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We present an approach for systematically probing a trained neural network to extract 
a symbolic abstraction of it, represented as a Boolean formula. We formulate this task 
within Angluin’s exact learning framework, where a learner attempts to extract information 
from an oracle (in our work, the neural network) by posing membership and equivalence 
queries. We adapt Angluin’s algorithm for Horn formula to the case where the examples 
are labelled w.r.t. an arbitrary Boolean formula in CNF (rather than a Horn formula). In this 
setting, the goal is to learn the smallest representation of all the Horn clauses implied by 
a Boolean formula—called its Horn envelope—which in our case correspond to the rules 
obeyed by the network. Our algorithm terminates in exponential time in the worst case 
and in polynomial time if the target Boolean formula can be closely approximated by its 
envelope. We also show that extracting Horn envelopes in polynomial time is as hard 
as learning CNFs in polynomial time. To showcase the applicability of the approach, we 
perform experiments on BERT based language models and extract Horn envelopes that 
expose occupation-based gender biases.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Artificial Intelligence (AI) models are now ubiquitous in several domains, often times used as black boxes. Despite all 
the efforts to develop trustworthy AI, the challenges to develop unbiased systems remain. Towards unravelling the hidden 
knowledge of black box models, in this work we investigate an approach based on Angluin’s exact learning model [2] for 
extracting information from machine learning models. In the exact learning model, a learner interacts with a teacher, called 
oracle, via queries in order to identify an abstract target concept. In our work the oracle is a machine learning model. The 
most studied kinds of queries in the exact learning model are membership and equivalence queries. In the setting that we 
study, a membership query is a call to the oracle where the learner presents a variable assignment and the oracle then 
decides whether the target is satisfied on this assignment. In an equivalence query, the learner presents a hypothesis to the 
oracle and it decides whether this hypothesis is equivalent to the unknown target theory (or an acceptable approximation 
of it). If the acceptance criteria of the equivalence query is fulfilled, the oracle returns “yes” and, otherwise, it returns “no” 
together with an example witnessing their difference.

In 1992, Angluin et al. provided a polynomial time algorithm that learns rules expressed as a Horn formula with mem-
bership and equivalence oracle queries [4]. We refer to this algorithm in this paper as “the classic algorithm”. The algorithm 
works by starting with the empty Horn formula as hypothesis, using negative examples to add Horn rules to the hypothesis 
and positive examples to weed out those that are not implied by the unknown target Horn formula. In this work, we con-

* Corresponding author.
E-mail address: anaoz@uio.no (A. Ozaki).
https://doi.org/10.1016/j.ijar.2023.109026
0888-613X/© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

https://doi.org/10.1016/j.ijar.2023.109026
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ijar
http://creativecommons.org/licenses/by/4.0/
mailto:anaoz@uio.no
https://doi.org/10.1016/j.ijar.2023.109026
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


JID:IJA AID:109026 /FLA [m3G; v1.344] P.2 (1-20)

S. Blum, R. Koudijs, A. Ozaki et al. International Journal of Approximate Reasoning ••• (••••) ••••••
sider Angluin’s classical Horn algorithm for exact learning rules and study the necessary changes to make it applicable to 
learn from neural networks (see [29,30]). This approach uses the machine learning model as an oracle. However, there are
three main obstacles to applying Angluin’s Horn learning algorithm to the extraction of rules from neural networks.

The first one is that while one can easily answer a membership query by asking the neural network for classification, 
the same cannot be said for answering an equivalence query. The second obstacle is that the format of the input of the 
neural network may not be an interpretation of a propositional formula as expected by the algorithm (in fact, that is rarely 
the case, as we see e.g. in language models). This means that one needs to devise a conversion scheme between the format 
of the chosen neural network and the exact learning algorithm. Finally, the third obstacle is that, even if the conversion 
solves the issue regarding the format of examples, neural networks are very unlikely to exactly represent a conjunction of 
Horn rules (that is, classify as positive a set of models closed under intersection). Neural networks can in principle represent 
any Boolean formula. However, Angluin’s algorithm for exact learning conjunctions of Horn rules may not terminate if the 
Boolean formula cannot be represented as a Horn formula [29] (see also A). Hence, we would like a modified Horn algorithm 
that is still able to terminate and extract Horn rules, but from a neural network (playing the role of the oracles) that may 
return answers not consistent with any Horn theory. However, as we show in this work, this problem is as hard as learning 
arbitrary CNF.

Our contribution We address the three obstacles to applying Angluin’s Horn algorithm for extracting rules from language 
models as follows.

1. We simulate equivalence queries by generating at random a batch of examples and asking the neural network for 
the classification. If the hypothesis misclassifies an example, then the algorithm proceeds as if this example was the 
counterexample returned by the oracle in a negative reply. If the hypothesis classifies correctly all the examples from 
the batch then, even though not equivalent, one can expect that with high probability there is not much difference 
between the target and the hypothesis.

2. We convert interpretations into expressions in natural language and then translate the classification of the model back 
into the format expected by the algorithm.

3. We propose an adaptation of Angluin’s algorithm for Horn formulas to deal with non-Horn oracles. We prove that 
this algorithm is guaranteed to terminate in exponential time and in polynomial time in the size of the most concise 
Horn envelope of the target formula and the number of variables if the target is a Horn formula or can be closely 
approximated by a Horn formula. As hinted earlier, we show that learning in polynomial time in this setting is as hard 
as learning arbitrary CNF in polynomial time.

Case study To showcase the applicability of the approach, we perform experiments on BERT-based language models [15,
27] in order to extract knowledge from these models and study the correlation between genders, occupations, periods of 
time, and locations. Our findings corroborate previous work on these language models that expose harmful biases in the 
models (see Subsection 2.2), which in turn supports the validity of our approach and reflects deeply ingrained biases in the 
society [1].

Advantages The main advantages of the approach for querying neural networks sketched above are as follows. First, we 
do this in a principled, theoretically guided way, by formulating it in terms of learning conjunctions of Horn rules, and 
applying the classic Horn learning algorithm [4] to the task. In fact our approach uses learning algorithms which come 
with probabilistic guarantees on the correctness and exhaustiveness of the learned rules, provided it is given sufficiently 
large sample batches [2]. Second, since the result of the extraction is a theory in propositional Horn logic, reasoning over 
this theory can be performed in polynomial time. Another advantage is that we use a form of ‘active learning’, where the 
algorithm chooses new, “out of distribution” data (i.e. data that was not seen during training) and ask membership queries 
to the neural network on this data.

Our work is organized as follows. In Section 2 we highlight related work on probing language models and on exact learn-
ing Horn formulas, envelopes, and CNFs. In Section 3 we provide basic definitions used to address the third obstacle in Sec-
tion 4. In particular, we present in Section 4 an algorithm for exact learning Horn envelopes and show that this problem is at 
least as hard as exact learning CNFs. In Section 5 we describe in more details how we address the first and second obstacles. 
Then, in Section 6 we present our experimental results using language models as oracles. Finally we conclude in Section 7.

2. Related work

In this section we present some related works. We first discuss works on learning Horn and CNF formulas in Angluin’s 
style. Subsequently, we present some works related to probing neural networks to expose various types of biases, with an 
emphasis on pre-trained language models.

2.1. Learning Horn formulas and envelopes

The problem of exact learning Horn formulas from examples was first studied in [4], where the authors give a polynomial 
(quadratic) time learning algorithm with membership and equivalence queries. Horn formulas are semantically characterised 
2
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by their preservation under intersection (∩) of models, a property that is heavily exploited by the algorithm. There has also 
been work on pushing the boundaries between exact learning Horn and CNF [20] and understanding the algorithm better, 
in particular, proving that it always outputs a canonical Horn formula of minimal size [8]. For the case in which each rule 
has k literals, known as k-CNF, there is a polynomial time algorithm even with only membership queries or with only 
equivalence queries [2]. Regarding the problem of exact learning CNFs in general, it is known that they cannot be learnt 
with only equivalence queries [3], and that if there exist one-way functions that cannot be inverted by polynomial sized 
circuits then membership queries do not help [6].

Given the difficulty of exact learning arbitrary CNFs in polynomial time, a follow-up problem that receives a considerable 
amount of interest is the problem of learning Horn envelopes from data [14,24,12]. The Horn envelope env(ϕ) of a formula 
ϕ is defined as (the smallest representation of) the strongest Horn theory implied by ϕ . A number of authors [14,24,23]
have studied a variation of this problem where the input is a set of models M , and the task is to find a Horn representation 
of the closure under intersection of M (which is guaranteed to be precisely the set of models of some Horn formula by the 
semantic characterisation). Hence, set env(M) := env(ϕ) where ϕ is any formula such that mod(ϕ) = M .

Dechter and Pearl [14] observe that if the closure of M under intersection is only polynomially larger than M , then we 
can simply generate the closure (which we denote by clo(M)) and run the classic Horn algorithm on the closure, answering 
the queries using the data M . Kearns, Selman and Kautz [24] give a polynomial time PAC-algorithm for learning Horn 
envelopes. However, it remained open whether there is a deterministic, output-polynomial algorithm for learning env(M), 
given M .1 Kavvadias, Sideri and Papadimitriou showed that this problem is as hard as computing the set of all transversals 
of a hypergraph, a problem whose complexity has been open for more than 40 years. Finally, Borchmann, Hanika and 
Obiedkov [12] give a polynomial-time PAC algorithm that uses an oracle that tells the learner whether an input rule is 
entailed by the envelope or not, and if not it has to provide a counterexample.

