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Abstract 

Most patients with advanced malignancies are treated with severely toxic, first-line chemotherapies. 

Personalized treatment strategies have led to improved patient outcomes and could replace one-

size-fits-all therapies yet need to be tailored by testing a range of targeted drugs in primary patient 

cells. However, most functional precision medicine studies use simple drug response metrics, which 

cannot quantify the selective effects of drugs, that is, the differential responses of cancer and normal 

cells. We developed a computational method for selective drug sensitivity scoring (DSS), which 

enables the normalization of the individual patient’s responses against normal cell responses. The 

selective response scoring uses the inhibition of non-cancerous cells as a proxy for potential drug 

toxicity, which can in turn be used to identify effective and safer treatment options. Here, we explain 

how to apply the selective DSS calculation for guiding precision medicine in patients with leukemia 

and treated across three cancer centers in Europe and the US; the generic methods are widely 

applicable also to other malignancies that are amenable to drug testing. The open-source and 

extendable R-codes provide a robust means to tailor personalized treatment strategies based on 

increasingly available ex vivo drug testing data from patients in real-world and clinical trial settings. 

We also make available drug response profiles to 527 anticancer compounds tested in 10 healthy 

bone marrow samples as reference data for selective scoring and de-prioritization of drugs that show 

broadly toxic effects. The procedure takes less than 60 minutes and requires basic skills in R. 
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Introduction 

 

Functional testing of molecularly-targeted drugs in primary patient cells has shown clinical benefits 

in terms of patient stratification and patient-centric treatment optimization both in hematological 

malignancies1,2 and in solid tumors3,4. Functional drug testing in patient cells offers clinically 

actionable treatment recommendations for clinical tumor boards beyond genetic testing alone5, and 

ex vivo drug testing has faster turnaround time than sequencing data analysis (a typical functional 

assay takes 2-3 days, and analysis can be done in less than a day). While such direct testing of 

patient cells to hundreds of anticancer compounds provides an exciting approach to personalized 

treatment recommendations, and drug repurposing6, critical experimental and analytical challenges 

remain, concerning the cancer-selectivity, reproducibility and translatability of the ex vivo drug testing 

results that needs to be considered when using these data in patient management3,4,7,8.  

To address these challenges in cell-based drug testing, we developed a model-based drug sensitivity 

score (DSS), which enables accurate quantification of the sensitivity of cancer cells to both standard 

chemotherapies and molecularly-targeted drugs9. The DSS calculation is applicable both to ex vivo 

drug testing of primary patient cells and to cell line drug screening in vitro. Using pan-cancer 

screening data from two independent in vitro studies10,11, we showed that it is possible to achieve an 

improved consistency between different laboratories for drug response measurements by paying 

careful attention to harmonization of both laboratory assays and computational procedures12. For 

patient-centric clinical translation of ex vivo drug testing results, we have used the DSS calculation 

to tailor treatment regimens for relapsed/refractory (r/r) patients with acute myeloid leukemia 

(AML)2,13, and to identify novel treatment vulnerabilities for r/r patients with chronic lymphocytic 

leukemia (CLL)14. 

In this Protocol, we describe several case studies and real-life examples to showcase the best use 

of the selective DSS calculation when tailoring targeted treatments for leukemia patients based on 

personalized ex vivo drug testing data from ongoing functional precision medicine studies carried 

out in three cancer centers in Finland, Norway and the US. We have implemented new features in 

the DSS calculation that enable better quantification of the cancer-selective effects of drugs by 

normalizing the responses measured in cancer patients against those from healthy controls; we have 

made the normal cell responses to 527 drugs available to the community to help predict and avoid 

potentially toxic effects when identifying safe and effective treatment options. Using the open-source 

DSS codes and data, we demonstrate an enhanced robustness of the selective DSS calculation in 

terms of improved correlation between technical replicates in two AML patient screening studies.   

AML sample cohorts and ex vivo drug response data used in the protocol 

We detail how to best use the selective DSS calculation in ex vivo functional drug profiling to guide 

treatment selection for patients with leukemia, using drug testing data from two cancer studies in 

Europe and in the US that showcase the wide applicability of the methods (Table 1).  

The FIMM-AML patient cohort contains drug profiling data from a prospective series of 252 samples 

from 186 patients with acute myeloid leukemia (AML) collected in Helsinki, Finland2. Due to the 

evolving compound libraries used over the years in the ongoing study, the patient samples were 

tested with varied collections of drugs, ranging from about 300 to 527 chemical compounds. Here, 

we used the ex vivo drug testing data from 125 patient samples, tested with the two newest 

compound libraries, either FO4B (525 drugs) or FO5A (527 drugs). To have a standardized set of 

reference control data for selective drug response scoring, we profiled bone marrow samples from 

10 healthy donors using the newest FO5A panel with compounds tested in 5 concentrations (see 
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Materials). To study reproducibility of drug response assays and metrics, we also made five new 

replicate screens of an AML patient tested in Oslo15, using the FIMM FO5A compound collection.  

The newest data release from the BeatAML study contains a cumulative cohort of 942 samples from 

805 AML patients collected over a span of 10 years at the Oregon Health & Science University 

(OHSU)16. The patient samples were tested with 166 compounds in 7 increasing doses (see 

Materials). Since the BeatAML cohort does not include healthy control samples, we used the FIMM 

control data to score selective responses in the BeatAML patients. The BeatAML data cohort 

contains replicate measurements from a subset of the samples and compounds, which were used 

to investigate the robustness of the drug testing assay and the selective DSS calculation, compared 

to the standard response metrics, when using FIMM normal cell control data for the selective 

response scoring. The BeatAML drug testing is based on a relatively different assay and compound 

set, compared to those used in Helsinki or Oslo, demonstrating the wide applicability of the methods. 

 

Table 1. Summary of the AML patient cohorts used in the protocol 

Cohort (total 

number of patient 

samples) 

Samples with 

drug response 

profiles 

Disease stage Sample types Number of 

drugs tested 

FIMM (n = 252) n = 164 Diagnosis = 79 

Relapse = 53 

Refractory = 32 

Bone marrow = 150 

Peripheral blood = 14 

  

Up to 527* 

Beat AML (n = 942) n = 631 Diagnosis = 397 

Relapse = 45 

Remission = 19 

Residual = 138 

NA = 32 

Bone marrow = 321 

Peripheral blood = 292 

Leukapheresis = 18 

166 

*In this protocol, we used data from n=79 bone marrow (BM) samples tested with FIMM FO4B collection 

(525 drugs), and n=46 BM samples tested with FO5A collection (527 drugs). The overlap between these 

collections is 431 drugs. The earlier FIMM compound libraries contain less number of drugs.2 

 

Drug sensitivity scoring pipeline for patient-centric treatment selection  

We have previously developed a quantitative modeling approach, named drug sensitivity score 

(DSS), which extracts and integrates multiple dose-response parameters into a single response 

metric (selective DSS, sDSS) to identify differential drug response patterns between cancer and 

healthy control cells, rather than scoring drug activity in cancer cells alone9. Our initial DSS 

calculation was based on closed-form integration of the area under the dose-response curve (AUC), 

using the 4-parameter logistic model (4P-LM) as the dose-response model9, but the generic 

modeling approach can also be used in the context of other parametric models, such as sigmoidal 

or Hill slope response functions, using either analytical or numerical integration procedures. More 

complex dose-response models require larger numbers of dose-measurements, which may limit the 

number of tested drugs in scarce patient cells, while the four parameters of 4P-LM can be accurately 

estimated with 5 dose-response pairs per each drug and sample. 

