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1 Introduction

1.1 Outline

In this thesis we study the decoherence of a qubit coupled to a single two-level
fluctuator. The fluctuator is coupled to an exterior environment of which we
have created a simple model. We are interested in the entanglement between
the qubit and fluctuator, and when we can make a classical approximation of
the fluctuator. We expect that if the coupling to the environment is strong
enough then the fluctuator will quickly dephase and behave like a classical
system. In this case the fluctuator can be treated as a random telegraph
noise signal.

We start by explaining the motivation and background for this study, be-
ginning with a general introduction to quantum information and decoherence.
Previous results are discussed and used to explain the motivation behind this
study. In the introduction we have also include a theory section. Here we
present relevant theory on the Bloch ball representation, decoherence, mu-
tual information and generalized measurements. We conclude chapter 1 with
a detailed description of the system we are analyzing, including the model of
the environment. In chapter 2 we study a qubit coupled to a classical fluc-
tuator producing telegraph noise. We look at the decoherence of the qubit
and the mutual information between the qubit and fluctuator. In chapter 3
we look at a qubit coupled to a quantum fluctuator. We compare decoher-
ence and mutual information with the case in chapter 2. We also look at
the temperature-dependence of the system, which is where we have our main
results. In chapter 4 we summarize the results and conclude with suggestions
for further study. We have in addition an appendix where we have done some
analytical calculations on a simplified version of our model. The results here
are not very relevant for the main project, but can be of interest from a purely
theoretical point of view. Among the topics touched upon in the appendix
are the Bloch ball for n-dimensional systems and decoherence-free subspaces.
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1.2 Background

A quantum mechanical system can never be completely isolated from the
outside environment. The interactions between the quantum system and
the environment give rise to a loss of information, called decoherence or
dephasing. The information that is lost due to decoherence is the relative
phase between states. If we look at a two-level system we have the wave-
function

ψ = r1|0〉+ r2e
iθ|1〉 (1.1)

where |0〉 and |1〉 are the basis states and we ignore a global phase factor.
The measurement statistics are given by r1 and r2. This can be called the
“classical” information in the system. The quantum information is given
by the relative phase eiθ. Decoherence will cause this factor to decay, as
explained later in the introduction.

Understanding decoherence is important from a theoretical point of view,
as it can shed light on the quantum to classical transition [1]. This is known
as the measurement problem. The theory of quantum mechanics does not
currently have a proper explanation of measurements. Measurements are
described by postulates stating that the wave-function will collapse to one
of the eigenfunctions of the observable that is being measured. The prob-
abilities are given by the eigenvalues. The details of this collapse are not
fully understood, and many believe that decoherence is the key to this un-
derstanding.

An understanding of decoherence is also crucial to any technological ap-
plication that makes use of quantum mechanical phenomena. An example
of this is the quantum computer where prepared states are manipulated and
used to store information and perform algorithms. These states will always
decohere due to environmental noise, and a thorough understanding of this
process is necessary in order to achieve the long dephasing times that are
needed.

Much of the research done on decoherence is in the field of quantum in-
formation. This includes quantum computing, communication, cryptography
and other applications. In this field quantum phenomena, such as superpo-
sition and entanglement, are exploited to create technology that would not
be possible with purely classical systems. Examples of this are certain quan-
tum algorithms that are faster than their classical counterparts [2]-[3], and
cryptography schemes that are theoretically impossible to hack under ideal
conditions [4]. The quantum mechanical system used to store information in
most cases is called the quantum bit, or qubit. Like a classical bit the qubit
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has two possible states, normally called |0〉 and |1〉. The difference is that a
qubit can also be in a superposition of the two states, allowing entanglement
with other qubits. However, the qubit will also become entangled with the
environment causing decoherence.

The main challenge when studying the decoherence of qubits is construct-
ing a model of the environment. The model has to be realistic but still simple
enough to do calculations. The key is to find the parts of the environment
that are the biggest cause of decoherence, and ignore the smaller contribu-
tions. In many cases, the main contributions to decoherence are found to
be electrons fluctuating between impurities in an insulator. For example,
decoherence in Josephson qubits is caused by fluctuations in the insulator
used as the tunnel barrier [5]. The electrons usually fluctuate between two
impurities making them essentially two-level systems. We call these systems
fluctuators. It is often the noise produced by a few fluctuators with low fre-
quency that is the main cause of decoherene. This noise source is called 1/f
noise due to the inverse frequency-dependence.

When analyzing the decoherence of a qubit coupled to a set of fluctuators
it is normal to make a classical approximation. It is assumed that the fluctu-
ators are so strongly coupled to the exterior environment that they will not
become entangled with each other or the qubit. We can then treat the fluc-
tuators as classical systems producing random telgraph noise (RTN). Qubit
decoherence due to random telegraph noise has been studied extensively in
recent years, both analytically and numerically [6]-[9]. The subject of inter-
est in this thesis is when the approximation is valid. This has been analyzed
by Grishin et al. [10], where they study a model of a qubit coupled to a set of
fluctuating background charges. In this model the fluctuators are described
as a set of impurities tunnel-coupled to the conduction band. Electrons can
hop between the conduction band and the impurities creating the fluctuating
background charges. With this model they derive the long-time decoherence
rate of the qubit as a function of the temperature and coupling strength be-
tween the qubit and fluctuators. They find that, for high temperatures, the
dependence of the decoherence rate on the coupling strength is the same as
for the classical case. In a later study done by Abel and Marquardt [11], the
same model is used but with only one fluctuator. Here they find the full time-
dependence of the qubit decoherence. They characterize the strong-coupling
regime by the critical coupling strength where visibility oscillations start to
occur. They find that the critical coupling strength converges to the classical
value at high temperatures. Both these papers focus mainly on deriving the
time-dependence of the qubit decoherence, analyzing the quantum effects at
low temperatures. In the chosen model, the temperature is the only parame-
ter that decides how classically the fluctuator behaves. In this thesis we use
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a different model where we can also control the coupling between the fluctu-
ator and environment. Here we hope to show that it is the combination of
temperature and this coupling strength that decides the fluctuator dephas-
ing rate and thereby controls the quantum to classical transition. This will
validate the use of the classical approximation also at low temperatures.

1.3 Theory

1.3.1 Bloch Ball

Quantum states can be represented by density matrices. A general density
matrix is given by

ρ =
∑

i

pi|ψi〉〈ψi| (1.2)

where |ψi〉 are pure states and pi is the probability of finding the system in
the state |ψi〉. The density matrix has three conditions: It is hermitian, the
trace is equal to one and all eigenvalues are greater than or equal to zero.
For 2-level systems we can represent each density matrix as a point in a 3-
dimensional space. This is because the matrix has three parameters. If we
have the matrix

ρ =

(

ρ11 ρ12
ρ21 ρ22

)

(1.3)

then the parameters are ρ11, Re ρ12 and Im ρ12. The third condition confines
the points to a ball with a radius equal to one. The pure states are on the
surface of the ball while points inside the ball represent mixed states. We
can express the density matrix as

ρ =
1

2
(I +miσi) (1.4)

where σi are the Pauli spin matrices, and summation over repeated indices is
implied. The coefficients {mi} give us the coordinates of the Bloch vector. It
is easy to show the following relations between the Bloch vector and density
matrix elements.

mx = ρ12 + ρ21 (1.5)

my = i(ρ12 − ρ21) (1.6)

mz = ρ11 − ρ22 (1.7)
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Figure 1.1: Bloch ball representation of the state |0〉

As an example, the state |0〉 has the density matrix ρ = |0〉〈0| which can be
written as ρ = 1

2
(I + σz). The Bloch vector is then

~m =





0
0
1



 (1.8)

This vector is shown on the Bloch sphere in figure 1.1. The Bloch ball is
useful for representing spin states because spin up and down are given by
mz = 1 and mz = −1 respectively. The phase information is then given
by the orientation in the xy-plane. Due to this useful representation it is
normal to use spin systems as an example of a two-state qubit. It has also
become standard due to magnetic resonance experiments using spin systems
and external fields.

If an external field is present, we can analyze how it affects the Bloch
vector. We continue our example with the state |0〉 but now add a field in
the y-direction. This gives us the hamiltonian:

H =
1

2
βσy (1.9)
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It is normal to have a factor 1/2. β is then the energy splitting between the
two eigenstates of the hamiltonian. The effect of the external field on the
system is given by the time evolution operator:

U(t) = e−iHt = e−
i
2
βσyt (1.10)

Using a series expansion and the fact that σ2
y = I one can show that this

becomes

U(t) = cos(
1

2
βt)I − i sin(

1

2
βt)σy (1.11)

In matrix form we have

U(t) =

(

cos(1
2
βt) − sin(1

2
βt)

sin(1
2
βt) cos(1

2
βt)

)

(1.12)

If the system starts in the state ρ = |0〉〈0| then after a time t the system will
be in the state

ρ(t) = U(t)ρU(t)† =

(

cos2(1
2
βt) cos(1

2
βt) sin(1

2
βt)

cos(1
2
βt) sin(1

2
βt) sin2(1

2
βt)

)

(1.13)

We can then find the Bloch vector elements:

mx(t) = 2 cos(
1

2
βt) sin(

1

2
βt) = sin(βt) (1.14)

my(t) = 0 (1.15)

mz(t) = cos2(
1

2
βt)− sin2(

1

2
βt) = cos(βt) (1.16)

We see that after a time t the Bloch vector rotates an angle βt towards the
x-axis. This is shown in figure 1.2. In general an external field will cause
the Bloch vector to precess in the plane normal to the field. The direction is
given by the right-hand rule.

1.3.2 Decoherence

Quantum decoherence, or dephasing, denotes the loss of phase-information
for a quantum state. This means that a pure quantum state will, after
sufficiant dephasing, become a mixed state. A system in a pure state can
be in a superposition of basis states. An example is the equal superposition
state for a qubit:

ψ =
1√
2
(|0〉+ |1〉) (1.17)
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Figure 1.2: Rotation of Bloch vector due to external field

This state has the following density matrix

ρ = |ψ〉〈ψ| = 1

2

(

1 1
1 1

)

(1.18)

The Bloch vector is

~m =





1
0
0



 (1.19)

shown in figure 1.3.
If we now add a field in the z-direction the Bloch vector will precess

in the xy-plane. This will not cause any decoherence as we still have full
information about the system. Instead of a constant field we can have a field
that fluctuates between up and down in the z-direction. The precession of
the Bloch vector will then change direction when the field does. If we don’t
know when the field changes direction we start to lose information about
the qubit. In this example we can assume that the field has a 50% chance
of changing direction every second. After the first second the state of the
system is a mixture of the two pure states presessing in opposite directions.
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Figure 1.3: Bloch ball representation of the equal superposition state

The Bloch vector is then the sum of the Bloch vectors corresponding to the
two states. Since the two vectors point in different directions, the sum will be
a vector inside the Bloch sphere. After each subsequent second the number
of states in the mixture will be doubled. The Bloch vector will always point
in the x-direction but the length will go to zero. We then end up with a
completely mixed state:

ρ =
1

2

(

1 0
0 1

)

(1.20)

1.3.3 Mutual Information

In classical information theory the Shannon entropy is a measure of the
uncertainty about a random variable. It quantifies the amount of information
we gain if we measure the variable. If the variable X has a set of values xi
with corresponding probabilities pi then the Shannon entropy is defined as

H(X) = −
∑

i

pi log pi (1.21)

It is easy to show that the entropy is greatest when all the probabilities are
equal. This is when we gain the most information on average by measuring
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the variable. If one of the probabilities equals one and the rest are zero, we
see that the entropy is zero. In this case we are certain of the outcome before
we measure so we do not gain any new information.