2.2. Probing neural networks

Machine learned models can contain various types of biases that can stem from the training data [21]. These can lead 
to numerous undesired effects during deployment [11,9]. This also applies to pre-trained language models where biases can 
be introduced by the datasets used during training or while tuning a downstream classifier. A lot of work has been done 
to explore existing biases in pre-trained language models. For example, pre-training the BERT [15] language model on a 
medical corpus has been shown to propagate harmful correlations between genders, ethnicity, and insurance groups [33]. 
Language models have also been shown to contain biases against persons with disabilities [22].

Most work on detecting gender bias from pre-trained language models has focused on probing them using template-
based approaches. Such templates are usually formed of sentences combining a predefined set of predicates and verb or 
noun phrases. To illustrate this, consider the template “[pronoun] works as [description]”. Here pronoun can 
be a pronoun or a gendered-noun, while description could be anything from nouns referring to occupations, to adjec-
tives referring to sentiment, emotions, or attributes [34,32,10,13].

Some of the works using template-based approaches to investigate gender bias in correlation with occupations are those 
building on the Winograd Schemas [26]. Winograd is a dataset of templates manually annotated. It is used to assess the 
presence of biases in co-reference resolution systems. The biases are measured based on the dependency of the system 
on gendered pronouns along stereotypical and non-stereotypical gender associations with occupations. Also, the WinoBias 
dataset [38] has been developed to investigate the existing stereotypes in models by exploring the relationship between 
gendered pronouns and stereotypical occupations. In addition to these, the WinoGender dataset [31] was introduced to also 
include gender-neutral pronouns, while focusing on the same task of exploring correlations between pronouns, persons, and 
occupations. For occupational biases in pre-trained language models, some works have explored the correlations between 
genders and occupations from a descriptive point of view using census data [37], while others have used the pre-trained 
language models’ ability to complete templates to evaluate the extent to which these completions can be biased when it 
comes to genders and occupations [36,28].

While the template-based approaches are proven to be good at probing and exploring biases in pre-trained language 
models, they have also been shown to be sensitive to the formulation of the templates [35]. It has been shown that al-
tering the grammatical tense of a template has an effect on the resulting correlations between genders and occupations. 
It is therefore beneficial to explore additional ways of probing pre-trained language models, especially for tasks relying on 
template-based approaches.

3. Preliminaries

We provide relevant notions regarding propositional logic, in particular Horn logic, and the exact learning framework.

1 Output-polynomiality is the best one could hope for in this scenario, as [24] have shown that env(M) might be exponential in |M| and the number of 
variables.
3
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3.1. Propositional logic

Let V be a finite set of Boolean variables. A (propositional) formula is any string of symbols generated according to the 
following recursive grammar:

ϕ ::= ⊥ | � | v | ¬ϕ | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | (ϕ → ϕ)

where v ∈ V, � is the truth constant and ⊥ is the falsity constant. A literal over V is either a variable v ∈ V or its negation, 
in symbols, ¬v. A literal is positive, if it is a variable, and negative otherwise. A clause over V is a disjunction (∨) of literals 
over V. We write clauses in implicational form: a clause ¬p1 ∨ . . . ∨ ¬pn ∨ q1 ∨ . . . ∨ qm is logically equivalent to the rule 
p1 ∧ . . . ∧ pn → q1 ∨ . . . ∨ qm in implicational form. A formula is in conjunctive normal form if it is a conjunction of rules, 
which we simply call a CNF. Every propositional formula is logically equivalent to a CNF.

Given P , Q ⊆ V, an expression of the form 
∧

P → ∨
Q is called a k-quasi-Horn rule (or simply rule) if |Q | ≤ k and a 

Horn rule if k = 1. The empty disjunction 
∨∅ is defined as the false constant ⊥. If the consequent of a rule is empty, we say 

it is a negative Horn rule. A set of Horn rules is called a Horn formula and a set of quasi Horn rules is a quasi-Horn formula. 
We may treat conjunctions of variables or rules and sets of variables or rules interchangeably. Given a rule c = ∧

P → ∨
Q , 

we set ant(c) = P and con(c) = Q . A metarule is an expression of the form 
∧

P → ∧
Q .2 For h = ∧

P → ∧
Q a metarule, 

we also set ant(h) = P and con(h) = Q .
A model x (or interpretation) is a subset x ⊆ V.3 A variable v ∈ V is satisfied on x (notation: x |= v) iff v ∈ x. The semantic 

rules for the connectives ¬, ∧, ∨, → are as usual. We say that a model x covers a rule c if ant(h) ⊆ x. The following semantic 
rules define the semantics of rules and metarules

x |=
∧

P →
∨

Q iff P � x or Q ∩ x = ∅
x |=

∧
P →

∧
Q iff P � x and Q ⊆ x

Dually, these could also be done in terms of falsification. Note that a model falsifies a rule only if it covers it.

x |=
∧

P →
∨

Q iff P ⊆ x and Q ∩ x = ∅
x |=

∧
P →

∧
Q iff P ⊆ x and Q � x

It follows that for negative (meta)rules (which are Horn), we have:

x |=
∧

P → ⊥ iff P ⊇ x

Given formulas ϕ, ψ , we write mod(ϕ) := {x ⊆ V | x |= ϕ}. Furthermore, we say that ϕ entails ψ (notation: ϕ |= ψ ) iff 
mod(ϕ) ⊆ mod(ψ), and that ϕ and ψ are (logically) equivalent (notation: ϕ ≡ ψ ) if mod(ϕ) = mod(ψ), i.e. if ϕ |= ψ and 
ψ |= ϕ . Given x, y ⊆ V, let x \ y := {d ∈ x | d /∈ y} denote set-theoretic difference, x ⊕ y := (x \ y) ∪ (y \ x) symmetric difference 
and x := V \ x denote relative complement in V.

Lemma 1. Let h be a Horn rule and x and y models. Then x |= h and y covers h implies that x ∩ y |= h.

Proof. Since x |= h, by the semantics ant(h) ⊆ x and con(h) /∈ x. But then ant(h) ⊆ x ∩ y as ant(h) is included in both x and 
y, and con(h) /∈ x ∩ y as con(h) is not in x. �
Remark 1 (Closure). For every two models x, y ∈ mod(ϕ) of a Horn formula ϕ , we have that their intersection x ∩ y is also a 
model of ϕ , in symbols, x ∩ y ∈ mod(ϕ). Write clo(M) for the closure of a set of models M under intersection, i.e. the set of 
all models that can be obtained as the intersection of models in M . Note that x ∈ clo(M) iff x = ⋂{y ∈ M | x ⊆ y}, i.e. iff x
is the intersection of all models in M that are supersets of it.

Proposition 2 ([14]). A set of models M ⊆P(V ) is closed under ∩ (i.e. clo(M) = M) iff M = mod(ϕ) for some Horn formula ϕ .

For every ∩-closed set of models M there exists a Horn representation of M (i.e. a Horn formula ϕ such that mod(ϕ) =
M) that contains a minimal number of rules. This minimal Horn representation is known as the Duquenne-Guigues basis of 
M [19]. We use an alternative definition from [8].

2 That is, it is equivalent to the set of Horn rules {∧ P → q | q ∈ Q }.
3 We prefer to work with subsets of the set of variables V as models rather than variable assignments V → {0, 1}. A model x ⊆ V in our terminology 

canonically corresponds (in fact, one-to-one) to the variable assignment ass(x) defined by ass(x)(v) = 1 iff v ∈ x.
4
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Definition 3 (Saturation, adapted from [8]). Let H be a Horn formula (presented as a conjunction of metarules), i.e. 
H = ∧

i≤n hi = ∧
i≤n(

∧
ant(hi) → ∧

con(hi)). We say that H is left-saturated if for all i, j ≤ n with i = j: ant(hi) |= hi and 
ant(hi) |= h j . Further, for P ⊆ V define H[P ] := {v ∈ V | H |= ∧

P → v}. Then, H is right-saturated if for every i ≤ n, either 
con(hi) = ⊥ or con(hi) =H[ant(hi)]. Finally, H is saturated if it is both left- and right-saturated.

Example 4. Let V = {a, b, c, d, e, f } and consider the Horn formula (represented as a set of Horn rules) H = {h1 = a →
b, h2 = b → c, h3 = (d ∧ e) → ⊥, h4 = d → f }. This formula is not left-saturated because ant(h3) = {d, e} |= h4 since 
f /∈ ant(h3). It is also not right-saturated because con(h1) = {b} and ant(h1) = {a} while H[{a}] = {v ∈ V \ | H |= a → v} =
{a, b, c}. Thus, an equivalent saturated Horn representation of H would be {a → (a ∧b ∧ c), b → (b ∧ c), (d ∧ e ∧ f ) → ⊥, d →
(d ∧ f )}.

Proposition 5 (Duquenne-Guigues basis). [19] For any Horn formula ϕ , if ψ ≡ ϕ and ψ is saturated, then ψ has a minimal number 
of rules (w.r.t. any other Horn representation of ϕ) and it is unique up to variable ordering, being called the4 Duquenne-Guigues (DG) 
basis of ϕ .

Given an arbitrary formula ϕ , in case ϕ is not equivalent to a Horn formula (i.e. mod(ϕ) is not closed under intersection), 
still we might want to find a Horn formula that approximates the behaviour of ϕ . What is remarkable about Horn formulas 
is that there is always a unique tightest Horn approximation of ϕ , called the Horn envelope of ϕ . To see this, consider the 
set of models clo(mod(ϕ)). By Proposition 2 there is a Horn formula with precisely this set as its models. We define the 
envelope of ϕ to be the smallest such Horn formula, measured in the number of rules.

Definition 6 (Horn envelope). Given a formula ϕ , we define env(ϕ) as the DG basis of the set of Horn consequences of ϕ; 
{h Horn | ϕ |= h}.

