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Abstract
Objectives: The ATN's different modalities (fluids and neuroimaging) for each of the 
Aβ (A), tau (T), and neurodegeneration (N) elements are used for the biological diag-
nosis of Alzheimer's disease (AD). We aim to identify which ATN category achieves 
the highest potential for diagnosis and predictive accuracy of longitudinal cognitive 
decline.
Methods: Based on the availability of plasma ATN biomarkers (plasma-derived 
Aβ42/40, p-tau181, NFL, respectively), CSF ATN biomarkers (CSF-derived Aβ42/Aβ40, 
p-tau181, NFL), and neuroimaging ATN biomarkers (18F-florbetapir (FBP) amyloid-
PET, 18F-flortaucipir (FTP) tau-PET, and fluorodeoxyglucose (FDG)-PET), a total of 
2340 participants were selected from ADNI.
Results: Our data analysis indicates that the area under curves (AUCs) of CSF-A, 
neuroimaging-T, and neuroimaging-N were ranked the top three ATN candidates for 
accurate diagnosis of AD. Moreover, neuroimaging ATN biomarkers display the best 
predictive ability for longitudinal cognitive decline among the three categories. To 
note, neuroimaging-T correlates well with cognitive performances in a negative cor-
relation manner. Meanwhile, participants in the “N” element positive group, especially 
the CSF-N positive group, experience the fastest cognitive decline compared with 
other groups defined by ATN biomarkers. In addition, the voxel-wise analysis showed 
that CSF-A related to tau accumulation and FDG–PET indexes more strongly in sub-
jects with MCI stage. According to our analysis of the data, the best three ATN candi-
dates for a precise diagnosis of AD are CSF-A, neuroimaging-T, and neuroimaging-N.
Conclusions: Collectively, our findings suggest that plasma, CSF, and neuroimaging 
biomarkers differ considerably within the ATN framework; the most accurate target 
biomarkers for diagnosing AD were the CSF-A, neuroimaging-T, and neuroimaging-N 
within each ATN modality. Moreover, neuroimaging-T and CSF-N both show excellent 
ability in the prediction of cognitive decline in two different dimensions.
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1  |  INTRODUC TION

By 2050, the morbidity of dementia will be tripled worldwide; for 
Alzheimer's disease (AD), the estimated numbers will be 3–4 times 
higher if based on the biological diagnosis than the numbers based 
on clinical symptoms.1 The earliest stage of the AD continuum hap-
pens in parallel with accumulated amyloid β (Aβ), leading to the prop-
agation of tau pathology. Decades of efforts have been dedicated 
to the mechanistic studies of AD as well as to the development of 
sensitive and specific biomarkers for the early and easy diagnosis of 
AD, of the latter with challenges on replication and broad applica-
tion.2–4 Novel multidimensional biomarkers contain PET scans and 
fluid assays for Aβ and phosphorylated tau (p-tau), which show great 
prospects for clinical and research fields.5 Initially, AD confirmation 
was confined to the appearance of dementia, a clinical spectrum fea-
tured progressive cognitive decline, or neurobehavioral symptoms 
contributing to a low-quality life. Of note, several studies displayed 
poor consistency between clinical diagnosis of probable AD and 
the existence of AD-related pathologies at post-mortem examina-
tion. The degree of diagnostic confidence was dissatisfactory par-
tially due to the clinical symptoms of AD can be non-specific and 
misleading.6

Because of biological characteristics and clinical feasibility, AD 
biomarkers are classified into three binary categories7: A (amyloid-β 
deposition), T (tau accumulation: p-tau), and N (neurodegeneration 
or neural injury), each characterized typically dichotomously as 
either negative (−) or positive (+) and called the ATN framework. 
The ATN system is a symptoms-discreet, biomarkers-driven classi-
fication scheme that categorizes individuals using multimodal bio-
markers that chart core AD pathophysiological features.8 The “ATN” 
system offers a separate biological definition of AD and might be 
used to detect pathologic alterations that occur in both normal aging 
and AD dementia since the correct diagnosis of AD remains difficult 
for physicians.9 The existence of A (regardless of the presence of T 
and N) is termed Alzheimer's pathological change. Simultaneously, 
clinical phases can range from cognitively unimpaired-to-mild cog-
nitive impairment (MCI) and dementia, emphasizing the continuum 
of AD stretches over a period of years. The ATN biological diag-
nostic framework underpins the importance of Aβ and p-tau as the 
core characteristics of AD, hence promoting that AD can be diag-
nosed via biomarkers only, and even explicitly distinguishing it from 
other dementias, and as well could potentially be used in a preci-
sion medicine-oriented method to give suitable treatments para-
digm.10,11 In terms of clinical practice, although the ATN approach 
is the cornerstone of disease-modifying interventions in AD, there 
are still some unsuitable conditions, including operational difficulty 
in defining ATN positivity (+) or negativity (−), such as some biomark-
ers still lack widespread consensus cutoff values, and also different 
biomarkers, different sources (e.g., cerebrospinal fluid (CSF), plasma-
based and neuroimaging) being incorporated into one category.10

Deep-excavated CSF and neuroimaging ATN biomarkers sys-
tems showed, with a trend that is not yet fully established, fluid 
biomarkers showed meaningful change earlier than neuroimaging 

biomarkers. Reduced Aβ42 levels and the Aβ42/Aβ40 ratio in the 
CSF are early readouts of Aβ dyshomeostasis compared to the Aβ–
PET.12 Recently, a particularly exciting biomarker direction of AD is 
substantial evidence has been made in blood-based biomarkers de-
velopment for AD.13,14 The ATN elements are likely to update new 
blood biomarkers for Aβ, tau pathology, neurodegeneration, and 
other pathophysiological features (X) as a first-tier screening tool 
or still not yet available. For instance, CSF or blood neurofilament 
light chain (NFL) levels as a proxy of the “N” element can provide an 
index of whether some interventions halt neuronal loss.15 Although 
the different modalities (fluids and neuroimaging) for each of the Aβ, 
tau, and neurodegeneration elements have been tested for clinical 
use and are considered interchangeable,16–19 concordance between 
the fluids and neuroimaging ATN biomarkers has recently been chal-
lenged. Moreover, the novelty of the current report, in comparison 
with the previous reports, aims at comprehensive evaluation the dis-
crepancies between CSF, neuroimaging, and blood ATN modalities 
for patients from normal, MCI, and AD. Nevertheless, uncertainty 
regarding the order of diagnostic accuracy between the different 
types of sources hinders the widespread implementation of these 
ATN biomarkers, and whether blood tests can replace CSF tests or 
neuroimaging. There is, therefore, now a need to identify which ATN 
category or tissue achieves the highest potential for early diagnosis 
and predictive accuracy of longitudinal cognitive decline. Moreover, 
other nonetheless of the utmost important objective of this project 
is to determine if a patient with subtle cognitive decline symptoms, 
suffers from prodromal AD, and will progress to AD dementia within 
the near future can be captured through ATN biomarkers, and define 
accepted flexible cut-off points for these biomarkers.

2  |  METHODS

2.1  |  Study design

We used the STARD reporting guidelines for this study.20 Data 
were acquired from the Alzheimer's Disease Neuroimaging Initiative 
(ADNI) public database (http://adni.loni.usc.edu). The ongoing ADNI 
was founded in 2003 as a public–private partnership, led by Principal 
Investigator Michael W. Weiner, MD. The main goal of ADNI has 
been to test whether serial neuroimaging, fluid biological markers, 
and clinical neuropsychological assessment can be combined to 
predict the progression of MCI and early AD from 57 sites in the 
USA and Canada. Specifically, data were downloaded from the ADNI 
dataset since these data contained cognitive test results, includ-
ing memory composite score (ADNI–MEM), executive functioning 
composite score (ADNI–EF), and Alzheimer's Disease Assessment 
Scale–Cognitive Subscale (ADAS–Cog)21 for the present study. A 
total of 2340 participants were selected from ADNI based on the 
availability of plasma ATN biomarkers (plasma-derived Aβ42/Aβ40, p-
tau181, NFL), CSF ATN biomarkers (CSF-derived Aβ42/40, p-tau181, 
NFL) and neuroimaging ATN biomarkers (18F-florbetapir (FBP), 18F-
flortaucipir (FTP) tau-PET, and FDG–PET), respectively. It has been 
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suggested that the Aβ42/40 ratio is superior to Aβ42 alone in predict-
ing Aβ deposition,22 hence we choose Aβ42/40 as the “A” component. 
The two single-nucleotide polymorphisms for ApoE (rs429358, 
rs7412) were genotyped using DNA extracted by Cogenics from a 
3 mL aliquot of EDTA blood. Participants were assigned to the ApoE 
ε4 carriers, defined as individuals carrying at least one ε4 allele.

