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of Landau-level filling factors ν = 1 and ν = (1/3)
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We focused on the transverse AC magnetoconductance of a high-mobility p-GaAs/AlGaAs quantum well
(p = 1.2 × 1011cm−2) in the vicinity of two values of the Landau-level filling factor ν: ν = 1 (integer quantum
Hall effect) and ν = 1/3 (fractional quantum Hall effect). The complex transverse AC conductance σ AC

xx (ω)
was found from simultaneous measurements of attenuation and velocity of surface acoustic waves propagating
along the interface between a piezoelectric crystal and the two-dimensional hole system under investigation. We
analyzed both the real and imaginary parts of the hole conductance and compared the similarities and differences
between the results for filling factor 1 and filling factor 1/3. Both to the left and to the right of these values
maxima of a specific shape, “wings,” arose in the σ (ν ) dependences at those two ν. Analysis of the results of our
acoustic measurements at different temperatures and surface acoustic wave frequencies allowed us to attribute
these wings to the formation of collective localized states, namely, the domains of a pinned Wigner crystal, i.e.,
a Wigner solid. While the Wigner solid has been observed in 2D hole systems previously, we were able to detect
it at the highest hole density and, therefore, the lowest hole-hole interaction reported.
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I. INTRODUCTION

Charge transport through topological materials takes place
via surface states. It is topologically protected if bulk elec-
tronic states are localized [1–3]. This concept has been
frequently used for the explanation of the plateaus in the
integer quantum Hall effect (QHE) in two-dimensional elec-
tron gas (2DEG) [4]; afterwards it was generalized for other
topological systems. Accounting for single-particle (Ander-
son) localization of electron states in the vicinity of the
centers of the integer QHE plateaus turned out to be suffi-
cient for understanding of the integer QHE [5]. However, in
high-quality structures having low disorder the accounting for
electron-electron interaction becomes crucially important. As
a result, the single-electron states get reorganized into collec-
tive ones—charge density waves [6–10]. The charge density
waves (CDWs) get pinned by disorder, and this way collective
localized modes are created.

An example of such modes is the so-called Wigner solid
(WS), which is a disordered crystal of electron density form-
ing at the flanks of the integer QHE plateaus [11–13], which
is similar to the Wigner crystal (WC) in high magnetic fields
[14–16]. Other examples are bubble and stripe phases occur-
ring in a relatively weak magnetic field when several Landau
levels (LLs) are occupied. The existence of many competing
phases with close free energies leads to rather complicated
and diverse behaviors of transport phenomena depending on
the electron density, magnetic field, temperature, and other
parameters of a performed experiment.

When the Coulomb interaction dominates over the thermal
energy of electrons, as well as over their Fermi energy, the
theory [17,18] predicts implementation of the WS phase. In an
adequately clean 2D electron system (2DES) placed in a suf-
ficiently high perpendicular magnetic field B, all the electrons
condense in the lowest LL. If the distance h̄ωc = h̄eB/m∗
to the next LL is greater than the typical Coulomb energy,
EC = e2/4ε0ε�B, then only the states belonging to the lowest
LL are involved in the interaction. In this case the quantum
WS will dominate for small values of the filling factor ν,
ν � 1/5 [18–21]. Here �B = √

h̄/eB is the magnetic length.
At the same time, the WS competes also with the fractional

QHE [22]. As shown in numerous works on 2DES in GaAs
quantum wells [15,23–38], the insulating phases are due to
forming a WS localized by weak but inevitable disorder; see,
e.g., review [31] and Ref. [39].

Investigation of 2D systems of interacting holes (2DHS)
is of special interest [37,40–52]. The point is that the hole
effective mass m∗ in GaAs is about a half of the free electron
mass m0 [53], so it is much larger than the effective mass of
an electron in this material (0.067m0). This fact strengthens
the role of the hole-hole interaction, since the corresponding
dimensionless parameter, namely, the ratio between the inter-
particle distance to the effective Bohr radius,

r (2D)
s = m∗e2/(4π3/2 h̄2εε0

√
p),

is proportional to the effective mass m∗ of the quasiparticles.
On the other hand, an increase in the effective mass leads to a
decrease of the cyclotron frequency ωc ∝ 1/m∗.