3.2. Learning via queries

In this paper, we study the problem of exact learning logical formulas from interpretations. In the abstract setting of 
exact learning [2], this means that our concepts are of the form mod(ϕ) for some formula ϕ , and our examples are models. 
In other words, in this context, we may refer to models as examples. If x |= ϕ , i.e. x ∈ mod(ϕ) then we say that x is a positive 
example for ϕ; else we say x is a negative example for ϕ .

We study the problem of identifying an unknown target Horn theory env(ϕ) by observing examples classified according 
to ϕ (where ϕ is any formula). In our setting, the learner is allowed to pose queries to two kinds of oracles: a membership 
oracle MQϕ(·) and a Horn equivalence oracle EQHorn

ϕ (·). A membership query MQϕ(x) takes as input an example x and returns 
“yes” if x |= ϕ and “no” otherwise. The (Horn) equivalence query EQHorn

ϕ (ψ) returns “yes” if env(ϕ) ≡ env(ψ) and “no” with 
a counterexample x ∈ mod(ϕ) ⊕ mod(ψ) otherwise. If x ∈ mod(ϕ) \ mod(ψ) we say that x is a positive counterexample (i.e. 
because it is a positive example for the target ϕ) and if x ∈ mod(ψ) \ mod(ϕ) we say that x is a negative counterexample. 
In our setting, an exact learning algorithm with membership and equivalence queries is polynomial time if the number of 
computation steps is polynomially bounded by |env(ϕ)| and |V|, where each oracle query counts as one computation step.

When learning the envelope env(ϕ), negative counterexamples x returned by EQHorn
ϕ are only required to be negative 

examples for ϕ . Since

mod(ϕ) ⊆ mod(env(ϕ)) = clo(mod(ϕ)),

this means that the Horn equivalence can return two kinds of negative examples as counterexamples to equivalence queries. 
We say that a negative example x for ϕ is Horn if x |= env(ϕ), and non-Horn otherwise. Note that clo(mod(ϕ)) − mod(ϕ) is 
precisely the set of non-Horn negative examples for ϕ .

4. Learning the Horn envelope

In this paper, we devise a new algorithm with membership and equivalence queries that is able to exactly learn Horn 
envelopes, where the queries are for original target rather than its envelope (in contrast to the other approaches discussed 
in Subsection 2). We show that the algorithm makes exponentially many queries in the worst case but only polynomially 
many if the target is a Horn formula. Our algorithm is based on Angluin’s classical algorithm for propositional Horn logic [4].

Angluin’s classical algorithm for Horn cannot be used to learn the envelope of an arbitrary target formula. Indeed, as 
mentioned, it is not guaranteed to terminate [29]. The basic idea of the algorithm is to create a hypothesis consistent with 
the classification of the examples given by the oracle. Upon receiving positive counterexamples, the algorithm removes 

4 Following Arias et al. [8], we write “the DG basis” instead of “a DG” with an abuse of notation where we treat e.g. a ∧ b as equal to b ∧ a, not just 
equivalent.
5
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clauses from the hypothesis that falsify them, while negative counterexamples cause the refinement or creation of Horn 
rules that make them false w.r.t. the hypothesis as well.

What leads to non-termination of the classical algorithm in the non-Horn case (when the target is not a Horn formula) is 
that there may not exist a correct way to falsify an example that is negative for the target using a Horn expression. Indeed, 
we may have that an example x is negative for a CNF ϕ , yet satisfies the envelope env(ϕ). Equivalently, x falsifies ϕ but 
satisfies all Horn consequences of ϕ if x is non-Horn. Thus the classic algorithm can receive the same non-Horn negative 
example over and over again, interleaved with positive counterexamples showing Horn rules introduced in the hypothesis 
to be incorrect (cf. Appendix A)

4.1. The algorithm

In this subsection we show that Algorithm 1 terminates in exponential time when the target is a CNF, and in polynomial 
time in the size of the envelope of the target if it has polynomially many non-Horn examples. A key observation in our 
approach is that when all Horn rules for a negative example x have been shown incorrect, we have in fact received positive 
counterexamples e1, . . . , en such that e1 ∩ . . . ∩ en = x. In other words, we have observed data (a set of positive examples 
E+) that proves that x is a non-Horn negative example because x ∈ clo(E+). Then we can use a k-quasi Horn rule for some 
k > 1 to falsify x, and so, to classify it in the same way as the target. We canonically choose the weakest non-Horn rule5

falsified on x to add to the hypothesis. By “weakest” we mean here that any other quasi-Horn rule falsified on x entails this 
one. It is not difficult to see that the following definition satisfies these properties:

quasi(x) :=
∧

x →
∨

x

Hence, we overcome the difficulty of non-Horn examples by keeping track of which negative examples encountered are 
in the intersection-closure of the positive examples encountered so far, and excluding them with the weakest possible non-
Horn rule. We assign a Horn metarule to a negative example in the same way as in the optimised version of the classical 
Horn algorithm [4]. However, since we keep track of the positive examples, we make this explicit in notation (like [8]). 
Given a negative example x and a set of positive examples E+ , let E+

x be {e ∈ E+| x ⊆ e}. Then we define:

hornE+(x) :=
{∧

x → ⊥ if E+
x = ∅∧

x → ∧{v ∈ V | v ∈ y for all y ∈ E+
x } otherwise.

That is, we set hornE+ (x) to be the strongest metarule falsified on x yet still consistent with the set of positive examples 
seen so far, E+ (recall that the positive examples of a Horn formula are closed under ∩). By strongest we mean here that 
hornE+ (x) entails all other metarules (and therefore every horn rule) falsified on x yet consistent with E+ .

Algorithm 1: Horn Envelope Learner.

input: MQϕ and EQHorn
ϕ oracles.

output: A formula H ∪Q such that env(H∪Q) ≡H ≡ env(ϕ).

1 E+ := ∅, E− := ∅, Enh := ∅
2 while EQHorn

ϕ (H ∪Q) = (no, x) do
3 if x |=H∪Q then
4 add x to E+
5 else
6 if ∃e ∈ E− s.t. MQϕ(x ∩ e) = no, x ∩ e ⊂ e, and x ∩ e |=Q then
7 let e be the first such negative example
8 replace e ∈ E− with e ∩ x
9 else

10 append x to E−

11 for e ∈ E− s.t. e = ⋂
E+

e do
12 remove e from E−
13 add e to Enh

14 H := {hornE+ (e) | e ∈ E−}
15 Q := {quasi(e) | e ∈ Enh}
16 return (H)

5 Unique up to variable ordering.
6
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Remark 2. Algorithm 1 manipulates a list E− of negative examples. The positions of the list are not shifted when an element 
is removed. E.g., if an element in E− = e1 . . . en is removed at position k, we consider E− = e1 . . . ek−1ek+1 . . . en . In other 
words, for j > k, position j remains j and not j − 1. When we write |L| for a list L we mean the number of elements and 
not the number of positions (which would be e.g. n − 1 in a list E− with n positions and one element removed).

In the rest of this section, we focus on showing that our algorithm terminates in polynomial time in the size of the 
envelope of a non-Horn formula with polynomially many non-Horn examples. Termination in polynomial time if the target 
is a Horn formula follows from the fact that in this case the algorithm works as the one proposed by Angluin [4]. As already 
mentioned, Angluin’s algorithm may not terminate if the target is non-Horn (even if it has polynomially many non-Horn 
examples [29], see Section A). So the interesting aspect of our algorithm is that it is guaranteed to terminate no matter 
if the target is Horn or not and if it is Horn (or ‘close to’, meaning it has polynomially many non-Horn examples) then it 
terminates in polynomial time.

Lemma 7. For each iteration of Algorithm 1, suppose the algorithm receives a negative counterexample x from EQHorn
ϕ in Line 2 with 

x |= h for some h ∈ env(ϕ) and there is some ei ∈ E− that covers h. Then, for some e j ∈ E− with j ≤ i, we have that e j is replaced by 
e j ∩ x in Line 8.

Proof. The proof is by induction on the iterations of Algorithm 1, following the proof strategy of Angluin [4]. At the first 
iteration the lemma is vacuously true. Assume inductively it holds for the n-1-th iteration. At the n-th iteration, suppose 
EQHorn

ϕ returns the negative counterexample x and we have ei ∈ E− and h ∈ env(ϕ) such that x |= h and ant(h) ⊆ ei . If there 
is some e j ∈ E− with j < i such that e j is replaced by e j ∩ x in Line 8, we are done. Suppose this does not happen. If we 
can show that ei satisfies the conditions on Line 6 we are done, because then ei will be the least such example in E− per 
assumption. By Lemma 1 it follows that ei ∩ x |= h so ei ∩ x is a Horn negative example and MQϕ(ei ∩ x) = no. Further, 
if ei ⊆ x then because x is a negative counterexample x |= hornE+ (ei) so 

⋂
E+

ei
⊆ x. But since ant(h) ⊆ ei it must be that 

con(h) ⊆ ⋂
E+

ei
so x |= h, contrary to our assumption. Thus, we may conclude that x ∩ ei ⊂ ei . Finally, ei ∩ x |= Q holds as 

otherwise ei ∩ x is non-Horn. �
Lemma 8. At all times, the following two properties hold of E−:

a) for all ei, e j ∈ E− with i < j and h ∈ env(ϕ), if e j |= h then ant(h) � ei ; and
b) for all ei, e j ∈ E− with i = j and h ∈ env(ϕ), if e j |= h then ei |= h.

Proof. As originally proposed by Angluin [4], first we show that property (a) implies property (b). Suppose that at some 
iteration of the main loop there are ei, e j ∈ E− with i = j and ei |= h and e j |= h for some h ∈ env(ϕ), violating property (b). 
Without loss of generality assume that i < j. Then in particular ant(h) ⊆ ei , violating property (a) at the same iteration.

