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ABSTRACT

Characterizing inter-tumor heterogeneity is crucial
for selecting suitable cancer therapy, as the pres-
ence of diverse molecular subgroups of patients can
be associated with disease outcome or response to
treatment. While cancer subtypes are often charac-
terized by differences in gene expression, the mech-
anisms driving these differences are generally un-
known. We set out to model the regulatory mech-
anisms driving sarcoma heterogeneity based on
patient-specific, genome-wide gene regulatory net-
works. We developed a new computational frame-
work, PORCUPINE, which combines knowledge on
biological pathways with permutation-based network
analysis to identify pathways that exhibit signifi-
cant regulatory heterogeneity across a patient pop-
ulation. We applied PORCUPINE to patient-specific
leiomyosarcoma networks modeled on data from The
Cancer Genome Atlas and validated our results in
an independent dataset from the German Cancer
Research Center. PORCUPINE identified 37 hetero-
geneously regulated pathways, including pathways
representing potential targets for treatment of sub-
groups of leiomyosarcoma patients, such as FGFR
and CTLAA4 inhibitory signaling. We validated the de-
tected regulatory heterogeneity through analysis of
networks and chromatin states in leiomyosarcoma
cell lines. We showed that the heterogeneity identi-
fied with PORCUPINE is not associated with methyla-
tion profiles or clinical features, thereby suggesting
an independent mechanism of patient heterogeneity
driven by the complex landscape of gene regulatory
interactions.
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INTRODUCTION

Soft-tissue sarcomas are a group of rare and highly aggres-
sive malignancies. While they account for less than 1% of all
malignant tumors, soft-tissue sarcomas are a tremendously
heterogeneous group of tumors and include >150 differ-
ent histological subtypes (1). Partly because of this hetero-
geneity, significant challenges exist in the management of
soft-tissue sarcomas. Most soft-tissue sarcomas are treated
similarly in the clinic, regardless of their site of origin, with
surgery with or without radiotherapy as the main treatment
for localized disease (2). Several clinical trials have been
conducted in soft-tissue sarcomas. However, until recently
such trials included patients with many different histologi-
cal subtypes in the same cohort, causing difficulties to con-
clude on the efficacy of these therapies in the individual sub-
types. Differences in clinical response among soft-tissue sar-
coma subtypes led to newer studies that only enrolled pa-
tients of certain histological subtypes, which have shown to
result in better response and disease control (3).

Over the past years it has become evident that treat-
ments tailored to a single patient, or group of patients
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belonging to a specific molecular subtype of cancer, can re-
sult in major improvements in cancer outcomes (4). For ex-
ample, characterizing inter-patient molecular tumor hetero-
geneity was shown to be crucial for selecting the most effi-
cient cancer therapy, and the presence of diverse molecular
subtypes can predict patient survival in breast cancer (5)
and relapse or resistance to treatment in melanoma (6).
Therefore, it is clear that the integration of personalized
medicine into cancer treatment strategies requires exten-
sive knowledge of inter-patient variability. Patients can, for
example, be grouped into molecular subtypes based on
‘omics’ data, such as gene expression, microRNA, DNA
methylation, somatic mutations, or proteomic profiles.

The molecular landscape of soft-tissue sarcomas has been
characterized in several studies (7-10). The Cancer Genome
Atlas (TCGA) sarcoma project, one of the largest sarcoma
sequencing projects to-date, performed a comprehensive
and integrated analysis of 206 adult soft-tissue sarcomas,
represented by six major subtypes, and showed that sarco-
mas vary greatly at the genetic, epigenetic, and transcrip-
tomic levels (7). More recently, some histological subtypes
of soft-tissue sarcomas were further delineated into molec-
ular subgroups according to their genomic and transcrip-
tomic profiles. For example, Guo et al., characterized three
molecular subtypes of leiomyosarcoma (LMS)—one of the
most common subtypes of soft-tissue sarcomas—based on
transcriptomic data (11). One of these subtypes was over-
represented by uterine leiomyosarcoma, while the other
two were over-represented by extra-uterine sites. While
these subtypes were not associated with tumor grade, they
were somewhat related to patient survival. However, the
causative regulatory mechanisms that distinguish these sub-
types are not fully understood and the impact of molecular
profiling of soft-tissue sarcomas on patient outcomes has
been limited.

Through the modeling of interactions between transcrip-
tion factors (TFs) or other regulators and their potential
target genes, gene regulatory networks offer an in-depth
view on the mechanisms that drive gene expression (12),
and thus could help gain greater insight into disease mech-
anisms. Various integrative methods have been developed
to model such networks genome-wide. One such method is
PANDA, which integrates putative TF-DNA binding with
protein-protein interactions and target gene co-expression
to infer a regulatory network for a specific condition (13).
Recently, we developed an algorithm that can be combined
with condition-specific network models estimated with e.g.
PANDA to infer patient-specific regulatory networks (LI-
ONESS (14)). These patient-specific network models have
been instrumental in capturing sex differences in gene reg-
ulation in healthy tissues (15) and colon cancer (16), as
well as in identifying regulatory interactions associated with
glioblastoma survival (17).

In this work, we demonstrate that analysis of het-
erogeneity among patient-specific gene regulatory net-
works can facilitate stratification of cancer patients into
novel subtypes and identification of the regulatory pro-
grams that drive such heterogeneity. To characterize reg-
ulatory heterogeneity, we present a new computational
approach, PORCUPINE (Principal Components Analy-
sis to Obtain Regulatory Contributions Using Pathway-

based Interpretation of Network Estimates). PORCUPINE
can be applied to patient-specific networks modeled with
PANDA and LIONESS and detects statistically significant,
key regulatory pathways that drive regulatory heterogene-
ity among patients. In specific, we applied the method to 80
genome-wide leiomyosarcoma regulatory networks, which
we modeled on data from TCGA (referred to below as
TCGA-LMS).