The calculation of standard activity metrics, such as DSS, AUC or half-maximal inhibitory 

concentration (IC50), is implemented in an interactive analysis application, Breeze, which is available 

both as a web-portal and an open-source R-package17. After quality control (QC) of the multi-well 
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plate drug response assay data, based on the preferred positive and negative controls (Fig. 1a), the 

user can select the dose-response model (e.g. 4P-LM), and then perform curve-fitting (Fig. 1b), and 

calculate sDSS as the area between the dose-response curves in patient cells and control cells (Fig. 

1c). Such selective drug response scoring is a critical part of any translational application, since 

inhibition of non-cancerous control cells can be used as a preclinical proxy for potential toxic effects 

of the drugs. DSS-based response metrics enable direct calculation of the selective responses, 

whereas differential IC50 is not so straightforward to interpret.  

Based on the healthy control samples, one can estimate standard deviation of compound-specific 

reference distribution using the z-score statistic (see Box 1). While sDSS normalizes the patient 

responses by the average value of the controls (i.e., location normalization; Fig. 1e), calculation of 

z-score (or robust z-score) for each compound further normalizes the patient responses in terms of 

variability over the controls (i.e., scale normalization; Fig. 1f). This additional scaling improves both 

the comparison of drug responses within a patient sample (i.e., identification of optimal treatment 

option for each individual patient; Fig. 1g), and comparison of the response of a particular drug 

across patients and controls (e.g., identification of selective responses for drug repurposing; Fig. 

1h). The statistical significance of an observed zDSS level can be calculated with z-test or using 

one-sample permutation test for non-normal response data (Fig. 1f). 

 

Box 1 | Calculation of selective DSS for each patient and drug 

Let us use R(x) to model the control-well normalized drug response at a concentration x. The area 

under the dose-response curve (AUC) over the dose range (𝑥1, 𝑥2), where the responses exceed a 

user-specified minimum activity level (Amin) can be calculated either using analytical or numerical 

integration. The original DSS article shows how to calculate closed-form solution when using the 4P-

LM function the dose-response model R(x)9.  

Non-selective DSS is a modified AUC calculation in which the area of the rectangle below the 

minimum activity level (i.e., a user-defined noise level for a high-throughput screening assay) is 

subtracted from the integrated AUC, and the difference is then divided by the maximal response 

area to take into account potential differences in the minimal and maximal tested concentrations 

between the compounds (Cmin, Cmax): 

DSS1 =  
AUC −  𝐴min(𝑥2  −  𝑥1)

(100 −  𝐴min)(𝐶max  −  𝐶min)
 

To penalize those compounds that are effective at higher tested concentrations only (i.e., show 

potential off-target toxic responses), the DSS1 summary score is further normalized by the logarithm 

of the top asymptote (Rmax) of the estimated dose-response model that corresponds to the maximal 

estimated response of the drug:  

DSS2 =
DSS1

log10𝑅max
  

To further favor those compounds that show potency across a relative wide concentration window 

in a given patient case, instead at the higher-end of the drug concentration range only, the DSS2 

score is further divided by the relative dose range (𝑥1 , 𝑥2) over which the drug response exceeds 

the minimum activity threshold Amin:  

DSS3 = DSS2

𝑥2 − 𝑥1

𝐶𝑚ax − 𝐶min
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Using any of the above DSS versions (DSS2 was used in the results of this protocol), the selective 

DSS (sDSS) for a particular patient-drug pair is calculated as the difference between the drug 

response in the patient cells (DSSp) and the average drug response of the same drug in the normal 

control cells [mean(DSSc)]:  

sDSS =  DSSp − mean(DSSc) 

When there are enough (≥10) standardized dose-response measurements from the control cells, 
one can estimate also standard deviation (SD) of the drug responses in the control cells (σc), hence 
leading to a z-score:   

zDSS =  
DSSp  −  mean(DSSc)

σc  +  1
 

where the addition of one into the denominator makes the calculation feasible also for those cases, 

where the SD of controls becomes zero or close to zero (e.g. when DSS is close to zero in all the 

healthy control samples for a targeted agent).  

To make the drug selectivity calculation less sensitive to outliers in the control samples, a robust (or 

modified) z-score can be calculated by replacing the mean and SD of controls by their median 

[median(DSSm)] and median absolute deviation (MADc): 

rDSS =  
DSSp  − median(DSSm)

MADc  +  1
 

where the addition of one is to again accommodate the case with a MAD of zero or close to zero.  

 

 
Normalization of patient responses with control responses in various drug classes  
 
The z-score normalization of drug responses (zDSS) is expected to better account for differences in 

responses between drug and target classes, and therefore lead to better comparability of the drug 

testing results both between patients and drugs, which is important for biomarker discovery and 

treatment tailoring, respectively. In particular, conventional chemotherapies often lead to higher DSS 

responses (and wider distributions), both in patients and healthy controls (Fig. 2a). While sDSS 

enables effective normalization of average responses between patients and controls, and hence 

better comparability between targeted and non-targeted drugs (Fig. 2b), zDSS further normalizes 

variances and scales of the distributions, hence improving identification of both cancer-selective and 

patient-specific responses (Fig. 2c). In the example patient case, the list of top-compounds changed 

from pan-PI3K/HDAC inhibitor fimepinostat and protein translation inhibitor omacetaxine to targeted 

BCL-2 inhibitor venetoclax when using different metrics (Figs. 2a-c). 

 

A further investigation of the two targeted compounds, navitoclax and venetoclax, demonstrates the 

benefits of zDSS and robust z-score (rDSS), even for drugs with very similar modes of action (BCL-

2 inhibition). When using the original DSS values, navitoclax and venetoclax appear to elicit relatively 

similar response distributions among most patients with AML (Fig. 2d,g); however, venetoclax 

shows more cancer-selective responses, i.e., lower responses in the controls while subset of the 

patient have high DSSs, which makes zDSS distributions and scales different between the two drugs 

(Fig. 2e,h). For targeted drugs, the distribution of control responses may be very narrow and 

centered close to zero, requiring the addition of “one” in the denominator of z-score when calculating 

zDSS (Box 1). As there may also appear outliers among the control responses, the use of robust 
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rDSS may become beneficial when comparing selective responses for subsets of patients (Fig. 2f,i). 

In the example patient (the red dot), venetoclax shows a higher rDSS, even if the DSS of navitoclax 

was much higher. 

 
 

Improved reproducibility of selective drug sensitivity and robust z-scores  

The dose-response model estimation is expected to make the DSS calculations robust against 

sources of technical variability. For instance, the dose-response curve fitting enables interpolation of 

potential missing or poor-quality dose-responses within the tested concentration range. Further, in 

contrast to single-point response metrics, such as IC50 and EC50, which are dependent on the 

concentration ranges being tested for each compound, summary response metrics, such as AUC 

and DSS, provide more comparable results for compounds tested under variable concentration 

windows; for instance, we have shown that DSS metric enables a more  standardized response 

calculation between studies by focusing on the overlapping concentration ranges when calculating 

DSS (modified AUC), leading to more consistent in vitro drug testing results between drug screening 

studies in overlapping pan-cancer cell lines12. We have also shown earlier that DSS leads to more 

robust responses than IC50 between replicated AML cell line screens in vitro9. 

