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BSTRACT 

haracterizing inter -tumor heter ogeneity is crucial 
or selecting suitable cancer therapy, as the pres- 
nce of diverse molecular subgroups of patients can 

e associated with disease outcome or response to 

reatment. While cancer subtypes are often charac- 
erized by differences in gene expression, the mech- 
nisms driving these differences are generally un- 
nown. We set out to model the regulatory mech- 
nisms driving sar coma heter ogeneity based on 

atient-specific, g enome-wide g ene regulator y net- 
orks. We developed a new computational frame- 
ork, PORCUPINE, which combines knowledge on 

iological pathways with permutation-based network 

nalysis to identify pathways that exhibit signifi- 
ant regulatory heter ogeneity acr oss a patient pop- 
lation. We applied PORCUPINE to patient-specific 

eiomyosar coma netw orks modeled on data from The 

ancer Genome Atlas and validated our results in 

n independent dataset from the German Cancer 
esearch Center. PORCUPINE identified 37 hetero- 
eneously regulated pathwa ys, inc luding pathwa ys 

epresenting potential targets for treatment of sub- 
r oups of leiomyosar coma patients, such as FGFR 

nd CTLA4 inhibitory signaling. We validated the de- 
ected regulatory heter ogeneity thr ough analysis of 
etworks and chromatin states in leiomyosarcoma 

ell lines. We showed that the heterogeneity identi- 
ed with PORCUPINE is not associated with methyla- 
ion profiles or clinical features, thereby suggesting 

n independent mechanism of patient heterogeneity 

riven by the complex landscape of gene regulatory 
nteractions. 
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RAPHICAL ABSTRACT 

NTRODUCTION 

oft-tissue sarcomas are a group of rare and highly aggres- 
i v e malignancies. While they account for less than 1% of all 
alignant tumors, soft-tissue sarcomas are a tremendously 

eter ogeneous gr oup of tumors and include > 150 differ- 
nt histological subtypes ( 1 ). Partly because of this hetero- 
eneity, significant challenges exist in the management of 
oft-tissue sarcomas. Most soft-tissue sarcomas are treated 

imilarly in the clinic, regardless of their site of origin, with 

urgery with or without r adiother apy as the main treatment 
or localized disease ( 2 ). Se v eral clinical trials have been 

onducted in soft-tissue sarcomas. Howe v er, until recently 

uch trials included patients with many different histologi- 
al subtypes in the same cohort, causing difficulties to con- 
lude on the efficacy of these therapies in the individual sub- 
ypes. Differences in clinical response among soft-tissue sar- 
oma subtypes led to newer studies that only enrolled pa- 
ients of certain histological subtypes, which have shown to 

esult in better response and disease control ( 3 ). 
Over the past years it has become evident that treat- 
ents tailored to a single patient, or group of patients 
rieke.kuijjer@ncmm.uio.no 

cer. 
s Attribution License (http: // creati v ecommons.org / licenses / by / 4.0 / ), which 
e original work is properly cited. 
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belonging to a specific molecular subtype of cancer, can re-
sult in major improvements in cancer outcomes ( 4 ). For ex-
ample, characterizing inter-patient molecular tumor hetero-
geneity was shown to be crucial for selecting the most effi-
cient cancer therapy, and the presence of di v erse molecular
subtypes can predict patient survival in breast cancer ( 5 )
and relapse or resistance to treatment in melanoma ( 6 ).
Ther efor e, it is clear that the integration of personalized
medicine into cancer trea tment stra tegies r equir es exten-
si v e knowledge of inter-pa tient variability. Pa tients can, for
example, be grouped into molecular subtypes based on
‘omics’ data, such as gene expression, microRNA, DNA
methyla tion, soma tic muta tions, or pr oteomic pr ofiles. 

The molecular landscape of soft-tissue sarcomas has been
characterized in se v eral studies ( 7–10 ). The Cancer Genome
Atlas (T CGA) sar coma project, one of the largest sar coma
sequencing projects to-date, performed a comprehensi v e
and integrated analysis of 206 adult soft-tissue sarcomas,
r epr esented by six major subtypes, and showed that sarco-
mas vary greatly at the genetic, epigenetic, and transcrip-
tomic le v els ( 7 ). More recently, some histological subtypes
of soft-tissue sarcomas were further delineated into molec-
ular subgroups according to their genomic and transcrip-
tomic profiles. For example, Guo et al. , characterized three
molecular subtypes of leiomyosarcoma (LMS) –– one of the
most common subtypes of soft-tissue sarcomas –– based on
transcriptomic data ( 11 ). One of these subtypes was over-
r epr esented by uterine leiomyosarcoma, while the other
tw o were o ver-represented by extra-uterine sites. While
these subtypes were not associated with tumor grade, they
were somewhat related to patient survi val. Howe v er, the
causati v e regulatory mechanisms that distinguish these sub-
types are not fully understood and the impact of molecular
profiling of soft-tissue sarcomas on patient outcomes has
been limited. 

Through the modeling of interactions between transcrip-
tion factors (TFs) or other regulators and their potential
target genes, gene regulatory networks offer an in-depth
view on the mechanisms that dri v e gene e xpression ( 12 ),
and thus could help gain greater insight into disease mech-
anisms. Various integrati v e methods hav e been de v eloped
to model such networks genome-wide. One such method is
PANDA, which integrates putati v e TF-DNA binding with
pr otein-pr otein interactions and target gene co-expression
to infer a regulatory network for a specific condition ( 13 ).
Recently, we de v eloped an algorithm that can be combined
with condition-specific network models estimated with e.g.
PANDA to infer pa tient-specific regula tory networks (LI-
ONESS ( 14 )). These patient-specific network models have
been instrumental in capturing sex differences in gene reg-
ulation in healthy tissues ( 15 ) and colon cancer ( 16 ), as
well as in identifying regulatory interactions associated with
gliob lastoma survi val ( 17 ). 

In this work, we demonstra te tha t analysis of het-
erogeneity among patient-specific gene regulatory net-
works can facilitate stratification of cancer patients into
novel subtypes and identification of the regulatory pro-
grams that dri v e such heterogeneity. To characterize reg-
ulatory heterogeneity, we present a new computational
approach, PORCUPINE ( P rincipal Components Analy-
sis to O btain R egulatory C ontributions U sing P athway-
based I nterpretation of N etwork E stimates). PORCUPINE
can be applied to patient-specific networks modeled with
PANDA and LIONESS and detects statistically significant,
key regulatory pathways that dri v e regulatory heterogene-
ity among patients. In specific, we applied the method to 80
genome-wide leiomyosarcoma regulatory networks, which
we modeled on data from T CGA (r eferr ed to below as
TCGA-LMS). 

