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Chapter 1

Introduction

There are at least two reasons for studying radation induced point defects in semiconduc-
tors. On the one hand, radiation can be used as a tool to create defects, and the defects
can then be studied as fundamental research. On the other hand, radiation inevitably pro-
duces defects in devices which are in radation exposed environments. If these defects are
studied and understood, then radiation resistant semiconductor materials or devices can
be engineered where the effect of those specific defects are suppressed.

Ion implantation is a much used processing technique in the semiconductor industry, but
the ion bombardment gives rise to crystal damage which needs to be removed in order to
obtain operating semiconductor devices. Unintentional irradiation is a serious problem in
space applications. Microelectronics and solar cells in satellites in the Van Allen radiation
belt can be critically damaged from oxide charge or electrically active defects in silicon.
A prime example, literally, is the Starfish Prime exo—atmospheric nuclear test in 1962
which created MeV electron radiation that stayed in the atmosphere for another 5 years.
It eventually destroyed a third of all the low orbit satellites at the time. Some other appli-
cations in radiation—exposed environments are sensors in the vicinity of nuclear reactors,
and some medical equipment.

Different variants of Si have been considered for use as radiation sensors in high energy
physics experiments. The main difference between these materials is the concentration of
impurities. Extensive research in the CERN RD48 collaboration revealed that the concen-
trations of carbon and oxygen have a large influence on the resistance to type inversion
of the sensor material. The radiation hardness increases with increasing oxygen concen-
tration, and decreases with increasing carbon concentration [9]. Diffusion oxygenated
float zone (DOFZ) silicon was engineered with a large oxygen concentration and a low
carbon concentration as a result of these findings. Recently, magnetic Czochralski (MCz)
substrates have also been produced with very low carbon concentrations and intermediate
oxygen concentrations. DOFZ and MCz materials for radiation detector applications have
been studied by using electron irradiation in the last years [24,25]. Epitaxial (EPI) silicon
layers with low concentrations of both oxygen and carbon grown on top of Czochralski
substrates have also attracted attention because of reports indicating a large resistance to
type inversion [19].



Introduction

The goal of this work is to investigate wether the defect reaction mechanisms that were
found to explain the defect behavior in DOFZ-Si and MCz-Si, can also explain the defect
behavior in EPI-Si. An additional goal is to characterize and establish possible rela-
tionships between previously unknown defects, or between defects and impurities with a
particular interest in the role of hydrogen in the annealing mechanisms.



Chapter 2

Abstract

Epitaxial pt—n~-n" silicon diodes have been irradiated with 6 MeV electrons to a dose
of 10'* cm™2, and isochronal and isothermal annealings at the temperatures 325 — 360 °C
has been performed. The reaction kinetics of VO, V20O and VOH is studied and compared
to the corresponding defect behavior in diffusion oxygenated float zone (DOFZ) and mag-
netic Czochralski (MCz). VO and V2O is found to mainly dissociate, in correspondance
with studies in DOFZ and MCz, but a fraction of VO also anneals by production of VOH
as found by depth profiling. Depth profiling also suggests that VOH subsequently dis-
appears through the generation of VOHy. Modeling is performed which confirms these
conclusions.

The growth rate of VOH, with cg = 3 x 10'3 s, is further argued to be close to the
dissociation rate of a near—surface hydrogen complex HZ because of the high diffusivity
of H. Furthermore, the loss of an unidentified defect labeled E(170 K) is proportional to
the growth of VOH, and the ratio approaches unity at 360 °C. F, and ¢y is also identical
for the decay of E(170 K) and the growth of VOH. Thus, the decay of E(170 K) is believed
to be because of the reaction E(170 K) + Z — inactive complex, where the diffusivity of
Z is large. The growth of a second unidentified defect labeled E(198 K) is proportional to
the loss of VO, with a ratio of 0.14 4 0.03.






Chapter 3

Background

“The full detail of the total complexity may well be indecipherable experi-
mentally and intractable theoretically. We will be content to consider a few
general features.”

— J. W. Corbett

This chapter will provide an overview of the theory required to interpret the measurements
presented in the following chapters. In short, the topics presented are some general semi-
conductor theory, Shockley—Read—Hall theory, specific details about radiation induced
point defects in silicon and finally a summary of recent previous work on which the work
in this thesis is based.

3.1 General semiconductor theory

3.1.1 Crystal structure and band gap

Silicon (Si) is a crystalline material with a diamond structure. The diamond lattice is
not really a basic lattice, or a so—called Bravais lattice as described in e.g. Kittel [18, p.
16]. Instead it can be regarded as composed of two partially overlapping face centered
cubic (FCC) lattices with a single Si atom at each lattice point of the two lattices. More
conveniently, it can be described as a single FCC lattice with the usual FCC primitive

cell, but with a basis consisting of two Si atoms at (0,0, 0) and (1, 1, 1), respectively, as

shown in figure

In a crystalline material the lattice atoms are arranged in a fixed, orderly way in 3 di-
mensions. Between conduction electrons and lattice atoms there will be a superposition
of periodic Coloumb potentials from each lattice atom, so the superpositioned potential
will have the same periodicity as the crystal structure. This periodic potential will force
the conduction electrons in the crystal to assume only certain energies. More specifically
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(c)

Figure 3.2: Indirect band gap, figure from Streetman [38] [(@)] The energy bands of Si which
shows that Si has an indirect band gap, from Ascroft and Mermin [3][(b)} Simplified
visualization of the band gap and EHP’s, from Streetman [38][(c)}

it will create an interval (or a band in a plot of energy as a function of wavenumber) of
forbidden energies which is called the energy band gap. The so—called Kronig—Penney
model is a simple and instructive approximation to this problem.

Electrons with a larger energy than the upper edge of the band gap are conduction elec-
trons, they are free to move around in the crystal in response to an electric field. Therefore
the semi-infinite interval of energies with a lower limit at the upper edge of the band gap
and no upper limit is called the conduction band. Correspondingly, the electrons that are
below the band gap in energy are called valence electrons and they are bound to electronic
orbitals around the nucleus in the valence band. Missing valence electrons in lattice atoms
are referred to as holes with an elementary charge +e. Holes act as charge carriers in the
valence band in the same way as electrons are the charge carriers in the conduction band.

A valence electron can get excited from the valence band to the conduction band and leave
behind a hole. These two charge carriers are then called an electron-hole-pair (EHP). The
band structure of Si has been visualized in figure [3.2(b)] This figure shows that Si has
an indirect band gap since the conduction band minimum does not occur at the same
wavenumber, E, as the valence band maximum.

The charge carrier densities in the conduction and valence band are

n = N.f(E.) = Nee™(BemEr)/kT
p=N, (1 — f(E,)) ~ Ny~ Er=E)/kT (3.1)
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respectively, where

1

f(E) = Ry e"E=ER)/KT when exp((E — Ep)/kT)>1  (3.2)
2mm; KT\ */?

New =2 —35— (3.3)

N, is the effective density of states in the conduction and valence band. f(F) is the
Fermi distribution which represents the probability for having a charge carrier in the state
with energy E. E., r is the energy at the conduction band edge, valence band edge
and Fermi level. The Fermi level is stricly defined as the energy of the filled state with
the highest energy at 7' = 0 K in thermal physics, but the term is used also at higher
temperatures in semiconductor physics. my, ,, is the effective mass of electrons and holes.

For an intrinsic semiconductor E'r = Ef; and

n; = Noe~(Be=Bri) /KT _ /N N_o~Fo/KT (3.4)

soif N, = Ng, then B, — Fr; = Eg/2 since £y = E. — E,. This means that Er;
is in the middle of the band gap. However, as can be seen from equation (3.3), that is
not entirely true since m;; # m;,. In general F'r; can be calculated from n; = p; from
equation (3.1I) which gives

Er; = 5

E
B c+ By kT (Nv> 3.5)
Ne

+?ln

3.1.2 Point defects in general

As mentioned above, in pure Si the electrons can not have energies within the band gap.
However, any real semiconductor will have defects, such as dopants and other atoms,
that have been unintentionally introduced. Electrically active defects introduce allowed
electron energies within the band gap, where electrons or holes can get trapped, be emitted
after being trapped or actually recombine. Electrically inactive defects have states that are
outside the band gap and therefore they do not influence the transport of carriers between
the bands. However, they can decrease the mobility of electrons and holes by scattering.

Defects in a crystalline material can have 0, 1, 2, or 3 dimensions depending on whether
the defect upsets the short range order of the crystal structure in a point, along a line,
in a plane or in a volume. This thesis deals with radiation induced point defects in Si,
and these are of a size on the order of the Si atoms themselves. A point defect in a
crystalline material falls into one of three categories, as explained in table 3.1] Creation
and annihilation of Frenkel pairs (an interstitial and its vacancy) is visualized in a 2-
dimensional crystal lattice in figure[3.3] A foreign atom in a semiconductor is also referred
to as an impurity, and it can be electrically active.

Doping of a semiconductor is the creation of very shallow levels that easily donate their
electrons to the conduction band or their holes to the valence band. Phosphorus and boron
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Point defect type Description
Substitutional - An atom, silicon or foreign, which is in an actual
lattice position.
Interstitial - An atom, silicon or foreign, in some non-lattice position.
Vacancy - An empty lattice position which is produced when a
substitutional atom becomes an interstitial.
Cluster (also called - A mixture of several point defects of any of the above

extended point defect) categories.

Table 3.1: The different categories of point defects.

are two kinds of impurity species which are intentionally introduced into substitutional
positions since they are used for doping the silicon n-type or p-type, respectively. In
lattice positions, the Ps— and B g—substitutionals create very shallow band gap levels that
are very close to the conduction and valence band edge, respectively. The consequence
of an effective concentration of dopants, |Ne¢f| = |Ng — Ny|, is that Er moves towards
E. or E, for n—type and p—type, respectively. N, 4 is the concentration of acceptor and
donor dopants.

Oxygen, carbon and hydrogen are the kind of species that are usually unintentionally
introduced and they can be either in a substitutional or in an interstitial position. Whether
an impurity is substitutional or interstitial can be important for the electrical activity, like
mentioned above for doping atoms. As an example, C; is electrically active with one
donor and one acceptor level, whereas C; is electrically inactive.

Point defects which are not electrically active are irrelevant from the point of view of elec-
trical characterization, except for the fact that they can later transform into an electrically
active defect through reaction with some other defect. If the concentration of electrically
active defects, Ny, is much lower than that of dopants, i.e. V; < N,y , the material is said
to be in the dilute limit where E is entirely controlled by V4. Otherwise, if Ny 2 Ny
then the concentration of free carriers can drop to zero if all the IV, traps capture carriers
and E'r can get pinned at the trap level.

3.1.3 Pn-junctions
3.1.3.1 The principle of pn—junctions

Pn—junctions are made up of neighboring p— and n—-regions. If one imagines the sudden
appearance of two such neighboring p— and n-regions, then the system will no longer be
in equilibrium since e.g. the p—region will have a large majority of holes that are weakly
bound to the acceptor ions in contrast to a small minority of electrons from the Si atoms.
The converse applies to the n—region. These weakly bound charge carriers diffuse into
the opposite region leaving behind an ionized dopant atom, N, and N j in the p— and
n-region, respectively. Now, holes diffuse from the p-region to the n—region. This creates
an internal electric field, ¢;, from the n-region to the p—region because the diffusing car-
riers leave behind ionized dopant atoms. This continues until €; reaches a sufficient field

11
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Figure 3.3: Creation of a Frenkel pair, consisting of a vacancy (V) and a self-interstitial (I), from a
substitutional (S)[(@)} Diffusing self-interstitial, by first releasing the bonding energy
and then migrating in the crystal Annihilation of a Frenkel pair A carbon
interstitial, C;, together with a carbon substitutional, C,. This particular cluster defect
is known as C,LCS[@)}

strength to create a drift current which exactly balances the diffusion of carriers from one
side to the other. When this happens, the region with ionized dopant atoms has become
the equilibrium depletion region with a total thickness of W as shown in figure

The system must obey the principle of detailed balance, meaning that on average the same
number of holes must be swept from the n—region to the p—region by ¢; as the number of
holes that are diffusing from the p—region to the n—region. Otherwise charge could build
up on either side of the junction and the system would not be in equilibrium. Hence, the
charge in the ionized p—region must be equal to the charge in the ionized n-region. The
length of the regions, X, ;, must however not be equal, since this depends on Ny ,.

The depletion approximation states that

e There are no free charge carriers, i.e. carrier depletion, within W. Sop = n = 0
within W.

e The material is neutral outside of W.

Because of the carrier depletion within W the charge in the p— and n—-region can be con-
sidered to be from the ionized dopant atoms only, see figure Charge equality then
gives

|Qnpl = ¢ANqxp 0 = gAN 2y 0 (3.6)

where ,, = x, o at zero bias and correspondingly for x,,.
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(a)
Charge density £()
aNg
Q4 = dA% Ny W
) | i
X . .
-X
0 n0 X
© %10 X >\ A
~-qN’ 4 _ 4Ny dg _ qNg
Q. = -gAx,oN, a dx g 0 dx g
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Figure 3.4: mThe basic layout of a pn—junction showing the ionized N and N(J{ in the p— and
n-regions, respectively. The charge density in the p— and n—regions as a function
of distance from the junction. [[C)|E-field as a function of distance from the junction.
Uniform N, 4, an abrupt junction and the depletion approximation are assumed in
these figures. All figures adapted from [38].

3.1.3.2 The capacitance of the depletion region

The following is a short resume of the derivation of the capacitance of a pn—junction as
written in Streetman [38].

The electric field, €;, in the depletion region is given by the Poisson equation,

A2 = —AE; =L
€5i€0
Inserting p
dE;
P _ 4 [p—i—NJ—n—N;], for —xp0 < < Tnpo 3.7
dx  esieg  €gi€o ’ 7

Using the depletion approximation, p = n = 0, and the fact that N, = 0 on the n—side
and Ny = 0 on the p-side this gives a separate equation for ¢; at each side with the
condition that they must give the same result at the junction (continuity of &;).

q p—
dE; —GieoNa  for —zp0 <2 <0

dz q
€5i€0

NJ for0 <z < xpp

Notice that in the depletion approximation and for constant dopant concentration then ¢;
is a linear function of position in the depletion region. The fact that d E; /dz has different

13
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sign on the two sides, while ¢; must be continuous in £ = 0, means that ; must have
an absolute maximum, &; ;nqz, Somewhere in the interval —x,9 < = < 0. It would
be physically reasonable to expect this maximum value to occur at x = 0 since this is
the position where all of N, is on the one side and all of N; on the other as illustrated in

figure|3.4(c), Integration over the p—region gives F; 4. as

FE. —
i,max N
Brmar = / aE; = ey (3.8)
0 €Si€0

and correspondingly for the n—region. The voltage that is set up over the depletion region
by €; is

Tn,0
V=Vi+Vip=— / E;dxz = Area under E;(x) (3.9)
—Zp,0
1 1 N,
= (= Emaz)(@p0 + Tn0) = 5 (i;x“) W (3.10)
1 N, N,
=1 ( e >W2 (3.11)
2egie0 \ Ng + Ng

Upon arranging for the depletion width, W, this becomes

2egi€0 [ 1 1 >
_ , 12
v [ <z\cz * Nd) (Ve +V”’)} .
1
, 4 3
N [26&60 (Vi + Vrb)} (3.13)
qNgq

where the last approximation is valid for a p™—n~—junction where N, > N,. The capac-

since C is not

itance of the depletion region is calculated using C' = ‘% = ‘%
a linear function of V', so

1
q 1 1\]2  esieod
C = esieoA — = 3.14

5o [265'@'60(‘/& + Vi) <Na " Ndﬂ w e

3.1.3.3 Forward and reverse bias

The electron energy bands shift according to the bias that is applied to the diode, as shown
for the p™—n~—diode in figure In correspondance with with zero bias the dif-
fusion current of majority carriers will be exactly balanced by the drift current of minority
carriers. E.g. electrons with sufficient energy can diffuse across W from the n— to the
p-region, but at the same time electrons on the p—side that are within one diffusion length
from W can diffuse to W and drift against ¢; from the p— to the n—region. The energy bar-
rier that the diffusing majority carriers must overcome is ¢Vj;. In the case of forward bias,
as in the barrier is reduced to ¢ (V3; — Vfb),the depletion width is Wy, < Wy and
diffusion of majority carriers dominates. For the reverse biased junction, the bar-
rier is increased to g (V4; + Vi), the depletion width is W, > Wy and drift of minority
carriers dominates.
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Figure 3.6: Four charge states that give rise to three deep levels of a defect. The defect is in
the + charge state because no electrons are captured since Er < Ey ;. @The defect
has captured one electron and is in the 0 charge state because F; 1 < Er < E; 5. The

transition from |(@)|to|(b)|is (0/+).
3.1.4 Capture and emission of charge carriers
3.1.4.1 Charge states and deep levels

Some defects can be occupied by more than one electron. The number of occupied elec-
trons on a defect determine the charge state of the defect. Let us assume that a certain
defect can have four charge states, i.e. it can capture up to four electrons, and that it is
singly positively charged when it is essentially unoccupied by electrons. If it captures one
electron then it becomes neutral, the transition would be written (0/+) and it could be
measured as an energy level in the band gap of Si. The conventional notation for a charge
state transistion is

(charge state after capture of electron / charge state before capture )

Similarly, the defect has two more levels for the transitions (—/0) and (= /—) when it is
occupied by two and three electrons, respectively. The transition energies are then Fj 1,
E; 5 and E} 3 as shown in figure @ When Er < E; 1 then E} 7 is essentially unoccu-
pied by electrons as shown by equation in the following section. Consequently
the defect would be in charge state +. When F; 1 < Er < E; 9 then E} 7 is essentially
filled by electrons whereas F » is empty, so the defect is in charge state O (neutral) and
correspondingly for the — and = charge states.

The distinction between shallow and deep levels seems to be relatively loosely defined.
A transition between two charge states which give rise to a level 0.05 eV or further away
from the nearest band is commonly considered to be a deep level [5]. These levels are not
ionized at room temperature, such as e.g. dopants should be. Whether a trap will behave
acceptor— or donor-like is determined by the charge state of the trap when it is unoccupied
by electrons as described in table[3.2]

3.1.4.2 The rate equation

The total number of traps at a given level F; is IV, the number of those traps that are
occupied by an electron is n; and the probabilities for any trap to emit or capture a charge
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Table 3.2: Acceptor- and donor-like behavior of electron traps.

Type Charge when
unoccupied | occupied

Acceptor-like 0 -

Donor-like + 0

carrier per time is e, , and ¢, , for electrons and holes respectively. Then the change in
ny is the sum of captured electrons and emitted holes subtracted by the sum of emitted
electrons and captured holes, or in other words

dn
dt

= (cn+ep) (Ny —ny) — (cp + en)ny

=cp (Ne —ng) +ep (Ny — 1) — epny — cpmy

(3.15)

as visualized in figure The physical interpretation of the four terms is as follows:

Term Process Interacting
band
+ | ¢n (INy — ny) | Capture of e~ from E. to unoccupied trap E,
+ | ep (Nt — n¢) | Emission of h* from unoccupied trap to E,, E,
— enMt Emission of e~ from occupied trap to E, E.
— CpMit Capture of h* from E, to occupied trap E,

n electrons °
c.1 Ec
nl eI'I E
Ny traps F
t PR O-- @i E
ng occupied t
- 11— - - = - EF,i
ep Cp
E
o p electrons v

Figure 3.7: A visualization of the four different emission and capture processes. Figure adapted
from Blood & Orton [5].

When there is no production of excess carriers, such as from an applied forward bias, then
n; must be in equilibrium, so that overall

dnt

@t

In addition, the principle of detailed balance must be followed. The principle of detailed
balance applies when the rates of a process and its reverse process must be equal. In this
case the capture rate of electrons at F; must be equal to the emission rate of electrons
from E} and correspondingly for holes. In other words

dnt,n . dnm, -0
e dt
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If the principle of detailed balance did not apply, then one could have a situation where
dn/dt = 0 was fulfilled, but in such a way that there was a net transfer of electrons from
the valence to the conduction band. For instance, the replacement electrons for every
electron emitted from E} to E,. could come as emission of holes to E,., which is the same
as capture of electrons from FE,. Eventually this would lead to the unphysical situation
that all the electrons in the material accumulate in the conduction band.