2.2  |  Participants' characteristics and 
patient consent

Participants from the ADNI cohort consisted of consecutively in-
cluded cognitively normal (CN: MMSE >24, CDR = 0) subjects, with 
mild cognitive symptoms (MCIs: MMSE >24, CDR = 0.5) and AD 
dementia (19 < MMSE < 24, CDR = 0.5–1) who were diagnosed by 
ADNI centers and referred to the participating memory clinics. The 
patients were divided into having either CN, MCI, or AD according 
to the extensive neuropsychological battery performed at baseline, 
including verbal, episodic memory, visuospatial ability, and atten-
tion/executive domains. In concordance with the Diagnostic and 
Statistical Manual of Mental Disorders, 5th Edition (DSM-5) criteria 
for MCI, all participants with composite z-scores of −1 to −1.5 were 
individually assessed by a senior neuropsychologist and established 
as having MCI if the performance was evaluated to show an obvious 
cognitive decline when compared with their estimated premorbid 
level. The participants were followed longitudinally with yearly in-
cluded cognitive testing by experienced physicians in neurocogni-
tive fields and measurements of the biomarkers. All patients, or their 
partners, gave written informed consent to participate at each site, 
and the study was approved by the institutional review boards of all 
participating institutions and ethics committees.

2.3  |  Neuropsychological assessment and clinical 
progression prediction

Brief cognitive tests in ADNI were selected to represent different 
cognitive domains. ADNI assessed the cognitive status of partici-
pants annually using the 11- and 13-point versions of the ADAS-11 
and ADAS-13.21 Of note, the ADNI neuropsychological test battery 
contains multiple indicators for memory functions, on which ADNI–
MEM has been established. ADNI–MEM is a composite score formed 
from the Rey Auditory Verbal Learning task, word list learning and 
recognition tasks from ADAS-Cog, recall from Logical Memory I 
of the Wechsler Memory Test-Revised, and the 3-word recall item 
from the MMSE.23 Moreover, ADNI–EF is constitutive of Category 
Fluency (i.e., animals and vegetables), the Trail-Making Test parts 
A and B, Digit Span Backwards, Wechsler Adult Intelligence Scale-
Revised Digit–Symbol Substitution, and 5 Clock Drawing items.24 
The ten-word delayed recall test from the ADAS–Cog has been vali-
dated for detecting early cognitive decline. The naming objects and 
fingers task from the ADAS–Cog was used for verbal performance, 
and the clock-drawing test was used for visuospatial performance. 

Each domain was converted to a z-score based on the test score dis-
tribution in the present population. In addition, the MMSE was used 
as a brief test of global cognition with specific sensitivity to the cog-
nitive decline seen in AD.25 The main outcome was the prediction of 
progression to dementia within a follow-up of 4 years.

2.4  |  Plasma and CSF biomarkers measurements

Blood samples were collected at baseline and analyzed according to 
the standardized ADNI protocol.26 Plasma concentrations of Aβ42 
and Aβ40 were measured using Module A of the INNO–BIA plasma 
Aβ forms immunoassay kit (Innogenetics, Ghent, Belgium, for re-
search use-only reagents) on the Luminex 100 immunoassay plat-
form and IS v.2.3 software (Luminex).27,28 Plasma p-tau181 and NFL 
in ADNI were measured on Simoa HD-X instruments (Quanterix) 
at the Clinical Neurochemistry Laboratory, the University of 
Gothenburg, according to previous papers.29,30 The capture mouse 
antibody AT270 (MN1050, Invitrogen), specific for the p-tau 181 
site, was coated onto paramagnetic beads (103,207, Quanterix), and 
the detector antibody tau12 (806,502, BioLegend) was biotinylated. 
These reagents were used together with recombinant tau 441 phos-
phorylated in vitro by glycogen synthase kinase 3β (TO8-50FN, 
SignalChem) as the calibrator to build the assay. Longitudinal blood 
sampling was tested approximately every year, over a median fol-
low-up time of 2.9 years. CSF samples were collected and processed 
based on previously described protocols.26 Levels of Aβ42, Aβ40, and 
p-tau181 in CSF were measured by the ADNI Biomarker Core using 
the Elecsys immunoassay.31 Note that absolute Aβ42, Aβ40, and p-
tau181 levels in CSF, as determined by the Elecsys assay, are not 
comparable with those tested in plasma by the Simoa assay as the 
assays use different antibodies and calibrators. CSF NFL levels were 
determined by a commercial, sensitive sandwich ELISA method.32

2.5  |  Neuroimaging acquisition, PET, and MRI 
preprocessing

All the imaging data were downloaded from the ADNI–LONI and 
IDA image archive (https://ida.loni.usc.edu). ADNI MRI and PET 
acquisition protocols are detailed elsewhere, see www.adni-info.
org. PET scans were acquired according to published protocols and 
analyzed using tracer-specific acquisition windows: 50–70 min for 
18F-florbetapir (FBP), 75–105 min for FTP, and 30–60 min for FDG. 
The mean tracer uptake of selected cortical and reference regions 
was calculated with the PET scan applied to its corresponding MRI 
scan. The scans were already averaged, aligned to standard space, 
resampled to a standard image and voxel size (2 mm × 2 mm × 2 mm), 
and smoothed to a uniform resolution as previously described.33 We 
aligned the images to the corresponding MRI scan from the same 
visit and normalized them to MNI space using parameters obtained 
from the MRI segmentation using Statistical Parametric Mapping 
version 12 (SPM12; Wellcome Trust Center for Neuroimaging, 
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London, UK, http://www.fil.ion.ucl.ac.uk/spm). Summary FBP 
standard uptake value ratios (SUVRs) were generated by averaging 
uptake ratios across four cortical regions (frontal, anterior cingulate, 
precuneus, and parietal cortex). A composite metaROI (region of in-
terest) of bilateral entorhinal, amygdala, fusiform, parahippocampal, 
inferior, and middle temporal regions were considered for tau PET 
assessment. The average counts of FDG–PET across angular, tempo-
ral, and posterior cingulate regions were adopted. Reference regions 
used mirrored published papers (pons for FDG, whole cerebellum 
for amyloid, and cerebellar crus for tau PET).34,35 A total of 259 dif-
ferent brain regions were obtained by MRI classification using the 
multi-atlas labeling method. The pre-processed T1 scanned image 
data (GradWarp, B1 calibrated, N3, Scaled) were downloaded from 
ADNI, further brain extraction (skull removal) was performed,36 and 
a novel multi-atlas labeling method based on atlas registration was 
used to segment the regions of interest.37 The software can be ob-
tained from the website https://www.cbica.upenn.edu/sbia/softw​
are/index.html. The resulting volume data for each brain region can 
be downloaded from the ADNI dataset. Among the different MRI 
brain regions obtained by a novel multi-atlas labeling method, the 
left hippocampus was chosen as the representative brain region of 
MRI through the rank of importance percentage obtained by the 
Random Forest model for CN/AD classification (Figure S1).

2.6  |  Statistical analysis

Statistical analysis was performed using R software (Version 4.1.0), 
Statistical Parametric Mapping version 12 (SPM12), MedCalc soft-
ware (Version 19.2.6), and SPSS (Version 26). Continuous variables 
were assessed for normality using the Kolmogorov–Smirnov test 
and the Quantile–Quantile Plot. Approximately normally distrib-
uted variables were expressed as the mean ± standard deviation 
(SD). A two-sample t-test was used for comparison between two 
groups, and a one-way analysis of variance was used for com-
parison between multiple groups. Non-normally distributed were 
expressed as the median [25th%, 75th%]. The Mann–Whitney U 
rank sum test was used for comparison between two groups, and 
the Kruskal–Wallis test was used for comparison between multi-
ple groups. Categorical variables were presented as numbers (per-
centages) and were compared using the Chi-square test or Fisher's 
exact test. Pairwise comparison was performed by Bonferroni cor-
rection post hoc test. Two-tail tests showed a statistically signifi-
cant difference at p < 0.05.

