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ABSTRACT
The formation of paired extension-compression (PEC) postulated by rotational kinemat-

ics of rift propagation is demonstrated by analogue models but rarely observed in nature. In 
our study of the early Paleogene continental rift in the northeast Atlantic, a PEC is proposed 
based on the northeastward propagation and the coeval compression at the rift tip. The 
propagation is deduced from tectono-magmatic trends, including along-axis development of 
magmatism, and migration of tectonic faulting inward and toward the rift tip. Where this 
propagation terminated, we documented coeval extension and compression in the form of 
a horst-and-graben system (H&G) and V-shaped anticline (VA), respectively. Given their 
structural characteristics and spatiotemporal relationships with the rift, their origin is best 
illustrated by a three-stage model: (1) Rifting initiated at the site of mantle upwelling and 
propagated northeastward in the Paleocene. (2) The rift tip was stalled by an elevated mafic-
ultramafic body at the Barents Shelf, which led to forward projection of the rift’s driving force 
to create the H&G and the VA (PEC), dissipating the along-axis force component. (3) Domi-
nation of axis-perpendicular components then promoted orthogonal extension and sheared 
margin development. Our study suggests that PEC has a crucial role in both termination of 
propagation and rift-mode conversion.

INTRODUCTION
Rift propagation is defined as growth of the 

axial length through continual stretching and 
rupturing of lithosphere in front of the rift tip 
(Fig. 1A). Once rifting starts due to hotspot 
activity or plate divergence, asthenospheric 
mantle rises in the form of flows (Huismans 
and Beaumont, 2011). Continuous flows in the 
rift maintain a dynamic mass of upwelling man-
tle (Fig. 1A), which exerts gravitational stress 
in both the along-axis and axis-perpendicular 
directions to drive propagation (Mondy et al., 
2018). Since mantle flows decrease toward the 
rift’s tip due to the combined effects of viscous 
friction and narrowing of the rift conduit (Phipps 
Morgan and Parmentier, 1985), gravitational 
stress diminishes along the rift axis, causing a 
differential extension rate in the rotational kine-

matics (Fig. 1A). Given that a propagating rift 
has nonzero angular velocity (ω > 0), the pivot 
of rotation (PR; r = 0) is by default at the rift 
tip, where no deformation takes place (V = 0) 
(Fig. 1A).

In theory, these rotational kinematics would 
project the rift’s driving force forward (Hey 
et al., 1980; Martin, 1984), leading to paired 
extension-compression (PEC) (Fig. 1B). In ana-
logue models, PEC is demonstrated as concur-
rent rifting and thrusting in the two opposite 
sectors of the PR (Fig. 2A) (Zwaan et al., 2020; 
Schmid et al., 2022). In nature, however, PEC 
is uncommon. Propagating rifts in Iceland and 
the Galapagos Rise, for example, are not marked 
with observable folding or uplift. Even in the 
cases of Woodlark Basin and the Taupo Rift, 
where synrift compression is observed in front 
of the rift, both the compression and the rota-
tional extension are instead the results of sub-
duction-accretion (Ott and Mann, 2015; Wallace 
et al., 2009). Global positioning system (GPS) 

data from the Arctic–NE Siberia region (Hindle 
et al., 2009), however, tend to indicate ongo-
ing PEC, where the Gakkel Ridge–Laptev Rift 
is under rotational extension, and the Okhotsk 
plate is under coeval compression. The circum-
stances under which a propagating rift would 
create PEC are, therefore, a conundrum.

The aim of this study was to establish a natu-
ral example of PEC, as illustrated by a horst-
and-graben system and a V-shaped anticline in 
the SW Barents Shelf. We first clarified the con-
text of early Paleogene rift propagation in the 
NE Atlantic. Using seismic and wellbore data, 
we then defined the ages and structural charac-
teristics of the PEC structures. Their relation-
ships with the rift were delineated through an 
integrated analysis before we investigated the 
PEC’s origin and implications.

Early Paleogene Rift Propagation in the 
Northeast Atlantic

The PEC of this study is located at the SW 
Barents margin bounding the early Paleogene 
Northeast Atlantic Rift (NAR) (Fig. 2B). As 
indicated by the younging trend of volcanics 
(Larsen et al., 2014), the continental rift likely 
propagated northeastward. The viability of this 
scenario was examined through a detailed recon-
struction of the NAR’s configuration, based on 
recently published structural data and the ages 
of igneous units compiled by Wilkinson et al. 
(2017) (refer to Supplemental Material1). Based 
on the tectono-magmatic trends, a three-stage 
evolution of the NAR was identified (Fig. 2C) 
and compared with analogue model results.

