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The Amazon Basin currently hosts theworld’s largest pool of terrestrial biodiversity
and prior to European colonization of the Americas there were large human
communities living in parkland ecosystems. We examine the formation of
archaeological sites in the northeast sector of the Caxiuanã National Forest
(CNF) using light stable isotopes of nitrogen and carbon, total carbon and
nitrogen and Optically Stimulated Luminescence to characterize long-term
human landscape management practices. Previous research in the CNF has
documented differences in pH, calcium, total organic carbon (TOC) and
nitrogen (TN) between terra preta and terra marrom contexts as well as
different forest structures based on remote sensing analysis. Therefore, we
adopt a comparative approach, examining the formation processes of on-site
(terra preta), near-site (terra marrom) and offsite (latosol) contexts. TOC and TN
values obtained in our study augment and support previous research
demonstrating significantly higher on-site values relative to near-site and off-
site. However, the stable isotopes (δ13C, δ15N) assayed from terra preta, terra
marrom and latosols show statistically overlapping values, indicating the
persistence of closed canopy in off-site and near-site contexts and the use of
this canopy in the formation of on-site soils (terra preta). Our results corroborate
the hypothesis that closed canopy ecosystems and human settlements persisted
in the Amazon for thousands of years and formed the foundation of the region’s
rich biodiversity.
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1 Introduction

The relationship between so-called terra preta do Índio (a.k.a.
Amazonian Dark Earths) and ancient Amazonian cultures has been
one of the lynchpin research topics of the research program of
Historical Ecology for more than 30 years (Balée, 2006; Erickson,
2008; Szabó, 2015). While terra preta is specifically associated with
archaeological deposits, studies have shown that the effects of soil
amendments extend beyond middens into the surrounding areas
(Fraser et al., 2011; Glaser and Birk, 2012; Schmidt et al., 2014; Kern
et al., 2017;WinklerPrins and Levis, 2021). These contexts have been
called terra marrom (a.k.a. terra mulata or Amazon Brown Earth),
which are anthrosols generally devoid of artifacts surrounding terra
preta sites with a gradient of melanization relative to the soils
interpreted as not being directly modified by humans, called
terra firme (uplands) and várzea (floodplains) (Sombroek, 1966;
Denevan, 2004; Fraser et al., 2011; Alho et al., 2019). Studies have
shown that terra marrom formed in areas as a response to deliberate
burning and polyculture agroforestry (Costa et al., 2013; Arroyo-
Kalin, 2014; Iriarte et al., 2020; Maezumi et al., 2022). Typically, soils
that form outside anthropogenic areas are latosols, which are
products of deep tropical weathering, iron- and aluminum
oxyhydroxides-rich soils corresponding to Oxisols in the
United States Department of Agriculture (USDA) classification
and Ferralsols in the World Reference Base of the Food and
Agriculture Association (Schaefer et al., 2008).

However, there is no concrete, uncontroversial definition of any
of these soil or geographic categories—they tend to be applied
interpretively in the field although broad geochemical differences
among them have been characterized in relation to nutrient
availability for plants (Asare, 2022). Questions remain on the
degree to which terra preta formation increases net primary
productivity (NPP) and sequestration of carbon and nitrogen in
affected soils (Downie et al., 2011; Doughty et al., 2014; Clark et al.,
2017). Soil phenotype has been shown in at least one case from the
Bolivian Lowlands to be spatially non-correlated with the growth of
vegetation that is economically useful for humans, which is
attributed instead to natural post-abandonment disturbance
processes (Paz-Rivera and Putz, 2009; see also; Piperno et al.,
2019). On the other hand, a ground-truthed, remote sensing
study of Caxiuanã National Forest (CNF) showed marked
differences in vegetation structure as measured by a green index
in anthropogenic forests correlated with anthropic soils as compared
to non-managed areas (Choi et al., 2020). Similar results have also
been obtained by Robinson et al. (2021). Söderström et al. (2016) use
remote sensing to estimate ADE occurrence in approximately 3% of
a 256 km2 study area on the Belterra Plateau, 30 km south of the city
of Santarém, which correlates to McMichael et al.’s (2014) estimate
for ADE across the entire Amazon Basin (see also Thayn et al.,
2011). Geochemical methods using soil stable isotopes have
potential to help discriminate between how soils form within the
context of different human manipulated plant communities
(Dawson et al., 2002; Crotty et al., 2012; Nordt and Holliday,
2020), yet few studies to date have systematically applied them to
studying terra preta formation (cf., Desjardins et al., 1996; Pessenda
et al., 1997; Robinson et al., 2021).

This study adds to the growing body of knowledge of anthropic
soil formation in the Amazon by analyzing light stable isotopes of

carbon (δ13C) and nitrogen (δ15N) and associated total
concentrations of the elements as well as soil mixing from on-
site (terra preta), near-site (terra marrom) and off-site (latosol) areas
using optically stimulated luminescence (OSL) surrounding three
archaeological sites settled over the last 2000 years in the CNF of
northern Brazil (Figure 1). We tested the hypothesis that soil organic
matter would possess statistically different properties from these
three archaeological and edaphic contexts. Despite differences
between on-site and off-site contexts in soil nutrient availability
and pH, enrichment of nitrogen within terra preta relative to
surrounding areas (Kern, 1996; Lemos et al., 2011; Martins da
Silva et al., 2017), there are statistically overlapping δ13C and
δ15N values, indicating the persistence of a closed canopy
C3 forest throughout the various contexts tested and limited
influence of human land management on the isotopic
composition of soils from this study area. We contextualize our
study within the scope of previous work done in the CNF and
propose methods for developing deeper understandings of soil
formation, stable isotopes and vegetation patterns in the Amazon
in future research.