To investigate reproducibility of ex vivo assays, we made 5 replicate drug screens of a single AML 

patient sample tested in Oslo. In general, IC50 had the lowest correlation among the replicates, 

whereas the selective DSS metrics improved correlations (Fig. 3a). While both sDSS and rDSS led 

to generally robust profiles, some variability remains, which resulted in deviation from the diagonal 

line (Fig. 3b,c). In a further analysis of four outlier drugs, we noted that the selective response of 

dasatinib was captured by both metrics (Fig. 3f), while GSK-2636771 gave mixed results (Fig. 3e); 

rDSS identified in a robust manner the two compounds (ridaforolimus and omipalisib) for which 

controls showed dose-responses similar to that of patients (Fig. 3h,i). There were no apparent 

differences in the correlations across the drug classes (Fig. 3b,c). We observed similar results in 

the replicated measurements of the BeatAML dataset for a subset of patients and compounds (Fig. 

3d), where rDSS again resulted in robust response profiles (Fig. 3g). 

 

Batch effect correction when combining drug testing data from multiple sources 

When using drug response profiles from different cohorts or compound collections, e.g., from a multi-

year functional precision medicine study, there may occur batch effects that need to be taken into 

account. As an example, response profiles of the BeatAML patient samples are rather different from 

those of the FIMM controls, due to both biological and experimental factors (Fig. 4a, left); the 

technical variability should be corrected, e.g., using the ComBat batch effect correction method18, 

before the healthy control profiles can be used to normalize the response profiles of the BeatAML 

samples. When there are no clearly separable sample subgroups visible in the 2D projection of the 

high-dimensional DSS profiles, using e.g. principal component analysis (PCA), one can conclude 

that the batch effect correction was successful (Fig. 4a, right panel), or not needed at all.  

However, it is equally important not to normalize out true biological variability or over-normalize in 

the case of no obvious batch effects. For example, there are true biological differences in drug 

response profiles between FIMM patients and healthy controls that are expected to remain in the 

DSS data, regardless of whether the old (FO4B) or new (FO5A) compound collection was used (Fig. 

4b). However, there appeared a clear batch effect between the two compound collections, when 
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analyzing the healthy controls only, which needs to be corrected if all the healthy controls will be 

used for calculating the selective drug responses (Fig. 4c). Note: in the analyses shown elsewhere 

in this protocol, only the FO5A drug response data from the healthy controls were used to have a 

standardized set of control data for the selective DSS calculations. 

 

 

Alternative methods 

Half-maximal inhibitory concentration (IC50) and half-maximal effective concentration (EC50) are 

popular measures of the potency of a compound in inhibiting a cellular target such as protein function 

or cell viability. However, such single-point potency measures are not designed for personalized 

therapy optimization in high-throughput screening, where the compounds are often tested in different 

concentration windows. In contrast, model-based drug sensitivity quantitation with DSS effectively 

captures various types of activity information from complex dose-response measurements through 

combining IC50, slope and the other model parameters for drug sensitivity scoring. Importantly, the 

area-based metrics, such as DSS and AUC, enable straightforward calculation of differential 

responses, relative to that of the control cells, hence identifying selective responses9. We note that 

the differential pIC50 (negative logarithm of IC50, see Fig. 3) corresponds to the standard selectivity 

index, calculated as the average of the IC50 value on the normal cells divided by the IC50 value on 

the cancer cells. 

In this protocol, using the new selective drug response calculations, we demonstrated that location 

and scale normalization of the patient ex vivo responses using the healthy control profiles (Fig. 1) 

leads to several benefits. When compared to existing drug response metrics, such as IC50, AUC and 

DSS, the new zDSS and rDSS calculations improved both the comparability between the targeted 

and chemotherapy drugs when selecting the best treatment regimen for a given patient (Fig. 2), and 

the robustness of the patient ex vivo responses in terms of enhanced correlation between technical 

replicates in the screening data from two AML studies (Fig. 3). Even if there were differences in the 

results between the various selective responses metrics, depending on the application use case, the 

observed differences between zDSS and rDSS metrics were not so striking, when compared with 

the results of the other metrics. In the current results, we used the DSS2 version in the sDSS, zDSS 

and rDSS calculations, since it has been widely used in the FIMM-AML programme2,13.  

 

Advantages and future directions  

The current implementation of precision cancer medicine is mainly driven by genomics, and the 

current molecular-clinical tumor boards rely extensively on genomic characterization to identify 

personalized therapeutic interventions. However, genomic biomarkers can guide treatment 

decisions only for a fraction of cancer patients, and more often genomic data are neither actionable 

nor predictive1,2,3; therefore, there is an increasing interest in using functional assays to guide cancer 

treatment by capturing information from direct perturbations of patient-derived cells, such as using 

ex vivo drug sensitivity screening, with the aim to extend both the biomarker space and patient 

populations suitable for precision oncology treatment selection3,4,5. Such a functional precision 

medicine approach has been spearheaded in hematological malignancies, where ex vivo drug 

testing has been shown to contribute to significant additional and clinically actionable therapeutic 

insights for individual patients13-16. Drug testing profiles can be generated in a few days (two or three-

day assay, and <1 day for the data analysis), hence enabling rapid clinical translation1,2. 
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In the past, it has been challenging to predict patient responses to conventional chemotherapeutics 

using ex vivo testing, both in hematological malignancies and in solid tumors21,22, because sensitivity 

to chemotherapy drugs depends on the cell proliferation rate of the ex vivo models. We note that the 

selective DSS calculation can also be extended to account for differences in cell growth rates to 

better capture drug-induced effects23,24. Since bone marrow toxicity is a common restrictive adverse 

effect among anticancer drugs, the healthy control bone marrow samples provide meaningful control 

responses also for other cancer types than AML25, toward identification of cancer-selective drug 

responses and to de-prioritize drugs in preclinical testing that show cytotoxicity in the normal bone 

marrow cells. We therefore expect that the robust and selective DSS calculations will lead to more 

effective and safe therapy selections, especially when combined in the future with cell population-

level drug testing assays, such as those based on imaging26,27 and flow cytometry28,29. Once tested 

at multiple sites and in large-scale screening, these methods will provide improved means to identify 

patient-specific treatments that selectively inhibit cancer cells while avoiding inhibition of non-cancer 

cells. 

Beyond monotherapy recommendations, an ex vivo drug testing platform was recently used to guide 

drug combination treatment in patients with r/r non-Hodgkin lymphoma (NHL)30. We have also shown 

earlier how DSS calculation enables prediction of cancer-selective and patient-specific drug 

combinations for patients with T-cell prolymphocytic leukemia (T-PLL)31 and high-grade serous 

ovarian carcinoma using single-cell imaging assay32. The open-source R codes allow others to 

modify the drug scoring methodology and implement it as part of their in-house drug screening 

pipelines. Selective DSS calculation can be easily extended to include also other modules of drug 

screening data analysis, including various QC parameters and interactive visualization options, such 

as those implemented in Breeze for monotherapies17, and screenwerk for combination therapies33, 

as well as curve-fitting options that can model various dose-response relationships34. Finally, 

ComBat and other methods for batch effects correction enable meta-analyses between multiple 

patient cohorts that may help speeding-up and de-risking of clinical studies by identifying optimal 

patient sub-groups for new or existing targeted treatments or their combinations. 