Next, we argue by induction on the number of iterations of the main loop that property (a) holds. The base case is trivial 
as initially E− is the empty list. Now suppose that property (a) holds for E−

(n−1) , where E−
(n−1) denotes E− at the end of the 

n-1-th iteration, just before the n-th equivalence query is posed. Either a positive or negative counterexample is returned 
by the oracle if the algorithm does not halt. If we obtain a positive counterexample, E− can only be modified by removing 
some example from E− and adding it to Enh in Lines 12-13. After such removal E− still satisfies the universal property (a). 
If a negative counterexample x is returned, with x |= h for some h ∈ env(ϕ). Then either x is appended as the last element 
of E− or some ei ∈ E− is replaced by ei ∩ x.

In the former case, let x be the l-th element of E− . Then it cannot be that there is some ei ∈ E− with i < l such that 
ant(h) ⊆ ei for then ei and x would have been refined with each other by Lemma 7. Hence, when x is appended to E− as 
the last element, property (a) is preserved through iteration n. In the latter case, let ei be the example that is replaced by 
ei ∩ x and suppose that ei ∩ x |= h for some h ∈ env(ϕ). By the contrapositive of preservation of Horn formulas under ∩, it 
follows that either x |= h or ei |= h. Now property (a) could be violated in two ways: either there is some e j ∈ E− with j < i
such that ant(h) ⊆ e j or there is some e j ∈ E− with i < j such that e j |= h′ for some h′ ∈ env(ϕ) and ant(h′) ⊆ ei ∩ x.

Suppose for contradiction that there is some e j ∈ E− with j < i such that ant(h) ⊆ e j . If x |= h then by Lemma 7 x
should have been refined with e j instead of ei . But it also cannot be that ei |= h because that would violate the inductive 
hypothesis. Since we had established that either x |= h or ei |= h holds, we have derived a contradiction. Hence the first 
type of violation cannot happen. The second type of violation cannot happen either, for if ant(h′) ⊆ ei ∩ x then ant(h′) ⊆ ei
as well, violating the inductive hypothesis. �
Corollary 9. |{e ∈ E− | e is a Horn example}| ≤ |env(ϕ)|

Proof. Lemma 8 ensures that at all times there exists an injection from the Horn negative examples in E− to |env(ϕ)|. �
With these new results in hand, we can give an upper bound on the number of queries posed by our algorithm.
7
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Theorem 10. The algorithm terminates after making at most O (|V| · (|env(ϕ)| + k) equivalence queries and at most O (|env(ϕ)|2 ·
k2 · |V|) membership queries, where k = |clo(mod(ϕ)) \ mod(ϕ)|.

Proof. First we show that, at the end of each iteration, |E−| ∪ |Enh| ≤ |env(ϕ)| + k (where k is the number of all possible 
non-Horn examples). By Corollary 9 there are at most |env(ϕ)| Horn examples in E− (but E− potentially has non-Horn 
examples). The next claim establishes that if an example is in E− then it is not in Enh . In particular, potential non-Horn 
examples in E− are not in Enh .

Claim 11. At each iteration, on Line 15 of Algorithm 1, Q := {quasi(x) | x ∈ Enh} is such that Q is falsified on all examples in Enh and 
only those.

Proof. At any iteration on Line 15, if x ∈ Enh then quasi(x) ∈ Q and x |= quasi(x) since x ⊆ x and x ∩ x = ∅. In fact, 
mod(¬quasi(x)) = {x} so we have that Enh = mod(¬Q). �
Claim 12. At the end of each iteration, if an example is in E− then it is not in Enh.

Proof. At the end of the first iteration this is trivially true. Suppose the claim holds at the end of iteration i. We now argue 
that it holds at the end of iteration i + 1. Suppose we are given a counterexample x at the beginning of iteration i + 1. One 
of three options happen: (1) x is a positive example, (2) x is negative and it is appended to E− , or (3) x is negative and it 
is used to refine an element of E− . We argue that the claim holds in each possible case.

1. The counterexample is positive: in this case, no example is added or replaced in E− . If it is removed from E− and 
added Enh in the ‘for’ loop (which can happen since we updated the positive examples), then the only way to violate 
the claim is if E− has repetitions, which is not the case by Lemma 8. Thus, if the claim holds at the end of iteration i
it also holds at the end of iteration i + 1.

2. The counterexample is appended: we know that x /∈ Enh since, by Claim 11, once an example is in Enh at some iteration, 
it is never removed from Enh and it can never be returned as a counterexample in a subsequent iteration. This means 
that if we append x to E− then either (a) it remains in E− at the end of iteration i + 1 (does not enter in the ‘for’ loop) 
or (b) it is removed from E− in the ‘for’ loop and added to Enh . In case (a) clearly the claim holds and in case (b) the 
only way to violate the claim would be if E− has repetitions but, as already argued in Case 1, this does not happen. 
Therefore the claim holds.

3. The counterexample is used to refine an element in E−: suppose that x is used to refine an element e ∈ E− . From 
Line 6, we know that x ∩ e |= Q, where Q is built from Enh at the end of iteration i. This means that x ∩ e cannot be 
in Enh (as defined at the end of iteration i). If the algorithm does not enter in the ‘for’ loop then x ∩ e is not in Enh

at the end of iteration i + 1 and the claim holds for the other elements of the lists by the inductive assumption. If the 
algorithm enters in the ‘for’ loop then the only way to violate the claim is if E− has repetitions but, as already argued 
in Case 1, this does not happen.

This finishes the proof of the claim. �
At all times, all examples in Enh are non-Horn since each example e is such that e = ⋂

E+
e (Line 11). By Claim 12, such 

non-Horn examples do not occur in E− . So, to prove that |E−| ∪ |Enh| ≤ |env(ϕ)| + k, we now only need to argue that there 
are no repeated elements in Enh . Since all elements in Enh are elements that have been removed from E− , we only need 
to argue that once an element is added to Enh at some iteration, in all subsequent iterations, it is (a) not appended to E−
and (b) not the replacement of an element in E− . Case (a) holds because, as already argued in Case 2, if an example is in 
Enh it cannot be returned as a counterexample in any subsequent iteration (thus not appended to E−). Case (b) also holds 
because in this case such replacement would violate Q (by definition of Q if e ∈ Enh then e |= Q), which does not happen 
by definition of Line 6. Thus, |E−| ∪ |Enh| ≤ |env(ϕ)| + k. We now use this result to establish upper bounds for the number 
of membership and equivalence queries.

To bound the number of equivalence queries, we establish bounds on the number of positive and negative counterex-
amples returned by the oracle, starting with the latter. Every negative counterexample received from the oracle is either 
appended to E− (increasing its size as a set by 1) or it refines some ei ∈ E− . Since |E−| ≤ |env(ϕ)| + k the number of times 
a negative counterexample is appended is bounded by |env(ϕ)| + k. Since each time an example is replaced the number of 
variables in the antecedent strictly decreases, this can happen at most |V|(env(ϕ)| + k) times. Thus, there can be at most 
(|V| +1)(|env(ϕ)| +k) negative counterexamples returned by the oracle in total. We now argue about the number of positive 
counterexamples. Every positive counterexample must falsify some metarule in H and cause at least one variable to be re-
moved from its consequent. H always consists of metarules of the form hornE+ (e) for e ∈ E− . Since |E−| ≤ |env(ϕ)| +k there 
can be at most |V|(|env(ϕ)| + k) positive counterexamples returned by the oracle. It follows that the algorithm terminates 
after making at most (2|V| + 1)(|env(ϕ)| + k) equivalence queries. That is, O (|V| · (|env(ϕ)| + k)).
8
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The algorithm only poses membership queries in rounds where the oracle returned a negative counterexample, and in 
each such round at most |E−| membership queries are posed. Since |E−| ≤ |env(ϕ)| + k and there can be at most (|V| +
1)(|env(ϕ)| + k) negative examples queries returned by the oracle, it follows that there can be at most (|V| + 1)(|env(ϕ)| +
k)(env(ϕ)| + k) membership queries in total. That is, O (|V| · (|env(ϕ)|2 · k2)). �
Corollary 13. The algorithm terminates after making at most O (|ϕ)||V|) equivalence queries and at most O (|ϕ|2|V|) membership 
queries when the target is Horn. These are the same bounds as Angluin’s classical algorithm for Horn theories [4].

Proof. If the target is Horn then ϕ ≡ env(ϕ) and |env(ϕ)| ≤ |ϕ| because the envelope is defined to be DG(ϕ). Then the 
claim follows from Theorem 10 since k = 0 when the target is Horn. �

Corollary 14 states that polynomial time bounds can also be achieved if the target is ‘close’ to Horn in the sense of 
having few non-Horn examples.

Corollary 14. The algorithm terminates in polynomial time if there are only polynomially many non-Horn examples w.r.t. |env(ϕ)|
and |V|.

Proof. If k is polynomially bounded by |env(ϕ)| and |V| then the claim is immediate from Theorem 10. �
Corollary 15. If in Algorithm 1 we replace EQHorn

ϕ by a CNF oracle EQϕ , then this algorithm terminates and outputs a CNF representa-
tion H∪Q of the target CNF ϕ . In general, termination is in exponential time but in polynomial time if ϕ has only polynomially many 
non-Horn examples.

Sketch. Theorem 10 remains true under the modification of Algorithm 1. This is because the only difference between 
EQHorn

ϕ and EQϕ is the condition on which the oracle answers “yes” (i.e. the termination condition). While EQHorn
ϕ can 

return “yes” if there are still non-Horn negative counterexamples left to return, EQϕ cannot. However, in an adversarial 
scenario the Horn equivalence oracle could force the more difficult stopping condition of EQϕ to hold by first returning 
non-Horn negative counterexamples whenever possible. Thus the statement of this Theorem is already covered as a worst 
case of Horn envelope learning in Theorem 10. �

For the Theorem below, we will need another lemma, which is known in the Horn learning literature.