We validated the pathways detected by PORCUPINE
in an independent dataset r epr esented by 37 cases of
leiomyosarcoma from the study by Chudasama et al. (re-
ferred to below as DKFZ-LMS) ( 18 ). We found high
concordance in regulatory heterogeneity in both cohorts,
identifying 37 shared hetero geneousl y regulated pathways.
These included pathways that play a known role in
leiomyosarcoma biology and pa thways tha t have not been
described before in the disease. Newly identified pathways
include FGFR signaling and CTLA4 inhibitory signaling
and r epr esent potential targets for tr eatment of subgroups
of leiomyosarcoma patients. We validated the detected regu-
latory heterogeneity through analysis of networks and chro-
ma tin sta tes in leiomyosar coma cell lines. Mor eover, we
show that the heterogeneity identified with PORCUPINE
is not associated with methylation profiles or clinical fea-
tur es, ther eby suggesting an independent mechanism of pa-
tient heterogeneity dri v en by the comple x landscape of gene
regulatory interactions. 

MATERIALS AND METHODS 

Gene expression data preprocessing 

We downloaded expression data for all TCGA cases using
the ‘recount’ package in R ( 19 ). The transcriptome data
for 37 leiomyosarcoma cases obtained from the German
Cancer Research Center (DKFZ) was preprocessed by the
Omics IT and Data Management Core Facility (DKFZ
ODCF) using the One Touch Pipeline ( 20 ). We performed
batch correction on the raw expression counts of the set of
206 T CGA soft-tissue sar comas and the 37 DKFZ-LMS
samples together, using the ‘sva’ package v3.35.2 in Bio-
conductor in R 3.6.1 ( 21 ). We then combined Combat-
seq-adjusted counts with the raw expression counts of the
r emaining T CGA samples and performed smooth quantile
normalization using ‘qsmooth’ package in Bioconductor to
pr eserve global differ ences in gene expr ession between the
different cancer types ( 22 ), specifying each cancer type as
a separate group le v el. Samples of 206 TCGA soft-tissue
sarcomas and 37 DKFZ-LMS samples were specified as
the same ‘soft-tissue sarcoma’ group le v el (Supplementary
Figure S1). 

Construction of individual patient gene regulatory networks 

We used the MATLAB version of the PANDA network re-
construction algorithm (available in the netZoo repository
https://github.com/netZoo/netZooM ) to estimate an ‘ag-
gr egate’ gene r egulatory network, based on a total of 11,321
samples , 17,899 genes , and 623 TFs. These samples included
206 TCGA and 37 DKFZ soft-tissue sarcomas –– the re-
maining samples r epr esented other cancer types available

https://github.com/netZoo/netZooM
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ggregate network, as we previously found that LIONESS’ 
stimates of single-sample edges are more robust when in- 
luding a large, heterogeneous background of samples ( 14 ). 

PANDA builds an aggregate network by incorporating 

hree types of data –– a ‘prior’ regulatory network, which is 
ased on a TF motif scan to identify putati v e regulatory 

nteractions between TFs and their target genes, protein- 
rotein (PPI) interactions between TFs, and target gene ex- 
ression data. The aggregate network modeled by PANDA 

onsists of weighted edges between each TF-target gene 
air. These edge weights reflect the strength of the inferred 

 egulatory r elationship. 
The prior gene regulatory network was generated using 

 set of TF motifs obtained from the Catalogue of Inferred 

equence Binding Pr efer ences (CIS-BP) ( 23 ), as described 

y Sonawane et al. ( 24 ). These motifs were scanned to pro- 
oters as described previously ( 25 ). The prior network was 

ntersected with the expression data to include genes and 

Fs with available expression data and at least one signif- 
cant promoter hit. This resulted in initial map represent- 
ng potential regulatory interactions between 623 TFs and 

7,899 target genes. An initial pr otein-pr otein network was 
stimated between all TFs from motif prior map using inter- 
ction scores from StringDb v10 ( 26 ), which were scaled to 

e within a range of [0,1], where self-interactions were set 
qual to one, as described previously ( 24 ). To reconstruct 
a tient-specific gene regula tory networks, we applied the 
IONESS equation in MATLAB (available in the netZoo 

epository https://github.com/netZoo/netZooM ). 

MAP visualization 

o visualize the clustering distribution of the 206 TCGA 

oft-tissue sarcoma patient-specific gene regulatory net- 
orks, we applied dimensionality reduction with Uniform 

anifold Approximation and Projection (UMAP), using 

he ‘uwot’ package v0.1.5 in R 3.6.1, setting the number of 
earest neighbours to 20. We performed UMAP on the ma- 
rix of gene targeting scores obtained from the 206 individ- 
al sarcoma networks. Gene targeting scor es ar e defined as 
he sum of all edge weights pointing to a gene and r epr esent
he amount of regulation a gene recei v es from the entire set
f TFs available in a network ( 27 ). These scores have pre-
iously been used to identify gene regulatory differences in 

arious studies ( 16 , 17 , 27 ). Additionally, we performed visu- 
lization of the distribution of 80 T CGA leiomyosar coma 

amples based on gene targeting scores and expression in 

wo-dimensional UMAP space. To compare the neighbour- 
ood structures between the UMAPs, we used the approach 

escribed in the study by Taskesen et al. ( 28 ). 

dentifying regulatory heterogeneity using PORCUPINE 

o capture inter-patient heterogeneity (r eferr ed to below as 
heterogeneity’) at the gene regulatory le v el, we de v eloped 

 computational frame wor k, which we call PORCUPINE. 
ORCUPINE is a Principal Components Analysis (PCA)- 
ased approach that can be used to identify key pathways 
hat dri v e heterogeneity among indi viduals in a dataset. It 
etermines whether a specific set of variables –– for example 
 set of genes in a specific pathway –– have coordinated vari- 
bility in their regulation. 
PORCUPINE uses as input individual patient networks, 
or e xample networ ks modeled using PANDA and LI- 
NESS, as well as a .gmt file (in MSigDB file format ( 29 ))

hat includes biological pathways and the genes belonging 

o them. For each pathway, it then extracts all regulatory 

etwork edges connected to the genes belonging to that 
athway. It then scales each edge across individuals with a 

-score transformation, so that edges have zero mean and 

nit variance. It then performs a PCA analysis on these edge 
 eights, as w ell as on a null background that is based on

andom pathways. For the randomization (permutation), 
ORCUPINE creates a set of 1,000 gene sets equal in size 

o the pathway of inter est, wher e genes ar e randomly se- 
ected from all genes present in the .gmt file. The edges con- 
ected to these genes are then extracted. The amount of 
ariance explained by the first principal component (PC1) 
n the pathway of interest is then compared to the amount of 
ariance explained by PC1 in the random (permuted) data. 

