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Abstract. Conditional sampling methods are generalized by applying a
matched-filter on the reference signal. This generalized method is illustrated
by data obtained in a magnetized toroidal plasma without rotational transform.
By proper choice of the filter characteristics we can observe a rapid ‘crash’ in
the electrostatic plasma potential in the entire plasma column. The crash is then
followed by a slower recovery phase. The results are noticeably different from
those found by using a more traditional conditional analysis of the same data. The
significant differences between the two results indicate that generalizations of the
conditional sampling method can give new insights. Conditionally obtained local
power spectra demonstrate an enhancement in the amplitude of the fluctuations
preceding the potential crash. The analysis is also illustrated by using a synthetic
dataset.
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1. Introduction

Conditional sampling methods have been extensively used for studying random fluctuations in
fluids [1] and plasmas [2] as well as in other contexts, although there seems to be no consensus
on the name of the method (sometimes it is used without any explicit name). In space-plasma
studies, for instance, the often used analysis based on ‘superposed epochs’ [3] is, at closer
inspection, very similar to the conditional sampling method. The signal need not be time
stationary in a statistical sense, but in practice the ideas are most readily carried out for this case.
The complexity of the analysis can change, depending on the nature of the phenomena being
investigated: when analyzing fluid turbulence, the full information of the three-dimensional (3D)
conditional flow vector can be desired, while for electrostatic plasma fluctuations measurements
of a scalar potential will suffice in many cases.

The conditional sampling method as used in the present work has been described in detail
elsewhere [2, 4, 5]. Basically, the idea assumes that a signal record is analyzed subject to
an a priori imposed condition, requiring for instance that the signal takes a prescribed value
within a certain interval. Selecting a time interval centered around the reference times, many
events fulfilling the condition are subsequently averaged. The analysis can be carried out on the
reference signal itself, but more information can be found by analyzing other simultaneously
obtained data records. By such a procedure, it is possible to analyze the full space-time variation
of, say, the conditioned signal evolution of an entire cross-section of a plasma column. As
illustrated elsewhere [2, 5], a significant generalization of the method can be achieved by
imposing additional constraints on the sampling condition, for instance a criterion on the sign
of the derivative of the signal at the reference time. More elaborate conditions have also been
used [5].
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In the simplest version of the method, as used in the majority of the works mentioned,
the analysis gives emphasis to large amplitude phenomena. It has been demonstrated that the
characteristics of the space-time variation of localized burst-like events can be identified under
very different experimental conditions [4]–[6]. Seemingly, most investigations have focused on
low frequency phenomena in magnetized plasmas, flute modes and drift waves, for instance,
but the method as such has much wider applications. Numerical model studies [7] as well as
laboratory investigations [8]–[10] have shown that very detailed information can be recovered,
although some nontrivial limitations of the method have been pointed out as well [11, 12].
In the case where we have two different structures present with approximately the same
characteristic amplitudes, the standard conditional averaging will emphasize the one that occurs
most frequently. If the relevant signal is embedded in larger amplitude random noise, the
conditional sampling is, in effect, reproducing the properties of this noise.

1.1. Matched filters

Improvements of the conditional sampling method can be obtained by some sort of pre-
processing of the data, where the methods used will in general depend on the problem [13]. The
conditional sampling method becomes particularly problematic for studies of small amplitude
phenomena embedded in larger amplitude noise. In the present study we illustrate how that type
of problem can be analyzed by use of a matched filter [14, 15] together with some given (or
assumed)a priori knowledge. Assuming that a repetitive, but otherwise randomly occurring,
deterministic structurew(t − t j ) centered around some timet j is present in the signal, we
attempt to devise a linear filter detecting this structure. We let a reference (scalar) signal
be I (t) = h(t) +w(t − t j ), with h(t) being an additive noise component, independent of the
presence ofw. For the case whereh is white noise, the signal-to-noise ratio of the filter output
is defined as

S
N

≡

(∫
∞

−∞
f (τ )w(t − τ) dτ

)2
σ 2

n

∫
∞

−∞
f 2(τ ) dτ

, (1)

where f (τ ) is the filter impulse response andσ 2
n the noise power per unit of the frequency

interval {−∞; ∞}. For the case whereh is white noise, the optimum filter response that
maximizesS/N is evidently f (τ ) = w(t − τ), i.e. the waveform ‘running backwards’. The
filter obtained this way is optimum for white noise, but can be used with confidence in cases
where the Fourier spectrum of the noise covers a frequency range that is much wider than
what is obtained for the structure. The maximum signal-to-noise ratio we can obtain whenh(t)
represents white noise is

S
N

∣∣∣∣
max

=
1

σ 2
n

∫
∞

−∞

w2(τ ) dτ.

