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Abstract—Entrainment of movement to a periodic stimulus is a
characteristic intelligent behaviour in humans and an important
goal for adaptive robotics. We demonstrate a quadruped cen-
tral pattern generator (CPG), consisting of modified Matsuoka
neurons, that spontaneously adjusts its period of oscillation to
that of a periodic input signal. This is done by simple forcing,
with the aid of a filtering network as well as a neural model
with tonic input-dependent oscillation period. We first use the
NSGA3 algorithm to evolve the CPG parameters, using separate
fitness functions for period tunability, limb homogeneity and gait
stability. Four CPGs, maximizing different weighted averages of
the fitness functions, are then selected from the Pareto front and
each is used as a basis for optimizing a filter network. Different
numbers of neurons are tested for each filter network. We find
that period tunability in particular facilitates robust entrainment,
that bounding gaits entrain more easily than walking gaits, and
that more neurons in the filter network are beneficial for pre-
processing input signals. The system that we present can be used
in conjunction with sensory feedback to allow low-level adaptive
and robust behaviour in walking robots.

Index Terms—central pattern generator, spiking neuron, en-
trainment, synchronization, genetic algorithm, robotics, open
loop

I. INTRODUCTION

Vertebrate locomotion is generally driven by central pattern

generators (CPG), distributed networks of locomotor neurons

that have evolved to generate oscillatory patterns of move-

ments — or gaits — that suit an animal’s biomechanics and

its environment [1], [2]. Typically, signals from the brain

stem can modulate the period of these oscillations in order to

adjust walking or running speed. A more complex behaviour

is the entrainment of movement to an external stimulus, such

as playing or dancing to music, or walking in time with a

companion [3].

At least some rhythmic behaviour has been reproduced

by continuous-time dynamical systems models of neurons.

Two mutually inhibitory neural populations (a “half-center”
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model) have a period that is easily adjusted by tonic input.

Larger numbers of neural populations can trigger the same

gait transitions and bistabilities seen in animals [4], [5].

Robots, compared to neurobiological models, generally em-

ploy simpler oscillators with fixed frequencies for building

CPGs, although adaptive-frequency variations of these have

been developed [6]. One approach to frequency adaptation

is continuous control, in which the frequency is controlled

by a time-dependent variable that is continually adjusted

according to some error signal. Buchli et al. used oscillators

with phase errors explicitly fed back into the frequency, so

that a robot’s gait frequency approached the natural resonance

of its passive joints [7]. Iwasaki and Zheng used reciprocal

coupling between a half-center CPG and a pendulum to allow

synchronization between them [8]. More recently, Egger et al.

developed a suitable spiking neuron half-center model where

the difference between input and output pulses are fed back

to the tonic input [9].

These methods, however, do not fully capture how hu-

mans entrain to external rhythms. Evidence from neuroscience

suggests that brain oscillations mediate between rhythmic

stimulus and the motor system in a top-down fashion, and

relax to their normal frequencies after the stimulus ends [10],

[11]. On the practical side, while the control theory approach

can be applied to simple isochronous pulses, it is unclear how

to obtain an error function for more complex periodic inputs.

In neuroscience, open-loop models for entrainment have

been developed that could in principle be applied to robotics.

One is using large recurrent networks, in which time is

encoded in the high-dimensional network state [12]. Another

approach is the gradient frequency network of Large et al.,

in which an oscillator with matching frequency or harmonic,

becomes resonant out of a collection of several [13], [14]. It is,

however, not clear how to integrate these relatively complex

systems with a CPG.