Lemma 16 ([7,8]). At the end of each iteration of the main loop, for all Horn negative examples ei, e j ∈ E− with i < j, there is some 
positive example z ∈ mod(env(ϕ)) such that ei ∩ e j ⊆ z ⊆ e j .

Proof. By induction on the number of iterations of the main loop. Throughout, we use the fact that for any four subsets 
a, b, c, d ⊆ V, a ⊆ b and c ⊆ d implies a ∩ c ⊆ b ∩ d. Write 

⋂
E for the big intersection e1 ∩ . . . ∩ en where E = {e1, . . . , en}. 

Clearly the claim holds initially when E− is empty. Now suppose the claim holds at iteration n and the n + 1-th equivalence 
query returns a counterexample x. Let E+, E− denote the list of positive and negative examples at the end of the n’th 
round. If x is a positive counterexample, E− can only be changed in this round by removing some elements, so the claim 
is immediate from the inductive hypothesis. Else x is a negative counterexample, in which case it is either added to E− as 
the last element or used to refine some ei ∈ E− . Suppose x is added at the end of the list. This means that for all ei ∈ E−
we have either (i) ei ⊆ x, (ii) MQϕ(ei ∩ x) = yes or (iii) ei ∩ x |= Q. If (i) then 

⋂
E+

ei
∈ mod(env(ϕ)) with ei ⊆ ⋂

E+
ei

⊆ x, and 
if (ii) or (iii), ei ∩ x ∈ mod(env(ϕ)).

If instead ei ∈ E− gets replaced by ei ∩ x, we have to consider two cases. First, if i < j then by inductive hypothesis there 
is some z ∈ mod(env(ϕ)) with ei ∩ e j ⊆ z ⊆ e j . But as (ei ∩ x) ∩ e j ⊆ ei ∩ e j the same positive example z suffices. Lastly, if 
j < i then by inductive hypothesis there is some z ∈ mod(env(ϕ)) with e j ∩ ei ⊆ z ⊆ ei . Since x is not refined with e j , either 
(i) e j ⊆ x, (ii) MQϕ(e j ∩ x) = yes or (iii) e j ∩ x |=Q. In case (i) 

⋂
E+

e j
⊆ x. But as e j ∩ ei ⊆ e j ⊆ ⋂

E+
e j

, it follows that

e j ∩ (ei ∩ x) ⊆ e j ∩ ei ⊆
⋂

E+
e j

∩ z ⊆ ei ∩ x

where 
⋂

E+
ei∩x ∩ z ∈ mod(env(ϕ)). In case (ii) and (iii) we have e j ∩x ∈ mod(env(ϕ)) and hence also z∩(e j ∩x) ∈ mod(env(ϕ)). 

The claim then follows as e j ∩ ei ∩ x ⊆ z ∩ (e j ∩ x) ⊆ ei ∩ x. �
Theorem 17. If Algorithm 1 halts and outputs H∪Q then H ≡ env(ϕ) and H is the DG basis of env(ϕ).

Proof. By definition of the Horn equivalence oracle, if the last equivalence query answers “yes” then env(H ∪Q) ≡ env(ϕ). 
We show that H ≡ env(H ∪ Q) and that H is saturated and hence the DG basis of env(ϕ). We start to show the former 
claim. By definition of envelope, it suffices to show that H ≡ {h Horn rule | H∪Q |= h}. Clearly {h Horn rule | H∪Q |= h} |=
9
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H. For the other direction, we have to show that every Horn rule entailed by H∪Q is already entailed by H. Suppose that 
H∪Q |= h for some Horn rule h. This is equivalent to saying that mod(¬h) ⊆ mod(¬H) ∪ mod(¬Q) (recall sets of rules are 
interpreted as the conjunction of them). But mod(¬h) consists only of Horn negative examples for ϕ , since env(H∪Q) |= h, 
env(H∪Q) ≡ env(ϕ) and hence env(ϕ) |= h as well. By construction, mod(¬Q) consists only of non-Horn negative examples 
for ϕ . Since the set of Horn and the set of non-Horn negative examples are disjoint, it follows that mod(¬h) and mod(¬Q)

are also disjoint. But then mod(¬h) ⊆ mod(¬H), and so, H |= h.
We now show that H = {hornE+ (ei) | ei ∈ E−} is saturated. We first show right-saturatedness, so let ei ∈ E− . If 

con(hornE+ (ei)) = ⊥ we are done. So suppose that con(hornE+ (ei)) = ⋂
E+

ei
⊆ V. We want to show that env(ϕ)[ei] = ⋂

E+
ei

. 
For the left to right inclusion, if p ∈ env(ϕ)[ei], i.e. env(ϕ) |= ∧

ei → p, then for all y ∈ E+
ei

we have p ∈ y, therefore 
p ∈ ⋂

E+
ei

. For the converse inclusion, suppose that p ∈ ⋂
E+

ei
. It follows that hornE+ (ei) |= ∧

ei → p. But since H ≡ env(ϕ), 
in particular env(ϕ) |= hornE+ (ei) and hence env(ϕ) |= ∧

ei → p, which just means that p ∈ env(ϕ)[ei].
To see that H is left-saturated, take ei, e j ∈ E− with i = j. First, we show that ei |= hornE+ (ei). If con(hornE+ (ei)) = ⊥

this is clearly so, and else con(hornE+ (ei)) = ⋂
E+

ei
⊆ V. Note that ei ⊆ ⋂

E+
ei

always holds, but it cannot be that 
⋂

E+
ei

= ei

otherwise ei would have been removed from E− and put into Enh in the last iteration of the main loop. Hence ei ⊂⋂
E+

ei
which means that ei |= hornE+ (ei). This also entails that there are no non-Horn examples left in E− . Suppose for 

contradiction that there was some non-Horn example ek ∈ E− at the point of termination. Then it has not been removed 
from E− and moved to Enh , so ek ⊂ ⋂

E+
ek

but then ek |= hornE+ (ek) and hence ek |= H. However, as ek is non-Horn, ek |=
env(ϕ) and hence ek contradicts the equivalence of H and env(ϕ). Next, clearly e j |= hornE+ (ei) if ei � e j , so suppose that 
ei ⊆ e j . Since we have just shown that both ei and e j must be Horn negative examples, by Lemma 16, there is some positive 
example z ∈ mod(env(ϕ)) such that ei ∩ e j ⊆ z ⊆ e j . But since ei ⊆ e j we have ei ∩ e j = ei , so in fact ei ⊆ z ⊆ e j . By closure 
under intersection, 

⋂
E+

ei
∩ z |= env(ϕ). As ei ⊆ ⋂

E+
ei

∩ z, it follows that env(ϕ)[ei] ⊆ ⋂
E+

ei
∩ z ⊆ z ⊆ e j . But as H ≡ env(ϕ), 

H[ei] = env(ϕ)[ei], and by right-saturatedness con(hornE+ (ei)) = ⋂
E+

ei
=H[ei]. Hence 

⋂
E+

ei
⊆ e j so e j |= hornE+ (e j). �

4.2. Hardness of learning the Horn envelope

In this section, we establish the difficulty of learning Horn envelopes by reducing it to the problem learning arbitrary 
CNFs, which is known to be a hard problem [3,5] (Theorem 20). This hardness result complements Corollary 14, by showing 
that it is in some sense a best possible upper bound. The reduction is essentially the same as the one by Frazier [18], 
showing that learning arbitrary CNFs polynomially reduces to 2-quasi Horn.6 This means that we can employ a 2-quasi-
Horn learning algorithm to learn a suitable encoding of a CNF as a 2-quasi-Horn formula over an extended set of variables.

The trick is to replace positive literals p with the negated literals ¬p¬ , where p¬ is a fresh variable that will be forced 
to be interpreted as ¬p by some extra setup-formulas. We show that learning CNF polynomially reduces to learning Horn 
envelopes. First, we will define the encoding and establish some properties of it. Given a set of variables V = {v1, . . . , vn}, 
make a disjoint copy of all these variables V¬ := {v¬

1 , . . . , v¬
n } and set V+ := V � V¬ (where � denotes disjoint union). 

Furthermore, define the function (·)◦ of V+ as follows:

p◦ :=
{

q¬ if p = q ∈ V

q if p = q¬ ∈ V ¬

We use all rules of the form v ∧ v¬ → ⊥ and v ∨ v¬ for each v ∈ V to ensure that v¬ is interpreted as ¬v . Let χsetup be 
the conjunction of all such rules. For every rule c = ∧

ant(c) → ∨
con(c) over V define the negative Horn rule c¬ over V+

by setting

c¬ :=
∧

(ant(c) ∪ {p¬ | p ∈ con(c)}) → ⊥
For a conjunction of rules ϕ = c1 ∧ . . . ∧ cn , let ϕ¬ := c¬

1 ∧ . . . ∧ c¬
n . Clearly, this operation turns every rule into a (negative) 

Horn rule over an extended signature. Now set enc(ϕ) := ϕ¬ ∧ χsetup. Note that |ϕ¬| contains as many rules as |ϕ| and 
|χsetup| is in O (|V|), so |enc(ϕ)| is polynomial in |ϕ|. Furthermore, an example x ⊆ V is mapped to the example x¬ =
x ∪ {p¬ ∈ V¬ | p /∈ x} for which it is easily checked that:

x |= ϕ iff x¬ |= ϕ¬ (1)

Also, note that mod(χsetup) = {x¬ ⊆ V+ | x ⊆ V}. Moreover, there is an inverse dec(·) to enc(·) which takes a CNF over the 
extended set of variables V ∪ V¬ back to a CNF over V. For every rule c = ∧

ant(c) → ∨
con(h) where ant(c), con(c) ⊆ V+

define dec(c) to be∧
(ant(c) ∩ V) ∪ {q | q¬ ∈ con(c)} →

∨
(con(c) ∩ V) ∪ {p | p¬ ∈ ant(c)}

6 In fact something stronger is shown there, namely that learning CNF polynomially reduces to a special subclass of 2-quasi-Horn that consists only of 
rules with either empty antecedent or empty consequent, thus a conjunction of monotone and antitone clauses.
10
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and for a conjunction of rules ψ = c1 ∧ . . . ∧ cn set dec(ψ) = dec(c1) ∧ . . . ∧ dec(cn). Under these definitions, for every CNF 
ϕ over V, we have dec(enc(ϕ)) ≡ ϕ because dec(χsetup) ≡ � and dec(ϕ¬) ≡ ϕ . Also, the following fact holds.