Therefore a steady state condition and the principle of detailed balance requires that

enn = ¢ (Ny — ny) (3.16)
ep (Ny —ng) = cpny (3.17)

and solved for the electron occupancy of the trap, ]7\‘,—2, this gives

ng Cp, €p
— = = 3.18
N en + cn cp+ep ( )

However, the occupancy can also be described through the Fermi-Dirac distribution in
equation (3.3) as

ng 1

ng = Nef(Ey) = N, = f(Ey) = 1 4 e(Ee—EFp)/kT

(3.19)

Inserted into equation (3.18)) this gives the ratio between emission and capture rate as

fn _ (Bi—Ep)/kT (3.20)
Cn

E _ (Br—E)/kT _ tn (3.21)
Cp €n

3.1.4.3 Capture rate

An expression for the capture rate can be found by fairly straightforward geometrical
considerations. Consider figure [3.8] The defect is represented as a sphere with a radius
which is equal to the maximum length of the attractive coloumb forces from the defect.
That means that the defect in the figure does not have the actual, physical size of the
defect as it is in the lattice of Si, but the size of the sphere with the radius of the attractive
coloumb forces. The cross section of this sphere in the plane which is perpendicular to
the thermal velocity of the electrons is the capture cross section. The electrons that pass
through the capture cross section will thus come within range of the attractive coloumb
forces and will be captured, whereas all other electrons will not. The volume of electrons
that will pass through the cross section is 0, L. = 05, v, , At and therefore the number of
captured electrons from a single trap in the time At is

Any = opvip nAtn = 0y Vg At
S—— S——

Volume Flux
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The volume of electrons which is
passing through o, in the time At

Defect Cross section of the sphere
of the attractive coloumb force

0 L= Vihn At

X
Figure 3.8: Geometrical interpretation of the capture cross section for electrons, o,.

and for all the (IV; — n;) unoccupied traps the number of captured electrons in At will be
An; = Any (Ny — ny). Now, the capture rate per unoccupied trap can be written as

o = Ant/At
" Ny —ny

and correspondingly for hole capture. Notice that the capture rate is proportional to the
relevant carrier concentration. o,, for a defect in a neutral charge state is commonly mea-
sured to be somewhere around 104 cm?. If o, is measured to be very small, e.g. some-
thing like 10~'7 cm?, then the defect can often be assumed to already have been occupied
with an electron before capturing a second electron. That is, the defect was in a (—) charge
state and after capturing another electron it is in the (=) charge state. The converse applies
to hole capture.

= OpVUth,nM (3.22)

3.1.4.4 Emission rate

Inserted for ¢, from (3.22)) and n from (3.1)) in (3.21)) the emission rate for electrons in a
non—degenerate semiconductor (n < N.) can be written as

Ec—E
en = Cre PR — g gy Nee™ 7 (3.23)

Notice that the emission rate is independent of the position of Ef, i.e. independent of n,
unlike the capture rate. Therefore the emission rate is a characteristic property of the trap
itself, and only a function of the temperature. One can now calculate the ratio between
the emission rates for electrons and holes, which is

€n Unvth,nNc (Eg -2 (Ec - Et)>
— = ——— €eXp

ep  OpUinpNy kT

(3.24)

where the exponential is

By—2(Eo—By) >1 if E. — Ey < E;/2 so Ej is in the upper half of £,
e kT =1 if E.— E; = E;/2 so E; is somewhere around F,/2
<1 if E.— E; > E4/2so E; is in the lower half of £,
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Type of trap

Electron Ei > Eequal
Both Ei ~Eequal
Hole E; < Eequal

Table 3.3: Electron and hole traps.

The factors themselves in the pre—exponential part of the emission rate are all functions
of temperature, but their ratios are not. In fact

O'nvth,nNc On
_— ~

OpUth pNy op

since the thermal velocities of electrons and holes and the density of states in the conduc-
tion and valence band are of the same order of magnitude. The capture cross section is
temperature independent in the ideal case.

The energy level, Eeguq1, Where e, = ¢, is equally much an electron and a hole trap. By
setting e, = e, in equation (3.24) E.,,,; is found to be

E, kT (apvthvav) (3.25)

Eequal = =2 + —1
equal 9 + 9 n O'n'Uth,nNc

A definition of electron and hole traps can be based on equation (3.25), as in table[3.3]

3.1.4.5 Activation enthalpy and apparent capture cross section

The energy that is required to remove an electron from F; to E. is the chemical potential,
which is equivalent to the increase in Gibbs free energy, AG(T) = E. — E;. This is
the energy that the electron needs to get excited into the conduction band [6]. However,
AG(T) is a function of temperature and from a thermodynamic identity

AG(T) = E(T) — E/(T) = AH — TAS (3.26)

Inserted into equation (3.23)) this means that

_AG(T)

€n = OnUthn (T>NC(T)6 kT

AS AH

=e k opUipn(T)Ne(T)e™ *T

_A
= OnaVth,n (T')Ne(T)e™ ¥t (3.27)

where the last expression shows that the extracted values from an Arrhenius plot of
In(e,(T)/T?) is actually 0, = T on and AH. oy, is called the apparent capture
cross section and AH is called the activation enthalpy.
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3.1.4.6 Separation of capture and emission by a pn—junction

The reason for doing measurements on a pn—junction is that in a depletion region it is pos-
sible to separate the capture and emission processes which otherwise would be competing
against each other. This is because in a depletion region the conduction and valence bands
will be depleted of their respective charge carriers, which have been swept away by the
built—in electric field. The traps can then be sequentially filled and emptied by applying
the appropriate bias, see section 4.2.3|about DLTS.

It is common to use an asymmetrical junction, e.g. p™—n~. Then the depletion region can
be assumed to be only in the n—region. By pulsing the voltage over the pn—junction from a
reverse voltage to 0, the emission from only electron traps is measured. Correspondingly,
by using a n*—p~ junction emission from only hole traps is measured.

There are many experimental techniques where the principle is to apply a bias pulse to a
reverse biased pn—junction to measure the filling and emptying of the traps within the de-
pletion region. Examples of such techniques are deep level transient spectroscopy (DLTS)
and thermally stimulated current (TSC).

For an electron trap in the depletion region of a pn—junction all interaction with the valence
band can be ignored, and in addition ¢,, = 0 since n = 0. Then the rate equation (3.15)
becomes simply

dnt

E = —ennt (328)

which can be integrated easily. When assuming that the trap was completely occupied at
t =0, ie ngt = 0) = Ny, then the result is a simple exponential decay with the rate
constant 7 = e, (T) L.

ny(t) = Nye=en(D? (3.29)

3.1.5 Reaction kinetics
The rate of reaction between two defects depends on [43]

1. The probability that the defects will come close enough to each other to react.

2. The probability that their energies are such that they actually can react when they
do encounter each other.

If the energy required for diffusion is larger than the energy required for reaction of two
nearby defects, then the reaction rate is said to be diffusion-limited since the defects will
probably react with each other if they meet. This means that the probability that the
defects will encounter one another is the important factor.
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The defect reactions that are considered in this thesis are diffusion-limited where the
reaction rate is limited by the activation energy for diffusion of the defects.

The probability of migration for a defect or an impurity from one position to another in
the crystal potential, can be described by the diffusion coefficient, D(T"), which is

Eq

D(T) = D% #t. (3.30)

DY can be interpreted as a trial frequency of the defect or impurity to jump over the
potential barrier which separates one stable position from another, and exp(—FE,/kT) is
a Boltzmann factor which gives the probability that the defect or impurity has the required
activation energyﬂ FE,, to migrate to another position.

3.1.5.1 Diffusion-limited reactions

A reaction which involves only one defect, e.g. a dissociation of A into its less complex
parts, such as

is described simply by [13,41]

olA] _ 9lA] _ 0[A9] _
= — ol = =R = (D) (4] (3.32)

which can be derived from the law of mass action in chemical thermodynamics.
A general diffusion-limited reaction between two defects, A and B, such as
A+B— AB (3.33)

is quantitatively described by the differential equation

olA] _ 9B
= = —c(T)[A]||B 3.34
e It (.34
where ¢(T) is the reaction rate. The reaction rate does not vary with [A] or [B], but it is a
function of temperature.

Eq

c(T) = cpe™ *T (3.35)

where cg is the reaction rate constant which is independent of temperature. E, is a char-
acteristic energy that determines the temperature at which the dissociation or migration
can start to happen. Since these reactions are diffusion—limited the measured reaction en-
ergy is expected to equal the activation energy for migration of the mobile species, as in
equation (3.30). In fact, the temperature dependence of ¢(T") is assumed to originate from
D(T). The pre—exponential factor, cg, incorporates the diffusion pre—exponential factor,

'Not to be confused with the activation enthalpy of carrier emission from defects as in equation (3.27)
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and it can be interpreted as the probability for the encounter of two reacting defects. It
can also indicate whether the reaction is a dissociation or a migration by
~ kTT likely a dissociation
o
< A likely a migration
R

where kTT is approximately the frequency of the most numerous phonons in the lattice
[13,29]. This quantitiy is on the order of 102 — 103 s~! for temperatures 77 — 300 K. k

is the Boltzmann constant and A is the Planck constant.

The reactions in equations (3.3T)) and (3.33)) are termed first and second order reactions
respectively as will be explained below.

3.1.5.2 1st order reactions

Equation (3.32) is an example of a first order reaction, because it is on the general form

o[A]
—— = —c(T)[A]" 3.36
r co(T)[A] (3.36)
with order n = 1. When n = 1 this equation is readily integrated to
[A] = ae=D*t 4 (3.37)

where a, b are constants to be determined from the initial conditions.

For first order growth the initial conditions are

[A] (t = 0) = [A]O,min
[A](t = 00) = [A]oo,maas

and the solution becomes

[A] = [A]oo,maaz - {[A]oo,maa: - [A]O,min}eic(T)t
where it is often assumed that [A]g nin = 0. A plot of In ([A]w7ma$ — [A}) will be
linear and ¢(7') is the slope.

For first order decay the initial conditions are the other way around, i.e.

[A](t = O) = [A]O,max
[A](t = o0) = [A]OO,min

so the solution is

[4] = {1410.maz = [Aloc,min pe ™" = [Aloo min

and it can often be assumed that [A]sg min = 0. A plot of In ([A] — [A]Oomm) will
be linear and ¢(7') is the slope.

Notice that the fractional concentration is independent of the initial concentration for both

growth and decay. First order reactions are also termed monomolecular, indicating that
only one species is reacting.
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3.1.5.3 2nd order reactions and special cases

A second order reaction obeys one of the following rate equations

ol4]
5 = —c(T)[A)? (3.38)
olA]

and equation (3.34) corresponds to a general second order reaction of the latter kind.

According to [43], for a uniform initial distribution of defects as is expected to be pro-
duced by electron irradiation, equation (3.34)) can further be written as
9[A]
ot

= —47R(Ds + Dp) <1+ th> [A][B]
2

~ —4rR(Da+ Dp)[A][B]  whent > % (3.40)

where the last expression is valid after an initial transition time which will not be taken
into account in this thesis. R is the capture radius of the reaction. It is simply the maximum
distance that the two defects can have to each other for the reaction to take place, and it is
a specific to each reaction.

Several assumptions can often be made to simplify equation (3.40). Firstly, it is often true

that only one of the two reacting species are mobile at the temperature of the reaction.

This implies that the diffusion coefficient of the mobile species is much larger than that

of the other species, say D% > DOB sothat D = D4+ Dp =~ D4, and consequently that
I[A]

—; ~ —4mRD[A|[B] = —4mRDYe” i [A][B]

Furthermore, if one of the species has a much larger initial concentration than the other,
say [A]i=o < [Bli=0, such that [B] &~ [B];~o, then

0lA o o
ét] = —47TRD%€_%[B]t:0[A] = —coe_%[A] (3.41)
where ¢y = —47rRD94 [B]i=o is recognized as the rate constant. The temperature depen-

dence in ¢(7T), e~ it , is interpreted as coming from the diffusion coefficient, D 4(T").

Equation (3.41)) is now clearly reduced to the form of a first order reaction, which is to
be expected since only one defect from the mobile species is assumed to be lost in each
reaction between an A and a B. The mobile species of low concentration, A, is said to be
depleted by the immobile species of high concentration, B.

One can now imagine a defect which is involved in two first order processes simultane-
ously, e.g. it disappears both through dissociation and reaction with a species B as

A+ B — AB (3.43)
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where [A];—o < [Bli=0. Now A disappears as

A
A 4rRD(BlicolA] — sl
= —{ca + caiss ) [A] (3.44)
with solution
[A] {eca(T)+cqiss(T) 1}
= —e 3.45
[l (3.45)

In the context of a dissociation, cg;ss 1S called the dissociation rate of A. On the other
hand, the reaction product AB is created when A is destroyed, although some A dissociate
instead of producing AB, so the equation and solution for AB is

O[AB] B
o~ el
_ [Ali=0 _ —(caisstecalt
R (1-e ) (3.46)

The above suggests that when there is a very large difference in the concentrations, a
bimolecular reaction actually follows first order kinetics. However, if this is not the case,
then the reaction will be second order. A general second order reaction, as given by the
rate equation (3.39), can not as easily be characterised as first order reactions can. This is
because a first order reaction can only be either a dissociation or a reaction between two
defects with very different concentrations.

An exception is if the bimolecular reaction follows the rate law in equation (3.38)), i.e. if
the two reacting defects are in fact the same so that A = B. The reaction of two vacancies,
V, into the divacancy, Vo, is an example of such a reaction. The integrated rate equation
is

I
o 1 + [A]t:(]CAt

[A] (3.47)
and it is not linear in a In[A] vs. ¢ plot as the linear reaction in equation (3.37) is. This is

used to distinguish between first and higher order reactions.

The fractional decay, [A]/[A]:=0, depends on the initial concentration for a second or-
der reaction. At short times when [A];—gcat < 1, the fractional decay will be linear,
[A]/[Alt=0 = 1 — [A]t=ocat. Atlong times when [A];—gcat > 1, the fractional decay
will be inversely proportional to [A];—gcat.

3.2 Radiation damage in Si

3.2.1 Stopping and damage production

Different kinds of radiation generate different kinds of damage in silicon, because the
mechanism for causing the damage depends on the mass, energy and charge, i.e. the over-
all nature of the radiation. The incident particle will lose energy through a combination



Background

26

of electronic and nuclear stopping, where the former is a viscous drag from coulombic
interaction with the huge number of electrons around the lattice atoms and the latter is
elastic scattering at the more moderate number of lattice nuclei in the path of the incident
particle. The total energy loss is then described by [8, Ch. 5]

ap _ dp
de  dx

dE

- (3.48)

€ n

Electronic stopping will result in the ionization of some lattice atoms when an electron is
excited by the energy it picks up from the incident particle, but this causes no permanent
damage in a conductive or semiconducting materia]ﬂ Nuclear stopping, on the other
hand, transfers energy from the incident particle to the lattice atoms which then recoils. If
the transferred energy is large enough, then the lattice atom will escape from its original
lattice site and into some interstitial location leaving behind a vacancy which together
are a Frenkel pair. Nuclear stopping causes a non—ionizing energy loss (NIEL) whereas
electronic stopping causes ionizing energy loss. Radiation which is stopped largely by
NIEL creates more Frenkel pairs, and thus more permanent damage, in semiconductors
than mostly ionizing radiation does.

The transfered energy between the radiation particle and a Si atom must be larger than a
certain threshold energy, E4. Ey is the energy required to displace the Si atom, because
of the binding energy between the neighboring Si atoms in the crystal. If the transfered
energy is much larger than Ejy, then the displaced target atom can displace other target
atoms and thus create a disordered region with clusters of vacancies and displaced Si
interstitials.

As derived in [7], the maximum transferable energy in elastic scattering for a head—on
collision, i.e. the impact parameter b = 0, at non—relativistic energies is
4Mm
Thar = ————5F 3.49
max (m + M)2 ( )
where m is the mass and E is the initial energy of the incident particle. M is the mass
of the target atom which is assumed to be at rest initially. At relativistic energies for the
incident particle this becomes

mo E
Toae =2— | 2 E 3.50
M ( + moc2> (3:50)

where my is the rest mass of the incident particle.

The energy threshold for displacing a silicon atom and producing a Frenkel pair where
the vacancy is left at the lattice site and the Si atom becomes an interstitial is roughly 25
eVE] [20,29]. This is about four times the energy which is required to break an Si-Si bond,
4 x 5.9eV = 23.6 eV, as might be expected. However, the energy required to produce a
recoil with sufficient energy to create a clustered region is much larger, about 5 keV [29].

But it could cause permanent damage in dielectrics, e.g. positive charge in oxides.
3 At least it seems to be somewhere between 11 — 40 eV. It is difficult to determine exactly since a lot of
Frenkel pairs annihilate within a few picoseconds before they can be measured [20].
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Because of its small mass, electrons need an initial energy above 250 keV in order to
transfer an amount of energy equal to E; in a head—on collision with an Si atom at max-
imum energy transfer. The incident electrons need a larger energy if the energy transfer
is less than maximal. In order for the now displaced so—called primary knock—on atom
(PKA) to create secondary displacements, the electron needs to have an energy of sev-
eral MeV. Because of this rather high required energy for secondary damage production,
electron radiation is assumed to create mainly monovacancies and the divacancy cluster
defect. Divacancies are created by the direct production of two vacancies in immidiate
proximity, and from pairing of two independently created monovacancies. A primary col-
lision and a cascade of secondary collisions are illustrated in figure [3.9] The amount of
directly produced vacancy clusters of higher order is expected to be small.
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Figure 3.9: Radiation damage by a primary collision with the PKA and a range of possible sec-
ondary collisions. From [16].

Gamma radiation actually damages semiconductors in much the same way as electron
radiation, although with a lower amount of displacements per incident particle. This is
because gamma radiation is absorbed by the valence electrons of the crystal atoms, in a
process called Compton scattering. The electrons can then become so energetic that they
displace a PKA, and also produce divacancies to a more limited extent. Gamma radiation
is often produced by the radioactive decay of ®°Co, which produces ~1 MeV -radiation
and also sub—MeV electron radiation.

Neutrons have a large mass and no electric charge. Therefore they are not affected by elec-
tronic stopping nor Coloumb interaction with the crystal nuclei, but they produce damage
only through head—on collisions with a PKA. Then the energy transfer will often be near
maximum and the PKA will often have enough energy to start a cascade of secondary
displacements and create a volume with a large number of clustered defects. Neutrons
also have a large projected range due to the lack of charge to cause energy loss through
Coloumb interaction. The amount of clustering produced by neutron radiation could be
the reason that oxygenation does not reduce the type inversion effect in the way it does
for other types of radiation, as briefly described in section (3.3.1

Protons and heavier ions, on the other hand, have a positive electric charge in addition
to a large mass. They therefore lose some energy to the crystal atoms through Coloumb
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interaction with nuclei, conduction and valence electrons even if there is no head—on
collision. This means that more single Frenkel pairs will be created and the amount of
clustering will be reduced as compared to neutron radiation with the same energy.

3.2.2 Impurities and radiation induced point defects in silicon

As mentioned in the previous section, the point defects which are primarily created during
electron irradiation of silicon are self—interstitials (Sg7), vacancies (V) and directly pro-
duced divacancies (Vg) [10, 11]. These are so—called intrinsic defects since they do not
involve impurities. At room temperature these defects will then migrate and form more
complex point defects with impurity atoms in the silicon, mainly oxygen, carbon and hy-
drogen, with the exception of Vo which is stable to much above room temperature. The
physical configurations of interstitial oxygen (O;), the vacancy—oxygen complex (VO)
and V3 in the Si crystal are shown in figure [3.10]

Monovacancies and self—interstitials are highly mobile at room temperature, so the ma-
jority will immidiately annihilate with each other. Often the annihilating pair was actually
created together as a Frenkel pair, and this is called correlated annihilation. The surviv-
ing monovacancies can easily find, say, interstitial oxygen atoms which are immobile at
room temperature. Together they can form the vacancy—oxygen defect VO in the reaction
V + O; — VO. This happens during and immidiately after room temperature irradiation.

Oxygen escapes from the fused silica (SiO2) crucible that contains the silicon melt during
Czochralski growth at ~1500 °C (chapter 2.4 in [8]) and is thus incorporated in the Si
when a boule is pulled out of the melt, whereas carbon comes from components such as
graphite heat shields around the crucible. Oxygen and carbon are usually the impurities in
silicon with the largest concentrations, apart from dopants such as boron or phosphorous
in strongly doped regions.

3.3 Previous work

Some of the previous work which this thesis is based on will be presented in this section.

3.3.1 Type inversion of silicon radiation detectors

After p™ —n~ —n™ silicon detectors became widely used for the innermost detectors in
high energy physics experiments it was observed that the n~ layer gradualy transformed
into a p~ layer as the effective doping, N.ry = N, — Ny, changed sign. This was
assumed to be due to the formation of one or more acceptor defects with a concentration
which increased as the dose increased.

The work of the Cern RD48 (ROSE) collaboration [9] showed that the type inversion was
largely suppressed for proton radiation in oxygen rich materials, whereas it was promoted
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Figure 3.10: A visualization of the structure of O; [(@)} VO[(b)]and V. [(c)
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in carbon rich silicon. However, there was no change in the radiation hardness for neutron
radiation and this might be connected to the amount of cluster defects which are created
in neutron irradiated silicon. An example of type inversion for increasing dose in 1 MeV
neutron equivalents is shown in figure 3.11] The so—called I defect is believed to be

responsible for type inversion [36], however the indentity of I has not yet been found as
described in section[3.3.4

Part of the motivation for studying radiation induced defects in epitaxial silicon is that this
material has been reported to display a very large resistance to type inversion [19].
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Figure 3.11: Type inversion in neutron and proton irradiated silicon. The graph is from the 3rd
RDA48 status report [9].

