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Abstract
Objectives: The	ATN's	different	modalities	(fluids	and	neuroimaging)	for	each	of	the	
Aβ	(A),	tau	(T),	and	neurodegeneration	(N)	elements	are	used	for	the	biological	diag-
nosis	of	Alzheimer's	disease	(AD).	We	aim	to	identify	which	ATN	category	achieves	
the highest potential for diagnosis and predictive accuracy of longitudinal cognitive 
decline.
Methods: Based	 on	 the	 availability	 of	 plasma	 ATN	 biomarkers	 (plasma-	derived	
Aβ42/40,	p-	tau181,	NFL,	respectively),	CSF	ATN	biomarkers	(CSF-	derived	Aβ42/Aβ40, 
p-	tau181,	NFL),	 and	neuroimaging	ATN	biomarkers	 (18F-	florbetapir	 (FBP)	 amyloid-	
PET,	18F-	flortaucipir	 (FTP)	 tau-	PET,	and	 fluorodeoxyglucose	 (FDG)-	PET),	 a	 total	of	
2340	participants	were	selected	from	ADNI.
Results: Our	 data	 analysis	 indicates	 that	 the	 area	 under	 curves	 (AUCs)	 of	 CSF-	A,	
neuroimaging-	T,	and	neuroimaging-	N	were	ranked	the	top	three	ATN	candidates	for	
accurate	diagnosis	of	AD.	Moreover,	neuroimaging	ATN	biomarkers	display	the	best	
predictive ability for longitudinal cognitive decline among the three categories. To 
note,	neuroimaging-	T	correlates	well	with	cognitive	performances	in	a	negative	cor-
relation manner. Meanwhile, participants in the “N” element positive group, especially 
the	CSF-	N	positive	 group,	 experience	 the	 fastest	 cognitive	decline	 compared	with	
other	groups	defined	by	ATN	biomarkers.	In	addition,	the	voxel-	wise	analysis	showed	
that	CSF-	A	related	to	tau	accumulation	and	FDG–	PET	indexes	more	strongly	in	sub-
jects	with	MCI	stage.	According	to	our	analysis	of	the	data,	the	best	three	ATN	candi-
dates	for	a	precise	diagnosis	of	AD	are	CSF-	A,	neuroimaging-	T,	and	neuroimaging-	N.
Conclusions: Collectively,	our	 findings	suggest	 that	plasma,	CSF,	and	neuroimaging	
biomarkers	differ	considerably	within	the	ATN	framework;	the	most	accurate	target	
biomarkers	for	diagnosing	AD	were	the	CSF-	A,	neuroimaging-	T,	and	neuroimaging-	N	
within	each	ATN	modality.	Moreover,	neuroimaging-	T	and	CSF-	N	both	show	excellent	
ability in the prediction of cognitive decline in two different dimensions.
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1  |  INTRODUC TION

By 2050, the morbidity of dementia will be tripled worldwide; for 
Alzheimer's	disease	(AD),	the	estimated	numbers	will	be	3–	4	times	
higher if based on the biological diagnosis than the numbers based 
on clinical symptoms.1	The	earliest	stage	of	the	AD	continuum	hap-
pens in parallel with accumulated amyloid β	(Aβ),	leading	to	the	prop-
agation of tau pathology. Decades of efforts have been dedicated 
to	the	mechanistic	studies	of	AD	as	well	as	to	the	development	of	
sensitive and specific biomarkers for the early and easy diagnosis of 
AD,	of	the	latter	with	challenges	on	replication	and	broad	applica-
tion.2–	4 Novel multidimensional biomarkers contain PET scans and 
fluid	assays	for	Aβ	and	phosphorylated	tau	(p-	tau),	which	show	great	
prospects for clinical and research fields.5	Initially,	AD	confirmation	
was confined to the appearance of dementia, a clinical spectrum fea-
tured progressive cognitive decline, or neurobehavioral symptoms 
contributing	to	a	low-	quality	life.	Of	note,	several	studies	displayed	
poor	 consistency	 between	 clinical	 diagnosis	 of	 probable	 AD	 and	
the	existence	of	AD-	related	pathologies	at	post-	mortem	examina-
tion. The degree of diagnostic confidence was dissatisfactory par-
tially	due	 to	 the	 clinical	 symptoms	of	AD	can	be	non-	specific	 and	
misleading.6

Because	of	biological	characteristics	and	clinical	 feasibility,	AD	
biomarkers are classified into three binary categories7:	A	(amyloid-	β 
deposition),	T	(tau	accumulation:	p-	tau),	and	N	(neurodegeneration	
or	 neural	 injury),	 each	 characterized	 typically	 dichotomously	 as	
either	 negative	 (−)	 or	 positive	 (+)	 and	 called	 the	 ATN	 framework.	
The	ATN	system	 is	a	symptoms-	discreet,	biomarkers-	driven	classi-
fication	 scheme	 that	 categorizes	 individuals	using	multimodal	bio-
markers	that	chart	core	AD	pathophysiological	features.8	The	“ATN”	
system	offers	 a	 separate	biological	 definition	of	AD	and	might	be	
used to detect pathologic alterations that occur in both normal aging 
and	AD	dementia	since	the	correct	diagnosis	of	AD	remains	difficult	
for physicians.9	The	existence	of	A	(regardless	of	the	presence	of	T	
and	N)	 is	 termed	Alzheimer's	pathological	 change.	Simultaneously,	
clinical	phases	can	range	from	cognitively	unimpaired-	to-	mild	cog-
nitive	impairment	(MCI)	and	dementia,	emphasizing	the	continuum	
of	 AD	 stretches	 over	 a	 period	 of	 years.	 The	 ATN	 biological	 diag-
nostic	framework	underpins	the	importance	of	Aβ	and	p-	tau	as	the	
core	characteristics	of	AD,	hence	promoting	 that	AD	can	be	diag-
nosed via biomarkers only, and even explicitly distinguishing it from 
other dementias, and as well could potentially be used in a preci-
sion	 medicine-	oriented	 method	 to	 give	 suitable	 treatments	 para-
digm.10,11	 In	 terms	of	clinical	practice,	although	the	ATN	approach	
is	the	cornerstone	of	disease-	modifying	interventions	in	AD,	there	
are still some unsuitable conditions, including operational difficulty 
in	defining	ATN	positivity	(+)	or	negativity	(−),	such	as	some	biomark-
ers still lack widespread consensus cutoff values, and also different 
biomarkers,	different	sources	(e.g.,	cerebrospinal	fluid	(CSF),	plasma-	
based	and	neuroimaging)	being	incorporated	into	one	category.10