Lemma 18. For every model y ⊆ V+ such that y = x¬ for some x ⊆ V and every CNF ψ over V+:

y |= ψ iff y |= dec(ψ)¬

i.e. mod(ψ) ∩ mod(χsetup) = mod(dec(ψ)¬) ∩ mod(χsetup).

Proof. Let y = x¬ ⊆ V+ and ψ = c1 ∧ . . . ∧ cn be a CNF over V+ . Note that every rule of dec(ψ)¬ is of the form dec(ci)
¬ for 

some rule ci of ψ . It is not difficult to see that the every clause of the form dec(c)¬ can be written as follows.

dec(c)¬ =
∧

(ant(c) ∪ {q◦ | q ∈ con(c)}) → ⊥
Clearly y |= ψ iff y |= ci for some 1 ≤ i ≤ n. In that case, for this i we have ant(ci) ⊆ y and con(ci) ∩ y = ∅. But as 

y = x¬ , this holds iff ant(ci) ⊆ y and {q◦ | q ∈ con(ci)} ⊆ y. But by the above definition of dec(c)¬ , we have ant(dec(ci)
¬) =

ant(ci) ∪ {q◦ | q ∈ con(c)} and con(dec(ci)
¬)) = ⊥, hence this holds iff y |= dec(ci)

¬ for this i, which proves the claim. �
We want to show that learning the Horn envelope env(enc(ϕ)) suffices to learn ϕ , because ϕ¬ consists only of Horn 

rules over the extended signature V+ and somehow captures all information about the original CNF ϕ . We observed above 
that dec(enc(ϕ)) ≡ ϕ but here we show the stronger claim that in fact dec(env(enc(ϕ))) ≡ ϕ .

Lemma 19. The Horn envelope env(enc(ϕ)) is logically equivalent to � := ϕ¬ ∪ {(p ∧ p¬) → ⊥ | p ∈ V} ∪ {∧ant(c¬) \ {p} →
p◦ | c¬ ∈ ϕ¬, p ∈ ant(c¬)}, and hence dec(env(enc(ϕ))) ≡ ϕ for any CNF ϕ over V.

Proof. We first show that env(enc(ϕ)) entails �. We know that env(enc(ϕ)) ≡ {h Horn rule | enc(ϕ) |= h}. So as ϕ¬ ∪ {(p ∧
p¬) → ⊥ | p ∈ V} is a subset of enc(ϕ), these rules are entailed by enc(ϕ). Now take any rule � of the form 

∧
(ant(c¬) \

{p}) → p◦ , where c¬ ∈ ϕ¬ and p ∈ ant(c¬). Recall that every Horn rule in ϕ¬ has an empty consequent because all positive 
literals have been substituted out. Hence by the valid rule of resolution:

(
∧

(P ∪ {p}) →
∨

Q ) ∧ (
∧

P ′ →
∨

(Q ′ ∪ {p})) |=
∧

(P ∪ P ′) →
∨

(Q ∪ Q ′)

we get:

c¬ ∧ (p ∨ p¬) = (
∧

ant(c¬) → ⊥) ∧ (p ∨ p¬) |=
∧

(ant(c¬) \ {p}) → p◦.

For the other direction, we want to show that � |= env(enc(ϕ)), i.e. mod(�) ⊆ mod(env(enc(ϕ))) = clo(mod(enc(ϕ))). So 
let x |= �. We need to show that x is in the closure of mod(enc(ϕ)). By Remark 1, this is equivalent to checking whether 
x = ⋂{e ∈ mod(enc(ϕ)) | x ⊆ e}. We know that for no p ∈ V both p and p¬ are in x, and we know that x |= ϕ¬ .

For each p ∈ V such that both p, p¬ /∈ x, we know that x ∪ {p} |= ∧
p∈V(p ∧ p¬) → ⊥ still. If x ∪ {p} |= ϕ¬ then, since ϕ¬

consists only of Horn rules of the form 
∧

ant(h) → ⊥, it must be that ϕ¬ |= ∧
(x ∪ {p}) → ⊥. So since ϕ¬ consists only of 

negative Horn rules, there must be some rule 
∧

y → ⊥ ∈ ϕ¬ with y ⊆ x ∪ {p}.
It cannot be that y ⊆ x otherwise x |= ∧

y → ⊥ while we assumed that x |= � and ϕ¬ is contained in �. But then it 
must be that p ∈ y and hence 

∧
y \ {p} → p◦ ∈ �, which contradicts our assumption that x |= � and y ⊆ x ∪ {p}. Thus it 

must be that x ∪ {p} |= ϕ¬ and a similar argument shows that x ∪ {p¬} |= ϕ¬ . But now x = (x ∪ {p}) ∩ (x ∪ {p◦}) which is in 
clo(mod(enc(ϕ))) = mod(env(enc(ϕ))). Finally, we have that dec(c¬) ≡ c, dec(p ∧ p¬ → ⊥) ≡ � and dec(

∧
(ant(c¬) \ {p}) →

p◦) ≡ dec(c¬) ≡ c, so dec(env(enc(ϕ))) ≡ ϕ . �
Theorem 20. Learning Horn envelopes (in polynomial time) with membership and equivalence queries is at least as hard as learning 
CNF (in polynomial time) with membership and equivalence queries.

Proof. Take any CNF ϕ over V and consider its encoding enc(ϕ), which is a CNF over V ∪V¬ such that dec(env(enc(ϕ))) ≡ ϕ
by Lemma 19. Suppose there is an algorithm A that learns the Horn envelope in polynomial time. We will use A to learn 
a CNF representation of ϕ , going back and forth between the two settings with the enc(·) and dec(·) mappings. Because 
we have that dec(env(enc(ϕ))) ≡ ϕ , it suffices to show that we can correctly answer the oracle queries posed by A, using 
our knowledge of the encoding and our two CNF oracles MQϕ and EQϕ . For then A will terminate in polynomial time by 
assumption and output some representation ψ of env(enc(ϕ)), whose decoding dec(ψ) would then be a representation of 
the original CNF ϕ .

When A asks a membership query MQenc(ϕ)(y) for some y ⊆ V+ , if y = x¬ for some x ⊆ V then answer the membership 
query with “no”. Else, for the unique x ⊆ V such that x¬ = y ask the membership query MQϕ(x) and return the answer 
to A. When A asks an equivalence query EQHorn (ψ), ask the equivalence query EQϕ(dec(ψ)). If the CNF oracle answers 
enc(ϕ)

11
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“yes” to the latter query then dec(ψ) is a CNF representation of the original target CNF ϕ and we are done. Otherwise 
the oracle returns a counterexample x ∈ mod(ϕ) ⊕ mod(dec(ψ)). It follows that x¬ ∈ mod(ϕ¬) ⊕ mod(dec(ψ)¬), whence by 
Lemma 18 we know that x¬ ∈ mod(ϕ¬) ⊕ mod(ψ). Also, since enc(ϕ) = ϕ¬ ∧ χsetup and mod(χsetup) = {x¬ ⊆ V+ | x ⊆ V} we 
get that x¬ ∈ mod(enc(ϕ)) ⊕ mod(ψ). Hence “no” with the (necessarily Horn) counterexample x¬ is a valid answer to the 
equivalence query EQHorn

enc(ϕ)(ψ). It follows that learning Horn envelopes (in polynomial time) is as hard as learning CNFs (in 
polynomial time). �

Consider the following variation of the above reduction: map any CNF ϕ over V to ϕ¬ (which is a Horn theory over 
V+) and map every x ⊆ V to x¬ . This satisfies the condition of being a reduction among exact learning problems with 
equivalence queries [25,20], because the following holds.

x |= ϕ iff x¬ |= ϕ¬

This shows that learning Horn formulas with only equivalence queries (in polynomial time) is as hard as CNF with only 
equivalence queries (in polynomial time). In fact it has been long known in the literature that Horn formulas are not 
learnable in polynomial time [3]. However it is not a reduction under both membership and equivalence queries, because 
there is no way to simulate the answer to membership queries MQϕ¬(y) for models y ⊆ V+ for which there is no x ⊆ V

such that x¬ = y. This makes sense because Horn formulas are known to be exact learnable with both queries in polynomial 
time [4].

5. Learning from neural networks

In this section, we discuss in more details how we address the obstacles mentioned in the Introduction to apply ex-
act learning algorithms for extracting knowledge from trained neural networks. We start discussing the second obstacle. 
Intuitively, we pose our queries to the neural network, thus viewing the neural network as the oracle. To do this, one has to 
define a Boolean function from a trained neural network. In this work, we create the lookup table presented in the appendix 
(Table 9) to make the conversion between Boolean values and expressions in natural language given to the language model. 
Discrete-valued attributes such as “occupation” with 11 values (including “unknown occupation”) are encoded by 10 fresh 
variables intuitively representing propositions such as “the occupation is mathematician”.7 We illustrate the conversion in 
Example 21.