3.3.2 Importance of dose and oxygen concentration (O;) on the genera-
tion and annealing of the vacancy-oxygen (VO), divacancy (V;) and
divacancy-oxygen (V,0) complexes

The following is a summary of the results of works such as reference [24,25] and refer-
ences therein.

During room temperature irradiation of silicon, VO is created through the reaction
V+0; — VO (3.51)

Whether this reaction follows first or second order kinetics depends on whether [O;] is
much higher than or comparable to [V] respectively. V2O can then be formed by

V+ VO — V0 (3.52)

which will be a second order process due to the comparable concentrations of V and VO.
Alternatively V3 is created first and V20O is subsequently formed through reaction with
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V+V =V, (3.53)

The production of higher-order multivacancies than Vs is of course also taking place, but
the reactions become less probable with increasing number of vacancies in the complex
and so it will be ignored for simplicity in this context.

However, neither VO, V3 nor O; are mobile at room temperature so the latter reaction can
only happen at elevated temperatures, that is during subsequent annealing experiments.
In contrast, the monovacancy is highly mobile at room temperature, so the production of
V20 during irradiation must go through the reaction V + VO — V0 if it happens at all.
The second order reaction V + V — Vj will in principle compete for the monovacancies,
but most divacancies are expected to be created directly by electron radiation so this reac-
tion can be neglected during irradiation [10]. The rate of change in the concentration of
V during irradiation is then

d[V
C[lt] = ¢¢/7 — axRDy[V]{[0;] + [VO]}
where g‘c}f T is the effective generation rate of V by the radiation where annihilation of

Frenkel pairs is included. g‘c}f ! is determined by the dose rate, that is the number of

incident electrons per time (current). With a constant dose rate the concentration of V
stabilizes at some steady state value after a transient time. At the steady state value the
rate of change is zero, so d[V]/dt = 0 and

g‘e/f f

V] = 4w RDy {[0;] + [VOI}

Now the generation rate of V2O is

[VOl

_ _ eff
[V20] = 47 RDy [V][VO] = gy; [0:] + [VO]

It seems clear that the production of V5O through V + VO — V20 depends on the ratio
of the concentration of [VO], which increases with increasing radiation dose, and [O;].

[VO «— [VO] is radiation induced, depends on dose
[VO] 4+ [0;]  « [O;] depends on the growth and processing of Si

This divides the situation into two limiting cases for a given dose rate.

3.3.2.1 Low dose or large [O;]

In this case the concentration of radiation induced VO will be small compared to the
concentration of interstitial oxygen, [O;] > [VO]. Then the production of VO depletes
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the monovacancy concentration and leaves few V left to produce V2O through V4 VO —
V10.

However, V20 can be created through equation Vo + O; — V50 during subsequent an-
nealing experiments at high enough temperatures to make Vo mobile. This is an important
annealing mechanism of Vs as explained in the following section.

The doses that are relevant to deep level transient spectroscopy (DLTS) studies are all
within this low dose regime. DLTS is discussed in section4.2.3

3.3.2.2 High dose or small [O;]

In this case [VO] is comparable to or exceeds [O;], so it is O; that becomes depleted by the
production of VO. Hence, the production of Vo0 through V + VO — V50 can proceed
in competition with the production of V3 accordingto V+ V — Va.

3.3.3 The influence of hydrogen on the generation and annealing of VO, V,
and V.0

Monakhov et al. published an article [31] on the influence of hydrogen, monatomic and
diatomic, on the generation and annealing of VO, V3 and V5O which is summarized
in this section. Two float zone (FZ) samples received the same oxygenation treatment
and were thus made into so—called diffusion oxygenated float zone (DOFZ). One of the
samples were then also hydrogenated after which both samples were electron irradiated.

After irradiation there will be a certain concentration of VO and V5 and here it will be
assumed that only a negligible amount of V50 is created during the irradiation itself, as
would be the case for large [O;] when the formation of VO is favored. At temperatures
much above room temperature, VO and V3 become mobile and can migrate in the silicon
crystal. Then V2O can be created through the reactions (3.52)) and (3.54)), but VO could
also react with O; or mono- and diatomic hydrogen as

VO + O; — VOq (3.55)
VO +H — VOH (3.56)
VO 4 Hy — VOH3 (3.57)
(3.58)

where VO3 and VOH,, are expected to not be electrically active, whereas VOH gives rise
to two levels VOHY/* and VOH/? with energies By — E, = 0.28¢eV and E, — E; =
0.32 eV, respectively, according to references [15,39]. V4 can react with hydrogen as

Vo +H — VoH (3.59)
VoH + H — VoH, (3.60)
Vs + Hy — VoH, (3.61)

(3.62)

where VoH has a deep acceptor level at 0.43 eV and theory predicts a shallower 0.2 eV
acceptor level to VoHs which has not yet been observed experimentally ??.
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3.3.3.1 Low concentration of hydrogen

As can be seen in the isothermal annealing from 200 — 300 °C in figure there
is no discernible change in [VO] whereas the transformation from V3 to V0O exhibits a
near one—to—one relationship at about 300 °C in the non-hydrogenated material. A minor
level also appears at the position ~160 K.

3.3.3.2 High concentration of hydrogen

In the hydrogenated sample almost all of the V3 anneal out at about 275 °C while essen-
tially no V2O is formed. At the same temperature VOH grows rapidly to approximately
the initial amplitude of Vs, as can be seen from the DLTS spectra in figure [3.12(b)l

0.4 [Tt , ; —————
[ vy —200°C a) ] F —200%C b ]
— -250°C ] L vo - -BE0°C .
- TS ] 6kl - -5 -
Eﬂ a3 . — E\ﬂﬂ' r B T ] 4
i | 18
S |, _\—" - E
E L r lil L
%u 2| . Eo“ i ]
w Wyl=ia) Vil=i-} Vel VAR ] F 1
Eoaf | 0K \ s 18 ezl vou v ]
= 15 L &
r L __,\ &
. ] L . ;
0.0 - 5 il 1 P T Fiure
100 150 200 250 20 Tmo 150 200 250
Temperature (K) Temperature (¥)
(a) (b)

Figure 3.12: Low concentration of hydrogen (@)} High concentration of hydrogen DLTS
spectra from reference [31].

3.3.3.3 Interpretation

The normalized amplitudes of the major peaks have been plotted as functions of annealing
temperature in figure [3.13] VO, V3 and V>0 have noticably lower thermal stabilities in
the hydrogenated compared to the non-hydrogenated material, and VOH appears only in
the hydrogenated sample. This is interpreted as hydrogen-assisted annealing where the
reactions between VO, Vo and H or Hy are preferred over the creation of V50.

However, VoH is expected to have a deep acceptor level at 0.43 eV and to completely
overlap with the DLTS peak for V, /%, This would lead to an asymmetric decrease of the
amplitudes of V, /% and V2:/ ~No such asymmetry was observed. In fact, a very close to
one-to-one relationship between the two acceptor levels of Vo has been observed, so the
reaction Vo + H — VoH is not a dominant process in this hydrogenated material. It is
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suggested that Vo disappears through the reaction with hydrogen dimers||as Vo + Hg*) —
(%)
VaoH, .

On the other hand, VO must at least partly anneal through VO + H — VOH due to the
measured level attributed to VOH. VOH is expected to anneal through the creation of
VOHs. However, some of VO might also anneal out by VO + Hgk) — VOH;, which
is not electrically active, since [VOH] only reaches about 30% of the initial [VO]. In
addition, some VOH will dissociate as VOH — VO + H, and some of the released VO
can be lost to VOs. Then H can reform VOH by reaction with VO, effectively reducing
[VO], increasing [VO2] and leaving [VOH] unchanged. This is a possibility for hydrogen—
assisted annealing of VO through VOH to VOs.

10p 3
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] : 1{ \ ]
T 08l O VoLV VO V| .
H [ = [VO)/(VOl \ ]
d o[ * [YOHL/[VOke vV ]
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Figure 3.13: Normalized DLTS amplitudes versus annealing temperature. From reference [31].

3.3.4 The identification of V,O

Most of the results presented later in this thesis are heavily dependent on a correct iden-
tification of all the defect species which are involved in the overall reactions. Because of
this, a summary of the discussion regarding the identification of the electrical properties
of V50 is necessary.

Over the past 4 decades many of the defects in irradiated silicon have been identified and
assigned their correct properties and structure. Important defects such as VO, VP and Vg
have had their structure identified and the activation energy and capture cross section has
been measured in references [11, 12,44] and the corresponding peaks in DLTS spectra
have therefore been possible to assign to the correct defects.

However, vacancy-oxygen complexes of higher order in V than VO, such as V20, have
proved difficult to assign to any particular DLTS peak. In particular the assignment of the
correct DLTS peak to V20 generated some controversy when both Pintilie et al. in refer-
ences [35,36] and almost simultaneously Monakhov et al. in references [2,30] claimed to
have identified V50 as two different DLTS peaks, labeled the I and X defect, respectively.

*Hydrogen dimers have been suggested to exist in two forms, regular molecular hydrogen and a so—called
H3 complex [17]. Hg*) is meant to be interpreted as either Hoor Hj.
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As explained in section [3.3.2]the generation of V20O through V 4+ VO — V0 is expected
to be suppressed in materials with large [O;] and it should follow second order generation
kinetics. I displays these properties. Theoretical calculations further predict that Vo0 can
be in four different charge states, which are positive, neutral, singly and doubly negative
[34]. This would give rise to three peaks in a spectrum from a space-charge spectroscopy
measurement, like DLTS or TSC, namely V,0%*, V,0~/0 and Vo0=/~.

At the time of the publication of reference [2] all the required four charge states had been
observed for X whereas the doubly-negative acceptor charge state had not been observed
for I. In addition, Alfieri and Monakhov et al. measured the annealing rate of Vg into
X to be proportional to [O;] and that the transformation of V3 into X was close to one-
to-one. This, and the realization that V2O has similar electrical properties as Vo, lead
these authors to conclude that X is V5O. It has also been very tentatively suggested that a
possible candidate for the I defect is V3.

In this work X is assumed to be correctly identified as V20O based on the above discus-
sion. It should be pointed out that despite the controversy over the electrical properties
of V10 it seems likely that the I defect is a main factor involved in the type inversion of
silicon radiation detectors.

3.3.5 Comparison of MCz- and DOFZ-Si

Mads Mikelsen et al. studied the annealing of defects in magnetic Czochralski (MCz)
and diffusion oxygenated float zone (DOFZ) silicon in [24,25]. The samples that were
studied in both cases had properties as described in table Neither materials had been
subjected to hydrogenation, so the concentration of hydrogen is expected to be similar.
Figure[3.14]showns a survey made by the CERN RD48 collaboration of different substrate
and epitaxial materials [9]. It can be observed that the concentration for oxygen in table
[3.4]is in good agreement with the RD48 survey, but a lower concentration by a factor of
10 is reported in the survey for [C] in DOFZ. MCz was not covered in the survey, since
this material has only become available recently.

Concentration (cm™?)
Material Doping Carbon Oxygen
MCz-Si 5.5 x 102 <10 (5 —10) x 1017
DOFZ-Si 5.0 x 102 (2 —4) x 106 (2 —3) x 107

Table 3.4: Properties of the samples used in references [24,25].

In the isochronal annealing studies from 50 — 400 °C in [25] it was found that the defects
in the two materials had similar stabilities up to about 250 °C, the only differences being
a minor level at 162 K (position in the 640 ms lock—in rate window) in as—irradiated
MCz-Si.

For the annealing at 250 — 400 °C some interesting differences between the materials
appear, as can be seen in figure adapted from reference [25]. Vo0~ /0 is referred to
as E1, VoO=/~ is E2, VO is E3 and VOH is E4 in reference [25]. The differences are
listed in table and the major differences can be summarised as follows:
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Figure 3.14: A survey made by the RD48 collaboration [9] of the concentrations of oxygen and

carbon in different types of substrates and epitaxial layers. DOFZ is said to have [O]
of about (2 —4) x 10} cm™3 and [C] of 5 x 10'® cm~3. MCz-Si substrates are
not included in the survey.

. VO and V20 anneal out at a faster rate in DOFZ than in MCz, perhaps through

interaction with atomic hydrogen as indicated by the formation of VOH.

. VOH appears in DOFZ, but not in MCz. This indicates a larger concentration of H

in DOFZ than in MCz, likely due to differences in detector processing.

However, there are some apparent contradictions between the investigations of the an-
nealing of VO and V5 in DOFZ versus MCz in reference [25] and in the later and more
thorough study in reference [24]. These contradictions consist mainly in that

1.

36

VOH appears only in DOFZ in both cases. Reportedly, it plays only a small role in
the annealing of VO and V20 in the DOFZ samples used in reference [24], while it
is regarded as significant in the DOFZ material used in reference [25] even though
the material properties were both as given in table[3.4]

- In reference [28, p. 59] it is argued that this is likely due to a higher con-
centration of hydrogen in the samples which were used in [25] because of
differences in the processing conditions, such as HF etching time.

In MCz a slight decrease in [VO] is observed in reference [25], whereas a slight
increase is observed in reference [24] for the early stages of the isothermal anneal-
ing, even though the properties of the MCz materials that were used in both studies
were reported to have the properties given in table
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Temp. DOFZ MCz

[°C]

250-300 — Vj transforms into V»O. -———
— The peak at 160 K becomes de- || —— 11—
tectable.

325 — The peak at 170 K becomes de- | — No peak at 170 K.
tectable.
— [V20=/7] and [V20~/°] decrease || — [Vo0=/~] and [Vo0~/°] decrease
slightly. slightly.

350 —V0~/~ completely gone. — Both [V5,0=/7] and [V20~/9] re-

duced by about 50%.

- VOH grows very || — E(170 K) becomes detectable, but no
quickly with roughly || VOH.
[VOH]350° & [V20™/ " Js250c:.
— A fraction of another peak at the po- || — The peak at the position of Vo0 =/ is
sition of VgO_/ 0 remains. somewhat larger than that at VQO:/ -
— [VO] decreases slightly. — [VO] increases slightly.

375 —[VO] decreases about twice as much || — [VO] decreases.
as in MCz relatively speaking.
— VOH is stable. —V207/~ completely gone.

400 — All defects virtually gone. — Similar to DOFZ.

Table 3.5: Summary of defect evolution in DOFZ-Si and MCz-Si. All peak temperature positions

are given in the 640 ms lock-in rate window.
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- In reference [28, p. 59] this is attributed to a difference in [O;] in the MCz
samples used in the two articles. This could be because even though they
came from the same wafer, they were cut from different locations on that
wafer. Thus, [O;] was expected to have been non—uniform across the wafer,
which reportedly is a problem that has been frequently discussed in the CERN
RD50 collaboration.

In fact, simulations for [VO] in reference [24] showed that a change in [O;]
from 7 x 10'7 cm™3 to about 4 x 10'7 cm~3 is sufficient to make an initial
decrease of [VO] become an increase.
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Chapter 4

Experimental techniques and
instrumentation

“Don’t touch that please, your primitive intellect wouldn’t understand things
with alloys and compositions and things with... molecular structures.”

— Ash (Bruce Campbell)

4.1 Sample properties, structure and irradiation

All the samples used in this thesis were cut from a wafer with a n™ Cz substrate with an
epitaxial n~—layer grown by ITMEE] and later processed by Sintef Minalab into pads of
pt —n~ —nT—diodes. The p™—layer was made by ion impantation of boron. The thick-
ness of the epitaxial layer is 59um + 8% and the resistivity is p = 46 Qcm + 15%. This

resistivity translates into an effective doping concentration of N, ¢y = (1 4 0.18) x 10" cm™3

by applying . .

P qun ~ quNers
w is assumed to be approximately the mobility of electrons in intrinsic silicon, py =
1350 cm?/Vs, due to the low doping [38, p. 99]. By assuming a uniform effective doping
concentration in the epitaxial layer this was measured by CV to be

Negp = 7.7x 10" cm=3

which is ~25% below the nominal value. The measured value was used in all the analysis
in this thesis.

The wafers were cut into rectangular sections of about 1.5 x 1.5 mm? in size. The pro-
cessing included no intentional oxygenation, hydrogenation or the intentional introduction
of any other impurity, but oxidation necessarily introduces oxygen from the surface. A
picture of the processed and diced wafer is given in figure .1}

The use of silver pasteE] was only rarely necessary since the samples have bottom and top

'Institute of Electronic Materials Technology, Warszaw, Poland.
2A liquid solution of silver and acetone. Commonly used for making or improving ohmic contacts.
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Figure 4.1: A picture of the processed and diced wafer. The n~—layer has been phosphorous
doped to a nominal concentration of 1 x 1014 cm~3. The diode samples can be seen as
small (1.5 mm)? squares located in the areas that are covered with aluminium (grey).
The rest of the structures in the wafer are irrelevant to this thesis. The primary and
secondary flat indicate that the substrate is (111) n—type, see figure f.2]

A Primary

B 100 naype [ Primary fat

\

Secondary flat Secondary flat <>

A Primary . KPrimary
y flat y flat
8
4,

Secondary flat

<

Figure 4.2: An illustration of the wafer flats used to identify the properties of the substrate mate-
rial, whether it’s n— or p—type and the crystal direction. Figure from Senturia [37].
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aluminium contacts. A list of the samples and the measurements performed on them is
given in table 4.1 below and a schematic of a sample is shown in figure 4.3

The samples have been irradiated with 6 MeV electrons at room temperature (RT) to a
dose of 10 ¢cm~2. The irradiation time was on the order of 103 s, and the irradiation was
performed at the Alfvén laboratory at KTH, Stockholm.

Sample name | Dose Storage time and temp. | Experiment, parameters
(cm~2) | before meas.

Wi1_12 1E14 3 months, -18°C Isochronal, 0 — 450°C
WI_15 1E14 3 months, -18°C Isothermal, 325°C

W1 _18 1E14 3 months, -18°C Isothermal, 338°C, and

depth profiling

WI1_16 1E14 3 months, -18°C Isothermal, 350°C
WI1_17 1E14 3 months, -18°C Isothermal, 360°C

Table 4.1: A list of the samples and the measurements that were performed on them for this work.

w

~N
Cz substrate ™ ~

525 um

w N |
Epitaxial -
59 um

Figure 4.3: A visualization of the samples used in this work where the front side is a microscope

photograph. The front contact is the middle square, with a patch of silver paste in
this case, which is electrically isolated by dark ditches of SiO5. The thickness of
the epitaxial layer is 59um + 8% and the resistivity is p = 46 Qcm + 15% according
to the producer ITME, roughly corresponding to the measured effective doping of
7.7 x 1013 cm™3. The dimensions are not to scale.

4.2 Experimental techniques

The theory behind the experimental techniques and the extraction of important parame-
ters will be addressed in this section. DLTS is the most thoroughly presented method,
since most of the results presented in the following chapter was obtained by this method.
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The current-voltage (IV) and capacitance—voltage (CV) techniques will also be briefly
explained.

4.2.1 Current-voltage (IV)

IV was used in the experimental work only to make sure that the contact and the general
performance of a sample was good. In other words the leakage current, I,, was mea-
sured to see if it increases significantly after annealing from the “as irradiated”—condition.
Whenever I, changed significantly, the reason was assumed to be a bad contact or con-
tamination by an impurity during annealing. In either case several measurements were
then made, also using Ag paste, until good contact was established if possible. Otherwise,
the sample was simply discarded and the annealing experiment was repeated from the
beginning on a similar, as—irradiated sample.

4.2.2 Capacitance-voltage (CV)

As described in equation (3.14)), the capacitance of a pn—junction is given by

eA

_ €A q L1
C=w = 6A[26(Vbi —V)(Na Nd)] 1)

This means that a measurement of the capacitance as a function of the reverse bias voltage
can be used to extract several properties of the junction.

4.2.2.1 Doping concentration and built-in voltage

After squaring (3.14) and rearranging, the above equation becomes

1 2(Vu=V)Na+ Ny  2(Vei —V)
C2 "~ qeA?2  NyN, — qeA2N,

4.2)

where the last approximation is valid when N, > N,, that is for a p*—n~—diode. This
means that for a uniformly doped junction, when N, is constant over the junction width,
1/C? should be linear as a function of V = V,;. A linear least-squares fit would give

1 2 2V

V4 b= —
aVre+ qeA2Ny o+ qeA2Ny

& 4.3)

Thus, N is found from the slope and Vj; is found by extrapolating to 1/ C? = 0 where
the straight line intersects the V,;—axis in V,, = V4.

4.2.2.2 Depletion voltage and maximum junction width

In the case of a pT™—n~—nT—diode, where the active n~—layer is sandwiched between
two more highly doped layers, a large enough reverse bias can result in a situation where
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the entire low—doped side of the diode becomes depleted. This reverse bias is called the
depletion, or punch—through, voltage and the diode is said to be fully depleted. There
is an electric field going straight from the p*—side to the n™—side with no free carriers
within the entire n~—-region. When the diode is fully depleted it will conduct very little
current. See figure for a layout of the pT—n~—n"—diodes which were investigated in
this work.