To identify significant pathways, PORCUPINE applies a 

ne-tailed t-test and calculates the effect size (ES). The lat- 
er is calculated as the difference between the variance ex- 
lained by PC1 of the pathway of interest and the mean of 
he variance explained by PC1 corresponding to the ran- 
om sets of pathways, divided by standard deviation of the 
 ariance explained b y PC1 in the random sets using the 
ohensD function in the ‘lsr’ package in R. P -values are 
djusted for multiple testing with the Benjamini-Hochberg 

ethod ( 30 ) and significant pathways ar e r eturned based 

n user-defined thresholds on the FDR-adjusted P -value 
nd effect size. We de v eloped PORCUPINE as R package 
nd it is available as open-source code on GitHub ( https: 
/github.com/kuijjerlab/PORCUPINE ). 

We applied PORCUPINE to TCGA and DKFZ 

eiomyosarcoma data using Reactome pathways from 

SigDB v7.1, excluding pa thways tha t consisted of > 200 

enes. Pathways with adjusted P -value < 0.01, explained 

ariance ≥10%, and effect size ≥2 were reported as signifi- 
ant. As the number of genes in each pathway is different, 
e investigated whether the obtained results were biased 

ow ards pathw ays of smaller size. To test this, we split path- 
ays in four groups based on their size, namely pathways 

ontaining less than 50, 50–100, 100–150, 150–200 genes. 
e then calculated the proportions of these groups among 

eactome pathways and among the set of deregulated 

athways identified in the TCGA-LMS and DKFZ-LMS 

atasets. 

dentification of top ranked target genes and transcription 

actors 

o identify those genes and TFs that contribute most to 

he pathway’s significance, we extracted the edge loadings 
f the first principal component (r eferr ed to below as the 

edge contribution score’). Since the sum of the squares of 
ll edge contribution scores for an individual principal com- 
onent is equal to one by definition, and assuming that all 
dges contribute equally to that principal component, we 
an calculate the expected edge contribution score. Edges 
ith a contribution score > 1.5 × the expected score were 

egarded as important contributors to that principal com- 
onent. To identify TFs with many co-regulated genes, we 

https://github.com/netZoo/netZooM
https://github.com/kuijjerlab/PORCUPINE
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then grouped TFs corresponding to these top edges accord-
ing to the number of their targets. 

Association of the significant pathways with clinical pheno-
types 

In PORCUPINE, each pa thway separa tes pa tients along a
specific PC axis, which r epr esents the position of individ-
uals along that axis. Below, we refer to these positions as
‘pa thway-based pa tient heterogeneity scores.’ To investiga te
whether the heterogeneity captured by each pathway was
associated with clinical features, we performed an associa-
tion analysis of the pathway-based heterogeneity scores on
the first principal component with the clinical data available
for these patients. 

Clinical features for TCGA leiomyosarcoma patients
were obtained using the ‘TCGAbiolinks’ package from Bio-
conductor ( 31 ). Clinical inf ormation f or 37 DKFZ patients
was obtained from the study by Chudasama et al. ( 18 ). Since
the clinical attributes r epr esent a mix of categorical and nu-
merical features, we applied Kruskal-Wallis and Pearson
correlation tests for categorical and numerical featur es, r e-
specti v ely. We corrected P -values for multiple testing using
the Benjamini-Hochberg approach and applied a threshold
of 0.05 to identify significant associations. 

In order to determine whether any of the identified path-
ways were associated with patient survival, we used the first
principal component from each pathway in a Cox r egr es-
sion model to predict patient survival. 

Identification of molecular subtypes based on the identified
pathways 

To cluster a population of patients based on the identified
pathways into discrete subtypes, K -means clustering can be
applied on the pa thway-based pa tient heterogeneity scores
on the first two principal components obtained from a path-
way. The optimal number of clusters can be determined
prior to clustering using the Average Silhouette Method
( 32 ). 

Association of the significant pathways with pathway-based
mutation profiles 

We downloaded and preprocessed leiomyosarcoma muta-
tion data as previously described in Kuijjer et al. ( 33 ). We
used the SAMBAR algorithm ( 33 ) to obtain patient-specific
pa thway muta tion scor es for T CGA-LMS patients. Among
1,455 pathways, 954 pathways had mutation scores larger
than zero in the TCGA-LMS dataset. To assess the associ-
ation between pathways identified with PORCUPINE and
these pa thways’ muta tion scores, we used a Kruskal–Wallis
test, comparing the pathway-based patient heterogeneity
scores on the first principal component between two groups,
i.e. mutated vs not mutated, for each muta ted pa thway. We
used FDR-adjusted P -value < 0.05 as threshold for report-
ing significant differences between the groups. 

Association of the identified pathways with o ver all methyla-
tion profiles 

DNA methyla tion da ta measured on the Illumina Infinium
Human Methylation 450 BeadChip platform were down-
loaded for all sarcoma patients available in TCGA using
the Bioconductor ‘TCGA biolinks’ package in R. We down-
loaded raw methylation IDAT files and performed prepro-
cessing and normalization with subset-quantile within ar-
ray normalization (SWAN) using Bioconductor package
‘minfi.’ ( 34 ). We calculated overall methylation profiles for
each individual by using the mean value across all probes.
We then correlated these values to the pathway-based pa-
tient heterogeneity scores on the first principal component
in each pa thway. Associa tions with FDR-adjusted P -value
< 0.05 were considered significant. 

Validation of the pathways in healthy tissues 

We obtained pa tient-specific regula tory networks for
healthy smooth-muscle–deri v ed tissues, r epr esented by
esophageal muscularis and uterus from the Genotype-
Tissue Expression (GTEx) pr oject, thr ough the GRAND
database of gene regulatory network models ( 35 ). In to-
tal, 283 and 90 patient-specific networks were available for
esophageal muscularis and uterus, respecti v ely. We applied
PORCUPINE to evaluate gene regulatory heterogeneity
among the individuals in the merged set of 373 networks. 