If we have two random variables X and Y then we define the joint entropy

H(X, Y ) = −
∑

x,y

pxy log pxy (1.22)

We can now define mutual information S(X : Y ). Mutual information is a
measure of how much information the two variables have in common, or how
strong the correlation is between them. It tells us how much new information
we gain about Y if we measure X. To calculate the mutual information we
add the entropies of the to variables and subtract the joint entropy:

S(X : Y ) = H(X) +H(Y )−H(X, Y ) (1.23)

For quantum mechanical systems we replace the Shannon entropy with the
Von Neumann entropy

S(ρx) = Tr ρx log ρx (1.24)

where ρx is the density matrix. The quantum mutual information is then
given by

S(ρx : ρy) = S(ρx) + S(ρy)− S(ρxy) (1.25)

where ρxy is the density matrix for the composite system. We see that the
mutual information is zero when S(ρxy) = S(ρx) + S(ρy). This is the case
when the system is in a product state ρxy = ρx ⊗ ρy. We then have no
correlations between the systems. The mutual information is at a maximum
when both systems have maximum entropy but the entropy of the composite
system is zero. In this case all the uncertainty about one system is due to the
correlations with the other system. Quantum mutual information is much
used in this thesis as it quantifies both the classical correlations and quantum
entanglement between the two systems.

1.3.4 Generalized Measurements

In this project we will make us of generalized measurements as described by
Nielsen and Chuang [12]. A quantum measurement is normally represented
by a set of projection operators. If a qubit has two possible states, |0〉 and
|1〉, then a measurement in this basis is given by the operators P0 = |0〉〈0|
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and P1 = |1〉〈1|. If the qubit starts in the state |ψ〉 and the outcome of the
measurement is 0 then the state after the measurement is

|ψ0〉 = P0|ψ〉
〈0|ψ〉 (1.26)

If the outcome of the measurement is 1 we have

|ψ1〉 = P1|ψ〉
〈1|ψ〉 (1.27)

Sometimes we want to describe measurements that aren’t necessarily projec-
tive. These measurements can be combinations of projective measurements
and unitary operations. This formalism of generalized measurements is never
strictly necessary as all physical measurements are projective, but it can sim-
plify some problems where we are interested in the state of a system after a
series of operations and measurements. Also, if a projective measurement is
done on a larger system the effect on a subsystem can be described by a gen-
eralized measurement. The generalized measurement is represented by a set
of operators Mm where m denotes the measurement outcome. If the system
is in the state |ψ〉 before the measurement and the measurement outcome is
m, then the state after is given by

|ψm〉 = Mm|ψ〉
√

p(m)
(1.28)

where p(m) is the probability of the measurement resulting in the outcome
m:

p(m) = 〈ψ|M †
mMm|ψ〉 (1.29)

Requiring that the probabilities sum to one gives us the completeness relation
for the measurement operators:

∑

m

p(m) =
∑

m

〈ψ|M †
mMm|ψ〉 = 1 (1.30)

⇔
∑

m

M †
mMm = I (1.31)

Using this definition we can find how the measurement affects the density
matrix. We assume that the system starts in a general mixed state ρ =
∑

i pi|ψi〉〈ψi|. After a measurement with the outcome m each pure state |ψi〉
will be transformed to the state |ψm

i 〉 where

|ψm
i 〉 =

Mm|ψi〉
√

p(m|i)
=

Mm|ψi〉
√

〈ψi|M †
mMm|ψi〉

(1.32)
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Here p(m|i) denotes the conditional probability of measuring the outcome
m if the system is in the state |ψi〉. The density matrix after measuring the
outcome m can be written as

ρm =
∑

i

p(i|m)|ψm
i 〉〈ψm

i | =
∑

i

p(i|m)
Mm|ψm

i 〉〈ψm
i |M †

m

p(m|i) (1.33)

p(i|m) is the probability that the system was in the state |ψi〉 if we have mea-
sured the outcome m. We now want to find an expression for p(i|m)/p(m|i).
Using the definition of joint probability we have

p(m, i) ≡ pmp(i|m) = pip(m|i) (1.34)

⇒ p(i|m)

p(m|i) =
pi
pm

(1.35)

pm can be written as

pm =
∑

i

pip(m|i) (1.36)

To express p(m|i) in a different way we use the following relation:

〈ψi|M †
mMm|ψi〉 = Tr(M †

mMm|ψi〉〈ψi|) (1.37)

This can be shown by first noting that for a given set of basis vectors |n〉 we
have

Tr(M †
mMm|ψi〉〈ψi|) =

∑

n

〈n|M †
mMm|ψi〉〈ψi|n〉 (1.38)

Choosing the basis so that |1〉 = |ψi〉 gives us 1.37. We now have

p(m|i) = Tr(M †
mMm|ψi〉〈ψi|) (1.39)

Inserting into the expression for pm we have

pm =
∑

i

piTr(M
†
mMm|ψi〉〈ψi|) (1.40)

= Tr(M †
mMmρ) = Tr(MmρM

†
m) (1.41)

We now have

p(i|m)

p(m|i) =
pi

Tr(MmρM
†
m)

(1.42)

11



Inserting into the expression for ρm we arrive at

ρm =
∑

i

p(i|m)
Mm|ψm

i 〉〈ψm
i |M †

m

p(m|i) (1.43)

=
∑

i

pi
Mm|ψi〉〈ψi|M †

m

Tr(MmρM
†
m)

(1.44)

=
MmρM

†
m

Tr(MmρM
†
m)

(1.45)

We see that the measurement operators act on the density matrix in the
usual fashion but since they are generally non-unitary we have to divide by
the trace of the new density matrix to ensure the restriction Tr ρ = 1. If
we have performed a measurement without knowing the outcome the density
matrix is given by

ρ′ =
∑

m

pmρ
m =

∑

m

MmρM
†
m (1.46)

1.4 Model

1.4.1 Hamiltonian

In this project we study a qubit entangled with a single two-level fluctuator.
The fluctuator has the hamiltonian:

Hf =
1

2
∆σz +

1

2
Λσx (1.47)

where σz and σx are the Pauli matrices, ∆ is the energy splitting and Λ is
the tunneling constant. This hamiltonian represents an electron fluctuating
between two impurities. The two positions have different energies and the
tunneling probability is given by Λ. Realistically the hamiltonian should
represent a free particle in a double-well potential. However if the energy is
low enough we can make an approximation saying that the electron can only
occupy the lowest state in each well. We use these as the basis states and we
can assume they are orthogonal as long as we include a tunneling probability
in the hamiltonian.

For simplicity we assume the qubit is not affected by any other field than
the one created by the fluctuator. We are only interested in the dephasing
of the qubit state so the internal qubit hamiltonian is not important. If the

12



qubit was affected by a field we could still make the analysis in a rotating
coordinate system. The hamiltonian for the whole system is

H =
1

2
∆I ⊗ σz +

1

2
ΛI ⊗ σx +

1

2
vσz ⊗ σz (1.48)

where ⊗ denotes a tensor product between the qubit and fluctuator Hilbert
spaces. When calculating in matrix form this becomes a kronecker product. v
is the interaction strength between the qubit and fluctuator. The interaction
term is in the z-direction and will cause the qubit and fluctuator to become
entangled. A pure state of the composite system will be of the form

|ψ〉 = c1|0〉q ⊗ |0〉f + c2|0〉q ⊗ |1〉f + c3|1〉q ⊗ |0〉f + c4|1〉q ⊗ |1〉f (1.49)

= c1|00〉+ c2|01〉+ c3|10〉+ c4|11〉 (1.50)

In vector form the basis states for the composite system are

|00〉 =
(

1
0

)

q

⊗
(

1
0

)

f

=









1
0
0
0









(1.51)

|01〉 =
(

1
0

)

q

⊗
(

0
1

)

f

=









0
1
0
0









(1.52)

|10〉 =
(

0
1

)

q

⊗
(

1
0

)

f

=









0
0
1
0









(1.53)

|11〉 =
(

0
1

)

q

⊗
(

0
1

)

f

=









0
0
0
1









(1.54)

We let the qubit start in the equal superposition state

|ψq〉 =
1√
2
(|0〉+ |1〉) (1.55)

This gives us the density matrix

ρq =
1

2

(

1 1
1 1

)

(1.56)
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In quantum computing it is normal to prepare the qubit in this state. We
assume the fluctuator starts in an equal ensemble of the two states

ρf =
1

2
(|0〉〈0|+ |1〉〈1|) = 1

2

(

1 0
0 1

)

(1.57)

This is because the fluctuator is not protected from the environment which
causes it to quickly decohere to a mixed state. Later we will let the fluctuator
start at thermal equilibrium at a finite temperature. The initial state of the
composite system is the product state

ρ = ρq ⊗ ρf =
1

4









1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1









(1.58)

The evolution of the system is given by the time evolution operator U(t) =
e−iHt. After a time t the density matrix is given by

ρ(t) = U(t)ρ(0)U(t)† (1.59)

We can then find the reduced density matrix for the qubit:

ρq = Tr f (ρ) = 〈0|fρ|0〉f + 〈1|fρ|1〉f (1.60)

If the density matrix for the composite system is

ρ =









ρ11 ρ12 ρ13 ρ14
ρ21 ρ22 ρ23 ρ24
ρ31 ρ32 ρ33 ρ34
ρ41 ρ42 ρ43 ρ44









(1.61)

then the reduced density matrix for the qubit is

ρq =

(

ρ11 + ρ22 ρ13 + ρ24
ρ31 + ρ42 ρ33 + ρ44

)

(1.62)

1.4.2 Environment

We will now describe a simple model for the interaction of our system with the
environment. In this model photons (or phonons) interact with the fluctuator
at regualar intervals τ . After a photon has interacted with the fluctuator it
leaves and we assume it does not interact with anything else during the time
scale we are interested in. After an interaction the photon will be in one of
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two states, |ph0〉 and |ph1〉, corresponding to the fluctuator states |0〉 and
|1〉. These states have an overlap given by

α = 〈ph0|ph1〉 (1.63)

If we ignore the qubit, the state of the fluctuator before the interaction can
be written as

ρf = f00|0〉〈0|+ f01|0〉〈1|+ f10|1〉〈0|+ f11|1〉〈1| (1.64)

Right after the interaction we have the composite state for the fluctuator and
photon:

ρf,ph = f00|0〉〈0| ⊗ |ph0〉〈ph0|+ f01|0〉〈1| ⊗ |ph0〉〈ph1|
+ f10|1〉〈0| ⊗ |ph1〉〈ph0|+ f11|1〉〈1| ⊗ |ph1〉〈ph1| (1.65)

To find the reduced density matrix for the fluctuator we have to trace over
the photon states:

ρ′f = 〈ph0|ρf |ph0〉+ 〈ph1|ρf |ph1〉 (1.66)

The fluctuator state right after the photon interaction is then

ρ′f = f00|0〉〈0|+ αf01|0〉〈1|+ αf10|1〉〈0|+ f11|1〉〈1| (1.67)

We see that the off-diagonal matrix elements are multiplied by α each time
a photon interacts with the fluctuator:

ρf =

(

f00 f01
f10 f11

)

ph−→
(

f00 αf01
αf10 f11

)

(1.68)

This effectively reduces the xy-component of the Bloch vector.
The qubit is isolated from the photons and is only affected indirectly

through the fluctuator. If the qubit-fluctuator system is in a pure state then
the state of the qubit-fluctuator-photon system right after an interaction is

|ψ〉 = c1|0〉q ⊗ |0〉f ⊗ |ph0〉+ c2|0〉q ⊗ |1〉f ⊗ |ph1〉
+ c3|1〉q ⊗ |0〉f ⊗ |ph0〉+ c4|1〉q ⊗ |1〉f ⊗ |ph1〉 (1.69)

The density matrix is then given by

ρ = |ψ〉〈ψ| (1.70)
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Tracing over the photon states gives the following change in the qubit-
fluctuator density matrix:

ρ =









ρ11 ρ12 ρ13 ρ14
ρ21 ρ22 ρ23 ρ24
ρ31 ρ32 ρ33 ρ34
ρ41 ρ42 ρ43 ρ44









ph−→









ρ11 αρ12 ρ13 αρ14
αρ21 ρ22 αρ23 ρ24
ρ31 αρ32 ρ33 αρ34
αρ41 ρ42 αρ43 ρ44









(1.71)

These same matrix elements are multiplied by α each time a photon interacts
with the system. For a general mixed state we have the same result of the
interaction since every mixed state can be written as a sum of pure states.