 

Regulatory approvals 

In this computational protocol, we assume that all the necessary regulatory and ethical approvals 

are in place before one start screening and scoring compound sensitivities in patient samples or cell 

lines. Such approvals may require the use of Material Transfer Agreements (MTAs) for the transfer 

of cell lines or pharmaceuticals and other chemicals between institutions for use in research, as well 

as Ethical Approvals for the use of compound testing in human samples. The time required to obtain 

such permissions, as well as their respective costs, depend on the country and institution where the 

research is conducted, and whether the external parties, such as pharmaceutical companies or 

academic institutions, have any usage restrictions related to intellectual property (IP) rights of the 

compounds or cell lines. In case there are no relevant IP issues, and the research is well-justified 

from the ethical point of view, obtaining such permissions is typically straightforward, but it may take 

several months. When working on human material, appropriate national laws and institutional 

regulatory board guidelines must be followed, and informed consent obtained from the human 

subjects. The compound testing data used in this protocol originates from ongoing studies that have 

been approved by the local ethics committees, as described in the original studies2,13, 15, 16.  
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Materials 

 

AML patient cohorts and drug testing assays 

The FIMM-AML and BeatAML cohorts contained adult patients with AML (median age at diagnosis 

of the patient cohorts were 62 and 61 years, respectively), from different disease stages (diagnosis, 

residual, remission and relapse/refractory), carrying various cytogenetic and molecular 

abnormalities. The patients had been treated with various treatment regimens at different stages, 

including conventional chemotherapies that combine anthracyclines with nucleoside analogs, 

cumulative treatment, induction treatment, and allogeneic hematopoietic stem cell transplantation 

(alloHSCT). The FIMM healthy donor cohort contained eight elderly individuals undergoing hip 

replacement surgery, and two healthy young adults (4 male and 6 female donors). The median age 

of the healthy donors was 65.5 years (eldest 78 years, youngest 19 years).  

CAUTION Bone marrow aspirates from the elderly healthy donors were obtained with signed 

informed consent under approval of the Tampere University Hospital Ethics Committee, Tampere, 

Finland (R15174). Helsinki samples from adult patients with AML and young healthy donors were 

collected with signed informed consent with protocols in accordance with the Declaration of Helsinki 

(Ethical Committee Statement 303/13/03/01/201, latest amendment 7 dated June 15, 2016. Latest 

HUS study permit HUS/395/2018 dated February 13, 2018).  

In the FIMM-AML and healthy donor cohort2, mononuclear cells (MNC) were isolated by Ficoll-Paque 

centrifugation from freshly collected bone marrow aspirates and peripheral blood specimens. 

Comprehensive set of >500 anti-cancer compounds, consisting of conventional chemotherapeutics 

and a broad range of targeted oncology compounds was tested in 5 doses over a 10,000-fold 

concentration range, allowing for the establishment of accurate dose–response curves for each drug 

in each patient and control sample. The chemical compounds, DMSO (negative control) and 

benzethonium chloride (positive control) were added to 384-well plates using an acoustic liquid 

dispensing system Echo 550 (Labcyte). Freshly isolated MNCs were resuspended in conditioned 

media (CM), constituted of 77.5% RPMI 1640, 10% FCS, 12.5% human HS-5 bone marrow stromal 

cell line–derived CM, and 1% penicillin and streptomycin. For the AML samples and three of the 

healthy samples 5-μL cell-free medium was added to dissolve compounds, followed by 20 μL cell 

suspension containing 5,000 to 10,000 cells to each well using a Multidrop Combi (Thermo Fisher) 

or a Multiflo FX (BioTek) dispenser. For seven of the healthy samples 25 μL cell suspension 

containing 5,000 cells was added to each well without first dissolving the compounds in 5-μL cell-

free medium. The plates were incubated at 37°C in 5% CO2 for 72 hours. Subsequently, CellTiter-

Glo 2.0 (Promega) reagent was added to all wells, and cell viability as luminescence generated by 

total cellular ATP was measured using a PHERAstar FS (BMG Labtech). 

A single AML patient treated in Oslo15 was tested in 5 replicates with the FIMM FO5A compound 

collection after cryopreservation. MNCs were freshly isolated from bone marrow after lymphoprep 

density gradient centrifugation, and were placed in freezing media (50% MCM, 40% FBS, 10% 

DMSO) and placed at -80°C in a Corning® CoolCell® container until temperature equilibration, 

before transferring the vials to a nitrogen tank. For the screen, the cells were recovered in MCM 

(PromoCell) with 1% Penicillin + Streptomycin (PS) (Gibco,15140-122) overnight. After recovery, the 

cells were used in a similar way as the freshly isolated cells. 3800 cells per well were seeded into 

the 384-well plates using a CERTUS Flex liquid dispenser (Fritz Gyger AG) and incubated at 37°C 

in 5% CO2 for 72 hours. The cell viability was measured with CTG 2.0, using an EnVision 2105 

multilabel plate reader (Perkin Elmer) with a stacker.  

In the BeatAML cohort16, mononuclear cells were isolated by Ficoll gradient centrifugation from 

freshly obtained bone marrow aspirates or peripheral blood draws. Freshly isolated MNCs were 
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plated into an ex vivo drug sensitivity assays within 24h. 10,000 cells per well were arrayed into 

three, 384-well plates containing 166 small-molecule inhibitors. Drug plates were created using 

inhibitors purchased from LC Laboratories and Selleck Chemicals and master stocks were 

reconstituted in dimethyl sulfoxide (DMSO) and stored at −80 °C. Master plates were created by 

distributing a single agent per well in a seven-point concentration series, created from threefold 

dilutions of the most concentrated stock resulting in a range of 10 μM to 0.0137 μM for each drug 

(except dasatinib, ponatinib, sunitinib and YM-155, which were plated at a concentration range of 1 

μM to 0.00137 μM). DMSO-control wells and positive-control wells containing a drug combination of 

flavopiridol, staurosporine and bortezomib were placed on each plate, with the final concentration of 

DMSO ≤0.1% in all wells. Cells were seeded into 384-well assay plates at 10,000 cells per well in 

Roswell Park Memorial Institute (RPMI) 1640 medium supplemented with fetal bovine serum (FBS) 

(10%), L-glutamine, penicillin–streptomycin, and β-mercaptoethanol (100 µM). After three days of 

culture at 37 °C in 5% CO2 MTS reagent (CellTiter96 AQueous One; Promega) was added, the 

optical density was measured at 490 nm, and absorbance values were adjusted to a reference blank 

value and then used to determine cell viability (normalized to untreated control wells). 

 

Software 

Instructions for setting up the DSS calculation in an R environment: 

• R v.3.5.1 or newer (https://www.r-project.org) 

• RStudio (https://www.rstudio.com/) 

• Download the data and R scripts with all requisitions from the GitHub directory 

https://github.com/yingjchen/DSS-v2.0  

• Code to run Procedure 1 with examples: https://github.com/yingjchen/DSS-

v2.0/blob/main/procedure1.R 

• Code to run Procedure 2 with examples: https://github.com/yingjchen/DSS-

v2.0/blob/main/procedure2.R 

Required hardware for the R environment on a desktop machine: 

• Computer with ≥2 GB RAM memory 

• Hard drive with ≥0.5 GB free space 

• A stable broadband internet connection 

 
 

Procedure 1 

 

CRITICAL We illustrate the utility of the computational methods in a use case of AML patients and 

healthy controls from FIMM. We provide below code and data for selective drug sensitivity scoring 

using DSS, sDSS, zDSS and rDSS calculations (see Box 1) for normalization of patient responses 

(see Fig. 2). The links used for setting up the DSS computations are listed in the ‘Materials’ section. 

Fig. 5 summarizes the key steps of the procedures, with their input-output relationships. 