2469-9950/2023/107(8)/085301(9) 085301-1 ©2023 American Physical Society

https://orcid.org/0000-0002-8555-1164
https://orcid.org/0000-0001-5019-6820
https://orcid.org/0000-0002-2224-153X
https://orcid.org/0000-0001-7281-9902
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.107.085301&domain=pdf&date_stamp=2023-02-01
https://doi.org/10.1103/PhysRevB.107.085301


I. L. DRICHKO et al. PHYSICAL REVIEW B 107, 085301 (2023)

Several states of the system can be represented by stabil-
ity diagrams in several coordinates such as filling factor ν,
temperature T , and the so-called LL mixing factor κ . The
latter is defined as the ratio of the typical Coulomb energy,
EC = e2/4πεε0�B, to the cyclotron energy, h̄eB/m∗:

κ ≡ e2

4πεε0�B

m∗

h̄eB
.

If κ is large, the LL mixing suppresses fractional QHE in favor
of WC [54–59]. The stability diagram in coordinates ν − κ

at T → 0 describes the quantum melting of the WS. Such a
diagram is considered in Ref. [59]; it is compared with exper-
imental results for 2DHS obtained in modulation-doped GaAs
systems [39]. In that work the samples with hole densities
p = (2.0 − 7.9) × 1010 cm−2 and low-temperature mobility
μ � 1.5 × 106 cm2/Vs were studied in magnetic field up to
12 T and in the temperature region 40 mK ÷ 1 K. Those field
and temperature domains allowed the authors of Ref. [39] to
investigate both thermal and quantum melting of the WS.

It turns out that in high-mobility p-GaAs/AlGaAs quan-
tum wells a pinned WS can be formed close to ν = 1, 2/5,
and 1/3, even at rs < 37; see, e.g., [39,42,60] and references
therein. In the above works samples with low hole density
were studied, p < 1011cm−2. Note that identification of the
WS phase usually requires auxiliary experiments in addition
to the standard transport measurements. In particular, the au-
thors of [39] measured the screening efficiency [38] while the
authors of [52] performed DC V − I measurements.

In the present work we study AC conductance in
high-mobility samples of p-GaAs/AlGaAs with p = 1.2 ×
1011 cm−2, i.e., with a density 2–3 times higher than in
the samples studied earlier. The complex AC conductance
is found by simultaneous measurements of attenuation and
velocity of surface acoustic waves (SAWs) propagating in the
vicinity of the two-dimensional charge carriers under study.
Acoustic methods turned out to be useful for studies of pinned
Wigner crystal in n-GaAs/AlGaAs [61]. We aim to under-
stand anomalous behaviors of low-temperature AC complex
conductance versus magnetic field, temperature, and SAW
frequency.

II. EXPERIMENTAL PROCEDURE AND RESULTS

A. Procedure

We have studied two p-GaAs/AlGaAs samples having a
quantum well with width of 17 nm. The high-quality samples
were multilayer structures grown on a GaAs (100) substrate.
The GaAs single quantum well is positioned between 100-nm
undoped spacer layers of AlGaAs and is symmetrically δ

doped on both sides with carbon. The quantum well is located
at a depth 210 nm below the surface of the sample.

Both samples’ hole concentration p and the mobility μ,
measured at T = 0.3 K, as well as rs and κ calculated ac-
cording to the expressions given in Sec. I, are shown in
Table I.

In our experiments we use the surface acoustic wave
(SAW) technique; see Ref. [62] and references therein. In this
method a SAW propagates along a surface of a piezoelectric
(lithium niobate) delay line on either edge of which interdig-

TABLE I. Parameters of the samples.