Deep-	excavated	 CSF	 and	 neuroimaging	 ATN	 biomarkers	 sys-
tems showed, with a trend that is not yet fully established, fluid 
biomarkers showed meaningful change earlier than neuroimaging 

biomarkers.	 Reduced	 Aβ42	 levels	 and	 the	 Aβ42/Aβ40 ratio in the 
CSF	are	early	readouts	of	Aβ	dyshomeostasis	compared	to	the	Aβ–	
PET.12	Recently,	a	particularly	exciting	biomarker	direction	of	AD	is	
substantial	evidence	has	been	made	in	blood-	based	biomarkers	de-
velopment	for	AD.13,14	The	ATN	elements	are	likely	to	update	new	
blood	 biomarkers	 for	 Aβ, tau pathology, neurodegeneration, and 
other	 pathophysiological	 features	 (X)	 as	 a	 first-	tier	 screening	 tool	
or	still	not	yet	available.	For	 instance,	CSF	or	blood	neurofilament	
light	chain	(NFL)	levels	as	a	proxy	of	the	“N”	element	can	provide	an	
index of whether some interventions halt neuronal loss.15	Although	
the	different	modalities	(fluids	and	neuroimaging)	for	each	of	the	Aβ, 
tau, and neurodegeneration elements have been tested for clinical 
use and are considered interchangeable,16–	19 concordance between 
the	fluids	and	neuroimaging	ATN	biomarkers	has	recently	been	chal-
lenged. Moreover, the novelty of the current report, in comparison 
with the previous reports, aims at comprehensive evaluation the dis-
crepancies	between	CSF,	neuroimaging,	and	blood	ATN	modalities	
for	patients	 from	normal,	MCI,	and	AD.	Nevertheless,	uncertainty	
regarding the order of diagnostic accuracy between the different 
types of sources hinders the widespread implementation of these 
ATN	biomarkers,	and	whether	blood	tests	can	replace	CSF	tests	or	
neuroimaging.	There	is,	therefore,	now	a	need	to	identify	which	ATN	
category or tissue achieves the highest potential for early diagnosis 
and predictive accuracy of longitudinal cognitive decline. Moreover, 
other nonetheless of the utmost important objective of this project 
is to determine if a patient with subtle cognitive decline symptoms, 
suffers	from	prodromal	AD,	and	will	progress	to	AD	dementia	within	
the	near	future	can	be	captured	through	ATN	biomarkers,	and	define	
accepted	flexible	cut-	off	points	for	these	biomarkers.

2  |  METHODS

2.1  |  Study design

We	 used	 the	 STARD	 reporting	 guidelines	 for	 this	 study.20 Data 
were	acquired	from	the	Alzheimer's	Disease	Neuroimaging	Initiative	
(ADNI)	public	database	(http://adni.loni.usc.edu).	The	ongoing	ADNI	
was	founded	in	2003	as	a	public–	private	partnership,	led	by	Principal	
Investigator	Michael	W.	Weiner,	MD.	 The	main	 goal	 of	 ADNI	 has	
been to test whether serial neuroimaging, fluid biological markers, 
and clinical neuropsychological assessment can be combined to 
predict	 the	progression	of	MCI	 and	early	AD	 from	57	 sites	 in	 the	
USA	and	Canada.	Specifically,	data	were	downloaded	from	the	ADNI	
dataset since these data contained cognitive test results, includ-
ing	memory	 composite	 score	 (ADNI–	MEM),	 executive	 functioning	
composite	 score	 (ADNI–	EF),	 and	 Alzheimer's	 Disease	 Assessment	
Scale–	Cognitive	 Subscale	 (ADAS–	Cog)21	 for	 the	 present	 study.	 A	
total	of	2340	participants	were	selected	 from	ADNI	based	on	 the	
availability	of	plasma	ATN	biomarkers	(plasma-	derived	Aβ42/Aβ40,	p-	
tau181,	NFL),	CSF	ATN	biomarkers	(CSF-	derived	Aβ42/40,	p-	tau181,	
NFL)	and	neuroimaging	ATN	biomarkers	(18F-	florbetapir	(FBP),	18F-	
flortaucipir	(FTP)	tau-	PET,	and	FDG–	PET),	respectively.	It	has	been	
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suggested	that	the	Aβ42/40	ratio	is	superior	to	Aβ42 alone in predict-
ing	Aβ deposition,22	hence	we	choose	Aβ42/40	as	the	“A”	component.	
The	 two	 single-	nucleotide	 polymorphisms	 for	 ApoE	 (rs429358,	
rs7412)	were	genotyped	using	DNA	extracted	by	Cogenics	 from	a	
3 mL	aliquot	of	EDTA	blood.	Participants	were	assigned	to	the	ApoE	
ε4 carriers, defined as individuals carrying at least one ε4 allele.

2.2  |  Participants' characteristics and 
patient consent

Participants	 from	 the	 ADNI	 cohort	 consisted	 of	 consecutively	 in-
cluded	cognitively	normal	(CN:	MMSE	>24,	CDR = 0)	subjects,	with	
mild	 cognitive	 symptoms	 (MCIs:	 MMSE	 >24,	 CDR = 0.5)	 and	 AD	
dementia	 (19 < MMSE < 24,	 CDR = 0.5–	1)	 who	 were	 diagnosed	 by	
ADNI	centers	and	referred	to	the	participating	memory	clinics.	The	
patients	were	divided	into	having	either	CN,	MCI,	or	AD	according	
to the extensive neuropsychological battery performed at baseline, 
including verbal, episodic memory, visuospatial ability, and atten-
tion/executive domains. In concordance with the Diagnostic and 
Statistical	Manual	of	Mental	Disorders,	5th	Edition	(DSM-	5)	criteria	
for	MCI,	all	participants	with	composite	z-	scores	of	−1	to	−1.5	were	
individually assessed by a senior neuropsychologist and established 
as having MCI if the performance was evaluated to show an obvious 
cognitive decline when compared with their estimated premorbid 
level. The participants were followed longitudinally with yearly in-
cluded cognitive testing by experienced physicians in neurocogni-
tive	fields	and	measurements	of	the	biomarkers.	All	patients,	or	their	
partners, gave written informed consent to participate at each site, 
and the study was approved by the institutional review boards of all 
participating institutions and ethics committees.

2.3  |  Neuropsychological assessment and clinical 
progression prediction

Brief	cognitive	 tests	 in	ADNI	were	selected	 to	 represent	different	
cognitive	 domains.	 ADNI	 assessed	 the	 cognitive	 status	 of	 partici-
pants	annually	using	the	11-		and	13-	point	versions	of	the	ADAS-	11	
and	ADAS-	13.21	Of	note,	the	ADNI	neuropsychological	test	battery	
contains	multiple	indicators	for	memory	functions,	on	which	ADNI–	
MEM	has	been	established.	ADNI–	MEM	is	a	composite	score	formed	
from	the	Rey	Auditory	Verbal	Learning	task,	word	list	learning	and	
recognition	 tasks	 from	 ADAS-	Cog,	 recall	 from	 Logical	 Memory	 I	
of	the	Wechsler	Memory	Test-	Revised,	and	the	3-	word	recall	 item	
from	the	MMSE.23	Moreover,	ADNI–	EF	is	constitutive	of	Category	
Fluency	 (i.e.,	 animals	 and	 vegetables),	 the	 Trail-	Making	 Test	 parts	
A	and	B,	Digit	Span	Backwards,	Wechsler	Adult	Intelligence	Scale-	
Revised	 Digit–	Symbol	 Substitution,	 and	 5	 Clock	 Drawing	 items.24 
The	ten-	word	delayed	recall	test	from	the	ADAS–	Cog	has	been	vali-
dated for detecting early cognitive decline. The naming objects and 
fingers	task	from	the	ADAS–	Cog	was	used	for	verbal	performance,	
and	the	clock-	drawing	test	was	used	for	visuospatial	performance.	