We validated the pathways detected by PORCUPINE
in an independent dataset represented by 37 cases of
leiomyosarcoma from the study by Chudasama et al. (re-
ferred to below as DKFZ-LMS) (18). We found high
concordance in regulatory heterogeneity in both cohorts,
identifying 37 shared heterogeneously regulated pathways.
These included pathways that play a known role in
leiomyosarcoma biology and pathways that have not been
described before in the disease. Newly identified pathways
include FGFR signaling and CTLA4 inhibitory signaling
and represent potential targets for treatment of subgroups
of lelomyosarcoma patients. We validated the detected regu-
latory heterogeneity through analysis of networks and chro-
matin states in leiomyosarcoma cell lines. Moreover, we
show that the heterogeneity identified with PORCUPINE
is not associated with methylation profiles or clinical fea-
tures, thereby suggesting an independent mechanism of pa-
tient heterogeneity driven by the complex landscape of gene
regulatory interactions.

MATERIALS AND METHODS
Gene expression data preprocessing

We downloaded expression data for all TCGA cases using
the ‘recount’ package in R (19). The transcriptome data
for 37 leiomyosarcoma cases obtained from the German
Cancer Research Center (DKFZ) was preprocessed by the
Omics IT and Data Management Core Facility (DKFZ
ODCEF) using the One Touch Pipeline (20). We performed
batch correction on the raw expression counts of the set of
206 TCGA soft-tissue sarcomas and the 37 DKFZ-LMS
samples together, using the ‘sva’ package v3.35.2 in Bio-
conductor in R 3.6.1 (21). We then combined Combat-
seq-adjusted counts with the raw expression counts of the
remaining TCGA samples and performed smooth quantile
normalization using ‘qsmooth’ package in Bioconductor to
preserve global differences in gene expression between the
different cancer types (22), specifying each cancer type as
a separate group level. Samples of 206 TCGA soft-tissue
sarcomas and 37 DKFZ-LMS samples were specified as
the same ‘soft-tissue sarcoma’ group level (Supplementary
Figure S1).

Construction of individual patient gene regulatory networks

We used the MATLARB version of the PANDA network re-
construction algorithm (available in the netZoo repository
https://github.com/netZoo/netZooM) to estimate an ‘ag-
gregate’ gene regulatory network, based on a total of 11,321
samples, 17,899 genes, and 623 TFs. These samples included
206 TCGA and 37 DKFZ soft-tissue sarcomas—the re-
maining samples represented other cancer types available
in TCGA. We used the entire TCGA dataset to build the
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aggregate network, as we previously found that LIONESS’
estimates of single-sample edges are more robust when in-
cluding a large, heterogeneous background of samples (14).

PANDA builds an aggregate network by incorporating
three types of data—a ‘prior’ regulatory network, which is
based on a TF motif scan to identify putative regulatory
interactions between TFs and their target genes, protein-
protein (PPI) interactions between TFs, and target gene ex-
pression data. The aggregate network modeled by PANDA
consists of weighted edges between each TF-target gene
pair. These edge weights reflect the strength of the inferred
regulatory relationship.

The prior gene regulatory network was generated using
a set of TF motifs obtained from the Catalogue of Inferred
Sequence Binding Preferences (CIS-BP) (23), as described
by Sonawane et al. (24). These motifs were scanned to pro-
moters as described previously (25). The prior network was
intersected with the expression data to include genes and
TFs with available expression data and at least one signif-
icant promoter hit. This resulted in initial map represent-
ing potential regulatory interactions between 623 TFs and
17,899 target genes. An initial protein-protein network was
estimated between all TFs from motif prior map using inter-
action scores from StringDb v10 (26), which were scaled to
be within a range of [0,1], where self-interactions were set
equal to one, as described previously (24). To reconstruct
patient-specific gene regulatory networks, we applied the
LIONESS equation in MATLAB (available in the netZoo
repository https://github.com/netZoo/netZooM).

UMAP visualization

To visualize the clustering distribution of the 206 TCGA
soft-tissue sarcoma patient-specific gene regulatory net-
works, we applied dimensionality reduction with Uniform
Manifold Approximation and Projection (UMAP), using
the ‘uwot’ package v0.1.5 in R 3.6.1, setting the number of
nearest neighbours to 20. We performed UMAP on the ma-
trix of gene targeting scores obtained from the 206 individ-
ual sarcoma networks. Gene targeting scores are defined as
the sum of all edge weights pointing to a gene and represent
the amount of regulation a gene receives from the entire set
of TFs available in a network (27). These scores have pre-
viously been used to identify gene regulatory differences in
various studies (16,17,27). Additionally, we performed visu-
alization of the distribution of 80 TCGA leiomyosarcoma
samples based on gene targeting scores and expression in
two-dimensional UMAP space. To compare the neighbour-
hood structures between the UM APs, we used the approach
described in the study by Taskesen et al. (28).

Identifying regulatory heterogeneity using PORCUPINE

To capture inter-patient heterogeneity (referred to below as
‘heterogeneity’) at the gene regulatory level, we developed
a computational framework, which we call PORCUPINE.
PORCUPINE is a Principal Components Analysis (PCA)-
based approach that can be used to identify key pathways
that drive heterogeneity among individuals in a dataset. It
determines whether a specific set of variables—for example
a set of genes in a specific pathway—have coordinated vari-
ability in their regulation.
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PORCUPINE uses as input individual patient networks,
for example networks modeled using PANDA and LI-
ONESS, as well as a .gmt file (in MSigDB file format (29))
that includes biological pathways and the genes belonging
to them. For each pathway, it then extracts all regulatory
network edges connected to the genes belonging to that
pathway. It then scales each edge across individuals with a
z-score transformation, so that edges have zero mean and
unit variance. It then performs a PCA analysis on these edge
weights, as well as on a null background that is based on
random pathways. For the randomization (permutation),
PORCUPINE creates a set of 1,000 gene sets equal in size
to the pathway of interest, where genes are randomly se-
lected from all genes present in the .gmt file. The edges con-
nected to these genes are then extracted. The amount of
variance explained by the first principal component (PCI)
in the pathway of interest is then compared to the amount of
variance explained by PC1 in the random (permuted) data.