If the reverse bias is increased further when the n~—region is fully depleted, then the
depletion region extends into the n—region which is much heavier doped than the n~—
region. Thus, the change in capacitance per voltage, or in other words the slope of ca-
pacitance vs. voltage, will be much smaller here. This can readily be seen from equation
#@.2) when N,;,,- < Ny, +. The change in the slope of C' vs. V;; can therefore be used
to determine the depletion voltage, as shown in figure {.4]

10—10

Capacitance (pF)

10" S

10° 10 10

Reverse bias voltage (V)

2

Figure 4.4: Capacitance as a function of reverse bias in a loglog plot. The depletion voltage is at
the bend in the capacitance, which is at V;., ~ 8 V in this example.

Full depletion is the normal operating mode for a radiation detector. This is because the
depletion layer must be as large as possible to enhance the sensitivity (largest possible
production of EHP’s), and as large charge collection efficiency, or as low recombination
rate in the depletion region, as possible. Care must be taken to keep the voltage between
the depletion and the breakdown voltage. A smaller voltage will give lower sensitivity
and a larger voltage will lead to breakdown.

However, irradiation induced acceptor defects with an energy close to mid band gap can
decrease the effective doping concentration and thus decrease the depletion voltage. For
very large radiation doses the donor concentration, N, in the n~-region can become
smaller than the acceptor concentration, N,. This is called type inversion since the n™—
layer has become a p~—layer and the effective doping concentration, Nesf = |Ng — Ny,
changes to acceptor-like. After type inversion the depletion voltage starts increasing with
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the radiation dose, and eventually it can become difficult to deplete the detector volume
in the p~—region (n~ before inversion).

4.2.3 Deep Level Transient Spectroscopy (DLTS)
4.2.3.1 The principle of DLTS

The principle behind constant—voltage deep level transient spectroscopy (DLTS) is to
charge the traps by pulsing the reverse bias between a large and a smaller value. Starting
from the large reverse bias, the junction is in equilibrium. Then the traps are charged by
applying a pulse voltage, or rather by decreasing the reverse bias, for a short amount of
time. When the voltage is returned to the large reverse bias, the change in the capacitance
as the traps emit their trapped carriers is measured.

The starting equilibrium situation is depicted in figure The charging of the traps
by applying a short, close to zero pulse voltage is shown in figure4.5(b)] and the emission
of trapped charge carriers after the return to a reverse bias is shown in figure @.5(c)|

This procedure is repeated several times at each temperature in a temperature scan. The
capacitance transient in response to the voltage pulsing sequence are measured at each
temperature as shown in figure[4.6] The temperature interval used in this thesis is from 77
—300 K, which is from liquid nitrogen (LN3) to room temperature.

4.2.3.2 Equilibrium

Figure shows that in the region 0 < x < W, — A the trap level is closer to the
conduction band than Er, Ei(z) > Ep, . Therefore e, > c,, according to equation
(3.24). Also, in the depletion region n ~ p ~ 0 because the charge carriers are swept out
of the depletion region by €;. Then ¢, ox n =~ 0. Thus, in this region the level will be
unoccupied by electrons at reverse bias in equilibrium.

However, at the far edge of the n—region there will be a transition length, W, — A < x <
W, where Ef,, > FE;. This is still inside the region which is defined to be the depletion
region because of the band bending. The traps at this level are in the so—called A-region,
and they will not emit their trapped carriers during the emission phase. Therefore, the
concentration in the depletion region deduced from the measurement becomes too small
if this effect is not considered, since these traps do not respond to the voltage pulse.

4.2.3.3 Charging

A pulse voltage which is close to zero is applied over the junction in figure The
traps in the region 0 < = < W), — A will never be filled since E;(z) > EF,,. The duration
of the pulse voltage has to be long enough for all the traps to capture electrons, so the
required pulse width depends on the capture cross section of the level. The larger o, for
a level, the shorter the pulse width is required to fill all the traps. In this thesis a filling
pulse duration of 50 ms is assumed to be sufficient to saturate the occupation of all traps.
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Figure 4.6: The capacitance as a function of time when a voltage pulse is applied to fill the traps
in the depletion region.

4.2.3.4 Emission

At t = 0 immediately after changing from —V), to —V/., all the traps are occupied by
electrons, as shown in figure However, now E;(z) > Ef,, except in the \-
region where the traps will always be occupied. Therefore the traps will emit their trapped
electrons. Possible recapture of electrons is neglected.

There is a surplus of positively ionized donor atoms when the traps emit their trapped
electrons. The depletion region contracts to eliminate the surplus positive space charge
by moving the right hand side of the n-region towards the p-region and leaving behind
neutral donor atoms which are now outside of the depletion region. The depletion region
contracts until equilibrium and charge neutrality is re—established. In a p*—n~—junction
it is a good approximation to assume Wy =~ x, since x, > x, according to equation
(3.13). Then W, has a time dependence like

Walt) = Waoo — AWa(2)

When the depletion width decreases, the capacitance increases since they are inverseley
proportional to each other according to equation (3.14). The increase in capacitance is
measured as a capacitance transient,

C(t) = Coo + AC(t)

as displayed in figure
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4.2.3.5 Rectangular transient charge model

As can be seen in figure .5(a)]—.5(c)| there are three regions of the junction in which the
space charge density behaves differently during charging and emission. These differences
are summarized in table The assumption that the transitions between each of these
three regions is abrupt is called the rectangular transient charge model in Blood & Orton

[5].

Region Space charge | Description
density
0< xz <Wp,—2A N j The traps in this region are always unoccupied, so
¢ (t) =0.

Wy,—A< & <W,—X| Nj(t)—n(t) | The traps here are filled during charging pulse and
emptied by electron emission when the voltage is
changed to reverse bias, so n(t) varies with t.

Wy=A< z <W, N j — N In this region the traps are always occupied, so
Ty (t) = Nt.

Table 4.2: The three regions with different behaviour define the basis for the so—called rectangular
transient charge model [6].

4.2.3.6 The \-length and the Debye tail

The total band bending V due to an applied reverse bias, V = Vj; + V., is defined to be
the positive quantity

qV = E.(—o0) — Eq(4+00) = E.(0) — Ec(xq)
in n—type materials. The depletion approximation of no electric field outside the depletion

region is assumed. The potential, ¢)(z), across the depletion region is defined as in figure
4.7(b)l, or in other words

~qU(x) = Ee(x) = Be(zq)  9(0) = -V
Y(xg) =0

where the negative sign for ¢)(x) is because the electron potential decreases for increasing
x. The concentration of electrons in the conduction band outside the depletion region is

Ec(l'd) — EF(:L'd) >
kT

4.4)

ng = n(xqg) = Ne.exp <

For x < x4 this becomes

n(e) — N exp <_EC(:U) ;TEF(xd)> — oy oxp (q%))

when inserting for E.(x) from equation (.4). This is called the Debye tail of free
electrons in the depletion region and it is shown in figure 4.7(a)l Ignoring any de-
fects in the depletion region except ionized donor atoms, the space charge density is
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p(z) = Ng — n(z). When inserted into the Poisson equation this gives for ¢(x)

) plx) g |:Nd g exp (W(w)ﬂ

dz? €gic0 €gi€p kT
_qNg

€5:€0

~

(4.5)

where the last approximation is valid when —t(z) > kT'/q. This means that the free
charge carriers in the Debye tail can be neglected when this approximation is valid.

Integrated once from x4 to x this gives the electric field e(z) = —di(z)/dx. When
integrated twice with the same limits the potential is
_ qNg 2
¥(a) = 5 (24— 2)

Further, x) = 24— )\ is defined to be where the band bending is exactly Er(z4) — Fi(xq),
)

—q¥(zr) = Er(z)) — E(zq)
A can now be calculated by inserting ¢(z ) into equation (4.4) at x = z).

2€5;€0
62Nd

A=14— 2y = [ (Ep — Et(xd))] "

By using equation (3.1) this can be expressed through the measured quantity E.(zg) —

E(zq) as
oee N 1/2
A= { S0 {E — B, — kTl <> H (4.6)
e*Ny n
)
08
o
E 06
8 04
[ e
0.2]
0
0 05 1 15 2
X/ Xy
(a)

Figure 4.7: A visualization of the electron density [(@)] and the Debye tail in a band diagram with
free electrons in the conduction band from the depletion edge and into the depletion

region[(b)] Electron capture happens here because the concentration of free electrons
in the conduction band is not zero within the Debye tail.
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4.2.3.7 Capacitance transients

The space charge density when there is only one donor-like level participating in capture
and emission processes is

p(x,t) = q [N + (N —me(t)) | el

Tl,t(

0) = N

t
t=00)=0

N g} ¥ takes into account the effective doping N; — N, and any other levels that are not
emitting electrons, but which could be in a non—neutral charge state.

A time—dependent space charge density, p(z,t), will result in a time—dependency of the
electric field, e(z, t), and of the total potential over the junction, V' = V'(¢). In solving
the Poisson equation for the potential as a function of position one must then assume a
time—dependency also, ¥ = i (z,t), so

O plx,t)

Ox? €5;€0

This can be integrated twice to find the voltage across the junction, as shown in detail in
appendix [B] The total voltage across the junction is

V(t) = (00, ) — t(—00, ) = — /x 2p(z, t)dz @)

€5i€0 J—z,
The integration limits can be chosen as [ for a p™-n~junction since z,, > .

Uniform distributions of N;f f N; and n; are now assumed within each of the three dif-
ferent regions defined in table #.2] This means that the contributions from these to the
space charge density in each region will be

NT for 0<z<azq(t
N+(;v) :{ 0 else g

Ny for O0<ax<axg(t)— A
Nt($):{0t else o

ne(t) for x,— A<z <xy(t)—A
nt(t’x):{ot() else ’ 0

After dividing into these three regions and evaluating the integral over each region, the
voltage is

q

V(t)= —1—
Q 2€gi€0

{NFZ(t) + Ne(za(t) = X)? = ne(t) [(za(t) = N)? = (zp — X)?] }
(4.8)
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As the traps emit their electrons under reverse bias the voltage over the junction will try
to change to accomodate the increase in space charge density. However, in a constant—
voltage DLTS system the instrumentation will keep the reverse bias constant during the
emission. Differentiating the above expression for V' (¢) and equating to zero yields

[N+ (N =) (0= X)) 2 = 2 [(aalt) = N2 = (1) = NP T 49)

In these calculations the assumption has been made that A is only a function of tempera-
ture, it does not vary with voltage. In the so—called dilute limit the following is valid

Nt ~ Ng> Na, Ny, ny

Then the left hand side in the above equation greatly simplifies to

drg 1 dn
Nd@“dﬁ =3 [(xd(t) - )‘)2 — (zp — )‘)2] CTtt
deg/dt __dCu/dt 1 [(za(t) = N)* = (zp = N?] 1 dne “10)
rg Chp 2 z2 Ny dt '

Crp(t) = egiepA/xq(t) is used and the change in reverse bias capacitance during the
emission process is assumed to be small so C}; is approximately constant. Integrating
from ¢ to t = oo, using equation (3.29) and that n;(c0) = 0 yields

AC(T,t) = —AChe~ (Tt (4.11)
The maximum amplitude of the transient is

1 (malt) = N = (= VP N,
ACy = 2 xg Ny rb

4.12)

Equation (.11) is a good approximation when the depletion approximation can be as-
sumed, when the trap concentration is within the dilute limit and for uniform N, and V,.
If x4 > A, x, then equation (.12)) further simplifies to

N,
ACy = —L
Co 2N, Crb

Otherwise the factor
(2a = N2 — (p — N)?

«
2
Ly

can be expressed in terms of the reverse and pulse bias capacitances as

o(T) = T MT)? = (2p = NT)* _ | (%)2 20, <1 - crb> AT)

a:z, Cp €gicpA Cp

(4.13)
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4.2.3.8 Weighting functions and rate windows

To make a spectrum from a collection of capacitance transients from a temperature scan
they can be made into a DLTS signal, S(7"). The DLTS signal is defined as

ta+t;
Si(T) :% > AC(T, ty)w(ty) (4.14)

v ti=tq
where w(t) is some specific weighting function, n; is the number of measured capacitance
values in the i’th so—called rate window, t; is the time length of the rate window. If the
sampling interval between each measured capacitance value in the transients is 7, then
t; = n; 7. tq = 7/2 is the time at the start of the summation, and also a delay time
to allow the instrumentation to recover from a likely overload during the pulse bias, as

shown in figure 4.8

The length of the time window determines at which value of the emission rate, e,,(T"), the
spectrum has a maximum value. This can be understood by noting that for peaks in the
DLTS spectrum one must have

Z% = <d(thi)> (dfznTti)) =0

where the last factor is zero only for 7' = 0, which is irrelevant. Thus, DLTS peaks
appear only at a certain value of e,t; = e]'*"t; for each rate window and for a certain
weighting function. The peak temperature is a characteristic of the defect and the rate
window. This is the motivation for the term “rate window”, since only when the emission
rate e,, (T") approaches €))'** (T)eqr ) is a peak created in the spectrum. The above equation
for e7***t; must be solved by some numerical method, such as Newton—Raphson, since it

is impossible to write the solution in closed form.

The lock—in and GS4 type weighting functions are used in this thesis. The lock—in weight-
ing function for a discreet signal looks like
1 tg+27r <ty <tg+2'7
w(t) = i—1
-1 tg<tj <tqg+2°7

The GS4 weighting function is

24 ta+ 27 < t; <tg+2r
—48  tg+ 27l < t; <tg+ 27

25 tg+27r <t <tg+27 7

-1 ta < tj <tq+2727

w(t) =

The number of required measurements of C(t) is n; = 2¢ for lock—in and n; = 2¢*! for
GS4. The rate windows used in this thesis of both lock—in and GS4 type are listed in table
.3 Lock—in offers better signal-to—noise ratio (SNR) than GS4 by about a factor 10, but
it is less selective than GS4, so lock—in peaks are broader. An important property of a
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Figure 4.8: An illustration of the discrete capacitance transient, with sample interval 7 and time
delay tq = 7/2.

Lock—in GS4
Window no. ¢ | No. points Length (ms) | No. points Length (ms)
1 2 20 4 40
2 4 40 8 80
3 8 80 16 160
4 16 160 32 320
5 32 320 64 640
6 64 640 - -

Table 4.3: The length and number of points in each lock—in and GS4 rate window. The 6th GS4
rate window was not used since each capacitance transient was recorded with 64 time
points.
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weighting function is that Y w = 0, since this cancels out any constant contributions in
the function on which it is applied.

> Ct)w( Z Cryw(t, Z AC(t)w(t;)
J
=0
A defect will create a peak at a certain temperature in a certain rate window in a DLTS
spectrum, or in other words at a certain value of e, (T")t;. When e,, is known at the peak
temperature for several different rate windows, then o,, and AH can be deduced from an
Arrhenius plot. An illustration of a DLTS spectrum in different rate windows is in figure

x10° DLTS spectrum > Arrhenius plot
T T 10
-o-Window 1 m Ea=0.228eV (meas.)
4 —4-\\indow 2 -—-Linear fit
~7Window 3 b
—~*Window 4 "
3 ~o-Window 5 A

~+Window 6

DLTS/ CR
e /T (1/sK%)
]

»
[ 4

105 110 115 120 125 130 8 85 9 95
Temperature (K) 1T (K'1) %10

Figure 4.9: An illustration of a DLTS spectrum in different rate windows of the lock—in type. The
rate windows|(@)]and the Arrhenius plot of this peak[(b)] The y—axis in the plot of the
DLTS spectrum is in units of S;/C}., since this is proportional to N;. The peak in this
example is due to the divacancy cluster, Vs.

4.2.3.9 Extraction of trap properties

If a temperature scan is done and a DLTS signal for several rate windows is built from
the measured transients, then a set of values for S;(T}cqk) is produced for each mea-
sured DLTS peak. In this thesis the rate windows 1-6 have been used, so i € {1,...,6}.
The measured peak temperatures, Tpeqr, € {71, ..., T3}, each correspond to a value of
€M% (Thear). According to equation (3.27), an Arrhenius plot of In(e,/T?) vs. 1/T
yields the straight line

AH 1
In(en/T?) = ——— = +In(Qopq) (4.15)
kT
since AH AH
B B _ 2
en = OnaVthn(T)Ne(T) exp( T ) = 0o QT exp(— T —)

The factor Q contains all the factors in the emission rate that do not depend on T, so

3ET ([ 2nm* kT /> 3k [ 2mm k\ %>
T2 = T)N,(T) = 2 n _ 9 n 72

=Q
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AH is found from the slope of the Arrhenius plot of equation (.15) and o, is found
from the extrapolated intersection with the e,, /T?-axis as 1/T — 0.

The concentration is found by rewriting equation (.14)) as

1 ta+ts
(T — 2 —en(T)tj (4
Si(T) = ACy — > e iw(t;) (4.16)

) td

=F;=F;(ta;ti,en(T))

The term labeled as F; has the same value for all peaks in a certain rate window since
en(T) = €)' (Tpear) at a peak, and T)e,q, depends only on which rate window is used.
This is just a numeric factor which is characteristic for each rate window of a certain
weighting function. Therefore, at a DLTS peak the amplitude of the peak is simply pro-
portional to the concentration of the defect. In other words

Nti 2Nd % Si,peak(Tpeak) _ Nt,@'(Oé = 1)

_ 4.17
’ Crb (Tpeak)a(Tpeak) E ( )

To improve the statistical accuracy, the concentration is calculated from all the measured
rate windows and taking the average.

Ny=> Ny
%

Since 0 < a(Tpeqr) < 1itis clear that N; > Ny(ow = 1). The approximation
Tqg>Tp, AN = a=1

thus yields a lower concentration than the actual concentration.

4.2.3.10 Synthesizing DLTS spectra

When a measured DLTS spectrum is very noisy or contains overlapping peaks, then it can
be useful to create a synthetic DLTS spectrum from a set of V;, 0, and AH , and then
try to make the best possible fit of the synthetic to the measured spectrum.

Equation (4.T1) for the capacitance transient and (4.14) for the DLTS signal was derived
for a situation where only one level is emitting electrons at a certain temperature. How-
ever, it can be shown that the same equations apply when several independent levels are
emitting electrons at the same temperature. The total capacitance transient at that temper-
ature is the sum of the individual capacitance transients from each emitting level.

With several emitting levels the space charge density becomes, assuming that N; is much
larger than any other concentration and that all species have uniform concentrations,

all levels
p(t) =q [Na+ Y (Nii—ng(t))
)
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This can be used to calculate the capacitance transient by the same method as outlined
before. The result is

11 levels
1(zg(t) — N2 — (2,(t) — \)2Chp @ ~
AC(T,t):Q(d() )xg(po ) N:; S Nyge ™ @1
¢

which is simply the sum of the transient from each emitting level. Since summation is a
linear operation, the total DLTS spectrum due to emission from all the levels is

1 tatti all levels
Si(T) = — S TACT twty) = > Si(T) (4.19)
Y ti=tq [

In short, a synthetic DLTS spectrum for several peaks is simply a superposition of the
DLTS spectra for each individual peak.

4.2.4 Profiling with DLTS

The theory for using DLTS for depth profiling of defects is outlined in for example Blood
& Orton [6, ch. 12.4]. The starting point of the derivation is equations {.12)) for the
capacitance transient amplitude and (3.13) for the depletion depth as a function of reverse
bias voltage. Upon taking the differential and using the approximation that /V; is constant
in a small depth interval dx,, which corresponds to a small change in pulse voltage 6V,
then the approximate defect concentration at depth z,, — A is

x qN2z2 5(ACyH)
N, o — p d”d
t(mp A) < ) Crb€ 5‘/p

This assumes that N, is constant throughout the investigated region. V;. is held constant
while V), is varied from V), = V. to V), = V), ;5. This means that the depletion region
edge moves from the bulk and towards the surface.

4.20
=5 (4.20)

At a peak in the DLTS spectrum S; is proportional to ACj, as can be seen in equation
#@.16). Then the concentration can be written in terms of the differentiated DLTS signal
as

x qNgxfl 6S;
Ni(xy — \) = — P 4.21
ey =) <xp - A) CreF, oV, (#21)
This can further be written in terms of the measured capacitances, C. and C), as
1 qA%N?2 §S;
Nt(z, — ) = — 4.22
(2 =) (1 ~C, /EA) C3F, oV, (422

4.3 Annealing experiments

The concentration of defects is in general a function of position, time and temperature.
For uniformly distributed defects the dependence on position disappears. Thus, the con-
centration of the defects can be measured while keeping the annealing time constant and
increasing the temperature, or while keeping the temperature constant and increasing the
annealing time. The former is isochronal and the latter isothermal annealing.
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4.3.1 Isochronal annealing

Isochronal annealing gives an overview of the population of defects in the material which
is investigated. “Iso” and “chronos” means equal time in latin, so as the name suggests the
samples are annealed for a constant amount of time at different temperatures. Common
choices of the annealing time is 15 — 20 min. In this work the annealing time was 20 min.