The Random Forest method was used to sort the characteris-
tics of CN/AD discrimination by the volume of each brain region, 
and the brain region with the best CN/AD discrimination ability was 
obtained as the representative biomarker of structural MRI Brain re-
gion volume. Receiver–operating characteristic (ROC) curves were 
used to quantify the area under the ROC curve (AUC). The final 
AT(N) framework biomarkers were determined by comparing the 
area AUC (Delong test) under the ROC curve of the AT(N) groups 
of biomarkers from different sources to distinguish CN/AD by 

MedCalc software. Threshold values for ATN fluid biomarkers and 
FDG–PET were calculated based on the Youden index, using ROC 
analyses. For amyloid PET, higher than 1.11 SUVR was considered 
to have abnormal cortical amyloid deposition (PET-A+).38 For tau 
PET, FTP SUVRs without correction for partial volume effects were 
calculated, and SUVR higher than 1.25 was considered to have tau 
pathology (PET-T+).39

We assessed linear associations of baseline multidimensional 
ATN biomarker levels with cross-sectional and longitudinal estimates 
of cognitive functions as measured by neuropsychological assess-
ment. Longitudinal annual changes in cognitive tests were calculated 
using linear mixed-effects models (LMM) with 4-year cognitive test 
results. LMM had cognitive test scores as the dependent variable 
and included the independent variables' time (years between base-
line and follow-up time points) for fixed effects and random effects, 
adjusted for sex, age, and years of education. The Spearman correla-
tion coefficient was calculated by the covariance of two variables 
over the product of their standard deviation. The value range of the 
Spearman correlation coefficient is from −1 to 1, with a higher ab-
solute value indicating a stronger association and the sign indicating 
a positive or negative association between the two variables. The 
relationship between baseline scores or longitudinal annual changes 
in cognitive tests and ATN biomarker values, including biomarker 
levels (natural log-transformed and standardized due to non-normal 
distribution) and positive or negative ATN status, was estimated to 
investigate whether baseline ATN biomarkers values can predict 
subsequent 4-year cognitive trajectory. We further assessed asso-
ciations of baseline CSF Aβ42/40 level with baseline and 4-year-later 
cerebral tau pathology and glycometabolism measured on tau-PET 
and FDG–PET for different diagnostic groups, using linear voxel-
wise regressions adjusted for age and sex. Neuroimaging analyses 
were performed using SPM12. Multivariate logistic models were 
used to construct the diagnostic model. Each multivariate logistic 
model implied a combination of one biomarker of “A”, one biomarker 
of “T”, and one biomarker of “N”. The predictive value of each model 
was calculated and the AUC stood as a measure of discriminating 
between normal and AD subjects.

3  |  RESULTS

3.1  |  Participants in the ADNI database

Participant's data were extracted from the ADNI database, and the 
basic demographic characteristics are shown in Table 1. A total of 
2340 patients were selected, comprising 863 individuals with nor-
mal cognition (or CN), 1068 clinically diagnosed with MCI, and 409 
patients with AD. Participants were required to have CSF, plasma, 
or neuroimaging ATN biomarkers in the analysis. The mean age of 
patients with CN and MCI (72.7 and 72.8 years, respectively) was 
significantly lower than that of AD participants (74.9 years). There 
were more female subjects in AD and MCI (56.4% of AD and 58.6% 
of MCI) compared to CN (44.3%), as well as low-education levels in 
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the AD group. Participants carrying the APOE ε4 allele, the larg-
est genetic risk factor for AD, were particularly overrepresented in 
AD and MCI groups (67.0% vs. 49.7%, respectively) compared with 
CN (30.4%). As indicated by MMSE, CDR (clinical dementia rating), 
ADAS-11, ADAS-13, and ADNI-MEM scores et al., cognitive tests 
significantly differed between dementia groups and controls. To 
compare the diagnostic accuracy of AT(N) biomarkers between the 

different types of sources (fluid and neuroimaging ATN framework), 
a novel AT(N) biomarker framework was constructed, which contains 
the optimum biomarkers in each AT(N) dimension. The differences in 
AUC values among biomarkers from the same source were further 
compared by the Delong test, as shown in Table S1. According to the 
AUC values, the optimal framework biomarkers of AT(N) were finally 
selected, as shown in Table S2.

TA B L E  1 Baseline demographics and ATN data of participants with ADNI.

CN (N = 863) MCI (N = 1068) AD (N = 409)
p value 
(CN vs. MCI)

p value 
(CN vs. AD)

p value 
(MCI vs. AD)

ADNI-1 229 (26.5%) 397 (37.2%) 192 (46.9%) – – –

ADNI-GO 295 (34.2%) 341 (31.9%) 150 (36.7%) – – –

ADNI-2 338 (39.2%) 201 (18.8%) 67 (16.4%) – – –

ADNI-3 1 (0.12%) 129 (12.1%) 0 (0.00%) – – –

Age (years) 72.7 (6.35) 72.8 (7.64) 74.9 (7.91) 0.927 <0.001 <0.001

Gender (% female) 382 (44.3%) 626 (58.6%) 230 (56.2%) <0.001 <0.001 0.492

Educaiton (years) 16.0 [13.0;18.0] 16.0 [15.0;18.0] 16.0 [14.0;18.0] <0.001 <0.001 <0.001

APOE4 carriers (%) 246 (30.6%) 503 (49.7%) 262 (67.0%) <0.001 <0.001 <0.001

CSF ATN biomarkers levels

CSF_Aβ40 (pg/mL) 18,320 [15,110;21,970] 17,490 [13,880;21,480] 16,165 [12,258;18,558] 0.180 0.002 0.022

CSF_Aβ42 (pg/mL) 1136 [815;1629] 752 [564;1271] 544 [424;714] <0.001 <0.001 <0.001

CSF_Aβ42/40 0.07 [0.05;0.09] 0.05 [0.03;0.08] 0.04 [0.03;0.04] <0.001 <0.001 <0.001

CSF p-tau181 (pg/mL) 19.8 [14.9;26.6] 24.8 [18.8;36.0] 32.3 [26.5;47.5] <0.001 <0.001 <0.001

CSF T-tau (pg/mL) 226 [173;293] 263 [212;356] 331 [267;432] <0.001 <0.001 0.001

CSF_NFL (pg/mL) 1044 [810;1263] 1320 [1020;1693] 1479 [1152;1841] <0.001 <0.001 0.012

Plasma ATN biomarkers levels

Plasma_Aβ40 (pg/mL) 155 [122;183] 153 [122;184] 154 [129;178] 0.959 0.959 0.959

Plasma_Aβ42 (pg/mL) 37.8 [29.8;45.0] 35.5 [27.9;43.9] 37.2 [30.6;42.2] 0.347 0.508 0.508

Plasma_Aβ42/40 0.25 [0.22;0.29] 0.24 [0.20;0.29] 0.24 [0.21;0.27] 0.322 0.322 0.879

Plasma p-tau181 (pg/mL) 14.0 [9.85;19.2] 17.1 [11.2;24.4] 23.0 [17.5;27.8] <0.001 <0.001 <0.001

Plasma T-tau (pg/mL) 2.52 [1.77;3.11] 2.62 [1.76;3.45] 2.82 [2.09;3.84] 0.218 0.002 0.045

Plasma_NFL (pg/mL) 30.4 [23.8;41.1] 35.9 [26.6;49.0] 44.5 [33.6;59.0] <0.001 <0.001 <0.001

Neuroimaging ATN biomarkers levels

PET_SUVR (Aβ) 1.23 [1.13;1.39] 1.31 [1.17;1.59] 1.59 [1.37;1.79] <0.001 <0.001 <0.001

PET_SUVR (tau) 1.18 [1.13;1.23] 1.22 [1.15;1.37] 1.53 [1.27;1.80] <0.001 <0.001 <0.001