Sample p × 10−11 μ × 10−6 rs at rs at κ at rs at κ at
no. cm−2 cm2/Vs B=0 ν = 1 ν = 1 ν = 1/3 ν = 1/3

1 1.19 1.45 13 18.8 8.9 32.6 5.2
2 1.22 1.76 12.8 18.7 8.8 32.4 5.1

ital transducers are placed to generate and detect the wave.
The structure under study is pressed down to the surface of the
LiNbO3 substrate by means of springs. The AC electric field
accompanying the SAW penetrates into the two-dimensional
channel. This AC field induces electrical currents in 2DHS
which, in turn, cause Joule losses. The interaction of the SAW
electric field with holes in the quantum well results in the
SAW attenuation 
 and its velocity shift �V/V . The general
advantage of utilizing this technique is that from measure-
ments of 
 and �V/V one can determine the complex AC
conductance of the 2D structure, σ AC

xx . Moreover, the acoustic
method does not require electrical contacts, and therefore the
results are not affected by them and there is no need in Hall
bar configuring. The sample and the piezoelectric crystal are
deformation decoupled.

The experiments were carried out in a dilution refrigerator
in the temperature domain 40 ÷ 300 mK. We have measured
SAW attenuation, 
, and variation of its phase velocity,
�V/V , versus the transverse magnetic field, B � 18 T, at the
SAW basic frequency f ≡ ω/2π = 28 MHz and its harmon-
ics at frequencies f MHz: 85, 142, 197, 252, and 306. In
addition, the dependences of 
 and �V/V on the SAW inten-
sity were studied at T = 20 mK for the same frequencies and
magnetic fields. Using the simultaneously measured 
 and
�V/V we have calculated the components σ1(ω) and σ2(ω)
entering the complex AC conductance,

σ AC
xx (ω) ≡ σ1(ω) − iσ2(ω). (1)

The procedure of calculation of σ1,2(ω) from 
 and �V/V
is described in detail in Ref. [62]; see also review [61].Our
findings on magnetoconductivity in samples 1 and 2 are very
similar, and thus everywhere below we present results ob-
tained on sample 2.

B. Results and discussion

Shown in Fig. 1 are the σ1(B) dependences for f =
85 MHz at various temperatures. One observes a rich os-
cillation pattern corresponding to the integral and fractional
quantum Hall effects. The presence of such a pattern evi-
dences the high quality of the investigated structures. In the
following we restrict ourselves by magnetic fields in the vicin-
ity of the filling factors ν = 1 and ν = 1/3 for which the
σ1(B) dependences have specific “wings” [11]. These areas of
interest are marked gray in Fig. 1, and the wings are enlarged
in the Fig. 1 insets.

1. Vicinity of ν=1 (B=5.34 T)

Shown in Fig. 2(a) are temperature dependences of σ1 for
magnetic fields 5.34 ÷ 4.4 T (ν = 1 ÷ 1.21) at the SAW
frequency 85 MHz. Temperature dependences of σ1 at ν < 1
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FIG. 1. Magnetic field dependences of σ1 at f = 85 MHz and
different temperatures. Gray regions mark the magnetic field areas
analyzed in this article. Inset: More detailed view of the area in the
vicinity of (a) ν = 1 and (b) ν = 1/3.

FIG. 2. Temperature dependence of σ1 close to ν = 1 at f =
85 MHz and different ν: (a) ν � 1 and (b) ν � 1. Arrows show the
temperatures at which the temperature dependences change. Lines
are drawn as guides to the eye. Insets: Dependences of ln σ1 vs 1/T
for different ν and T < Tmax. Lines are the results of the linear fit.

(B = 5.34 ÷ 6.9 T; ν = 1 ÷ 0.77) are shown in Fig. 2(b) and
are qualitatively similar. Thus we observe that the conductiv-
ity behavior is symmetric with respect to ν=1.