4.3.2 Isothermal annealing experiments
First order reactions, say a reaction between A and B where [B] > [4] as in (3.41)), follow

[A] = [A]o exp(—c(T)t) = [A]o exp{ — cgexp (—Z‘i) t} (4.23)

co is independent of temperature and Ej, is the activation energy, which is the minimum
energy required for the reaction.

If [A] is measured as a function of time for two or more isothermal measurement series,
then the reaction rate ¢(7") is the slope of the straight line

In[A] = In[A]o — ¢(T)t (4.24)

This produces a set of reaction rates, ¢(7"), one for each measurement temperature. Since

Eq . : .
c(T) = cpe” *7, then E,/k is the slope and the pre—exponential factor, co, is the y—
intersection of the straight line

E,
In¢(T) = T +1Inco (4.25)

in an Arrhenius plot of In¢(T") vs. 1/T.

4.4 Instrumentation

In this section some of the experimental equipment that was used and the basic procee-
dures that were followed during the experimental work are presented.

4.4.1 The Asterix setup

Asterix is a setup for electrical measurements in the temperature range from LN» to above
room temperature, 77-400 K. It was used for DLTS, CV and IV in this thesis. Figure {.10|
is a basic block diagram of the components in the setup and their interconnections. A
central part of the setup is the capacitance meter HP4280A which measures CV profiles
in “C-V” mode and capacitance transients with a sampling rate of 1 MHz in “C” mode.
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Figure 4.10: A block diagram of the DLTS setup. The bias, whether negative or positive, is ap-
plied through the wire which is labeled “High”, whereas “low” is always grounded.
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4.4.2 Annealing equipment and procedures

In figure {.T1] is a photograph of the hotplate used for the annealing of samples up to
250 °C. An aluminium block was used as a thermal mass to improve the homogeneity
of the temperature distribution across the plate. The sample was placed on a small piece
of ceramic to avoid contamination from the possibly dirty thermal mass. The ceramic is
copper patterned to allow annealing under bias, but this feature was not used in this work.
The temperature of the hot plate was monitored by means of a liquid alcohol thermometer.
The thermal resistor on top of the hot plate has a cavity for mounting the thermometer.

Figure 4.11: The hot plate used for annealing at temperatures up to 250 °C.

For higher temperatures than 250 °C the samples were annealed in a N2 atmosphere in a
fused silica tube furnace which is shown in figure .12} The sample was contained in a
silica boat.

Figure 4.12: Fused silica tube furnace with No supply. This was used for all annealing at higher
temperatures than 250 °C.
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Chapter 5

Results and discussion

“If we knew what we were doing, it would not be called research, would it?”
— Albert Einstein
Matlab is used for the data analysis of the measurements presented in this thesis. I have

written all the Matlab—scripts and performed the analysis. The most relevant of these
scripts are documented in appendix [A]

5.1 Goals

As stated in the introduction, the purpose of this work have two different aspects, which
are

Electrical characterization of the silicon epitaxial (EPI-Si) layer after electron irradia-
tion, and a comparison of the behavior of the generated defects in EPI-Si with those
in DOFZ- and MCz-Si.

To measure the properties of as yet unidentified defects, suggestidentities and find pos-
sible relationships to impurities such as oxygen, carbon and hydrogen.

5.2 Impurity concentrations and distributions

5.2.1 Expected distributions of oxygen, carbon and hydrogen

The intuitively expected shape of the concentration vs. depth profiles for oxygen, carbon
and hydrogen from the surface, through the epitaxial layer and into the Cz substrate are
shown in figure The higher levels of oxygen and carbon near the surface is due
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to in—diffusion during different processing steps, such as oxide growth and etching. On
the other side of the epitaxial region, the Czochralski substrate contains much higher
concentrations of impurities than the epitaxial layer, so these will diffuse some distance
into the epitaxial layer. The concentration of hydrogen is expected have a positive gradient
towards the surface because of in—diffusion during processing, such as wet etching of SiO5
with hydroflouric acid (HF).

A
NEAR SURFACE EPITAXIAL Cz SUBSTRATE —_—
(P m) (%) Onygen
= | """ Carbon
D _rT T ~
S N\ = — = Hydrogen
N2 N Y
c \
o 3 ,
S| e, \ 4
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~ —
>
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Figure 5.1: The expected shape of the concentration vs. depth profiles for oxygen, carbon and
hydrogen from the surface, through the epitaxial layer and into the Cz substrate. Oxy-
gen and carbon are the only impurities with large enough concentrations to possibly be
detected by SIMS, since even phosphorous has a concentration as low as 10" cm™3.
However, the concentrations of these impurities are shown to be below the SIMS de-
tection limit of about 2 x 1017 cm ™2 for oxygen and 5 x 1016 cm~3 for carbon in
ﬁgure except in the p*—region close to the surface.

Hydrogen has a large diffusivity in silicon, so at room temperature all H will be trapped
by some defect complex. Since the hydrogen is introduced mainly from the surface,
hydrogen diffuses from the surface and towards the bulk. This is expected to result in
a depth distribution of the hydrogen—containing complex which looks qualitatively like
the one in figure [5.1] There may be several hydrogen related complexes, but here it will
be assumed that there is only one hydrogen sink and it is labeled HZ where Z means
everything in the complex which is not H. If this defect dissociates during post—irradiation
annealing, then it will behave as a near—surface hydrogen source.

5.2.2 SIMS measurements

Secondary ion mass specrometry (SIMS) was performed to measure the oxygen and car-
bon concentrations in the samples. The result is plotted in figure[5.2] The peak near the
surface for both oxygen and carbon has two distinct features as shown in [5.2(b)] The
first valley—like part is the partially oxidized aluminium layer which makes up the top
electrode of the samples. The next peak—like part is just where the aluminium ends and
the silicon starts, and shows that there is more oxygen and carbon in the p™—region than
deeper in the material. The higher [O] and [C] are most likely due to processing steps
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such as oxide growth, etching and photolithography since photoresists contain substantial
amounts of carbon. Another possible explanation is that gettering in the highly boron
doped region makes the oxygen and carbon concentration higher there than elsewhere.

For depths larger than about 15 ym i.e. in the n~—layer, the signals are simply the detec-
tion limit for these measurements. This means that neiter oxygen nor carbon is detected
during the measurements below the aluminium layer and down to about 10-12 um. The
actual value of the depth is somewhat uncertain due to the lower erosion rate of the inci-
dent primary ions in the aluminium layer as compared to that in silicon.

It is concluded that the n~—layer contains less than 2 x 107 cm™2 oxygen and less than
about 5 x 10'6 cm™3 carbon. This is consistent with the information in figure 3.14] about
the concentrations of oxygen and carbon in epitaxial layers produced by ITME, where [O]
is said to be (3 — 4) x 10'® cm~3 and [C] is given as ~ 1 x 10'® cm~3,
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Figure 5.2: SIMS measurements of the concentration of carbon and oxygen [(@) and a magnified
view which shows the aluminium layer and the carbon— and oxygen—contaminated
silicon surface region The measured current of sputtered silicon ions is also dis-
played to further show where the aluminium layer ends and the silicon epitaxial layer
starts. The detection limit is 2 x 10'7 cm™? for oxygen and about 5 x 10'¢ cm~3 for
carbon.

5.3 Isochronal annealing: Thermal stability

In figure[5.3|the DLTS spectra for the isochronal measurements are plotted for annealing
temperatures from RT — 225 and 225 — 425°C. The 640 ms rate window of the lock—in

type weighting function is used for all plots of DLTS spectra in this thesis unless otherwise
is specified.

The annealing time was 20 min at each temperature and the annealing was done in Ny gas

for temperatures above 250°C to avoid in—diffusion of impurities and possible oxidation
of the Al contacts.
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The position and assignment of the peaks are well established for VO, V3, V20 and VOH.
It is also possible to see from the measurement at 350 °C that there is a prominent level
at 170 K which is labeled E(170 K). However, it is not possible to determine from the
measurements in figure [5.3(b)] which other minor levels are contributing to the DLTS
signal between 140 — 170 K. The position of the L—center is pointed out simply because
its position is in this temperature interval, but it is not possible to determine whether it is
actually present in these spectra.

The concentration of VO, V3 and V50 is found as described in section by using
equation (4.16)), and the results from the isochronal annealing is plotted in figure[5.4] Note
that only non—overlapping peaks can be directly analyzed in this way. The concentration
of overlapping peaks can be determined by using a fitting procedure as described and
justified in the following section. The accuracy of the fitted concentrations is slightly
reduced since it is determined from only one rate window, and is not the average of the
concentration as determined in each invidual rate window. The concentrations of V4 and
V0 is separated in figure[5.4] This is based on fitting each indivdual concentration so that
the position of the total peak, corresponding to [Vo+ V2O], matches the shift in position
as the reaction Vo + O; — V20 takes place.

As mentioned, VO, V3, V50 and VOH are relatively well known. However, the L—center
and the peak labeled E. — 0.37 eV have only recently been described by Mikelsen [27]
and Bleka [4], respectively. The defect level labeled E. — 0.37 eV is believed to have
another level which overlaps with V,, /0 and VQO_/ 0. E,—0.37 eV is unstable at room
temperature. To the best of the authors knowledge no articles have been published focus-
ing on the two peaks labeled E(170 K) and E(198 K) appearing after annealing at about
325 - 375°C. E(198 K), however, is mentioned briefly as a minor defect in a number of
articles, such as by Mikelsen et al. in reference [25] where it is suggested to be VoOH.

5.3.1 Separation of overlapping peaks

Either fitting of the lock—in DLTS spectra or a weighting function with a larger resolution
is required to determine the number of levels, the electrical properties and the concentra-
tion of the individual levels in the temperature region between VoO=/~ and Vo0 ~/°. In
this thesis a combination of fitting and the GS4 weighting function is used. However, the
use of fitting requires some explanation and justification.

5.3.1.1 Determination of the number of overlapping levels

The isochronal measurement at 350 °C is plotted in three different versions in figure (5.5
By comparing the lock—in spectrum in to the GS4 spectrum in it can be
seen that the levels are partly separated by applying the GS4 weighting function instead
of lock—in. However, it is also clear that the GS4 spectrum is quite noisy because the
GS4 spectrum has a signal to noise ratio (SNR) smaller than that of the lock—in spectrum
by about a factor of 10. Therefore, the situation can be made clearer by smoothing the
spectrum with a running average of neighboring data points. This is done over the two
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Figure 5.3: DLTS spectra obtained by isochronal annealing from RT — 225°C|[(@)] and from 225 —
425°C|(b)] The spectra are of the 640 ms rate window of the lock—in type weighting
function, the annealing time was 20 min and the annealing was done in N, gas above
250°C. C'y is the reverse bias capacitance, so DLTS / C is proportional to N;.
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Figure 5.4: Concentration as a function of annealing temperature from the isochronal annealing
experiment for all the detected levels [(@)] and a magnified view of the minor levels
which are separated by fitting of the DLTS spectra [VO] is scaled by a factor
of 0.25. The concentrations of V5 and V0 are separated by fitting of the individual
concentrations to get the amplitude of the overall DLTS peak.

nearest neighboring points on either side of all data points in figure Thus, each
smoothed measurement is the average of a total of 5 unsmoothed measurements as

42
Ssmoothed(ﬂ) = Z Sunsmoothed(rj)

j=i—2

from ¢ = 2 — (no. points — 2). The end regions of the temperature interval 77 — 300 K are
averaged over fewer DLTS data points, that is 77-78 K and 299-300 K.

However, smoothing can change the shape of a spectrum, hence the comparison between
the unsmoothed and the smoothed GS4 spectra is included to show that the use of smooth-
ing in this case does not change the position of the peaks although their amplitudes are
somewhat reduced.

It is clear from the GS4 spectra in figure [5.5(b)| and [5.5(c)| that there are three partially
overlapping peaks in the temperature range 140 — 180 °C. The indicated properties of
these three levels and thus the labeling as VOH, the L—center and E(170 K) is justified in
the following section.

5.3.1.2 Determination of the level properties

The labeling of VOH is so far tentative, since it is not possible to do a straight forward de-
termination of AH and o,, by Arrhenius plotting due to the overlap with both E(170 K)
and the peak at about 158 K, as shown in figure [5.5] However, there are intervals of an-
nealing time during which VOH has a large amplitude while E(170 K) and the middle
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peak have very small amplitudes. Conversely, when E(170 K) has a large amplitude, then
VOH has a small amplitude.

Therefore, care is taken in the determination of AH and o, to only use the spectra where
the peak in question is clearly larger than its neighbors, as given in table[5.1} This proce-
dure is necessary because overlap from neighboring peaks not only adds to the amplitude
of the total peak, but also shifts the position of the peak towards an overlapping peak if
the degree of overlap and the amplitude of the neighboring peak is sufficiently large. This
procedure is used to determined AH and o,, with some degree of statistical accuracy.

By using equation {#.19) a synthetic fitted spectrum is created with VOH and E(170 K)
in the positions determined from the Arrhenius plots. The individual amplitudes of these
peaks, and thus the resulting concentration of the defect, is determined by manually fit-
ting the synthetic spectrum to the measured spectrum. This is done so that a good fit is
achieved in all the lock—in rate windows 20 — 640 ms. The lock—in weighting function is
used since it is less noisy than GS4.

This is done for all four isothermal series and AH + A(AH ) and 0,4, + Aoy, are cal-
culated based on all the measurements, where A H is the mean value and A(AH ) is the
standard deviation and similarly for o,,,. The intervals of annealing time used to calculate
the level properties are listed in table[5.1]

Trap label | Annealing tem- | Start time - End time (min)
perature (°C)
VOH 325 900 - 7530
338 340 - 2600
350 210 - 1200
360 111 - 580
E(170 K) | 325 10 - 480
338 0 - 190
350 0 - 60
360 0 - 46

Table 5.1: A summary of the interval of annealing times in which each respective isothermal series
was used for the determination of AH and o, for VOH and E(170 K) by Arrhenius
plots.

The values of AH and o0,,, determined in this way can be compared to the values which
were eventually used in the fitting for all the isothermal series. The values used in the
fitting are very close to the average measured values, as can be seen in table[5.2]

Finding AH and oy, for the middle level at 158 K between VOH and E(170 K) is now
possible since there is only one set of defect parameters to vary until a good fit is achieved.
It is found that AH = 0.36 eV and 0,4 = 2.4 x 10~1* cm? gives an excellent fit to the
measured spectra together with the values for VOH and E(170 K) given in table[5.2] These
values for AH and oy, are in such close agreement with those previously reported for
the L—center, AH = 0.36 eV and 0,,, = 2.2 x 107 cm?, that this level is concluded to
originate from the L—center [27]. This level is not investigated any further in this work,
but its concentration is taken into account in the fitting procedure in order to determine
the correct concentrations for VOH and E(170 K).
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It is necessary to include V2O~ /0 in the fitting since this level partially overlaps with
E(170 K). When [V20] = 0, then E(198 K) was included in the fitting instead, since
these levels completely overlap. The transition of the peak from V,0~/0 to E(198 K)
consists in a shift in peak position from 200 K to 198 K.

AH and o, for E(198 K) are used for all annealing times after [VQO:/ ~] = 0, since after
this the peak at 198 K is assumed to consists entirely of E(198 K). The concentration of
E(198 K) is extracted as

[B(198 K)] = [V20~/0] — [V,0=/7] (5.1)
at each annealing step. Thus, no fitting is involved in the treatment of E(198 K) at all.

The activation enthalpies and capture cross sections listed in table [5.2] are used with no
variations to fit [VOH] and [E(170 K)] at all annealing times and all four annealing tem-
peratures in this work. Thus, only the concentrations of the defects are varied in order to
achieve a good fit.

Measured Used in fitting
Trap label | AH (eV) Opna(cm?) AH (eV) opa(cm?)
VOH 0.325£0.009 (74+4)x 10~ [0.32 7.0 x 10717
fL—center | — - 0.36 2.4 x 10714
E(170K) | 0.34 £ 0.01 (84+6) x 10716 | 0.34 7.0 x 10716
fv,0-/0 | - - 0.47 2.6 x 10714
E(198K) | 0.46+0.02  (1.541) x 10714 | 0.46 2.0 x 10714

Table 5.2: The level properties used to fit all the DLTS spectra that were aquired in this work in
the temperature range 140 — 180 K. TAH and o,,, used to fit the L—center and the well
known level VoO~/? are taken from litterature, as can be seen by comparison with
table [C.T]in appendix [C} The small differences in o,,, are well within the experimental
accuracy.

The measured AH and o,, for E(170 K) and E(198 K) agree roughly with measure-
ments of minor peaks at the same positions by Mikelsen et al. in references [24,25]. In
these references, AH = 0.31 eV and 0,,, = 4 x 10717 cm? are obtained for E(170 K)
whereas AH = 0.44 eV and 6,,, = 7 x 107'® cm? are obtained for E(198 K). The dif-
ference between these values and the ones measured in this work are readily explained by
the small concentrations of E(170 K) and E(198 K) and the corresponding reduction in
measurement accuracy.

5.3.2 Comparison to previous work on DOFZ- and MCz-Si

The isochronal annealing behavior of the defect levels in EPI-Si as compared to DOFZ—-
and MCz-Si is shown in figure[5.6] The impurity concentrations in the various materials
are compared in table[5.3] The estimation of the hydrogen content is based on the amount
of VOH relative to Vg, since the concentration of Vo depends only on the dose. Thus, Vg
is convenient to use as an impurity independent reference.
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Material ‘ Oxygen (cm~3)  Carbon (cm™3) Hydrogen
DOFZ | (2-3) x10'" (2—4)x10'® Most

MCz (5 —10) x 1017 <1016 Least

EPI <2 x 107 <5 x 1016 Intermediate

Table 5.3: Comparison of the impurity concentrations. The data for oxygen and carbon were
introduced earlier, in table for DOFZ and MCz, and in section for EPI. Hy-
drogen is introduced unintentionally during processing, and is not a characteristic of
any of these materials, unlike the concentrations of oxygen and carbon.

The differences in the annealing of defects in DOFZ, MCz and EPI are summarized in
table[5.4] and the most significant issues from table[5.4|and figure[5.6|are discussed below.

The maximum concentration of VOH is largest in DOFZ and smallest in MCz.

The growth of VOH ceases when the concentration of H is depleted, not VO. This is
evident since the concentration of VOH starts to decrease long before [VO] reaches the
detection limit. This means that the maximum concentration of VOH could be used as a
qualitative measure of the amount of H in the sample.

The maximum concentration of VOH is largest in DOFZ and smallest in MCz in the
samples studied here and in reference [25]. This is an indication that [H] is lowest in
MCz and highest in DOFZ in these samples. Another possible explanation for the lack of
measured VOH is that the reaction VO 4 O; — VO3 could be preferred over the reaction
VO + H — VOH in MCz, since [O;] is highest in MCz.

VO anneals out fastest in DOFZ, and slowest in EPL.

This is difficult to understand if VO + O; — VO3 is expected to be a major process, since
[O;] is highest in MCz, not in DOFZ, and expected to be lowest in EPIL. Thus, the prob-
ability of capture of VO at O; is largest in MCz and the annealing rate for this process
should be larger in MCz than in DOFZ.

However, if VO + H — VOH is considered, then this makes more sense. [H] is higher
in the investigated DOFZ samples than in the MCz and EPI samples, so this accounts for
the larger annealing rate in DOFZ if the creation of VOH is an important process. The
combination of a low [O;] and an intermediate [H] could make the annealing rate of VO
smaller in EPI than in MCz, where [O;] is much larger. Another possibility is that the
creation of VOH is suppressed in MCz due to the large [O;], making the creation of VOq
preferable.

V>0 anneals out by far the fastest in DOFZ, and slowest in MCz, with EPI some-
where in between.

This could be an indication of hydrogen assisted annealing, through Vo0 + H,, — V20H,,.
n implies that the hydrogen can be monoatomic, diatomic or more complex, so n > 1.

This scenario explains that the annealing rate of V20O is largest in DOFZ where [H] is

expected to be highest, and smallest in MCz where [H] is expected to be lowest in these

samples.
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There is maximum concentration of E(170 K) in EPI and least in MCz.

This is an indication that the creation of E(170 K) during the post—irradiation annealing
is suppressed in oxygen-rich materials, since [O;] is highest in MCz and lowest in EPL
The reason could be that the precursor of E(170 K) is depleted by a reaction with O; in
oxygen-rich materials which competes with the creation of E(170 K).

On the other hand, E(170 K) could be connected to [C]. However, only upper limits for
[C] is measured in both EPI and MCz, which makes a further discussion of this scenario
difficult.

There is maximum concentration of E(198 K) in DOFZ and least in MCz.

This indicates that the creation of E(198 K) during the post—irradiation annealing is sup-
pressed in hydrogen—lean materials, since [VOH], 45 is highest in DOFZ and lowest in
MCz. Thus, the E(198 K) defect may contain H.