It is important to note that the filter does not reproduce the signal, it merely gives a maximal
output at a time where the signal is most likely to be present in the background noise. The
discussion of the optimum filter design can be generalized [14], but the present short summary
will suffice here.

The paper is organized as follows. In section2, we present details of the experimental
set-up and the plasma conditions. Section3 discusses the conditional sampling method and
its generalization. Section4 summarizes the methods used, giving details of the matched filter
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being used. In section5, we give the results obtained by the generalized conditional averaging.
In particular, we also show the local power spectrum when the imposed condition on the
reference signal is fulfilled. Finally, section6 gives our summary and conclusions.

2. Description of the experiment

We here summarize the diagnostics, the steady state conditions of the plasma and the basic
features of the spontaneously excited fluctuations.

2.1. Steady state conditions

The experimental data were obtained in the Blaamann toroidal device at the University of
Tromsø, where a magnetized plasma is produced by discharge from a hot filament [16]. In steady
state operation, the plasma generated is balanced by losses, although we note that the steady
state conditions should here be understood in an averaged sense [16, 17]. The major radius
of the torus isR = 0.67 m and the minor radiusr0 = 0.135 m. The plasma forms a negative
potential well near the center of the poloidal cross-section and is subject to vertical∇B and
curvature drifts and poloidalE × B-drift. The degree of ionization is typically∼1%. There is
no toroidal current nor poloidal magnetic fields imposed on the plasma, and hence no poloidal
transform exists. The present experiment [18] was carried out in a helium gas at a pressure of
3.0× 10−4 mbar and a discharge current of approximately 1 A. The toroidal magnetic field was
set to 1.54 kG, and the hot filament was biased at 160 V with respect to the walls. The plasma
conditions depend significantly on the imposed potentials and magnetic fields [19, 20].

The hot filament can emit electrons in abundance, and the plasma is electron rich, with
a deep negative almost parabolic potential profile. The corresponding radial electric field
Er ≈ E0r/r0, gives rise to an almost solid bodyE × B-rotation of the plasma column, since
the magnetic field varies only little over the plasma cross-section. In our caseE0 ≈ 103 V m−1

and E0/B0 ≈ 6.5× 103 m s−1. For comparison we have the ion acoustic sound speedCs =
√

κTe/M ≈ 11× 103 m s−1 for singly charged helium ions. The ion component at a positionr
experiences a noticeable radial centrifugal forceF = M�2r , with r0� ≡ E0/B0, where we here
estimate�/2π ≈ 7.7× 103 Hz. We have gyrofrequenciesωce = 2.7× 1010 s−1 for the electrons,
andωci = 3.7× 106 s−1 for singly charged helium ions at the reference magnetic field value. An
often used length scale isai ≡ Cs/ωci ≈ 3.1× 10−3 m. A characteristic ion Larmor radius is then
rL = ai

√
Ti/Te ≈ 1× 10−3 m. An electron Debye length isλD ≈ 50× 10−6 m, corresponding to

the peak electron density and temperature. The rotating frame of reference where the electric
field force balances the centrifugal force on the ions rotating with an angular frequency�+ is
determined by

�+

|�|
= −

1

2

ωci

|�|

(
1±

√
1 + 4

|�|

ωci

)
.

With the ion Larmor radius being smaller than the column radius,rL < r0, the relevant solution
is here the one corresponding to the minus sign [21]. In the absence of ion–neutral collisions,
this would be the rotation frame of the ions, apart from small corrections depending on the
relative direction of the ion gyration and the plasma rotation, i.e. the sign of the magnetic field
direction for given electric field [21, 22]. For the present case with helium ions, the ratio|�|/ωci
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is small, but the correction can be important for heavier ions and smaller magnetic fields, given
E0. Friction with the neutral gas component can be accounted for by a collision frequency
νi,n, which reduces�+ as given by analytical results in the literature [23]. Due to their small
mass the electrons experience a negligible centrifugal force, and the friction with the neutral
component can also be taken to be small whenωce � νe,n, whereνe,n is the electron neutral
collision frequency so that the electron rotation frequency�− ≈ |�|. The difference between
�− and�+ gives rise to an azimuthal current flow in the plasma, which can be the source of an
interchange instability at all azimuthal positions of the plasma.