Stage 1—Rift Initiation (ca. 66–59 Ma)
Stage 1 was characterized by a bimodal 

pattern (Fig.  2B). Magmatism (area in pur-
ple, Fig. 2B), which started at ca. 63 Ma, was 
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 confined to the SW by the Shetland–Faroe 
Island–Kangerlussuaq lineament (Storey et al., 
2007; Hansen et al., 2009; Larsen et al., 2014; 
Jolley et al., 2021). Early Paleocene normal 
faults are found to the NE, at the Vøring-Lofoten 
margin (Zastrozhnov et al., 2020; Meza-Cala 
et al., 2023) and the Thetis Basin (Fyhn et al., 
2021). The area in between was inactive, as 
shown by the lack of early Paleocene faulting 
at the Møre shelf (Lundin and Dore, 2019). The 
configuration of this stage resembles the initia-
tion phase of the analogue model by Schmid 
et al. (2022), in which rapid growth of a first-
generation rift is seen in two separated sets of 
segments (Fig. 2A). This stage ended with a vol-
canic hiatus at ca. 59–58 Ma (Jolley et al., 2021).

Stage 2—Rift Propagation (ca. 58–54 Ma)
In stage 2, the magmatic rifting domain and 

the tectonic faulting domain grew rapidly and 
extensively along the axis (phase 1) and eventu-
ally merged (phase 2) (Figs. 2B and 2C). In phase 
1 (ca. 58–55 Ma), tectonic faulting took place in 
major basins to the NE (Zastrozhnov et al., 2020; 
Fyhn et al., 2021; Meza-Cala et al., 2023) and to 
the SW (Stoker et al., 2017). Magmatic rifting 
was most intense in the middle (Fig. 2B), pro-
ducing plateau lava in the Blosseville–Jan Mayen 
area (Storey et al., 2007; Larsen et al., 2014; 
Blischke et al., 2022) and extensive intrusions 
and lava fields in the Vøring-Møre area (Svensen 
et al., 2010; Gernigon et al., 2020). Reactivation 
of the Faroe–NE Rockall area was marked by 
widespread igneous activity (Jolley et al., 2021; 
Walker et al., 2022). The bidirectional growth 
of magmatic rifting (area in blue, Fig. 2B) is 
comparable to the development of a second-
generation rift in the analogue model (Fig. 2A).

In phase 2 (ca. 55–54 Ma), the locus of 
magmatism migrated both northeastward and 

inward and merged with the faulting domain 
(Fig. 2B). Associated with the volcanic outer 
high (Geissler et al., 2017), lavas and intrusions 
filled the rifts at the Lofoten shelf and Thetis 
Basin (Fyhn et al., 2021; Meza-Cala et al., 2023). 
Localization of rifting created a narrow zone of 
thinned crust and melt production (Gernigon 
et al., 2020), giving rise to the region’s earliest 
seaward-dipping reflector (SDR) units along the 
future line of breakup (Abdelmalak et al., 2016; 
Franke et al., 2019; Blischke et al., 2022). The 
overall pattern (area in green, Fig. 2B) is similar 
to the late-stage configuration of the propagation 
model, in which various segments of all rift gen-
erations are activated simultaneously (Fig. 2A).

Stage 3—Breakup and Seafloor Spreading 
(from ca. 54 Ma)

Stage 3 started when breakup and associ-
ated sheared margin formation occurred in the 
early Eocene (Faleide et al., 2010). On a regional 
scale, opening of the Norwegian-Greenland Sea 
(NGS) was largely orthogonal, as the C24n.3n 
chron (53.93 Ma) segments show strong paral-
lelism on both ends (Gaina et al., 2017). Dis-
continuities and curvatures of these chrons in 
the Thetis Basin–Lofoten areas and the Aegir 
Ridge are interpreted to record local-scale south-
westward propagation that started at the Senja 
Fracture Zone (SFZ) and the Jan Mayen Fracture 
Zone (JMFZ), respectively (Fig. 2C) (Franke 
et al., 2019; Gernigon et al., 2020).

Driving Force of NAR Propagation
As the NE Atlantic was not affected by any 

subduction in the early Paleogene, the driving 
force of the NAR’s propagation can be attrib-
uted to differential gravitational stress inside 
the rift conduit. To the southwest of the Biv-
rost Lineament (BL), the excessive magmatic 

(EM) section (Fig. 2B) underwent early rupture 
of lithospheric mantle and extreme thinning of 
ductile upper crust, which allowed a prolonged 
presence of upwelling mantle at shallow lev-
els prior to breakup (Lu and Huismans, 2021). 
Across the BL into the normal magmatic (NM) 
section (Fig. 2B), the width of extended crust is 
reduced by at least 100 km, and the size of high-
velocity lower-crustal bodies (HVLC) is greatly 
diminished (Breivik et al., 2017; Gernigon et al., 
2020). This implies less corner flow upwelling 
under a lower extension rate (Lu and Huismans, 
2021). Overall, stronger mantle upwelling to the 
SW would exert differential gravitational stress 
on the rift, driving northeastward propagation 
(Fig. 1A).