To identify significant pathways, PORCUPINE applies a
one-tailed t-test and calculates the effect size (ES). The lat-
ter is calculated as the difference between the variance ex-
plained by PC1 of the pathway of interest and the mean of
the variance explained by PC1 corresponding to the ran-
dom sets of pathways, divided by standard deviation of the
variance explained by PCI in the random sets using the
cohensD function in the ‘Isr’ package in R. P-values are
adjusted for multiple testing with the Benjamini-Hochberg
method (30) and significant pathways are returned based
on user-defined thresholds on the FDR-adjusted P-value
and effect size. We developed PORCUPINE as R package
and it is available as open-source code on GitHub (https:
/lgithub.com/kuijjerlab/PORCUPINE).

We applied PORCUPINE to TCGA and DKFZ
leiomyosarcoma data using Reactome pathways from
MSigDB v7.1, excluding pathways that consisted of >200
genes. Pathways with adjusted P-value <0.01, explained
variance >10%, and effect size >2 were reported as signifi-
cant. As the number of genes in each pathway is different,
we investigated whether the obtained results were biased
towards pathways of smaller size. To test this, we split path-
ways in four groups based on their size, namely pathways
containing less than 50, 50-100, 100-150, 150-200 genes.
We then calculated the proportions of these groups among
Reactome pathways and among the set of deregulated
pathways identified in the TCGA-LMS and DKFZ-LMS
datasets.

Identification of top ranked target genes and transcription
factors

To identify those genes and TFs that contribute most to
the pathway’s significance, we extracted the edge loadings
of the first principal component (referred to below as the
‘edge contribution score’). Since the sum of the squares of
all edge contribution scores for an individual principal com-
ponent is equal to one by definition, and assuming that all
edges contribute equally to that principal component, we
can calculate the expected edge contribution score. Edges
with a contribution score >1.5 x the expected score were
regarded as important contributors to that principal com-
ponent. To identify TFs with many co-regulated genes, we
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then grouped TFs corresponding to these top edges accord-
ing to the number of their targets.

Association of the significant pathways with clinical pheno-
types

In PORCUPINE, each pathway separates patients along a
specific PC axis, which represents the position of individ-
uals along that axis. Below, we refer to these positions as
‘pathway-based patient heterogeneity scores.” To investigate
whether the heterogeneity captured by each pathway was
associated with clinical features, we performed an associa-
tion analysis of the pathway-based heterogeneity scores on
the first principal component with the clinical data available
for these patients.

Clinical features for TCGA leiomyosarcoma patients
were obtained using the “TCGADbiolinks’ package from Bio-
conductor (31). Clinical information for 37 DKFZ patients
was obtained from the study by Chudasama et al. (18). Since
the clinical attributes represent a mix of categorical and nu-
merical features, we applied Kruskal-Wallis and Pearson
correlation tests for categorical and numerical features, re-
spectively. We corrected P-values for multiple testing using
the Benjamini-Hochberg approach and applied a threshold
of 0.05 to identify significant associations.

In order to determine whether any of the identified path-
ways were associated with patient survival, we used the first
principal component from each pathway in a Cox regres-
sion model to predict patient survival.

Identification of molecular subtypes based on the identified
pathways

To cluster a population of patients based on the identified
pathways into discrete subtypes, K-means clustering can be
applied on the pathway-based patient heterogeneity scores
on the first two principal components obtained from a path-
way. The optimal number of clusters can be determined
prior to clustering using the Average Silhouette Method
(32).

Association of the significant pathways with pathway-based
mutation profiles

We downloaded and preprocessed leiomyosarcoma muta-
tion data as previously described in Kuijjer et al. (33). We
used the SAMBAR algorithm (33) to obtain patient-specific
pathway mutation scores for TCGA-LMS patients. Among
1,455 pathways, 954 pathways had mutation scores larger
than zero in the TCGA-LMS dataset. To assess the associ-
ation between pathways identified with PORCUPINE and
these pathways’ mutation scores, we used a Kruskal-Wallis
test, comparing the pathway-based patient heterogeneity
scores on the first principal component between two groups,
i.e. mutated vs not mutated, for each mutated pathway. We
used FDR-adjusted P-value <0.05 as threshold for report-
ing significant differences between the groups.

Association of the identified pathways with overall methyla-
tion profiles

DNA methylation data measured on the Illumina Infinium
Human Methylation 450 BeadChip platform were down-

loaded for all sarcoma patients available in TCGA using
the Bioconductor “TCGA biolinks’ package in R. We down-
loaded raw methylation IDAT files and performed prepro-
cessing and normalization with subset-quantile within ar-
ray normalization (SWAN) using Bioconductor package
‘minfi.” (34). We calculated overall methylation profiles for
each individual by using the mean value across all probes.
We then correlated these values to the pathway-based pa-
tient heterogeneity scores on the first principal component
in each pathway. Associations with FDR-adjusted P-value
<0.05 were considered significant.

Validation of the pathways in healthy tissues

We obtained patient-specific regulatory networks for
healthy smooth-muscle-derived tissues, represented by
esophageal muscularis and uterus from the Genotype-
Tissue Expression (GTEx) project, through the GRAND
database of gene regulatory network models (35). In to-
tal, 283 and 90 patient-specific networks were available for
esophageal muscularis and uterus, respectively. We applied
PORCUPINE to evaluate gene regulatory heterogeneity
among the individuals in the merged set of 373 networks.