The probe system used to obtain conditionally sampled data consists of one fixed reference
probe placed 4.5 cm above the horizontal mid-plane, and one probe which could scan the
entire poloidal cross-section at a toroidal position nearly intersecting that of the reference
probe. In the present set-up, 225 positions were used to map the entire plasma cross-section.
The scanning probe had three cylindrical probe tips oriented perpendicularly to the magnetic
field with 2 mm poloidal distance between them so that each probe tip intercepted different
magnetic field lines. Data were acquired from the reference probe and the movable probe
simultaneously, with a 2 channel digital oscilloscope (Tektronix 2430), each channel being
sampled at 250 kHz, at 4µs time resolution, with 1024 points for each data record. At each
position of the moving probe position, 10 records were acquired, to obtain a total time series of
40.96 ms and 10 240 points per probe position. The electron saturation current and the floating
potential were measured with the movable probe, each in separate scans and simultaneously
with the floating potential signal from the reference probe. The dc component was removed to
obtain the time series of the data used in the analysis. In this experiment, the electron saturation
currentI −

satwas used to represent the density fluctuations, as it gives basically the same results as
we obtained from the ion saturation current from a floating double probe. To obtain the electron
saturation current, the probe tip was biased positively at +45 V with respect to ground, and the
current was drawn through a 1 k� resistor. The floating potential was measured over a 1 M�

resistor to ground. The electron temperature fluctuations could be measured by a triple probe,
with a 36 V bias applied between the floating double-probe tips.

The full cross-section of background dc plasma parameters were obtained by one of the
probe tips on the 2D probe being swept between± 25 V from a dc-level set by batteries to
keep it close to the local plasma potential. Peak values of the time averaged densities were
n ≈ 2× 1017 m−3. Peak electron temperatures were max{Te} ≈ 6 eV and the local minimum of
the time averaged plasma potential wasφ ≈ −50 V. In figure1 we show the dc plasma density,
the time averaged potential and the electron temperature for a cross-section of the plasma. The
averaged electron temperature is elongated in the vertical direction along the hot filament. The
averaged potential profile is less elongated, and is approximately parabolic in the region close to
the minimum. The electron density has a local maximum close to the point of maximum electron
temperature. The position of average peak density is slightly displaced from the position where
the average potential is minimum.

2.2. Spontaneous fluctuations in the toroidal plasma

Low frequency electrostatic fluctuations are excited spontaneously in the toroidal plasma
[16, 17] which has been studied experimentally in some detail [24, 25]. A fluctuating component
with a well-defined frequency is generally assumed to be an interchange mode [25] where the
frequency is determined by the plasma rotation discussed in section2.1. The plasma rotation
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Figure 1. The dc plasma density, the potential and the electron temperature for a
cross-section of the plasma. ‘Radial direction’ refers here to the major radius of
the torus. The narrow vertical region of enhanced electron temperature is close
to the filament position.

will generally not be entirely uniform, and a shear in the angular rotation can modify the most
unstable mode. The role of a Farley–Buneman and the associated gradient drift instability [22,
26, 27] has not been considered in the present context, mainly because these instabilities require
the difference between the local electron and ion flow velocities to exceed the sound speed.
For larger ion masses and weaker magnetic fields, this instability might become relevant. The
potential-relaxation instability [28, 29] has been suggested, since the negatively biased hot
filament has a direct contact to the grounded confining vessel along a magnetic field line when
a small vertical field component is imposed by external coils. The frequency of the potential
relaxation instability is determined by a transit time, i.e.ωt/2π ∼ Cs/L whereL is the distance
between the filament and the vessel, measured along a magnetic field line. Since the vertical
externally imposed magnetic field is weak, we have as a distanceL� 2π R, which implies
ωt/2π � 2.6× 103 Hz. The period of this relaxation instability depends critically onL, which
in turn is very sensitive to the vertical magnetic field.

In figure2, we show the estimate for the amplitude probability density of the fluctuating
potentialφ as obtained by the reference probe for the present conditions. We find a slightly
negative skewness,S≡ 〈(φ − 〈φ〉)3

〉/σ 3
≈ −0.07, whereσ is the standard deviation. The signal

is leptokurtic by having a positive kurtosis as compared to the reference value for Gaussian
signals,K ≡ 〈(φ − 〈φ〉)4

〉/σ 4
− 3 ≈ 0.24.

3. Conditional sampling methods and their generalizations

The basic methods and procedures for conditional analysis of plasma fluctuations have been
described in detail elsewhere with references given before. Theinterpretationof the results
depends basically on two seemingly different points of view. The strict analytical approach
identifies the conditional average as the best estimate for the space-time evolution of the signal at
times in an interval before and after the assumed condition has been fulfilled. This interpretation
was suggested by Johnsenet al [2], who deduced phase space properties associated with
the plasma variations observed. This interpretation applies for all signals, irrespective of the
possible presence of long-lived coherent structures, in particular also for Gaussian noise.
The error in the prediction can be estimated by the conditional reproducibility or the related
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Figure 2. Amplitude distribution for the reference potential signal. The standard
deviation is denotedσ . The values of skewness and kurtosis are inserted in the
figure. The data are normalized to have unit sum.

conditional variance used by several authors [5, 8]. As to be expected, the uncertainty in the
estimate will in general increase with increasing spatial as well as temporal separations from
the space-time reference.

