reconnection. 8kU3 also lies just
below this line, and U2 on this line, which is in fair agree-
ment with the fact that they lie close to the threshold between
the steady regime and the plasmoid-mediated regime. All of
the cases that lie within the Sweet-Parker regime are scattered
approximately along the Sweet-Parker line, confirming that the
inverse aspect ratio is indeed proportional to S −1/2

L for Sweet-

Parker reconnection. In the plasmoid-mediated cases (U2-3,
4kU3-9, 8kU4-11), the size of the plasmoids puts a limit on
how small the mean thickness ā of the current sheet can be, and
therefore the inverse aspect ratio seems to be almost indepen-
dent of Lundquist number for those cases. For the nearly shock-
mediated cases, 8kU10 and 8kU11, we measured a significantly
lower inverse aspect ratio than in the more heavily plasmoid-
mediated cases, as the plasmoids here are diminished in size.

As for the anomalous resistivity cases seen in Fig. 8, the
inverse aspect ratio decreases slowly with increasing Lundquist
number because of a slowly increasing current-sheet length. In
all of the Syntelis-19 cases (bottom left panel), the inverse aspect
ratio decreases significantly below the ideal tearing instability
threshold, which is in close agreement with the fact that plas-
moids appear in all cases except S1 (where the sufficiently high
resistivity enforces stability of the current sheet). The inverse
aspect ratio of S1 is still significantly above the Sweet-Parker
value. Therefore, this steady-reconnection case is not Sweet
Parker-like, which is expected given that the resistivity is non-
uniform. Among the YS-94 cases (bottom centre panel), Y1-5
have an inverse aspect ratio far below S −1/3

L , and cases Y2-5
are clearly plasmoid-mediated, as expected, while Y1 has suf-
ficiently high resistivity to maintain steady reconnection, still
with ā/L > S −1/2

L (therefore not a Sweet-Parker case). Regard-
ing cases Y6-8, which are also plasmoid-mediated, the inverse
aspect ratio drops only barely below S −1/3

L in Y6-7 and remains
slightly above S −1/3

L in Y8. This may indeed explain why the
plasmoids in these cases appear diminished in size, indicating a
convergence towards shock-mediated reconnection for increas-
ing Lundquist number. In all of the Gudiksen-11 cases (Fig. 8,
bottom right panel), ā/L drops far below the ideal tearing insta-
bility threshold, in good agreement with the fact that plasmoids
appear relatively large in size in all those cases (as seen in
Fig. 6).

3.5. Reconnection rate

The reconnection rate MAi ≡ vi/vAi of each simulation case is
plotted against Lundquist number in Fig. 9. The Sweet-Parker
reconnection rate MSP ≡ S −1/2

L is plotted as a dashed line, and the
Petschek reconnection rate MPet ≡ π/8 ln S L as a dotted curve.
Among the uniform resistivity cases (top panels), the reconnec-
tion rates of U1, 4kU1, and 8kU1 lie near to the values pre-
dicted by the Sweet-Parker model, which is in good agreement
with the previously observed Sweet-Parker-like aspect ratio
and absence of plasmoids. These cases are therefore indeed in
the Sweet-Parker regime. The steady-reconnection cases 4kU2
and 8kU2 are also close enough to the Sweet-Parker line to
be characterised as Sweet-Parker reconnection. The plasmoid-
mediated cases U2-4, 4kU3-9, and 8kU3-9 lie approximately
along the same nearly horizontal line, meaning that the recon-
nection rate is almost independent of Lundquist number for
those cases. A similar change of dependency between reconnec-
tion rate and Lundquist number from the Sweet-Parker regime
to the plasmoid-mediated regime is seen in the simulations of
Bhattacharjee et al. (2009). Cases 8kU10 and 8kU11 both have
significantly higher reconnection rates, indeed close to that pre-
dicted by the Petschek model, which is in agreement with the fact
that these cases are more shock-mediated. This is due to the fact
that the resistivity in these two cases is low enough that the non-
uniform viscosity term has a dominating effect on the dynamics
of the current sheet. A similar Petschek-like reconnection was
seen in the simulations by Baty et al. (2009), where a relatively
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Fig. 8. Mean inverse aspect ratio averaged over t ∈ [15, 35] min, plotted against Lundquist number S L for each simulation case. The dashed line
marks the Sweet-Parker value aSP/L ≡ S −1/2

L , and the dotted line shows the ideal tearing instability threshold athr/L ≡ S −1/3
L .

low uniform resistivity was also applied, and that behaviour was
mainly triggered by the non-linear viscosity.