Construction of gene regulatory networks for leiomyosar-
coma cell lines

RNA-seq counts were obtained for four leiomyosarcoma
cell lines, including SK-UT-1, SK-UT1-B, MES-SA and
SK-LMS-1 from the study by Chudasama et al. (18). To in-
tegrate these data with the patient samples, we performed
batch correction on the raw expression counts of the set of
206 TCGA soft-tissue sarcomas and the 37 DKFZ-LMS
samples and the four cell lines together, using the ‘Combat-
seq’ package in Bioconductor. Following that, we combined
the Combatseq-adjusted counts with the raw expression
counts of the remaining TCGA samples and used ‘qsmooth’
normalization to obtain normalized counts. Individual net-
works for cell lines were then modeled using PANDA and
LIONESS as described above.

Generation and processing of ATAC-seq data

A complete list of all reagents, buffer solutions, and DNA
barcode primer sequences is described in Supplementary
File 1. ATAC-Seq libraries for SK-UT-1, SK-UT-1B, MES-
SA, and SK-LMS-1 were prepared in triplicate according
to the Omni-ATAC protocol (36) with minor modifications.
Briefly, 50,000 cells per replicate were collected by centrifu-
gation at 500 x g for 5 min at 4 C. Cell pellets were resus-
pended in 50 pl ice-cold lysis buffer A and incubated on
ice for 3 min, after which 500 wl ice-cold lysis buffer B were
added. Cell nuclei were pelleted by centrifugation at 500 x g
for 10 min at 4 C. The supernatant was removed carefully
and nuclei pellets were resuspended in 47.5 plice-cold trans-
position buffer and 2.5 pl Tagment DNA TDEI enzyme (I1-
lumina). The transposition mix was incubated at 37 C for
30 mins at 1,000 rpm. After adding 20 .1 5 M guanidinium
thiocyanate, tagmented DNA was purified using Agencourt
AMPure XP magnetic beads (Beckman Coulter).
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Sequencing libraries were generated via qPCR by mixing
purified tagmented DNA with 25 wl 2X NEBNext High-
Fidelity PCR Master Mix (NEB), 2.5 pl TnSmCPln for-
ward primer, 2.5 pl Tn5SmCBar reverse primer, and 0.5 pl
100X SYBER Green I (Invitrogen). The following PCR
program was implemented: 1 cycle of 72°C for 5 min, 1
cycle of 98°C 30 s, and 10 cycles of 98 C for 10 s, 63°C
for 30 s, 72°C for 30 s. Following two-sided size selec-
tion with 0.5x and 1.4x of Agencourt AMPure XP mag-
netic beads, library concentration and fragment distribu-
tion were checked via the 2200 TapeStation System with
the High Sensitivity D1000 ScreenTape/Reagents (Agilent
Technologies).

Libraries were sequenced at the DKFZ Genomics
and Proteomics Core Facility using the Illumina
NextSeq 550 Paired-End 75 bp (GEO accession:
GSE218533). Sequencing reads were processed us-
ing the CWL-based ATAC-Seq workflow available at
https://github.com/CompEpigen/ATACseq_workflows
(37,38). Peak calling on individual samples was performed
with MACS2 with parameters -nomodel —keep_dup all
—broad —gsize 2736124973 —qvalue 0.05. We followed the
DiffBind protocol to obtain a consensus read count matrix
from MACS2 peak sets (39). The ATAC-seq peaks were
filtered using the ENCODE blacklist (40) and only the
peaks present at least in any two samples were included in
the analysis. Peaks were annotated to nearest gene using the
‘annotatePeak’ function in ‘ChIPsecker’ package in R. To
identify differentially accessible regions between different
cell lines we used the raw read count matrix in DESeq2
(41). For this, only genomic regions that were annotated
as promoter regions based on the annotatePeak calls were
considered. If several promoters were mapped to the same
gene, a mean of raw reads over those promoter regions
was calculated. To obtain normalized ATAC counts for
the comparison of peak accessibility at the promoters
of the genes in heterogeneous pathways with random
regions, we used library size normalization in DiffBind.
If several promoters were mapped to the same gene, a
mean of normalized reads over those promoter regions was
calculated.

RESULTS

Pan-sarcoma clustering of patient-specific regulatory net-
works

We set out to investigate the regulatory processes that drive
heterogeneity in soft-tissue sarcomas. We started by mod-
eling genome-wide, patient-specific gene regulatory net-
works for 206 TCGA soft-tissue sarcoma patients using two
computational algorithms, PANDA and LIONESS (Fig-
ure 1). These patient-specific networks include information
on likelihoods of regulatory interactions (represented as
edge weights) between 623 TFs and 17,899 target genes. To
explore and visualize patient heterogeneity based on their
regulatory landscapes, we first calculated gene targeting
scores in these networks (see Methods), and then used Uni-
form Manifold Approximation and Projection (UMAP)
for visualization. To determine whether regulatory profiles
cluster differently than expression data, we also performed
UMAP on the expression data (Figure 2).
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In both the regulatory networks and expression data,
the majority of leiomyosarcoma samples, represented by
uterine (ULMYS) and soft-tissue leilomyosarcoma (STLMS),
clustered separately from other sarcoma subtypes, with
a more distinct separation observed in the gene expres-
sion profiles (Figure 2). These two types of leiomyosar-
coma both arise from smooth muscle cells, however, they
arise from different tissues-of-origin. When only including
leiomyosarcoma samples in the UMAP visualization (Sup-
plementary Figure S2A, B), it is clear that co-localization
of uterine and soft-tissue leiomyosarcomas is different be-
tween the two UMAP embeddings—while ULMS samples
separated from STLMS in the expression data (Supple-
mentary Figure S2A), clustering of leiomyosarcoma based
on gene regulatory networks did not separate these sub-
types (Supplementary Figure S2B). By comparing the local
neighbourhood structures between the UMAPs we can see
that two UMAPs have low local similarity, meaning that
samples have different neighbors in the two embeddings
(Supplementary Figure S2C). This indicates that inter-
patient heterogeneity in leiomyosarcoma tumors based on
patient-specific regulatory networks is different from the
heterogeneity observed in gene expression data, and thus
may lead to a different stratification of patients. Gene
regulatory networks capture underlying regulatory differ-
ences between samples, such as differential TF-gene tar-
geting. Therefore, comparative analysis of gene regula-
tory networks can uncover differences in regulatory rela-
tionships that may drive inter-patient heterogeneity and
identify key TF-gene interactions contributing to these
differences. The potential usefulness of such network-
based study of inter-patient heterogeneity is the stratifi-
cation of patients and identification of novel molecular
subtypes.