The conditional averaging analysis can also be seen as an approach to identify large
coherent structures in a background of additive random noise. If such a dominant structure
is present, the near future in the vicinity of the reference position will be mostly determined by
the space-time evolution of that structure. Seen in this perspective, two basically different errors
for identifying the structure can be found [12, 30]. We can experience that the local noise level
exceeds the acceptance criterion, and gives a false event, unrelated to the presence of any large
coherent structure. This can happen frequently if the amplitudes of the structures are comparable
to the root mean square of the noise amplitude. In addition to this trigger error, a temporal
‘jitter’ of the triggering can occur, when the true value of the acceptance time is changed due
to a noise component superimposed on the signal from the structure. This type of error can
occur frequently even when the structures are large in amplitude. When averaging over all
conditionally selected members of the sub-ensemble, the latter type of error will smear out the
result, as compared to the ideal case where the occurrence of the structure is fixed with respect
to the reference time given by the acceptance criterion. Another source of uncertainty arises in
the case where the structures that might be present in the background noise have a distribution
in one or more of the parameters, the amplitude for instance. The standard conditional average
will have preference for detecting the largest ones. By elaborate methods, it is possible to obtain
information on the distribution of some parameters, but this will be at the expense of a lengthy
analysis [13].

One particular problem might be emphasized here. It is easy to visualize cases where the
conditional average is not the best representation for the phenomena being studied, in particular
when the random process is non-Gaussian. For instance for honest dice, we have the average
outcome of counting the dots over many realizations to be 31

2, but this number of dots will
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of course never occur! For cases which are significantly far from being Gaussian, it might
be a better representation of the process to obtain the entire space-time varying conditional
probability density, and then find its extremum value for varyingr andt as illustrated by Johnsen
et al [2]. (We can exemplify the meaning of conditions being far from Gaussian, by considering
ε ≡

∫
∞

−∞
(P(x) − G(x))2 dx/

∫
∞

−∞
G2(x) dx with P being the probability density of the process

and G being a Gaussian distribution with the same average and standard deviation. Ifε > 1
we might state that the process is far from being Gaussian. Similar arguments apply for multi-
variable processes.)

3.1. Conditional sampling of Gaussian noise

We point out here that the standard form of a conditional analysis will always givesomeresult,
even when no coherent structures are present in the background noise [31]. For a Gaussian
random process, for instance, the resulting average can be deduced from the correlation function
of the signal one way or the other, since this function contains all the available information
for that case [32, 33]. This property has been used to test for the Gaussian property of
signals [34]. To illustrate this observation, we first determine the unconditioned estimate of
the potential that minimizes the mean square errore≡ 〈(φ̂ − φ)2

〉. Hereφ̂ is the estimate, and
φ the actual potential, assuming stationary time and locally homogeneous conditions here and
in the following. We trivially find that the best estimate here is the average valueφ̂ = 〈φ〉, and
the error on the estimate ise= 〈φ2

〉 − 〈φ〉
2.

If we have somea priori information, for instance given the potential at a certain reference
time and position(r0, t0) = (0, 0) as φ1, we can express the estimate asφ̂ = a + bφ1 and
determinea and b in such a way that the mean-square error is also minimized [7, 32]. In
general, we havea = a(r , t) andb = b(r , t). Requiring thatφ1 is taken from the distribution
of fluctuations in the system, we readily find that∂e/∂a = 0 and∂e/∂b = 0 when

φ̂ = 〈φ〉 +
R(r , t) − 〈φ〉

2

〈φ2〉 − 〈φ〉2
(φ1 − 〈φ〉) , (2)

whereR≡ 〈φ(0)φ(r , t)〉 is the correlation function for the potential, for spatial and temporal
separationsr and t . By proper choice of the potential reference we might achieve〈φ〉 = 0.
The foregoing results are correct for strictly Gaussian processes, and serve as the lowest order
approximation in other cases as well [7, 32]. More general nonlinear estimatesφ̂ =

∑
∞

n=0 anφ
n
1

can be introduced [32]. The fluctuations in the Blaamann plasma are non-Gaussian, as evidenced
already by the one-point statistical distributions, see figure2. (In principle onemight find that
the estimate of the one-point distribution is Gaussian to a good approximation, while the non-
Gaussian features are manifested in the two-point, or higher, amplitude distributions.)