Among the Syntelis-19 cases (Fig. 9, bottom left panel),
the steady case S1 has a reconnection rate that is only slightly
below the Petschek value, indicating that the reconnection here
is nearly Petschek-like. The plasmoid-mediated cases S2 to
S5 lie further below the Petschek curve, though the scaling
between reconnection rate and Lundquist number is still simi-
lar to that of the Petschek model. Furthermore, all of the YS-
94 cases (bottom centre panel) lie approximately along the
Petschek curve, meaning that their reconnection rates roughly
agree with Petschek theory, even though plasmoids are present
in all of those cases except for Y1. This agrees perfectly with
what Yokoyama & Shibata (1994) found in their 2D simula-
tions of an emerging coronal loop, namely that this anoma-
lous resistivity model is capable of reproducing a non-steady
Petschek-like reconnection scheme. Regarding the Gudiksen-
11 cases (bottom right panel), only G1 lies below the Sweet-
Parker line. This is in agreement with the fact that the cur-
rent sheet in this case also has a Sweet-Parker-like aspect
ratio, which indicates that non-steady Sweet-Parker reconnec-
tion may be occurring here. G3-G5 all have reconnection rates
that are slightly below the Petschek value (and G2 somewhere
in between), while G6 and G7 have even lower reconnection
rates.

In summary, the reconnection rates obtained with the anoma-
lous resistivity models are in general higher than those obtained
with uniform resistivity. The YS-94 model is the only one to
reproduce reconnection rates that are approximately equal to the
Petschek values. The Gudiksen-11 model, on the other hand, is

capable of reproducing relatively high reconnection rates at the
same time as reproducing high plasmoid frequencies, as seen in
cases G1-5; these latter are the only cases that show reconnection
rates above 0.04 whilst also producing more than four plasmoids
per minute.

3.6. Temperature increase in the reconnection site

As a final step in our analysis of the reconnection process,
Fig. 10 displays the maximum temperature increase relative to
the initial temperature, max ∆T/T0, for all simulation cases,
which is given by the maximum value of (T − T0)/T0 found in
the computational domain averaged over t ∈ [15, 35] min. This
maximum temperature increase lies roughly around 27–30% in
the 8k cases, at about 25% in the 4k cases, and between 15%
and 22% in the 2k cases. This shows that the total heating of the
current sheet increases with resolution. The reason for this is that
the simulation cases with higher resolution obtain significantly
longer, though slightly narrower current sheets. Therefore, as the
total heating of the current sheet is equal to the heat input per vol-
ume integrated over its area, this observed correlation between
total heating and resolution is to be expected. Among the uni-
form resistivity cases, with the exception of 8kU10 and 8kU11,
the total heating of the current sheet seems to be almost indepen-
dent of Lundquist number. This is because the viscous heating of
the plasma in the reconnection site, which, predictably, becomes
dominant for high Prandtl numbers (Rempel 2017), is in our
cases found to increase with Lundquist number in a way that
balances the corresponding decrease in Joule heating. The nearly
shock-mediated cases 8kU10 and 8kU11 have a lower heat input
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Fig. 9. Reconnection rate, averaged over t ∈ [15, 35] min, plotted against Lundquist number S L for each simulation case. The dashed line marks
the Sweet-Parker value MSP ≡ S −1/2

L , and the dotted line the Petschek value MPet ≡ π/8 ln S L.

than the other 8k cases because of a significantly shorter and
thinner current sheet.