Construction of gene regulatory networks for leiomyosar-
coma cell lines 

RNA-seq counts were obtained for four leiomyosarcoma
cell lines, including SK-UT-1, SK-UT1-B, MES-SA and
SK-LMS-1 from the study by Chudasama et al. ( 18 ). To in-
tegrate these data with the patient samples, we performed
batch correction on the raw expression counts of the set of
206 T CGA soft-tissue sar comas and the 37 DKFZ-LMS
samples and the four cell lines together, using the ‘Combat-
seq’ package in Bioconductor. Following that, we combined
the Combatseq-adjusted counts with the raw expression
counts of the r emaining T CGA samples and used ‘qsmooth’
normalization to obtain normalized counts. Individual net-
works for cell lines were then modeled using PANDA and
LIONESS as described above. 

Generation and processing of A T A C-seq data 

A complete list of all rea gents, b uffer solutions, and DNA
barcode primer sequences is described in Supplementary
File 1. ATAC-Seq libraries for SK-UT -1, SK-UT -1B, MES-
SA, and SK-LMS-1 were prepared in triplicate according
to the Omni-ATAC protocol ( 36 ) with minor modifications.
Briefly, 50,000 cells per replicate were collected by centrifu-
ga tion a t 500 × g for 5 min a t 4 

◦
C . Cell pellets wer e r esus-

pended in 50 �l ice-cold lysis buf fer A and incuba ted on
ice for 3 min, after which 500 �l ice-cold lysis buffer B were
added. Cell nuclei were pelleted by centrifugation at 500 × g
for 10 min at 4 

◦
C. The supernatant was removed carefully

and nuclei pellets were resuspended in 47.5 �l ice-cold trans-
position buffer and 2.5 �l Tagment DNA TDE1 enzyme (Il-
lumina). The transposition mix was incubated at 37 

◦
C for

30 mins at 1,000 rpm. After adding 20 �l 5 M guanidinium
thiocyanate, tagmented DNA was purified using Agencourt
AMPure XP magnetic beads (Beckman Coulter). 
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Sequencing libraries were generated via qPCR by mixing 

urified tagmented DNA with 25 �l 2X NEBNext High- 
idelity PCR Master Mix (NEB), 2.5 �l Tn5mCP1n for- 
ard primer, 2.5 �l Tn5mCBar reverse primer, and 0.5 �l 
00X SYBER Green I (In vitrogen). The f ollowing PCR 

rogram was implemented: 1 cycle of 72 

◦
C for 5 min, 1 

ycle of 98 

◦
C 30 s, and 10 cycles of 98 

◦
C for 10 s, 63 

◦
C

or 30 s, 72 

◦
C for 30 s. Following two-sided size selec- 

ion with 0.5 × and 1.4 × of Agencourt AMPure XP mag- 
etic beads, library concentration and fra gment distrib u- 
ion were checked via the 2200 TapeStation System with 

he High Sensitivity D1000 ScreenTape / Reagents (Agilent 
echnologies). 
Libraries were sequenced at the DKFZ Genomics 

nd Proteomics Core Facility using the Illumina 

extSeq 550 P air ed-End 75 bp (GEO accession: 
SE218533). Sequencing reads were processed us- 

ng the CWL-based ATAC-Seq wor kflow availab le at 
ttps: // github.com / CompEpigen / ATACseq workflows 
 37 , 38 ). Peak calling on individual samples was performed 

ith MACS2 with parameters –nomodel –keep dup all 
broad –gsize 2736124973 –qvalue 0.05. We followed the 
iffBind protocol to obtain a consensus read count matrix 

rom MACS2 peak sets ( 39 ). The ATAC-seq peaks were 
ltered using the ENCODE blacklist ( 40 ) and only the 
eaks present at least in any two samples were included in 

he analysis. Peaks were annotated to nearest gene using the 
annotatePeak’ function in ‘ChIPseeker’ package in R. To 

dentify differentially accessible regions between different 
ell lines we used the raw read count matrix in DESeq2 

 41 ). For this, only genomic regions that were annotated 

s promoter regions based on the annotatePeak calls were 
onsidered. If se v eral promoters were mapped to the same 
ene, a mean of raw reads over those promoter regions 
as calculated. To obtain normalized ATAC counts for 

he comparison of peak accessibility at the promoters 
f the genes in heterogeneous pathways with random 

egions, we used library size normalization in DiffBind. 
f se v eral promoters were mapped to the same gene, a 

ean of normalized reads over those promoter regions was 
alculated. 

ESULTS 

 an-sar coma clustering of patient-specific regulatory net- 
orks 

e set out to investigate the regulatory processes that dri v e 
eterogeneity in soft-tissue sarcomas. We started by mod- 
ling genome-wide, patient-specific gene regulatory net- 
orks for 206 TCGA soft-tissue sarcoma patients using two 

omputational algorithms, PANDA and LIONESS (Fig- 
re 1 ). These patient-specific networks include information 

n likelihoods of regulatory interactions (r epr esented as 
dge weights) between 623 TFs and 17,899 target genes. To 

xplore and visualize patient heterogeneity based on their 
egulatory landscapes, we first calculated gene targeting 

cores in these networks (see Methods), and then used Uni- 
 orm Manif old Appr oximation and Pr ojection (UMAP) 
or visualization. To determine whether regulatory profiles 
luster differently than expression data, we also performed 