2 Background

2.1 Physical setting of the project area

The study area is located in CNF in Pará State, Brazil (Figure 1).
Precipitation averages 2,300 mm per year with an annual mean
temperature of 25.7°C (Sotta et al., 2006). Approximately 75% of the
total rainfall occurs between December and June associated with the
passage of the Intertropical Convergence Zone, which advects warm
equatorial Atlantic moisture inland over regions including the CNF
(de Souza et al., 2005; Santos et al., 2015). This portion of Brazil is
naturally covered in dense stands of southern neotropical lowland
rainforest growing along numerous tributaries of the Amazon River,
although deforestation has been pervasive since the 1970s with on-
and-off efforts to prevent clear cutting for cattle ranching (Moran,
1993; Fearnside, 2005; Fonseca et al., 2022). The CNF has protected
status, which has sheltered it from deforestation. In 2020 when
deforestation across the Brazilian Amazon was rampant (Silva
Junior et al., 2021), the estimated total loss of CNF’s forest cover
was 0.07% (2.32 km2) (Pellin et al., 2022). CNF has been a managed
forest landscape for at least 3,000 years, therefore never “pristine”
sensu stricto (Clement and Junqueira, 2010), but its status as a
protected area has buffered it from clear cutting and significant
degrees of disturbance that has beset many of the surrounding areas
in recent decades.

Tropical soils of the Amazon Basin have been previously found
to be naturally high in iron (Fe), manganese (Mn), aluminum (Al)
oxyhydroxide minerals, while low in pH, magnesium (Mg), calcium
(Ca), phosphorus (P) and total organic carbon (TOC) (Schmidt
et al., 2014; Kern et al., 2017; Macedo et al., 2017; Lombardo et al.,
2022). This is due to ancient, weathered iron-rich mineral bedrock
substrates that occur in the eastern lowlands and are generally poor
in nutrients available for plant metabolism. Within this
environment, free metal cations such as Fe3+ and Al3+ react
easily with phosphates, which fix P into the soil, making it
insoluble and therefore unavailable for uptake by plant roots
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(Johnson and Loeppert, 2006). Such edaphic conditions have been
hypothesized as promoting the growth of tall-canopy forests,
which have low metabolic requirements compared to grass-
dominated landscapes that thrive in soils with more available
nutrients (Bell, 1982). On the other hand, terra preta soils are
rich in TOC, P, N, Ca, Mg and potassium (K) from human
excrement and faunal diagenetic derivatives as well as biochar
non-or partially combusted ash (Glaser, 2007). Previous
comparative studies of on-site and off-site contexts in Caxiuanã
have similarly demonstrated significant differences in bulk
geochemistry with terra preta sites hosting soils with higher
TOC, P, C, Ca, Mg, Mn, Zn and bioavailable microminerals
than surrounding areas (Kern, 1996; Lemos et al., 2011; Martins
da Silva et al., 2017).

2.2 Archaeological setting of the CNF

The ceramics found in the Caxiuanã region include different
styles and complexes that relate to other areas of Amazonia,
signifying that this region was connected to extensive networks
during pre-colonial times, although most production was cerca situ
(Hofman et al., 2021). Inhabitation of the Caxiuanã region is
previously known to extend >2000 years based on
thermoluminescence dating of pottery (Behling and da Costa,
2000; Coirolo and D’Aquino, 2005). A sediment core from the
Rio Curuá within Caxiuanã has an increase in charcoal content
postdating 2,500 years BP, indicative of a human presence in the
region from this time on due to the fact that concentrations are
between 3-15x higher after this date than in the previous 5,300 years
(Behling and da Costa, 2000).

Evans and Meggers. (1960) identified four Amazonian ceramic
horizons–Zone-Hachured, Incised Rim, Amazonian Polychrome,
Incised-Punctate. The Incised Rim is associated with variably named
complexes, such as incised, modelled and bi-chrome, such as the
Saladoid-Barrancoid series, as well as similar developments in the
central Amazon (Neves, 2022). The polychrome tradition is said to
last from 1,500 to 500 BP. The most notable site are associated with
this ceramic horizon is Marajó Island at the mouth of the Amazon
(Schaan, 2004). The polychrome stylistic elements are currently
known to date earliest in Marajó Island and expand westward and
continue for over a millennium and into the historic contact period
in many areas. Finally, the most recent in ceramic horizons are the
Incised Punctate tradition, which includes Santarem and Konduri
along the Amazon and Koriabo in the Lower Amazon and Guianas.
This ceramic type extended beyond contact period (1,000 to 250 BP)
(Rocha, 2020). The Incised Rim Tradition is related to the first large-
scale population spread into, sedentism within and anthropization
of Amazonia before 2000 cal years BP (Lima, 2008; Neves et al.,
2014) (de Souza et al., 2020). Incised Rim origins are posited as the
Central Amazon dating to 3,000–3500 BP until 400BP, in some
cases. However, Lima (2008) suggests 2,500–2000 BP. More recent
sites contain Koriabo tradition ceramics, which are associated with a
cultural complex that probably originated in the Guianas
approximately 750 cal years BP (Rostain, 2008). These finds
connect the Guianas with the Caribbean and lower Amazon
during the late pre-Columbian period (Barreto and Lima, 2021).
Finally, a cemetery site excavated in the 1990s featured urns buried
in an earth mound (teso) with characteristics of the Marajoara style
(Lisboa et al., 2013). The presence of diverse ceramic style and
complexes that relate to other areas of Amazonia, signify this region
was connected to extensive networks during pre-colonial times.