Example 21. For the conversion, we use the lookup table and a template sentence. Suppose the template sentence is 
“<mask>was born [year] in [continent] and is a [occupation].”. Then, given a Boolean example

[0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0]
the first 5 positions represent the time period, the following 9 positions are for the continent and then there are 10
positions for the occupation. The last 2 positions represent the gender, which is the true label. The given example then 
translates to the sentence “<mask>was born after 1970 in Africa and is a dancer.” with the true label “female” meaning the 
masked token should be filled with “She”.

Once such correspondence with a Boolean function has been defined, one can use the neural network to answer oracle 
queries. Clearly, membership queries can be easily simulated by running the neural network on an example and check the 
classification. However, the first obstacle mentioned in the Introduction is that an equivalence oracle is hard to simulate in 
practice because it requires checking whether two formulas are equivalent and return a counterexample if this is not the 
case. In absence of an explicit representation for the Boolean function defined by the neural network, the only (foresee-
able) way of checking equivalence w.r.t. the Boolean function defined by the neural network is to check all examples for 
agreement, which is an exponential task.

Hence, we use the standard technique of simulating equivalence queries by random sampling [2]. That is, every time 
Algorithm 1 asks an equivalence query EQHorn

ϕ (ψ) we randomly generate a batch of examples and check whether the 
hypothesis ψ classifies an example from this batch differently than env(ϕ), given the labels of ϕ for this batch. It may 
happen that an example x is labelled negatively yet it satisfies the envelope (if x is a non-Horn negative example for ϕ). 
We only know that the classification of x by ϕ is different from env(ϕ) if we have observed a number of positive examples 
whose intersection is x; that is, if we have the data to prove that x is non-Horn. Thus, the interpretation of the classification 
we receive from the oracle dynamically changes in response to the positive examples we receive. In other words, we learn 
what the real target env(ϕ) (that is, where it differs from the underlying formula ϕ) is whilst approximating it.

Regarding the third obstacle, it is unlikely that a Boolean function defined by a neural network (suitably binarized) de-
fines exactly a Horn formula. This is because neural networks tend not to be rule-like while a Horn formula is exactly a set of 

7 For continuously valued attributes, one way to binarize is by chopping the continuous interval up into discretely many intervals and creating a fresh 
variable for each such interval.
12
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rules. This motivates studying the problem of learning Horn envelopes of arbitrary Boolean functions. However, we see that 
we can neither use the deterministic algorithm by Dechter and Pearl [14] nor the probabilistic one by Kearns, Selman, and 
Kautz [24] because both assume access to a complete description of the positive examples (or its so-called “characteristic 
models” [24], whose intersection-closure is the set of all positive examples) which is an unrealistic assumption.

While Corollary 14 may seem like a weak statement, it is of practical interest. This is because real-world data tends to 
be sparse. That is, |V| tends to be big while |ϕ| tends to be small [12]. Similar remarks are made in footnote 4 of [24]. We 
quote the following passage from [14] (adapted to fit our notation, where M is a set of models):

“If clo(M) is substantially larger than M , we know that any Horn approximation is bound to be very poor. It is only 
when |clo(M) \ M| is a fraction of |M| that Horn formulas can offer a reasonable approximation to M , and it is precisely 
in those cases that we can find a tightest Horn approximation in reasonable time. This suggest a strategy of focusing the 
development of Horn approximations in only those cases that can benefit from such approximations.”

In the next section we present our experimental results using a modified version of Angluin’s algorithm for learning 
Horn formulas where queries are converted into natural language and posed to language models.

6. Experiments

We describe an experiment performed on different language models (LM) that we used as an oracle. In more details, 
we modify Angluin’s Horn algorithm to make it applicable to extract Horn expressions from the BERT-based language 
models [15], including RoBERTa-base and RoBERTa-large [27]. All models are accessed via the API of huggingface.8 Our goal 
with this experiment is to showcase the applicability of the Horn algorithm for probing LMs and find out if occupation is 
generally more often linked to gender9 than to other attributes. For this comparison we use nationality and birth year as 
they are, next to gender, a defining attribute of every person. They represent culture and age in a very simple form and 
are therefore likely to also be linked to a persons’ occupation, as certain age groups or cultures are more likely to have one 
occupation over another. As a sanity check, we also perform a simple probing with the same language models and setup.

We extract a dataset from wikidata10 that consists of every entity with a given occupation and their birth year, national-
ity, and gender. The used occupations are shown to be the 60 most gender biased occupations for the BERT-base model [16]. 
The nationality is represented in the format of continents, as this reduces the amount of possible values drastically. For the 
same reason, the birth years are summarized into 5 time periods instead of distinct years. The exact time periods are de-
termined from the dataset. The time period boundaries are then evenly spaced over all the birth years of all the entities 
in the dataset. This gives a more fine-grained difference in the 1900s, whereas everything before 1875 is summarized into 
one. The exact values can be seen in the first half of the lookup table (Table 9). Each entity from the dataset then makes 
one example for probing by filling its attributes into the template sentence “<mask>was born [year] in [continent] and is a 
[occupation].” The probing is done by predicting the masked pronoun in each sentence with the given language model. The 
difference in the resulting probabilities for “He” and “She” is then used to calculate the gender bias on sentence i [16]:

Pronoun Prediction Bias Score = ppbsi = p(He) − p(She).

With Nocc being the number of examples for occupation occ, the Pronoun Prediction Bias Score for occupation occ is then 
the average over all examples with this occupation

ppbsocc = 1

Nocc

Nocc∑
i=1

ppbsi

Based on the results of the probing (Fig. 2) and the frequency of the occupations in the data (Fig. 1), we chose 10 clearly 
biased occupations for the Horn algorithm. In our experiment, we developed a function that creates a sentence out of given 
attributes that are encoded in the variables of each interpretation. In the context of the task, an interpretation corresponds 
to an entity with certain attributes.

Each attribute is one-hot encoded into a vector with at most one 1 and all of the attribute vectors together are one 
interpretation (=entity). In particular, the 4 attributes are: period of time (5 features), nationality (as a continent, 9 features), 
occupation (10 features), and gender (2 features). The attributes are handled in the same way as in the probing experiment. 
With this, each interpretation can be translated into natural language attributes using a lookup table (Table 9), which can 
then be filled into the template sentence.

We assume that exactly one of the genders dominates the probability value. As an example, we look at the data point 
given in Table 1 and the probing results of this data point in Table 2. The precise attributes given in the first column are 

8 https://huggingface .co/.
9 We consider the (binary) male and female genders as the used data is based on this format.

10 https://www.wikidata .org/.
13
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Fig. 1. Amount of data points collected for each occupation from wikidata.

Fig. 2. Pronoun Prediction Bias Score of 60 occupations based on the wikidata dataset for BERT and RoBERTa models. (For interpretation of the colours in 
the figure(s), the reader is referred to the web version of this article.)

transformed according to the dimensionality reduction method mentioned above, as shown in the second column. The at-
tributes are then filled into the template sentence “<mask>was born [birth year] in [nationality] and is 
a/an [occupation].”. In our example, the input for the RoBERTa models is “<mask> was born between 1892 
and 1934 in Europe and is a nurse.”.11

11 The mask token changes according to the model that is used. For the RoBERTa models, the mask token is <mask> whereas for the BERT models, it is
[MASK]. We have accordingly changed the sentences when probing the models.
14
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Table 1
One data point for the occupation “nurse”, showing both the ex-
tracted attributes and their transformed version after dimensionality 
reduction.

attribute extracted attribute transformed attribute

name Ernst Zierke Ernst Zierke

gender male male

birth year 1905 between 1892 and 1934

nationality Germany Europe

Table 2
Template-based probing results for the data point given in Table 1.

input sentence label p(He) p(She) p(T hey)

<mask> was born between 1892 and 
1934 in Europe and is a nurse.

“He” 0.070167 0.786434 0.0

Table 3
Intersection of rules from all lan-
guage models (10/10 with 200 EQs).

(priest ∧ female) → ⊥
(nurse ∧ male) → ⊥
(mathematician ∧ female) → ⊥
(footballer ∧ female) → ⊥
(banker ∧ female) → ⊥

Every data point in the dataset is handled this way and used to query the language models to fill the masked token. The 
resulting probability distribution (of the top 5 results) and prediction of each language model is then saved. Table 2 shows 
the results for the given example for illustration purposes.

For a membership query, the language model predicts the gender of the given entity by predicting the masked pronoun 
in the sentence. We compare this prediction with the given gender and return whether they match or not as the result of 
the query. We generate the samples for an equivalence query as random feature vectors, given that each attribute can have 
at most one 1 in it. The number of equivalence queries simulated by the Horn algorithm was limited to 50, 100, and 200
for different experiments. For each language model we conducted 10 iterations of each experiment.

The results from the extractions of each language model expose biases in all of them (Tables 5, 6, 7 and 8). We consider 
the rules that were extracted in at least 7 iterations as the most relevant and reliable ones. With 100 equivalence queries, 
the relevant rules for each language model link gender and occupation without taking other attributes into account (with 
one exception). The other attributes almost only appear in less relevant rules that have been extracted in 3 or less iterations. 
The only exception to that is the rule (singer∧male) → before_1875 extracted by RoBERTa-large in 100 equivalence queries, 
which was extracted in 7 out of 10 iterations. The same rules are appearing in 10 out of 10 iterations with 200 equivalence 
queries for all models (Table 3). This confirms that those rules are the most relevant ones. It also shows that the number of 
equivalence queries used as a maximum is important for the kind of rules that are extracted and how reliable they are.