For a Gaussian random signal with zero mean, the error in the conditional estimator [33]
is readily obtained ase= 〈φ2

〉 −R2(r , t)/〈φ2
〉. For r = 0 and time separations smaller than

the micro-timescale, as determined by the curvature of the correlation function, we have
R2

≈ 〈φ2
〉
2, and the error is negligible. For time separations larger than the correlation time,

the error approaches the unconditioned error〈φ2
〉 for all r .

Assume now that we in error assume coherent structures to be present in a background of
Gaussian random noise, and attempt to perform a filtering with an irrelevant filter. Even though
the basic assumption is in error, we will nonetheless from time to time get a nontrivial filter
output. In this case the maximum of the filter output occurs at a randomly distributed value
for the reference signal, sayφ1, with some unknown distribution,P(φ1). For each value of
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Figure 3. Selected data sample from the reference signal, showing the rapid
oscillations superimposed on a slower sawtooth variation. Only a section of a
longer signal is shown. The red curve shows the same signal sequence after
application of the matched-filter (4). The filtered signal has a negative extremum
when the structure is present since we took the filter amplitude to be positive in
(4). The vertical dashed line indicates the reference time given for this particular
case.

the potential in a narrow interval,φ ∈ {φ1 : φ1 + dφ1}, we have the result (2). By performing a
conditioned ensemble average, we average over allφ1 to obtain the estimate

φ̂ =
R(r , t)

〈φ2〉

∫
φ1P(φ1) dφ1, (3)

where we for simplicity assumed〈φ〉 = 0. Although we do not knowP(φ1), we find that again
the space-time variation of the estimator for the conditionally averaged potential is determined
by the correlation function, apart from a multiplicative constant. If the filter is wide compared to
the correlation time of the noise, we will find

∫
φ1P(φ1) dφ1 ≈ 0 giving φ̂ ≈ 0, while a narrower

filter will give some finite value.

4. Methods for data analysis

In figure3 we show a sample of data as obtained from the reference probe, which is detecting
fluctuations in the floating potential. We can readily identify the rapidly oscillating component
analyzed in previous works [5, 18]. In addition, we note a sawtooth-like variation of the signal,
having a larger timescale and a typical amplitude of∼0.5–1.0 V at the reference probe position.
By simple inspection it is evident that the Fourier spectrum for the spiky structures is much
wider than for the sawtooth variations.

Investigating many time sequences, we find that the sawtooth characteristics re-occur
with seemingly random time intervals, with a random separationτS, where the average time
separation is〈τS〉 ≈ 4 ms, with a scatter around this average being close to〈τS〉. The spiky
component is, in comparison, much more regular, and gives a clear peak in the power spectrum
of the fluctuations [5, 18], although the details of the power spectra can depend significantly
on plasma parameters and other experimental conditions, such as neutral pressure and magnetic
fields.
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We decided to investigate whether the sawtooth-like phenomenon was a characteristic
of the entire plasma column, or a localized effect of minor importance. For this purpose we
designed a matched-filter having the optimum characteristic of the observed sawteeth. The
remaining part of the signal is not white noise, but its spectral distribution is much wider than
that of the sawtooth, so we anticipate that the suggested matched-filter is the best one. We let
the filter be characterized by

f (τ ) =

(τ + a)/a for −a < τ < 0 ,

−(τ − b)/b for 0 < τ < b ,

0 for τ < −a , τ > b.

(4)

The absolute value of the maximum amplitude off is irrelevant for a linear filter, and
it is here set to unity. We have the two parametersa > 0 and b > 0 for optimizing the
matching. The filter (4) contains our presumed knowledge of the phenomena being studied. In
figure 3, we also show the signal sequence after filtering by a red line. The local maximum
excursion of the filtered signal defines our reference time for the subsequent conditional
sampling of the signal from the moving probe. Given a number of reference times found by
this method, we subsequently average signals from the moving probe as before [5, 18], by
selecting time sequences of the signals from the movable probe around the reference times.
We note that the sawtooth phenomena are relatively rare, so the signal-to-noise ratio of the
corresponding conditional average is not as good as for the case where the abundant spiky
component is being analyzed. To improve the presentation we smooth the spatial variations
in the final figures. We have no temporal averaging in the movie sample (available from
stacks.iop.org/NJP/10/033030/mmedia).

Note that we can use the matched-filter output also toexcludetime sequences from the
analysis, i.e. analyze everythingbut the selected event! This procedure will for instance give
a slight improvement of the signal-to-noise ratio of a conditional averaging of the spiky, more
regular events.