 

Setup 

1. Install the required packages and load these packages to the R environment: 

https://www.r-project.org/
https://www.rstudio.com/
https://github.com/yingjchen/DSS-v2.0
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packages.required <- packages.required <- 

c("matrixStats","dplyr","reshape","reshape2", "scales", "drc", "caTools", 

"ggplot2", "data.table", "stringr","MESS", "BiocManager","svMisc", "egg", 

"pheatmap") 

packages.bio <- c("sva", "pcaMethods") 

packages.new <- packages.required[!(packages.required %in% 

installed.packages()[,"Package"])] 

if(length(packages.new)) install.packages(packages.new) 

if (!requireNamespace(packages.bio, quietly = TRUE)) 

    BiocManager::install(packages.bio) 

lapply(packages.required, library, character.only = T) 

lapply(packages.bio, library, character.only = T) 

?TROUBLESHOOTING 

 

2. Set the working directory using setwd function (replace '/path/to/working/directory/' with 

the desired path): 

path_to_working_directory <- '/path/to/working/directory/' 

setwd(dir = path_to_working_directory) 

 

3. Download the example data and R scripts from Github and set the working directory to the folder 

DSS-v2.0-main using setwd function: 

download.file(url = 'https://github.com/yingjchen/DSS-

v2.0/archive/refs/heads/main.zip', destfile = 'DSS-v2.0-main.zip') 

unzip('DSS-v2.0-main.zip')  

setwd(dir = file.path(path_to_working_directory, 'DSS-v2.0-main')) 

 

DSS computation 

4.  Import DSS.R script adapted from the Breeze R-package17 to compute different versions of DSS 

(DSS1, DSS2 and DSS3) and import helper functions from HelperFunctions.R script using source 

function: 

source('./DSS.R') 

source('./HelperFunctions.R') 

 

5. Load the example ex vivo dose-response profiles (cell viability at five drug concentrations) of 3 

FIMM-AML patient samples tested with up to 527 anticancer drugs.  

path_to_exampledata <- './exampleData_procedure1.csv' 

df_dose.responses <- read.csv(path_to_exampledata, header = T,sep = 

',',check.names = F) 
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6. Use the function DOSE_RESPONSE_PROCESS from the HelperFunctions.R script to calculate 

the percentage of growth inhibition from the cell viability data. Set the viability argument to ‘FALSE’ 

if input data is cell growth inhibition data. After that, prepare the grouped dataset as input for 

quantifying drug sensitivity: 

df_dose.responses.list <- DOSE_RESPONSE_PROCESS(df_dose.responses, viability = 

TRUE) 

 

7. Calculate different versions of DSS and other standard drug response metrics (e.g. AUC and IC50) 

using the CALC_METRICS function in the HelperFunctions.R script.Users can find the fitted dose-

response growth inhibition curves in the folder ./IC50 inside the current working directory when the 

graph argument is set ‘TRUE’. 

df.metrics <- CALC_METRICS(dose_responses = df_dose.responses.list[[1]], 

dose_responses_grouped = df_dose.responses.list[[2]], graph = FALSE) 

?TROUBLESHOOTING 

 

8. Set DSS2 as the drug response metric (as an example). By utilizing the function HEATMAP_SD 

from the HelperFunctions.R script, users can plot a heatmap showing DSS2 of the drugs with the 

highest standard deviations across the samples. The argument proportion can be adjusted to 

specify the proportion of most variable drugs (e.g. 10% drugs selected with the code provided 

below). The heatmap is saved as a pdf file and customized file names can be assigned to the 

argument filename, where needed. If the argument filename is left empty, the file is named as 

‘procedure1_step8_Breeze_DSS_53drugs_heatmap.pdf’. 

patients.dss <- as.data.frame(acast(df.metrics,df.metrics$Patient.num ~ 

df.metrics$drug, value.var  = 'DSS2')) 

HEATMAP_SD(patients.dss, proportion = 0.1, filename = "") 

?TROUBLESHOOTING 

 

Importing the control sample DSS profiles 

9. Load drug response profiles of the 10 healthy controls (DSS values of 527 drugs per control): 

path_to_controldss <-'./controls/File_1_Drugname_response_DSS_10Healthy.txt' 

controls.dss <- read.csv(path_to_controldss, header = T, sep = '\t', row.names = 

1,stringsAsFactors = F, check.names = F) 

 

Searching for the drugs of interest from the drug library 

10. Upload the FIMM FO5A compound library of 527 drugs. Users can find the corresponding control 

DSS values for their drugs of interest by using the drug synonyms or standard InChIKey 

(International Chemical Identifier) in the drug library. In an example below, the function 

DRUG_FILTER_SYNONYMS from the HelperFunctions.R script is implemented to search for the 

drugs with drug synonyms and to filter out unmatched drugs.  

path_to_druglibrary <- './controls/File_2_Drugname_library_527D.txt' 
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df_drug.library <- read.csv(path_to_druglibrary, header = T, sep = '\t', 

row.names = NULL,stringsAsFactors = F, check.names = F) 

patients.dss <- DRUG_FILTER_SYNONYMS(patients.dss, df_drug.library) 

 

Calculating the selective drug sensitivity scores 

11. Compute the descriptive statistics (i.e. mean, standard deviation, median, and median absolute 

deviation) of DSSs for each drug over the controls:   

controls.summary <- 

as.data.frame(rbind(colMeans(as.matrix(controls.dss)),colSds(as.matrix(controls.

dss)),colMedians(as.matrix(controls.dss)), colMads(as.matrix(controls.dss)))) 

rownames(controls.summary ) <- c('mean', 'sd', 'median', 'mad') 

12. Normalize and scale the patient-specific responses to each drug against the responses to the 

same drug in the healthy controls. By running the following commands in R line-by-line, calculate 

the preferred selective drug response score (i.e. sDSS, zDSS, and rDSS): 

patients.sdss <- patients.dss - slice(controls.summary['mean', 

colnames(patients.dss)],rep(1:n(), each = nrow(patients.dss))) 

patients.zdss <- (patients.dss - slice(controls.summary['mean', 

colnames(patients.dss)],rep(1:n(), each = 

nrow(patients.dss))))/(slice(controls.summary['sd', 

colnames(patients.dss)],rep(1:n(), each = nrow(patients.dss))) + 1) 

patients.rdss <- (patients.dss - slice(controls.summary['median', 

colnames(patients.dss)],rep(1:n(), each = 

nrow(patients.dss))))/(slice(controls.summary['mad', 

colnames(patients.dss)],rep(1:n(), each = nrow(patients.dss))) + 1) 

 

Plotting the drug response distributions 

CRITICAL The comparison of drug responses between targeted drugs and chemotherapy drugs for 

an example AML patient (AML_013_01) is shown in Fig. 2a. The SAMPLE_DSS_CONCAT function 

from the HelperFunctions.R script was used to merge the response metrics, where the sample_id 

variable can be modified to select other samples. The drug response distributions for patient 

AML_013_01 can be visualized using the function CHEMO_TARGETED_PLOT. In the example 

code below, DSS was used in the visualization.  

13. To select the response metric (i.e. sDSS, zDSS, and rDSS), find the corresponding column name 

of the metric of interest in the sample_dss dataframe, and then set the argument metric to that 

column name. The plot is saved as a pdf file and customized file names can be assigned to the 

argument filename, where needed. If the argument filename is left empty, the file is named as 

‘procedure1_step13_chemotherapy_targeted_drugs_DSS_distribution.pdf’. 

sample_id <- 'AML_013_01' 

sample_dss <- SAMPLE_DSS_CONCAT(patients.dss, patients.sdss, patients.zdss, 

patients.rdss, sample_id = sample_id) 

CHEMO_TARGETED_PLOT(sample_dss, metric = 'DSS', filename = "") 

14. The function SELECTIVE_SCORE_PLOT supports users to compare the data distributions of 

the response metric (i.e. DSS, sDSS, zDSS, and rDSS) using additional density plots. The 
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density plot is saved as a pdf file and customized file names can be assigned to the argument 

filename, where needed. If the argument filename is left empty, the file is named as 

‘procedure1_step13_density_distribution_response_scores.pdf’. 