On both sides of ν=1 we can identify three regions of
the filling factor characterized by different temperature de-
pendences of σ1 and by its relation to σ2. These regions are
presented successively in Figs 3(a)–3(c).

In the first region, see Fig. 3(a), where |ν − 1| � 0.3, i.e.,
ν is close to 1, σ1 increases with temperature. The imaginary
part of the AC conductance, σ2, is larger than σ1 and also
increases with temperature at all studied temperatures and fre-
quencies. Both σ1 and σ2 are almost independent of frequency.
Let us refer to this state of the system as state A.

In the third region of the filling factor, see Fig. 3(c), where
the deviation |ν − 1| is ≈ 0.2, i.e., is large, σ1 decreases with
the temperature increase. The component σ2 is much less than
σ1 and remains temperature independent. The difference in
the conductivity behavior in the filling factor regions 1 and
3 evidences the difference in the conductance mechanisms in
these regions. We label the state of the system in region 3 as
state B.

In the second (intermediate) region of the filling factor
[Fig. 3(b)], 0.03 � |ν − 1| � 0.17, the temperature depen-
dence of σ1 becomes nonmonotonic: σ1 first increases with
temperature, then reaches a maximum, and then decreases.
Deviation of the filling factor from 1 leads to a decrease of
the temperature at which the maximum is reached. Arrows in
Fig. 2 correspond to the maximums of σ1 at different ν.

Notice that the relation between σ1 and σ2 changes in the
filling factor region 2. According to Fig. 3(b), at low temper-
atures σ2 � σ1, which is similar to state A. (Figure 3(b) does
not include data for ν < 1, as they look similar to the pre-
sented dependences for ν > 1.) As the temperature increases,
σ2 decreases and eventually becomes less than σ1, as in state
B. The larger the deviation of ν from 1 is, the lower the
crossing temperature of the σ1(T ) and σ2(T ) curves is. Due
to the observed evolution of both σ1(T ) and σ2/σ1, the region
of the filling factor 2 can be considered as a transitional one
between states A and B. A detailed discussion of these states
follows.

In region 1 of the filling factor and in the part of region
2 where σ1 increases with temperature (i.e., at T < Tmax), the
temperature dependences of σ1 can be considered as having an
activation character. This conclusion is based on the analysis
of the ln σ1 versus 1/T behavior presented in the insets in
Figs. 2(a) and 2(b). At relatively high T , σ1 obeys empirical
equation σ1 ∝ exp(−�/2kBT ). However, as the temperature
decreases the dependence ln σ1 versus 1/T flattens, which
can be interpreted as hopping between the localized states in
the impurity band according to the picture of single-electron
Anderson localization. This conclusion is also supported by
the absence of the frequency dependences of σ1,2, as well
as by the fact that σ2/σ1 > 1 at T = 40 mK; see Figs. 3(a)
and 3(b). In Appendix A we describe a theoretical model that
qualitatively explains the observed dependences and the σ2/σ1

relation. According to the insets in Fig. 2, � decreases when
|1 − ν| rises, i.e., the input of single-particle hopping into the
total conductivity reduces.
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FIG. 3. Temperature dependences of σ1,2: (a) ν = 1.03, ν = 0.97, f = 140 MHz; state A; (b) ν = 1.05, 1.07, and 1.17, f = 140 MHz;
crossover between states A and B; (c) ν = 1.19, ν = 0.74, f = 140 MHz; state B. Lines are drawn as guides to the eye.

To interpret the state B, let us consider the frequency de-
pendences of σ1 and σ2 for ν = 1.21, Fig. 4. The curves
in Fig. 4 are less distinct but are similar to the dependences
observed on electronic WS in a n-GaAs quantum well and
calculated in that article following theory [63]; see Figs. 4
and 8 in [61], respectively. The frequency dependences of σ1

in Fig. 4 as well as in Figs. 4 and 8 in [61] demonstrate a
maximum, whereas σ2 at low frequencies is negative and at
some frequency changes to positive values and shows a more
or less prominent dip and bump on the flanks of its intersection
with the zero line. The positions and magnitudes of all these
features depend on the details of the WS state.