PET_SUVR (FDG) 1.28 [1.20;1.36] 1.22 [1.12;1.31] 1.04 [0.94;1.13] <0.001 <0.001 <0.001

L-HV (mm3) 3540 (414) 3203 (491) 2888 (501) <0.001 <0.001 <0.001

Cognitive tests

ADAS-11 5.33 [3.67;7.33] 9.67 [7.00;13.0] 19.0 [14.7;23.0] <0.001 <0.001 <0.001

ADAS-13 29.0 [29.0;30.0] 28.0 [26.0;29.0] 23.0 [21.0;25.0] <0.001 <0.001 <0.001

MMSE 1.02 (0.57) 0.19 (0.67) −0.86 (0.53) <0.001 <0.001 <0.001

ADNI-MEM 0.88 (0.82) 0.22 (0.89) −0.90 (0.96) <0.001 <0.001 <0.001

ADNI-EF 5.33 [3.67;7.33] 9.67 [7.00;13.0] 19.0 [14.7;23.0] <0.001 <0.001 <0.001

Note: Approximately normally4 distributed variables were expressed as the mean ± standard deviation (SD). One-way analysis of variance was used 
for comparison between multiple groups. Non-normally distributed were expressed as the median [25th percent, 75th percent] and the Kruskal–
Wallis test was used for comparison between multiple groups. Categorical variables were presented as numbers (percentages) and were compared 
using the Chi-square test. Pairwise comparison was performed by Bonferroni correction post hoc test.
Abbreviations: AD, Alzheimer's disease; ADAS, Alzheimer's disease assessment scale-cognitive subscale; ADNI-EF, composite executive functioning 
score; ADNI-MEM, composite memory score; Aβ, amyloid beta; CDRSB, clinical dementia rating sum of boxes; CN, cognitively normal; CSF, Cerebro-
spinal Fluid; FDG, fluorodeoxyglucose; L-HV, Left hippocampal volume; MCI, mild cognitive impairment; MMSE, mini-mental state examination; NA, 
not applicable; NFL, neurofilament light; PET, positron emission tomography; p-tau, phosphorylated tau 181; SUVR, standardized uptake value ratio; 
T-tau, total tau.
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In addition, to determine the order of diagnostic accuracy of 
AD between the different types of sources (fluid and neuroimag-
ing ATN framework), the levels of CSF, plasma, and neuroimaging 
ATN biomarkers found in the different diagnostic groups are also 
shown in Table  1. In accordance with previous reports,40 baseline 
CSF Aβ1–40, CSF Aβ1–42, and CSF Aβ42/40 ratio (CSF-A classification) 
levels were significantly lower in AD dementia (CSF Aβ42/40: 0.04 
[0.03;0.04]) and MCI (CSF Aβ42/40: 0.05 [0.03;0.08]) as compared to 
the CN group (CSF Aβ42/40: 0.07 [0.05;0.09]; Figure 1A and Table 1). 
Regarding the CSF-T classification, the higher CSF p-tau181 concen-
tration in AD dementia (32.3 [26.5;47.5] pg/mL) as compared to the 
MCI (24.8 [18.8;36.0] pg/mL) and CN (19.8 [14.9;26.6] pg/mL) was 
highly significant (p < 0.001; Figure 1B). Of note, there was an up-
ward trend of higher CSF NFL (CSF-N classification) in the AD (1479 
[1152;1841] pg/mL) and MCI (1320 [1020;1693] pg/mL) compared 
with the CN group (1044 [810;1263] pg/mL; Figure 1C). The use of 
CSF biomarkers is still limited because of high costs, hard availability, 
and invasive traits. There is, therefore, a great interest in plasma-
based ATN biomarkers. Within the plasma ATN biomarkers, there 
was no difference in terms of Plasma-A among each group (p > 0.05, 
Figure  1D), and plasma p-tau181 (Plasma-T) was higher in partici-
pants classified as AD and MCI compared to those determined as 
CN (p < 0.001, Figure 1E). When considering Plasma-N classification, 
plasma NFL was obviously higher in the AD and MCI groups than in 
the CN group (p < 0.001, Figure 1F). To test the neuroimaging ATN 
biomarkers in the AD continuum, Aβ–PET SUVR (neuroimaging-A) 
and tau-PET SUVR (neuroimaging-T) were both higher in the AD 
dementia compared with the CN group (p < 0.001, Figure  1G,H), 
whereas FDG–PET SUVR (neuroimaging-N) was significantly lower 
in the AD and MCI than in the CN group (p < 0.001, Figure 1I).

3.2  |  Discriminative accuracy of CSF, plasma, and 
neuroimaging ATN biomarkers for AD patients in the 
ADNI cohort

To test the diagnostic accuracy of CSF, plasma, and neuroimag-
ing ATN biomarkers in distinguishing clinically defined diagnostic 
groups. For the primary outcome of AD veraus CN (Figure 1J), the 
AUC was 0.8378 using the CSF Aβ42/40 ratio (CSF-A), which was sig-
nificantly higher than the AUCs for plasma Aβ42/40 ratio (Plasma-A: 
AUC 0.5373) and Aβ–PET (neuroimaging-A: AUC 0.7909), indicating 
the CSF-A classification is the best candidate to differentiate the 
AD from CN in the “A” element. Similarly, regarding the “T” element 
in the ATN framework, the AUC for tau-PET (neuroimaging-T) levels 
was 0.9208, which was significantly higher than for CSF levels of p-
tau181 (CSF-T: AUC 0.7782) and plasma-based p-tau181 (Plasma-T: 
AUC 0.7478). Furthermore, analysis of N classification, the AUC for 
FDG–PET (neuroimaging-N: AUC 0.9085) was higher than CSF NFL 
(CSF-N: AUC 0.7684) and plasma NFL (Plasma-N: AUC 0.7316). In 
terms of secondary outcomes analysis that compared participants 
of MCI versus CN, and MCI versus AD, respectively. The AUCs 
for CSF-A (0.6807), neuroimaging-T (0.6764), and CSF-N (0.6801) 

were higher than the same ATN classifications in the MCI versus CN 
(Figure 1K). However, all the AUC levels were <0.7 in this analysis, 
suggesting the ATN biomarkers hard to differentiate the MCI from 
CN. Next, we evaluated the accuracy of ATN biomarkers to identify 
AD from MCI and found Aβ–PET (neuroimaging-A: AUC 0.6839), 
tau-PET (neuroimaging-T: AUC 0.7893), and FDG–PET (neuroim-
aging-N: AUC 0.8177) demonstrated a significantly higher AUC 
compared with other ATN classifications (Figure 1L). Finally, ranking 
results of the A/T/N biomarker features based on their AUC values 
In different comparisons (AD vs. CN, MCI vs. CN, AD vs. MCI) were 
shown in Tables S3 and S4, and related cutoff values were shown 
in Tables S5.

3.3  |  Associations of CSF, plasma, and 
neuroimaging ATN biomarkers with cognitive 
function measures

As a result of, age, gender, and education are risk factors for 
pathological biomarker changes, we adjusted these features by 
using them as covariates in future linear regression analysis. To 
test whether the different derived ATN biomarkers in classifying 
the three subject group pairs are associated with performance on 
cognitive functioning tests, including ADNI–MEM, and ADNI–EF. 
Hence, we analyzed each ATN feature's correlation with cognitive 
functions. All the biomarker levels were natural log transformed 
and standardized due to non-normal distribution. We found 
ADNI_MEM was strongest correlated with Aβ–PET (β = −0.365) 
compared to CSF Aβ (β = 0.318) and plasma Aβ (β = 0.075) in the “A” 
classification (Figure 2A,D,G). Of note, tau-PET (β = −0.436) and 
FDG–PET (β = 0.506) were also highly correlated with ADNI–MEM 
in the “T” and “N” elements, respectively. When linear regression 
analysis of ADNI–EF in all three groups, cognitive performance 
was highly associated with the neuroimaging ATN markers, such 
as Aβ–PET, tau-PET, and FDG–PET, showing larger coefficients 
(β values) than CSF and plasma ATN biomarkers (Figure 2J–R) ex-
cept CSF Aβ (β = 0.328) was a little higher than Aβ–PET (β = 0.324). 
Moreover, we then analyzed the correlation of the CSF, plasma, 
and neuroimaging ATN biomarkers in the CN, MCI, and AD groups 
using heat maps. Correlation coefficients were obtained by the 
Spearman correlation tests. It showed that the neuroimaging and 
CSF ATN features were highly correlated with cognitive scales 
rather than plasma ATN biomarkers in the CN group (Figure S2a, 
Table  S7), whereas the plasma ATN biomarkers started to dis-
play a significant effect in the MCI stage (Figure S2b, Table S8). 
Notably, however, FDG–PET SUVR was more highly correlated 
with memory than other A/T/N markers in the MCI or AD de-
mentia participants (Figure S2b,c, Tables S8 and S9). Of interest, 
a similar correlation analysis pattern was represented when com-
bining all subjects, CN&AD, CN&MCI, and MCI&AD (Figure S2d–g, 
Tables S6, S10–S12), with the correlation values being even larger 
for the neuroimaging ATN measurements than CSF and plasma-
based ATN biomarkers, especially FDG–PET SUVR, indicating that 
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    |  7 of 16XIONG et al.

neuroimaging ATN biomarkers become strongly predictive targets 
of cognitive performance as cognitive decline progresses from CN 
to AD. Particularly, tau-PET (neuroimaging-T) appeared to be an 

especially important correlation factor of memory function, as it 
existed the highest correlation coefficient among the three neu-
roimaging ATN biomarkers in these cognitive correlation analyses.

F I G U R E  1 CSF, plasma, and neuroimaging ATN biomarkers profiles. Distribution of CSF (A–C), plasma (D–F), and neuroimaging (G–I) ATN 
biomarkers concentrations across the separate clinically defined diagnostics groups, namely CN, MCI, and AD. The different sample sizes 
of different markers are also displayed at the bottom of the figures. Comparing CSF, plasma, and neuroimaging ATN biomarkers diagnosis 
accuracy in AD versus CN (J), MCI versus CN (K), and AD versus MCI (L) comparisons using receiver operating characteristic (ROC) curve 
analyses. Statistical differences among the groups for each biomarker were determined by the Kruskal–Wallis test followed by multiple 
comparisons with Holm–Bonferroni adjusts (A–I).

(A) (B) (C)

(D) (E) (F)

(G) (H) (I)

(J) (K) (L)
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    |  9 of 16XIONG et al.