In all the anomalous resistivity cases, the total heating of
the plasma increases weakly with Lundquist number because
of the corresponding increase in current-sheet length, as seen in
Fig. 6. The scaling between total heating and Lundquist number
is strongest in the Gudiksen-11 cases, and G7 obtain a maximum
temperature increase of slightly above 20%, reaching the high-
est temperatures of the anomalous resistivity cases. Among the
2k cases, only the uniform resistivity cases reach higher tem-
peratures, but only at a significantly lower Lundquist number.
Therefore, with the resolution of the 2k cases, the Gudiksen-11
resistivity model is the most suitable for reproducing satisfacto-
rily high temperatures, that is, closer to those obtained in the
higher resolution cases, at relatively high Lundquist numbers
(>104).

4. Discussion

Here, we expand on our previous comparative study of resis-
tivity models (F2023) by performing numerical experiments
of plasmoid-mediated reconnection in a 2D coronal fan-spine
topology. We carried out a parametric study employing the same
three anomalous resistivity models as in F2023 as well as a
model with uniform resistivity. We varied the scaling parameters
and the numerical resolution and analysed how the characteris-
tics of the reconnection process depend on Lundquist number.

In all simulations, reconnection occurs along a tilted cur-
rent sheet in the corona, causing a temperature increase of
15–30%. The majority of the experiments show plasmoid-
mediated reconnection, regardless of the resistivity model used.

Fig. 10. Maximum temperature increase relative to initial temperature,
averaged over t ∈ [15, 35] min, plotted against Lundquist number S L for
all simulation cases.

Steady reconnection is only found in cases where the resistivity
of the current sheet is high enough to prevent plasmoid insta-
bility. The minimum Lundquist number required to reproduce
plasmoid instability lies around 2 × 103 in our lowest-resolution
cases and converges towards 104 as the resolution reaches suffi-
ciently high values, which is in good agreement with the findings
of Loureiro et al. (2007). The hyper-diffusive resistivity model
reproduces plasmoid instability at significantly lower Lundquist
numbers, which is due to its dynamic variation in the resistivity
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along the current sheet. We also see (in some cases with the drift
velocity-dependant resistivity) that the reconnection is shock-
mediated rather than plasmoid-mediated if the inverse aspect
ratio ā/L of the current sheet remains above or only slightly
below S −1/3

L , indicating that ā/L has to drop significantly below
this threshold in order for the current sheet to become intrinsi-
cally unstable, as predicted by Pucci & Velli (2014).

The frequency of plasmoids generated along the current
sheet scales with the Lundquist number, following a power law
for a certain range of Lundquist numbers. With uniform resis-
tivity, the plasmoid frequency converges towards higher val-
ues and a weaker scaling with Lundquist number as the reso-
lution increases. The cases with the highest resolution, ∆x =
∆z = 3.9 km, reproduce a plasmoid frequency that ranges from
6.9 to 12 plasmoids per minute and scales as S 0.210

L for S L ∈

[1.8 × 104, 2.6 × 105], which is close to the power law found
by Sen & Keppens (2022) for the maximum plasmoid number
on a Harris current sheet in a non-adiabatic medium. Our simu-
lated plasma is also non-adiabatic, which explains why we repro-
duce a scaling law here that is similar to theirs rather than to
those derived in the adiabatic cases of Loureiro et al. (2007)
and Huang & Bhattacharjee (2010), where the plasmoid number
was ∝ S 0.375

L in the linear reconnection phase and ∝ S L in the
non-linear phase. For S L < 104, steady Sweet-Parker reconnec-
tion occurs that is characterised by the absence of plasmoids, a
Sweet-Parker-like aspect ratio of the current sheet, and a recon-
nection rate similar to that predicted by the Sweet-Parker model.
For sufficiently high Lundquist numbers (S L > 5× 105), a rather
shock-mediated Petschek reconnection occurs, which is similar
to what was found by Baty et al. (2009), with a nearly adia-
batic scaling between shock frequency and Lundquist number
and a reconnection rate close to the Petschek value. This hap-
pens because the resistivity here is low enough to allow the non-
uniform viscous term to dominate.