Since (i) the curves in Fig. 4 at T = 40 mK are qualita-
tively compatible with the frequency dependences of σ1,2 of
a pinned Wigner crystal; (ii) σ2 < 0 at low frequencies; and
(iii) σ1/|σ2| > 1, we think that state B corresponds to a col-
lective localization, i.e., to a pinned Wigner solid. Appendix B
includes a more detailed explanation based on the theory by
Fogler and Huse [63].

While at T = 40 mK the frequency dependences of σ1

and σ2 are pronounced, and at T = 250 mK both σ1 and

FIG. 4. Frequency dependences of σ1 and σ2 for T = 40 mK and
T = 250 mK at B = 4.4 T (ν = 1.21). Inset: Enlarged view of the
dependence of σ2 on B for low frequencies. Lines are drawn as guides
to the eye.

σ2 become essentially independent of frequency. We explain
this behavior by WS melting at higher temperatures. Unfor-
tunately, the estimation of the domain size and the melting
temperature is impossible due to the low-grade manifestation
of the WS.

As it follows from Fig. 3(b), there is no sharp transition be-
tween states A and B. We speculate that initially islands of WS
appear, and as a result the ratio σ2/σ1 starts decreasing. Note
that the ratio σ2/σ1 starts changing as a function of the filling
factor before one can observe new temperature dependence of
σ1, i.e., below Tmax. The new temperature dependence emerges
only when the relative area occupied by the WS becomes large
enough. Since the frequency dependences of both components
of σ AC

xx are weak even at 40 mK, one can conclude that the
WC domains are not fully developed because of weak pinning
in a high-quality hole system. Another reason could be the
fact that the WS domains occupy a relatively small part of the
sample.

2. Vicinity of ν = 1/3 (B = 16.1 T)

Close to ν = 1/3 the dependence σ1(B) also shows charac-
teristic wings, see Fig. 1. Shown in Fig. 5 are the dependences
σ1(T ) for ν = 0.33 ÷ 0.37 and for ν = 0.30 ÷ 0.33. Figure 5
for the vicinity of ν = 1/3 is very similar to Fig. 2 for the
vicinity of ν = 1. However, as it follows from the inset of
Fig. 5, close to ν = 1/3 both σ1 and σ2 increase with temper-
ature but in contrast with Fig. 3(a) in the whole temperature
interval σ1 	 σ2.

Notice that the left wing associated with the ν = 1/3
oscillation and located in the field below 16.1 T obviously co-
alesced with the right wing related to ν = 2/5. Nevertheless,
our analysis shows qualitative agreement between the results
obtained on the left and right sides of ν = 1/3. Most likely, it
is because in the area of our study, B > 14.3 T, the input from
the ν = 2/5 state is insignificant for our qualitative analysis,
where dependences are guides to the eye rather than fits to
theoretical curves. As seen in Fig. 5, when the magnetic field
deviates from 16.1 T (ν = 1/3) the component σ1 crosses over
from increasing to decreasing with temperature.

At ν=0.37 and ν=0.30 the behaviors of σ1 and σ2 are
similar to those shown in Fig. 3(c). The dependences σ1(T ) for
different frequencies are similar for all ν studied in the vicinity
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FIG. 5. Temperature dependences of σ1 for various magnetic
fields close to ν = 1/3, f = 140 MHz. Lines are drawn as guides to
the eye. Inset: Temperature dependences of σ1,2 for f = 140 MHz.
ν = 0.32 (B = 16.5 T) and ν = 0.34 (B = 15.6 T). Lines are drawn
as guides to the eye.

of ν = 1/3. We assume that in magnetic fields corresponding
to ν = 0.33 ÷ 0.353 (as well as to ν = 0.313 ÷ 0.33) and
in the temperature range T < Tmax where σ1 increases with
temperature (see Fig. 5), the hole state corresponds to the
incompressible liquid typical to the fractional quantum Hall
effect [39].