Each domain was converted to a z-	score	based	on	the	test	score	dis-
tribution	in	the	present	population.	In	addition,	the	MMSE	was	used	
as a brief test of global cognition with specific sensitivity to the cog-
nitive	decline	seen	in	AD.25 The main outcome was the prediction of 
progression	to	dementia	within	a	follow-	up	of	4 years.

2.4  |  Plasma and CSF biomarkers measurements

Blood	samples	were	collected	at	baseline	and	analyzed	according	to	
the	 standardized	ADNI	 protocol.26	 Plasma	 concentrations	 of	 Aβ42 
and	Aβ40	were	measured	using	Module	A	of	the	INNO–	BIA	plasma	
Aβ	 forms	 immunoassay	 kit	 (Innogenetics,	 Ghent,	 Belgium,	 for	 re-
search	use-	only	 reagents)	 on	 the	 Luminex	100	 immunoassay	plat-
form	and	IS	v.2.3	software	(Luminex).27,28	Plasma	p-	tau181	and	NFL	
in	 ADNI	 were	 measured	 on	 Simoa	 HD-	X	 instruments	 (Quanterix)	
at the Clinical Neurochemistry Laboratory, the University of 
Gothenburg,	according	to	previous	papers.29,30 The capture mouse 
antibody	 AT270	 (MN1050,	 Invitrogen),	 specific	 for	 the	 p-	tau	 181	
site,	was	coated	onto	paramagnetic	beads	(103,207,	Quanterix),	and	
the	detector	antibody	tau12	(806,502,	BioLegend)	was	biotinylated.	
These reagents were used together with recombinant tau 441 phos-
phorylated in vitro by glycogen synthase kinase 3β	 (TO8-	50FN,	
SignalChem)	as	the	calibrator	to	build	the	assay.	Longitudinal	blood	
sampling was tested approximately every year, over a median fol-
low-	up	time	of	2.9 years.	CSF	samples	were	collected	and	processed	
based on previously described protocols.26	Levels	of	Aβ42,	Aβ40, and 
p-	tau181	in	CSF	were	measured	by	the	ADNI	Biomarker	Core	using	
the Elecsys immunoassay.31	Note	 that	 absolute	Aβ42,	Aβ40,	 and	p-	
tau181	 levels	 in	CSF,	 as	 determined	by	 the	Elecsys	 assay,	 are	 not	
comparable	with	those	tested	in	plasma	by	the	Simoa	assay	as	the	
assays	use	different	antibodies	and	calibrators.	CSF	NFL	levels	were	
determined	by	a	commercial,	sensitive	sandwich	ELISA	method.32

2.5  |  Neuroimaging acquisition, PET, and MRI 
preprocessing

All	 the	 imaging	 data	were	 downloaded	 from	 the	ADNI–	LONI	 and	
IDA	 image	 archive	 (https://ida.loni.usc.edu).	 ADNI	 MRI	 and	 PET	
acquisition	 protocols	 are	 detailed	 elsewhere,	 see	 www.adni-	info.
org.	PET	scans	were	acquired	according	to	published	protocols	and	
analyzed	 using	 tracer-	specific	 acquisition	 windows:	 50–	70 min	 for	
18F-	florbetapir	(FBP),	75–	105 min	for	FTP,	and	30–	60 min	for	FDG.	
The mean tracer uptake of selected cortical and reference regions 
was calculated with the PET scan applied to its corresponding MRI 
scan. The scans were already averaged, aligned to standard space, 
resampled	to	a	standard	image	and	voxel	size	(2 mm × 2 mm × 2 mm),	
and smoothed to a uniform resolution as previously described.33	We	
aligned the images to the corresponding MRI scan from the same 
visit	and	normalized	them	to	MNI	space	using	parameters	obtained	
from	 the	MRI	 segmentation	 using	 Statistical	 Parametric	 Mapping	
version	 12	 (SPM12;	 Wellcome	 Trust	 Center	 for	 Neuroimaging,	
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London, UK, http://www.fil.ion.ucl.ac.uk/spm).	 Summary	 FBP	
standard	uptake	value	ratios	(SUVRs)	were	generated	by	averaging	
uptake	ratios	across	four	cortical	regions	(frontal,	anterior	cingulate,	
precuneus,	and	parietal	cortex).	A	composite	metaROI	(region	of	in-
terest)	of	bilateral	entorhinal,	amygdala,	fusiform,	parahippocampal,	
inferior, and middle temporal regions were considered for tau PET 
assessment.	The	average	counts	of	FDG–	PET	across	angular,	tempo-
ral, and posterior cingulate regions were adopted. Reference regions 
used	mirrored	published	papers	 (pons	 for	 FDG,	whole	 cerebellum	
for	amyloid,	and	cerebellar	crus	for	tau	PET).34,35	A	total	of	259	dif-
ferent brain regions were obtained by MRI classification using the 
multi-	atlas	 labeling	method.	 The	pre-	processed	T1	 scanned	 image	
data	(GradWarp,	B1	calibrated,	N3,	Scaled)	were	downloaded	from	
ADNI,	further	brain	extraction	(skull	removal)	was	performed,36 and 
a	novel	multi-	atlas	labeling	method	based	on	atlas	registration	was	
used to segment the regions of interest.37 The software can be ob-
tained from the website https://www.cbica.upenn.edu/sbia/softw 
are/index.html. The resulting volume data for each brain region can 
be	downloaded	 from	 the	ADNI	dataset.	Among	 the	different	MRI	
brain	 regions	obtained	by	a	novel	multi-	atlas	 labeling	method,	 the	
left hippocampus was chosen as the representative brain region of 
MRI through the rank of importance percentage obtained by the 
Random	Forest	model	for	CN/AD	classification	(Figure S1).

2.6  |  Statistical analysis

Statistical	analysis	was	performed	using	R	software	(Version	4.1.0),	
Statistical	Parametric	Mapping	version	12	(SPM12),	MedCalc	soft-
ware	(Version	19.2.6),	and	SPSS	(Version	26).	Continuous	variables	
were	 assessed	 for	 normality	 using	 the	Kolmogorov–	Smirnov	 test	
and	 the	 Quantile–	Quantile	 Plot.	 Approximately	 normally	 distrib-
uted	 variables	 were	 expressed	 as	 the	 mean ± standard	 deviation	
(SD).	A	 two-	sample	 t-	test	was	used	 for	comparison	between	 two	
groups,	 and	 a	 one-	way	 analysis	 of	 variance	 was	 used	 for	 com-
parison	between	multiple	groups.	Non-	normally	distributed	were	
expressed	 as	 the	median	 [25th%,	 75th%].	 The	Mann–	Whitney	U	
rank sum test was used for comparison between two groups, and 
the	Kruskal–	Wallis	 test	was	used	 for	 comparison	between	multi-
ple	groups.	Categorical	variables	were	presented	as	numbers	(per-
centages)	and	were	compared	using	the	Chi-	square	test	or	Fisher's	
exact test. Pairwise comparison was performed by Bonferroni cor-
rection	post	hoc	test.	Two-	tail	tests	showed	a	statistically	signifi-
cant difference at p < 0.05.