In this paper, we show that a CPG consisting of a small

number of non-linear oscillators can rapidly entrain to a com-

plex periodic signal through simple forcing. We demonstrate

this idea with a quadruped model based on a network of

Matsuoka oscillators that are modified to have input-dependent

frequency. The network is composed of a CPG as well an in-

termediate cortical network that filters the external signal, with

http://arxiv.org/abs/2206.01638v1
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Fig. 1. Schematic of the hierarchical neural network. Circles denote modified
Matsuoka neurons (n in the filter component, and 12 in the central pattern gen-
erator). Arrows denote one-way connections (either excitatory or inhibitory),
lines ending in circles denote inhibitory connections, and regular lines denote
mutual connections that may be excitatory or inhibitory. A/B: motor neurons;
IN: interneurons.

unidirectional coupling between the two parts. Parameters are

optimized using multi-objective genetic algorithms, generating

systems ranging from maximally flexible to maximally stable.

We examine some limits of entrainment as a function of signal

complexity, signal amplitude and the number of oscillators in

the intermediate network.

II. NEURAL MODEL

There exists a wide spectrum of mathematical models

of oscillators that are commonly applied to central pattern

generators. On one end we have the complexity and flexibility

of spiking biological models, generally based on variations of

the Wilson-Cowan model [15]. This has recently found great

success in closely reproducing the gait transitions of the mouse

CPG, including regions of bistability [4]. On the other end we

have the predictable yet inflexible simple harmonic oscillator,

which has been widely used in robotics due to its stability

and ease of including feedback. In between there are many

levels of variation in non-linearity and degrees of freedom,

such as the Hopf oscillator [7], the Fitzhugh-Nagumo model

[16], Amari-Hopfield networks [17] and the Rowat-Selverston

model [18].

The Matsuoka neuron is a biologically motivated yet ab-

stract two-variable model [19], [20]:

t0
dxi

dt
= −xi − ayi + Ii(t) (1)

t0
dyi
dt

= −γyi + bh(xi) (2)

where h(x) is a rectified linear unit: h(x) = 0 for x ≤ 0
and h(x) = x for x > 0. Like most biological models,

there is a fast “spiking” variable (x) and a slow “recovery”

variable (y). Below a critical value of a, a single neuron will

not oscillate. However, when two or more neurons are given

interconnections using

Ii(t) =
∑

j

wijh(xj − θij) (3)

where wij and θij are weights and output thresholds, respec-

tively, it is easy to produce oscillatory CPG-like patterns via

mutual inhibition or excitation.

The property of a rectified output simplifies the analysis of

the phase space. In addition, compared to the Amari-Hopfield

model (also sometimes called a continuous-time RNN) [21],

the region of phase space containing limit cycles is much

larger.

However, unlike biological neurons, where the level of

constant input can be used to control the firing rate and

hence the oscillation frequency, the firing rate of the Matsuoka

model is insensitive to tonic input [22]. Hence, we introduce a

sigmoidal activation function S(x) akin to those used to model

persistent sodium currents in motor neurons:

t0
dxi

dt
= −xi − aS(κ[xi − x0])yi + ci + diIDC + IACi(t)

(4)

t0
dyi
dt

= −γyi + bh(xi) (5)

where S(x) = 1/(1 + exp(x)). Here di is the coefficient for

the tonic brain stem drive IDC used to tune the gait period.

When the coefficients satisfy:

ci + diIDC > x0 +
2

k
, (6)

this reproduces the ubiquitous cubic-like shape of the fast

variable’s nullcline [23]. In this case, each neuron may self-

oscillate for a certain parameter range.

III. CPG MODEL

We assembled a quadruped CPG as a modular system of

limb controllers connected by interneurons, in a similar fashion

to Beer [17] and Ijspeert [24]. For an overview, see Fig. 1.

Each limb controller contains a single interneuron and two

motor neurons (‘A’ and ‘B’), the latter of which can be used

for a single extensor-flexor pair, or for a pair of single-variable

joints. Each of the three neurons has its own bias ci and drive

coefficient di, which are identical for all modules. Thresholds

between all CPG neurons θij are zero, and connection weights

wij are zero between modules, apart from when i and j



TABLE I
PARAMETER RANGES FOR THE CPG NETWORK.