In-depth analysis of gene regulatory heterogeneity in
leiomyosarcoma with PORCUPINE

Because the heterogeneity in the gene regulatory landscape
of leiomyosarcoma was different from that observed in
the expression data, we performed an in-depth analysis of
this heterogeneity. To facilitate this, we developed a new
computational tool, PORCUPINE, that can be applied to
patient-specific gene regulatory networks to identify biolog-
ical pathways that capture regulatory heterogeneity in a pa-
tient population (Figure 3). PORCUPINE examines reg-
ulatory co-variability of edge weights across a cohort of
patient-specific networks in a pre-defined set of pathways,
e.g. pathways from published resources such as the MsigDB
database (42,43). The method performs PCA on all esti-
mated regulatory interactions connected to genes from a
specific pathway. It then compares the variance captured by
the first principal component in the pathway to the amount
of variance that would be expected by chance. This process
is repeated for each pathway. Significant pathways can then
be selected based on user-defined thresholds of adjusted P-
value and effect size.

We applied PORCUPINE to the 80 patient-specific
leiomyosarcoma gene regulatory networks from TCGA, us-
ing 1,455 Reactome pathways from MSigDB (see Meth-
ods). This identified 72 significant pathways (adjusted
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INDIVIDUAL PATIENT GENE REGULATORY NETWORKS

PPI: 623 TFs (StringDb) h TCGALMS GRN 1
¢ ﬁ\ " ER
AGGREGATE NETWORK
Regulatory prior ‘: ©
623 TFs (CISBP), 17899 genes L P
: -lzl -» = -
XX ’\I:; -+
ACAGT! DKFZ-LMS GRN 1
Gene expression :
17899 genes, 11321 samples
TCGA-SARC ~ DKFZ-LMS  TCGA-other
n=206 n=37 n=11078
J ™

TCGA-LMS GRN 2

DKFZ-LMS GRN 2

TCGA-LMS GRN 80

o
 —

6 1 2 8 4 5 b g
ES TCGA a
&

SIGNIFICANT PATHWAYS
IN BOTH DATASETS
°

pathways

. DKFZ-LMS GRN 37

2 RN '
m
*’
1 2 3 4 5 6

- " - ES DKFZ

— " eeteen
ES TCGA

pathways
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between transcription factors (TF), prior information on TF-DNA motif binding, and gene expression data. We then developed and applied a new com-
putational comparative network analysis tool (PORCUPINE) to identify significant pathways that capture heterogeneity in gene regulation across these

datasets. ES: effect size.
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Figure 2. UMAP visualization of the distribution of 206 soft-tissue sarco-
mas, representing seven different histological subtypes (indicated with dif-
ferent colors) based on (A) gene targeting scores (B) expression. DDLPS:
dedifferentiated liposarcoma, MFS: myxofibrosarcoma, MPNST: malig-
nant peripheral nerve sheath tumor, SS: synovial sarcoma, STLMS: soft
tissue leiomyosarcoma, ULMS: uterine leiomyosarcoma, UPS: undiffer-
entiated pleiomorphic sarcoma.

P-value <0.01, variance explained >10%, and effect size
>2). We validated these results in an independent set of
patient-specific networks modeled on 37 leiomyosarcoma
samples from DKFZ. In the validation dataset, we iden-
tified 91 pathways, of which 37 were also identified in the
networks modeled on TCGA. This overlap of 37 pathways
is higher than expected by chance, with P-value <9.891e-
29 based on a hypergeometric test. The pathway’s effect
sizes also correlated with a Pearson correlation coefficient
of 0.53. This indicates that PORCUPINE’s results are ro-
bust and highly reproducible across networks modeled on
independent datasets. The 37 pathways that were detected
in both datasets are visualized in Figure 4, with correspond-
ing effect sizes.

Notably, the significant pathways varied in size, indi-
cating that PORCUPINE analysis is not biased towards
pathways of smaller or larger size (see also Supplementary
Table S1).

Regulatory heterogeneity in pathways with known and new
roles in leiomyosarcoma

The two most significant pathways that were identified in
both datasets are ‘Inhibition of replication initiation of
damaged DNA by RB1/E2F1’ and ‘E2F mediated regula-
tion of DNA replication,” containing 13 and 22 genes, re-
spectively. A closer examination of the genes in these path-
ways shows that all 13 genes in the first pathway are also
part of the second pathway. PORCUPINE provides evi-
dence of a coordinated change in the regulation of multiple
genes in these pathways that is not directly captured by ex-
pression data (Supplementary Figure S3). These pathways
are leiomyosarcoma-relevant, given that leiomyosarcomas
are characterized by a high frequency of alterations in tu-
mor suppressor gene RBI, which negatively regulates tran-
scription factor E2F1 (18).