The Random Forest method was used to sort the characteris-
tics	 of	CN/AD	discrimination	 by	 the	 volume	of	 each	 brain	 region,	
and	the	brain	region	with	the	best	CN/AD	discrimination	ability	was	
obtained as the representative biomarker of structural MRI Brain re-
gion	volume.	Receiver–	operating	characteristic	 (ROC)	curves	were	
used	 to	 quantify	 the	 area	 under	 the	 ROC	 curve	 (AUC).	 The	 final	
AT(N)	 framework	 biomarkers	 were	 determined	 by	 comparing	 the	
area	AUC	 (Delong	 test)	under	 the	ROC	curve	of	 the	AT(N)	groups	
of	 biomarkers	 from	 different	 sources	 to	 distinguish	 CN/AD	 by	

MedCalc	software.	Threshold	values	for	ATN	fluid	biomarkers	and	
FDG–	PET	were	calculated	based	on	the	Youden	 index,	using	ROC	
analyses.	For	amyloid	PET,	higher	than	1.11	SUVR	was	considered	
to	 have	 abnormal	 cortical	 amyloid	 deposition	 (PET-	A+).38 For tau 
PET,	FTP	SUVRs	without	correction	for	partial	volume	effects	were	
calculated,	and	SUVR	higher	than	1.25	was	considered	to	have	tau	
pathology	(PET-	T+).39

We	 assessed	 linear	 associations	 of	 baseline	 multidimensional	
ATN	biomarker	levels	with	cross-	sectional	and	longitudinal	estimates	
of cognitive functions as measured by neuropsychological assess-
ment. Longitudinal annual changes in cognitive tests were calculated 
using	linear	mixed-	effects	models	(LMM)	with	4-	year	cognitive	test	
results. LMM had cognitive test scores as the dependent variable 
and	included	the	independent	variables'	time	(years	between	base-
line	and	follow-	up	time	points)	for	fixed	effects	and	random	effects,	
adjusted	for	sex,	age,	and	years	of	education.	The	Spearman	correla-
tion coefficient was calculated by the covariance of two variables 
over the product of their standard deviation. The value range of the 
Spearman	correlation	coefficient	is	from	−1	to	1,	with	a	higher	ab-
solute value indicating a stronger association and the sign indicating 
a positive or negative association between the two variables. The 
relationship between baseline scores or longitudinal annual changes 
in	 cognitive	 tests	 and	 ATN	 biomarker	 values,	 including	 biomarker	
levels	(natural	log-	transformed	and	standardized	due	to	non-	normal	
distribution)	and	positive	or	negative	ATN	status,	was	estimated	to	
investigate	 whether	 baseline	 ATN	 biomarkers	 values	 can	 predict	
subsequent	4-	year	cognitive	trajectory.	We	further	assessed	asso-
ciations	of	baseline	CSF	Aβ42/40	level	with	baseline	and	4-	year-	later	
cerebral	tau	pathology	and	glycometabolism	measured	on	tau-	PET	
and	 FDG–	PET	 for	 different	 diagnostic	 groups,	 using	 linear	 voxel-	
wise regressions adjusted for age and sex. Neuroimaging analyses 
were	 performed	 using	 SPM12.	 Multivariate	 logistic	 models	 were	
used to construct the diagnostic model. Each multivariate logistic 
model	implied	a	combination	of	one	biomarker	of	“A”,	one	biomarker	
of “T”, and one biomarker of “N”. The predictive value of each model 
was	calculated	and	 the	AUC	stood	as	 a	measure	of	discriminating	
between	normal	and	AD	subjects.

3  |  RESULTS

3.1  |  Participants in the ADNI database

Participant's	data	were	extracted	from	the	ADNI	database,	and	the	
basic demographic characteristics are shown in Table 1.	A	 total	of	
2340	patients	were	selected,	comprising	863	individuals	with	nor-
mal	cognition	(or	CN),	1068	clinically	diagnosed	with	MCI,	and	409	
patients	with	AD.	Participants	were	required	to	have	CSF,	plasma,	
or	neuroimaging	ATN	biomarkers	 in	 the	analysis.	The	mean	age	of	
patients	with	CN	and	MCI	 (72.7	 and	72.8 years,	 respectively)	was	
significantly	 lower	 than	 that	of	AD	participants	 (74.9 years).	There	
were	more	female	subjects	in	AD	and	MCI	(56.4%	of	AD	and	58.6%	
of	MCI)	compared	to	CN	(44.3%),	as	well	as	low-	education	levels	in	
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the	 AD	 group.	 Participants	 carrying	 the	 APOE	 ε4 allele, the larg-
est	genetic	risk	factor	for	AD,	were	particularly	overrepresented	in	
AD	and	MCI	groups	(67.0%	vs.	49.7%,	respectively)	compared	with	
CN	(30.4%).	As	indicated	by	MMSE,	CDR	(clinical	dementia	rating),	
ADAS-	11,	 ADAS-	13,	 and	ADNI-	MEM	 scores	 et	 al.,	 cognitive	 tests	
significantly differed between dementia groups and controls. To 
compare	the	diagnostic	accuracy	of	AT(N)	biomarkers	between	the	

different	types	of	sources	(fluid	and	neuroimaging	ATN	framework),	
a	novel	AT(N)	biomarker	framework	was	constructed,	which	contains	
the	optimum	biomarkers	in	each	AT(N)	dimension.	The	differences	in	
AUC	values	among	biomarkers	from	the	same	source	were	further	
compared by the Delong test, as shown in Table S1.	According	to	the	
AUC	values,	the	optimal	framework	biomarkers	of	AT(N)	were	finally	
selected, as shown in Table S2.

TA B L E  1 Baseline	demographics	and	ATN	data	of	participants	with	ADNI.