MAP on the expression data (Figure 2 ). 
In both the regulatory networks and expression data, 
he majority of leiomyosar coma samples, r epr esented by 

terine (ULMS) and soft-tissue leiomyosarcoma (STLMS), 
lustered separately from other sarcoma subtypes, with 

 more distinct separation observed in the gene expres- 
ion profiles (Figure 2 ). These two types of leiomyosar- 
oma both arise from smooth muscle cells, howe v er, they 

rise from different tissues-of-origin. When only including 

eiomyosarcoma samples in the UMAP visualization (Sup- 
lementary Figure S2A, B), it is clear that co-localization 

f uterine and soft-tissue leiomyosarcomas is different be- 
ween the two UMAP embeddings –– while ULMS samples 
eparated from STLMS in the expression data (Supple- 
entary Figure S2A), clustering of leiomyosarcoma based 

n gene regulatory networks did not separate these sub- 
ypes (Supplementary Figure S2B). By comparing the local 
eighbourhood structures between the UMAPs we can see 
hat two UMAPs have low local similarity, meaning that 
amples have different neighbors in the two embeddings 
Supplementary Figure S2C). This indicates that inter- 
atient heterogeneity in leiomyosarcoma tumors based on 

a tient-specific regula tory networks is dif ferent from the 
eterogeneity observed in gene expression data, and thus 
ay lead to a different stratification of patients. Gene 

 egulatory networks captur e underlying r egula tory dif fer- 
nces between samples, such as differential TF-gene tar- 
eting. Ther efor e, comparati v e analysis of gene regula- 
ory networks can uncover differences in regulatory rela- 
ionships that may dri v e inter-patient heterogeneity and 

dentify key TF-gene interactions contributing to these 
ifferences. The potential usefulness of such network- 
ased study of inter-patient heterogeneity is the stratifi- 
ation of patients and identification of novel molecular 
ubtypes. 

n-depth analysis of gene regulatory heterogeneity in 

eiom yosar coma with PORCUPINE 

ecause the heterogeneity in the gene regulatory landscape 
f leiomyosarcoma was different from that observed in 

he expression data, we performed an in-depth analysis of 
his heterogeneity. To facilitate this, we de v eloped a ne w 

omputa tional tool, PORCUPINE, tha t can be applied to 

atient-specific gene regulatory networks to identify biolog- 
cal pa thways tha t captur e r egulatory heterogeneity in a pa- 
ient population (Figure 3 ). PORCUPINE examines reg- 
latory co-variability of edge weights across a cohort of 
atient-specific networks in a pre-defined set of pathways, 
.g. pathways from published r esour ces such as the MsigDB 

atabase ( 42 , 43 ). The method performs PCA on all esti- 
a ted regula tory interactions connected to genes from a 

pecific pathway. It then compares the variance captured by 

he first principal component in the pathway to the amount 
f variance that would be expected by chance. This process 

s repeated for each pathway. Significant pathways can then 

e selected based on user-defined thresholds of adjusted P - 
alue and effect size. 

We applied PORCUPINE to the 80 patient-specific 
eiomyosar coma gene r egulatory networks from T CGA, us- 
ng 1,455 Reactome pathways from MSigDB (see Meth- 
ds). This identified 72 significant pathways (adjusted 
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Figure 1. Schematic ov ervie w of the study. We modeled individual patient gene regulatory networks for leiomyosarcoma patients from the TCGA 

leiomyosarcoma dataset (TCGA-LMS), which is part of 206 sarcoma cases (TCGA-SARC). In addition, we modeled networks for 37 cases of leiomyosar- 
coma from DKFZ (DKFZ-LMS). Networks were modeled using PANDA and LIONESS, integrating information on pr otein-pr otein interactions (PPI) 
between transcription factors (TF), prior information on TF-DNA motif binding, and gene expression data. We then de v eloped and applied a new com- 
puta tional compara ti v e networ k analysis tool (PORCUPINE) to identify significant pa thways tha t ca pture hetero geneity in gene regulation across these 
datasets. ES: effect size. 
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Figure 2. UMAP visualization of the distribution of 206 soft-tissue sarco- 
mas, r epr esenting se v en dif ferent histological subtypes (indica ted with dif- 
ferent colors) based on ( A ) gene targeting scores ( B ) expression. DDLPS: 
dedif ferentia ted liposarcoma, MFS: m yx ofibrosarcoma, MPNST: malig- 
nant peripheral nerve sheath tumor, SS: synovial sarcoma, STLMS: soft 
tissue leiomyosarcoma, ULMS: uterine leiomyosarcoma, UPS: undiffer- 
entiated pleiomorphic sarcoma. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/narcancer/article/5/3/zcad037/7230077 by Biology Library U

niversity of O
slo user on 14 M

arch 2024
P -v alue < 0.01, v ariance explained ≥10%, and effect size
≥2). We validated these results in an independent set of
patient-specific networks modeled on 37 leiomyosarcoma
samples from DKFZ. In the validation dataset, we iden-
tified 91 pathways, of which 37 were also identified in the
networks modeled on TCGA. This overlap of 37 pathways
is higher than expected by chance, with P -value < 9.891e-
29 based on a hypergeometric test. The pathway’s effect
sizes also correlated with a Pearson correlation coefficient
of 0.53. This indicates that PORCUPINE’s results are ro-
bust and highly repr oducible acr oss networks modeled on
independent datasets. The 37 pathways that were detected
in both datasets are visualized in Figure 4 , with correspond-
ing effect sizes. 

Notably, the significant pathways varied in size, indi-
ca ting tha t PORCUPINE analysis is not biased towards
pathways of smaller or larger size (see also Supplementary
Table S1). 
Regulatory heterogeneity in pathways with known and new
roles in leiom yosar coma 

The two most significant pathways that were identified in
both datasets are ‘Inhibition of replication initiation of
damaged DNA by RB1 / E2F1’ and ‘E2F mediated regula-
tion of DNA replication,’ containing 13 and 22 genes, re-
specti v ely. A closer e xamina tion of the genes in these pa th-
ways shows that all 13 genes in the first pathway are also
part of the second pathway. PORCUPINE provides evi-
dence of a coordinated change in the regulation of multiple
genes in these pathways that is not directly captured by ex-
pression data (Supplementary Figure S3). These pathways
ar e leiomyosar coma-r ele vant, gi v en that leiomyosarcomas
are characterized by a high frequency of alterations in tu-
mor suppressor gene RB1 , which negati v ely regulates tran-
scription factor E2F1 ( 18 ). 