Among our simulation cases with the lowest resolution,
∆x = ∆z = 15.6 km, plasmoid-mediated reconnection is repro-
duced for only a narrow range of Lundquist numbers (S L ∈

[3 × 103, 104]) with uniform resistivity. The anomalous resistiv-
ity models help to increase this range. The drift-velocity-scaled
model (YS-94) used by Yokoyama & Shibata (1994) reproduces
Petschek reconnection for any Lundquist number (being steady
for S L < 103) with reconnection rates approximately equal
to π/(8 ln S L) and a nearly adiabatic scaling between plasmoid
(or shock) frequency and Lundquist number. The model with
resistivity proportional to current density (Syntelis-19) repro-
duces similar results, but on a narrower range of Lundquist num-
bers, with a lower plasmoid frequency that scales more closely
with Lundquist number and a reconnection rate that is slightly
lower than the Petschek value. The hyper-diffusive resistivity
model of Bifrost (Gudiksen-11) reproduces higher plasmoid fre-
quencies (4.2–7.6 plasmoids per minute) with a weaker scal-
ing with Lundquist number (∝ S 0.142

L ) than any of the other
resistivity models applied on the same resolution; indeed, it is
the only resistivity model that, for the given resolution, repro-
duces a plasmoid frequency with a weaker scaling to Lundquist
number than the S 0.375

L scaling predicted for adiabatic recon-
nection (Loureiro et al. 2007). This resistivity model therefore
reproduces plasmoid characteristics that more closely resem-
ble those seen in the higher-resolution cases. It is also the only
resistivity model that reproduces both relatively high recon-
nection rates (>0.04) and plasmoid frequencies (>4 plasmoids
per minute) at the same time. Additionally, for significantly
high Lundquist numbers (>104), the hyper-diffusive resistiv-
ity model of Bifrost reproduces a higher total heating of the

plasma than the other resistivity models applied on the same
resolution, reaching temperatures closer to those of the higher-
resolution cases. Therefore, this model indeed proves to be
suitable for simulating dynamic plasmoid-mediated reconnec-
tion, and is also applicable for 3D models of the solar atmo-
sphere without requiring extremely high resolution. Indeed, this
model has been successfully used for simulations of flux emer-
gence with plasmoid reconnection leading to EBs and UV bursts
(Hansteen et al. 2019) as well as nanoflare-like events with syn-
thesised line spectra detectable for the upcoming MUSE mission
(Robinson & Carlsson 2023).

The most important result of this comparative study is
that, out of the four resistivity models applied on the same
reconnection experiment with the same numerical resolu-
tion, the plasmoid characteristics produced with the hyper-
diffusive model most closely resemble those obtained with uni-
form resistivity with significantly higher resolution. Addition-
ally, by taking into account scaling laws previously derived
for spontaneous reconnection on Harris sheets (Loureiro et al.
2007; Bhattacharjee et al. 2009; Huang & Bhattacharjee 2010;
Sen & Keppens 2022), we show that we are able to derive very
similar scaling laws for a more driven reconnection process.
This indicates that such scaling laws may apply on a wider
range of reconnection processes, allowing us to better under-
stand more complex scenarios such as reconnection driven by
granular motion (Nóbrega-Siverio & Moreno-Insertis 2022).

The complex behaviours of plasmoid instability may only
be fully understood through three-dimensional numerical stud-
ies; namely the turbulent splitting, kinking, and merging of plas-
moids seen in the coronal mass ejection simulation of Ye et al.
(2023), or the chaotic tearing-thermal instability leading to coro-
nal condensation similar to prominences and coronal rain blobs
simulated by Sen et al. (2023). Two-dimensional particle-in-
cell (PIC) simulations of waves in plasmoid-mediated recon-
nection have provided new insights into the different natures
of waves inside and outside current sheets as an effect of the
tearing instability (Shahraki Pour & Hosseinpour 2022). High-
resolution 2D MHD simulations with resistivity predicted from
particle-collision probabilities including radiative cooling and
partially ionised effects have provided detailed information on
the energy balance in plasmoid reconnection in the chromo-
sphere leading to EBs (Liu et al. 2023) and UV bursts (Ni et al.
2022). Though MHD simulations with anomalous resistivity
may lead to a slightly more approximate representation of the
reconnection process, this study proves that the hyper-diffusion
model of Bifrost is indeed helpful in numerically studying phe-
nomena on the Sun that would otherwise require a significantly
higher resolution to simulate with a low, Spitzer-like resistivity.
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