CN (N = 863) MCI (N = 1068) AD (N = 409)
p value 
(CN vs. MCI)

p value 
(CN vs. AD)

p value 
(MCI vs. AD)

ADNI-	1 229	(26.5%) 397	(37.2%) 192	(46.9%) –	 –	 –	

ADNI-	GO 295	(34.2%) 341	(31.9%) 150	(36.7%) –	 –	 –	

ADNI-	2 338	(39.2%) 201	(18.8%) 67	(16.4%) –	 –	 –	

ADNI-	3 1	(0.12%) 129	(12.1%) 0	(0.00%) –	 –	 –	

Age	(years) 72.7	(6.35) 72.8	(7.64) 74.9	(7.91) 0.927 <0.001 <0.001

Gender	(%	female) 382	(44.3%) 626	(58.6%) 230	(56.2%) <0.001 <0.001 0.492

Educaiton	(years) 16.0	[13.0;18.0] 16.0	[15.0;18.0] 16.0	[14.0;18.0] <0.001 <0.001 <0.001

APOE4	carriers	(%) 246	(30.6%) 503	(49.7%) 262	(67.0%) <0.001 <0.001 <0.001

CSF	ATN	biomarkers	levels

CSF_Aβ40	(pg/mL) 18,320	[15,110;21,970] 17,490	[13,880;21,480] 16,165	[12,258;18,558] 0.180 0.002 0.022

CSF_Aβ42	(pg/mL) 1136	[815;1629] 752 [564;1271] 544 [424;714] <0.001 <0.001 <0.001

CSF_Aβ42/40 0.07 [0.05;0.09] 0.05	[0.03;0.08] 0.04 [0.03;0.04] <0.001 <0.001 <0.001

CSF	p-	tau181	(pg/mL) 19.8	[14.9;26.6] 24.8	[18.8;36.0] 32.3 [26.5;47.5] <0.001 <0.001 <0.001

CSF	T-	tau	(pg/mL) 226 [173;293] 263 [212;356] 331 [267;432] <0.001 <0.001 0.001

CSF_NFL	(pg/mL) 1044	[810;1263] 1320 [1020;1693] 1479	[1152;1841] <0.001 <0.001 0.012

Plasma	ATN	biomarkers	levels

Plasma_Aβ40	(pg/mL) 155	[122;183] 153	[122;184] 154	[129;178] 0.959 0.959 0.959

Plasma_Aβ42	(pg/mL) 37.8	[29.8;45.0] 35.5 [27.9;43.9] 37.2 [30.6;42.2] 0.347 0.508 0.508

Plasma_Aβ42/40 0.25 [0.22;0.29] 0.24 [0.20;0.29] 0.24 [0.21;0.27] 0.322 0.322 0.879

Plasma	p-	tau181	(pg/mL) 14.0	[9.85;19.2] 17.1 [11.2;24.4] 23.0	[17.5;27.8] <0.001 <0.001 <0.001

Plasma	T-	tau	(pg/mL) 2.52 [1.77;3.11] 2.62 [1.76;3.45] 2.82	[2.09;3.84] 0.218 0.002 0.045

Plasma_NFL	(pg/mL) 30.4	[23.8;41.1] 35.9 [26.6;49.0] 44.5 [33.6;59.0] <0.001 <0.001 <0.001

Neuroimaging	ATN	biomarkers	levels

PET_SUVR	(Aβ) 1.23 [1.13;1.39] 1.31 [1.17;1.59] 1.59 [1.37;1.79] <0.001 <0.001 <0.001

PET_SUVR	(tau) 1.18	[1.13;1.23] 1.22 [1.15;1.37] 1.53	[1.27;1.80] <0.001 <0.001 <0.001

PET_SUVR	(FDG) 1.28	[1.20;1.36] 1.22 [1.12;1.31] 1.04 [0.94;1.13] <0.001 <0.001 <0.001

L-	HV	(mm3) 3540	(414) 3203	(491) 2888	(501) <0.001 <0.001 <0.001

Cognitive tests

ADAS-	11 5.33 [3.67;7.33] 9.67 [7.00;13.0] 19.0 [14.7;23.0] <0.001 <0.001 <0.001

ADAS-	13 29.0 [29.0;30.0] 28.0	[26.0;29.0] 23.0 [21.0;25.0] <0.001 <0.001 <0.001

MMSE 1.02	(0.57) 0.19	(0.67) −0.86	(0.53) <0.001 <0.001 <0.001

ADNI-	MEM 0.88	(0.82) 0.22	(0.89) −0.90	(0.96) <0.001 <0.001 <0.001

ADNI-	EF 5.33 [3.67;7.33] 9.67 [7.00;13.0] 19.0 [14.7;23.0] <0.001 <0.001 <0.001

Note:	Approximately	normally4	distributed	variables	were	expressed	as	the	mean ± standard	deviation	(SD).	One-	way	analysis	of	variance	was	used	
for	comparison	between	multiple	groups.	Non-	normally	distributed	were	expressed	as	the	median	[25th	percent,	75th	percent]	and	the	Kruskal–	
Wallis	test	was	used	for	comparison	between	multiple	groups.	Categorical	variables	were	presented	as	numbers	(percentages)	and	were	compared	
using	the	Chi-	square	test.	Pairwise	comparison	was	performed	by	Bonferroni	correction	post	hoc	test.
Abbreviations:	AD,	Alzheimer's	disease;	ADAS,	Alzheimer's	disease	assessment	scale-	cognitive	subscale;	ADNI-	EF,	composite	executive	functioning	
score;	ADNI-	MEM,	composite	memory	score;	Aβ,	amyloid	beta;	CDRSB,	clinical	dementia	rating	sum	of	boxes;	CN,	cognitively	normal;	CSF,	Cerebro-	
spinal	Fluid;	FDG,	fluorodeoxyglucose;	L-	HV,	Left	hippocampal	volume;	MCI,	mild	cognitive	impairment;	MMSE,	mini-	mental	state	examination;	NA,	
not	applicable;	NFL,	neurofilament	light;	PET,	positron	emission	tomography;	p-	tau,	phosphorylated	tau	181;	SUVR,	standardized	uptake	value	ratio;	
T-	tau,	total	tau.
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6 of 16  |     XIONG et al.

In addition, to determine the order of diagnostic accuracy of 
AD	between	 the	 different	 types	 of	 sources	 (fluid	 and	 neuroimag-
ing	ATN	 framework),	 the	 levels	 of	CSF,	 plasma,	 and	neuroimaging	
ATN	biomarkers	 found	 in	 the	 different	 diagnostic	 groups	 are	 also	
shown in Table 1. In accordance with previous reports,40 baseline 
CSF	Aβ1–	40,	CSF	Aβ1–	42,	and	CSF	Aβ42/40	ratio	(CSF-	A	classification)	
levels	were	 significantly	 lower	 in	AD	dementia	 (CSF	Aβ42/40: 0.04 
[0.03;0.04])	and	MCI	(CSF	Aβ42/40:	0.05	[0.03;0.08])	as	compared	to	
the	CN	group	(CSF	Aβ42/40: 0.07 [0.05;0.09]; Figure 1A and Table 1).	
Regarding	the	CSF-	T	classification,	the	higher	CSF	p-	tau181	concen-
tration	in	AD	dementia	(32.3	[26.5;47.5]	pg/mL)	as	compared	to	the	
MCI	 (24.8	[18.8;36.0]	pg/mL)	and	CN	(19.8	[14.9;26.6]	pg/mL)	was	
highly	significant	 (p < 0.001;	Figure 1B).	Of	note,	 there	was	an	up-
ward	trend	of	higher	CSF	NFL	(CSF-	N	classification)	in	the	AD	(1479	
[1152;1841]	pg/mL)	and	MCI	 (1320	 [1020;1693]	pg/mL)	compared	
with	the	CN	group	(1044	[810;1263]	pg/mL;	Figure 1C).	The	use	of	
CSF	biomarkers	is	still	limited	because	of	high	costs,	hard	availability,	
and	 invasive	 traits.	There	 is,	 therefore,	 a	 great	 interest	 in	plasma-	
based	ATN	biomarkers.	Within	 the	plasma	ATN	biomarkers,	 there	
was	no	difference	in	terms	of	Plasma-	A	among	each	group	(p > 0.05,	
Figure 1D),	 and	 plasma	 p-	tau181	 (Plasma-	T)	was	 higher	 in	 partici-
pants	classified	as	AD	and	MCI	compared	 to	 those	determined	as	
CN	(p < 0.001,	Figure 1E).	When	considering	Plasma-	N	classification,	
plasma	NFL	was	obviously	higher	in	the	AD	and	MCI	groups	than	in	
the	CN	group	(p < 0.001,	Figure 1F).	To	test	the	neuroimaging	ATN	
biomarkers	 in	 the	AD	continuum,	Aβ–	PET	SUVR	 (neuroimaging-	A)	
and	 tau-	PET	 SUVR	 (neuroimaging-	T)	 were	 both	 higher	 in	 the	 AD	
dementia	 compared	 with	 the	 CN	 group	 (p < 0.001,	 Figure 1G,H),	
whereas	FDG–	PET	SUVR	(neuroimaging-	N)	was	significantly	lower	
in	the	AD	and	MCI	than	in	the	CN	group	(p < 0.001,	Figure 1I).