FIGURE 1
Location of the project area and known archaeological sites in the region.
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A total of 32 archaeological sites in Caxiuanã have been
registered as of 2023, the majority of which are located within
terra preta. Sites are located in higher bluffs adjacent to large
waterways. Although there are many sites in the area, only a
small number have undergone extensive research. Current
investigations in CNF are uncovering pottery of the Incised Rim
Tradition, also known as Amazonian Barrancoid, that is related to
the first large-scale population spread into, sedentism within and
anthropization of Amazonia before 2000 cal years BP (Lima, 2008;
Neves et al., 2014; de Souza et al., 2020). Ceramic griddles recovered
in excavations demonstrate that a tuber-based diet was prevalent in
CNF around 2000 cal years BP (McDaniel, 2023). More recent sites
contain Koriabo tradition ceramics, which are associated with a
cultural complex that probably originated in the Guianas
approximately 750 cal years BP (Rostain, 2008). These finds
connect the Guianas with the Caribbean and lower Amazon
during the late pre-Columbian period (Barreto et al., 2021).
Finally, a cemetery site excavated in the 1990s featured urns
buried in an earth mound (teso) with characteristics of the
Marajoara style (Lisboa et al., 2013). In general, CNF
archaeological sites are found near seasonally inundated forest
terrain (igapó) (Figure 1). In these igapó settings there are two
important native Amazonian alimentary palms species–açai
(Euterpe oleracea) and buriti (Mauritia flexuosa) as well as a host
of other trees consumed by human communities (Lisboa et al.,
2013).

Based on population modeling of radiocarbon ages, the wetter
lower Amazon River basin is thought to have been more sparsely
populated than other regions prior to the introduction of formal
cultivation techniques although data points in this region of their
study are comparably low (McMichael and Bush, 2019). In general,
relatively sparse quantities of charcoal found in the coring sample
obtained from the Curuá River, located 300 km to the west of CNF,
have provided the basis for inferring low ancient population
densities in places like Caxiuanã relative to other regions
(Behling and da Costa, 2000). Smaller tributaries such as the
Curuá are thought to host smaller settlements relative to larger
waterways in the Amazon (Levis et al., 2014). However, a predictive
spatial model of the occurrence of terra preta based on high-
resolution (15-m) remote sensing strongly suggests
undersampling of archaeological sites in Caxiuanã (Choi et al.,
2020), which may be the product of the relative remoteness of
the location to modern settlements and infrastructure.

Today, the CNF is managed by the Serviço Florestal Brasileiro
(Brazilian Forest Service) and hosts riberinhos (riverine peoples)
who practice agroforestry to manage stands of açai, Brazil nuts
(Bertholletia excelsa) and other palm and fruit trees and utilize slash-
and-burn agriculture to raise bitter manioc (Manihot esculenta) and
other starches. According to the Unidades de Conservação there
were 452 residents in 2018 within the 200 km2 reserve (https://uc.
socioambiental.org/arp/640, accessed 13 February 2023). Since the
study region is a sparsely populated, protected area, anthropic
pressures such as deforestation, mining and cattle grazing are
relatively low. One of the focal sites of this study, Ibama, is the
location of a research station of the Instituto Brasileiro do Meio
Ambiente e dos Recursos Naturais Renováveis and has been cleared
and planted with turf. The study of anthropogenic impacts to
landscape formation are therefore processually linked to both

ancient and modern land use and extensive forms of modern-day
land use are considered as features that potentially overprint pre-
colonial features (Choi et al., 2020).

2.3 Stable isotope reconstruction in soils

The application of light stable isotopes for understanding the
formation of soils can inform past land cover conditions, providing
additional data to compliment other geochemical analyses.
Photosynthesis is the process in plants whereby CO2, H2O and
sunlight are converted into sucrose and glucose (carbohydrates). In
tropical plants, photosynthesis follows one of two pathways: trees
in closed canopy environments reduce and fix atmospheric CO2 to
a three-carbon molecule (C3) to create carbohydrates whereas
some grasses and sedges follow a more complicated (Hatch-
Slack) pathway that fixes a four-carbon molecule (C4) to create
the sugar. C3 plants discriminate more heavily than C4 plants
against 13C (which generally occurs at a ratio of 1:99 relative to the
more abundant 12C isotope) during carbon fixation. On average, C3

plants in the pre-Industrial era had a12CO2:
13CO2 ratio of −26‰

relative to the Vienna Pee Dee Belemnite (VPDB) standard,
whereas C4 plants had a ratio of −12‰ (Kohn, 2010). In situ
decomposition of plant organic matter enriches 13C on average of
~1‰ (Natelhoffer and Fry, 1988), so the 13C isotopic composition
of soils with C3 and C4 plant cover averages −25‰ and −11‰,
respectively (Ambrose and Sikes, 1991). It is estimated that
approximately 60% of the grasses from Brazil follow the C4

photosynthetic pathway (Medina et al., 1999), although there is
great spatial variance to their distribution. A longitudinal study of
13C from the Triunfo site in the Iténez Forest of the Bolivian
Amazon shows relative isotopic enrichment of on-site (terra preta)
soils compared to off-site settings, which is interpreted as a higher
contribution of C4 vegetation in the formation of the soils
(Robinson et al., 2021). However, isotopically depleted CO2 is
susceptible to “re-fixation” by plants under closed forest canopies
(Sternberg et al., 1997), providing an additional mechanistic causal
link between low 13C values and denser stands of tree cover.
Additionally, aquatic fauna have more strongly negative 13C
values than terrestrial fauna (Villagran, 2014; Hermenegildo
et al., 2017), so if the soil is amended with the decaying
remains of aquatic animals or their byproducts (including feces
of people eating aquatic animals), the 13C values of the soils may be
lower than in soils where only terrestrial matter occurs.