3.4  |  The clinical prediction of cognitive decline by 
CSF, plasma, and neuroimaging ATN biomarker

To understand if CSF, plasma, and neuroimaging ATN biomarkers are 
sufficient to predict cognitive decline in CN, MCI, and AD groups, we 
performed linear mixed-effect models (LMMs) analysis adjusted for 
age, gender, and education to get cognitive annual changes. Linear 
regression analysis showed that Aβ-PET (β = −0.015, p < 0.001, 
Figure 3G), as a neuroimaging-A classification, had a faster cogni-
tive decline in terms of ADNI–MEM annual changes over 48 months 
in comparison to CSF Aβ42/40 (β = 0.013, p < 0.001, Figure 3A) and 
plasma Aβ42/40 (β = 0.002, p = 0.115, Figure  3D). Similarly, faster 
cognitive decline in tau-PET (β = −0.018, p < 0.001, Figure 3H; CSF 
p-tau: β = −0.012, p < 0.001, Figure  3B; Plasma p-tau: β = −0.010, 
p < 0.001, Figure  3E) and FDG–PET uptake (β = 0.020, p < 0.001, 
Figure  3I; CSF NFL: β = −0.012, p < 0.001, Figure  3C; Plasma NFL: 
β = −0.010, p < 0.001, Figure 3E) was observed in “T” and “N” bio-
marker elements, respectively. In addition, other cognitive scales, 
such as ADNI–EF, as outcome measures were also briefly investi-
gated (Figure  3J–R). Interestingly, consistent with the correlation 
analysis results, neuroimaging ATN features showed the fastest 
ADNI–MEM and ADNI–EF changes compared with CSF and plasma 
ATN elements. General linear mixed models with random intercepts 
and slopes were also used to examine the influence of higher/lower 
ATN biomarkers on cognitive performances and decline over time. 
It showed that “N+” participants, especially “CSF-N+”, turn out to 
experience the fastest cognitive decline in each cognitive domain 
(Detailed information can be found in Table S13). To test the influ-
ence of Aβ status on subjects’ cognitive performance in different 
stages. We then defined neuroimaging-A+ as pathological positivity 
of Aβ (Aβ+) and neuroimaging-A-  as pathological negativity of Aβ 
(Aβ−). Baseline cognitive scores and cognitive annual changes were 
compared between subjects in three diagnostic groups with differ-
ent Aβ conditions. It showed that both CN and AD subjects had no 
difference in baseline cognitive scores and cognitive annual changes 
(Figure S3a–f). It seemed that Aβ status could only make a significant 
difference in cognitive scores in MCI subjects. In ADNI–EF annual 
change scores, no significant difference between different Aβ forms 
could be found in the three diagnostic groups (Figure S3f).

3.5  |  The function of plasma p-tau 181 in the 
discrimination of Aβ  status of subjects in different 
diagnostic groups and predicting their 4-year 
cognitive trajectory

Roc analysis indicated that plasma p-tau 181 failed to discriminate Aβ+/
Aβ− in CN subjects (Figure S4a). The AUC value turned out to be higher 

in MCI subjects (AUC: 0.634) and subjects with AD (0.779) (Figure S4b,c). 
To understand if plasma p-tau 181 is sufficient to predict cognitive de-
cline in CN and MCI groups, we further performed the linear regression 
in different Aβ conditions. It showed that plasma p-tau 181 was not cor-
related with baseline cognitive scores or cognitive annual changes in the 
CN group, either Aβ+ or Aβ− (Figure S4d–g). In MCI subjects, plasma p-
tau 181 had a significant correlation with both baseline cognitive scores 
and cognitive annual changes only in Aβ+ status (Figure S4h–k).

3.6  |  Associations of CSF Aβ 42/40 with 
regional tau-PET and FDG–PET across the AD 
clinical spectrum

CSF Aβ42/40 (CSF-A), tau-PET (neuroimaging-T), and FDG–PET 
(neuroimaging-N) were ranked the top three candidates in diagno-
sis accuracy for AD versus CN, as well as the high correlation with 
cognitive performances. To further evaluate the longitudinal rela-
tionship between CSF Aβ42/40 and tau-PET and FDG–PET biomark-
ers. Regarding the tau-PET domain, we assessed the cross-sectional 
associations of CSF Aβ42/40 with global tau-PET SUVR across the 
AD continuum using voxel-wise analyses (adjusted for age, sex, 
and APOE4). Baseline levels of CSF Aβ42/40 related with tau accu-
mulation more strongly in subjects with MCI (r = −0.501, p = 0.000) 
and CN (r = −0.232, p < 0.001), while the association was markedly 
weaker among AD participants (r = −0.315, p = 0.096, Figure 4A). We 
then investigated the correlations of baseline CSF Aβ42/40 versus 
longitudinal tau-PET SUVR 4 years later and found a significant cor-
relation only in the CN group (r = −0.366, p = 0.042), indicating base-
line CSF Aβ42/40 change was mildly associated with longitudinal tau 
accumulation, only marginal and statistically non-significant associa-
tions in MCI subjects (r = −0.093, p = 0.721, Figure  4B). Moreover, 
voxel-wise analyses assessed associations between CSF Aβ42/40 and 
FDG–PET. Like tau-PET, baseline CSF Aβ42/40 demonstrated a mildly 
significant relationship with FDG–PET SUVR in subjects with MCI 
(r = 0.137, p = 0.026), while no significant association found among 
CN (r = 0.108, p = 0.294) and AD subjects (r = −0.046, p = 0.750, 
Figure 4C). Of note, we investigated whether baseline CSF Aβ42/40 
correlated with the severity of FDG–PET SUVR 4 years later, and no 
correlation was found both in the CN (r = 0.304, p = 0.271) and MCI 
groups (r = 0.037, p = 0.925, Figure 4D).

3.7  |  A combination model of the top three ATN 
biomarkers diagnoses AD

We next sought to assess whether combining CSF, plasma, and neu-
roimaging ATN biomarkers could further improve the accuracy of 

F I G U R E  2 Linear regression models of ATN biomarkers with baseline cognitive scores. All the biomarker levels were natural log 
transformed and standardized due to non-normal distribution. Scatter plots showing the correlations of CSF, plasma, and neuroimaging ATN 
biomarkers with ADNI_MEM (A–I) and ADNI_EF (J–R). Regression coefficient β and related p-value were calculated in each linear regression 
model.
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    |  11 of 16XIONG et al.

diagnosis of AD. We arranged the “A”, “T”, and “N” components to form 
a serial new diagnosis model and ranked the ATN biomarker features 
according to their relative importance in each model (Figure 5A,B). 
The best diagnosis model used in AD versus CN included CSF-A (CSF 
Aβ42/40), neuroimaging-T (tau-PET), and neuroimaging-N (FDG–PET) 
with an accuracy of 1.000, followed by neuroimaging-A (Aβ-PET), 
Plasma-T (plasma p-tau181) and neuroimaging-N (FDG–PET) with an 
accuracy of 0.966, and CAF-A (CSF Aβ42/40), CSF-T (CSF p-tau181) 
and neuroimaging-N (FDG–PET) showed a similarly high AUC 0.962 
(Figure 5C). Of interest, the best diagnosis models discriminated MCI 
versus CN, and MCI versus AD were displayed in Figure S5. We take 
these results seriously due to the limited sample sizes, especially the 
No. 1 model.

4  |  DISCUSSION

This is the first study to our knowledge of full-scale analysis from 
all arms of the A/T/N framework, and the core findings of the pro-
spective longitudinal study were as follows: (1) In terms of diag-
nostic accuracy for AD, the AUCs of CSF Aβ42/40 (CSF-A), tau-PET 
(neuroimaging-T) and FDG–PET (neuroimaging-N) were ranked 
as the top three ATN candidates in diagnosis accuracy for AD. (2) 
Neuroimaging ATN biomarkers demonstrated more strongly predic-
tive targets of cognitive performances in terms of cognitive decline 
than CSF and plasma ATN categories. Among them, neuroimaging-T 
and neuroimaging-N appeared to be an especially important corre-
lation factors of cognitive function. (3) The status of Aβ might not 
be effective enough to predict the cognitive decline in subjects 
with CN or AD, but in subjects with MCI Aβ status could influence 
a lot. (4) Voxel-wise analyzed CSF-A related with tau accumulation 
and FDG–PET indexes more strongly in subjects with MCI stage. (5) 
The best-combined diagnosis model discriminated AD from cogni-
tively unimpaired participants, including CSF-A, neuroimaging-T, and 
Neuroimaging-N, with an accuracy of 1.000. We provide a detailed 
description and comprehensive analysis picture of the different 
sources of ATN biomarkers in the AD continuum.

In this study, we started with the clinical diagnosis and then tested 
the levels of the CSF, plasma, and neuroimaging ATN biomarkers 
separately in each diagnostic group (CN, MCI, and AD). The results 
demonstrated that CSF-A, neuroimaging-T, and Neuroimaging-N, 
within the same ATN category, might provide better discriminative 
accuracy for AD. Due to the ATN profiling's lack of interchange-
ability, such as between CSF and neuroimaging modalities. Hence, 
capturing the best biomarkers among the ATN systems is increas-
ingly important. Taken together, these results suggest that CSF and 

Neuroimaging-derived biomarkers, which are intimately related to 
the main pathologies, are much more sensitive and accurate than 
plasma-derived for AD diagnosis. However, their utility in the clinic is 
limited in part by their high price and poor accessibility, and plasma-
based biomarkers will likely be a potential paramount prospect in 
the AD field.11 Hence, ongoing research on plasma-based A/T/N 
framework biomarkers should be a part of future attempts to close 
the gaps. Interestingly, several studies based on BioFINDER41 and a 
recent meta-analysis42 have confirmed the high accuracy of plasma 
p-tau in diagnosing AD compared to CSF biomarkers. Nevertheless, 
in the present study, plasma ATN biomarkers were not sufficiently 
sensitive biomarkers to differentiate AD and predictive cognitive 
performances. One possible explanation, according to method vi-
sion, is that mass spectrometry may not be sensitive enough to mea-
sure the plasma biomarkers compared to Simoa assays.