The 37 pathways can be further grouped into subcate-
gories according to their cellular function (see Figure 4 ).
Pathways with genes involved in cell cycle and signal trans-
duction were the most frequent subcategories. Two path-
ways were associated with TP53 regulation, including ‘TP53
regulates transcription of genes involved in G2 cell cycle ar-
rest’ and ‘TP53 regulates transcription of cell cycle genes.’
Among signal transduction pathways, we found an overrep-
resenta tion of pa thwa ys in volv ed in fibrob last growth factor
receptor (FGFR) signaling, including ‘Negati v e regulation
of FGFR2 signaling,’ ‘FGFRL1 modulation of FGFR1
signaling,’ and ‘ERKs are inactivated.’ FGFRs are tyro-
sine kinase receptors that are involved in se v eral biologi-
cal functions including regulation of cell gr owth, pr olifer-
ation, survival, differentiation, and angiogenesis. Aberrant
FGFR signaling has been shown to be associated with sev-
eral human cancers and thus FGFRs are attracti v e drug-
gable targets ( 44 ). To our knowledge, among members of
the FGFR famil y, onl y the inhibition of FGFR1 has been
investigated in a patient with metastatic leiomyosarcoma,
which showed clinical improvement ( 45 ). There is an ongo-
ing clinical trial testing the selecti v e pan-FGFR inhibitor
rogara tinib to trea t pa tients with advanced sarcoma with
alterations in FGFR1-4 ( 46 ). 
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Figure 3. Ov ervie w of PORCUPINE ( P CA to O btain R egulatory C ontributions U sing P athway-based I nterpretation of N etwork E stimates). PORCU- 
PINE applies the following steps: 1) TF-gene edge weight information is extracted from each individual gene regulatory network for all genes belonging 
to a certain pathway; 2) Principal Component Analysis is performed on the pa thway-associa ted TF-gene weight matrix. The variance explained by the 
first principal component is extracted; 3) The amount of variance explained by PC1 is compared to the expected amount of variance explained, which 
is obtained by a ppl ying PCA on edge weights connected to 1,000 randomly generated gene sets of the same size as the selected pa thway. Ef fect size is 
calculated. These steps are repeated for each pathway. P -values obtained from step 3 are then corrected for multiple testing with the Benjamini-Hochberg 
method. 
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Two pa thways associa ted with immune system function 

ere identified –– ‘CTLA-4 inhibitory signaling’ and ‘De- 
ensins.’ CTLA-4 is an immune checkpoint, and mono- 
olonal antibodies such as ipilimumab and tremelimumab 

av e been de v eloped to target CTLA-4. These CTLA-4 

nhibitors have already been used in clinical studies for 
reatment of se v eral cancer types ( 47 ). The efficacy of im-
 unothera py with CTLA-4 inhibitors in soft-tissue sar- 

oma has only been evaluated in one study to-date, in which 

ix patients with synovial sarcoma were treated with ipili- 
umab ( 48 ). To our knowledge, no clinical results testing 

he effect of anti-CTLA-4 in leiomyosarcoma are available 
r exist to-date. 

ajor genes and transcription factors contributing to 

eiom yosar coma heterogeneity 

e next identified those regulatory interactions in each 

f the 37 pathways that contributed most to the regu- 
atory heterogeneity we observed in leiomyosarcoma (see 

ethods). Across all pathways, genes including PPP2R1A, 
PP2CB, TFDP2, CCNB1 , and RB1 wer e fr equently found 

mong the top targets (Supplementary file 2). These genes 
r e r ela ted to cell prolifera tion and growth. Noteworthy, 
PP2R1A was among the top contributors in 13 out of 
7 pathways and may ther efor e be a key player in driving 

eiomyosarcoma heterogeneity (see Figure 5 for its contri- 
ution to three selected pathways). It encodes for a subunit 
f protein phosphatase 2 (PP2), which plays a role in the 
egati v e control of cell growth and division. PP2A inacti- 
ation is a crucial step in malignant de v elopment ( 49 ). It
as previously shown that PPP2R1A mutation is frequent 
n uterine cancers ( 50 ). Howe v er, we did not identify an as-
ociation between the histological subtype of leiomyosar- 
oma and gene regulatory heterogeneity in pathways that 
ad PPP2R1A among their major contributors. We also did 

ot identify any significant association of patient hetero- 
eneity scores with PPP2R1A mutation profiles, indicating 

ha t regula tory heterogeneity of PPP2R1A is not dri v en by 

oma tic muta tions in the gene itself. 
In addition to reporting the top target genes, we iden- 

ified top TFs contributing to regulatory heterogeneity in 

ach pathway. TFs that coordinately regulated multiple tar- 
ets are shown in Figure 5 C for the three main pathways 
iscussed above and in Supplementary Figure S4 for all 
athways. Some TFs had a limited number of targets that 
hey regulate in a coordinated manner, such as in the path- 
ay ‘Inhibition of replica tion initia tion of damaged DNA 

y RB1 / E2F1,’ where various TFs target a relati v ely low 

umber of genes. Other TFs, such as E2F8 in ‘CTLA4 in- 
ibitory signaling,’ were enriched for hetero geneousl y tar- 
eting a large number of genes (Figure 5 C, see also Supple- 
entary Figure S5, which indicates most genes of this path- 
ay are coordinately targeted by E2F8). E2F8 and ZNF282 

ere the most frequent TFs that connected to a large num- 
er of targets across many of the identified pathways (see 
lso Supplementary Figure S4). 

The E2F family of TFs contains eight members that play 

entral roles in many biological processes, including cell 
rolifera tion, dif ferentia tion, DNA repair, cell cycle, and 

poptosis. Se v eral studies have shown that dysregulation of 
2F8 is associated with oncogenesis and tumor progression 

n many cancers. For example, it was shown that expres- 
ion of E2F8 is associated with tumor progression in breast 
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Figure 4. Pathways identified with PORCUPINE in both leiomyosarcoma datasets (TCGA and DKFZ), based on FDR-adjusted P -value < 0.05 and effect 
size (ES) > 2. Pathways are colored according to their cellular function, with the size of the bubble reflecting the number of genes in the pathway. 
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cancer ( 51 ), human hepatocellular carcinoma ( 52 ) and lung
cancer ( 53 ). Howe v er, not much is known about the role and
clinical significance of E2F8 in leiomyosaroma, nor in other
sarcomas. 

The role of ZNF282 (Zinc finger protein 282) in human
cancers , including sarcomas , is unknown. In a study by Yeo
et al. , it was shown that ZNF282 ov ere xpression was asso-
ciated with poor survival in esophageal squamous cell car-
cinoma, and depletion of ZNF282 inhibited cell cycle pro-
gression, migration, and invasion of cancer cells ( 54 ). Addi-
tionally, the authors provided evidence that ZNF282 func-
tions as an E2F1 co-activator, highlighting a potential con-
nection between this TF and E2F signaling. 
 

Regulatory heterogeneity in leiom yosar coma is not associ-
ated with clinical features, somatic mutations or DNA methy-
lation 

We ne xt e xplored if the heterogeneity we observed in
leiomyosarcoma gene regulatory networks is associated
with known features that may influence patient heterogene-
ity, such as clinical features and genomic data. 