As we see the only way one of these photons interacts with the system
is by changing its own state according to the state of the fluctuator. We
assume this happens instantly and we are not interested in the details of
the interaction. The important effect of this interaction is that the photon
becomes entangled with the fluctuator and “steals” information. We can call
this a type of measurement although it doesn’t cause the fluctuator wave
function to collapse. It does however reduce the the purity of the state,
causing the fluctuator to behave more like a classical telegraph noise signal.
With the parameter α we can adjust how strongly the fluctuator is coupled
to the environment and thus control the entanglement between the fluctuator
and qubit.

This model of the environment does not allow the photons to exchange
energy with the fluctuator. This means that, even if we have an energy split-
ting ∆ between the two fluctuator states, we cannot define a temperature-
dependent thermal equilibrium. The equilibrium point will always be an
equal ensemble of the two states, which is the high-temperature limit. To
analyze the system for low temperatures we must allow the flucutuator to
absorb and emit photons. We will do this after we have studied the high-
temperature case.
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2 Classical Fluctuator

2.1 Telegraph Noise

Telegraph noise is defined as a signal with two levels and two rates for switch-
ing between them. The probability of switching is proportional to time. This
is different from white noise because there is a finite correlation time for the
signal. For the fluctuator we have the two states |0〉 and |1〉 with correspond-
ing switching rates Γ01 and Γ10. If the fluctuator is in the state |0〉 then the
probability of switching to state |1〉 during a time ∆t is Γ01∆t. Similarly if
the fluctuator is in the state |1〉 then the chance of switching to |0〉 is Γ10∆t.
Here we assume that ∆t is small so that the probability of switching more
than once during this time frame is virtually zero. For a general fluctuator
state at time t we call the probabilities for being in state |0〉 and |1〉 p0(t)
and p1(t) respectively. After a time ∆t these probabilities are given by

p0(t+∆t) = p0(t)(1− Γ01∆t) + p1(t)Γ10∆t (2.1)

p1(t+∆t) = p0(t)Γ01∆t+ p1(t)(1− Γ10∆t) (2.2)

If we rearrange the terms we can recognize this as a taylor-expansion to first
order:

p0(t+∆t) = p0(t) + [p1(t)Γ10 − p0(t)Γ01]∆t (2.3)

= p0(t) + ṗ0(t)∆t (2.4)

p1(t+∆t) = p1(t) + [p0(t)Γ01 − p1(t)Γ10]∆t (2.5)

= p1(t) + ṗ1(t)∆t (2.6)

This gives us the coupled differential equations:

ṗ0 = Γ10p1 − Γ01p0 (2.7)

ṗ1 = Γ01p0 − Γ10p1 (2.8)

Using the relation p0 + p1 = 1 we have

ṗ0 = Γ10(1− p0)− Γ10p0 (2.9)

= −Γp0 + Γ10 (2.10)
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where Γ = Γ01 + Γ10. If the fluctuator starts in the state |0〉 the solution of
the differential equation is

p0(t) =
1

Γ
(Γ10 + Γ01e

−Γt) (2.11)

For p1 we have

p1(t) =
1

Γ
(Γ01 − Γ01e

−Γt) (2.12)

When comparing with a quantum fluctuator we are interested in the differ-
ence p0−p1 because this is the z-component of the Bloch vector. In this case
we have

p0 − p1 =
1

Γ
(Γ10 − Γ01 + 2Γ01e

−Γt) (2.13)

For t = 0 we have p0 − p1 = 1, as expected. If t → ∞ then p0 − p1 →
(Γ10−Γ01)/Γ. We see that if Γ01 = Γ10 = Γ/2 then p0− p1 goes to zero. The
fluctuator has a relaxation to an equilibrium level given by t→ ∞. Γ is the
rate at which the fluctuator relaxes.

2.2 Transfer Matrix Solution

We will now analyze a qubit coupled with a telegraph signal using the transfer
matrix method developed by Cheng et al. [9]. We assume the qubit has no
internal dynamics. The Hamiltonian for the system is then

H =
1

2
v(t)σz (2.14)

where v(t) is the is either v for fluctuator state |0〉 or −v for fluctuator state
|1〉. The fluctuator has the switching rates Γ01 and Γ10. For each time step ∆t
the system will evolve according to the time evolution operator corresponding
to the fluctuator state:

U0 = e−ivσz∆t =

(

c− is 0
0 c+ is

)

(2.15)

U1 = eivσz∆t =

(

c+ is 0
0 c− is

)

(2.16)

where c = cos(1
2
v∆t) and s = sin(1

2
v∆t). After n time steps, the density

matrix for a given telegraph signal is

ρ(n∆t) = Un . . . U1ρ0U
†
1 . . . U

†
n (2.17)
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where each Uj is either U0 or U1 corresponding to the fluctuator state in the
time interval, and ρ0 is the initial qubit density matrix. This evolution can
be mapped to the Bloch sphere representation as 3 × 3 matrices operating
on the Bloch vector:

~m(n∆t) = Tn . . . T1 ~m0 (2.18)

Since we don’t know the precise telegraph signal, we have to average over all
possible signals:

~m(n∆t) = Tn . . . T1 ~m0 = T ~m0 (2.19)

where Tj is either T0 or T1 and T is called the ensemble averaged transfer
matrix. To calculate T0 and T1 we need to first look at the evolution of the
density matrix. For an arbitrary density matrix

ρ =

(

ρ11 ρ12
ρ21 ρ22

)

(2.20)

the evolution during a time step ∆t with the fluctuator in state |0〉 is given
by

U0ρU
†
0 =

(

c− is 0
0 c+ is

)(

ρ11 ρ12
ρ21 ρ22

)(

c+ is 0
0 c− is

)

(2.21)

=

(

ρ11 (c2 − s2 − 2ics)ρ12
(c2 − s2 + 2ics)ρ21 ρ22

)

(2.22)

The Bloch vector corresponding to ρ is

~m =





mx

my

mz



 =





ρ12 + ρ21
i(ρ12 − ρ21)
ρ11 − ρ22



 (2.23)

After the time evolution we then have

T0 ~m =





(c2 − s2 − 2ics)ρ12 + (c2 − s2 + 2ics)ρ21
i[(c2 − s2 − 2ics)ρ12 − (c2 − s2 + 2ics)ρ21]

ρ11 − ρ22



 (2.24)

=





(c2 − s2)mx − 2csmy

2csmx + (c2 − s2)my

mz



 (2.25)

This gives us T0:

T0 =





c2 − s2 −2cs 0
2cs c2 − s2 0
0 0 1



 =





cos v∆t − sin v∆t 0
sin v∆t cos v∆t 0

0 0 1



 (2.26)
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Using the same procedure we find T1:

T1 =





cos v∆t sin v∆t 0
− sin v∆t cos v∆t 0

0 0 1



 (2.27)

We can then express the general matrix as

Tr =





cos v∆t −a sin v∆t 0
a sin v∆t cos v∆t 0

0 0 1



 (2.28)

where a = 1 for r = 0 and a = −1 for r = 1. As expected, the z-componant
of the Bloch vector remains unchanged. Since the noise is oriented in the z-
direction, it only affects the direction of precession in the xy-plane. T0 makes
the Bloch vector precess counter-clockwise while T1 causes a clockwise pre-
cession. We now want to find the ensemble averaged transfer matrix. We
define Gr′r

n to be the transfer matrix for n time steps corresponding to the
fluctuator starting in state r′ and ending in r. This transfer matrix is aver-
aged over intermediate fluctuator states and is weighted by the probability
of the fluctuator being in state r at the end of the time evolution. For one
time step we have

Gr′r
1 = Wr′rTr′ (2.29)

where Wr′r is the probability of the fluctuator switching from state r′ to r.
These are given by

W01 = Γ01∆t (2.30)

W00 = 1− Γ01∆t (2.31)

W10 = Γ10∆t (2.32)

W11 = 1− Γ10∆t (2.33)

For two time steps we have

Gr′r
2 =

∑

r′′

Wr′′rTr′′Wr′r′′Tr′ (2.34)

=
∑

r′′

Wr′′rTr′′G
r′r′′

1 (2.35)

For n time steps we have

Gr′r
n =

∑

r′′

Wr′′rTr′′G
r′r′′

n−1 (2.36)
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Before we proceed we wish to express Tr in a different form. We see that

Tr = cos(v∆t)L2
z + ia sin(v∆t)Lz + I − L2

z (2.37)

where Lz is one of the generators of SO(3):

Lz =





0 i 0
−i 0 0
0 0 0



 , L2
z =





1 0 0
0 1 0
0 0 0



 (2.38)

Performing a series expansion we find

Tr = I + iav∆tLz +
1

2
(iav∆tLz)

2 + . . . (2.39)

= eiav∆tLz (2.40)

We can now define an operator

A = Weiv∆tLz⊗σz (2.41)

where σz is the Pauli matrix acting on the fluctuator state space, giving ±1
according to the fluctuator state. W is a matrix acting on the fluctuator
state space giving the correct probabilities. The fluctuator states in vector
form are

|0〉 =
(

1
0

)

|1〉 =
(

0
1

)

(2.42)

The matrix W is then

W =

(

W00 W10

W01 W11

)

=

(

1− Γ01∆t Γ10∆t
Γ01∆t 1− Γ10∆t

)

(2.43)

The operator A has the property 〈r|A|r′〉 = Wr′rTr′ . We then have

Gr′r
1 = 〈r|A|r′〉 (2.44)

Gr′r
2 =

∑

r′′

〈r|A|r′′〉〈r′′|A|r′〉 (2.45)

= 〈r|A
∑

r′′

|r′′〉〈r′′|A|r′〉 (2.46)

= 〈r|A2|r′〉 (2.47)

Gr′r
n = 〈r|An|r′〉 (2.48)
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where we have used the completeness relation
∑

r |r〉〈r| = I. The transfer
matrix is then given by summing over the final fluctuator state. We can also
to choose to average over the initial state. We then have

T =
∑

r,r′

Gr′r
n pr′ = (〈0|+ 〈1|)An(p0|0〉+ p1|1〉) (2.49)

where pr′ is the probability of the fluctuator starting in the state r′. We now
take the continuum limit. Expanding to first order we have

A = W (I + iv∆tLz ⊗ σz) (2.50)

= (I − V∆t)(I + iv∆tLz ⊗ σz) (2.51)

= I − (I ⊗ V − ivLz ⊗ σz)∆t (2.52)

(2.53)

where

V =

(

Γ01 −Γ10

−Γ01 Γ10

)

(2.54)

and we have excluded higher order terms. As ∆t goes to zero this becomes
a matrix exponential function:

A = I − (I ⊗ V − ivLz ⊗ σz)∆t (2.55)

= I −B∆t (2.56)

= e−B∆t (2.57)

where B = I ⊗ V − ivLz ⊗ σz. Finally we have

An = e−Bn∆t = e−Bt (2.58)

Instead of performing the partial inner product in 2.49, we can represent An

as a 6× 6 matrix acting on the 6-dimensional vector given by the kronecker
product of the initial qubit Bloch vector and fluctuator state. We call this
vector ~qi:

~qi = ~mi ⊗ |fi〉 =





mx

my

mz



⊗
(

p0
p1

)

(2.59)

After a time t we can express the state of the system as

~q(t) = e−Bt~qi = p0(t)~m0(t)⊗ |0〉+ p1(t)~m1(t)⊗ |1〉 (2.60)
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where p0(t) and p1(t) are the probabilities of the fluctuator being in state |0〉
and |1〉 respectively after a time t, and ~m0(t) and ~m1(t) are the corresponding
qubit Bloch vectors. We can then find the final qubit Bloch vector by taking
the partial inner product with the end fluctuator state:

~m(t) = (〈0|+ 〈1|)(p0(t)~m0(t)⊗ |0〉+ p1(t)~m1(t)⊗ |1〉) (2.61)

= p0(t)~m0(t) + p1(t)~m1(t) (2.62)

When solving this numerically we compute ~q(t):

~q(t) =

















q1
q2
q3
q4
q5
q6

















(2.63)

~m(t) is then given by

~m(t) =





q1 + q2
q3 + q4
q5 + q6



 (2.64)

~m0(t) and ~m1(t) are given by

~m0 =
1

p0(t)





q1
q3
q5



 , ~m1 =
1

p1(t)





q2
q4
q6



 (2.65)

2.3 Qubit Decoherence

As a measure of the qubit coherence we use the length of the Bloch vector
in the xy-direction. Using the transfer matrix method to compute the Bloch
vector numerically, we can plot the coherence as a function of time. In this
case we choose Γ01 = Γ10 and the fluctuator starts in an equal ensemble of
|0〉 and |1〉. The qubit starts in the equal superposition state

|ψq〉 =
1√
2
(|0〉+ |1〉) (2.66)

In figure 2.1 the coherence is plotted for various coupling strengths. The
result is well known and we can see the exponential long-time decay. For
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Figure 2.1: Qubit decoherence due to classical telegraph noise. Top to bot-
tom: coupling strength v/Γ = 0.2, 0.5, 1.0.

stronger coupling we observe oscillations in the qubit Bloch vector length.
This is due to the fact that the Bloch vector is a weighted sum over all pos-
sible telegraph signals. The two vectors corresponding to the two possible
initial fluctuator states will precess in opposite directions and, if the cou-
pling is strong enough, will reach opposite sides of the Bloch sphere while
the probability of the fluctuator switching states is still low. This gives a
premature loss of coherence which returns once there are more contributions
from vectors precessing in other directions.