The second isotope commonly studied to understand an
edaphic environment is 15N. The stable isotopic composition of
nitrogen (14N:15N) in the atmosphere occurs at a ratio of 273:1.
During plant decomposition, the heavier 15N isotope remains in
the soil preferentially to the lighter 14N isotope. Higher
precipitation and temperature regimes tend to have lower 15N
values than cool and arid ecosystems (Sachs, 2009). Human-
amended (anthropogenic) soils tend to have higher ratios than
non-amended soils (Commisso and Nelson, 2006). Within the
context of the Amazon Rainforest, which has relatively stable
rainfall and temperature regime, higher δ15N relative to the
mean atmospheric ratio of 14N:15N can be interpreted as
evidence of a stronger anthropogenic signature, although this
assumption has yet to be longitudinally tested.
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3 Materials and methods

This study analyzes the stable isotopic composition and
formation processes of terra preta soil relative to surrounding
edaphic settings by diachronically examining horizontal-scale
ecologies through the soils in CNF. We contextualize datasets
within the broader archaeology of the Lower Amazon River and
to develop more robust frameworks of ancient indigenous regional
landmanagement practices. The specific details of the archaeological
investigations are beyond the scope of the present manuscript and
will be published later—here, we focus on the recovery and analyses
of sediments for the purpose of reconstructing the stable isotope and
formation ecology of the areas of CNF under study.

Samples for stable isotopes, radiocarbon (14C) and Optically
Stimulated Luminescence (OSL) were collected from a total of
20 soil pits (Figure 2) in 2016 and 2017 following documentation of
each unit’s soil profile (Supplementary Material S1). We separated
our collection zones into terra preta (on-site), terra marrom (near-
site) and latosol (off-site) contexts (Kern et al., 2017). Stable
isotope samples were placed into 133 mL Whirlpaks using a
trowel or knife, avoiding contact with human hands. All
samples were emptied into aluminum trays within 12 h of
collection and dried in a convection oven at 60°C for >12 h
prior to repacking. Samples were checked daily to ensure that
humidity did not accumulate in the sample bags and were
periodically redried if there was moisture spotted in the bags.
Following the conclusion of fieldwork, all samples were
transported to South Korea for analysis where they were
submerged in 1M HCl for >24 h on a shaker table (1000 RPM).

Samples were then rinsed with distilled water, re-agitated then
decanted to remove HCl. Samples were then dried in a gravity oven
at 70°C overnight after which they were homogenized with a glass
rod and mortar after which 10–25 mg of sediment were weighed on
a mass balance and loaded into tin capsules for analysis.

Prepared samples were analyzed with a stable isotope ratio
mass spectrometer linked to an elemental analyzer (EA-IRMS)
(VisION, Isoprime Ltd., Cheadle Hulme, United Kingdom) at
National Instrumentation Center for Environmental
Management (NICEM), Seoul National University, South Korea.
Following combustion of the samples into a gaseous state (CO2 and
N2), isotope ratios were determined as differences in parts per mille
(‰) from standard materials (VPDB marine limestone for 13C and
atmospheric nitrogen [AIR] for 15N) as follows: δ13C or δ15N (‰) =
[(Rsample - Rstandard)/Rstandard] × 103, where R is (13C/12C) or (15N/
14N). NICEM reports that the laboratory errors of the mass
spectrometer used in this study are <0.1‰ and <0.2‰,
respectively.

The use of Bayesian bivariate ellipses to understand distributions
of stable isotopes is increasingly common (e.g., Pingram et al., 2020;
Rey-Iglesia et al., 2021) and utilizes known data points to project
unknown distributions within the sampling context. Therefore,
statistical treatment of the data include standard ellipses
calculated to the 2-σ (95%) level, box and whiskers plots
performed in ggplot2 in RStudio 2022.07.1 (Build 554). To put our
results into a testable framework, we also conducted t-tests and
ANOVA tests of the data from identified edaphic contexts as well
as by depth and soil horizonation. Code and data are available at https://
doi.org/10.6084/m9.figshare.22094153.

FIGURE 2
Map of the sampling locations (UTM 22S, WGS 1984). Digital elevation model rendered from MERIT Hydro (Yamazaki et al., 2019). List of collection
sites correspond to data keys in Supplementary Material S1: (1) CAX1, (2) CAX2, (3) CAX3, (4) ECFP1, (5) ECFP2, (6) ECFP3, (7) FOR1, (8) FOR2/Forte site/PA-
GU-07, (9) FOR2-2FOR2-2, (10) FOR3, (11) IBA1, (12) IBA2/Ibama site/PA-GU-06, (13), IBA2-2, (14) IBA2-3, (15) IBA2-4, (16) IBA3, (17) IBA4, (18) IBA5, (19)
IBA6, (20) IBA7. Terra preta sites are underlined.
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Samples for accelerator mass spectrometry (AMS) radiocarbon
dating were taken from soil profiles, preferentially selecting
mollusks or charcoal from archaeological features. Samples were
analyzed at the Korea Institute of Geoscience and Mineral

Resources following a standard acid-base-acid pretreatment for
removal of contaminants. All samples are reported in years before
present (BP) from AD 1950 calculated using the Libby half-life of
5,568 years and calibrated using the atmospheric correction

FIGURE 3
Profile photos and sketches of Ibama (top) and Forte (bottom) sites. Site elevations are relative to a datum fixed at each site. Full descriptions of the
sediments are provided in Supplementary Material S1.
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supplied in Reimer et al. (2020) in OxCal4.4 (https://c14.arch.ox.
ac.uk/oxcal.html).