We investigated the associations between ATN biomarkers with 
cognitive function measures and found neuroimaging ATN biomark-
ers become more closely predictive of cognitive decline value than 
other ATN biomarkers, questioning the prognostic cost of CSF and 
plasma ATN biomarkers, especially the presence of pathological neu-
roimaging-T (tau-PET) and Neuroimaging-N (FDG–PET) in the brain, 
which appeared to be a super biomarker with a higher r correlation 
index,43 which can be used to future cognitive prediction. Moreover, 
several pieces of evidence point out a high correlation between tau 
levels and cognitive deterioration across the entire AD spectrum.44 
To our knowledge, there are a couple of plausible arguments to make 
clear why tau-PET is a vital target in predicting progressive cogni-
tive decline in the clinical AD continuum. In line with other reports, 
a rapid steeper decline in cognition longitudinally was foreseen by 
tau-PET (+) rather than Aβ–PET (+), partially resulting from tau (+) 
was often coupled with Aβ (+) but not vice versa.45 Aβ deposition is 
the original trigger of tau pathology in the AD continuum, while tau 
is the concrete driver of neurodegeneration and cognitive decline.46 
Furthermore, tau diffuses in a relatively stereotypical pattern that is 
tightly related to clinical status is also one of the potential reasons.

FDG–PET can effectively assess the level of cortical metabolism 
in the brain area and is also an important indicator reflecting the 
neurodegeneration dimension of patients with AD.47 Studies have 
shown that in the development course of AD, the abnormal Aβ and 
tau proteins begin at the early stage of AD onset, while the abnor-
mal glucose uptake and utilization mainly occur in the middle and 
later stages of the disease.48 There are several plausible reasons why 
hypoglycemia is an important biomarker for predicting progressive 
cognitive decline in clinical AD. For example, impaired glucose me-
tabolism in the brain is associated with insulin resistance, which in 
turn exacerbates Aβ deposition. Stanley et al. showed that one of the 

F I G U R E  3 Linear regression models of ATN biomarkers with cognitive annual changes. All the biomarker levels were natural log 
transformed and standardized due to non-normal distribution. Cognitive annual changes were got through linear mixed models with 4-year 
follow-up data. LMM had cognitive test scores as the dependent variable and included the independent variables' time (years between 
baseline and follow-up time points) for fixed effects and random effects, adjusted for sex, age, and years of education. Scatter plots showing 
the correlations of CSF, plasma, and neuroimaging ATN biomarkers with ADNI_MEM annual change (A–I) and ADNI–EF annual change (J–R). 
Regression coefficient β and related p-value were calculated in each linear regression model.
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F I G U R E  4 Regional and global associations of CSF Aβ42/40 level with baseline and 4-year-later cerebral tau pathology and 
glycometabolism. (A) CSF Aβ42/40 level versus baseline tau-PET SUVR using Voxel-wise analyses (adjusted for age and sex et al.), (B) CSF 
Aβ42/40 level versus 4-year-later tau-PET SUVR, (C) CSF Aβ42/40 level versus baseline FDG–PET SUVR, (D) CSF Aβ42/40 level versus 4-year-
later FDG–PET SUVR. Significant associations in voxel-wise analyses were determined based on an FWE-corrected threshold of p < 0.05 at 
the cluster level. Color panels on the bottom display spearman correlation coefficients (r).

(A)

(B)

(C)

(D)
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F I G U R E  5 A combination model of the top three ATN biomarkers diagnose AD. We arranged the “A”, “T”, and “N” components to form 
a serial multivariate logistic model and ranked the ATN biomarker features according to their diagnostic value in this model (A, B). The 
accuracy of the top three ATN biomarkers distinguishing AD from CN groups is evidenced by AUCs, as shown in (C). The best diagnosis 
model used in AD versus CN included CSF-A (CSF Aβ42/40), neuroimaging-T (tau-PET), and neuroimaging-N (FDG–PET) with an accuracy 
of 1.000, followed by neuroimaging-A (Aβ-PET), Plasma-T (plasma p-tau181) and neuroimaging-N (FDG–PET) with an accuracy of 0.966, 
and CAF-A (CSF Aβ42/40), CSF-T (CSF p-tau181) and neuroimaging-N (FDG–PET) showed a similarly high AUC 0.962 (C). The best diagnosis 
models discriminated MCI versus CN, and MCI versus AD were displayed in Figure S5.

(A) (C)
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characteristics of AD was a damaged insulin signal in the brain and 
abnormal insulin levels in plasma and CSF.49

Alternatively, voxel-wise analyzed CSF-A related to tau accu-
mulation and FDG–PET more strongly in subjects with MCI stage 
than CN and AD. The lack of correlation of cognition with Aβ out-
side MCI is reasonable, given floor and ceiling effects in CN and AD. 
Furthermore, baseline CSF-A, more pronounced, was associated 
with PET-measured tau aggregation 4 years later in participants with 
CN (p = 0.042), and no-significant correlation was found in terms of 
neurodegeneration in CN (p = 0.271) and MCI groups (p = 0.925). To 
our knowledge, elevated Aβ is necessary for tau accumulation in the 
AD continuum. Consistent with this finding, several studies reported 
that once individuals with elevated Aβ and cognitive impairment, 
such as the MCI stage, the speed of tau accumulation is up to 2-fold 
higher.50,51 Interestingly, David et al. demonstrated that participants 
with elevated Aβ could lead to tau accumulation in the context of 
high-Aβ levels (>68 centiloid).52 Notably, across the disease progres-
sion, given that ATN biomarkers have differing importance in pre-
dicting clinical dementia capacity. Tyler et al. reported that Aβ has 
higher importance in predicting early cognitive impairment (CN and 
MCI) but may not be sufficient to lead to clinical AD, and glucose 
uptake has a higher role in the later stage.53

We employed AD biomarkers from all arms of the A/T/N frame-
work (CSF, plasma, and Neuroimaging) in a random analysis mode to 
generate the best optimal cross-tissue model to accurately diagnose 
AD and to rank models in order of their importance in the diagno-
sis accuracy (AUC values). The best-combined diagnosis model dis-
criminated AD from cognitively unimpaired participants, including 
CSF-A, neuroimaging-T, and Neuroimaging-N, with an accuracy of 
1.000 (The real AUC value is close to 1 based on the limited sample 
size). Since not all subjects with AD in ADNI were required to be Aβ 
positive, it is hard to reach the conclusion that an algorithm including 
A has an accuracy of 1.00 to separate AD and CN. The remarkable 
thing that should be noted is that PET will have limited acceptance 
in clinical practice, and performing multiple PET scans for T and N in 
one patient is quite unlikely to become clinical routine. One short-
coming of this project was that only FDG–PET was considered for N 
as a neuroimaging marker rather than a brain MRI. Indeed, the dis-
advantage of this multimodal diagnosis model, including Aβ and tau 
PET scans and CSF biomarkers, can be complicated and challenging 
to acquire in clinical settings. Moreover, our findings on CSF- Aβ, 
tau-PET, or FDG–PET as a single, AD-specific diagnosis biomarker 
are enough to differentiate AD from CN. The other limitations of this 
study including the follow-up was relatively short (4 years). Notably, 
the major concern about this project is the lack of an external cohort 
to validate these findings. Moreover, there are many comparisons 
made to develop the classification models, which would require reit-
erating findings and reproducing them in unseen data sets.

Despite the participants from the ADNI cohort being huge, we 
restricted the patient inclusion to those we had results for CSF, 
plasma, and neuroimaging ATN biomarkers, which limited the sam-
ple size of the results and required validation in other cohorts, 
which may prove useful for the future prediction and diagnosis of 

AD. In addition, 18F-Flortaucipir (tau-PET) displays considerable 
off-target binding in the hippocampus, basal ganglia, or other un-
specific binding regions, which may confuse the assessment of tau 
pathology.54

5  |  CONCLUSIONS

Our detailed analysis of the ADNI data enables us to suggest that 
CSF, plasma, and neuroimaging biomarkers differ considerably 
within the ATN framework; among these biomarkers, CSF-A, neu-
roimaging-T, and neuroimaging-N are likely correlating well with AD 
clinical diagnosis. Moreover, our findings suggest tau-PET and FDG–
PET as reliable biomarkers for predicting cognitive decline.

AUTHOR CONTRIBUTIONS
HJH and SJQ analyzed the data. XX and QQY searched the literature, 
XMZ, FFF, and STZ made substantial contributions to conception 
and replenished the required data. CLX was involved in drafting the 
manuscript. LS explained the data, EFF helped to revise the paper.