2.4 Mutual Information

After the time evolution the qubit-fluctuator system will be in a separable
state. This means that there is no quantum entanglement, but there can
still be classical correlations between the qubit and fluctuator. The density
matrix for the composite system is given by

ρqf = p0ρ
0
q ⊗ ρ0f + p1ρ

1
q ⊗ ρ1f (2.67)

where p0 and p1 are the probabilities for the fluctuator being in state |0〉 and
|1〉, and ρ0q, ρ0f and ρ1q, ρ

1
f are the corresponding reduced density matrices for
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the qubit and fluctuator. We have

ρ0f = |0〉〈0|, ρ1f = |1〉〈1| (2.68)

and ρ0q, ρ
1
q are given by ~m0, ~m1. The general reduced density matrix for the

qubit is then

ρq = p0ρ
0
q + p1ρ

1
q (2.69)

and for the fluctuator

ρf = p0|0〉〈0|+ p1|1〉〈1| (2.70)

The mutual information is then given by

S(q : f) = S(ρq) + S(ρf )− S(ρqf ) (2.71)

In figure 2.2 we have plotted the mutual information for various coupling
strengths. As expected a stronger coupling between the qubit and fluctuator
will give a higher peak in mutual information. We also see that a stronger
coupling causes the mutual information to decay faster. This is because the
entropy of the entire system reaches its maximum sooner.
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Figure 2.2: Mutual information between qubit and classical fluctuator. Top
to bottom: coupling strength v/Γ = 1.0, 0.5, 0.2.
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3 Quantum Fluctuator

3.1 Fluctuator Relaxation

We would like to study the relaxation of the fluctuator due to the photon
interactions. We choose a simple case for the hamiltonian:

H =
1

2
Λσx (3.1)

We assume that the coupling to the qubit is weak compared to the internal
hamiltonian. For this case we are able to study the relaxation analytically.
Later when the hamiltonian is more complex we compute the relaxation rate
numerically, so the aim of this section is merely to give an illustration of the
fluctuator behavior. The time evolution between each photon interaction is
given by

U = e−iHτ = cos(
1

2
Λτ)− iσx sin(

1

2
Λτ) (3.2)

=

(

u −iv
−iv u

)

(3.3)

where u = cos(1
2
Λτ), v = sin(1

2
Λτ) and τ is the interval between photons.

For a given density matrix

ρn =

(

an bn
cn dn

)

(3.4)

the density matrix after the time evolution and before the photon interaction
is given by

ρ̃n+1 = UρnU
† (3.5)

=

(

u −iv
−iv u

)(

an bn
cn dn

)(

u iv
iv u

)

(3.6)

=

(

u2an + iuvbn − iuvcn + v2dn iuvan + u2bn + v2cn − iuvdn
−iuvan + v2bn + u2cn + iuvdn v2an − iuvbn + iuvcn + u2dn

)

(3.7)
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After the photon interaction the off-diagonal elements are multiplied by α.
We then have the following recursion relations:

an+1 = u2an + iuvbn − iuvcn + v2dn (3.8)

bn+1 = (iuvan + u2bn + v2cn − iuvdn)α (3.9)

cn+1 = (−iuvan + v2bn + u2cn + iuvdn)α (3.10)

dn+1 = v2an − iuvbn + iuvcn + u2dn (3.11)

We can simplify the problem by switching to the Bloch ball representation.
The Bloch vector elements are given by

xn = bn + cn (3.12)

yn = i(bn − cn) (3.13)

zn = an − dn (3.14)

We then have the recursion relations for the Bloch vector elements:

xn+1 = (bn + cn)α (3.15)

= αxn (3.16)

yn+1 = −2uv(an − dn)α + i(u2 − v2)(bn − cn)α (3.17)

= −α sin(Λτ)zn + α cos(Λτ)yn (3.18)

zn+1 = (u2 − v2)(an − dn) + 2iuv(bn − cn) (3.19)

= cos(Λτ)zn + sin(Λτ)yn (3.20)

The evolution of the system is then given by

~mn+1 =M~mn (3.21)

where ~m is the Bloch vector and

M =





α 0 0
0 α cos(Λτ) −α sin(Λτ)
0 sin(Λτ) cos(Λτ)



 (3.22)

We can decompose ~mn in the eigenvectors ~vi of M :

~mn =
∑

i

cni
~vi (3.23)

~mn+1 is then given by

~mn+1 =M~mn (3.24)

=
∑

i

cni
λi~vi (3.25)
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where λi are the eigenvalues of M . The general solution is then

~mn =Mn ~m0 (3.26)

=
∑

i

c0iλ
n
i ~vi (3.27)

The eigenvalues of M are

λ1 = α (3.28)

λ2 =
1

2
[cos(Λτ)(1 + α) +

√

cos2(Λτ)(1 + α)2 − 4α] (3.29)

λ3 =
1

2
[cos(Λτ)(1 + α)−

√

cos2(Λτ)(1 + α)2 − 4α] (3.30)

If τ ≪ 1 then we have cos(Λτ) ≈ 1. We can then approximate λ2 and λ3:

λ2 ≈
1

2
(1 + α +

√

(1 + α)2 − 4α) (3.31)

= 1 (3.32)

λ3 ≈
1

2
(1 + α−

√

(1 + α)2 − 4α) (3.33)

= α (3.34)

We see that for small τ λn2 will dominate over the other terms so that

~mn ≈ c02λ
n
2~v2 (3.35)

If the fluctuator starts in the state |0〉 then the z-component m0z = 1 = λ02.
After a time t the z-component can be approximated by

mz(t) ≈ λn2 (3.36)

= λ
t/τ
2 (3.37)

= e
t
τ
lnλ2 (3.38)

= e−Γt (3.39)

The z-component of the Bloch vector has an exponential decay with the rate
Γ = − 1

τ
lnλ2. This is the rate usually associated with the relaxation time T1.

If we analyze λ2 we see that it has an imaginary part when the term inside
the square root is negative:

cos2(Λτ)(1 + α)2 < 4α (3.40)
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This happens when α approaches 1. When λ2 is complex we can write it as

λ2 = reiφ (3.41)

where r is the modulus and φ is the phase. Taking the logarithm we find the
relaxation rate:

Γ = −1

τ
(ln r + iφ) (3.42)

The imaginary term gives rise to oscillations in the relaxation curve. If α = 1
then Γ is completely imaginary. This can be shown by multiplying λ2 with
its complex conjugate. This gives us the absolute value 1. If r = 1 then
ln r = 0. We then have no decoherence and the z-component of the Bloch
vector will simply oscillitate between -1 and 1.

Later we will add a σz term to the hamiltonian. This makes analytical
calculations much more difficult, but we can show numerically that the decay
is almost identical. However, for high energy splitting ∆ ≫ Λ we see a
decrease in the relaxation rate.

3.2 Qubit Decoherence

We now study the decoherence of a qubit coupled with a quantum fluctuator.
The hamiltonian is

H =
1

2
∆I ⊗ σz +

1

2
λI ⊗ σz +

1

2
vσz ⊗ σz (3.43)

and the fluctuator interacts regularly with external photons as described in
the introduction.

We are interested in comparing the qubit decoherence to that of the
previous case where the qubit is coupled to classical telegraph noise. When
the overlap α between the photon states is small then the fluctuator should
not have time to become entangled with the qubit. We should then recover
the same decoherence behavior as in the classical case.

We implement this model numerically. We let the qubit start in the equal
superposition state

|ψq〉 =
1√
2
(|0〉+ |1〉) (3.44)

and the fluctuator starts in the mixed state

ρf =
1

2
(|0〉〈0|+ |1〉〈1|) (3.45)
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For each time step ∆t we have the time evolution ρ(t+∆t) = U(∆t)ρ(t)U(∆t)†.
If a time τ has passed we let the flucuator interact with a photon giving the
following change to the density matrix:

ρ =









ρ11 ρ12 ρ13 ρ14
ρ21 ρ22 ρ23 ρ24
ρ31 ρ32 ρ33 ρ34
ρ41 ρ42 ρ43 ρ44









ph−→









ρ11 αρ12 ρ13 αρ14
αρ21 ρ22 αρ23 ρ24
ρ31 αρ32 ρ33 αρ34
αρ41 ρ42 αρ43 ρ44









(3.46)

We then find the reduced density matrix for the qubit:

ρq =

(

ρ11 + ρ22 ρ13 + ρ24
ρ31 + ρ42 ρ33 + ρ44

)

(3.47)

Finally we want to find the Bloch vector component in the xy-plane. The
components mx and my are given by

mx = ρq12 + ρq21 (3.48)

my = i(ρq12 − ρq21) (3.49)

The xy-component is then

mxy =
√

m2
x +m2

y (3.50)

To compare the decoherence to the case with telegraph noise we have
to find the relaxation rate Γ. To do this we have a seperate program that
calculates the z-component of the flucuator Bloch vector. The fluctuator
starts in the state |0〉 and we let it evolve in time according to the hamiltonian

H =
1

2
∆σz +

1

2
Λσx (3.51)

We neglect the coupling to the qubit, assuming the internal hamiltonian
is much stronger. In addition to the time evolution we have the photon
interactions after every interval τ . After a sufficient amount of time has
passed the z-component of the Bloch vector will decrease exponentially from
1 to 0 with the rate Γ:

mz = e−Γt (3.52)

To find Γ we can plot the logarithm

logmz = −Γt (3.53)
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Figure 3.1: Decoherence of qubit due to quantum (blue) and classical (green)
telegraph noise for α = 0.9, v/Γ = 0.5, Λτ = 0.05, Λ = ∆.

and make a linear fit. The switching rate for the telegraph signal we want to
compare with is then Γ/2.

We can now plot the xy-component of the qubit Bloch vector as a function
of time. In figure 3.1 we compare decoherence due to quantum and classical
telegraph noise. Here α is close to 1 so we see that the curves do not match
completely. We see a larger rate of decoherence for the qubit coupled with
the quantum fluctuator. This is due to the entanglement of the two systems
in addition to classical correlations. If we reduce α the decoherence curve
from quantum telegraph noise is closer to the classical limit. This is shown
in figure 3.2.

3.3 Mutual Information

In figures 3.3 and 3.4 we plot the mutual information between the qubit and
fluctuator given by

S(q : f) = S(ρq) + S(ρf )− S(ρqf ) (3.54)

We see the same trend as in the curves for decoherence. A larger α increases
the difference between the curves. In this case it is easier to understand.
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Figure 3.2: Decoherence of qubit due to quantum (blue) and classical (green)
telegraph noise for α = 0.7, v/Γ = 0.5, Λτ = 0.05, Λ = ∆.