3.2  |  Discriminative accuracy of CSF, plasma, and 
neuroimaging ATN biomarkers for AD patients in the 
ADNI cohort

To	 test	 the	 diagnostic	 accuracy	 of	 CSF,	 plasma,	 and	 neuroimag-
ing	 ATN	 biomarkers	 in	 distinguishing	 clinically	 defined	 diagnostic	
groups.	For	the	primary	outcome	of	AD	veraus	CN	(Figure 1J),	the	
AUC	was	0.8378	using	the	CSF	Aβ42/40	ratio	(CSF-	A),	which	was	sig-
nificantly	higher	than	the	AUCs	for	plasma	Aβ42/40	ratio	(Plasma-	A:	
AUC	0.5373)	and	Aβ–	PET	(neuroimaging-	A:	AUC	0.7909),	indicating	
the	CSF-	A	 classification	 is	 the	best	 candidate	 to	differentiate	 the	
AD	from	CN	in	the	“A”	element.	Similarly,	regarding	the	“T”	element	
in	the	ATN	framework,	the	AUC	for	tau-	PET	(neuroimaging-	T)	levels	
was	0.9208,	which	was	significantly	higher	than	for	CSF	levels	of	p-	
tau181	(CSF-	T:	AUC	0.7782)	and	plasma-	based	p-	tau181	(Plasma-	T:	
AUC	0.7478).	Furthermore,	analysis	of	N	classification,	the	AUC	for	
FDG–	PET	(neuroimaging-	N:	AUC	0.9085)	was	higher	than	CSF	NFL	
(CSF-	N:	AUC	0.7684)	and	plasma	NFL	(Plasma-	N:	AUC	0.7316).	 In	
terms of secondary outcomes analysis that compared participants 
of	 MCI	 versus	 CN,	 and	 MCI	 versus	 AD,	 respectively.	 The	 AUCs	
for	CSF-	A	 (0.6807),	 neuroimaging-	T	 (0.6764),	 and	CSF-	N	 (0.6801)	

were	higher	than	the	same	ATN	classifications	in	the	MCI	versus	CN	
(Figure 1K).	However,	all	the	AUC	levels	were	<0.7 in this analysis, 
suggesting	the	ATN	biomarkers	hard	to	differentiate	the	MCI	from	
CN.	Next,	we	evaluated	the	accuracy	of	ATN	biomarkers	to	identify	
AD	 from	MCI	 and	 found	 Aβ–	PET	 (neuroimaging-	A:	 AUC	 0.6839),	
tau-	PET	 (neuroimaging-	T:	 AUC	 0.7893),	 and	 FDG–	PET	 (neuroim-
aging-	N:	 AUC	 0.8177)	 demonstrated	 a	 significantly	 higher	 AUC	
compared	with	other	ATN	classifications	(Figure 1L).	Finally,	ranking	
results	of	the	A/T/N	biomarker	features	based	on	their	AUC	values	
In	different	comparisons	(AD	vs.	CN,	MCI	vs.	CN,	AD	vs.	MCI)	were	
shown in Tables S3 and S4, and related cutoff values were shown 
in Tables S5.

3.3  |  Associations of CSF, plasma, and 
neuroimaging ATN biomarkers with cognitive 
function measures

As	 a	 result	 of,	 age,	 gender,	 and	 education	 are	 risk	 factors	 for	
pathological biomarker changes, we adjusted these features by 
using them as covariates in future linear regression analysis. To 
test	whether	 the	different	derived	ATN	biomarkers	 in	classifying	
the three subject group pairs are associated with performance on 
cognitive	functioning	tests,	 including	ADNI–	MEM,	and	ADNI–	EF.	
Hence,	we	analyzed	each	ATN	feature's	correlation	with	cognitive	
functions.	All	 the	biomarker	 levels	were	natural	 log	 transformed	
and	 standardized	 due	 to	 non-	normal	 distribution.	 We	 found	
ADNI_MEM	 was	 strongest	 correlated	 with	 Aβ–	PET	 (β = −0.365)	
compared	to	CSF	Aβ	(β = 0.318)	and	plasma	Aβ	(β = 0.075)	in	the	“A”	
classification	 (Figure 2A,D,G).	 Of	 note,	 tau-	PET	 (β = −0.436)	 and	
FDG–	PET	(β = 0.506)	were	also	highly	correlated	with	ADNI–	MEM	
in	the	“T”	and	“N”	elements,	respectively.	When	linear	regression	
analysis	 of	 ADNI–	EF	 in	 all	 three	 groups,	 cognitive	 performance	
was	highly	 associated	with	 the	neuroimaging	ATN	markers,	 such	
as	 Aβ–	PET,	 tau-	PET,	 and	 FDG–	PET,	 showing	 larger	 coefficients	
(β	values)	than	CSF	and	plasma	ATN	biomarkers	(Figure 2J–	R)	ex-
cept	CSF	Aβ	(β = 0.328)	was	a	little	higher	than	Aβ–	PET	(β = 0.324).	
Moreover,	we	 then	 analyzed	 the	 correlation	 of	 the	CSF,	 plasma,	
and	neuroimaging	ATN	biomarkers	in	the	CN,	MCI,	and	AD	groups	
using heat maps. Correlation coefficients were obtained by the 
Spearman	correlation	tests.	It	showed	that	the	neuroimaging	and	
CSF	 ATN	 features	 were	 highly	 correlated	 with	 cognitive	 scales	
rather	than	plasma	ATN	biomarkers	 in	the	CN	group	(Figure S2a, 
Table S7),	 whereas	 the	 plasma	 ATN	 biomarkers	 started	 to	 dis-
play	 a	 significant	 effect	 in	 the	MCI	 stage	 (Figure S2b, Table S8).	
Notably,	 however,	 FDG–	PET	 SUVR	 was	 more	 highly	 correlated	
with	 memory	 than	 other	 A/T/N	 markers	 in	 the	 MCI	 or	 AD	 de-
mentia	participants	 (Figure S2b,c, Tables S8 and S9).	Of	 interest,	
a similar correlation analysis pattern was represented when com-
bining	all	subjects,	CN&AD,	CN&MCI,	and	MCI&AD	(Figure S2d–	g, 
Tables S6, S10–	S12),	with	the	correlation	values	being	even	larger	
for	 the	 neuroimaging	ATN	measurements	 than	CSF	 and	 plasma-	
based	ATN	biomarkers,	especially	FDG–	PET	SUVR,	indicating	that	
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    |  7 of 16XIONG et al.

neuroimaging	ATN	biomarkers	become	strongly	predictive	targets	
of cognitive performance as cognitive decline progresses from CN 
to	AD.	 Particularly,	 tau-	PET	 (neuroimaging-	T)	 appeared	 to	 be	 an	

especially important correlation factor of memory function, as it 
existed the highest correlation coefficient among the three neu-
roimaging	ATN	biomarkers	in	these	cognitive	correlation	analyses.