ACKNOWLEDG MENTS
Data used in the preparation of this article were obtained from 
the Alzheimer's Disease Neuroimaging Initiative (ADNI) database 
(adni.loni.usc.edu). As such, the investigators within the ADNI 
contributed to the design and implementation of ADNI and/
or provided data but did not participate in the analysis or writ-
ing of this report. A complete listing of ADNI investigators can 
be found at: http://adni.loni.usc.edu/wp-conte​nt/uploa​ds/how_
to_apply/​ADNI_Ackno​wledg​ement_List.pdf. Data collection and 
sharing for this project was funded by the Alzheimer's Disease 
Neuroimaging Initiative (ADNI) (National Institutes of Health 
Grant U01 AG024904) and DOD ADNI (Department of Defense 
award number W81XWH-12-2-0012). ADNI is funded by the 
National Institute on Aging, the National Institute of Biomedical 
Imaging and Bioengineering, and through generous contributions 
from the following: AbbVie, Alzheimer's Association; Alzheimer's 
Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; 
Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; 
Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; 
EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company 
Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen 
Alzheimer Immunotherapy Research & Development, LLC.; 
Johnson & Johnson Pharmaceutical Research & Development LLC.; 
Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, 
LLC.; NeuroRx Research; Neurotrack Technologies; Novartis 
Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; 
Takeda Pharmaceutical Company; and Transition Therapeutics. 
The Canadian Institutes of Health Research is providing funds to 
support ADNI clinical sites in Canada. Private sector contributions 
are facilitated by the Foundation for the National Institutes of 
Health (www.fnih.org). The grantee organization is the Northern 
California Institute for Research and Education, and the study is 

 17555949, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cns.14357 by N

orw
egian Institute O

f Public H
ealt Invoice R

eceipt D
FO

, W
iley O

nline L
ibrary on [16/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://adni.loni.usc.edu
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://www.fnih.org


    |  15 of 16XIONG et al.

coordinated by the Alzheimer's Therapeutic Research Institute at 
the University of Southern California. ADNI data are disseminated 
by the Laboratory for Neuro Imaging at the University of Southern 
California.

FUNDING INFORMATION
Supported by the Projects of the National Science Foundation of 
China (Nos. 81600977 and 82271469) and the Projects of the 
Natural Science Foundation of Zhejiang Province (Y19H090059 and 
LZ23H090001).

CONFLIC T OF INTERE S T S TATEMENT
No commercial or financial relationships could be construed as a po-
tential conflict of interest.

DATA AVAIL ABILIT Y S TATEMENT
ADNI has made publicly available the data used in this study in the 
Neuroimaging Laboratory (LONI) database.

ORCID
Chenglong Xie   https://orcid.org/0000-0002-1132-0179 

R E FE R E N C E S
	 1.	 Scheltens P, De Strooper B, Kivipelto M, et al. Alzheimer's disease. 

Lancet. 2021;397(10284):1577-1590.
	 2.	 Shi L, Baird AL, Westwood S, et al. A decade of blood biomark-

ers for Alzheimer's disease research: an evolving field, improving 
study designs, and the challenge of replication. J Alzheimers Dis. 
2018;62(3):1181-1198.

	 3.	 Fang EF, Hou Y, Palikaras K, et al. Mitophagy inhibits amyloid-beta 
and tau pathology and reverses cognitive deficits in models of 
Alzheimer's disease. Nat Neurosci. 2019;22(3):401-412.

	 4.	 Canter RG, Penney J, Tsai LH. The road to restoring neu-
ral circuits for the treatment of Alzheimer's disease. Nature. 
2016;539(7628):187-196.

	 5.	 Hampel H, Hardy J, Blennow K, et al. The amyloid-beta pathway in 
Alzheimer's disease. Mol Psychiatry. 2021;26(10):5481-5503.

	 6.	 Albert MS, DeKosky ST, Dickson D, et al. The diagnosis of mild cog-
nitive impairment due to Alzheimer's disease: recommendations 
from the National Institute on Aging-Alzheimer's Association work-
groups on diagnostic guidelines for Alzheimer's disease. Alzheimers 
Dement. 2011;7(3):270-279.

	 7.	 Hampel H, Cummings J, Blennow K, Gao P, Jack CR Jr, Vergallo A. 
Developing the ATX(N) classification for use across the Alzheimer 
disease continuum. Nat Rev Neurol. 2021;17(9):580-589.

	 8.	 Cummings J. The National Institute on Aging-Alzheimer's 
Association framework on Alzheimer's disease: application to clini-
cal trials. Alzheimers Dement. 2019;15(1):172-178.

	 9.	 Allegri RF, Chrem Mendez P, Calandri I, et al. Prognostic value of 
ATN Alzheimer biomarkers: 60-month follow-up results from the 
Argentine Alzheimer's disease neuroimaging initiative. Alzheimers 
Dement. 2020;12(1):e12026.

	10.	 Altomare D, de Wilde A, Ossenkoppele R, et al. Applying the 
ATN scheme in a memory clinic population: the ABIDE project. 
Neurology. 2019;93(17):e1635-e1646.

	11.	 Hampel H, O'Bryant SE, Molinuevo JL, et al. Blood-based biomark-
ers for Alzheimer disease: mapping the road to the clinic. Nat Rev 
Neurol. 2018;14(11):639-652.

	12.	 Tanaka T, Ruifen JC, Nai YH, et al. Head-to-head comparison of am-
plified plasmonic exosome Abeta42 platform and single-molecule 

array immunoassay in a memory clinic cohort. Eur J Neurol. 
2021;28(5):1479-1489.

	13.	 Palmqvist S, Janelidze S, Quiroz YT, et al. Discriminative accuracy 
of plasma Phospho-tau217 for Alzheimer disease vs other neurode-
generative disorders. JAMA. 2020;324(8):772-781.

	14.	 Janelidze S, Berron D, Smith R, et al. Associations of plasma 
Phospho-Tau217 levels with tau positron emission tomography in 
early Alzheimer disease. JAMA Neurol. 2020;78:149.

	15.	 Forgrave LM, Ma M, Best JR, DeMarco ML. The diagnostic perfor-
mance of neurofilament light chain in CSF and blood for Alzheimer's 
disease, frontotemporal dementia, and amyotrophic lateral scle-
rosis: a systematic review and meta-analysis. Alzheimers Dement. 
2019;11:730-743.

	16.	 Jack CR Jr, Bennett DA, Blennow K, et al. NIA-AA research 
framework: toward a biological definition of Alzheimer's disease. 
Alzheimers Dement. 2018;14(4):535-562.

	17.	 Song R, Wu X, Liu H, et al. Prediction of cognitive progression in in-
dividuals with mild cognitive impairment using Radiomics as an im-
provement of the ATN system: a five-year follow-up study. Korean J 
Radiol. 2022;23(1):89-100.

	18.	 Lin RR, Xue YY, Li XY, Chen YH, Tao QQ, Wu ZY. Optimal combina-
tions of AT(N) biomarkers to determine longitudinal cognition in the 
Alzheimer's disease. Front Aging Neurosci. 2021;13:718959.

	19.	 Calvin CM, de Boer C, Raymont V, Gallacher J, Koychev I, European 
Prevention of Alzheimer's Dementia Consortium. Prediction 
of Alzheimer's disease biomarker status defined by the 'ATN 
framework' among cognitively healthy individuals: results 
from the EPAD longitudinal cohort study. Alzheimers Res Ther. 
2020;12:143.

	20.	 Bossuyt PM, Reitsma JB, Bruns DE, et al. STARD 2015: an updated 
list of essential items for reporting diagnostic accuracy studies. 
BMJ. 2015;351:h5527.

	21.	 Mohs RC, Knopman D, Petersen RC, et al. Development of cog-
nitive instruments for use in clinical trials of antidementia drugs: 
additions to the Alzheimer's disease assessment scale that broaden 
its scope. The Alzheimer's disease cooperative study. Alzheimer Dis 
Assoc Disord. 1997;11(Suppl 2):S13-S21.

	22.	 Hansson O, Lehmann S, Otto M, Zetterberg H, Lewczuk P. 
Advantages and disadvantages of the use of the CSF amyloid 
beta (Abeta) 42/40 ratio in the diagnosis of Alzheimer's disease. 
Alzheimers Res Ther. 2019;11(1):34.

	23.	 Gibbons LE, Carle AC, Mackin RS, et al. A composite score for ex-
ecutive functioning, validated in Alzheimer's disease neuroimaging 
initiative (ADNI) participants with baseline mild cognitive impair-
ment. Brain Imaging Behav. 2012;6(4):517-527.

	24.	 Crane PK, Carle A, Gibbons LE, et al. Development and as-
sessment of a composite score for memory in the Alzheimer's 
disease neuroimaging initiative (ADNI). Brain Imaging Behav. 
2012;6(4):502-516.

	25.	 Folstein MF, Folstein SE, McHugh PR. "Mini-mental state": a practi-
cal method for grading the cognitive state of patients for the clini-
cian. J Psychiatr Res. 1975;12(3):189-198.

	26.	 Kang JH, Korecka M, Figurski MJ, et al. The Alzheimer's disease 
neuroimaging initiative 2 biomarker Core: a review of progress and 
plans. Alzheimers Dement. 2015;11(7):772-791.