The 37 pathways can be further grouped into subcate-
gories according to their cellular function (see Figure 4).
Pathways with genes involved in cell cycle and signal trans-
duction were the most frequent subcategories. Two path-
ways were associated with TP53 regulation, including “TP53
regulates transcription of genes involved in G2 cell cycle ar-
rest’ and “TPS53 regulates transcription of cell cycle genes.’
Among signal transduction pathways, we found an overrep-
resentation of pathways involved in fibroblast growth factor
receptor (FGFR) signaling, including ‘Negative regulation
of FGFR2 signaling, ‘FGFRLI1 modulation of FGFR1
signaling,” and ‘ERKs are inactivated.” FGFRs are tyro-
sine kinase receptors that are involved in several biologi-
cal functions including regulation of cell growth, prolifer-
ation, survival, differentiation, and angiogenesis. Aberrant
FGEFR signaling has been shown to be associated with sev-
eral human cancers and thus FGFRs are attractive drug-
gable targets (44). To our knowledge, among members of
the FGFR family, only the inhibition of FGFR1 has been
investigated in a patient with metastatic leiomyosarcoma,
which showed clinical improvement (45). There is an ongo-
ing clinical trial testing the selective pan-FGFR inhibitor
rogaratinib to treat patients with advanced sarcoma with
alterations in FGFR1-4 (46).
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Figure 3. Overview of PORCUPINE (PCA to Obtain Regulatory Contributions Using Pathway-based Interpretation of Network Estimates). PORCU-
PINE applies the following steps: 1) TF-gene edge weight information is extracted from each individual gene regulatory network for all genes belonging
to a certain pathway; 2) Principal Component Analysis is performed on the pathway-associated TF-gene weight matrix. The variance explained by the
first principal component is extracted; 3) The amount of variance explained by PC1 is compared to the expected amount of variance explained, which
is obtained by applying PCA on edge weights connected to 1,000 randomly generated gene sets of the same size as the selected pathway. Effect size is
calculated. These steps are repeated for each pathway. P-values obtained from step 3 are then corrected for multiple testing with the Benjamini-Hochberg

method.

Two pathways associated with immune system function
were identified—CTLA-4 inhibitory signaling’ and ‘De-
fensins.” CTLA-4 is an immune checkpoint, and mono-
colonal antibodies such as ipilimumab and tremelimumab
have been developed to target CTLA-4. These CTLA-4
inhibitors have already been used in clinical studies for
treatment of several cancer types (47). The efficacy of im-
munotherapy with CTLA-4 inhibitors in soft-tissue sar-
coma has only been evaluated in one study to-date, in which
six patients with synovial sarcoma were treated with ipili-
mumab (48). To our knowledge, no clinical results testing
the effect of anti-CTLA-4 in leiomyosarcoma are available
or exist to-date.

Major genes and transcription factors contributing to
leiomyosarcoma heterogeneity

We next identified those regulatory interactions in each
of the 37 pathways that contributed most to the regu-
latory heterogeneity we observed in leiomyosarcoma (see
Methods). Across all pathways, genes including PPP2RI A,
PPP2CB, TFDP2, CCNBI, and RBI were frequently found
among the top targets (Supplementary file 2). These genes
are related to cell proliferation and growth. Noteworthy,
PPP2RIA was among the top contributors in 13 out of
37 pathways and may therefore be a key player in driving
leiomyosarcoma heterogeneity (see Figure 5 for its contri-
bution to three selected pathways). It encodes for a subunit
of protein phosphatase 2 (PP2), which plays a role in the
negative control of cell growth and division. PP2A inacti-
vation is a crucial step in malignant development (49). It
was previously shown that PPP2RI1 A mutation is frequent

in uterine cancers (50). However, we did not identify an as-
sociation between the histological subtype of leiomyosar-
coma and gene regulatory heterogeneity in pathways that
had PPP2RI A among their major contributors. We also did
not identify any significant association of patient hetero-
geneity scores with PPP2R1 A mutation profiles, indicating
that regulatory heterogeneity of PPP2RI A is not driven by
somatic mutations in the gene itself.

In addition to reporting the top target genes, we iden-
tified top TFs contributing to regulatory heterogeneity in
each pathway. TFs that coordinately regulated multiple tar-
gets are shown in Figure 5C for the three main pathways
discussed above and in Supplementary Figure S4 for all
pathways. Some TFs had a limited number of targets that
they regulate in a coordinated manner, such as in the path-
way ‘Inhibition of replication initiation of damaged DNA
by RB1/E2F1, where various TFs target a relatively low
number of genes. Other TFs, such as E2F8 in ‘CTLA4 in-
hibitory signaling,” were enriched for heterogencously tar-
geting a large number of genes (Figure 5C, see also Supple-
mentary Figure S5, which indicates most genes of this path-
way are coordinately targeted by E2F8). E2F8 and ZNF282
were the most frequent TFs that connected to a large num-
ber of targets across many of the identified pathways (see
also Supplementary Figure S4).

The E2F family of TFs contains eight members that play
central roles in many biological processes, including cell
proliferation, differentiation, DNA repair, cell cycle, and
apoptosis. Several studies have shown that dysregulation of
E2F8 is associated with oncogenesis and tumor progression
in many cancers. For example, it was shown that expres-
sion of E2F8 is associated with tumor progression in breast
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cancer (51), human hepatocellular carcinoma (52) and lung
cancer (53). However, not much is known about the role and
clinical significance of E2F8 in leiomyosaroma, nor in other
sarcomas.

The role of ZNF282 (Zinc finger protein 282) in human
cancers, including sarcomas, is unknown. In a study by Yeo
et al., it was shown that ZNF282 overexpression was asso-
ciated with poor survival in esophageal squamous cell car-
cinoma, and depletion of ZNF282 inhibited cell cycle pro-
gression, migration, and invasion of cancer cells (54). Addi-
tionally, the authors provided evidence that ZNF282 func-
tions as an E2F1 co-activator, highlighting a potential con-
nection between this TF and E2F signaling.

Regulatory heterogeneity in leiomyosarcoma is not associ-
ated with clinical features, somatic mutations or DNA methy-
lation

We next explored if the heterogeneity we observed in
leiomyosarcoma gene regulatory networks is associated
with known features that may influence patient heterogene-
ity, such as clinical features and genomic data.