Parameter Value / Range

t0 0.01 s
γ [0.01,0.1]
a [0.2,2]
b [0.02,0.2]
κ [0.5,5]
x0 [0.1,1]
di [-0.9,0.9]
ci [1.1,2]
wij [-1.8,1.8] / 0

are both interneurons. The CPG has lateral symmetry, so

that connection weights are equal for equivalent connections

between the left and right side of the body.

A. CPG Optimization

The CPG was implemented in Python1 and optimized using

the NSGA3 genetic algorithm [25] included in the DEAP

toolbox [26]. Each parameter that is not set according to the

above constraints is encoded by an integer between 1 and 10,

which determines its value within the range shown in Table I.

Note that ci and wij (for connections that exist according to the

schematic) cannot be zero. In addition, connections between

interneurons are constrained to be inhibitory (wij < 0).

A given CPG was evaluated by iterating the brainstem drive

IDC from 0 to 1 in steps of 0.1. For each drive (indexed by k),

the system was given random initial conditions, followed by a

burn-in period, after which the time series of a flexor-extensor-

type output (difference between rectified A and B neuron

outputs) was analysed for each of the four limb modules.

First, the periods were measured using the maximum of the

autocorrelation function, and reduced to the mean oscillation

period Tk and coefficient of variation CVTk over the four

limbs. A measured correlation peak at a time less than 0.01s

was considered non-oscillating and hence invalid. A period

shift of |Tk+1 −Tk|/(Tk+1 +Tk) > 0.15 was also considered

invalid in order to filter out large discontinuities. In addition,

the mean oscillation amplitude Ak and coefficient of variation

CVAk were measured using a peak finding algorithm on these

same time series. Mean amplitudes less than 0.1 or greater

than 10 were also considered invalid in order to keep all CPG

outputs within a comparable range. Finally, “duty functions”

DAk and DBk were measured to penalise unbalanced gaits in

which three or more limbs are activated simultaneously:

DA = Et

[

4
∑

i

I

(
∣

∣

∣

∣

d

dt
h(xAi)

∣

∣

∣

∣

> ǫ

)

< 3

]

, (7)

and similarly for DB, where Et is the time domain expectation

value, I is the binary indicator function, and ǫ = 0.001 in this

study. If there is no oscillation for a given k then both DAk and

DBk are given a value of zero. The use of the derivative was to

allow the possibility of consistent flat output, while penalizing

1Genotypes of individuals in this paper and source code to generate all re-
sults are available at https://github.com/aszorko/COROBOREES/tree/Paper1.

TABLE II
PARAMETER RANGES FOR THE FILTER NETWORK.

Parameter Value / Range

t0 0.01 s
γ 0.03
a 2
b 0.3
κ 4
x0 1
di 0
θ0 0.15
Γ [0.05,0.55]
ci [2,2.5]
Gi [-1,1]
wij [-6/(n-1),0]
Mij [-10,10]

simultaneous spiking of equivalent neurons in three or more

limbs.

Three fitness functions were to be maximized by the multi-

objective optimization:

F1 =

∣

∣

∣

∣

∣

N−1
∑

k=1

VkVk+1

Tk+1 − Tk

Tmax

∣

∣

∣

∣

∣

(8)

F2 =
1

N

N
∑

k

1

1 + CVTk +CVAk

(9)

F3 =
1

2N

N
∑

k

DAk +DBk (10)

(11)

where Vk is the validity of the time series during drive k,

averaged over the four outputs, with each validity being 0 or 1.

NSGA3 generates a Pareto front containing non-dominated

individuals according to these fitnesses, thus selecting for

CPGs with some combination of large monotonic variation

in period as a function of IDC , low variation between limbs,

and two or more limbs consistently in the “stance” segment

of the cycle.

We used a population of 48 individuals that evolved using

two-point crossover and mutation for 100 generations. Each

individual was evaluated again 5 times in order to use medians

as accurate final fitnesses, and from these a final Pareto front

of CPGs was generated. Four solutions were selected in a

way that balanced variety and average overall performance.

First the highest overall fitness was selected using the sum of

fitnesses. Then, three more individuals were selected using the

maxima of

F ∗

m = zFm +

3
∑

k=1

Fk (12)

where z was incremented in intervals of one until the maxi-

mum of each F ∗

m was unique.