When α is close to 1 the photon interactions do not cause as much decoher-
ence in the fluctuator. The fluctuator will have the same classical correlations
with the qubit as a telegraph noise signal, but there will also be quantum en-
tanglement. Quantum mutual information includes both these effects so we
see that the mutual information between the qubit and fluctuator is greater
when α is closer to 1.
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Figure 3.3: Mutual information between qubit and fluctuator (quantum:
blue, classical: green) for α = 0.9, v/Γ = 0.5, Λτ = 0.05, Λ = ∆.

3.4 Finite Temperature

We will now use a simple model for absorption and emission of photons,
which can be implemented using the formalism of generalized measurements.
First we assume the fluctuator is coupled to a thermal bath with a constant
temperature T . The fluctuator can exchange energy with the thermal bath
by emitting and absorbing photons. Note that these photons are in addition
to the interacting photons. For now we ignore the qubit and just analyze the
fluctuator and environment. We have the hamiltonian

Hf =
1

2
∆σz +

1

2
Λσx (3.55)

We denote the energy eigenstates |ψg〉 and |ψe〉, where |ψg〉 is the ground
state and |ψe〉 is the excited state. These are given by the “down” and
“up” states on a rotated Bloch sphere, where the z-axis is rotated an angle
θ = arctan(Λ/∆) towards the x-axis. The two states have an energy splitting
E =

√
∆2 + Λ2. When the fluctuator absorbs a photon it goes from the

ground state to the excited state. The absorption rate βab is proportional to
the number of photons with energy E. This number is given by the Bose-
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Figure 3.4: Mutual information between qubit and fluctuator (quantum:
blue, classical: green) for α = 0.7, v/Γ = 0.5, Λτ = 0.05, Λ = ∆.

Einstein distribution so we have

βab ∝
1

eE/T − 1
(3.56)

The emission rate βem is then given by

βem = eE/Tβab ∝
eE/t

eE/T − 1
(3.57)

We now want an algorithm that, for each time step ∆t, gives us the density
matrix that is a mixture of the three states where either a photon has been
absorbed, a photon has been emitted, or nothing has happened. What we do
is essentially a measurement of whether or not a photon has been emitted or
absorbed. If a photon has been emitted then we know that the fluctuator is
in the ground state. Similarly if a photon has been absorbed the fluctuator
is in the excited state. The effect this measurement has on the fluctuator can
be described by a set of generalized measurement operators. In the rotated
coordinate system these operators are

M1 =
√

βab∆tσx|ψg〉〈ψg| (3.58)

M2 =
√

βem∆tσx|ψe〉〈ψe| (3.59)

M3 =

√

I −M †
1M1 −M †

2M2 (3.60)
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In the case of M1 and M2 we first perform a projective measurement on the
fluctuator. The state is then flipped by the σx operation. These two operators
represent absorption and emission. The third operator M3 represents the
outcome where nothing has happened. If we first look at M1 we can see how
the operator affects the density matrix. As described in the introduction we
have

ρm =
MmρM

†
m

Tr(MmρM
†
m)

(3.61)

where m is the measurement outcome and Tr(MmρM
†
m) is the probability of

the measurement resulting in the outcome m. If the fluctuator in the rotated
system has the density matrix

ρf =

(

f00 f01
f10 f11

)

(3.62)

then we get the following matrix after absorbing a photon:

ρ1f =
M1ρfM

†
1

Tr(M1ρfM
†
1)

=
βab∆tf11|ψe〉〈ψe|

βab∆tf11
= |ψe〉〈ψe| (3.63)

We see that after aborbing a photon the system is in the state |ψe〉 and the
probability for this happening is βab∆tf11, where f11 is the probability of the
fluctuator being in the state |ψg〉. The operatorM2 behaves in the same way:

ρ2f =
M2ρfM

†
2

Tr(M2ρfM
†
2)

=
βem∆tf00|ψg〉〈ψg|

βem∆tf00
= |ψg〉〈ψg| (3.64)

We see that M1 and M2 give us the desired behavior for absorption and
emission. M3 is constructed to ensure

∑

m

M †
mMm = I (3.65)

We can still calculate M3 and give an interpretation. We have

M †
1M1 = βab∆t|ψg〉〈ψg|σxσx|ψg〉〈ψg| = βab∆t|ψg〉〈ψg| (3.66)

M †
2M2 = βem∆t|ψe〉〈ψe|σxσx|ψe〉〈ψe| = βem∆t|ψe〉〈ψe| (3.67)

M3 is then

M3 =

√

I −M †
1M1 −M †

2M2 (3.68)

=
√

1− βab∆t|ψg〉〈ψg|+
√

1− βem∆t|ψe〉〈ψe| (3.69)
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We see that the operator includes the probabilities for not absorbing 1−βab∆t
and not emitting 1 − βem∆t. When this is the result of the measurement
every element in the density matrix is multiplied with the corresponding
probabilities of not changing.

In the algorithm we first switch to the rotated basis. This is done by
acting on the density matrix with the operator

R(θ) =

(

cos θ
2

sin θ
2

− sin θ
2

cos θ
2

)

(3.70)

The density matrix in the rotated basis is then

ρfθ = R(θ)ρfR(θ)
† (3.71)

In this basis we find the new density matrix ρ′fθ after the measurement:

ρ′fθ =M1ρfθM
†
1 +M2ρfθM

†
2 +M3ρfθM

†
3 (3.72)

Finally we switch back to the original basis:

ρ′f = R(θ)†ρ′fθR(θ) (3.73)

When the fluctuator is repetedly subject to this measurement it will relax to
a temperature-dependent equilibrium state. Generally the equilibrium state
will also depend on the angle θ and the coupling to the environment α. We
can first look at the case where θ = 0 and the fluctuator starts in the excited
state |ψe〉 = |0〉. The interaction photons will then have no effect and the
relaxation will only depend on the emission and absorption rates and the
energy splitting ∆ between the states |0〉 and |1〉. In this case the fluctuator
should be completely classical and behave exactly as a telegraph noise signal
with switching rates Γ10 = βab and Γ01 = βem. It is then simple to find how
the absorption/emission should effect the density matrix. If the fluctuator
after a time t is in the state

ρf (t) = p0|0〉〈0|+ p1|1〉〈1| (3.74)

where p0 and p1 are probabilities corresponding to state |0〉 and |1〉 respec-
tively, then the density matrix after a time ∆t is a mixture of the four
possibilites: absorption, no absorption, emission, and no emission. This is
given by

ρf (t+∆t) = p0[βem∆t|1〉〈1|+ (1− βem∆t)|0〉〈0|]
+ p1[βab∆t|0〉〈0|+ (1− βab∆t)|1〉〈1|] (3.75)
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Figure 3.5: Fluctuator relaxation for Λ = 0: z-component of the fluctuator
Bloch vector as a function of time for three different temperatures. Top to
bottom: T = 10∆, T = ∆, T = 0.1∆.

It is easy to check that the measurement operators give the same result. In
figure 3.5 we have plottet the z-component of the fluctuator Bloch vector as
a function of time for different temperatures. We see that for high tempera-
tures the equilibrium state is close to an equal ensemble. This is because the
absorption rate almost equals the emission rate. For temperatures close to
zero we see that the fluctuator relaxes to the ground state |1〉. Since the fluc-
tuator behaves classically the probabilities corresponding to the two states in
thermal equilibrium are given by the Maxwell-Boltzmann distribution. This
gives us the the z-component of the Bloch vector at equilibrium:

m̃z = − tanh

(

∆

2T

)

(3.76)

We can now look at the case where Λ 6= 0. We now have three processes com-
peting with eachother. First we have thermalization along the rotated axis
in the Bloch ball. Second we have the hamiltonian which causes the Bloch
vector to precess around the same axis. Finally we have the interaction pho-
tons reducing the xy-component of the Bloch vector. These three processes
decide the relaxation rate and the equilibrium state. Note that we are still
looking at the z-component of the Bloch vector as this is the component that
affects the qubit. In figure 3.6 we have plottet the relaxation for the same
temperatures as in figure 3.5, but with θ = π/4 and α = 0.6, Eτ = 0.1. We
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Figure 3.6: Fluctuator relaxation for Λ 6= 0: z-component of the fluctuator
Bloch vector as a function of time for three different temperatures. Top to
bottom: T = 10E, T = E, T = 0.1E. (α = 0.6, Eτ = 0.1, θ = π/4)

see that the rate of relaxation has increased and the equilibrium level is closer
to the excited state. In figure 3.7 we plot the relaxation for α = 0.1. Here
we see that the effect of the σx term is decreased due to a stronger coupling
to the environment.

We want to compare the quantum fluctuator with classical telegraph
noise. To do this we have to find the correct switching rates for the telegraph
signal. These rates should reproduce the relaxation curve for the quantum
fluctuator. If we have the switching rates Γ01 and Γ10 then the z-component
of the Bloch vector is given by

p0 − p1 =
2Γ01

Γ
eΓt +

Γ10 − Γ01

Γ
(3.77)

where the system starts in the excited state and Γ = Γ01+Γ10 is the relaxation
rate. To find Γ01 and Γ10 we just need to analyze the relaxation curve for
the quantum fluctuator. The equilibrium level m̃z = mz(t → ∞) gives us
(Γ10 − Γ01)/Γ. To find the rate Γ we can subtract m̃z from the curve. We
can then take the logarithm and make a linear fit. Γ is then given by the
slope. This gives us two equations to find the two switching rates.

We are now ready to analyze the qubit-fluctuator system. In this case
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Figure 3.7: Fluctuator relaxation for Λ 6= 0: z-component of the fluctuator
Bloch vector as a function of time for three different temperatures. Top to
bottom: T = 10E, T = E, T = 0.1E. (α = 0.1, Eτ = 0.1, θ = π/4)

the measurement operators act on the density matrix for the whole system:

M1 =
√

βab∆tI ⊗ (σx|ψg〉〈ψg|) (3.78)

M2 =
√

βem∆tI ⊗ (σx|ψe〉〈ψe|) (3.79)

M3 =

√

I −M †
1M1 −M †

2M2 (3.80)

We let the qubit start in the equal superposition state and the fluctuator in
the state

ρf = p̃0|0〉〈0|+ p̃1|1〉〈1| (3.81)

where p̃0 and p̃1 are the probabilities at thermal equilibrium. We can now
once again compare the qubit decoherence for quantum and classical tele-
graph noise. In figures 3.8-3.11 we have plotted the decoherence and mutual
information for low temperature. We see that the results are almost identical
to what we have seen before. When α decreases we have less entanglement
and the curves approach the ones for the classical case.

We now want to analyze the temperature-dependence of the system. To
do this we need a variable that quantifies how “classical” the system is. We
see that the qubit has an exponential dephasing rate when subject to both
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Figure 3.8: Qubit decoherence due to classical (green) and quatum (blue)
telegraph noise for α = 0.9, T = 0.1E, θ = π/4, v/Γ = 0.5, Eτ = 0.1
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Figure 3.9: Qubit decoherence due to classical (green) and quatum (blue)
telegraph noise for α = 0.7, T = 0.1E, θ = π/4, v/Γ = 0.5, Eτ = 0.1
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Figure 3.10: Mutual information between qubit and fluctuator (quantum:
blue, classical: green) for α = 0.9, T = 0.1E, θ = π/4, v/Γ = 0.5, Eτ = 0.1
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Figure 3.11: Mutual information between qubit and fluctuator (quantum:
blue, classical: green) for α = 0.7, T = 0.1E, θ = π/4, v/Γ = 0.5, Eτ = 0.1
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Figure 3.12: Relative difference in qubit decoherence rates δω as a function of
α for T = 0.1E (blue) and T = 10E (red). (θ = π/4, v/E = 0.05, Eτ = 0.1)

quantum and classical telegraph noise. We call these rates ωq and ωc. The
variable we are after is the relative difference between the two rates:

δω =
ωq − ωc

ωc

(3.82)

When the fluctuator approaches the classical limit these rates become iden-
tical and δω goes to zero. We can now compare the dependence on α for low
and high temperature. This is done in figure 3.12. We see that δω goes to
zero for small α regardless of the temperature. For larger values of α we see
a significant temperature-dependence. For high temperature the fluctuator
behaves more classically and δω is smaller. We do not present the results
for α > 0.9. In this domain quantum effects are strong and numerical issues
prevent us from comparing the fluctuator with telegraph noise. To illustrate
the general dependence on α and temperature we have made a contour-plot
of δω shown in figure 3.13. Here we clearly see that δω is smallest for high
temperatures and small α, and largest for low temperatures and large α. As
in figure 3.12 we see that for small values of α there is little temperature-
dependence. We also see the opposite case: for high temperatures there is
little dependence on α.