Shown in Fig. 6(a) are the frequency dependences of the
σ1 and σ2 for different ν. The frequency dependence of σ2

at ν = 0.375 and T = 40 mK is similar to that observed in
Fig. 4 for ν = 1.2 and described in Appendix B, thus leading
to the interpretation that the hole system is in a collective
localized state. As ν approaches the value 1/3, the frequency
dependence of σ2 weakens and finally, within our accuracy σ2

becomes essentially frequency independent, and thus there is
no collective localization at ν=1/3. We do not demonstrate
the frequency dependence of σ1 for ν = 0.34 because with
our accuracy at this filling factor σ1 is close to σ2. Shown in

FIG. 6. (a) Frequency dependences of σ1,2 at T = 40 mK for dif-
ferent ν = 0.375 (B = 14.3 T)–black, 0.355 (B = 15.1 T)–red, 0.34
(B = 15.7 T)–blue. (b) Frequency dependences of σ1,2 for ν = 0.375
for different T (mK): 40–black, 130–red, and 310–blue. Lines are
drawn as guides to an eye.

Fig. 6(b) are frequency dependences of σ1,2 for ν = 0.375 at
different temperatures. One observes that when temperature
increases the frequency dependence of σ2 flattens. However,
a trace of frequency dependence can be found even at T =
300 mK. It seems that domains of WS dissolve gradually as
temperature increases, and the hole-hole interaction depends
on the deviation of ν from 1/3.

According to the estimates [59], for a sample with the
parameters given in Table I, κ = EC/h̄ωc = 5 at ν = 1/3.
As it follows from that paper (see Fig. 3 there), for ν=1/3
the hole system behaves as an incompressible liquid showing
fractional QHE. However, at ν = 0.375 the hole system is
inhomogeneous, consisting of areas of incompressible liquid
and WS domains. Indeed, see [59] (Fig. 3), the free energies
of the QHE and the WS state are very close to each other and
these energies nearly match. Unfortunately, the phase diagram
in the axes ν − TC calculated in [39] for p-GaAs/AlGaAs with
p = 3.8 × 1010 cm−2 is not directly applicable to our samples
where phase boundaries were not observed. We believe that it
is because the hole states in our samples are nonuniform and
the transitions between the states are not sharp.

III. SUMMARY AND CONCLUSIONS

Using the acoustic method, we have studied frequency
and temperature dependences of the real and imaginary com-
ponents of the AC conductance of high-mobility symmetric
p-GaAs/AlGaAs quantum wells with p = 1.2 × 1011 cm−2.
Note that we studied the AC conductance which, in general,
did not require the formation of an infinite percolation cluster.
The energy absorption took place as a result of phonon-
assisted transitions between localized states, either single-hole
ones (as in the regions of Anderson localization) or many-hole
ones (as patches of WS).

It is shown that at the filling factor ν=1 and T = 40 mK
the holes are localized in the minimums of the random po-
tential according to the model of the single-electron Anderson
localization. Consequently, the transport can be identified as
single hole hopping between localized states.

As deviation from ν = 1 increases, domains of WS appear
to be most pronounced at ν = 1.2 and 0.78 (T = 40 mK). We
think that at ν = 1/3 and T = 40 mK the hole state corre-
sponds to the incompressible liquid typical to the fractional
QHE. However, as the magnetic field deviates from the filling
factor ν = 1/3 the WS domains also appear. The domains
manifest themselves most clearly at ν = 0.3 and 0.375. To the
best of our knowledge, WS localization is the only one that
leads to negative σ2.