F I G U R E  1 CSF,	plasma,	and	neuroimaging	ATN	biomarkers	profiles.	Distribution	of	CSF	(A–	C),	plasma	(D–	F),	and	neuroimaging	(G–	I)	ATN	
biomarkers	concentrations	across	the	separate	clinically	defined	diagnostics	groups,	namely	CN,	MCI,	and	AD.	The	different	sample	sizes	
of	different	markers	are	also	displayed	at	the	bottom	of	the	figures.	Comparing	CSF,	plasma,	and	neuroimaging	ATN	biomarkers	diagnosis	
accuracy	in	AD	versus	CN	(J),	MCI	versus	CN	(K),	and	AD	versus	MCI	(L)	comparisons	using	receiver	operating	characteristic	(ROC)	curve	
analyses.	Statistical	differences	among	the	groups	for	each	biomarker	were	determined	by	the	Kruskal–	Wallis	test	followed	by	multiple	
comparisons	with	Holm–	Bonferroni	adjusts	(A–	I).

(A) (B) (C)

(D) (E) (F)

(G) (H) (I)

(J) (K) (L)
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(A) (B) (C)

(D) (E) (F)

(G) (H) (I)

(J) (K) (L)

(M) (N) (O)

(P) (Q) (R)
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    |  9 of 16XIONG et al.

3.4  |  The clinical prediction of cognitive decline by 
CSF, plasma, and neuroimaging ATN biomarker

To	understand	if	CSF,	plasma,	and	neuroimaging	ATN	biomarkers	are	
sufficient	to	predict	cognitive	decline	in	CN,	MCI,	and	AD	groups,	we	
performed	linear	mixed-	effect	models	(LMMs)	analysis	adjusted	for	
age, gender, and education to get cognitive annual changes. Linear 
regression	 analysis	 showed	 that	 Aβ-	PET	 (β = −0.015,	 p < 0.001,	
Figure 3G),	 as	 a	 neuroimaging-	A	 classification,	 had	 a	 faster	 cogni-
tive	decline	in	terms	of	ADNI–	MEM	annual	changes	over	48 months	
in	 comparison	 to	CSF	Aβ42/40	 (β = 0.013,	p < 0.001,	Figure 3A)	and	
plasma	 Aβ42/40	 (β = 0.002,	 p = 0.115,	 Figure 3D).	 Similarly,	 faster	
cognitive	decline	in	tau-	PET	(β = −0.018,	p < 0.001,	Figure 3H;	CSF	
p-	tau:	 β = −0.012,	 p < 0.001,	 Figure 3B;	 Plasma	 p-	tau:	 β = −0.010,	
p < 0.001,	 Figure 3E)	 and	 FDG–	PET	 uptake	 (β = 0.020,	 p < 0.001,	
Figure 3I;	CSF	NFL:	β = −0.012,	p < 0.001,	Figure 3C; Plasma NFL: 
β = −0.010,	p < 0.001,	Figure 3E)	was	observed	 in	 “T”	and	 “N”	bio-
marker elements, respectively. In addition, other cognitive scales, 
such	 as	ADNI–	EF,	 as	 outcome	measures	were	 also	 briefly	 investi-
gated	 (Figure 3J–	R).	 Interestingly,	 consistent	 with	 the	 correlation	
analysis	 results,	 neuroimaging	 ATN	 features	 showed	 the	 fastest	
ADNI–	MEM	and	ADNI–	EF	changes	compared	with	CSF	and	plasma	
ATN	elements.	General	linear	mixed	models	with	random	intercepts	
and slopes were also used to examine the influence of higher/lower 
ATN	biomarkers	on	cognitive	performances	and	decline	over	time.	
It showed that “N+”	participants,	 especially	 “CSF-	N+”, turn out to 
experience the fastest cognitive decline in each cognitive domain 
(Detailed	information	can	be	found	in	Table S13).	To	test	the	influ-
ence	 of	Aβ status on subjects’ cognitive performance in different 
stages.	We	then	defined	neuroimaging-	A+ as pathological positivity 
of	Aβ	 (Aβ+)	 and	 neuroimaging-	A-		 as	 pathological	 negativity	 of	Aβ 
(Aβ−).	Baseline	cognitive	scores	and	cognitive	annual	changes	were	
compared between subjects in three diagnostic groups with differ-
ent	Aβ	conditions.	It	showed	that	both	CN	and	AD	subjects	had	no	
difference in baseline cognitive scores and cognitive annual changes 
(Figure S3a–	f).	It	seemed	that	Aβ status could only make a significant 
difference	 in	cognitive	scores	 in	MCI	subjects.	 In	ADNI–	EF	annual	
change	scores,	no	significant	difference	between	different	Aβ forms 
could	be	found	in	the	three	diagnostic	groups	(Figure S3f).

3.5  |  The function of plasma p- tau 181 in the 
discrimination of Aβ  status of subjects in different 
diagnostic groups and predicting their 4- year 
cognitive trajectory

Roc	analysis	indicated	that	plasma	p-	tau	181	failed	to	discriminate	Aβ+/
Aβ−	in	CN	subjects	(Figure S4a).	The	AUC	value	turned	out	to	be	higher	

in	MCI	subjects	(AUC:	0.634)	and	subjects	with	AD	(0.779)	(Figure S4b,c).	
To	understand	if	plasma	p-	tau	181	is	sufficient	to	predict	cognitive	de-
cline in CN and MCI groups, we further performed the linear regression 
in	different	Aβ	conditions.	It	showed	that	plasma	p-	tau	181	was	not	cor-
related with baseline cognitive scores or cognitive annual changes in the 
CN	group,	either	Aβ+	or	Aβ−	(Figure S4d–	g).	In	MCI	subjects,	plasma	p-	
tau	181	had	a	significant	correlation	with	both	baseline	cognitive	scores	
and	cognitive	annual	changes	only	in	Aβ+	status	(Figure S4h–	k).