43



α

lo
g(

T
/E

)

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Figure 3.13: Contour-plot of δω as a function of α and T . (θ = π/4, v/E =
0.05, Eτ = 0.1)
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Figure 3.14: Contour-plot of δω as a function of α and T with superimposed
contours of constant γ (black curves). Left to right: γ = 200v, γ = 160v,
γ = 120v, γ = 80v, γ = 40v. (θ = π/4, v/E = 0.05, Eτ = 0.1)

The temperature and the coupling to the environment α both determine
how fast the fluctuator decoheres and shows classical behavior. This leads
us to believe that it is the decoherence rate of the fluctuator that decides the
behavior of the qubit-fluctuator system. We can compute this rate, which we
call γ, and find curves where γ(T, α) is constant. In figure 3.14 we have taken
the contour-plot from figure 3.13 and superimposed a few of these curves. We
see that the curves for constant γ roughly follow the contours for constant
δω, indicating that the decoherence rate of the fluctuator is indeed the most
important factor in determining the behavior of the system. It seems that
for this model we start observing significant quantum effects when γ < 80v.
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4 Conclusion

With the model used in this thesis we have divided the external environment
into two parts. The photon emission/absorption represents the thermalizing
part of the environment. This causes both dephasing and energy relaxation of
the fluctuator. In addition to thermalization we have the entangling photons.
These only exchange information with the fluctuator and have a purely de-
phasing effect. Using the curve for the fluctuator relaxation in the z-direction
we are able to construct a telegraph noise signal with the same curve, given
by the switching rates and equilibrium state. This has allowed us to compare
the decoherence of a qubit coupled to the fluctuator with a qubit coupled to
a telegraph noise signal. The aim of this comparison is to determine when
the fluctuator can be treated as a classical system.

Had we only included the thermalizing part of the environment then we
would have obtained the same high-temperature limit as in previous results.
The entangling photons give us another parameter we can tune to affect the
fluctuator decoherence rate. This rate now depends on the amount of entan-
glement between the fluctuator and environment, in addition to temperature.
We have quantified the amount of entanglement by the overlap between the
photon states (and also the time between photons which we have chosen to
hold constant). This variable would not be very easy to identify in a physical
system. One can however assume that there will often be elements in the
environment that entangle with the fluctuator, causing decoherence also at
low temperatures. In a realistic system the decoherence rate will depend
on many unknown variables. What we have been able to show is that the
amount of quantum behavior the fluctuator demonstrates is decided by the
decoherence rate, regardless of the cause of decoherence.

Areas of interest for further study could be the qubit decoherence when
coupled to more than one fluctuator, and the effects of entanglement be-
tween the fluctuators. It could also of interest to compare the results in
this thesis with results obtained using the Caldeira-Leggett model [13] for
the environment. In this model the environment is approximated by a bath
of harmonic oscillators. In our model we assume short correlation times in
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the environment, allowing us to trace over the entangling photons and forget
about them. For the Caldeira-Leggett model this assumption would allow us
to make a Markov-approximation. One might then obtain analytical results
similar to the numercial ones in this thesis.
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A Analytical Calculations

A.1 Introduction

In this appendix we study a simple case of our model, with the hope of
achieving some analytical insight. Here we look only at the interaction term
of the hamiltonian, neglecting the internal dynamics of both the qubit and
fluctuator. The environment consists only of the entangling photons, and
we assume the overlap between photon states to be zero. This model may
seem artificial but it has some of the properties we are interested in study-
ing. A more complex hamiltonian would be too dfficult in these analytical
calculations. We will also see that this system has some surprising properties
and we are able to make use of some interesting techniques for calculation.
Concerning are main goal of determining the quantum to classical transition
for the fluctuator, this appendix does not give us any significant insight. It
is included in this thesis because of the amount of time spent working on
it, and because it has some interesting results from a fundamental point of
view.

A.2 Evolution Matrix

We start with the hamiltonian

H =
1

2
vσx ⊗ σx (A.1)

We want to find the evolution of the system including the interactions with
the entangling photons. The time evolution between photon interactions is

U = e−
i
2
σx⊗σxτ = cos(

1

2
vτ)I − i sin(

1

2
vτ)σx ⊗ σx = cI − isσx ⊗ σx, (A.2)

where c = cos(1
2
vτ), s = sin(1

2
vτ) and τ is the time between photons. If the

system is in a state ρn then we define ρn+1 as the system after a period τ of
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free evolution and a subsequent photon interaction:

ρn −→ UρnU
† ph−→ ρn+1 (A.3)

The matrix form of U is

U =









c 0 0 −is
0 c −is 0
0 −is c 0

−is 0 0 c









(A.4)

and we have

ρn =









a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44









(A.5)

We can then calculate the time evolution for t = τ :

UρnU
† = (A.6)































c2a11 + icsa14 −
icsa41 + s2a44

c2a12 + icsa13 −
icsa42 + s2a43

icsa12 + c2a13 +
s2a42 − icsa43

icsa11 + c2a14 +
s2a41 − icsa44

c2a21 + icsa24 −
icsa31 + s2a34

c2a22 + icsa23 −
icsa32 + s2a33

icsa22 + c2a23 +
s2a32 − icsa33

icsa21 + c2a24 +
s2a31 − icsa34

−icsa21+s2a24+
c2a31 + icsa34

−icsa22+s2a23+
c2a32 + icsa33

s2a22 − icsa23 +
icsa32 + c2a33

s2a21 − icsa24 +
icsa31 + c2a34

−icsa11+s2a14+
c2a41 + icsa44

−icsa12+s2a13+
c2a42 + icsa43

s2a12 − icsa13 +
icsa42 + c2a43

s2a11 − icsa14 +
icsa41 + c2a44































After tracing over photon states we have

ρn+1 = (A.7)



























c2a11 + icsa14 −
icsa41 + s2a44

0
icsa12 + c2a13 +
s2a42 − icsa43

0

0
c2a22 + icsa23 −
icsa32 + s2a33

0
icsa21 + c2a24 +
s2a31 − icsa34

−icsa21+s2a24+
c2a31 + icsa34

0
s2a22 − icsa23 +
icsa32 + c2a33

0

0
−icsa12+s2a13+
c2a42 + icsa43

0
s2a11 − icsa14 +
icsa41 + c2a44


























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We see here that each element in ρn+1 is a linear combination of the elements
in ρn. If we define ~ρn to be the vector

~ρn =























a11
a12
...
a21
a22
...
a44























(A.8)

then there exists a matrix M so that

~ρn+1 =M~ρn (A.9)

or genrally

~ρn =Mn~ρ0, (A.10)

where ~ρ0 is the initial state. This matrix is

M = (A.11)

























































c2 0 0 ics 0 0 0 0 0 0 0 0 −ics 0 0 s2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 ics c2 0 0 0 0 0 0 0 0 0 0 s2 −ics 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 c2 ics 0 0 −ics s2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 ics 0 0 c2 s2 0 0 −ics 0 0 0 0
0 0 0 0 −ics 0 0 s2 c2 0 0 ics 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 s2 −ics 0 0 ics c2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −ics s2 0 0 0 0 0 0 0 0 0 0 c2 ics 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
s2 0 0 −ics 0 0 0 0 0 0 0 0 ics 0 0 c2

























































We can perform en eigendecomposition on M and we get

M = SDS−1 (A.12)
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where S is the matrix with the eigenvectors of M as its columns, and D is a
diagonal matrix with the eigenvalues of M as its elements. We then have

~ρn = SDnS−1~ρ0 (A.13)

We can plot the von Neumann entropy for the whole system as a function
of time and we see that it does not generally converge towards the maximum
entropy for the system, S = ln 4, for large times. It seems rather that the
final entropy is between ln 2 and ln 4, depending on the initial state. This
motivates further analysis.

A.3 Convergence

We start by finding the generall form of the density matrix after convergence.
Studying the matrices UρnU

† andM we see that the new elements after time
evolution and tracing, ã11, ã14, ã41, ã44 are all linear combinations of the old
elements a11, a14, a41, a44. The same applies to the groups a12, a13, a42, a43;
a21, a24, a31, a34; a22, a23, a32, a33. Therefore it is only necessary to analyze one
group. After the initial trace, a14 = a41 = 0. Each subsequent multiplication
with M gives us

ã11 = c2a11 + s2a44 (A.14)

ã44 = s2a11 + c2a44 (A.15)

For tidiness we rename the elements xn ≡ a11, yn ≡ a44. We then have

xn+1 = c2xn + s2yn (A.16)

yn+1 = s2xn + c2yn (A.17)

We can guess that the two elements will converge towards the average of the
initial ones. To prove this we start by re-writing the equations:

(

xn+1

yn+1

)

=

(

c2 s2

s2 c2

)(

xn
yn

)

(A.18)

If x1 and y1 are the elements after the first trace, then we have
(

xn
yn

)

=

(

c2 s2

s2 c2

)n(
x1
y1

)

(A.19)

Performing an eigendecomposition gives us
(

xn
yn

)

=
1

2

(

1 −1
1 1

)(

1 0
0 (c2 − s2)n

)(

1 1
−1 1

)(

x1
y1

)

(A.20)

=
1

2

(

x1 + y1 + (c2 − s2)n(x1 − y1)
x1 + y1 − (c2 − s2)n(x1 − y1)

)

(A.21)
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For large n this gives us

(

xn
yn

)

=
1

2

(

x1 + y1
x1 + y1

)

(A.22)

except for the special cases c2 − s2 = 1, and c2 − s2 = −1.

We can use the same argument for the other groups of elements and we
arrive finally to the density matrix

ρf =









α 0 β 0
0 γ 0 δ
δ 0 γ 0
0 β 0 α









, (A.23)

where α, β, γ, δ depend on the initial state. This matrix has the property
Mρf = ρf . When the system has reached this state, then it will stay in the
same state indefinitely. The entropy will also be constant.

We have three conditions for ρ to be an allowed density matrix:

(1) The trace must equal one: 2α + 2γ = 1
(2) ρ must be hermitian: δ = β∗

(3) All of the eigenvalues must be greater than or equal to zero

These three conditions give us the allowed values of α, β, γ, δ. Calculat-
ing the eigenvalues in closed form is messy. We can however formulate the
third condition using the generalized Bloch ball for 4-level systems.