SELECTIVE_SCORE_PLOT(sample_dss, filename = "") 

?TROUBLESHOOTING 

 

 

Procedure 2 

 

Batch effect correction 

CRITICAL To combine drug response profiles from multiple sources, we applied the ComBat 

algorithm to adjust for the known batch effects. Suppl. Fig. 1 shows the visual exploration of high-

dimensional DSS profiles from BeatAML and FIMM-AML cohorts. Probabilistic PCA (PPCA)19 was 

used to visualize the example dataset of DSS2 profiles with missing data for 147 BeatAML patient 

samples, 125 FIMM-AML patient samples and 10 healthy controls. Given the differences between 

two cohorts, we used the ComBat function from SVA package18 to correct the batch effects (Suppl. 

Fig. 1). ComBat uses either parametric or non-parametric empirical Bayes frameworks for adjusting 

data for batch effects. We recommend the use of the nonparametric version for DSS data, where no 

prior assumptions about DSS data distributions are required. 

1. Run steps 1-3 of Procedure 1 to set up the R environment, if needed, before running the following 

codes: 

source('./HelperFunctions.R') 

path_to_exampledata <- './exampleData_procedure2.csv' 

df.dss <- read.csv(path_to_exampledata, header = T,sep = ',',  row.names = 1, 

check.names = F) 

 

2. Utilize the function PCA_FUNC from the HelperFunctions.R script to identify the missing values 

in the example dataset. In case of missing DSS values,  make a PPCA plot of the DSS profiles 

to check for potential batch effects (Fig. 5, Procedure 2). In case of no missing values, one can 

make a standard PCA plot instead. When there are no clearly separable sample subgroups 

visible in the PCA or PPCA projections, one can conclude that no batch effect correction is 

needed. 

df.dss.1 <- df.dss[, 1 : (ncol(df.dss) - 3)] 

score_pca <- PCA_FUNC(df.dss.1) 

score_pca$group <- paste(df.dss$cohort,  df.dss$status,  sep = ' ') 

ggplot(score_pca, aes(x = PC1, y = PC2, color = group)) + 

  geom_point() + labs(title = "DSS",  x = "PC1", y = "PC2") + 

  theme_classic() 

ggsave("./procedure2_DSS_ppca.pdf", height = 10, width = 10) 

 

3. Perform ComBat correction to adjust for all the identified batch effects:  
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df.dss.combat <- ComBat(dat = t(df.dss.1), batch = as.factor(df.dss$cohort), mod 

= NULL, par.prior = F, prior.plots = F) 

?TROUBLESHOOTING 

 

4. Utilize the function PCA_FUNC to identify the missing values in ComBat-corrected DSS 

profiles and then make a PPCA plot to confirm the successful removal of the batch effects. One 

can make a PCA plot if no missing data are present in the ComBat-corrected DSS profiles. 

score_pca_combat <- PCA_FUNC(t(df.dss.combat)) 

score_pca_combat$group <- paste(df.dss$cohort,  df.dss$status,  sep = ' ') 

ggplot(score_pca_combat, aes(x = PC1, y = PC2, color = group)) + 

  geom_point() + labs(title = "ComBat DSS",  x = "PC1", y = "PC2") + 

  theme_classic() 

ggsave("./procedure2_ComBat_DSS_ppca.pdf", height = 10, width = 10) 

 

Heatmap visualization  

Below is an example code to plot a combined heatmap for patient samples from different sources.  

5. In case of obvious batch effects are visible based on the PCA or PPCA plot, correct the DSS 

data with ComBat (see Procedure 2 above):  

df.dss.2 <- as.data.frame(df.dss[df.dss$status != 'controls', ]) 

df.dss.2$datasource <- paste(df.dss.2$cohort, df.dss.2$plate,  sep = ' ') 

r_ <- data.frame(datasource = as.factor(df.dss.2$datasource)) 

rownames(r_) <- rownames(df.dss.2) 

 

6. Make a heatmap plot of combined DSS profiles as visualized in Suppl. Fig. 2: 

p1 <- pheatmap(t(df.dss.2[, 1:(ncol(df.dss.2) - 4)]), annotation_col = r_, 

show_colnames = F, show_rownames = F, clustering_distance_cols = "minkowski") 

ggsave("./procedure2_DSS_heatmap.pdf", p1, height = 10,width = 10) 

 

7. Make a heatmap of ComBat-corrected DSS profiles as visualized in Suppl. Fig. 3: 

df.dss.3 <- as.data.frame(t(df.dss.combat)[df.dss$status != 'controls', ]) 

p2 <- pheatmap(rescale(t(df.dss.3), c(0, 50)), annotation_col = r_, 

show_colnames = F, show_rownames = F, clustering_distance_cols = "minkowski") 

ggsave("./procedure2_ComBat_DSS_heatmap.pdf", p2, height = 10,width = 10) 

 

The below codes compute rDSS profiles from BeatAML and FIMM-AML studies and produce the 

integrated heatmap and hierarchical clustering of rDSS profiles as visualized in Suppl. Fig. 4. The 
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user can also run the step 12 of Procedure 1 to compute other selective drug responses for heatmap 

and clustering. The distance function for hierarchical clustering can be freely selected based on the 

user preferences.   

8. Calculate ComBat-corrected rDSS profiles: 

controls.dss <- t(df.dss.combat)[df.dss$status == 'controls', ] 

controls.summary <- 

as.data.frame(rbind(colMeans(as.matrix(controls.dss)),colSds(as.matrix(controls.

dss)),colMedians(as.matrix(controls.dss)), colMads(as.matrix(controls.dss)))) 

rownames(controls.summary ) <- c('mean', 'sd', 'median', 'mad') 

patients.rdss <- (df.dss.3 - slice(controls.summary['median', 

colnames(df.dss.3)],rep(1:n(), each = nrow(df.dss.3 

))))/(slice(controls.summary['mad', colnames(df.dss.3 )],rep(1:n(), each = 

nrow(df.dss.3 ))) + 1) 

 

9. Make a heatmap of ComBat-corrected rDSS profiles: 

p3 <- pheatmap(t(patients.rdss), annotation_col = r_, show_colnames = F, 

show_rownames = F, clustering_distance_cols = "minkowski") 

ggsave("./procedure2_ComBat_rDSS_heatmap.pdf", p3, height = 10,width = 10) 

 

 

Troubleshooting 

 

Troubleshooting advice for R-codes of ‘Procedure 1’ and ‘Procedure 2’ can be found in Table 2.  

 

 

Table 2. Troubleshooting advice for R-codes of Procedure 1 and Procedure 2. 