4.1. Test of the method using synthetic data

In order to illustrate some details in the procedure of the analysis, we present also results
using synthetic data [35]. The idea is to generate a signal by a random superposition of
structures to generate a long time sequence for analysis [36]. Since we know exactly what
the input has been, it is possible to test the performance of various methods, for instance also
the modified conditional analysis outlined here. The time series is here generated by many
randomly distributed wave packets added to a distribution of comparatively few triangular
pulses, representing the crash. We do not aim at producing a signal emulating results like those
in figure3, merely illustrating its main features. The temporally varying signal is generated by a
random superposition of some elementary structures, or wave packetsa9(t), which, if needed,
can be carefully tailored to reproduce all details of the power spectrum as well as the bispectrum
of the background noise [35]. By this procedure we haveh(t) =

∑N
j =1 a9(t − t j ), wheret j is

a reference time of basic structure numberj , and N is the (large) number of structures. For
cases relevant here we take

∫
∞

−∞
a9(t) dt = 0, implying 〈h(t)〉 = 0. It can be shown [36] that

〈h2(t)〉 = µa2
∫

∞

−∞
92(t) dt , with µ being the density of structures in the record. WithT being

the duration of the synthetic noise signal, it can be demonstrated that Gaussian noise is recovered
in the limit µ = N/T → ∞, while a → 0 in such a way thataN/T = const. The method for
generating synthetic signals outlined here can be extended and generalized significantly [36].
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Figure 4. Basic structure used to generate the noise signal in (a), and the event
representing a rapid potential drop and a slower recovery phase in (b). Times are
in computational units.

Figure 5. Sample of raw synthetic data, superposed on a crash are shown in (a).
A red line gives the filter output with the maximum value chosen to be at the
origin of the horizontal axis. In (b) we find the conditionally averaged signal for
50 events. A red line gives the time variation of the basic event from figure4(b).

In figure 4 we show the basic structure used for generating the noise, and the triangular
representation of a crash-like event. We are not attempting here to explore all details of the noise
signal representation. We generate conditions which resemble those found in the experiment, i.e.
we create a background ‘spiky’ noise, where

√
〈h2(t)〉 is approximately the same as the crash

amplitude. We have here the standard deviationσ = 3.0 to be compared with an amplitude 5 of
the triangular event in figure4(b). We have a skewnessS= −0.31 and a kurtosisK = 0.2.

The synthetic data are analyzed by the code used for analyzing the laboratory data. In
figure 5 we show a sample of the noise signal superimposed on a crash-like event. With red
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color we show the output of the filter, using the same analysis program used for analyzing
the experimental data. Only a modest number of crashes (here 50) are included in the entire
sequence, in order to mimic also the relatively rare occurrence of these events. These pulses
have duration of∼100 and are distributed over a time series of 105 in computational time units.
We find that the matched filter recovers them all, and we have no false events for the conditions
used here. Figure5 also shows the conditional average obtained for these parameters. In spite of
the relatively few events used here, we find the overall time variation of the crash to be faithfully
reproduced.

The analysis of the real data based on triggers given by the output of the matched filter has,
in general, also error sources such as false events and jitter as discussed in section3, and the
method can probably be fine-tuned just like the conditional analysis in its original version [12,
30]. For the synthetic signal discussed before, we did not find any false events and did not miss
any true ones either. Small effects of jitter could be observed, but these were of little significance
because the corresponding temporal uncertainty was of the order of the duration of a spike in
the noise, which is much smaller than the triangular event being considered, see figures4 and5.

5. Experimental results

Using the outputs of the reference signal after filtering by the matched filter, we obtain a series
of reference times, which are subsequently used for analyzing simultaneously recorded signals
from the moving probe, as outlined before. We carry out two basically different investigations.
The conditionally averaged potential is obtained, and also the local variations in fluctuation
spectra are studied by use of a wavelet transform.

5.1. Conditionally averaged fluctuations

Results of the floating potential fluctuations derived by a matched filter-based conditional
averaging are shown in figure6 with a 16µs time-resolution over the entire cross-section of the
plasma. The time varying signals are to be understood as superimposed on the time averaged
conditions shown in figure1. In the example taken from the reference signal as shown in figure3,
the peak potential drop is∼ −0.5 V, but this peak value increases towards the center of the
plasma profile. The events detected by the matched filter are relatively reproducible, so we
obtain a good signal-to-noise level, in spite of the relatively few events observed (as compared
with the results from a more standard conditional sampling).