PEC Structures at the Barents Shelf
As a result of these observations about NAR 

propagation, there are several questions: (1) 
Why did the propagation terminate? (2) Did 
NAR’s rotational kinematics create the PEC? 
(3) How did a rotational continental rift (stage 
2) transform into an orthogonal oceanic rift 
(stage 3)? To answer these questions, we car-
ried out an in-depth study of the SW Barents 
Shelf, where the propagation of the NAR ter-
minated (Fig. 2B).

Known for its early Eocene sheared mar-
gin (Fig. 2D), the SW Barents Shelf is a key 
area to study the rift-to-drift transition during 
the opening of the NGS (Fig. 2E). The area is 
dominated by ancient rift structures from the late 
Paleozoic to early Mesozoic and underlain by 
metasediments and gneiss (Faleide et al., 2010). 
At a few localities (Fig. 2D), mafic-ultramafic 
bodies are inferred to have been emplaced at 
shallow depths (Fichler and Pastore, 2022) due 
to pre-Cenozoic tectonic movements (Gabri-
elsen, 1984). With the use of an extensive grid 
of seismic lines and stratigraphy derived from 
time-depth–converted wellbore data (Fig. 3A), 
we traced five preglacial horizons across the area 
(see legend in Fig. 3). The mapping resulted 
in the identification of two early Eocene fea-
tures: a horst-and-graben system and a V-shaped 
anticline, both located northeast of the sheared 
margin (Fig. 2D).

V-Shaped Anticline
The V-shaped anticline (VA) is composed 

of the contemporaneously formed Senja Ridge 
and Finnsnes Ridge (Fig. 2D). The early Eocene 
age of the two ridges is constrained by the fold-
ing of the earliest Eocene and older horizons 
and by the subsequent onlapping of Ypresian 
strata on their eastern flanks (Figs. 3B–3D). The 
southeastern boundary of Finnsnes Ridge is a 
nearly straight line parallel to the strike of the 
Troms-Finmark fault complex (TFFC), which 
implies utilization of a preexisting structure 
as a tear fault (Fig. 2D). The strongest uplift 
is recorded at the northern end of Senja Ridge 

A B

Figure 1. (A) Conceptual model showing various aspects of rift propagation. (B) Paired exten-
sion-compression (PEC) and rotational kinematics.
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(Fig. 3B) and the southeastern end of Finnsnes 
Ridge (Fig. 3D), where subaerial erosion cre-
ated clinoforms prograding eastward. Postuplift 
downfaulting is recorded on the western flanks 
of the anticline (Figs. 3B and 3E), which could 
be related to arrival of the NAR’s rift tip (Mondy 
et al., 2018) and/or subsequent sheared margin 
formation (Faleide et al., 2010).

Horst-and-Graben System
Our mapping also revealed a horst-and-gra-

ben system (H&G) abutting the southwestern tip 
of the VA (Fig. 2D). Its early Eocene formation 
was verified by the offsets of the early Eocene 
horizon (Figs. 3F and 3G). Synrift wedges can 
be recognized by the cross-fault-plane stratal 
thickness above the early Eocene horizon. 
Bounded to the north by a half-graben and to 
the south by the TTFC, the H&G is crosscut by 

the NW-SE–trending sheared margin (Fig. 2D), 
confirming its pre-breakup origin. Downfaulting 
took place along high-angle normal faults, and 
block rotation was relatively limited, as indi-
cated by the size of synrift wedges (Figs. 3F 
and 3G). The horsts west of Senja Ridge seem 
to share the ridge’s NNE-SSW trend (Fig. 2D), 
implying that the presence of the VA slightly 
affected the H&G through fault deflection. In 
general, the H&G shares the same orientation 
(Fig. 2D) and similar architecture with the late 
Paleogene rift structures at Thetis Basin and the 
Lofoten margin (Fyhn et al., 2021; Meza-Cala 
et al., 2023).

Relationship with the Rotational Kinematics 
of NAR Propagation

With their earliest Eocene age and their 
pre-breakup origin confirmed, the H&G and 

VA can be linked to the NAR propagation 
(stage 2). Given the coevality, proximity, and 
similarity in architecture, the H&G can be 
seen as an integral part of the NAR (Fig. 2B). 
Since our mapping shows that NAR did not 
propagate into the Tromsø Basin (Fig. 2D), the 
southwestern tip of the VA was likely estab-
lished as a fixed PR (Figs. 2B and 2C), where 
the NAR’s driving force failed to stretch the 
mafic-ultramafic body (Fig. 2D). In this con-
text, the H&G and the VA represent PEC as 
postulated by rotational kinematics (Fig. 1B) 
and analogue models (Fig. 2A). The fact that 
the two ends of the VA exhibit the greatest 
uplift, as shown by the subaerial erosion and 
resultant clinoforms, is a typical manifesta-
tion of rotational kinematics, since the linear 
velocity (V) is the largest at the points farthest 
away from the PR (Fig. 1A).