Additional geochronometry of sediment deposition of various
edaphic contexts was provided using OSL dating at the Korea Basic
Science Institute, Ochang. In the field, light-free high-carbon steel
pipes measuring 3 × 20 cm were pounded into the profile walls of
test pits. For laboratory preparation of OSL samples, approximately
3–4 cm of both ends of the pipes were removed, since they have the
possibility of being exposed to sunlight during sample collection.
The removed parts were used to determine the dose rate (Dr), which
was measured by low-level, high-resolution gamma spectrometry.
Then 32–250 μm fraction sediment grains were extracted from the
sampled sediments by sieving the remaining fraction in a semi-
darkened room using orange-red light. The separated grains were
cleaned in 10% H2O2 to remove organic material and 10% HCl to
remove carbonate minerals. After chemical cleansing, grains with a
specific gravity between 2.62 g cm-3 and 2.75 g cm-3 were separated
using sodium polytungstate. Of the collected grains, non-quartz was
dissolved, and quartz grains were etched by approximately 10 μm by
subjecting the sample to hydrofluoric acid for 45 min. The quartz
grains were then made into an aliquot consisting of several thousand
grains by fixing them to a stainless-steel disc with silicone spray. The
OSL was measured using a Risø TL/OSL-DA-20 series reader using
blue LEDs applying energy up to 80 mW/cm2.

The dating process followed the Single-Aliquot Regenerative
(SAR) dose protocol introduced by Murray and Wintle (2000). The
SAR protocol was adopted since it provides an effective way to
monitor sensitivity changes in quartz grains during the analysis
(Murray and Wintle, 2003; Choi et al., 2004). In the first routine
(i=0), which measures the natural OSL signal, laboratory (artificial)
dose is not administered. After preheating (step 2; 240°C or 260°C for
10 s), the natural OSL signal, L0, was measured (step 3). Then, a fixed
test dose, Dt was given before heating to 220°C (for 0 s), which is a
process to empty the luminescence trap. After that, the test dose
luminescence signal, T0, which is relevant to the natural OSL
measurement, was measured (Murray and Wintle, 2003). The
cycle was repeated four times with the regeneration doses being
increased step by step. Per standard convention, OSL ages are
reported in “years” which is the analytical date of deposition
prior to the date of measurement, which, in this case was AD
2018. Thus, there is a 68-year offset between radiocarbon and OSL
ages in this manuscript.

4 Results

Two archaeological sites, Forte and Ibama, were subject to
screened excavations, profile documentation and radiocarbon
dating and show aggraded occupation horizons (Figure 3).
Radiocarbon dating of the sites in Caxiuanã indicate that the
Forte site was occupied ca. 1912–1783 cal years BP (Table 1) and
ceramics were from the Incised Rim/Barrancoid tradition.
Aggradation of the terra preta occurred vis-à-vis the dumping of
mollusk shell and other organic waste in addition to ceramics.
Dating and stratigraphic analysis the test pit from the deepest to
shallowest units indicates the presence of aggradational sequences as
alternating packages of sediments and shells within the ca. 130-year
timeframe of occupation. The site of Ibama was occupied between
ca. 758 to 594 cal years BP. Ceramics recovered from the
archaeological excavations are indicative of continuous settlement
without a hiatus (Barreto and Lima, 2021), but alternating lenses of
mollusk and organic-rich sediments are indicative of punctuated
phases of aggradation of the landform. Shell temper has been found
in thin section of the ceramics from both earlier (Forte) and later
(Ibama) mounds illustrating the importance of mollusk shell to the
production of ceramics, and shells comprised a significant portion of
the matrix of the mound. A full report of the archaeological artifacts
recovered from the site is in preparation and outside the scope of the
present manuscript.

OSL ages of on-site contexts (IBA2, FOR2) have statistical
overlap with radiocarbon ages demonstrating the efficacy of the
method to reconstruct landscape sedimentation in weathered
edaphic contexts such as in Caxiuanã (Table 2). Off-site samples
(IBA1) and near-site (FOR1, IBA5) samples show alluvial
sedimentation at ca. 15,900 years until 900 years with temporal
overlap in the latter samples with site occupations at Ibama (IBA2)
and Forte (FOR2). Within near- and off-site contexts,
overdispersion of the samples was higher than in on-site
contexts, which may be attributed to more extensive vertical
bioturbation of sand grains (90–250 μm).

Bivariate plots of soil stable isotopes conducted of landform/
soil classification categories (terra preta, terra marrom non-
ADE anthropogenic forest and offsite latosol) show
overlapping, but statistically different, isotopic distributions
with enriched 13C (more C4 or open landscape conditions)
and 15N levels located on terra preta relative to terra marrom

TABLE 1 Radiocarbon ages from archaeological sites sampled in the Caxiuanã National Forest (2016). Refer to Figure 2 for mapped locations of FOR2 and IBA2, and
Figure 3 shows sampling points within the profiles. Radiocarbon ages calendar corrected for atmospheric production of radiocarbon using Reimer et al. (2020) in
OxCal 4.4.