	27.	 Lachno DR, Vanderstichele H, De Groote G, et al. The influence of 
matrix type, diurnal rhythm and sample collection and processing 
on the measurement of plasma beta-amyloid isoforms using the 
INNO-BIA plasma Abeta forms multiplex assay. J Nutr Health Aging. 
2009;13(3):220-225.

	28.	 Blennow K, De Meyer G, Hansson O, et al. Evolution of Abeta42 
and Abeta40 levels and Abeta42/Abeta40 ratio in plasma during 
progression of Alzheimer's disease: a multicenter assessment. J 
Nutr Health Aging. 2009;13(3):205-208.

	29.	 Karikari TK, Pascoal TA, Ashton NJ, et al. Blood phosphorylated 
tau 181 as a biomarker for Alzheimer's disease: a diagnostic 

 17555949, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cns.14357 by N

orw
egian Institute O

f Public H
ealt Invoice R

eceipt D
FO

, W
iley O

nline L
ibrary on [16/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://orcid.org/0000-0002-1132-0179
https://orcid.org/0000-0002-1132-0179


16 of 16  |     XIONG et al.

performance and prediction modelling study using data from four 
prospective cohorts. Lancet Neurol. 2020;19(5):422-433.

	30.	 Windon C, Iaccarino L, Mundada N, et al. Comparison of plasma and 
CSF biomarkers across ethnoracial groups in the ADNI. Alzheimers 
Dement. 2022;14(1):e12315.

	31.	 Hansson O, Seibyl J, Stomrud E, et al. CSF biomarkers of Alzheimer's 
disease concord with amyloid-beta PET and predict clinical pro-
gression: a study of fully automated immunoassays in BioFINDER 
and ADNI cohorts. Alzheimers Dement. 2018;14(11):1470-1481.

	32.	 Zetterberg H, Skillback T, Mattsson N, et al. Association of cere-
brospinal fluid neurofilament light concentration with Alzheimer 
Disease progression. JAMA Neurol. 2016;73(1):60-67.

	33.	 Jagust WJ, Bandy D, Chen K, et al. The Alzheimer's disease neu-
roimaging initiative positron emission tomography core. Alzheimers 
Dement. 2010;6(3):221-229.

	34.	 Shcherbinin S, Schwarz AJ, Joshi A, et al. Kinetics of the tau PET 
tracer 18F-AV-1451 (T807) in subjects with Normal cognitive func-
tion, mild cognitive impairment, and Alzheimer disease. J Nucl Med. 
2016;57(10):1535-1542.

	35.	 Clark CM, Pontecorvo MJ, Beach TG, et al. Cerebral PET with flor-
betapir compared with neuropathology at autopsy for detection of 
neuritic amyloid-beta plaques: a prospective cohort study. Lancet 
Neurol. 2012;11(8):669-678.

	36.	 Doshi J, Erus G, Ou Y, Gaonkar B, Davatzikos C. Multi-atlas skull-
stripping. Acad Radiol. 2013;20(12):1566-1576.

	37.	 Doshi J, Erus G, Ou Y, et al. MUSE: MUlti-atlas region segmentation 
utilizing ensembles of registration algorithms and parameters, and 
locally optimal atlas selection. Neuroimage. 2016;127:186-195.

	38.	 Yu JT, Li JQ, Suckling J, et al. Frequency and longitudinal clinical 
outcomes of Alzheimer's AT(N) biomarker profiles: a longitudinal 
study. Alzheimers Dement. 2019;15(9):1208-1217.

	39.	 Jack CR Jr, Wiste HJ, Weigand SD, et al. Defining imaging biomarker 
cut points for brain aging and Alzheimer's disease. Alzheimers 
Dement. 2017;13(3):205-216.

	40.	 Chuanxin Z, Shengzheng W, Lei D, et al. Progress in 11beta-HSD1 
inhibitors for the treatment of metabolic diseases: a comprehensive 
guide to their chemical structure diversity in drug development. Eur 
J Med Chem. 2020;191:112134.

	41.	 Palmqvist S, Tideman P, Cullen N, et al. Prediction of future 
Alzheimer's disease dementia using plasma phospho-tau combined 
with other accessible measures. Nat Med. 2021;27(6):1034-1042.

	42.	 Olsson B, Lautner R, Andreasson U, et al. CSF and blood biomarkers 
for the diagnosis of Alzheimer's disease: a systematic review and 
meta-analysis. Lancet Neurol. 2016;15(7):673-684.

	43.	 Moscoso A, Grothe MJ, Ashton NJ, et al. Time course of 
phosphorylated-tau181 in blood across the Alzheimer's disease 
spectrum. Brain. 2021;144(1):325-339.

	44.	 Bejanin A, Schonhaut DR, La Joie R, et al. Tau pathology and neu-
rodegeneration contribute to cognitive impairment in Alzheimer's 
disease. Brain. 2017;140(12):3286-3300.

	45.	 Biel D, Brendel M, Rubinski A, et al. Tau-PET and in vivo Braak-
staging as prognostic markers of future cognitive decline in cog-
nitively normal to demented individuals. Alzheimers Res Ther. 
2021;13(1):137.

	46.	 La Joie R, Visani AV, Baker SL, et al. Prospective longitudinal atro-
phy in Alzheimer's disease correlates with the intensity and topog-
raphy of baseline tau-PET. Sci Transl Med. 2020;12(524):eaau5732.

	47.	 Chételat G, Arbizu J, Barthel H, et al. Amyloid-PET and 18F-FDG-
PET in the diagnostic investigation of Alzheimer's disease and other 
dementias. Lancet Neurol. 2020;19(11):951-962.

	48.	 Ding Y, Sohn JH, Kawczynski MG, et al. A deep learning model to 
predict a diagnosis of Alzheimer disease by using (18)F-FDG PET of 
the brain. Radiology. 2019;290(2):456-464.

	49.	 Stanley M, Macauley SL, Holtzman DM. Changes in insulin and in-
sulin signaling in Alzheimer's disease: cause or consequence? J Exp 
Med. 2016;213(8):1375-1385.

	50.	 Pontecorvo MJ, Devous MD, Kennedy I, et al. A multicentre lon-
gitudinal study of flortaucipir (18F) in normal ageing, mild cog-
nitive impairment and Alzheimer's disease dementia. Brain. 
2019;142(6):1723-1735.

	51.	 Jack CR Jr, Wiste HJ, Schwarz CG, et al. Longitudinal tau PET in 
ageing and Alzheimer's disease. Brain. 2018;141(5):1517-1528.

	52.	 Knopman DS, Lundt ES, Therneau TM, et al. Association of Initial 
beta-amyloid levels with subsequent Flortaucipir positron emission 
tomography changes in persons without cognitive impairment. 
JAMA Neurol. 2021;78(2):217-228.

	53.	 Hammond TC, Xing X, Wang C, et al. Beta-amyloid and tau drive 
early Alzheimer's disease decline while glucose hypometabolism 
drives late decline. Commun Biol. 2020;3(1):352.

	54.	 Leuzy A, Chiotis K, Lemoine L, et al. Tau PET imaging in neu-
rodegenerative tauopathies-still a challenge. Mol Psychiatry. 
2019;24(8):1112-1134.

SUPPORTING INFORMATION
Additional supporting information can be found online in the 
Supporting Information section at the end of this article.

How to cite this article: Xiong X, He H, Ye Q, et al. 
Alzheimer's disease diagnostic accuracy by fluid and 
neuroimaging ATN framework. CNS Neurosci Ther. 
2024;30:e14357. doi:10.1111/cns.14357

 17555949, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cns.14357 by N

orw
egian Institute O

f Public H
ealt Invoice R

eceipt D
FO

, W
iley O

nline L
ibrary on [16/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1111/cns.14357

	Alzheimer's disease diagnostic accuracy by fluid and neuroimaging ATN framework
	Abstract
	1|INTRODUCTION
	2|METHODS
	2.1|Study design
	2.2|Participants' characteristics and patient consent
	2.3|Neuropsychological assessment and clinical progression prediction
	2.4|Plasma and CSF biomarkers measurements
	2.5|Neuroimaging acquisition, PET, and MRI preprocessing
	2.6|Statistical analysis

	3|RESULTS
	3.1|Participants in the ADNI database
	3.2|Discriminative accuracy of CSF, plasma, and neuroimaging ATN biomarkers for AD patients in the ADNI cohort
	3.3|Associations of CSF, plasma, and neuroimaging ATN biomarkers with cognitive function measures
	3.4|The clinical prediction of cognitive decline by CSF, plasma, and neuroimaging ATN biomarker
	3.5|The function of plasma p-­tau 181 in the discrimination of Aβ status of subjects in different diagnostic groups and predicting their 4-­year cognitive trajectory
	3.6|Associations of CSF Aβ42/40 with regional tau-­PET and FDG–­PET across the AD clinical spectrum
	3.7|A combination model of the top three ATN biomarkers diagnoses AD

	4|DISCUSSION
	5|CONCLUSIONS
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGMENTS
	FUNDING INFORMATION
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT

	REFERENCES