IV. FILTER NETWORK

For each of the three selected CPGs, a filter was evolved on

top. The purpose of the filter is to pre-process the input and

distribute the signal among the CPG modules as neuron-like

https://github.com/aszorko/COROBOREES/tree/Paper1


TABLE III
TOP CPGS AFTER 100 GENERATIONS OF SELECTION, AND MEAN FITNESSES Ff OF EACH CPG’S BEST FILTER. ALL VALUES Fi AND Ffi ARE THE

MEDIANS FROM FIVE EVALUATIONS.

CPG Optimized T0.5(s) F1 F2 F3 Gait Ff (n = 2) Ff (n = 4)
0 Overall 1.80 0.76 1.00 0.68 bound 0.96 0.97
1 F ∗

1
1.35 0.76 0.70 0.79 walk 0.33 0.53

2 F ∗

2
0.47 0.04 0.98 1.00 walk 0.32 0.30

3 F ∗

3
1.15 0.63 0.68 0.91 walk 0.32 0.95

pulses. The filter network was a single non-lateralized layer

of n neurons. The coupling to the input was then governed

by n coefficients. In order to not disturb the CPG in the

absence of input, the neuron parameters were set to be below

the spontaneous bursting threshold, and all interconnections

were made to be inhibitory (wij ≤ 0). However, this does

not entirely preclude oscillation of the network, and so further

measures were taken in the fitness function below. From the

input, n coefficients Gi govern the coupling to the neurons,

while 4n coefficients governed the coupling from the filter to

the four CPG interneurons (forming the matrix M in Fig. 1).

For these connections, the offset θij was set to a constant value

θ0 to offset the equilibrium output of the neurons.

A. Filter Network Optimization

The input consisted of spikes at a regular time interval

with period τ , which was then low-pass filtered using an

exponentially decaying impulse response with decay constant

Γ/t0. The periods τk used were 2/3, 1 and 3/2 multiplied

by T0.5, where T0.5 is the median period for a tonic input

of IDC = 0.5. Together these present a range of more than a

factor of two in input period. Each neuron in the filter network

received the input multiplied by its own coefficient Fi.

The network was evolved to minimise the mean difference

between the input period and the periods of the motor neurons.

Although this is a relatively simple objective function, NSGA3

was used again to avoid early convergence to a local optimum.

The period Tik of the four CPG motor neurons was measured

as in the previous section, and the NSGA3 algorithm was run

using three fitness functions, one for each τk:

Ffk =
Vk

1 + σ0/σt +
√
∑

i (Tik − τk)2/4
(13)

where the validity Vk is defined as in the previous section, σ0

is the mean standard deviation of the filter output with no input

and σt is a scaling threshold, set to 0.1 for the current study.

A population of 68 was evolved for 50 generations for filters

with n = 4 neurons, and for 25 generations for n = 2 due

to the much smaller number of parameters. The filter with the

highest overall sum of fitnesses was then chosen for analysis.

Finally, for the overall best CPG, an additional filter was

evolved to test the ability to entrain to more complex signals

[27]. This was done in the same way as the original filter, but

with every fourth pulse missing from the input.

V. RESULTS

The three CPG fitnesses reached stable levels within 100

generations, with the final Pareto front shown in Fig. 2. Results
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Fig. 2. Median fitnesses of the individual CPGs in the Pareto front after 100
generations. Lighter color indicates higher vertical position (F3).
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Fig. 3. Maximum fitnesses of the population during evolution of the filter
modules, averaged over the three Ffk values. Solid lines: n = 4, dotted lines:
n = 2.

for CPGs maximizing the four weighted averages are shown

in Table III. The overall highest mean fitness was achieved

by a bounding gait, with front and hind limb pairs moving

in synchrony, while a variety of walking gaits maximized the

fitnesses weighted towards individual components. The four

CPGs encompassed a wide range of periods, from 0.47 to 1.8
seconds.