Sample Material Depth below surface/datum δ13C‰ 14C yr BP cal. years BP (2-σ) µ cal. year BP

BRA16-IBA2-14C1 mollusk 93–100 b.s −16.40 ± 1.74 800 ± 20 730-679 705

BRA16-IBA2-14C2 charcoal 90 b.s −32.07 ± 1.15 850 ± 40 903-677 758

BRA16-IBA2-14C3 mollusk 20 b.d −19.22 ± 3.44 580 ± 20 639-540 594

BRA16-FOR2-14C4 mollusk 38 b.d −11.38 ± 0.96 1900 ± 20 1872-1738 1800

BRA16-FOR2-14C5 mollusk 47 b.d −12.71 ± 1.72 1980 ± 20 1989-1834 1912

BRA16-FOR2-14C6 mollusk 15 b.d −6.92 ± 1.48 1950 ± 20 1935-1825 1875

BRA16-FOR2-14C7 mollusk 29 b.s −16.93 ± 3.43 1880 ± 20 1862-1728 1783
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TABLE 2 Results of Optically Stimulated Luminescence dating and measures of over-dispersion (OD%) (Galbraith and Roberts, 2012) from Caxiuanã National Forest, Brazil. Refer to Figure 2 for sample locations, and Figure 3
shows sampling points within the profiles.

Sample Depth†

(cm)
Water 238U

(Bq·kg-1)

226Ra
(Bq·kg-1)

232Th
(Bq·kg-1)

40K
(Bq·kg-1)

Dry Dry Cosmic Total De

(Gy)
N Age

(ka)
OD
(%)

Content※

(wt. %)
Beta

(Gy·ka-1)
Gamma
(Gy·ka-1)

Ray
(Gy·ka-1

Dose rate
(Gy·ka-1)

BRA16-IBA1-
OSL1

105 19.7 47.8 ± 4.6 44.0 ± 0.9 97.2 ± 3.6 148.6 ± 9.1 1.42 ± 0.06 1.63 ± 0.05 0.16 ± 0.02 2.63 ± 0.07 41.8 ±
3.9

14 15.9 ± 1.5 33.5

BRA16-IBA1-
OSL2

45 19.8 54.0 ± 3.2 41.9 ± 0.5 98.0 ± 3.0 84.0 ± 4.8 1.04 ± 0.04 1.29 ± 0.04 0.18 ± 0.02 2.50 ± 0.06 5.6 ± 0.3 15 2.3 ± 0.1 21.0

BRA16-IBA5-
OSL4

23 17.5 36.6 ± 3.9 37.5 ± 0.7 35.1 ± 1.8 76.6 ± 6.6 0.63 ± 0.03 0.64 ± 0.03 0.19 ± 0.02 1.46 ± 0.05 2.9 ± 0.4 15 2.0 ± 0.3 48.0

BRA16-FOR1-
OSL5

17 21.5 41.6 ± 3.8 41.2 ± 0.7 32.2 ± 1.7 51.8 ± 5.6 0.57 ± 0.03 0.59 ± 0.03 0.19 ± 0.02 1.35 ± 0.05 1.3 ± 0.2 16 0.9 ± 0.2 64.4

BRA16-CAX1-
OSL6

21 14.2 26.2 ± 2.3 27.0 ± 0.4 52.0 ± 1.8 10.0 ± 0.1 0.53 ± 0.02 0.72 ± 0.02 0.19 ± 0.02 1.44 ± 0.04 1.2 ± 0.1 16 0.8 ± 0.1 22.2

BRA16-CAX2-
OSL7

14 17.1 23.4 ± 2.6 18.4 ± 0.4 45.2 ± 1.7 10.0 ± 0.1 0.43 ± 0.02 0.58 ± 0.02 0.19 ± 0.02 1.21 ± 0.03 1.6 ± 0.3 16 1.3 ± 0.2 62.5

BRA16-FOR2-
OSL8

36 13.9 31.0 ± 3.3 41.0 ± 0.7 32.6 ± 1.8 100.1 ± 6.3 0.68 ± 0.03 0.67 ± 0.03 0.18 ± 0.02 1.53 ± 0.05 3.5 ± 0.2 16 2.3 ± 0.2 27.5

BRA16-FOR2-
OSL9

9 22.9 37.1 ± 1.9 39.5 ± 0.4 34.2 ± 1.3 109.6 ± 4.0 0.71 ± 0.03 0.63 ± 0.03 0.19 ± 0.02 1.53 ± 0.04 0.4 ± 0.1 16 0.3 ± 0.1 34.0

BRA16-IBA2-
OSL10

42 17.3 38.7 ± 2.9 37.5 ± 0.5 30.3 ± 1.4 54.9 ± 4.3 0.58 ± 0.03 0.57 ± 0.03 0.18 ± 0.02 1.33 ± 0.04 0.9 ± 0.1 16 0.7 ± 0.1 17.2

BRA16-IBA2-
OSL11

25 19.6 34.8 ± 3.8 37.8 ± 0.7 31.3 ± 1.8 69.4 ± 5.9 0.58 ± 0.03 0.58 ± 0.03 0.19 ± 0.02 1.35 ± 0.05 0.7 ± 0.1 16 0.5 ± 0.1 11.2

†Depths of the samples are the vertical distance from the modern ground surface.
※Present water content.
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and latosol (Figure 4; Supplementary Material S2). A paired
t-test of 15N content showed a statistically significant difference
between terra preta and terra marrom (t=3.75, p=0.0006,
df=39), but there was no statistically significant difference
between terra marrom and latosol (t=0.90, p=0.3766, df=31)
or more broadly classified anthropic soils (terra preta + terra
marrom) vs. latosol (t=0.42, p=0.6796, df=50). On the other
hand, 13C between terra preta and terra marrom did show
statistically significant differences (t=2.58, p=0.00138, df=39)
with the former being more isotopically enriched than the latter,
and terra marrom was statistically significantly more enriched
relative to latosol samples (t=2.43, p=0.0212, df=31).