To investigate whether the identified pathways were as-
sociated with clinicopathological features, we performed
an association analysis of the pathway-based patient het-
erogeneity scores with clinical features available from the
TCGA and DKFZ resources (Supplementary Figure S6).
There were no significant associations between the clinical
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Figure 5. (A) Heatmaps showing the contribution scores of genes and all TFs to the first principal component in three selected, significant pathways. (B)
Heatmaps showing the edge weights of selected genes to all TFs in these pathways. Edge weights are scaled across individuals. Row annotation shows the
edge contribution scores to PC1 in each pathway. Column annotation indicates the patient heterogeneity scores in each pathway. (C) Boxplots showing the
number of targets for TFs with top edge contribution scores to PC1 in each pathway. TFs with a number of targets greater than the 95th percentile in each

pathway are labelled.

features and the pathway-based patient heterogeneity scores
on the first principal component (at FDR-adjusted P-value
<0.05). To determine whether any of the identified path-
ways were related to patient survival, we used the pathway-
based patient heterogeneity scores on the first principal
component in Cox regression models to predict patient out-
come. We did not identify any significant associations with
survival.

To evaluate if any of the identified pathways could classify
patients with similar mutational profiles, we associated the
first principal component in these pathways with pathway
mutation scores. To do so, we downloaded and processed
mutation data obtained from leiomyosarcoma tumors from
TCGA (available for 72/80 patients) as described in Kuijjer
et al. (33). We performed a Kruskal-Wallis test to compare
the pathway-based patient heterogeneity scores on the first
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principal component in each of the 37 pathways between
two groups, i.e. mutated compared to not mutated, for each
mutated pathway. No significant differences were identified
(FDR-adjusted P-value <0.05), indicating that the separa-
tion of leiomyosarcoma patients identified with PORCU-
PINE is independent of tumor mutation profiles. Thus, gene
regulation may potentially be a new, mutation-independent
mechanism driving patient heterogeneity.

To investigate if the patient heterogeneity profiles were
associated with inter-individual differences in the tumor’s
methylation profiles, we performed correlation analysis
of the pathway-based patient heterogeneity scores on
PC1 with overall DNA methylation profiles of individ-
ual tumors. There were no significant associations (FDR-
adjusted P-value <0.05), indicating that regulatory hetero-
geneity in leiomyosarcoma is independent of methylation
status.

Stratification of patients based on the identified pathways

PORCUPINE allows to identify patient subtypes based on
gene regulatory networks for each of the significant path-
ways. For this, K-means clustering is applied to the pathway-
based patient heterogeneity scores on the first two principal
components. Supplementary Figure S7 shows the identifi-
cation of two leiomyosarcoma subtypes based on the top
heterogeneously regulated pathway — E2F mediated regu-
lation of DNA replication.’

Regulatory heterogeneity of the identified pathways is not ob-
served in healthy tissues

To explore if the 37 pathways we identified were cancer-
specific, we assessed gene regulatory heterogeneity in
healthy smooth muscle-derived tissues, represented by
esophageal muscularis and uterus. In total, 283 esophageal
muscularis and 90 uterus sample-specific gene regulatory
networks, modeled with PANDA and LIONESS, were
available from the GTEx project through the GRAND
database (35). We used PORCUPINE to characterize reg-
ulatory heterogeneity in this dataset. In total, 27 and 25
significant pathways were identified in healthy smooth-
muscle-derived tissues uterus and esophageal muscularis,
respectively. Among the 37 pathways identified to drive
leiomyosarcoma heterogeneity, only one pathway, i.e. ‘Gap
junction degradation’ was significant in these healthy tis-
sues, indicating that 36/37 pathways we identified are
leiomyosarcoma-specific and that gene regulatory hetero-
geneity in these pathways likely develops during sarcoma-
genesis.

Regulatory heterogeneity associates with chromatin state

Finally, we investigated whether network heterogeneity cor-
responds to chromatin accessibility. To do so, we profiled
RNA-seq and ATAC-seq for four leiomyosarcoma cell lines.
To translate our findings on the inter-patient heterogene-
ity in leiomysarcoma to the cell lines, we constructed cell
line specific gene regulatory networks based on the RNA-
seq data, and placed these networks on the regulatory
map of leiomyosarcoma patients. Cell lines clustered among
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Figure 6. Comparison of chromatin accessibility of promoter regions of
the genes and expression of the genes in pathways identified by PORCU-
PINE across four cell lines to random genes.

the DKFZ-LMS patient specific networks (Supplementary
Figure S8), and we could confirm 29/37 pathways when we
included these cell lines in our analyses.

We next clustered ATAC-seq profiles of the four cell
lines (three replicates for each cell line, see Supplemen-
tary Figure S9). The cell lines had distinct chromatin pro-
files with SK-LMS-1 and MES-SA clustering separately
from SK-UT-1 and SK-UT1-B—two cell lines that are de-
rived from the same donor. We then assessed whether pro-
moters of genes from the significant pathways detected
by PORCUPINE are located within open chromatin re-
gions. To do so, we compared peak accessibility at the pro-
moters of these genes to that at promoters of randomly
selected genes. We observed a significant enrichment in
open chromatin regions for the heterogeneously regulated
genes (Figure 6A). In addition, we compared expression
of these genes to randomly selected gene sets, and found
they are also highly expressed (Figure 6B). This suggests
that genes that are located in open chromatin regions are
more likely to be regulated by different sets of TFs, which
could have implications for network-based biomarker de-
tection or the development of subtype-specific targets for
treatment.

Finally, we evaluated whether genes from the top het-
erogeneously regulated pathway ‘E2F mediated regulation
of DNA replication’ were also over-represented in differen-
tially accessible regions between leiomyosarcoma cell lines.
To do so, we called differentially accessible regions in pair-
wise comparisons between the four cell lines (six compar-
isons in total). The promoter of PPP2RIA, the gene we
found to be most enriched for heterogeneous regulation
in the two patient cohorts, was differentially accessible in
all pairwise comparisons between cell lines, except between
SK-UT-1 and SK-UTI1-B (see Supplementary Table S2).
However, as these two cell lines are derived from the same
donor, they are expected to have comparable regulatory
profiles. This indicates that the differential heterogeneity
observed in the patient-specific regulatory networks are not
only associated with open chromatin states in general, but
also with more subtle differences in chromatin landscapes
between individual tumors.