A B

C

D

E

Figure 2. (A) Late-stage propagation and coeval compression of analogue models (numbers—rift generations). PR—pivot of rotation. (B) Early 
Paleogene tectono-magmatic configurations of Northeast Atlantic Rift (NAR), prior to breakup ca. 54 Ma. (C) Spatiotemporal representation 
of tectono-magmatic trends of NAR. PR—pivot of rotation; H&G—horst and graben. (D) Early Eocene structures in this study (names in blue): 
V-shaped anticline; horst and graben system, sheared margin (landward limit indicated by dashed black line), and pull-apart basin’s bounding 
fault (bolded). Other structures of SW Barents Sea are in gray. Mafic/ultramafic bodies are in orange (dashed = elevated; Fichler and Pastore, 
2022). COB—continent-ocean boundary, TFFC—Troms-Finnmark fault complex. (E) Location of study area in northeast Atlantic Ocean.
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DISCUSSION
Role of PEC in the Rift-to-Drift Transition

In the early Eocene, the SW Barents Shelf 
witnessed a transition from the northeastward-
propagating continental rift (NAR; stage 2) 
into a southwestward-propagating oceanic rift 
(NGS; stage 3) (Fig. 2C). Here, we suggest 
that PEC formation played a crucial role in this 
abrupt change. As the NAR propagated, rifting 
approached the SW Barents Shelf (Fig. 4A) and 
eventually encountered the mafic-ultramafic 
body, which did not yield under the rift’s ten-
sile stress. The stalled rift tip then established 
as a fixed PR, causing forward projection of the 
rift’s driving force and PEC formation (H&G 
and VA) (Fig. 4B). In this process, the along-axis 
component was dissipated, and the rift switched 
to orthogonal extension due to domination of the 
axis-perpendicular component (Fig. 4C). This 
rift mode conversion had two effects. First, it 
forced the rift to assume another energy-effec-
tive mode of strain accommodation: strike-slip 
motion along a preexisting line of weakness. 
This explains the early Eocene development of 
the SFZ (Faleide et al., 2010), which is aligned 
with a Precambrian lineament (Indrevær et al., 
2013). Second, it caused a temporary increase 
in the strain rate at the SFZ. In a rotational set-
ting (stage 2), this locality was subject to less 
tensile stress and thus had a lower strain rate 
(V1) (Fig. 4B). In an orthogonal setting (stage 
3), however, movement of the SFZ promoted 
uniform upwelling along the axis and hence 

increased tensile stress and strain rate (V1′) at 
the new rift tip (Fig. 4C). This allowed breakup 
to occur at the less stretched, normal magmatic 
margin to the NE while the rest of the NAR was 
still under crustal thinning (Fig. 4C), leading 
to apparent propagation of the NGS toward the 
SW (Franke et al., 2019; Gernigon et al., 2020).

Novel Perspectives on Rift Propagation
Our observations suggest that the along-axis 

force component and its corresponding mantle 
flows are strictly necessary for rift propagation. 
Once this driving force fails to stretch/rupture 
the crust in front of the rift tip, forward projec-
tion of this force around a fixed PR starts to cre-
ate PEC (Fig. 4D). As PEC formation dissipates 
the driving force (Fig. 4D), it becomes “self-
limiting” once started, and the amount of exten-
sion that can be attained is directly correlated 
to the amount of compression a system is able 
to accommodate. When the strata or bedrock in 
front of the rift tip cannot be further deformed, 
the driving forces will cancel each other out at 
the “C” sector (arrows pointing at each other, 
Fig. 1B), leading to termination of propagation. 
This causality between PEC and termination of 
propagation, as shown in Figure 4D, can help 
to explain why PEC is not observed in most 
propagating rifts. As long as rupture at the rift tip 
continues, the rift’s PR migrates forward (Hey 
et al., 1980; Brune, 2018), and PEC cannot be 
formed. Our observation at the SW Barents 
Shelf thus suggests that more natural examples 

of PEC may be found at the rift tips of a stalled 
or terminated propagation.

CONCLUSIONS
The natural example of PEC established 

through our study is interpreted to have been 
a key factor in the early Paleogene rift-to-drift 
transition in the NE Atlantic. Formed at the tip 
of the NAR, the PEC structures dissipated the 
along-axis force component required for the 
propagation. This led to the conversion of rift 
mode from rotational extension to orthogo-
nal extension, which favored breakup and the 
development of the sheared margin. Our study 
suggests that PEC is a natural mechanism that 
forms during stalling and termination of rift 
propagation.
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