5.4 Isothermal annealing: Reaction kinetics

5.4.1 Pre-annealing: Conversion of V, into V,0

The V2 centers in as—irradiated samples must be converted into VO through a so-called
pre—annealing procedure at a certain temperature and for a certain time before the possible
production of hydrogen related defects from migration or dissociation of VO and V30 can
be studied. The reactions are

VO +H — VOH
V20—>VO+V

The temperature must be sufficiently high to make Vo mobile and enable the formation of
V0, but it should be below the temperature range for the subsequent isothermal exper-
iments to prevent that the interesting reactions happen already during the pre—annealing.
The conversion from V3 to V2O occurs by divacancy migration and subsequent trapping
by O;,

Vs + 0; — Vo0

as shown in reference [26].

A representative selection of the annealing steps during a pre—annealing at 275 °C is pre-
sented in fi gure At 0 min, in the as—irradiated condition, the V,, /0 peak is significantly
larger than V2:/ "~ possibly because of cluster defects which disappear rapidly at elevated
temperatures [4]. The transistion from V3 to V2O can be seen in that V2:/ " shifts to lower

temperatures whereas V, /% shifts to higher temperatures. The positions of both peaks
seem to stabilize after about 330 — 360 min with about 90% of the original amplitude of

the presumably pure V2:/ ~ peak.
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Figure 5.6: Comparison of DOFZ— MCZ— and EPI—Si during isochronal annealing in
the temperatures 250 — 425 °C. The data for DOFZ- and MCz-Si are from reference
[25], whereas the data for EPI-Si are from figure[5.3] E1-E4 is the labeling used by
Mikelsen et al. In this work the defects will be refered to as they are labeled in(C)]
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Hence, it is concluded that an annealing time of 360 min at 275 °C is sufficient to convert
as much as possible of Vg into V50, although about 10% is lost in other reactions or is
lost by annealing of V50 before the pre—annealing procedure is stopped.

Several highly overlapping peaks form in the temperature region between the two Vg
peaks, as was also seen in the isochronal measurements in figure The concentra-
tions of these peaks are too small and the degree of overlap is too large to identify any
of them from these measurements. None the less, in figure the positions of VOH,
the L—center and the E(170 K) defect are pointed out where they appear in the isochronal
annealings in figure This is also done in anticipation of the isothermal annealing
experiments at higher temperatures in the next section when the concentrations increase.
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Figure 5.7: The results of the pre—annealing procedure at 275 °C which converts Vs into V2O. It
is found that an annealing time of 360 min converts more than 90% of the V5 to V20,
as seen from the V2=/ ~ peak. The V, /0 peak decreases more than Vg /~ because
of the out—annealing of an overlapping cluster defect [4]. Only a selection of the
measured spectra are displayed to increase the readability of the figure.

5.4.2 Isothermal annealing at 325, 338, 350 and 360 °C

Isothermal annealing was performed at 325, 338, 350 and 360 °C after pre—annealing for
360 min at 275 °C. A selection of the measured spectra are presented in figures [5.8(a)|—
All spectra are from the 640 ms lock—in rate window.

VO initially increases slightly at all annealing temperatures, before it decreases steadily.
V20 decreases steadily through the entire annealing process until it disappears. This is
consistent with the annealing behavior of VO as observed by Mikelsen in reference [25]
in materials where [O] is not too high. The increase in VO was attributed to dissociation
of V20, VoO — V 4 VO. This phenomenon was argued to occur only in samples where
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(b) Isothermal annealing at 338 °C.
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Figure 5.8: A selection of the isothermal annealing steps performed at 325 °C [(@)] and 338 °C
[(b)} Notice that especially [VOH] has a much larger maximum value in the annealing
at 338 °C than at 325 °C, and also that the signal amplitude between 175 — 200 K is
larger for long annealing time at 325 °C.
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Figure 5.8: A selection of the isothermal annealing steps performed at 350 °C [(c) and 360 °C
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[O] was not too high, because a larger oxygen concentration gives a larger the probability
of trapping at O; as VO 4+ O; — VOa.. It was found by modeling that there was no initial
increase in VO if [O] was increased to above 4 x 1017 cm—3.

The E(170 K) peak has a significant amplitude already after pre—annealing, so tempera-
tures 325-360 °C are too high to study the growth of this defect. It reaches its maximum
concentration after only a few minutes at all the four temperatures, and then decreases.
Before it reaches its maximum it is clearly seen that this peak is too wide to originate from
one level only. This is because of the contribution from the L—center. The VOH peak starts
to increase while E(170 K) decreases. It is not possible to describe the evolution of the
L—center since it is completely buried in E(170 K) and VOH at all times.

The V50 peaks anneal out in an asymmetric way, where VoO~/? anneals noticably slower
than VoO=/~. This implies that there is some minor peak overlapping with V,0~/0,
This becomes apparent when Vo,O=/" is all gone, since the relatively minor peak labeled
E(198 K) still remains at ~198 K near the position of V,0~/0. The region between
E(170 K) and E(198 K) is a complex mixture of minor defects for the last annealing times
at 325 °C, but the DLTS signal in this region is considerably cleaner at 338, 350 and 360
°C.

The extracted concentrations of all the peaks, except the L—center, versus time are shown
in figure for the annealing at 325 °C. This is representative for all the annealing
temperatures. The concentrations of VOH and E(170 K) are found by fitting of the DLTS
spectra.

5.4.3 Known defects

In this section the annealing behavior of the individual defects is analysed, and each defect
is put into context with other defects whenever possible.

5431 VO

At temperatures of ~300 °C and above it is expected that VO is lost through a combination
of dissociation, and migration and subsequent reaction with either atomic oxygen or hy-
drogen. This results in the electrically inactive VOq or the electrically active VOH [24,33]
through the reactions

VO — V+0; (5.2)
VO +H — VOH (5.3)
VO + O; — VOq 54

However, assuming that the sample contains V20, a positive contribution to [VO] at about
300 °C can also come from the dissociation of Vo0 as V9O — V + VO since Vo0 dis-
appears at lower temperatures than VO. This can be the explanation for the noticeable
increase in [VO] at 300 — 350 °C in figure This is also the conclusion reached in
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Figure 5.9: Concentration plotted vs. time from the annealing at 325 °C for the entire measure-
ment interval [(@)} and a closer look at the minor defects except the L—center [(b)}
Notice that [Vo0~/°] (o) and [E(198 K)] (<) merge when [V,0=/~] — 0 (A). No-
tice also the initial increase in [VO] until around 100 min. The solid and dashed lines
are intended to guide the eye.
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Figure 5.10: A plot of In[VO] vs. time, with a linear least squares fit[{@)l The linear fit is near
perfect, indicating first order annealing kinetics. In ¢(T) is plotted vs. 1/T to deter-
mine the activation energy of the reaction[@l The value of ¢( indicates dissociation
as the main annealing mechanism.

reference [24], where dissociation is found to be the dominating annealing mechanism for
V50 in both DOFZ and MCz.

The logarithm of [VO] is plotted vs. time in figure for all of the four isothermal
measurement series performed in this thesis. The data are closely fitted by linear least
squares over more than an order of magnitude, with the exception of the increasing part
in the early stages. This indicates that the annealing of [VO] follows first order kinetics.
Then

c(T) = coexp(—E,/kT)

and the logarithm of the annealing rate, In ¢(7T"), is plotted vs. 1/T" in figure|5.10(b)| and it
is very close to linear. The activation energy and the pre—exponential factor are determined
to

E, = (2.37 +£0.05) eV
co = (6 x 101) x exp(£0.9) s~*

where the uncertainty (standard deviation) in ¢y amounts to a factor of 3 or %, respectively.
This is considered to be rather good since pre—exponential factors are notoriously difficult
to determine with good accuracy. A value of cg on the order of 10'3 s~! or larger is
considered to be an indication of dissociation, as explained in section [3.1.5] The large
value of cp measured here indicates that dissociation is the dominant first order process
for the annealing of VO, but it is likely that there also is a contribution from the formation
of VO, and VOH.

Svensson et al. [41] found in a Fourier transform infrared spectroscopy (FTIR) study that
two different processes were causing the annealing of VO in Cz—Si with [O;] ~ 7 x 107 cm™3.
The overall activation energy for the annealing was measured for six samples and the re-
sults for all the samples were within 2.27 + 0.05 eV. ¢y was measured to 1.6 x 10% s~
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The two processes were suggested to be migration of VO and subsequent formation of

VO, with activation energy F, = 2.06 eV, and dissociation of VO with £, = 2.51 eV.

By comparing these measurements with the activation energy measured here, £, = 2.37 £ 0.05 eV,
it seems that dissociation is even more important in this material. This is also intuitively

correct, since this material has a lower oxygen concentration than that which was inves-

tigated in reference [41], so the generation of VO2 from VO + O; — VOs should have a

lower probability in this material. Unfortunately, electrically inactive defects such as VOq

can not be measured by DLTS, so it is not possible to determine how this really affects

the concentration of VO.
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Figure 5.11: The depth profile of VO measured after isothermal annealing at 338 °C unsmoothed
[(@)]and smoothed by a running average over 5 points

The concentration of VO as a function of depth is monitored at various stages of the
isothermal annealing at 338 °C, as shown in figure[5.11] All the concentration profiling in
this work is done using the 640 ms lock—in rate window, a constant reverse bias of -16 V
and by varying the pulse voltage from 0 — 16 V in 0.5 V steps. The A—effect is taken into
account as explained in section 4.2.4] Otherwise the profile will be significantly distorted
and may not display the real properties. Conversely, it may show false tendencies. The
amount of noise makes it necessary to use a running average to increase the readability of
the profiles, but the unsmoothed profiles are also presented for comparison.

The profile in the as—irradiated condition shows an almost entirely uniform concentra-
tion with a small decreasing tendency towards the surface. A uniform concentration is
expected since monovacancies are created uniformly through the sample by electron ra-
diation, and [O;] is many orders of magnitude larger. Thus, the non—uniform distribution
of oxygen does not influence the resulting distribution of VO.

[VO] decreases slightly during the pre—annealing, and it also develops a slightly decreas-
ing tendency towards the surface. Then, [VO] increases until after 140 min at 338 °C
when it is close to the overall maximum concentration. At this point the profile has a
very clear decreasing tendency towards the surface. [VO] increases much less near the
surface than in the bulk. This may imply that some of the VO centers generated from
V20 — V 4 VO are lost in some reaction in the surface region. The species which reacts
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with VO at the surface should have a concentration profile which increases towards the
surface. It must also have a concentration which is comparable to or smaller than [VO].
Otherwise [VO] would be the limiting reactant factor and [VO] would decrease with the
same rate at all depths. Hydrogen is an impurity which is expected to fulfill both of these
criteria as illustrated in figure The concentrations of oxygen and carbon are far too
large to have any influence on the distribution of VO. Thus, it is likely that a fraction
of VO reacts with H, according to VO + H — VOH, and this decreases [VO] near the
surface.

The decreasing tendency of the profile towards the surface continues while the overall
concentration of VO decreases for annealing times 140 — 1790 min over all depths. The
concentration of VO decreases with about the same rate for all depths. This indicates
that VO is dissociating, since the loss of VO by dissociation would not depend on the
distribution of VO or any other defect. However, the same would be true for the reaction
of VO with an impurity with a large concentration, such as in the creation of VOq, so this
is not a conclusive argument for dissociation as such.

To summarize, based on the measured values of E, and ¢y, it is argued that the dominant
process for the annealing of VO is dissociation, in addition to the production of VOH
and probably VOs. The creation of VOH through VO + H — VOH is concluded to be a
contributing process to the destruction of VO based on the decrease of the concentration
profile of VO near the surface. This will be further discussed in section

54.3.2 Vsand V,0

V3 is created during and immediately after irradiation, either when a single incident par-
ticle creates a Vo complex directly or when two monovacancies migrate and create a pair.
During post—irradiation annealing, V2O is created from Vg through the reaction

Vy 4+ 0O; — V20 (5.5)
as explained in section [3.3.2] VO can dissociate into

Vo0 — V+ VO (5.6)
at a sufficiently high temperature.

The rate of the annealing of V5 and the simultaneous growth of V2O can be calculated
from the pre—annealing data in figure Table[5.5]is a comparison between the anneal-
ing rate of Va in materials with different oxygen concentrations. The annealing rate is
taken only from references where the transition Vo — V20 was observed, since other-
wise Va is annealing through some other mechanism with an annealing rate which could
be completely independent of [O]. An alternative annealing process is the formation of
V2H,, instead of V2O. As can be seen from the table, the annealing rate increases with
increasing [O], although the exact form of the dependency is difficult to determine due
to the large uncertainty in the measured values for [O]. Note also that ¢(7") as measured
by Mikelsen et al. is somewhat higher than the value found by Alfieri et al. in materials
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Material | [O] (cm™3) Reaction rate of Vo at | Reference
250°C (s71)
DOFZ | (2-3)x 107 | (1—-2)x 1077 Mikelsen et al. [26]
DOFZ | (2-3) x10'" | (3.5 -5.5) x 107° Alfieri et al. [2]
FZ (1-3)x 107 | (3—5)x107° Alfieri et al. [2]
EPI <2 x 1017 (3 —4)x107° Calculated from ﬁgure
FZ (1—-2)x 10 | (4—-6) x 1076 Alfieri et al. [2]
MCz - - No references found.

Table 5.5: Comparison of the reaction rate for Vo + O; — V30 as a function of oxygen concen-
tration. The materials are sorted by oxygen concentration. The annealing rate increases
with increasing [O], although it is difficult to determine the form of the dependency due
to the high uncertainty in the measured oxygen concentration.

with the same reported oxygen concentration. A possible reason for this is that the con-
centration of hydrogen was larger in the samples studied by Mikelsen et al. , and thus the
creation of VoH,, would contribute more to the annealing of V.

The transformation rate of Vo into V5O in this EPI-Si material with [0] < 2 x 10'7 cm—3
is comparable to that in FZ— and DOFZ-Si with [O] ~ (1 — 3) x 10" cm™3. This in-
dicates that the oxygen concentration in this EPI-Si material is not much lower than
1 x 1017 cm™3, which is the lower limit for [O] in the FZ material in table

Whether V20 anneals out primarily through migration and reaction with some other
species, or by dissociation depends on the activation energies of these processes. The
process with the smallest £, will dominate. Mikelsen et al. concluded in reference [24]
that V2O most likely anneals out by dissociation in the DOFZ-Si studied in that article.
The activation energy for this dissociation was determined to be E, = 2.02 £ 0.12 eV
and the frequency factor was cg = 2 x 1013 s~! with about one order of magnitude of un-
certainty. Indeed, the value of ¢y suggests that dissociation of V2O is the main annealing
process.

In[V20] is plotted vs. time in figure for the EPI samples studied in this work.
[V20] is based on the VoO=/~ peak, because the peak at the position of VoO~/? contains
some minor, overlapping defects since it has a larger amplitude than V,0=/~. The linear
fit is near perfect, so the annealing of V2O is clearly of first order with activation energy

E, = (1.95+0.22) eV
and pre—exponential factor

co =4 x 10" x exp(+4) s7*
where the uncertainty of exp(+4) amounts to a factor of 50 or %, respectively. Only
three measurements of VoO during the isothermal treatment at 350 °C were performed,
and this makes the standard deviation large. This is because the annealing rate of V2O
at this temperature was larger than originally anticipated. Nonetheless, the linear fits are
excellent at all the temperatures, suggesting that the measurements are actually quite close
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Figure 5.12: A plot of In[V,0] vs. time, with a linear least squares fit[(@)] The linear fit is near per-
fect, indicating first order annealing kinetics. In ¢(T) is plotted vs. 1/T to determine
the activation energy of the reaction[@ The large value of ¢y suggests dissociation

as the main annealing mechanism. These data are from the V,0=/" peak.

to the real values. The value of ¢y suggests that V2O is mainly disappearing by dissocia-
tion. These results are in good agreement with E, = (2.02 & 0.12) eV and 2 x 103 s~!
from reference [24].

The concentration of V, vs. depth is uniform in the as—irradiated condition since Vs is
created uniformly by MeV electron radiation. V9O is created during post-irradiation an-
nealing through Vo + O; — V20, so [V20] should also be uniform since [O;] is many
orders of magnitude higher than [V3]. These claims are confirmed by the profile in figure
for [sz/f] and [V,0=/~1], and in figure for [V;/O] and [V5,07~/0]. The concen-
trations of V, /% and V5079 are slightly higher than that of V2:/ ~ and Vo,0=/~, because
of the minor overlapping defects discussed above.
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Figure 5.13: The depth profile of V2O measured at 109 K during the isothermal annealing at 338
°C unsmoothed [(@)]and smoothed by a running average over 5 points (b}l
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Figure 5.14: The depth profile of V2O measured after isothermal annealing at 338 °C unsmoothed
[(@)]and smoothed by a running average over 5 points[(b)}

The uniform concentration of V2O decreases at the same rate at all depths. The con-
centration profile of V50 is essentially the same when measured at the Vo0=/~ and the
V,0~/0 peak, taking the overlapping peaks into account. A significant feature of the pro-
file of V2O is the lack of any deviations from a uniform distribution during the annealing
until 36 min when V9O disappears. This means that until this time any significant for-
mation of VoOH or V3OHj can almost certainly be ruled out since this would show as a
decrease in the V2O profile near the surface.

The lack of any decrease in the concentration close to the surface, may not be consistent
with the hypothesis in section[5.3.2]of a possible hydrogen—assisted annealing of V2O due
to a larger annealing rate in more hydrogen—rich samples. In conclusion, V5O is believed
to mainly anneal by dissociation. However, a possible connection between the decay of
V50 and the growth of E(198 K) is discussed in section[5.4.5.2

5433 VOH

GROWTH
VOH is traditionally [24] believed to be created by

VO +H — VOH 5.7
The VO in the above reaction can also come from the dissociation of V50,

V20 — VO + Oy (5.9)

That is, VOH is produced either directly by trapping of a migrating H at VO, or from
dissociation of V2O and then trapping of hydrogen at the released VO.

The change in VOH concentration goes as

d[VOH]
dt

= 47TR(DH + Dvo)[H] [VO] ~ 4rRDg [H] [VO}
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where Dy = cgexp(—FE,/kT). This reaction must be driven by the release of H from
the surface, or in other words the dissociation of HZ which follows
d/HZ
[dt] = _Cdiss[HZ]
The solution for [HZ] is
[HZ] = [HZ]1—0 exp(—cgiss t)

Then the concentration of free hydrogen changes as

dH

c[lt] = cgiss|HZ] — 4mr RD [H|[VO]
when hydrogen is assumed to mainly be consumed by the creation of VOH at these anneal-
ing temperatures. Since H has a large diffusion coefficient, Dy, in silicon, it is reasonable

to expect that H migrates very rapidly to and reacts with VO. Thus, d[H]/dt ~ 0 and
Cdiss [HZ] ~ 47 RD H [H] [VO]

Hence, the generation rate of VOH is approximately equal to the dissociation rate of HZ,

since
d[VOH]

dt
The solution is found by inserting for [HZ] and integrating, so the concentration of VOH
follows

= 4rRDy [H|[VO] = cgiss[HZ]

[VOH] = [VOH] ;42 — ag exp(—cgiss t)

where ag and ¢4, are constants to be determined in a linear least squares fit of In ([VOH]max —
[VOH}) versus time. Hence, a plot of this quantity is linear as a function of time and cg;
is the slope, since

In {[VOH] ;5,05 — [VOH]} = Inag — cgiss t

where cgiss(T) = co exp(—FEq/kT).

In ([VOH] ;500 — [VOH]) is plotted vs. time in figure The linear least squares fits
describe the experimental data very well for 350 and 360 °C, and slightly less well for
325 and 338 °C. The activation energy for the growth of VOH is found to be

E, = (2.12+0.20) eV
and the pre—exponential factor is
co = (3 x 101 s71) x exp(+4)

The uncertainty exp(+4) translates into a factor of about 50 or %, respectively. This value

for cq strongly supports the claim that the measured growth rate of VOH is effectively the
dissociation rate of HZ due to the rapid migration of H.

DECAY

In[VOH] is plotted vs. time in figure for the decay of VOH. Just as for the growth,
the linear least squares fit of the experimental data is very good for 350 and 360 °C, but
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Figure 5.15: A plot of In {[VOH],;,4, — [VOH]} vs. time for the growth of VOH, with a linear
least squares fit[(@)] The linear fit is best at 350 and 360 °C. In cg;ss is plotted vs.
1/T to determine the activation energy of the reaction

rather poor for 325 and 338 °C. The activation energy for the decay of VOH is determined
to be

E, = (2.51 £0.20) eV

and the pre—exponential factor is
co = (5 x 101 s71) x exp(+4)

with the same uncertainty as the measurements for the growth of VOH.
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Figure 5.16: A plot of In[VOH] vs. time for the decay of VOH, with a linear least squares fit|(a)
The linear fit is best at 350 and 360 °C, but overall it indicates first order kinetics.
In¢(T) is plotted vs. 1/T to determine the activation energy of the reaction

The concentration of VOH as a function of depth is shown in figure [5.17] The VOH
profile could only be measured after about 140 min when [VOH] was so high that the
overlap with the L—center and E(170 K) was negligible. The profile at 140 min has a
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Figure 5.17: The depth profile of VOH measured after isothermal annealing at 338 °C un-
smoothed [(@)]and smoothed by a running average over 5 points[(b)}

diffusion—like shape with a sharp drop in concentration from the surface and towards the
bulk. The concentration increases at the surface between 140 — 340 min, whereas the
concentration in the bulk remains low. From 340 — 550 min the concentration decreases
slightly near the surface, while it still increases between the surface and the bulk. The
concentration remains very low in the bulk. The overall concentration is at the maximum
at 550 min. From 550 — 1790 min the surface concentration drops to be comparable to the
concentration in the bulk. The profile now has a gaussian—like bell shape with a maximum
at ~10 pm, which is approximately in the middle of the measured depth range.