To investigate whether the identified pathways were as-
socia ted with clinicopa thological fea tures, we performed
an association analysis of the pathway-based patient het-
erogeneity scores with clinical features available from the
TCGA and DKFZ resources (Supplementary Figure S6).
Ther e wer e no significant associations between the clinical
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Figur e 5. ( A ) Heatma ps showing the contribution scores of genes and all TFs to the first principal component in three selected, significant pathways. ( B ) 
Heatmaps showing the edge weights of selected genes to all TFs in these pathways. Edge weights are scaled across individuals. Row annotation shows the 
edge contribution scores to PC1 in each pathway. Column annotation indicates the patient heterogeneity scores in each pathway. ( C ) Bo xplots sho wing the 
number of targets for TFs with top edge contribution scores to PC1 in each pathway. TFs with a number of targets greater than the 95th percentile in each 
pathway are labelled. 
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eatures and the pathway-based patient heterogeneity scores 
n the first principal component (at FDR-adjusted P -value 
 0.05). To determine whether any of the identified path- 
ays were related to patient survival, we used the pathway- 
ased patient heterogeneity scores on the first principal 
omponent in Cox r egr ession models to predict patient out- 
ome. We did not identify any significant associations with 

urvival. 
To evaluate if any of the identified pathways could classify 

atients with similar mutational profiles, we associated the 
rst principal component in these pathways with pathway 

utation scores. To do so, we downloaded and processed 

uta tion da ta obtained fr om leiomyosarcoma tumors fr om 

CGA (available for 72 / 80 patients) as described in Kuijjer 
t al. ( 33 ). We performed a Kruskal-Wallis test to compare 
he pa thway-based pa tient heterogeneity scores on the first 
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the genes and expression of the genes in pathways identified by PORCU- 
PINE across four cell lines to random genes. 
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principal component in each of the 37 pathways between
two groups, i.e. mutated compared to not mutated, for each
muta ted pa thway. No significant dif fer ences wer e identified
(FDR-adjusted P -value < 0.05), indicating that the separa-
tion of leiomyosarcoma patients identified with PORCU-
PINE is independent of tumor mutation profiles. Thus, gene
regulation may potentially be a new, mutation-independent
mechanism driving patient heterogeneity. 

To investigate if the patient heter ogeneity pr ofiles were
associated with inter-individual differences in the tumor’s
methylation profiles, we performed correlation analysis
of the pathway-based patient heterogeneity scores on
PC1 with overall DNA methylation profiles of individ-
ual tumors. Ther e wer e no significant associations (FDR-
adjusted P -value < 0.05), indicating that regulatory hetero-
geneity in leiomyosarcoma is independent of methylation
status. 

Stratification of patients based on the identified pathways 

PORCUPINE allows to identify patient subtypes based on
gene regulatory networks for each of the significant path-
ways. For this, K -means clustering is applied to the pathway-
based patient heterogeneity scores on the first two principal
components. Supplementary Figure S7 shows the identifi-
cation of two leiomyosarcoma subtypes based on the top
hetero geneousl y regula ted pa thway –– ‘E2F media ted regu-
lation of DNA replication.’ 

Regulatory heterogeneity of the identified pathways is not ob-
served in healthy tissues 

To explore if the 37 pathways we identified were cancer-
specific, we assessed gene regulatory heterogeneity in
healthy smooth muscle–deri v ed tissues, r epr esented by
esophageal muscularis and uterus. In total, 283 esophageal
muscularis and 90 uterus sample-specific gene regulatory
networks, modeled with PANDA and LIONESS, were
available from the GTEx project through the GRAND
database ( 35 ). We used PORCUPINE to characterize reg-
ulatory heterogeneity in this dataset. In total, 27 and 25
significant pathways were identified in healthy smooth-
muscle-deri v ed tissues uterus and esophageal muscularis,
respecti v ely. Among the 37 pathways identified to dri v e
leiomyosarcoma hetero geneity, onl y one pathway, i.e. ‘Ga p
junction degradation’ was significant in these healthy tis-
sues, indica ting tha t 36 / 37 pa thways we identified are
leiomyosarcoma-specific and that gene regulatory hetero-
geneity in these pathways likely de v elops during sarcoma-
genesis. 

Regulatory heterogeneity associates with chromatin state 

Finally, we investigated whether network heterogeneity cor-
responds to chromatin accessibility. To do so, we profiled
RNA-seq and ATAC-seq for four leiomyosarcoma cell lines.
To translate our findings on the inter-patient heterogene-
ity in leiomysarcoma to the cell lines, we constructed cell
line specific gene regulatory networks based on the RNA-
seq data, and placed these networks on the regulatory
map of leiomyosarcoma patients. Cell lines clustered among
the DKFZ-LMS patient specific networks (Supplementary
Figure S8), and we could confirm 29 / 37 pathways when we
included these cell lines in our analyses. 

We next clustered ATAC-seq profiles of the four cell
lines (three replicates for each cell line, see Supplemen-
tary Figure S9). The cell lines had distinct chromatin pro-
files with SK-LMS-1 and MES-SA clustering separately
from SK-UT-1 and SK-UT1-B –– two cell lines that are de-
ri v ed from the same donor. We then assessed whether pro-
moters of genes from the significant pathways detected
by PORCUPINE are located within open chromatin re-
gions. To do so, we compared peak accessibility at the pro-
moters of these genes to that at promoters of randomly
selected genes. We observed a significant enrichment in
open chromatin regions for the hetero geneousl y regulated
genes (Figure 6 A). In addition, we compared expression
of these genes to randomly selected gene sets, and found
they are also highly expressed (Figure 6 B). This suggests
that genes that are located in open chromatin regions are
more likely to be regulated by different sets of TFs, which
could have implications for network-based biomarker de-
tection or the de v elopment of subtype-specific targets for
treatment. 