To control for isotopic variability based on horizonation
(Figure 5) and depth below ground surface (Figure 6),
statistical tests were also performed to evaluate the effects of
soil master horizon designations and relative elevation. Soil
horizonation and depths are not independent measures, as
soils form as depth-predicated entities. Nevertheless, to
exclude the possibility that variance in isotopes identified by
general edaphic contexts was controlled by one or the other
factor, both were independently tested. T-tests performed
between soils interpreted as anthropogenic A-horizons (̂A in
the USDA classification scheme, sensu Schoeneberger et al.,
2012) show statistically higher 15N in anthrosol A horizons
compared to non-anthrosol A horizons (t=3.50, p=0.0016,
df=27). On the other hand, when taken in aggregate, non-
anthropogenic A horizons did not show statistically significant
differences in comparison to E, B and C horizons (t=1.26,
p=0.2157, df=36), but Â horizons were more isotopically

enriched with statistically significant differences (t=3.16,
p=0.0033, df=35). The content of 15N did not show statistically
significant differences relative to depth below surface in t-tests of
0–10 cm vs. >40 cm below surface (t=0.26, p=0.7965, df=27)
whereas 13C was significantly more depleted in upper solum
samples (0–10 cm) relative to samples collected below 40 cm
(t=2.66, p=0.0131, df=27).

Total Organic Carbon (TOC) and Total Nitrogen (TN) were
also compared across the different edaphic contexts (terra preta,
terra marrom, latosol). A Shapiro-Wilks ANOVA test of normality
on TOC found that the variance is non-normally distributed (W =
0.913, p-value = 0.001) as was TN (W = 0.741, p-value = <0.001).
Boxplots of the data show that TOC and TN are significantly higher
within terra preta settings vs. terra marrom and latosol, of which the
latter two statistically overlap with one another (Figure 7).

5 Discussion

The CNF today represents an aggregate ecological assemblage
from natural and anthropogenic forces, particularly in the regions
adjacent to waterbodies. The Amazon Rainforest is earth’s largest
terrestrial reservoir of biodiversity (Rodrigues et al., 2013) and
within the context of the tropical setting, forests are the
predominant form of land cover. Our results demonstrate the
continuity of forest cover throughout the duration of
sedimentation and soil formation, including the period in which
humans colonized and settled the region. Beginning ca.
1900 cal years BP, terra preta was deliberately created within a

FIGURE 4
(A) Bivariate ellipses (2-σ) of edaphic contexts terra preta, terra marrom and latosols sampled from Caxiuanã National Forest, Brazil. Regression line
(dashed black): r2 = +0.206 (B) 2-σ box plot of δ13C (vs. VPDB). by edaphic contexts (C) 2-σ box plot of δ15N (vs. AIR) by edaphic contexts.
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shell mound matrix at Forte and later (ca. 760–590 cal years BP) at
Ibama. The soils surrounding the sites (terra marrom) demonstrate
a gradient effect of isotopes, TOC and TN relative to the on-site test
locations. Thus, the human contribution to shaping the ecological
complexion of the landscape was primarily focused on the
archaeological sites themselves, but extended beyond the site
areas into the surrounding forest.

We posit that the distribution of nutrients from enriched
patches of land following the abandonment of terra preta sites
contributed to the homogenization of carbon and nitrogen
isotopes across the lowland portions of the CNF, although we
note that there are some distinguishing differences. Isotopically
enriched nitrogen (15N) is demonstrated to be statistically higher
in terra preta than in terra marrom as well as anthropogenic
A-horizons (̂A) than in non-anthropogenic A-horizons. This
reflects nutrient pooling and high amounts of litter on directly
human amended terra preta soils compared to less managed
contexts. Human manipulation of the soil conditions are
interpreted here as having had the effect of concentrating
isotopically heavier forms of nitrogen during respiration of NO2.
Isotopically enriched carbon (13C) is more abundant overall in terra
preta than surrounding soils, however we interpret this as being a
function of the abundant remains of freshwater mollusks in on-site
contexts, as exhibited in the δ13C values assayed during radiocarbon
dating of mollusk shells (Table 1). Near-site (terra marrom) δ13C
values reflect nutrient redistribution or, perhaps, occurrence of more

open-canopy conditions in the past during some period of soil
formation relative to off-site (latosol) contexts, which are more
isotopically depleted (indicating C3 contribution to the soil and/
or a canopy effect). Overdispersion of luminescence signals indicate
mixing of 90–250 μm grains from their primary depositional
contexts, which is an indicator of the degree of bioturbation
(Kristensen et al., 2015). Grain overdispersion in tropical
rainforest is correlated with more intensive forms of land
management, especially anthropogenic fires, which increase the
overall biodiversity of tree species present (Tovar et al., 2014).
OSL data indicate significantly higher degrees of soil mixing
within terra marrom and latosol contexts compared to terra
preta, however the dataset is relatively small.