Step Function Problem Possible cause Solution 

1 of 

Procedure 1 

lapply(packages.re

quired, library, 

character.only = T) 

Error: package or 

namespace load failed for 

‘drc’ in loadNamespace(i, 

c(lib.loc, .libPaths()), 

versionCheck = vI[[i]]): 

there is no package called 

‘mvtnorm’ 

The required 

package  

"mvtnorm" is not 

installed 

successfully 

Install the package 

"mvtnorm" separately with 

the command : 

install.packages("mvtnorm", 

repos="http://R-Forge.R-

project.org", dependencies 

= T) 

7 of 

Procedure 1 

CALC_METRICS All DSS values equal to 

zero 

The cell 

viability/growth 

inhibition data in the 

input file are 

percentages rather 

than decimals 

Verify that the input data is 

correctly formatted by 

comparing it to the example 

data file provided 



17 
 

8 of 

Procedure 1 

HEATMAP_SD Error in 

HEATMAP_SD(patients.dss

, proportion = 2) : The value 

of the argument proportion 

should be larger than 0 and 

no larger than 1 

Non-numeric data 

is assigned to the 

argument 

proportion; The 

argument’s value is 

less than or equal 

to 0 or larger than 1 

Pass numeric values into 

the argument proportion; the 

value should be greater 

than 0 and not exceeding 1 

14 of 

Procedure 1 

CHEMO_TARGET

ED_PLOT 

Error in 

CHEMO_TARGETED_PLO

T(sample_dss, metric = "") : 

The argument metric should 

be one of 'DSS', 'sDSS', 

'zDSS', or 'rDSS' 

The input value is 

not a valid 

argument metric  

Pass a string of either'DSS', 

'sDSS', 'zDSS', or 'rDSS' 

into the argument metric 

3 of 

Procedure 2 

ComBat Error in 

solve.default(crossprod(des

), crossprod(des, y1)) : 

Lapack routine dgesv: 

system is exactly singular: 

U[1,1] = 0 

Variable dat: in the 

input dataset, the 

DSS values for a 

drug are missing 

across all the 

samples in a batch 

Filter out these drugs 

Unexpected missing values 

in output 

Variable dat: in the 

input dataset, there 

is a single available 

DSS value for a 

drug across all the 

samples in a batch 

Filter out these drugs or 

apply the mean.only=TRUE 

option accordingly 

Error in tcrossprod(x, y): 

requires numeric/complex 

matrix/vector arguments 

In addition: Warning 

message: in var(x) : NAs 

introduced by coercion 

Variable dat: the 

input dataset 

contains non-

numeric data 

To confirm that the data is 

recognized as numeric by R 

and not as a factor or 

character, one can apply the 

class function to check the 

data type and the 

as.numeric function to 

convert to a numeric data 

type. 

 

 

Timing 

 

Initial testing of the R-codes in GitHub was performed on a desktop with Linux operating system, 

Intel Core i5-7300HQ CPU @ 2.50GHz machine, 4 processors and 8GB of memory. Code for the 
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example runs and timing calculator are available in the GitHub repository 

(https://github.com/yingjchen/DSS-v2.0; see Table 3 for the most time-consuming functions). 

Independent code testing by a naive user was performed on a Windows 10 Home 64-bit operating 

system, with an AMD Ryzen 7 4700U with Radeon GraphicsCPU @ 2.00GHz processor and 16GB 

memory, using a 64-bit R version 4.3.0. Downloading and installing the R and RStudio environment, 

downloading the files, setting up the working directory and installing the missing packages took 

25min. Running the procedures 1 and 2 took 5min.  

 

Table 3. Timing of the top-6 most time-consuming functions 

Function Description Timing 

CALC_METRICS(dose_resp

onses, 

dose_responses_grouped, 

graph = FALSE) 

Compute DSS1, DSS2, DSS3, AUC and 

relative IC50 with cell viability data for 

the 3 example samples tested with up 

to 527 anticancer drugs 

1.57min 

CHEMO_TARGETED_PLOT Visualize the distribution of DSS 

responses to 473 molecularly-targeted 

and 54 conventional chemotherapy 

(non-targeted) drugs in one sample 

2.21s 

HEATMAP_SD Make a heatmap plot showing DSS2 of 

the drugs with the highest standard 

deviations across the 3 example 

samples. 

1.15s 

ComBat Adjust the batch effects in the DSS2 

profiles of 272 patient samples and 10 

controls tested with up to 82 drugs 

0.58s 

SELECTIVE_SCORE_PLOT Make a density plot for the response 

metric (i.e. DSS, sDSS, zDSS, and 

rDSS) of 527 drugs in one sample 

0.46s 

https://github.com/yingjchen/DSS-v2.0
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PCA_FUNC Check for missing data and perform 

PCA/PPCA on the DSS2 profiles of 272 

patient samples and 10 controls tested 

with up to 82 drugs 

0.18s 

 

 

 

Anticipated results 

 

We anticipate that selective scoring of ex vivo drug responses provides opportunities for many 

scientific and translational applications, ranging from (i) improved robustness and translatability of 

the preclinical ex vivo response profiles, to (ii) better understanding of the mechanisms of action of 

selective, non-toxic treatment responses, and (iii) improved identification of effective and safe, 

individualized treatment options for guiding clinical decision making. Recent reports have shown that 

ex vivo drug sensitivity profiles correlate with patient clinical responses and can hence guide 

personalized therapy selection in pediatric AML/ALL35 and in relapsed/refractory (r/r) adult AML36. 

Similar findings have been made also in aggressive NHL1, r/r CLL14 and multiple myeloma37, where 

functional testing of molecularly-targeted drugs has shown clinical benefits in terms of improved 

patient outcomes and patient-tailored treatment options. Our recent findings also demonstrated how 

DSS stratifies drug response profiles across ovarian cancer subtypes and optimizes patient-specific 

treatment regimens using ex vivo drug testing in solid tumors25.  

In this protocol, we demonstrated that the selective DSS calculation is widely-applicable to various 

drug screening studies, using ex-vivo drug testing data from ongoing functional precision medicine 

programmes carried out in three cancer centers in Finland, Norway and the US. However, high-

throughput drug screens may result in technical variability, requiring stringent QC, which leads to 

missing data for those drugs that do not pass the QC criteria. Therefore, the downstream analysis 

methods need to be able to deal with missing data in the drug response matrices. The missing data 

becomes even more frequent, when analyzing data from longitudinal studies or from multiple studies 

that use different, partially overlapping compound collections. Missing values may also make batch 

effect correction more challenging, and we recommend the use of PPCA for visual analysis of batch 

effects in the presence of missing data (Fig. 4). Furthermore, since z-score may be sensitive to 

calculation of SD over control samples for zDSS, we recommend the use of rDSS to normalize 

patient responses after the ComBat batch effect correction. 

To demonstrate how to combine ex vivo drug response data from multiple sources, we carried out 

an integrated analysis of patient samples from the FIMM-AML and BeatAML studies, using the FIMM 

healthy controls to normalize the patient responses in both cohorts. ComBat allows users to adjust 

for known batch covariates in large-scale datasets; here, the sample source (BeatAML patients vs. 

FIMM patients and controls) was used as the batch variable, and the non-parametric empirical Bayes 

version of ComBat was used for the batch effect adjustment18. ComBat outputs a new DSS matrix 

that has been corrected for the user-defined batch variables (see Procedure 2). It is generally 

recommended to make adjustments for all the known batch factors simultaneously (Suppl. Fig. 1), 

rather than correcting one batch effect at a time (Fig. 4). When we used rDSS to normalize patient 

responses against the healthy controls, the patients from BeatAML and FIMM-AML cohorts clustered 

together (Fig. 6), and the two FIMM compound collections did not lead to separate larger clusters, 

even if the collection label was not used as a batch variable (Suppl. Fig. 4). 
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Besides using ComBat or other methods for batch effect correction, another option is to model and 

adjust for known batch covariates in a standard linear model, that is, one can use sample sources 

or compound libraries as confounding variables, and then subtract those out when performing 

differential sensitivity analyses and selective DSS calculations. However, in addition to differences 

in experimental assays that may lead to differences in the scales and missing value patterns in the 

drug response profiles, there may also exist additional experimental factors that may be more 

challenging to correct with the batch adjustment methods. For instance, the FIMM-AML and 

BeatAML studies often use different concentration ranges in their compound testing, which leads to 

differences in drug responses, even for the overlapping drugs. These factors may be difficult to 

correct using ComBat, which mainly removes effects that result in difference in the means and 

variances across the batches (i.e., making it easier to use the z-score in selective response 

calculation). Use of overlapping dose windows in the DSS calculation has been shown to further 

improve the correlation between studies12.  