[VOH] is changing mostly at the surface, both during growth and decay. This may in-
dicate the involvement of hydrogen in the decay, and the process VOH + H — VOH, is
proposed. This would explain that the concentration decreases faster in the surface region,
and also that no electrically active defects are created during the decay of VOH. VOHs
is thought to be electrically inactive since it has no dangling bonds [32]. This is the same
conclusion as Pellegrino et al. made for the loss of VO through the production of VOH
and VOHs in reference [33]. The production of VOH can continue until the supply of
VO or H, from HZ, is depleted. At this time VOH will start to disappear and possibly be
converted into the electrically inactive VOH; as suggested.

The profiling does not exclude that dissociation also takes place, but the fact that no other
electrically active defects appear during the decay of VOH supports the suggested forma-
tion of VOHs. It is impossible to determine the individual contributions from dissocation
and the presumed formation VOHy without separate measurements of VOHy by some
non—electrical method. An alternative annealing mechanism for VOH is the previously
mentioned annealing mechanism for VO where VOH dissociates as VOH — VO + H and
the released VO is trapped at O; and forms VOs. Thus, VO is lost to VO3 and the amount
of VO left to reform VOH through VO 4 O; — VOH decreases.

In the modeling in the next section the initial concentrations of HZ and O; are used as free
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parameters to acquire a good fit to the experimental data. It is shown that

[O4]i—0 ~ [0;] = 1 x 107 ecm ™3
[HZ];—o ~ 1 x 10" cm™3

give a close match. This is a reasonable value for [O;] since the upper limit was deter-
mined by SIMS to be < 2x10'7 cm™3. The maximum concentration of VOH is measured
to [VOH] ez = 2 x 10'2 cm™3 at all the annealing temperatures. This is quite close to
[HZ];—o = 10'® cm—3 considering the rather large uncertainty in this value and account-
ing for the generation of VOH3 through VOH + H — VOHj3 occuring simultaneously as
the generation of VOH.

Thus, it is claimed that VOH is formed through VO + H — VOH with the same growth
rate as the annealing rate of HZ, and that it decays mainly due to VOH + H — VOHs.

5.4.4 Modeling of reactions

The reactions in - must be solved simultaneously to model the annealing
processes for VO, Vo0 and VOH. HZ is included as the assumed hydrogen source which
releases H by dissociating. These reactions translate into the system of coupled, first
order, linear differential equations listed in table[5.6] The equations are solved in Matlab
for the temperatures 325 — 360 °C using the parameters listed in table The results
from the modeling are shown in figure[5.18§]

V+0; — VO (5.9)
VO — V+0; (5.10)
Vo0 — VO+V 5.11)

VO+0; — VO, (5.12)

VO+H — VOH (5.13)
VOH — VO+H (5.14)

VOH+H — VOH, (5.15)
HZ — H+7Z (5.16)

Z+H — HZ (5.17)

The results from the model match the measured concentrations at all temperatures closely,
although the fit is slightly better at the intermediate temperatures 338 and 350 °C than at
325 and 360 °C. O; is assumed to be immobile compared to H, V and VO. Svensson et al.
calculated the diffusion coefficient for O; to Do, = 5.0 x 10722 cm?/s at 350 °C, which
is 6 orders of magnitude smaller than Dy o at the same temperature [41].

The growth of VOH is thought to be activated by the dissociation of the assumed hydrogen
trap HZ. [O;];—o and [HZ];—( are treated as free parameters. It is found that the model
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agrees well with the measurements when [O;];—o ~ 10'7 cm~3 with about 15% variation
and [HZ];—o ~ 10'3 cm™3 with about 55% variation between the four samples. This
relatively low concentration of hydrogen could explain the low maximum concentration
of VOH and the high temperature when VOH is detected in the isochronal measurements.
In this study VOH anneals in at 375 °C in the isochronal measurements in figure
compared to 250-300 °C in reference [33] where the hydrogen trap is assumed to have an
initial concentration of ~ 101 cm~3 in the p™ region.

This model assumes that the defects are uniformly distributed. To account for non—
uniform distributions, each differential equation in table [5.6] must include a term for
changes in the depth distribution, and initial depth profiles must be supplied for each
species. In this case, the equation for e.g. HZ is

OHZ(z,1)] OHZ(z, )]
ot 0x?

where the first two terms account for the loss and gain of HZ through diffusion-limited
reactions, and the second term is the law of diffusion which accounts for the change in
the depth distribution of HZ. An example of a model which takes this into account is
in Pellegrino et al. [33]. Clearly, this is most important for defect species with a large
diffusion coefficient, such as H, or a highly non—uniform profile, such as HZ and VOH.

= —Cyz[BZ) + 4rRDy[H][Z] + Dz

5.4.5 Unidentified levels

Two unidentified peaks appear in the DLTS spectra from the isothermal measurements
shown in figure [5.8] These peaks are labeled E(170 K) and E(198 K) and they are inves-
tigated more closely in this section.

54.5.1 E@170 K)

The electrical properties of E(170 K) are determined as
AH = (0.34+£0.01) eV

for the enthalpy and
Ona = (8 £6) x 10716 cm?

for the apparent capture cross section, as explained in section[5.3.1]} Specifically, AH =
0.34 eV and 0,,, = 7 x 10716 cm? give a perfect fit to all measurements. The con-
centration is found by fitting of the DLTS spectra. The peak appears at ~325 °C in the
isochronal annealing in figure At 350 °C the E(170 K) peak reaches a maximum
amplitude which is about 60% of the initial amplitude of V2:/ ', and then it disappears at
375400 °C.

The growth of E(170 K) can not be studied in the temperature range 325 — 360 °C due to
the very rapid increase of the peak at these temperatures. The decay of the peak is studied
from the annealing time when [E(170 K)] is at the maximum and until the concentration

89



Results and discussion

Defect ‘ Equation

vo | LY = CyolVa0] - CrolVO] + 4xR{ Dy[V][0i] — Dyo[VOJ[O]
—Dy[H][vO]}

V20 d[\;% S —Cv,0[V20]

\Y% AU = Oyl V20| + Cyo[VO] — 47RDy[V][0]

VOH d[Vd?Hl = —Cyou[VOH] + 47TR{DH [H][VO] — Dy [H] [VOH]}

H M oy, H7) - 47TR{DH [H][Z] + Dy [H][VO] + Dy[H] [VOH]}

1z dH2] - _cyyHZ) + 4rRDyH[Z)

7 %%] = Cpgz[HZ] — 47RDy[H][Z]

Table 5.6: The differential equations corresponding to the reactions — (5.17). This model is
based on the model in reference [24], but the number of equations is reduced to include
only those processes that are strictly needed to obtain a good match with the measured
data for VO, V20 and VOH. It is not necessary to keep track of the concentrations of
Oi, V02 and VOHQ.
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Parameter ‘ Value

‘ Comment

5A

(6 x 10'%) x exp(—2.37/kT) s~ !
(3 x 10'2) x exp(—1.94/kT) s~!

(3 x 10'2) x exp(—2.11/kT) s7*

(9 x 10'%) x exp(—2.50/kT) s~ !

23.1 x exp(—2.06/kT) cm?/s
(108 x Dy o) cm?/s

(5x1073) x exp(—0.8/kT) cm?/s
0

~2x 108 cm™3

~ 3.5 x 102 cm~3

0

0

0

~1x107 ecm™3

~1x108cm™3

Used the same R for all reactions.

Measured, see figure

Within uncertainty of measured value in fig-
ure

Assumed to be identical to the measured
growth rate of VOH in figure within un-
certainty.

Within uncertainty of measured value in fig-

ure @

Taken from reference [41].
Simply assumed to be large.
Taken from reference [33].
Assumed to be immobile.

Measured at t = 0, varies ~40% between the
samples.
Measured at t = 0, varies ~10% between the
samples.

Free parameter. Varies about 15% between
the samples.
Free parameter. Varies about 55% between
the samples.

Table 5.7: The parameters used in the model in table@ The initial values of [O;] and [HZ] are
the only free parameters which are varied to obtain the best possible fit, as shown in

figure[5.18]
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reaches the detection limit of a few times 10'! cm 3. The result is shown in ﬁgure
The logarithm of the concentration is relatively well fitted by linear least squares at all four
temperatures. This means that E(170 K) anneals out by first order kinetics. The activation
energy is found to be

E, =(2.16+0.08) eV

and the pre—exponential factor is
co = (4 x 101 s71) x exp(+£1)

with a rather small uncertainty for both quantities.
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S A e 107
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Figure 5.19: A plot of In[E(170 K)] vs. time for the decay of E(170 K), with a linear least squares
fit [@} The linear fit is decent at all four temperatures, and it indicates first order
kinetics. In ¢(T') is plotted vs. 1 /T to determine the activation energy of the reaction

The concentration profile of E(170 K) is shown in figure [5.20] The unsmoothed profiles
are very noisy despite being the average of 70—100 scans. The smoothed profiles show that
the distribution remains uniform through the entire annealing process, from pre—annealed
to 340 min. After this the concentration is too low to be measured properly. The uni-
formity of [E(170 K)] is significant since it virtually excludes any direct involvement of
hydrogen both in the growth and decay of this defect. If E(170 K) reacts with hydrogen
during growth or decay, then a similar profile as that of VOH in figure[5.17]is expected. In
contrast, the profile of E(170 K) is relatively flat, much like the profiles of VO (initially),
VQ and VQO.

The loss of E(170 K) is proportional to the growth of VOH, as shown in figure[5.21] The
growth of VOH is calculated as

Growth [VOH] = [VOH] — [VOH](t = 0)
and the loss of E(170 K) is

Loss [E(170 K)] = [E(170 K)](tmaz) — [E(170 K)]
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Figure 5.20: The depth profile of E(170 K) measured after isothermal annealing at 338 °C un-
smoothed [(@)|and smoothed by a running average over 5 points[(b)|
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Figure 5.21: The growth of VOH plotted as a function of the decay of E(170 K).
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where t,,,4, 1s the time when the E(170 K) peak has the maximum amplitude before de-
creasing.

Note that VOH reaches its maximum concentration and starts to decrease just when the
concentration of E(170 K) becomes too low to be measured, as can be seen in figure
[5.9] The maximum concentration of E(170 K) is always larger than that of VOH for all
temperatures 325 — 360 °C, and the ratio approaches unity at 360 °C.

These facts suggest that E(170 K) is involved in a reaction where VOH is created until
E(170 K) is depleted. However, it was previously concluded that VOH is created by
VO + H — VOH. In addition, the profile of E(170 K) indicates that there is no interaction
with H during the entire annealing. This is regarded as a strong indication that VOH is not
created in a reaction with E(170 K), but rather from VO as concluded in section[5.4.3.3]

Another explanation to the proportionality between the annealing rates of the growth of
VOH and the decay of E(170 K)is that the processes are unrelated, but that they are both
activated by the release of H from HZ. By assumption, H is released when HZ dissociates,
e.g.
HZ -H+Z

where Z contains everything which is not H in HZ. HZ may dissociate into a larger
number of elements, but only Z is assumed here for simplicity. The released H can now
react with VO to create VOH. Further, it is suggested that Z reacts with E(170 K) and that
the reaction product is electrically inactive, in the following way

Z + E(170 K) — inactive product

Hence, if Z has a large diffusivity in silicon, then the measured decay rate of E(170 K) is
not the rate of the above reaction but rather the dissociation rate of HZ in the same way as
for the growth rate of VOH as explained in section[5.4.3.3] This is because Z very rapidly
migrates to and reacts with E(170 K), so

assuming Dz > Dp170 - Then [E(170 K)] changes according to

d[E(170 K)]
dt

= —4rRDz[Z][E(170 K)] ~ —caiss[HZ] = d[ZItZ]

In other words there is a one—to—one correspondance between the change in the overall
concentrations of E(170 K) and HZ if this model is correct, although the depth profile of
E(170 K) is uniform while HZ is expected to mainly be located at the surface.

The fact that the slope of the proportionality is less than unity at temperatures below 360
°C means that either the reaction

VO +H — VOH

or
E(170 K) + Z — inactive defect

95



Results and discussion

96

is ineffective at lower temperatures than about 360 °C. The maximum concentration of
E(170 K) is the same at all the annealing temperatures, whereas [VOH],,4,. increases from
about 50% to about 95% of [E(170 K)],,4. at 325 and 360 °C, respectively. This indicates
that the generation rate of VOH relative to the destruction rate of E(170 K) is limited by
the diffusion of H to react with the uniformly distributed VO, and that this limitation
effectively disappears at temperatures higher than about 360 °C.

The suggested scenario explains the proportionality between the loss of E(170 K) and
the growth of VOH, and the fact that E(170 K) can not be directly involved in a reaction
with VOH because of the uniform depth profile. AH and o, for the growth of VOH
and the decay of E(170 K) are equal within the experimental accuracy, which is a natural
consequence of the suggested model. Possible candidates for Z are C;, V and Ig;, since it
must have a large diffusivity in silicon. H and O; can be excluded for the same reason.

Simple dissociation of E(170 K) is an alternative explanation since cg is on the order of
10'3 s=1, but this does not explain the proportionality between [E(170 K)] and [VOH]
which would then be a rather large coincidence. Hence, E(170 K) is claimed to disappear
through a reaction with the non—hydrogen containing part of the dissociating HZ complex.

54.5.2 E(198 K)

AH and o, for E(198 K) are measured at all annealing times after [Vo,0=/~] = 0, as
explained in section[5.3.1.2] The peak at 198 K is assumed to consist of only E(198 K)
after this time. The activation enthalpy and apparent capture cross section is determined
to

AH = (0.46 £ 0.02) eV (5.18)
Ona = (1.6 £1.3) x 107 cm? (5.19)

Specifically, the values AH = 0.46 eV and 0,,, = 2 x 10714 cm? are found to give a
good fit to all measurements.

The growth of E(198 K) is calculated from the measured concentrations of V,0=/~ and
VQO*/ 0 as

[E(198 K)] = [V,07/%] — [V,0=/] (5.20)

from ¢ = 0 and until [V,0=/~] reaches the detection limit. After this point the peak at the
position of Vo0~/0 is assumed to consist of only E(198 K). Thus, the decay of E(198 K)
is measured directly.

GROWTH

There is a slight discontinuity in [E(198 K)] at the measurement where [Vo o=/ ~] reaches
the detection limit, as can be seen in figure [5.9] The reason is that V0 has not yet an-
nealed out completely, so the assumption that the peak at 198 K is pure E(198 K) is not
fully valid for this measurement. Thus, the extracted [E(198 K)] becomes unreasonably
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high at this annealing time and therefore this data point is neglected at each of the tem-
peratures 325 — 360 °C.

The logarithm of [E(198 K)],a. — [E(198 K)] is plotted in figure [5.22(a)l The linear fit is
far from perfect due to the noise in the measurements, but there is a rough agreement to

[E(198 K)] = [E(198 K)pnaz — age D!
or after rearranging
In { [E(198 K)]mas — [E198 K)] | = Inag — e(T)t

There was unfortunately only made 4 measurements of V2O yielding 3 values for the
above expression during the annealing at 350 °C, because the annealing rate was larger
than originally expected at this temperature, as previously mentioned.

E(198 K) e E(198 K)

o L ° 325°C 7 325°C
£ g 4338°C — A333°C
5 ¥ v 350 °C = T v 350 °C
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Figure 5.22: A semilogarithmic plot of [E(198 K)],nq. — [E(198 K)] vs. time for the growth of
E(198 K), with a linear least squares ﬁt[@l The linear fit agrees roughly with the
measurements at all four temperatures. In ¢(7') is plotted vs. 1/7T to determine the
activation energy of the reaction [(b)}

The activation energy for the growth is
E, = (1.76 £0.22) eV
and the pre—exponential factor is

co = (1 x 101 s71) x exp(+4)

€

where exp(=£4) translates into a factor of approximately 50 or gj,

respectively.

From figure [5.9]it can be seen that E(198 K) grows as V0 anneals out, since the differ-
ence between [VQO:/ ~] and [VQO*/ 9] increases during the annealing. [E(198 K)] is at
a maximum exactly when the peak at VoO0=/~ completely disappears. This may suggest
that V2O is involved in the creation of E(198 K). Another possibility is that the pro-
cesses are unrelated, and that both are activated by some other event, such as the release
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of H. However, there are no indications that VO reacts with H, on the contrary V2O is
concluded to dissociate in section [3.4.3.2)

The change in concentration of V2O and E(198 K) are shown to be proportional in figure
for 325 — 360 °C with an average slope of 0.1440.03. The plotted concentrations are
from the pre—annealing and until the VoO=/~ peak disappears. The growth of E(198 K)

is calculated as

Growth [E(198 K)] = [E(198 K)] — [E(198 K)];—o

and the loss of V50O is

Loss [VQO] = [VgO]t:() — [VQO]

calculated from ¢ = 0, and until V50O disappears below the detection limit and E(198 K)

is at a maximum (occurs at the same time).

7x10“ 325 °C 7X1011 338 °C
o Slope = 0.171 + 0.009 6 Slope = 0.106 + 0.005
& oo &
Es & 55
é 4 0,0 § 4 A
o u] E(/ = //A“
w3 P w3k ATA
5 7 5 A
< e <
z2 e T2 A-A
9] y o}
1 o 1" e
oo ‘ e ‘ 1
0 2 3 4 0 1 2 3 4
Loss of [V,07] (cm™) x 10" Loss of [V,07] (cm™) x 10"
(a) (b)
x10" 350 °C x10" 360 °C
5 Slope = 0.130 £ 0.004 o Slope = 0.138 4+ 0.006
@ o
55 £5 o
= \v4 = .
< " < *
8 4 - g 4+ /*,
= N = L
w3 w3 Tk
5 k] A
£ £
52 & 52
1 1 //' *
oty ‘ ] ot ‘
0 2 3 4 0 1 2 3 4
Loss of [V,07] (em™) x 10" Loss of [V,07] (cm™) x 10"

(c)

(d)

Figure 5.23: The growth of E(198 K) plotted as a function of the decay of V,O. The data for VoO
is from the V,0=/~ peak. The average slope is 0.14 %+ 0.03.

A possible explanation is that one of the released complexes from the dissociation of VoO
forms E(198 K) through a reaction with some other defect or impurity. V2O is shown to

98



5.4 — Isothermal annealing: Reaction kinetics

dissociate mainly by VoO — VO + V in section[5.4.3.2] but a fraction may also dissociate
as VoO — Vo + O;.

In the first case, E(198 K) could be formed in a reaction involving the released V from the
dissociation of V50 and also the dissociation of VO, as

VO <~ V 4 0Oy
Vo0 - VO +V

where < means that VO may also reform after the dissociation. Reformation of V2O is
shown to be insignificant in the model in section [5.4.4] Furher, V may react with some
defect Y to form E(198 K) in the reaction

V +Y — E(198 K)

The fact that there is a small concentration of E(198 K) already at ¢ = 0 after the pre—
annealing, could be explained by a limited dissociation of V3, V2O or other vacancy—
containing defects prior to the start of the annealing. Some restrictions can be put on
the possible identity of Y. Y must have only one acceptor level and this must overlap
with V, /% and V,0~/0. 1t may also have a higher concentration near the surface as
shown in the depth profile in the following section, however this is not conclusive. H is
a possible candidate since VH is claimed to overlap with V, /0 [32], but no information
was found on the thermal stability of VH. Other possible candidates for Y are the V,,04
complexes, where n > 2. However, VO2 can most likely be excluded, since that would
identify E(198 K) as V202 which is known to have both a single and a double acceptor
level similar to V20, according to density functional calculations by Coutinho et al. in
reference [14].

In the second case, E(198 K) could be formed in a reaction involving Vo from the fraction
of V20 which dissociates through VoO — V3 4 O;, so E(198 K) is generated by

Vo 4+ Y — E(198 K)

Again, the small concentration of E(198 K) which is present already at ¢ = 0 after the
pre—annealing, could be explained by a limited reaction involving a fraction of Vo which
escapes the transformation into V2O, or simply from dissocation of V2O centers prior to
the start of the annealing. If this is the case, then Y may be H, since VoH is believed
to have an acceptor level which overlaps with Vo0~ /0, according to Coutinho et al. in
reference [15].