$20Z YoJel\ | uo Jesn ojsQ 1o Ausiaaiun Aseaqi ABojoig Aq £ /00€Z/2/2E£0PBIZ/E/S/a0NB/190UBDIeU/WO00 dNO DlWapEede//:sd)y WOoJl papEojUMO(]



Discussion

In this work, we hypothesized that classification of soft-
tissue sarcoma patients on the basis of gene regulatory net-
works has the potential to provide additional, novel infor-
mation to stratify patients into clinically meaningful sub-
groups, to point to potential new targets for treatment, and
to identify new biomarkers to guide selecting patients most
likely to benefit from a specific treatment.

To this end, we developed PORCUPINE, a novel com-
putational approach to map heterogeneity of gene regula-
tion across a patient population. We applied the method
to model heterogeneity of gene regulation in leiomyosar-
coma, which we found to present a high level of heterogene-
ity in a pan-sarcoma network analysis. Applying PORCU-
PINE to two independent leiomyosarcoma cohorts identi-
fied 37 pathways that robustly capture gene regulatory het-
erogeneity in the disease. Among the detected pathways, we
identified pathways that could represent potential targets
for treatment of subgroups of leiomyosarcoma patients, in-
cluding RB1/E2F]1 signaling, pathways involved in FGFR
signaling, and CTLA4 inhibitory signaling. While these
pathways have been described as potential targets for trea-
ment of sarcomas, not all patients may respond to such ap-
proaches, as, for example, was recently shown for treatment
with a CTLA4 inhibitor in synovial sarcoma (48). Stratify-
ing patients based on the regulatory profiles of these path-
ways could potentially help identify subgroups of patients
that are likely to respond to treatments that act on these
pathways.

PORCUPINE highlighted genes and TFs that are en-
riched in driving heterogeneity among leiomyosarcoma pa-
tients, including RBI and PPP2RI A as target genes, as well
as the TFs E2F8 and ZNF282, which could potentially be
inhibited (55). Through gene regulatory network model-
ing and ATAC-seq profiling in leiomyosarcoma cell lines, we
found that promoters of the most heterogeneously regulated
genes in leiomyosarcoma are enriched for open chromatin
states. This suggests that genes in open chromatin states
may be more prone to receive differential binding by TFs,
which could have implications for the detection of regula-
tory biomarkers or subtype-specific targets for treatment.

We performed our study on four leiomyosarcoma cell
lines that are also represented in extensive cell profiling
and functional genomics initiatives such as DepMap from
Broad Institute. While we could capture heterogeneous reg-
ulation in most of the identified pathways, the small number
of cell lines may likely not fully represent the landscape of
heterogeneous gene regulation we observed in the patient
cohorts, which is a limitation of our study. However, we
could still identify significant differential chromatin states
for the top heterogeneously regulated gene in the patient
population, PPP2RI1 A, indicating that our network models
may potentially also capture subtle differences in chromatin
states in a patient population.

We developed PORCUPINE as a user-friendly R pack-
age that can be applied to single-sample networks. While
similar approaches have previously been successfully ap-
plied to study heterogeneity in cancer using gene expres-
sion profiles (56), our approach differs from these meth-
ods as we specifically designed it to analyze large-scale,
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genome-wide gene regulatory networks. Of note, while we
used PORCUPINE on networks modeled with PANDA
and LIONESS, the tool is not limited to these specific
methodologies, and could potentially also be used to ana-
lyze (bipartite) networks modeled with other single-sample
approaches. For example, it can potentially be applied to
gene regulatory networks from single cell RNA-seq data
modeled with SCORPION (57). Of course, when applying
PORCUPINE, one should consider cohort sample size as
well as the use of an independent validation dataset, as we
showed here by including an independent leiomyosarcoma
dataset, which are both important to include to detect rel-
evant and robust pathways. Additionally, it is important to
note that, while the use of a large set of randomized path-
ways is beneficial, it comes with the disadvantage of an in-
crease in computational load.

Genome-wide gene regulatory networks represent high-
dimensional data. Usually, network summary statistics,
such as gene targeting scores, closeness centrality, or be-
tweenness centrality, are calculated prior to any further
analysis to reduce the dimensions of large-scale networks.
Then, to identify heterogeneity across a cohort, unsuper-
vised clustering approaches are widely used (58). The ad-
vantage of PORCUPINE is that it can be directly applied to
high-dimensional networks, as it uses as input the network’s
edge weights instead of a summary statistic. Moreover, as
it does this per individual biological pathway, the output
is not just a collection of significant differential edges that
need to be further analyzed, but rather a list of differen-
tially regulated pathways that are easy to interpret. Addi-
tionally, the method can capture significant aspects of het-
erogeneity among individuals in situations when no clear
population structure with well defined clusters can be re-
vealed. PORCUPINE estimates pathway-based patient het-
erogeneity scores that can facilitate the identification of ei-
ther continuous gradients or discrete gene regulatory sub-
types and that can be further used in association analyses
with clinical covariates, or in survival analyses, as we have
shown in this work.

In summary, with PORCUPINE, we uncovered patterns
of inter-patient heterogeneity at the level of transcriptional
regulation in tumors and cell models, and identified genes
and pathways that may represent therapeutic entry points
in leiomyosarcoma. Our approach thereby provides one of
the first steps towards implementing network-informed per-
sonalized medicine in soft-tissue sarcomas.

DATA AVAILABILITY

The input data to reconstruct individual patient networks
and the set of reconstructed networks used in this study
are available on Zenodo (https://doi.org/10.5281/zenodo.
8105729). Description of files is provided in Supplementary
File 3. PORCUPINE is developed as an R package and it
is available as open-source code on GitHub (https://github.
com/kuijjerlab/PORCUPINE) and on Zenodo (https://doi.
org/10.5281/zenodo.8105729).
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