 

Reporting Summary 

Further information on research design is available in the Nature Research Reporting Summary 

linked to this article. 

 

Data availability 

The original clinical summary and drug response data from the FIMM-AML and BeatAML cohorts 

are available at https://zenodo.org/record/7274740 and https://biodev.github.io/BeatAML2/. The 

drug response data file consisting of 10 healthy control responses and AML patient data for the 

Procedures 1 and 2 are available at: https://github.com/yingjchen/DSS-v2.0/tree/main/controls  

 

Code availability 

 

The R-codes can be used by anyone with basic skills in R and with basic knowledge of dose-

response testing data. The codes come with readme files, user instructions, example data from 

FIMM-AML patients and healthy controls, along with the expected visualization outcomes (a zip file 

from GitHub, 2.5 MB), freely available at: https://github.com/yingjchen/DSS-v2.0  
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Figure legends 
 
Fig. 1 | Drug sensitivity scoring pipeline demonstrated in the FIMM-AML patient cohort. First 

row: design and processing of dose-response measurements from high-throughput drug screening. 

(a) Quality control using assay-specific positive and negative control wells. (b) Dose-response curve 

fitting using the user-selected dose-response model (here, log-logistic function). (c) Calculation of 

selective DSS (sDSS) as the area between the drug-response curves in patient and control cells 

(see Box 1). Second row: the new healthy control samples enable a better estimation of compound-

specific reference control distribution (see Box 1). (d) Example responses of compound GSK-

2334470 in the 10 healthy controls and 46 patients with AML tested with the FO5A compound 

collection. (e) sDSS normalizes the patient response by the average value of the controls (i.e., 

location normalization). Compound-specific sensitivity cut-off can be defined based on extreme 

values of sDSS (e.g. 95% quantile). (f) z-scored sDSS (zDSS) normalizes the patient responses 

also by variability over the controls (i.e., scale normalization), and enables significance assessment 

of an observed zDSS based on normal distribution approximation (z-test). Bottom row: application 

of the location and scale normalizations improves comparison of drug responses both within a patient 

sample and across patients. (g) Waterfall plot of the top-10 most effective and resistant drugs in an 

individual AML patient enables identification of optimal treatment options for the patient. (h) Volcano 

plot shows the statistical significance of the drug responses in the patient cohort (n=46; Wilcoxon 

test with false discovery rate [FDR]), which enables statistical association of the functional drug 

sensitivities with genetic dependencies and other biomarkers. 

Fig. 2 | Comparison of responses across drug classes and patients in the FIMM-AML cohort. 
(a-c) Distributions of DSS, sDSS and zDSS responses to 473 molecularly-targeted and 54 
conventional chemotherapy (non-targeted) drugs in an example patient case (AML_013_01). The 
top-effective compounds with each metric are labeled in the boxplots. The response distribution of a 
randomly selected healthy control is shown for comparison. (d-i) Responses to navitoclax (BCL-2 
and BCL-XL inhibitor, upper panels d-f) and venetoclax (BCL-2 antagonist, bottom panels g-i) across 
46 patients with AML and 10 healthy controls. The dotted vertical lines indicate either the 95% 
quantile (DSS metric), or the significance cutoff based on a normal distribution approximation 
(zDSS/rDSS metrics). The red dot indicates an example patient case (AML_016_01), with observed 
DSS, zDSS and rDSS values marked in the boxplots. In the boxplots, the horizontal lines indicate 
the median, the boxes the interquartile range (IQR), and the whiskers are Q1 - 1.5*IQR and Q3 + 
1.5*IQR, where Q1 and Q3 are the first and third quartile, respectively. Note: the differences between 
the x-axis scales are due to varying scales of the metrics.   
 
Fig. 3 | Robustness of drug response profiles in Oslo and BeatAML patients. (a) Correlation of 

drug response profiles among 5 technical replicates of an Oslo AML patient sample tested with FO5A 

collection. *p<0.05, **p<0.01; Kruskal-Wallis test with Bonferroni-Dunn correction for multiple testing. 

Correlation of 527 drug responses between two replicates of the Oslo AML sample when using (b) 

sDSS metric and (c) rDSS metric. Four example drugs that show sDSS differences between 

replicates are highlighted. (d) Correlation of drug response profiles between two technical replicates 

among 42 BeatAML samples (highest number of 16 overlapping drugs with FIMM FO5A collection 

with 2 replicates). **p<0.01, ***p<0.001; repeated measures ANOVA with Bonferroni correction for 

multiple testing. (e-i) Dose-response curves of the four selected drugs in the two replicates of the 

AML sample tested in Oslo. Responses of the 10 FIMM healthy controls are shown for comparison. 

(g) Correlation of 16 rDSS responses between two BeatAML replicates in a selected sample. The 

10 healthy controls profiled in Helsinki with FO5A collection were used for selective response scoring 

both for the Oslo and BeatAML samples to demonstrate a wide applicability of the control data. In 

the boxplots (panels a and d), horizontal lines mark the median, the boxes the interquartile range 



24 
 

(IQR), and the whiskers are Q1 - 1.5*IQR and Q3 + 1.5*IQR, where Q1 and Q3 are the first and third 

quartile, respectively.    

Fig. 4 | Batch effect correction in BeatAML and FIMM-AML cohorts. Drug response profiles of 

samples mapped to a 2D plane spanned by the first two principal components (PC1 and PC2), with 

and without ComBat18 batch effect correction (left and right panels, respectively). The coefficient of 

determination (R2) shows the proportion of variance explained by each PC. The dashed line 

represents the decision boundary of a support vector machine (SVM) classifier using a linear kernel, 

optimized independently for each sample group to distinguish either between sample sources, 

patients and controls, or compound collections. (a) 82 overlapping drugs between BeatAML patient 

samples (n=147) and FIMM controls (n=10). (b) 201 overlapping drugs between FIMM-AML patient 

samples (n=79 for FO4B compound collection; n=46 for FO5A collection) and FIMM controls (n=4 

for FO4B compound collection; n=10 for FO5A collection). (c) 431 overlapping drugs tested in FIMM 

controls (n=4 for FO4B compound collection; n=10 for FO5A collection). The drug response profiles 

in panel a contain missing values (7.37%), due to rigid QC process implemented for drug responses 

in the BeatAML cohort; these data were analyzed using probabilistic principal component analysis 

(PPCA)19, whereas the complete data in the other panels were analyzed with the standard PCA20. 

Fig. 5 | The key steps of Procedures 1 and 2, and their input-output relationships. The images 

show example outcomes of the visualization steps in a dummy data; see the GitHub folder for the 

expected outcomes of the R codes in the real-world data (https://github.com/yingjchen/DSS-

v2.0/tree/main/expected_outcomes). 

Fig. 6 | Integrated heatmap of selective drug responses in BeatAML and FIMM-AML cohorts. 

Robust rDSS response profiles of 147 BeatAML samples (n = 147) and 125 FIMM-AML samples 

(n=79 for FO4B compound collection; n=46 for FO5A collection), where the rDSS normalization was 

done against the FIMM healthy control samples (n = 10, FO5A compound collection). The columns 

correspond to the patient samples and the rows to the 82 overlapping drugs between the BeatAML 

and FIMM compound collections; grey color indicates missing values. Batch effects from the sample 

sources were adjusted with ComBat. ComBat uses either parametric or non-parametric empirical 

Bayes frameworks for adjusting data for batch effects. We recommend the use of the nonparametric 

version for DSS data, where no prior assumptions about DSS data distributions are required. 

Example visualizations from Procedure 2 before and after ComBat correction using PPCA plots and 

heatmap clusterings are shown in Suppl. Figs. 1-4.  
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