The two suggested scenarios for the generation of E(198 K) from released complexes dur-
ing the dissociation of V2O, may explain the linear relationship between the loss of V2O
and the growth of E(198 K), as well as the fact that the growth of [E(198 K)] ceases when
V0 disappears. The linear relationship in figure[5.22]requires either a large concentration
of Y, or that either Y, Vor V5 has a large diffusivity, which does not hold in the case of
Vs. In the latter case the measured growth rate of E(198 K) should be equal to the dissoci-
ation rate of VoO. Unfortunately, the uncertainty in the extracted F, and cg are too large
to determine if this is the case, but based on the mean values this seems unlikely. Thus, a
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large concentration of Y relative to the released V or V3 is the most likely explanation for
the linearity of the logarithm of [E(198 K)],,a: — [E(198 K)].

DECAY

The decay of E(198 K) is first order as shown in figure [5.24] The extracted activation
energy is
E, = (2.65+0.34) eV

and the pre—exponential factor is
co = (5 x 101% s71) x exp(+6)

The linear fit in figure [5.24(a)|is not very good for 325 and 338 °C, hence the large uncer-
tainties in F, and cy. The value of ¢y may indicate that E(198 K) anneals by dissociation.
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Figure 5.24: A semilogarithmic plot of [E(198 K)] vs. time for the decay of E(198 K), with a lin-
ear least squares fit[(@)} The linear fit agrees reasonably well with the measurements
at all four temperatures, indicating first order annealing. 1n ¢(7T') is plotted vs. 1/T
to determine the activation energy of the reaction [(b)]

The profile of E(198 K) can only be measured for the decay, because during the growth the
E(198 K) peak is completely overshadowed by Vo0~/°. The concentration depth profiles
measured during the decay are displayed in figure [5.25] The distribution of E(198 K) at
the maximum after annealing for 140 min at 338 °C has a decreasing tendency from the
surface towards the bulk. This is similar to VOH, but not to the same extent. This may
indicate that E(198 K) contains a defect or an impurity with a diffusion-like concentration
profile, but this is not conclusive because of the relatively small difference between surface
and bulk concentration as compared to VOH. However, during the decay of E(198 K)
from 140 — 1790 min [E(198 K)] clearly decreases much faster at the surface than in the
bulk at around 12 pm.

This is a strong indication that E(198 K) is not dissociating, but rather reacting with a
species with a large concentration at the surface. Possible candidates for this species are
H, C; or even O;. O; is expected to have a limited mobility at temperatures above 300 °C,
since

Do; = 0.17 x exp(—2.54/kT) cm?s~!



5.4 — Isothermal annealing: Reaction kinetics

according to Aberg et al. in reference [1]. All of these defects have increasing concentra-
tions towards the surface, as explained in section[5.2.1]

The fact that E(198 K) seems to be suppressed in hydrogen—lean samples, as indicated
in section [5.3.2] tentatively supports that E(198 K) contains hydrogen, as is vaguely indi-
cated by the depth profile.

-#-140 min
10" E(198 K) 10" E(198 K) -£-340 min
A -¥-550 min
16 “#-1370 min
14- ~*-1790 min
G & 12
£ £
e Sio
2 2
© w 8
(2] »
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w, w,
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2,
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15 ‘ 4 6 10 12 14 16

10 8
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Figure 5.25: The depth profile of E(198 K) measured after isothermal annealing at 338 °C un-
smoothed (@) and smoothed by a running average over 5 points[(b)}
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Chapter 6

Summary

6.1 Conclusions

The concentrations of oxygen and carbon in the n—type epitaxial layer is determined by
SIMS measurements to [0;] < 2 x 107 cm=3 and [C] < 5 x 10'¢ cm™3, respectively.

The annealing processes of the previously known defects VO, Vo0 and VOH and two
unidentified levels, labeled E(170 K) with E. — E; = 0.34 4+ 0.01 and E(198 K) with
E.—FE; = 0.4640.02, are studied by DLTS during isochronal and isothermal annealing at
325 -360 °C. A fitting procedure is used to succesfully separate the partially overlapping
levels of VOH and E(170 K), by comparing measurements to synthesized DLTS spectra
from both lock—in and GS4 type weighting functions.

The isochronal measurements show that the annealing rate of VO and VO is higher in
samples with the most hydrogen (the DOFZ samples in reference [25]) and lowest in
samples with the least hydrogen (the MCz samples in reference [25]), with the annealing
rate in the PI samples studied in this thesis somewhere between. This may be due to
hydrogen assisted annealing of VO and V0. In addition, the E(170 K) defect appears
most prominently in the EPI samples, which may indicate that it is suppressed in more
oxygen-rtich materials. The E(198 K) defect appears to be suppressed in hydrogen—lean
samples.

The data from the pre—annealing procedure used to transform V3 into V2O shows that the
transformation rate is slightly lower than in DOFZ with a slightly higher oxygen concen-
tration, as found in reference [25]. This supports that the transformation rate increases
with increasing oxygen concentration, as concluded in reference [2].

In the EPI samples studied in this work, it is concluded that VO anneals mainly by dis-
sociation with £, = 2.37 £+ 0.05 eV and 6 x 10'* s~!, but a fraction disappears through
the production of VOH (determined from the depth profile) and likely VO2. V20 is also
concluded to mainly dissociate with £, = 1.95+0.22 eV and 4 x 10'2 s~!, These results
agree well with the results of Mikelsen et al. in [24].

The extracted growth rate of VOH is (3 x 10'3) x exp(—(2.12 £ 0.20)/kT) s~*, where
the pre—exponential factor is of the same order of magnitude as expected from a dissoci-
ation process. Hence, it is argued that the observed growth rate is actually very close to
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the dissociation rate of the postulated near—surface hydrogen source, HZ. H is released
through HZ — H + Z, and H can very rapidly migrate to and react with VO to form VOH
due to its very high diffusivity. VOH is concluded to disappear mainly through the forma-
tion of the inactive VOH; defect, based on the decrease of the depth profile of VOH near
the surface. A small model adapted from reference [24] reproduces the results from the
isothermal annealing for VO, V20 and VOH very well.

The annealing rate of E(170 K) is (4 x 10'3) x exp(—(2.16 4 0.08)/kT’) s~%, which is
essentially identical to the growth rate of VOH. The growth of VOH is also shown to be
proportional to the loss of E(170 K), and the proportionality factor approaches unity at
360 °C. The suggested explanation is that HZ dissociates, H reacts with VO to form VOH
and Z reacts with E(170 K) which consequently disappears with the same rate as HZ and
the growth rate of VOH. This explanation requires that Z has a high diffusivity in silicon,
which means that for example V, Ig; and C; are potential candidates for the identity of Z.

The growth of E(198 K) is shown to be proportional to the loss of Vo0 with an average
ratio 0.14 £ 0.03. This is tentatively explained by a reaction between either V or V, from
the dissociation of V20O and some unidentified defect Y. The depth profile of E(198 K) is
inconclusive about whether there is an increase towards the surface, but it clearly shows
that the subsequent loss of E(198 K) occurs much more rapidly at the surface than in the
bulk.

6.2 Suggestions for future work

The transformation rate for the reaction from Vs, to V20 has only been measured over a
relatively narrow interval of oxygen concentrations, about 1016 — (5 — 10) x 10" cm~3,
as indicated in table[3.5]l Measurements of this transformation rate should also be done for
materials with lower (if possible) and higher oxygen concentrations to better determine

the dependence on the oxygen content.

The model in section [5.4.4] reproduces the measured data very well. However, this model
does not take non—uniform depth distributions into account, which may be quite important
for the kinetics. Thus, the model should be expanded to also take into account the initial
depth distribution of defects (from measurements or assumptions), particularly for highly
mobile defects or highly non—uniform distributions such as H, HZ and VOH.

The measurements in this work was performed on EPI material which was only irradiated
with one dose, 10'* cm™2. Trradiations with other doses should be performed to determine
if the kinetics suggested here holds also at higher and lower concentrations of VO, Vo0
and VOH (with hydrogenation to increase the concentration of hydrogen). In particular,
it would be highly interesting if more information could be extracted about the correla-
tion between HZ, VOH and E(170 K). Measurements on samples with different impurity
contents, in particular oxygen and carbon, might reveal information about the identity
of E(170 K). Isothermal annealings at lower temperatures should be done to study the
growth of E(170 K).

Also, if E(170 K) is measured with a method which can measure also electrically inactive
defects, then perhaps HZ can also be found from the correlation with E(170 K).



Appendix A

Documentation of Matlab-scripts

A.1 Analysis of DLTS-spectra

The Matlab code below calculates the energy and sigma after the peak temperatures have
been selected. Peak temperatures are stored in the matrix T before this code. The results
of running the code are shown in figure [A.T] “kb” is the Boltzmann constant, “h” is the
Planck constant and “m_eff e is the effective mass for electrons in silicon.

The code below is run by another script. This script imports DLTS data from the datafiles,
plots it and allows the user to pick the peak temperature from the plot by using the Matlab
function “ginput”. The peak temperature is passed on to the code below.

% — Calculate energies and capture cross section.
%
energies = zeros( length(T(:,1)), 1 );
sigma = zeros( length(T(:,1)), 1 );

sigma_pre = 2xsqrt(3) *x kb”"2 x m_eff_e *x (2«pi/h”2)"1.5;

% Loop through peaks.
figure_large;

for k = 1:length(T(:,1))
x = 1./T(k,:);
y = (er(win_start:win_stop)./T(k,:)."2);

arrhenius_Isq(k,:) = polyfit( x, log(y), 1 );
y_Isq = polyval( arrhenius_Isq(k,:), x );

energies (k) = abs( arrhenius_Isq(k,1) ) x kb_eV;
sigma(k) = exp(arrhenius_Isq(k,2)) / sigma_pre;
end
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Figure A.1: Selecting peak temperature by using the mouse cursor crosshair. The amplitude is
found by the Matlab script when the peak temperature is selected The Arrhe-
nius plot which is generated after the peak temperature is selected for lock—in rate

windows 1—6 This example is for the V5 /= peak.
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A.2 - Fitting/synthesis of DLTS-spectra

A.2 Fitting/synthesis of DLTS-spectra

The creation of a synthetic DLTS spectrum was done according to equation (4.19). De-
fects were given a concentration, o,,, and AH . Then the DLTS spectrum was calculated
for each of them and these spectra were added to give the total spectrum.

A screenshot of the user interface of the program is shown in figure[A.2]and a fitted lock—
in DLTS spectrum as exported by the program is in figure [A.3] Notice that the program
labels peaks which are recognized, such as VOH and the L—center.

FEATURES

Fitting of DLTS spectra in

— Lock—in
- GS4

The fitted level parameters and the resulting spectrum can be exported to Matlab
files for future use.

Smoothing by a “simple running average” over a specified number of data points,
can be useful for noisy data.

A Matlab figure of the result can be created.
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Figure A.2: A screenshot of the user interface of the DLTS fitting program in Matlab.
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Figure A.3: A Matlab figure as exported by the fitting program.

A.3 Simulation of defect reactions

Matlab has a family of functions for solving sets of ordinary differential equations. “ode15s”
was used in this thesis. The function is called as

1 {|% Solve diff.equations.

[T, N] = odel5s( @reactions_small_model ,
3 [0, end_time(j)]*60,
N_O0*x1E6 );

The first argument, “@reactions_small_model”, is the handle name of the function con-
taining the set of differential equations to be solved. The second argument, [0, end_time(j)]*60,
is a vector of the start and end time for the solution. The simulations were perfomed with
seconds as the time unit, hence the multiplication by 60 to convert the original limits from
minutes to seconds. The last argument, N_0*1ES6, is a vector with the initial concentra-
tions of the defects, given in cm ™3 and converted to m—3 to have everything in Si units.

The returned variables from “odel5s” is the modeled concentration, N, and the solution
times, T. The set of differential equations is specified in a separate function, as shown in
the source code below.

function dN = reactions_small_model( t, N )

% Load physical constants, e.g. kb, h, etc.
4|l constants ;
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6||% Temperature .
global temp_global;
s||T = temp_global; % K

0||% Capture radius.

R = 5E—-10; % m
12 || alpha = 4xpixR; % m
4||% Diffusion constants.

global D_VO;
16 || global D_Oi;

global D_V;

18 || global D_H;

20||% Dissociation rates .
global C_VO;
» || global C_V20;
global C_HX;
24 || global C_VOH;

% ||% Equations.

%

38 ||% N(1): V20
% N(2): VO
30 ||% N(3): VO2
% N(4): Oi

2||% N(5): V
% N(6): VOH

u||% N(7): H
% N(8): VOH2
36 [|% N(9): HX

% N(10): X

38
% Indices .
40 || V20 =
VO =
2 || VO2 =
Oi =
a ||V =
VOH =

46

48

— O 00 1O\ N BN~

o v

H

VOH2 =
HX

X

50
% Minimal model.
52 || %
dN = zeros( X, 1 );

54

dN (V20)

— C_V20 * N(V20);

56

dN(VO) C_V20 x N(V20) — C_VO * N(VO)
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64

66

68

70

72

74

A.3 — Simulation of defect reactions

dN(V)

dN (VOH)

dN(H)

dN (VOH2)
dN (HX)

dN (X)

alpha * ( — D_H * N(H) % N(VO)
— D.VO % N(VO) * N(Oi) + DV % N(V) % N(Oi) );

C_V20 x N(V20) + C_VO x N(VO) —
alpha * ( D_V % N(V) % N(Oi) );

— C_VOH * N(VOH) + alpha % ( D_H = N(H) * N(VO)
— DH * N(H) * N(VOH) );

C_HX % N(HX) — alpha x (D_H *x N(H) * N(VO) +
D H % N(H) * N(X) + DH %= N(H) * N(VOH) );

alpha % D_H % N(H) % N(VOH);
— C_HX * N(HX) + alpha *« D_.H * N(H) * N(X);

C_HX % N(HX) — alpha * D H * N(H) * N(X);
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Appendix B

Integration of the Poisson equation

This section follows the derivation of the voltage across a depletion region with electri-
cally active defects as presented in Blood & Orton [6].

The space charge density when there is only one donor-like level participating in capture
and emission processes is

pla,t) = a NG+ (Ne—m()]  milt =0) = N,
ny(t =00) =0

N;f f takes into account the effective doping N; — N, and any other levels that are not
emitting electrons, but which could be in a non—neutral charge state.

A time—dependent space charge density, p(z,t), will result in a time—dependency of the
electric field, e(x, t), and of the total potential over the junction, V' = V(¢). In solving
the Poisson equation for the potential as a function of position one must then assume a
time—dependency also, ¢ = i (z,t), so

%y p(z,t)

6902 N €5;€0

This can be integrated, renaming the spatial variable to z and keeping t constant, as

(58 - (0520) - (M522)

1 y
=— / p(z,t)dz (B.1)
€5i€0 J—co
The last term in the middle expression vanishes because £(z,t) = —awa(z’t) = 0 outside
the depletion region.
Integrating again over z = —oo to z = z yields ¥ (x, t) as

/a: (W)tdy = (z,t) — p(—00,t)

oo 1 ) )
=— / {/ p(z,t)dz] dz (B.2)
€5i€0 J —co |/ —o0




Through integration by parts of the right hand side,

/uv'dy = uv — /u’vdy

choosing u(y) = [Y__ p(z,t)dz and v(y) = y this yields after some manipulation

€S5i€0 —00 —00

b)) = -y [ p(z,t>dz]yio [ i ®3

By integrating to = oo the first term disappears because p(z,t) = 0 for z < —x,, and

T > x,. Also
Tn
/ plz,t)dz=0

—xp

because of charge equality. The total potential over the junction is

V(t) = (00, ) — t(—o00, ) = — /m 2z t)dz (BA4)

€5i€0 J—x,
The integration limits can be chosen as foxd for a p*-n~junction since x,, > ).

Uniform distributions of N;f £ N; and n; are now assumed within each of the three dif-
ferent regions defined in table #.2] This means that the contributions from these to the
space charge density in each region will be

Nt for 0<zx <yt
N+($) :{ 0 else g

Ny for O0<axz<xq(t)—A
Nt(x)_{()t else "

ng(t) for x,— A<z <x4(t)—A
nt(t’m):{ot() else ’ o

Therefore the total potential can be written

€5i€0

q z4(t) xq(t)—X xq(t)—X
= NT / zdx + Nt/ xdx — ny(t) / zdx
€5i€0 0 0 Tp—A

- % {NT23(t) + Ni(za(t) = A)? = ma(t) [(wa(t) = N)? = (2, — A)?] }
(B.5)

Vi) = 2 /Oxd(t) [N;chr(Nt—nt(t))} vdx

As the traps emit their electrons under reverse bias the voltage over the junction will try
to change to accomodate the increase in space charge density. However, in a constant—
voltage DLTS system the instrumentation will keep the reverse bias constant during the
emission. Differentiating the above expression for V' (¢) and equating to zero yields

drg 1 dny

=~ [(@a(t) = N)? = (zp(t) = N)?] =+ (B.6)

[N+xd + (Nt — nt) (xd - )‘)] E 9 dt
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In these calculations the assumption has been made that A is only a function of tempera-
ture, it does not vary with voltage. In the so—called dilute limit the following is valid

]\/v+ %Nd > NCL,Nt,TLt

Then the left hand side in the above equation greatly simplifies to

Naza—= = 5 [(wa(t) = N)* = (zp = A)°] —=
deg/dt _ _dCp/dt _ 1[(@a(t) =N — (= A Ldne oo
Ty Cop 2 z2 Ny dt '

Crp(t) = esiegA/xz4(t) is used and the change in reverse bias capacitance during the
emission process is assumed to be small so C}; is approximately constant. Integrating
from ¢ = oo to ¢ and using equation (3.29) and that n;(co) = 0 yields

AC(T,t) = —AChe~ (Tt (B.8)
The maximum amplitude of the transient is

L(xal) = N = (2, — N2 N,
AC) = 2 N, Chp (B.9)

Equation (B.8) is a good approximation when the depletion approximation can be as-
sumed, when the trap concentration is within the dilute limit and for uniform Ny and V¢.

It applies for constant reverse bias
dVyp

dt
If x4 > A, x, then equation (.12)) further simplifies to

=0

Ny
ACy = —C,
0= o, ¢

Otherwise the factor
(g — A% = (zp — N\)?

2
Ty

(0}

can be expressed in terms of the reverse and pulse bias capacitances as

_ (@a=AD)? — (5= NT)* _ . (Cn\® 20w (. Cp
oAT) = g - (Cp ) esi€oA <1 Cp > M)

(B.10)



Appendix C

Properties of some electrically active
defects in electron irradiated Si

Assignment | E. — E} an’p(ch) TlTn ijt Egiss | Emig | Reference
(eV) (°C) | CO) | (eV) | (eV)
vO—/0 0.18 - <RT | 275- | 2.51 | 1.8 [12,33,41]
350
v, /0 043 |4x10715 | <RT 250 |16 |13 | [10,30,31,40]
vy~ 0.23 2.5x1071% | <RT | 250 | 1.6 | 1.3 | [10,30,31,40]
V,0~/0 0.47 2x 10714 220 | 250 |202 |- [24,30]
Vo,0=/~ 0.23 4.7x10715 | 220 |325 |2.02 |- [24,30]
VOH~/0 0.32 3x 10718 275 | 325 | - - [23,31,33,39]
c;/° 0.11 6x 1071 | - 30- | - 0.74 | [29]
70
*C;C5/° A | OVERLAPS W/ VO—/0 | — ~RT | — - [29]
;'8 o1 |- - ~RT | - - [29]
vp—/0 OVERLAPS W/ V, o 150 | - 0.95 | [29,44]
VH—/0 0443 | - - - - - [22,32]
VoH /0 0.43 - - - - - [22,32,39]
VoH,* |02 - - - |- - [15,31]
V,OH 0.44 7x 10715 - - - - [24,25]
v,0,7° | OverLaps w/ ;70 | ~300| ~400| - | - [14,21]

Table C.1: A list of some acceptor levels and their properties in irradiated Si with references.
*Has two different physical configurations. The so—called A configuration completely
overlaps with VO, but starts to anneal out already at room temperature. Depends
on the concentration of impurities like oxygen and hydrogen, i.e. whether or not the
annealing is impurity assisted. The stated electrical properties of VoH, VoHs and
V5,0H should be considered tentative as suggested in the references.
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Structure | E; — E, 0y, p(cm?) Tin Tout Egiss Emnig Reference
(eV) °C) °C) (eV) (eV)

WOt 1019 ~ 10716 <RT | 250 1.6 1.3 [10,42]

tv,09+ | 0.24 ~ 10714 220 325 2.02 - [42]

VOHY+ | 028 - 275 325 1.6 1.3 [15]

Table C.2: A list of some donor levels and their properties in irradiated Si with references.
tProperties which are not considered to be specific to the charge state of a defect,
such as annealing temperatures and reaction energies, have been filled in from table
[C.T]if not mentioned specifically in the litterature for the donor level.
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