By inspection of the results in figure6, we note that starting with an asymmetric dipolar
structure, the potential in the plasma drops or ‘crashes’ suddenly, within∼50µs, to be
followed by a slow recovery phase, lasting in excess of∼200µs. The process happens almost
simultaneously in the entire cross-section of the plasma, apart from a small region in the lower
right of the figures, where the potential increases somewhat in a transient period. In particular,
there is no rotation or motion otherwise associated with the observed potential variation.
The oscillatory contribution seen in a single realization as figure3 is absent from figure6,
indicating that the matched filter output is uncorrelated with the phase of these oscillations.
In the movie, available fromstacks.iop.org/NJP/10/033030/mmedia, we show the conditional
potential evolution for an extended time period, noting that some irregularly moving smaller
amplitude ripples preceded the crash.
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Figure 6. 2D contour plots of floating potential fluctuations derived by a matched
filter-based conditional averaging. The temporal evolution starts at−48µs with
respect to the reference times, and it is shown for every 16µs up to 128µs,
see also the movie (available fromstacks.iop.org/NJP/10/033030/mmedia) for
an extended time interval. A white region is inserted to emphasize the zero level.

As a further illustration, we show in figure7 an extended sequence of the time evolution
of the conditionally averaged potential as detected at two positions close to the local minimum
seen in figure6. Recall here that figure6, as well as the movie, rely on numerical interpolation
of a fixed spatial grid. The steepest part of the initial evolution gives approximately the∼50µs
time-constant found at the reference position, while we also here note the longer recovery time.
A localized potential maximum is observed prior to the crash at∼ −0.2 ms. There is a slight
difference in the time variations of the averaged potential at the center of the plasma column
and at the reference probe position.
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Figure 7. Time evolution of the conditionally averaged potential, as detected at
two positions close to the minimum potential found on figure6. The positions
are marked on the insert.

Figure 8. Distribution of the number of events,N, per 4.1 ms time intervals.
Asterisks give the results obtained by a Poisson distribution, with the given
average number of events〈N〉. For the given conditions,〈N〉 ≈ 0.9, which gives
〈τS〉 ≈ 4.5 ms.

We have also analyzed the fluctuations in plasma density, finding only irregular variations
in the plasma density during the potential crash itself, but we can also find significant precursors.
The relative local variations in plasma densityñ/n̄(r ) can be large in particular near the plasma
edge, up to 0.3± 0.1.

With ∇
2φ = e(ne − ni)/ε0, wheree> 0, we note that the observed conditionally averaged

potential in figure6 has a positive curvature almost everywhere, corresponding to a net negative
charge. We consequently find that the observed conditionally averaged potential variation is
either due to selective loss of ions or intermittently enhanced confinement of the fast primary
electrons.

5.2. Distribution of events

The temporal distribution of crash-events was analyzed by counting the number of identified
events for the given duration of the time sequences, here 4.1 ms, analyzing a large number of
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Figure 9. Conditioned power spectra obtained from the reference signal by using
a wavelet transform, averaging more than 700 events. The spectrum is shown in
linear color scale (in arbitrary units) for the range 2–20 kHz. The reference time
is att = 0. Only a part of an extended time sequence is shown.

such data sequences. The resulting distribution is shown in figure8. In the case where crashes
are statistically independent, we would expect them to follow a Poisson distribution [37], which
is indicated by asterisks in figure8. Overlap of crashes is rarely seen. The seemingly random
temporal occurrence of crashes indicates that their origin is not a linear instability of the form
discussed in section2.2, i.e. interchange modes or potential relaxations.

5.3. Conditioned spectra

Every time the matched filter identifies an event, we take the local power spectrum of the
reference signal by using a wavelet transform [38], using a Morelet mother wavelet. Many (more
than 700) such conditional spectra are subsequently averaged. The results are shown in figure9.
The outer parts of the wavelet transform are influenced by edge effects, which extend also to low
frequencies within the range shown. The shortest data time-sequences used are approximately
20% longer than the time interval shown. In principle, each spatial position in the plasma cross-
section has a figure corresponding to figure9, but we here show results only for the reference
signal. These results are presented with a linear color code in arbitrary units, where the physical
amplitude of the signals can be found in figure3, for instance.

The basic and most important observation is that the local power spectrum is perturbed
in the vicinity of the events detected by the matched filter. Prior to the crash, we note a clear
enhancement of the local fluctuation level, followed by a void in the spectrum. Then, during
the crash recovery phase, we again note an enhancement of the fluctuation intensity, although
it is not quite as strong as in the crash phase. Ultimately, the fluctuations reach the average
background level. By inspection of the single realization in figure3, these features can be
recognized, at least qualitatively. The crash and variation of the amplitude of the local power
spectra are evidently correlated. The local enhancement of the fluctuations appears close to
the local potential maximum seen in figure7. The characteristic dominant frequency of the
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background oscillations is close to the estimated plasma column rotation frequency�/2π found
in section2.1. The 9 kHz component may not properly be considered a wave-like disturbance,
and it should rather be seen as an aperiodically unstable structure, propagating together with
the bulk plasma motion. We also note a local enhancement of a low frequency component,
around 2 kHz, accompanying the enhanced dominant 9 kHz component, but note that end effects
influence the wavelet analysis at these low frequencies.