Finall y, we evaluated w hether genes from the top het-
ero geneousl y regulated pathway ‘E2F mediated regulation
of DNA r eplication’ wer e also over-r epr esented in differ en-
tially accessible regions between leiomyosarcoma cell lines.
To do so, we called differentially accessible regions in pair-
wise comparisons between the four cell lines (six compar-
isons in total). The promoter of PPP2R1A , the gene we
found to be most enriched for heterogeneous regulation
in the two patient cohorts, was differentially accessible in
all pairwise comparisons between cell lines, except between
SK-UT-1 and SK-UT1-B (see Supplementary Table S2).
Howe v er, as these two cell lines are deri v ed from the same
donor, they are expected to have comparable regulatory
profiles. This indica tes tha t the dif ferential heterogeneity
observed in the patient-specific regulatory networks are not
only associated with open chromatin states in general, but
also with more subtle differences in chromatin landscapes
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iscussion 

n this work, we hypothesized that classification of soft- 
issue sarcoma patients on the basis of gene regulatory net- 
orks has the potential to provide additional, novel infor- 
ation to stratify patients into clinically meaningful sub- 

roups, to point to potential new targets for treatment, and 

o identify ne w biomar kers to guide selecting patients most 
ikely to benefit from a specific treatment. 

To this end, we de v eloped PORCUPINE, a novel com- 
utational approach to map heterogeneity of gene regula- 
ion across a patient population. We applied the method 

o model heterogeneity of gene regulation in leiomyosar- 
oma, which we found to present a high le v el of heterogene-
ty in a pan-sarcoma network anal ysis. A ppl ying PORCU- 
INE to two independent leiomyosarcoma cohorts identi- 
ed 37 pathways that robustl y ca pture gene regulatory het- 
rogeneity in the disease. Among the detected pathways, we 
dentified pa thways tha t could r epr esent potential targets 
or treatment of subgroups of leiomyosarcoma patients, in- 
luding RB1 / E2F1 signaling, pathwa ys in volved in FGFR 

ignaling, and CTLA4 inhibitory signaling. While these 
athways have been described as potential targets for trea- 
ent of sarcomas, not all patients may respond to such ap- 

roaches , as , for example , was recently shown for treatment 
ith a CTLA4 inhibitor in synovial sarcoma ( 48 ). Stratify- 

ng patients based on the regulatory profiles of these path- 
ays could potentially help identify subgroups of patients 

hat are likely to respond to trea tments tha t act on these
athways. 
PORCUPINE highlighted genes and TFs that are en- 

iched in driving heterogeneity among leiomyosarcoma pa- 
ients, including RB1 and PPP2R1A as target genes, as well 
s the TFs E2F8 and ZNF282, which could potentially be 
nhibited ( 55 ). Through gene regulatory network model- 
ng and ATAC-seq profiling in leiomyosarcoma cell lines, we 
ound that promoters of the most hetero geneousl y regulated 

enes in leiomyosarcoma are enriched for open chromatin 

tates. This suggests that genes in open chromatin states 
ay be more prone to recei v e differential binding by TFs, 
hich could have implications for the detection of regula- 

ory biomarkers or subtype-specific targets for treatment. 
We performed our study on four leiomyosarcoma cell 

ines that are also r epr esented in e xtensi v e cell profiling
nd functional genomics initiati v es such as DepMap from 

road Institute. While we could capture heterogeneous reg- 
lation in most of the identified pathways, the small number 
f cell lines may likely not fully r epr esent the landscape of 
eterogeneous gene regulation we observed in the patient 
ohorts, which is a limitation of our study. Howe v er, we 
ould still identify significant dif ferential chroma tin sta tes 
or the top hetero geneousl y regulated gene in the patient 
opula tion, PPP2R1A , indica ting tha t our network models 
ay potentially also capture subtle differences in chromatin 

tates in a patient population. 
We de v eloped PORCUPINE as a user-friendly R pack- 

ge that can be applied to single-sample networks. While 
imilar approaches have previously been successfully ap- 
lied to study heterogeneity in cancer using gene expres- 
ion profiles ( 56 ), our approach differs from these meth- 
ds as we specifically designed it to analyze large-scale, 
enome-wide gene regulatory networks. Of note, while we 
sed PORCUPINE on networks modeled with PANDA 

nd LIONESS, the tool is not limited to these specific 
ethodolo gies, and could potentiall y also be used to ana- 

yze (bipartite) networks modeled with other single-sample 
pproaches. For example, it can potentially be applied to 

ene regulatory networks from single cell RNA-seq data 

odeled with SCORPION ( 57 ). Of course, w hen a ppl ying 

ORCUPINE, one should consider cohort sample size as 
ell as the use of an independent validation dataset, as we 

howed here by including an independent leiomyosarcoma 

ataset, which are both important to include to detect rel- 
vant and robust pathways. Additionally, it is important to 

ote that, while the use of a large set of randomized path- 
ays is beneficial, it comes with the disadvantage of an in- 

rease in computational load. 
Genome-wide gene regulatory networks r epr esent high- 

imensional data. Usually, network summary statistics, 
uch as gene targeting scores, closeness centrality, or be- 
weenness centrality, are calculated prior to any further 
nalysis to reduce the dimensions of large-scale networks. 
hen, to identify heterogeneity across a cohort, unsuper- 
ised clustering approaches are widely used ( 58 ). The ad- 
antage of PORCUPINE is that it can be directl y a pplied to 

igh-dimensional networks, as it uses as input the network’s 
dge weights instead of a summary statistic. Moreover, as 
t does this per individual biological pathway, the output 
s not just a collection of significant differential edges that 
eed to be further analyzed, but rather a list of differen- 
ially regulated pathways that are easy to interpret. Addi- 
ionally, the method can capture significant aspects of het- 
rogeneity among individuals in situations when no clear 
opulation structure with well defined clusters can be re- 
ealed. PORCUPINE estima tes pa thway-based pa tient het- 
rogeneity scores that can facilitate the identification of ei- 
her continuous gradients or discrete gene regulatory sub- 
ypes and that can be further used in association analyses 
ith clinical covariates, or in survival analyses, as we have 

hown in this work. 
In summary, with PORCUPINE, we uncovered patterns 

f inter-patient heterogeneity at the le v el of transcriptional 
egulation in tumors and cell models, and identified genes 
nd pathways that may r epr esent therapeutic entry points 
n leiomyosarcoma. Our approach thereby provides one of 
he first steps towards implementing network-informed per- 
onalized medicine in soft-tissue sarcomas. 

A T A A V AILABILITY 

he input data to reconstruct individual patient networks 
nd the set of reconstructed networks used in this study 

re available on Zenodo ( https://doi.org/10.5281/zenodo. 
105729 ). Description of files is provided in Supplementary 

ile 3. PORCUPINE is de v eloped as an R package and it 
s available as open-source code on GitHub ( https://github. 
om/kuijjerlab/PORCUPINE ) and on Zenodo ( https://doi. 
rg/10.5281/zenodo.8105729 ). 
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