Total elemental concentrations provide further context for the
results of the isotopic study. TOC and TN are higher with statistical
significance on-site vs. near- and off-site contexts, which agrees with
previous studies of these elements from Forte and Ibama (Kern,
1996; Lemos et al., 2011; Martins da Silva et al., 2017). Thus, we see
that the isotopic differences between terra preta, terra marrom and
latosol contexts reflect continuity of vegetal and nutrient
communities in Caxiuanã, while organic nutrient pools are
concentrated within terra preta, where bioturbation vis-à-vis OSL
overdispersion appears to be more horizontal than vertical when
compared to off-site forest contexts.

CNF remains a managed forest to this day. Although the
population of the protected area is low, we argue that the

FIGURE 5
(A) Bivariate ellipses (2-σ) of soil horizon contexts (Schoeneberger et al., 2012) sampled from Caxiuanã National Forest, Brazil. Regression line
(dashed black): r2 = +0.206 (B) 2-σ box plot of δ13C (vs. VPDB). by soil horizon contexts (C) 2-σ box plot of δ15N (vs. AIR). by soil horizon contexts.
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persistence of human land management has created a gradient effect
to the soil isotope composition of the region studied. Similar to our
results, Paz-Rivera and Putz (2009) determine that there is similar a
measure of nutrient homogenization on landscapes in the Bolivian

Amazon with terra preta due to modern bioturbating agents and
human propagation of economically beneficial tree species outside
habitation areas. In addition, the relatively high rainfall and soil
weathering rates have likely normalized the expression of the

FIGURE 6
(A) Bivariate ellipses (2-σ) of depth below surface contexts sampled from Caxiuanã National Forest, Brazil. Regression line (dashed black): r2 =
+0.206 (B) 2-σ box plot of δ13C (vs. VPDB). by depth below surface contexts (C) 2-σ box plot of δ15N (vs. AIR). by depth below surface contexts.

FIGURE 7
(A) Total Organic Carbon (%) of edaphic contexts sampled. (B) Total Nitrogen (%) of edaphic contexts sampled fromCaxiuanã National Forest, Brazil.
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isotopically heavier 15N isotope in the soils relative to values
expected from more temperate climates (Ambrose, 1991; Posada
and Schuur, 2011). Early degradation of long-chain fatty acids
(n-C22:0–30:0) relative to n-alkanes (n-C23–33) during
decomposition of organic matter has been argued in a controlled
study from western Europe as enriching the 13C component in the
soil relative to the vegetation canopy (Hirave et al., 2020; see also;
Potapov et al., 2019), which would be less likely to occur in a setting
such as mound construction (terra preta) than in a managed forest.
Thus, future studies of the isotope ecology in the Amazon should
explore this hypothesis by undertaking compound specific isotope
analyses of n-alkanes from on-site, near-site and off-site contexts to
determine whether the relatively homogenous isoscape presented in
this study is a function of human landscape management practices
or early degradation of long-chain fatty acids (see also Thomas et al.,
2021).

6 Conclusion

This landscape-scale study of 13C, 15N, TOC, TN within a
portion of the CNF from archaeological sites ranging between
1912 and 1783 cal years BP and 758 to 594 cal years BP indicates
that nutrient pooling of organic matter from terra preta created a
gradient enrichment effect between on-site and off-site contexts.
In our study terra preta is interpreted as having primarily formed
from vegetal matter from the surrounding forest intercalated with
mollusk shells, which resulted in the concentration of C3-derived
organic matter rather than organic matter from C4 sources.
Through the deliberate creation of terra preta and near-site
land management practices to propagate species beneficial to
agroforestry endeavors, people settling in this region were
cornerstone ecosystem engineers, concentrating nutrients upon
focal points (sites) adjacent to waterways. Our study supports
previous research arguing terra preta formation resulted in a net
enrichment of carbon and nitrogen on and near sites within
forested settings and was not associated with large-scale
landscape clearance, as European forms of cereal agriculture
commonly are (e.g., Sombroek et al., 2003; Steiner et al., 2004;
Heckenberger et al., 2008; Glaser and Birk, 2012; Piperno et al.,
2015; Maezumi et al., 2018; Iriarte et al., 2020; Maezumi et al.,
2022). Our results also agree, statistically, with δ13C values
obtained by Robinson et al. (2021), although we interpret the
cause of isotopic enrichment of 13C in the Caxiuanã terra preta
setting as due to the contribution of mollusk shells and
potentially inhibited degradation of long-chain fatty acids
relative to surrounding off-site contexts.

This study adopted a landscape approach to study formation
processes and stable isotope ecologies from on-site (terra preta),
near-site (terra marrom) and off-site (latosol) contexts.
Intercomparability of sampling contexts was high because the
proxy collection locations were selected based on having level
ground surfaces that were free from obstructions, such as fallen
trees or thick roots. Ongoing research in CNF is demonstrating that
the long-term effects of historical land management processes
continues to resonate in the ecosystem, especially in the types
and density of vegetation biomass that occurs within managed
forest regions (Choi et al., 2020). Landscape-focused

archaeological research holds promise to better inform biosphere
evolution and the complex relationship between human activities
and soil formation processes. Particularly in the tropics, soil is a
critical resource that warrants conservation because it forms
over long periods of time and is the repository for the majority
of tropical biomass (Geisen et al., 2019; Scow et al., 2020). As this
study demonstrates, there is no intrinsic contradiction between
robust conservation goals to maintain stands of tropical forest
and the creation and preservation of productive soils for
subsistence purposes.
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