As the temperature is increasing, the WS domains are dis-
appearing, which can be inferred from the weakening of the
frequency dependence of σ2, which we interpret as a melting
of the WS.

The single-hole Anderson localization and the incompress-
ible liquid state are commonly accepted phases for ν = 1
and ν = 1/3, respectively, as reported previously; see, e.g.,
[1–3,5,39]. Our results included in this article agree with
these widely known conclusions. On the flanks of these filling
factors three parameters, i.e., (i) the temperature dependences
of σ1 and σ2, (ii) the frequency dependences of σ1 and σ2, and
(iii) the ratio |σ2|/σ1 drastically differ from those at ν = 1
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and ν = 1/3. Differences in these three parameters are the
criteria that manifest the appearance of a hole phase which is
different from that observed at ν = 1 and ν = 1/3. When the
filling factor diverges from ν = 1 or ν = 1/3, in both cases
holes become delocalized. In the trivial case of noninteracting
carriers the delocalized holes would form a metallic state,
thus leading to a positive σ2 and to the absence of frequency
dependence of σ1 and σ2 at the frequency range used for our
research. Detected in the studied systems, the combination
of negative σ2 with a large ratio σ1/|σ2| 	 1 together with
observed frequency dependences of σ1 and σ2 distinguish the
observed phase from the metallic state and make evident the
existence of Wigner clusters which are due to hole-hole inter-
action, as explained in Appendix A. It should be mentioned
that the transitions between the observed phases are far from
being sharp—these transitions rather behave as crossovers.

Our analysis of the temperature and frequency depen-
dences of σ AC

xx leads to a conclusion that single-hole localized
states coexist with localized collective states within the area of
the wings observed at ν = 1.2 and 0.78 at 40 mK. Similarly,
the incompressible liquid states characteristic for the QHE
coexist with collective localized states in the area where the
wings appeared at ν = 0.3 and 0.375 at 40 mK. Therefore
the contribution of WC to conductance is masked by the
contributions of other mechanisms.

We found that in the nonlinear intensity regime the SAW
power affects the AC conductance dependences on the mag-
netic field in the same way as the temperature does in the
linear intensity regime. Namely, an increase in the acoustic
power leads to hole heating, i.e., to an increase in the hole
temperature. Since our analysis of the SAW intensity impact
on the conductance does not bring anything new to the inter-
pretation of our experimental results, we do not present it here.

We believe that the main achievement of this paper is
that we report the successful registration of a formation of
the WS domains at the lowest hole-hole interaction reported
(the highest hole density), happening on the background of
single-hole localization near ν = 1 and in the fractional QHE
regime near ν=1/3.
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APPENDIX A: REGION OF SINGLE-HOLE
LOCALIZATION

In this section we briefly review the physics behind AC
conductance in the case of single-electron localization, mainly
following our previous paper [61] which aimed to analyze an
n-GaAs quantum well.

First, let us recall that in relatively low (medium) mobil-
ity systems showing only integer quantum Hall effect, the

behavior of σ1 is well described by the single-electron pic-
ture involving electrons trapped by a random potential in
the vicinity of the conductivity minima. According to this
picture, at integer ν the Fermi level is located in the middle
of the distance between the Landau levels, the electron states
are localized by disorder, and low-temperature DC conduc-
tance, σ DC

xx , is exponentially small. The AC conductance is
determined by electron hops between nearest potential wells,
resulting in σ1(ω) 	 σ DC

xx . In such cases, the AC response
can be explained by the two-site model; for a review see [64]
and references therein. According to this model, a pair of the
electron energy minima is described as a two-level tunneling
system (TLS) with diagonal splitting �d and tunneling split-

ting �(r), the interlevel spacing being E =
√

�2
d + �2(r). At

our frequencies the AC response is due to the relaxation of the
nonequilibrium populations of the minima. The correspond-
ing relaxation rate can be expressed as, cf. with [64],