A.3.1 Bloch Ball

For N-level systems we have N2 − 1 parameters: one for each diagonal el-
ement except for the last one, which is decided by (1), and two for each
element above the diagonal. For a 4-level system we then have 15 parame-
ters. This means that the density matrix can be represented by a point in a
15-dimensional space. We can now express the density matrix as

ρ =
1

4
I +miλi (A.24)
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where {λi} are the generators of SU(4) [14], which are all hermitian and have
zero trace. For our system ρf we only need 7 of the 15 matrices:

λ1 =









1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0









λ2 =









1 0 0 0
0 1 0 0
0 0 −2 0
0 0 0 0









λ3 =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −3









(A.25)

λa =









0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0









λai =









0 0 −i 0
0 0 0 0
i 0 0 0
0 0 0 0









(A.26)

λb =









0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0









λbi =









0 0 0 0
0 0 0 −i
0 0 0 0
0 i 0 0









(A.27)

We can now find the coefficients {mi} expressed in terms of α, Reβ and Imβ.
We start with the diagonal elements:

1

4
+m1 +m2 +m3 = α (A.28)

1

4
− 2m2 +m3 = γ (A.29)

1

4
− 3m3 = α (A.30)

Noting that γ = 1
2
− α we have

m3 = −1

3
(α− 1

4
) (A.31)

1

4
− 2m2 +m3 = γ (A.32)

1

4
− 2m2 −

1

3
(α− 1

4
) =

1

2
− α (A.33)

m2 =
1

3
(α− 1

4
) (A.34)

1

4
+m1 +m2 +m3 = α (A.35)

1

4
+m1 +

1

3
(α− 1

4
)− 1

3
(α− 1

4
) = α (A.36)

m1 = α− 1

4
(A.37)
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Next we find the off-diagonal elements:

ma − imai = β mb − imbi = δ (A.38)

ma + imai = δ mb + imbi = β (A.39)

Since δ = β∗ have have

ma = mb = Re β (A.40)

−mai = mbi = Im β (A.41)

We can now re-write our matrix ρf in the following way:

ρf =
1

4
I + (α− 1

4
)(λ1 +

1

3
λ2 −

1

3
λ3)

+ Re β(λa + λb) + Im β(−λai + λbi) (A.42)

=
1

4
I + m̃iλ̃i (A.43)

where

m̃1 = α− 1

4
, m̃2 = Re β, m̃3 = Im β (A.44)

and

λ̃1 =









1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1









, λ̃2 =









0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0









, λ̃3 =









0 0 i 0
0 0 0 −i
−i 0 0 0
0 i 0 0









(A.45)

We have now managed to represent the density matrix ρf as a point in a
3-dimensional space, where the coordinates are given by {m̃i}. We still need
to impose condition (3) to find the constraints. Let {xi} be the eigenvalues of
ρf , and {ai} be the coefficients of the characteristic polynomial det(ρf −xI).
It can then be shown that all the eigenvalues xi are greater than or equal to
0 if and only if all the coefficients ai are greater than or equal to 0:

xi ≥ 0, ∀i ⇔ ai ≥ 0, ∀i (A.46)

It can also be shown that

1!a1 = 1, (A.47)

2!a2 = 1− Tr ρ2f , (A.48)

3!a3 = 1− 3Tr ρ2f + 2Tr ρ3f , (A.49)

4!a4 = 1− 6Tr ρ2f + 8Tr ρ3f + 3Tr ρ2f − 6Tr ρ4f (A.50)
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This is explained in detail in [14]. Now we just need to calculate Trρ2f , Trρ
3
f

and Trρ4f . Then we can impose the conditions on {ai} which in turn gives us
the the constraints for {mi}. To help in the calculations one can show the
following indentities for {λ̃i}:

Tr λ̃i = 0, ∀i (A.51)

λ̃2i = I, ∀i (A.52)

Tr (λ̃iλ̃j) = 4δij (A.53)

{λ̃i, λ̃j} = 0, i 6= j (A.54)

Tr (λ̃i, λ̃j , λ̃k) = −4iǫijk (A.55)

where δij is the Kronecker-delta, ǫijk is the Levi-Civita symbol and {λ̃i, λ̃j}
is the anti-commutator. We can then calculate the traces (note that
∑

i,j,k Tr (λ̃iλ̃jλ̃k) = 0):

Tr ρ2f = Tr (
1

42
I + m̃im̃jλ̃iλ̃j) (A.56)

=
1

4
+ 4m̃im̃i (A.57)

=
1

4
+ 4|m̃i|2 (A.58)

(A.59)

Tr ρ3f = Tr (
1

43
I +

3

4
m̃im̃jλ̃iλ̃j + m̃im̃jm̃kλ̃iλ̃jλ̃k) (A.60)

=
1

16
+ 3|m̃|2 (A.61)

(A.62)

Tr ρ4f = Tr (
1

44
I +

6

42
m̃im̃jλ̃iλ̃j + m̃im̃jm̃km̃lλ̃iλ̃jλ̃kλ̃l) (A.63)

=
1

64
+

3

2
|m̃|2 + 4(m̃4

1 + m̃4
2 + m̃4

3) + 8(m̃2
1m̃

2
2 + m̃2

1m̃
2
3 + m̃2

2m̃
2
3)

(A.64)

=
1

64
+

3

2
|m̃|2 + 4|m̃|4 (A.65)

Inserting into the expressions for ai gives us the constraints on |m̃|:
1− Tr ρ2f ≥ 0 (A.66)

1− 1

4
− 4|m̃|2 ≥ 0 (A.67)

|m̃| ≤ 3

4
(A.68)
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1− 3Tr ρ2f + 2Tr ρ3f ≥ 0 (A.69)

1− 3

4
− 12|m̃|2 + 1

8
+ 6|m̃|2 ≥ 0 (A.70)

|m̃| ≤ 1

4
(A.71)

1− 6Tr ρ2f + 8Tr ρ3f + 3(Tr ρ2f )
2 − 6Tr ρ4f ≥ 0 (A.72)

3(
1

4
+ 4|m̃|2)2 − 3

32
− 9|m̃|2 − 24|m̃|4 ≥ 0 (A.73)

|m̃|2 − 8|m̃|4 ≤ 1

32
(A.74)

|m̃| ≤ 1

4
(A.75)

We see that our only constraint on the coefficients {m̃i} is |m̃| ≤ 1
4
. This

means that the allowed density matrices for our system our contrained to a
ball with radius 1/4 in the 3-dimensional space spanned by {λ̃i}. Expressing
in terms of α and β we have:

|m̃|2 = (α− 1

2
)2 + Re (β)2 + Im (β)2 ≤ 1

16
(A.76)

(α− 1

2
)2 + |β|2 ≤ 1

16
(A.77)

Remebering that γ = 1
2
− α and δ = β∗, we now know the allowed matrix

elements of ρf .

A.3.2 Entropy

We now wish to find the von Neumann entropy of the system after conver-
gence in terms of α and β. We start with the expression

ρf =
1

4
I + m̃iλ̃i (A.78)

=
1

4
(I + 4m̃iλ̃i) (A.79)

This gives us

ln ρf = ln(
1

4
I) + ln(I + 4m̃iλ̃i) (A.80)

57



Performing a series expansion on ln(I + 4m̃iλ̃i) we get

ln ρf = ln
1

4
I +

∞
∑

n=1

(−1)n−1 (4m̃iλ̃i)
n

n
(A.81)

The entropy is then given by

S = −Tr(ρf ln ρf ) (A.82)

= ln 4− Tr

[

1

4

∞
∑

n=1

(−1)n−14
n

n
(m̃iλ̃i)

n

]

− Tr

[

∞
∑

n=1

(−1)n−14
n

n
(m̃iλ̃i)

n+1

]

(A.83)

It is straight-forward to show that Tr[(m̃iλ̃i)
n] = 4|m̃|n for even n and 0 for

odd n. This gives us

S = ln 4−
(

−42

2
|m̃|2 − 44

4
|m̃|4 − 46

6
|m̃|6 . . .

)

−
(

42|m̃|2 + 43

3
|m̃|4 + 46

5
|m̃|6 . . .

)

(A.84)

= ln 4− 1

2

[

−(4|m̃|)2 − 1

2
(4|m̃|)4 − 1

3
(4|m̃|)6 . . .

]

− 4|m̃|
[

4|m̃|+ 1

3
(4|m̃|3) + 1

5
(4|m̃|)6 . . .

]

(A.85)

= ln 4− 1

2
ln[1− (4|m̃|)2]− 4|m̃|artanh(4|m̃|) (A.86)

This gives us the maximum entropy Smax = ln 4 for |m̃| = 0 and the minimum
Smin = ln 2 for |m̃| = 1

4
.

A.3.3 Decoherence-Free Subspaces

The decoherence in our system is caused by the photon interactions. Because
of the nature of these interactions we can see that a density matrix of the
form

ρ =









ρ11 0 ρ13 0
0 ρ22 0 ρ24
ρ31 0 ρ33 0
0 ρ42 0 ρ44









(A.87)
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will not be affected. The elements that are changed by the photons are
already zero so there will be no decoherence. There exist two subspaces of
pure states which give density matrices with this form. The state

|φ1〉 = c1|00〉+ c2|10〉 (A.88)

gives us the density matrix

ρ1 =









|c1|2 0 c1c
∗
2 0

0 0 0 0
c∗1c2 0 |c2|2 0
0 0 0 0









(A.89)

and the state

|φ2〉 = d1|01〉+ d2|11〉 (A.90)

gives us the density matrix

ρ2 =









0 0 0 0
0 |d1|2 0 d1d

∗
2

0 0 0 0
0 d∗1d2 0 |d2|2









(A.91)

We then have two 2-dimensional decoherence-free subspaces (DFS):

DFS1 = span(|00〉, |10〉) (A.92)

DFS2 = span(|01〉, |11〉) (A.93)

Our matrix ρf cannot be in either of these pure states. It can however be in
a mixture of the two:

ρf = b1ρ1 + b2ρ2 (A.94)

This gives us the following conditions on the coefficients c1, c2, d1, d2:

b1|c1|2 = b2|d2|2 = α (A.95)

b1c1c
∗
2 = b2d

∗
1d2 = β (A.96)

b1c
∗
1c2 = b2d1d

∗
2 = δ (A.97)

b1|c2|2 = b2|d1|2 = γ (A.98)
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In addition we have 2α + 2γ = 1 which gives us

2b1|c1|2 + 2b1|c2|2 = 1 (A.99)

b1 =
1

2
(A.100)

and

2b2|d2|2 + 2b2|d1|2 = 1 (A.101)

b2 =
1

2
(A.102)

We then must have |c1|2 = |d2|2, |c2|2 = |d1|2 and c1c
∗
2 = d∗1d2. This gives us

the following density matrix which we call ρDF :

ρDF =
1

2









|c1|2 0 c1c
∗
2 0

0 |c2|2 0 c∗1c2
c∗1c2 0 |c2|2 0
0 c1c

∗
2 0 |c1|2









(A.103)

We would like to find where these states lie in the Bloch ball. We have

|m̃|2 = (α− 1

4
)2 + |β|2 (A.104)

Inserting for α and β gives us

(
1

2
|c1|2 −

1

4
)2 +

1

4
|c1c∗2|2 =

1

4
|c1|4 −

1

4
|c1|2 +

1

16
+

1

4
|c1|2|c2|2 (A.105)

=
1

4
|c1|2(|c1|2 + |c2|2 − 1) +

1

16
(A.106)

=
1

16
(A.107)

This state is then on the surface of the Bloch ball: |m̃| = 1
4
. In fact, it can be

shown that every point on the surface of the Bloch ball can be represented
by a state of the form ρDF . The proof is as follows: For the surface of the
Bloch ball we have

(α− 1

4
)2 + |β|2 = 1

16
(A.108)

We see that the allowed values for |β| are 0 ≤ |β| ≤ 1
4
. Given two complex

numbers z1 and z2 where |z1|2 + |z2|2 = 1, we can write β as β = 1
2
z1z2. Any
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β in the allowed interval can be generated by a suitable choice of z1 and z2.
We can then find α:

α2 − 1

2
α + |β|2 = 0 (A.109)

α =
1

2

[

1

2
±

√

1

4
− 4|β|2

]

(A.110)

=
1

2

[

1

2
±

√

1

4
− |z1|2|z2|2

]

(A.111)

=
1

2

[

1

2
±

√

1

4
− |z1|2(1− |z1|2)

]

(A.112)

=
1

2

[

1

2
±

√

1

4
− |z1|2 + |z1|4

]

(A.113)

=
1

2





1

2
±

√

(

1

2
− |z1|2

)2


 (A.114)

For |z1|2 < 1
2
we have

α =
1

2

[

1

2
±
(

1

2
− |z1|2

)2
]

(A.115)

α =
1

2
|z1|2 ∨ α =

1

2
|z2|2 (A.116)

For |z1|2 > 1
2
we have

α =
1

2

[

1

2
±
(

|z1|2 −
1

2

)2
]

(A.117)

α =
1

2
|z1|2 ∨ α =

1

2
|z2|2 (A.118)

The two solutions give us the matrices

ρα1
=

1

2









|z1|2 0 z1z2 0
0 |z2|2 0 z∗1z

∗
2

z∗1z
∗
2 0 |z2|2 0

0 z1z2 0 |z1|2









(A.119)

ρα2
=

1

2









|z2|2 0 z1z2 0
0 |z1|2 0 z∗1z

∗
2

z∗1z
∗
2 0 |z1|2 0

0 z1z2 0 |z2|2









(A.120)
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Finally we have ρDF = ρα1
for c1 = z1, c2 = z∗2 and ρDF = ρα2

for c1 =
z2, c2 = z∗1 . This means that any state with |m̃| = 1

4
has the form of ρDF .