The CPG with highest overall fitness was also the most

successful at entrainment, with fitness close to the maximum
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of one for both 2-neuron and 4-neuron filter configurations, as

shown in Fig. 3. The full CPG0 system was able to generalize

beyond the input periods and below the amplitude used for

training, as shown in Figure 4. Notably, the CPG with the least

flexible period was least able to evolve a filter to entrain the

CPG at other drive periods. The walking gaits in general had

more difficulty generalizing entrainment to arbitrary periods,

sometimes entraining at a multiple of the input period but

often having periods not associated with the input, suggesting

highly nonlinear behaviour. Period doubling was also seen in

the filter of CPG2, which is an expected outcome of driving

the systems at high frequencies beyond those used for training.

The amplitude profiles as a function of input period were

also mostly flat as shown in Figure 5, implying very wide

transfer functions. The output amplitude curves, however,

show substantial jumps in three of the CPGs when the input

amplitude reaches a certain threshold. This can be driven either

by the filter or the CPG dynamics.

Filters were then evolved for CPG0 using a non-isochronous

input. The resulting fitness (median Ff = 0.61 for n = 4,

Ff = 0.39 for n = 2) were lower than for the filter evolved for

isochronous input. However, these filter performs reasonably

well on isochronous input (median Ff = 0.64 for n = 4,

Ff = 0.91 for n = 2), and better than the original CPG0 filters

on non-isochronous input (median Ff = 0.30 for n = 4, Ff =
0.33 for n = 2). As shown in Figure 6, in both cases the n = 4
system adjusts its period rapidly to the stimulus, retaining its

original gait pattern, and relaxing back to its original period

after the stimulus ends.

VI. DISCUSSION

To our knowledge, this is the first demonstration of open-

loop rhythmic entrainment in a central pattern generator

model. This was achieved via a novel modification of a well-

used neural model, with evolutionary optimization not only of

connection weights but also of several system parameters that

determine the degree of nonlinearity. In this architecture, wide

tunability of the oscillation period with tonic input appears

to be a precondition for synchronization to a wide range of

periodic inputs. The neural model we develop captures this

important property while remaining simple enough for use in

robotic applications.

Our results demonstrate that only a small total number of

neurons (16) are required for robust entrainment compared

to the number of neuron populations in biological quadruped

CPGs (with recent modelling studies involving several dozen

[4]). However, the difference in results between two-neuron

and four-neuron filters suggests that more neurons will add

robustness and flexibility for more complex gaits (such as

quadruped walking), transitioning gaits, and more complex

inputs.

Although communication between the brain and body is

clearly two-way in animals, this work presents a complemen-

tary approach to closed-loop control methods for temporal

prediction. The synchronization-based approach circumvents

the problem of determining a suitable error function for

complex temporal patterns. For entrainment, feedback may

take on a fine-tuning role, as is hinted at by brain research

that differentiates processes occurring on long and short time-

scales [12].

Our conceptual model has applications both within neuro-

physiological research and in the design of intelligent systems.

For the former, our framework can be further developed to

investigate general principles behind rhythmic entrainment and

embodied cognition [11], [28]. Practical applications include

beat tracking [29] and adaptive and social robotics [3], [30]–

[32].

In the future, this system will be tested in simulated

and physical robots. The addition of sensory and balancing

feedback is expected to improve the overall stability of the

system. The real-time low-level adaptive behaviour that we

demonstrate also opens up the possibility of realistic human-

robot and robot-robot interaction. To this end, studies with

multiple, mutually interacting agents will allow the study of

emerging collective behaviors.



Fig. 6. CPG0 combined output (h(xBi)− h(xAi)) for (a) a transient isochronous input with τ = 0.8× T0.5, amplitude= 0.7 and (b) the same input with
every fourth pulse missing, both using the filter trained on the missing pulse. Time series for the LF (left front) and LH (left hind) limbs lie behind the RF
(right front) and RH (right hind) limbs, respectively. Ticks above show locations of peaks.
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