The phasesof the fluctuations before and after the reference time given by the filter are
random, consistent with observations mentioned in discussions of figure6. If we first average
the sin and cos parts of the Morelet wavelet transform, andthenconstruct a power spectrum, we
find a significant reduction in power.

It is not possible to tell from the observations alone what is the cause and effect of
the amplitude variations observed, but the most reasonable assumption seems to be that the
enhanced level of fluctuations gives rise to an anomalous transport of charged particles which
subsequently causes the crash in potential.

It is interesting that the frequency of the fluctuations is approximately the same before,
during and after the crash. By inspection of individual realizations we often find small ‘glitches’
or ‘chirps’ in the frequency spectrum, as also observed elsewhere [5]. The occurrence of these
events is, however, not sufficiently frequent to make them noticeable in the averaged power
spectra as shown in figure9.

6. Conclusions

In the present study, we have generalized the standard method of conditional sampling as
usually applied to electrostatic fluctuations in plasmas. The method of analysis was used for
studying fluctuations in a toroidal magnetized plasma. Previous investigations of this plasma
were concentrated on propagating coherent structures. By the generalized method, using a
matched filter, we found new phenomena, consisting of a rapid ‘crash’ of the potential of
the entire cross-section, followed by a slow recovery phase. Analyzing the plasma density
variation by the same method, we found that the crash was preceded by large amplitude density
fluctuations in a part of the plasma column. Within the crash we only find moderate amplitude,
irregular oscillations in plasma density. A conditional wavelet analysis demonstrated that the
power spectrum of the potential fluctuations had a local depletion associated with the events,
with a small quiet time interval around the extremum of the sudden potential drop.

The present results should be compared with the standard analysis using the unfiltered
reference signal. These results can be found in the literature, in particular for conditions like
those studied here [18]. The most conspicuous difference can be found in the shorter timescales
for the standard results and noting also that the structures usually observed [5, 18, 39] have an
azimuthal propagation velocity, basically determined by theE × B-velocity.

We also studied the distribution of events over time, obtaining evidence for a distribution
being reasonably well represented by a Poisson distribution. Since a Poisson distribution
applies for statistically independent events, we may argue that a viable model for the observed
phenomena assumes that crashes appear independently, with equal probability of occurrence
in any time interval of given length. The sole constraint seems to be that crashes should have
marginal temporal overlap, at most.

We note a certain similarity between the signal shown in figure3 and combined
analytical–numerical results published in the literature [17]. One central difference is that the
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sawtooth-like features there occur regularly. The analysis shows features having larger
amplitudes as compared to those found in our study. This analysis [17] also demonstrates local
variations in the power spectra, although details in the appearance are different from what we
find here. It can thus not be argued that our present experimental results give solid support for
the analytical results, but we nonetheless find the observed similarity interesting. The similarity
might indicate that the crashes discussed in our study are induced by a rapid anomalous change
in the charge distribution, where the enhanced fluctuations mediate this transport. Related
studies [18] show a transient plasma burst towards the walls of the device using an analysis
based on standard conditional averaging. It might be argued that these bursts can give rise
to predominant loss of ions. The data analysis alone does not provide any evidence for the
origin of the local amplitude of the oscillations, but it seems reasonable to assume a nonlinear
mode coupling to be the origin. A possible candidate for the amplitude enhancement is the very
low frequency∼2 kHz oscillation barely noticeable in figure9. The temporal localization of
the wavelet analysis is poor at these low frequencies, and it is difficult to quantify the relative
variations of the 9 kHz and the 2 kHz oscillations. An extended analysis is required to identify
the origin of the crash and recovery phases found in this work, in particular their dependence on
experimental parameters.

Evidently also the matched filter method for conditional averaging has its own limitations.
Only little can be learned if the power spectrum of the structures is close to the power spectrum
of the noise. Nonetheless, we believe that the results presented in the present work demonstrate
that a dedicated pre-processing of the reference signal can give new and valuable results. In
particular, we can imagine cases where a matched filter can be combined with other conditions
in search of coherent structures in plasma and fluid turbulence.

Conditional averaging is an alternative to direct observations of individual coherent
structures, which is after all also possible in some cases [40]. Direct observations will require
that many probes are simultaneously present in the plasma. This can introduce unwanted
disturbances.
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