For a 2-level system, with the pure states on the surface of the Bloch ball,
one can draw a line connecting two points on the surface. All the points on
this line are then mixtures of the two pure states. Each point in the Bloch
ball can be represented by a mixture of two states on the surface. For our
system each state can be represented by a mixture of two states of the form
ρDF . In other words, any state ρf can be written as

ρf = p(1)ρ
(1)
DF + p(2)ρ

(2)
DF , (A.121)

where p(1) + p(2) = 1.

A.4 Entropy of Subsystems

We now go back to the system before convergence. We would like to find the
entropies of the qubit and fluctuator as a function of time. Starting with the
qubit, we denote the density matrix

ρq =

(

q11 q12
q21 q22

)

(A.122)

which can be decomposed using the pauli-matrices:

ρq =
1

2
I +

1

2
miσi (A.123)

We can then find the coefficients mi in terms of the matrix elements qij

m1 = 2q11 − 1 (A.124)

m2 = 2Re q12 (A.125)

m3 = −2Im q12 (A.126)

The length of the Bloch vector is then

|m|2 = (2q11 − 1)2 + 4|q12|2 (A.127)

We now need to find expressions for q11 and q12. Since q11 = ρ11 + ρ22 and
q12 = ρ13 + ρ24 we need the expressions for the matrix elements of the whole
system. We assume the we start the evolution of the system with a photon
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measurement. We can then write the initial density matrix of the whole
system as

ρ0 =









ρ011 0 ρ013 0
0 ρ022 0 ρ024
ρ031 0 ρ033 0
0 ρ042 0 ρ044









(A.128)

Using the evolution matrix we then find elements after a time, t:

ρ11 =
1

2
[1 + (c2 − s2)n]ρ011 +

1

2
[1− (c2 − s2)n]ρ044 (A.129)

ρ22 =
1

2
[1 + (c2 − s2)n]ρ022 +

1

2
[1− (c2 − s2)n]ρ033 (A.130)

ρ13 =
1

2
[1 + (c2 − s2)n]ρ013 +

1

2
[1− (c2 − s2)n]ρ042 (A.131)

ρ24 =
1

2
[1 + (c2 − s2)n]ρ024 +

1

2
[1− (c2 − s2)n]ρ031 (A.132)

We then have

q11 =
1

2
[1 + (c2 − s2)n]q011 +

1

2
[1− (c2 − s2)n]q022 (A.133)

q12 =
1

2
[1 + (c2 − s2)n]q012 +

1

2
[1− (c2 − s2)n]q021 (A.134)

where q0ij are the elements of the initial reduced density matrix for the qubit.
We can now find the length of the Bloch vector:

|mq|2 = (2q11 − 1)2 + 4|q12|2 (A.135)

=
(

[1 + (c2 − s2)n]q011 + [1− (c2 − s2)n]q022 − 1
)2

+
(

[1 + (c2 − s2)n[q012 + [1− (c2 − s2)n]q021
)

·
(

[1 + (cs − s2)n]q021 + [1− (c2 − s2)n]q012
)

(A.136)

We can find the Bloch vector for the fluctuator in a similar manner (remem-
bering that we begin and end the evolution with a photon measurement):

ρf =

(

ρ11 + ρ33 ρ12 + ρ34
ρ21 + ρ43 ρ22 + ρ44

)

=

(

f11 0
0 f22

)

(A.137)

ρ33 =
1

2
[1− (c2 − s2)n]ρ022 +

1

2
[1 + (c2 − s2)n]ρ033 (A.138)
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f11 = ρ11 − ρ33 =
1

2
[1− (c2 − s2)n]f 0

11 +
1

2
[1 + (c2 − s2)n]f 0

22 (A.139)

|mf |2 = (2f11 − 1)2 (A.140)

=
(

[1− (c2 − s2)n]f 0
11 + [1 + (c2 − s2)n]f 0

22 − 1
)2

(A.141)

To simplify the calculations we assume that the time τ between photons
is much smaller than the characteristic period for oscillations of the system.
This means that vτ ≪ 1. We can use this to find a simplified expression for
(c2 − s2)n. Expanding to second order in vτ we have

cos(
1

2
vτ) ≈ 1− 1

2
(
1

2
vτ)2 (A.142)

sin(
1

2
vτ) ≈ 1

2
vτ (A.143)

which gives us

cos2(
1

2
vτ)− sin2(

1

2
vτ) ≈ 1− 1

2
v2τ 2 (A.144)

Next we want to find (1− 1
2
v2τ 2)n. Noticing that

(1− 1

2
v2τ 2)2 ≈ 1− v2τ 2 (A.145)

(1− 1

2
v2τ 2)3 ≈ 1− 3

2
v2τ 2 (A.146)

(1− 1

2
v2τ 2)4 ≈ 1− 2v2τ 2 (A.147)

we conclude that

(1− 1

2
v2τ 2)n ≈ 1− n

2
v2τ 2 (A.148)

Finally, inserting for n = t/τ , we have

[cos2(
1

2
vτ)− sin2(

1

2
vτ)]n ≈ 1− 1

2
v2τt (A.149)

We can now insert this into the expression for |mq|2:

|mq|2 ≈ [(2− 1

2
v2τt)q011 +

1

2
v2τtq022 − 1]2

+ [(2− 1

2
v2τt)q012 +

1

2
v2τtq021]

· [(2− 1

2
v2τt)q021 +

1

2
v2τtq012] (A.150)
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Mulitplying and excluding higher order terms we arrive at

|mq|2 ≈ 4(q011)
2 + 1− 4q011 + 4|q012|2

+ v2τt[2q011q
0
22 − 2(q011)

2 + q011 − q022 − 2|q012|2 + (q012)
2 + (q021)

2]
(A.151)

= (2q011 − 1)2 + 4|q012|2
+ v2τt[2q011q

0
22 − 2(q011)

2 + q011 − q022 − 2|q012|2 + (q012)
2 + (q021)

2]
(A.152)

We identify (2q011 − 1)2 + 4|q012|2 as the length of the Bloch vector |mq0|2 of
the initial reduced density matrix of the qubit. Since the qubit starts in a
pure state this length is equal to 1. This gives us

|mq|2 ≈ 1− v2τt[2(q011)
2 − 2q011q

0
22 − q011 + q022 + 2|q012|2 − (q012)

2 − (q021)
2]

(A.153)

Next we use the fact that Tr ρq0 = q011+q
0
22 = 1 to find a simplified expression

for 2(q011)
2 − 2q011q

0
22 − q011 + q022. Inserting for q022 we have

2(q011)
2 − 2q011q

0
22 − q011 + q022

= 2(q011)
2 − 2q011(1− q011)− q011 + 1− q011 (A.154)

= 4(q011)
2 − 4q011 + 1 (A.155)

= (2q011 − 1)2 (A.156)

We can also find an expression for 2|q012|2 − (q012)
2 − (q021)

2:

2|q012|2 − (q012)
2 − (q021)

2

= 4|q012|2 − [2|q012|2 + (q012)
2 + (q021)

2] (A.157)

= 4|q012|2 − (q012 + q021)
2 (A.158)

We now have

|mq|2 ≈ 1− v2τt[(2q011 − 1)2 + 4|q012|2 − (q012 + q021)
2] (A.159)

We can again identify (2q011 − 1)2 + 4|q012|2 as 1. Also, since q021 = (q012)
∗, we

have (q012 + q021)
2 = 4Re(q012)

2. Finally we arrive at

|mq| ≈
√

1− v2τt[1− 4Re(q012)
2] (A.160)

=
√
1− θv2τt (A.161)

where θ = 1 − 4Re(q012)
2 is a constant which depends on the initial state of

the qubit. We see that the length starts at one at t = 0 and goes to zero as t
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increases. For large interaction strength v the length decreases faster. This
is because the qubit becomes more entangled with the fluctuator between
measurements. This is also the case for large τ as the qubit has more time
to become entangled.

We now use the same approximation on the fluctuator. Inserting the
series expansion we have

|mf |2 ≈ (2f 0
11 −

1

2
vτ tf 0

11 +
1

2
v2τtf 0

22 − 1)2 (A.162)

≈ 4(f 0
11)

2 − 4f 0
11 + 1− v2τt[2(f 0

11)
2 − 2f 0

11f
0
22 − f 0

11 + f 0
11] (A.163)

Using that f 0
11 + f 0

22 = 1 we have

|mf |2 ≈ (2f 0
11 − 1)2(1− v2τt) (A.164)

We can identify (2f 0
11−1)2 as the initial length of the Bloch vector |mf0|2 for

the fluctuator. This is not necessarily equal to 1 since we start the evolution
with a photon measurement. It is however easy to calculate. We then have
our final expression:

|mf | ≈ |mf0|
√
1− v2τt (A.165)

We now need to find an expression for the von Neuman entropy as a
function of the length of the Bloch vector |m|. This is equivalent to the
procedure in section (). We have

ρq =
1

2
1+

1

2
miσi (A.166)

Taking the logarithm we have

ln ρq = ln(
1

2
1) + ln(1+miσi) (A.167)

= ln(
1

2
1) +

∞
∑

n=1

(−1)n−1 (miσi)
n

n
(A.168)

The entropy is then given by

S = −Tr(ρq ln ρq) (A.169)

= − ln
1

2
− 1

2
Tr

[

∞
∑

n=1

(−1)n−1 (miσi)
n

n

]

− 1

2
Tr

[

∞
∑

n=1

(−1)n−1 (miσi)
n+1

n

]

(A.170)
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One can show that Tr[(miσi)
n] is 2|m|n for even n and 0 for odd n. We then

have

S = − ln
1

2
−

(

−|m|2
2

− |m|4
4

− |m|6
6

− . . .

)

−
(

|m|2 + |m|4
3

+
|m|6
5

+ . . .

)

(A.171)

= − ln
1

2
− 1

2

(

−|m|2 − |m|4
2

− |m|6
3

− . . .

)

− |m|
(

|m|+ |m|3
3

+
|m|5
5

+ . . .

)

(A.172)

= − ln
1

2
− 1

2
ln(1− |m|2)− 1

2
|m| ln 1 + |m|

1− |m| (A.173)

= −1

2
(1 + |m|) ln 1

2
(1 + |m|)− 1

2
(1− |m|) ln 1

2
(1− |m|) (A.174)

We can now insert the approximations for |mq| and |mf | and we arrive at

Sq ≈ −1

2
(1−

√
1− θv2τt) ln

1

2
(1−

√
1− θv2τt)

− 1

2
(1 +

√
1− θv2τt) ln

1

2
(1 +

√
1− θv2τt) (A.175)

Sf ≈ −1

2
(1− |mf0|

√
1− v2τt) ln

1

2
(1− |mf0|

√
1− v2τt)

− 1

2
(1 + |mf0|

√
1− v2τt) ln

1

2
(1 + |mf0|

√
1− v2τt) (A.176)

By calculating these entropies our hope was to analyze the mutual in-
formation between the qubit and fluctuator. It turns out that the time-
dependent entropy of the whole system is too messy to calculate analytically.
Since even this simple, unrealistic model was too difficult for analytical cal-
culations we chose to concentrate on the numerical solution.
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