1

τ (E , r)
= 1

τ0(T )
F

(
E

kT

)(
�(r)

E

)2

. (A1)

Here k is the Boltzmann constant, and F is the dimensionless
function depending on the relaxation mechanism normalized
in order to get F (1) = 1. Therefore τ0 has a meaning of the
minimal relaxation time for a TLS with the level splitting
E = kT . Note that the above expression allows for the cor-
relation created by Coulomb interaction. In particular, each of
the important pairs contains only one hole [64]. The theory
predicts that (with logarithmic accuracy)

σ1(ω) ∝ min
{
ω, τ−1

0 (T )
}
, σ2(ω) � σ1(ω). (A2)

We conclude that at ν = 1 the behaviors of σ1 and σ2

in our sample are compatible with the picture of relaxation
absorption of SAW by localized electrons under condition
ω 	 τ−1

0 , see Eq. (A2). Indeed, estimates based on Eq. (A1)
show that the main contribution to the relaxation rate τ−1

0 is
due to piezoelectric interaction between localized electrons
and phonons. In this case (see, e.g., [64]), τ−1

0 (T ) is roughly
proportional to T and, respectively, σ1 ∝ T ω0.

APPENDIX B: REGION OF PINNED WIGNER CRYSTAL

A Wigner crystal is a typical state of a clean low-density
system of charged fermions when the interaction energy EC

significantly exceeds the Fermi energy EF . In a realistic sys-
tem the WC gets pinned by disorder, forming a glasslike state
sometimes referred to as a Wigner glass.

At small voltage and low temperature the pinned Wigner
crystal should behave as an insulator. At finite temperature,
parts of the Wigner glass experience correlated hops between
different pinned states, leading to the charge transfer. This
process is similar to the creep of dislocations [65] or pinned
vortices in type-II superconductors [66].

The dynamic response of weakly pinned Wigner crystal
at our frequencies is dominated by the collective excitations
where an inhomogeneously broadened absorption line (the
so-called pinning mode) appears. It corresponds to collec-
tive vibrations of correlated segments of the Wigner crystal
around their equilibrium positions formed by the random
pinning potential. The mode is centered at some disorder-
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and magnetic-field-dependent frequency, ωp, with its width
being determined by a complicated interplay between various
collective excitations in the Wigner crystal; see, e.g., [63].
There are modes of two types: Transverse (magnetophonons)
and longitudinal (magnetoplasmons). The latter include fluc-
tuations in electron density. An important point is that pinning
modifies both modes, and the final result depends on the
strength and correlation length ξ of the random potential.

Based on the theory provided in Ref. [63], we found out
that the components of the conductivity σ AC

xx studied in our
experiment can be written as

σ1 = σ0u
ω

ωp0

1 + u2 + (ηω/�)2

[1 + u2 + (ηω/�)2]2 − (2ηω/�)2
, (B1)

σ2 = −σ0
ω

ωp0

1 + u2 − (ηω/�)2

[1 + u2 + (ηω/�)2]2 − (2ηω/�)2
, (B2)

where σ0 ≡ e2 p/m∗ωp0, � ∼ ω2
p0η/ωc. η ≡ √

λ/β is the ratio
between the shear (β) and bulk (λ) elastic moduli of WC,
ωp0 is the pinning frequency at B = 0, ωc is the cyclotron
frequency, and u is a constant.

In the studied region of frequencies and when u 	 1,

σ1 ≈ σ0
ω

u
, σ2 =−σ0

ω

u2
. (B3)

Thus there is a qualitative agreement between theory [63] and
our experiment, specifically on these two points: the compo-
nent σ2 < 0 (at frequencies up to 150 MHz), and the ratio
σ1/|σ2| is greater than 1. The inductive response, �σ (ω) < 0,
as well as a large ratio σ1/|σ2| can be considered as a hallmark
of pinned Wigner crystal.
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