Recall that a rule that has ⊥ in the consequent means that the antecedent does not happen. In addition, we consider 
gender to be exclusively binary12 and therefore it also holds that ¬female ↔ male. In other words, we extracted rules 
revealing certain stereotypes e.g. stating that “women are not football players” and “nurses are women”. All extracted 
stereotypes of this kind match with the results from the probing experiment. It is also important to note that out of all 
rules extracted, the base models (RoBERTa-base and BERT-base) only relate the male gender with “nurse” without relating 
the other female perceived occupations “fashion-designer”, “dancer”, and “singer” as well. On the other side, the female 
gender is related to all male perceived occupations, even those that are more lightly biased. This also shows that bias 
towards females is more present than bias towards males. The latter is only extracted in the strongest case of “nurse”.

This experiment took approximately 1, 3, and 13 hours per iteration with 50, 100, and 200 equivalence queries respec-
tively for the base models on a PowerEdge R7525 Server. For the large models, one iteration took approximately 2, 5, and 
15 hours for 50, 100, and 200 equivalence queries respectively on a PowerEdge R7525 Server (Table 4) Although we could 
see an improvement in the quality of rules we extracted with 200 equivalence queries, the runtime is also significantly 
higher. In our experiments, 100 equivalence queries were sufficient to extract the same rules in 70% of experiments. There 

12 This experiment is done under the assumption of exclusive binary gender. We acknowledge that this is not the reality.
15
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Table 4
Average run time for one experiment iteration [in minutes].

# EQs BERT-base BERT-large RoBERTa-base RoBERTa-large

50 71.74 130.01 69.76 129.22

100 193.74 303.96 184.82 308.73

200 722.55 899.13 771.97 943.26

is a trade off between the runtime and the quality of the extracted rules that favours multiple rounds of Horn with 100 
equivalence queries over less rounds with 200 equivalence queries.

7. Conclusion

We studied the problem of exact learning Horn envelopes using membership queries and equivalence queries [2]. This 
theoretical problem was motivated from the objective to apply exact learning algorithms to extract knowledge from trained 
neural networks, where we use random sampling to simulate the equivalence queries and the network as a membership 
oracle. In particular, our work takes into account the fact that trained neural networks may not be Horn.

We presented an algorithm that learns Horn envelopes in exponential time in general, and in polynomial time (in the size 
of the smallest equivalent CNF representation of the target) if the target is “close to Horn” in the sense that there are only 
polynomially many non-Horn negative examples for it. We noted that this algorithm also learns under the same conditions 
as above when applied to a CNF equivalence oracle instead of a Horn equivalence oracle. Thus we also showed that, within
the class of all CNFs, the “almost-Horn” CNFs are learnable in polynomial time. We also showed that learning Horn envelopes 
in polynomial time is as hard as learning arbitrary CNF in polynomial time (a problem known to be hard [17]).

We also performed experiments where we adapt Angluin’s classical algorithm for exact learning Horn theories to make it 
applicable to learn from masked language models. We performed experiments on pre-trained language models and extracted 
rules exposing occupation-based gender biases in these models. While these results are not surprising given the results of 
several authors when probing language models (see Subsection 2.2) and existing gender biases in the society [1], our 
approach provides a way of exploring other potential correlations such as those related to time periods and location.
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Appendix A. Non-termination of HORN when the target is non-Horn

In this appendix, we give the pseudo-code of the classical algorithm and give an example run of a non-Horn target with 
a choice of counterexamples on which it does not terminate (see also [29]).

Proposition 22. Algorithm 2 (the classic Horn learning algorithm [4]) is not guaranteed to terminate when the target is non-Horn.

Proof. Let V = {a, b, c, d} and let ϕ = {a → ⊥, b ∨ c} be the target. We have that env(ϕ) = {a → ⊥} and hence e.g. {d}
is a non-Horn negative example for ϕ because {d} |= env(ϕ) but {d} |= b ∨ c. Now we describe an adversarial choice of 
counterexamples that forces Algorithm 2 to add the same metarule and then remove it to get an empty hypothesis H over 
and over again. First, we return the non-Horn negative example {d}, whence the rules d → a, d → b, d → c and d → ⊥
are added to H. Then we return the positive counterexample {b, d} |= d → c, d → ⊥, after which only the rule d → b is 
not removed H. Next, we give the positive counterexample {c, d} |= d → b after which also d → b is removed from H so 
16
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Algorithm 2: HORN.

input: MQϕ and EQϕ oracles.
output: A Horn formula H such that H ≡ ϕ .

1 H := E− := ∅
2 while EQϕ(H) = (no, x) do
3 if x |=H then
4 for h ∈H such that x |= h do
5 H :=H \ {h}
6 else
7 if ∃e ∈ E− s.t. MQϕ(x ∩ e) = no and x ∩ e ⊂ e then
8 let e be the first such negative example
9 replace e ∈ E− with e ∩ x

10 else
11 append x to E−

12 H := ⋃
e∈E−{∧ e → p | p /∈ e} ∪ {∧ e → ⊥}

13 return (H)

H is empty. Therefore, if these three counterexamples are returned again and again in this order, Algorithm 2 does not 
terminate.13 �
Appendix B. Experiment results and tables

Table 5
Rules extracted at least 7 out of 10 times with BERT models and 100 equivalence 
queries.

# BERT-base # BERT-large

10 nurse ∧ male → ⊥ 10 nurse ∧ male → ⊥
10 diplomat ∧ female → ⊥ 10 diplomat ∧ female → ⊥
10 mathematician ∧ female → ⊥ 10 mathematician ∧ female → ⊥
10 banker ∧ female → ⊥ 10 banker ∧ female → ⊥
9 footballer ∧ female → ⊥ 10 footballer ∧ female → ⊥
9 lawyer ∧ female → ⊥
8 priest ∧ female → ⊥ 10 priest ∧ female → ⊥

10 singer ∧ male → ⊥
10 dancer ∧ male → ⊥

Table 6
Rules extracted at least 7 out of 10 times with RoBERTa models and 100 equivalence 
queries.

# RoBERTa-base # RoBERTa-large

10 priest ∧ female → ⊥ 10 priest ∧ female → ⊥
10 nurse ∧ male → ⊥ 10 nurse ∧ male → ⊥
10 diplomat ∧ female → ⊥
10 mathematician ∧ female → ⊥ 10 mathematician ∧ female → ⊥
9 banker ∧ female → ⊥ 10 banker ∧ female → ⊥
9 footballer ∧ female → ⊥ 10 footballer ∧ female → ⊥
8 lawyer ∧ female → ⊥ 10 lawyer ∧ female → ⊥

10 fashion_designer ∧ male → ⊥
10 dancer ∧ male → ⊥
7 singer ∧ male → before 1875

13 The optimized version of the classic Horn algorithm (called “HORN1” in [4]) is not even well-defined for a non-Horn target. In this case we would end 
up with a metarule whose consequent is empty. This is not the same as the consequent of a metarule being ⊥; in fact this has no meaning.
17
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Table 7
Rules extracted at least 7 out of 10 times with BERT models and 200 equivalence queries.

# BERT-base BERT-large

10 lawyer ∧ female → ⊥
10 diplomat ∧ female → ⊥ diplomat ∧ female → ⊥
10 priest ∧ female → ⊥ priest ∧ female → ⊥
10 nurse ∧ male → ⊥ nurse ∧ male → ⊥
10 mathematician ∧ female → ⊥ mathematician ∧ female → ⊥
10 footballer ∧ female → ⊥ footballer ∧ female → ⊥
10 banker ∧ female → ⊥ banker ∧ female → ⊥
8 dancer ∧ male ∧ South America → ⊥
8 1875-1925 ∧ fashion_d ∧ female → ⊥
7 dancer ∧ male ∧ Europe → ⊥
7 fashion_d ∧ 1925-1951 ∧ female → ⊥
7 dancer ∧ male ∧ North America → ⊥
10 singer ∧ male → ⊥
10 dancer ∧ male → ⊥
10 lawyer ∧ female → Australia

8 fashion_d ∧ male → Americas

8 fashion_d ∧ male → before 1875

Table 8
Rules extracted at least 7 out of 10 times with RoBERTa models and 200 equivalence 
queries.

# RoBERTa-base RoBERTa-large

10 lawyer ∧ female → ⊥ lawyer ∧ female → ⊥
10 diplomat ∧ female → ⊥
10 priest ∧ female → ⊥ priest ∧ female → ⊥
10 nurse ∧ male → ⊥ nurse ∧ male → ⊥
10 mathematician ∧ female → ⊥ mathematician ∧ female → ⊥
10 footballer ∧ female → ⊥ footballer ∧ female → ⊥
10 banker ∧ female → ⊥ banker ∧ female → ⊥
10 dancer ∧ male → ⊥
10 fashion_d ∧ male → ⊥
10 diplomat ∧ female → Oceania

9 Australia ∧ fashion_d ∧ male → ⊥
9 Oceania ∧ dancer ∧ male → ⊥
8 singer ∧ female ∧ 1951-1970 → ⊥
8 dancer ∧ male ∧ Africa → ⊥
8 singer ∧ male ∧ 1951-1970 → ⊥

Table 9
Lookup table. For each attribute, at most one 
of the positions can be chosen (setting its 
value to 1). If none is chosen, we use the value 
in “-”.

position value

time period

0 before 1875

1 between 1975 and 1925

2 between 1925 and 1951

3 between 1951 and 1970

4 after 1970

- in an unknown time period
(continued on next page)
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Table 9 (continued)

position value

continent

5 North America

6 Africa

7 Europe

8 Asia

9 South America

10 Oceania

11 Eurasia

12 Americas

13 Australia

- an unknown place

occupation

14 fashion designer

15 nurse

16 dancer

17 priest

18 footballer

19 banker

20 singer

21 lawyer

22 mathematician

23 diplomat

- not known occupation

gender

24 female

25 male
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