3.6  |  Associations of CSF Aβ 42/40 with 
regional tau- PET and FDG– PET across the AD 
clinical spectrum

CSF	 Aβ42/40	 (CSF-	A),	 tau-	PET	 (neuroimaging-	T),	 and	 FDG–	PET	
(neuroimaging-	N)	were	ranked	the	top	three	candidates	 in	diagno-
sis	accuracy	for	AD	versus	CN,	as	well	as	the	high	correlation	with	
cognitive performances. To further evaluate the longitudinal rela-
tionship	between	CSF	Aβ42/40	and	tau-	PET	and	FDG–	PET	biomark-
ers.	Regarding	the	tau-	PET	domain,	we	assessed	the	cross-	sectional	
associations	 of	 CSF	Aβ42/40	with	 global	 tau-	PET	 SUVR	 across	 the	
AD	 continuum	 using	 voxel-	wise	 analyses	 (adjusted	 for	 age,	 sex,	
and	APOE4).	Baseline	 levels	of	CSF	Aβ42/40 related with tau accu-
mulation	more	strongly	in	subjects	with	MCI	(r = −0.501,	p = 0.000)	
and	CN	 (r = −0.232,	p < 0.001),	while	 the	association	was	markedly	
weaker	among	AD	participants	(r = −0.315,	p = 0.096,	Figure 4A).	We	
then	 investigated	 the	 correlations	 of	 baseline	 CSF	 Aβ42/40 versus 
longitudinal	tau-	PET	SUVR	4 years	later	and	found	a	significant	cor-
relation	only	in	the	CN	group	(r = −0.366,	p = 0.042),	indicating	base-
line	CSF	Aβ42/40 change was mildly associated with longitudinal tau 
accumulation,	only	marginal	and	statistically	non-	significant	associa-
tions	 in	MCI	 subjects	 (r = −0.093,	p = 0.721,	Figure 4B).	Moreover,	
voxel-	wise	analyses	assessed	associations	between	CSF	Aβ42/40 and 
FDG–	PET.	Like	tau-	PET,	baseline	CSF	Aβ42/40 demonstrated a mildly 
significant	 relationship	with	FDG–	PET	SUVR	 in	subjects	with	MCI	
(r = 0.137,	p = 0.026),	while	 no	 significant	 association	 found	 among	
CN	 (r = 0.108,	 p = 0.294)	 and	 AD	 subjects	 (r = −0.046,	 p = 0.750,	
Figure 4C).	Of	note,	we	investigated	whether	baseline	CSF	Aβ42/40 
correlated	with	the	severity	of	FDG–	PET	SUVR	4 years	later,	and	no	
correlation	was	found	both	in	the	CN	(r = 0.304,	p = 0.271)	and	MCI	
groups	(r = 0.037,	p = 0.925,	Figure 4D).

3.7  |  A combination model of the top three ATN 
biomarkers diagnoses AD

We	next	sought	to	assess	whether	combining	CSF,	plasma,	and	neu-
roimaging	ATN	biomarkers	 could	 further	 improve	 the	 accuracy	 of	

F I G U R E  2 Linear	regression	models	of	ATN	biomarkers	with	baseline	cognitive	scores.	All	the	biomarker	levels	were	natural	log	
transformed	and	standardized	due	to	non-	normal	distribution.	Scatter	plots	showing	the	correlations	of	CSF,	plasma,	and	neuroimaging	ATN	
biomarkers	with	ADNI_MEM	(A–	I)	and	ADNI_EF	(J–	R).	Regression	coefficient	β and related p-	value	were	calculated	in	each	linear	regression	
model.
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    |  11 of 16XIONG et al.

diagnosis	of	AD.	We	arranged	the	“A”,	“T”,	and	“N”	components	to	form	
a	serial	new	diagnosis	model	and	ranked	the	ATN	biomarker	features	
according	to	their	relative	importance	in	each	model	(Figure 5A,B).	
The	best	diagnosis	model	used	in	AD	versus	CN	included	CSF-	A	(CSF	
Aβ42/40),	neuroimaging-	T	(tau-	PET),	and	neuroimaging-	N	(FDG–	PET)	
with	 an	 accuracy	of	1.000,	 followed	by	neuroimaging-	A	 (Aβ-	PET),	
Plasma-	T	(plasma	p-	tau181)	and	neuroimaging-	N	(FDG–	PET)	with	an	
accuracy	of	0.966,	and	CAF-	A	(CSF	Aβ42/40),	CSF-	T	(CSF	p-	tau181)	
and	neuroimaging-	N	(FDG–	PET)	showed	a	similarly	high	AUC	0.962	
(Figure 5C).	Of	interest,	the	best	diagnosis	models	discriminated	MCI	
versus	CN,	and	MCI	versus	AD	were	displayed	in	Figure S5.	We	take	
these	results	seriously	due	to	the	limited	sample	sizes,	especially	the	
No. 1 model.

4  |  DISCUSSION

This	 is	 the	 first	 study	 to	our	knowledge	of	 full-	scale	analysis	 from	
all	arms	of	the	A/T/N	framework,	and	the	core	findings	of	the	pro-
spective	 longitudinal	 study	 were	 as	 follows:	 (1)	 In	 terms	 of	 diag-
nostic	accuracy	for	AD,	the	AUCs	of	CSF	Aβ42/40	 (CSF-	A),	tau-	PET	
(neuroimaging-	T)	 and	 FDG–	PET	 (neuroimaging-	N)	 were	 ranked	
as	 the	 top	 three	ATN	candidates	 in	diagnosis	accuracy	 for	AD.	 (2)	
Neuroimaging	ATN	biomarkers	demonstrated	more	strongly	predic-
tive targets of cognitive performances in terms of cognitive decline 
than	CSF	and	plasma	ATN	categories.	Among	them,	neuroimaging-	T	
and	neuroimaging-	N	appeared	to	be	an	especially	important	corre-
lation	factors	of	cognitive	function.	 (3)	The	status	of	Aβ might not 
be effective enough to predict the cognitive decline in subjects 
with	CN	or	AD,	but	in	subjects	with	MCI	Aβ status could influence 
a	lot.	(4)	Voxel-	wise	analyzed	CSF-	A	related	with	tau	accumulation	
and	FDG–	PET	indexes	more	strongly	in	subjects	with	MCI	stage.	(5)	
The	best-	combined	diagnosis	model	discriminated	AD	from	cogni-
tively	unimpaired	participants,	including	CSF-	A,	neuroimaging-	T,	and	
Neuroimaging-	N,	with	an	accuracy	of	1.000.	We	provide	a	detailed	
description and comprehensive analysis picture of the different 
sources	of	ATN	biomarkers	in	the	AD	continuum.

In this study, we started with the clinical diagnosis and then tested 
the	 levels	 of	 the	 CSF,	 plasma,	 and	 neuroimaging	 ATN	 biomarkers	
separately	in	each	diagnostic	group	(CN,	MCI,	and	AD).	The	results	
demonstrated	 that	 CSF-	A,	 neuroimaging-	T,	 and	 Neuroimaging-	N,	
within	the	same	ATN	category,	might	provide	better	discriminative	
accuracy	 for	 AD.	 Due	 to	 the	 ATN	 profiling's	 lack	 of	 interchange-
ability,	such	as	between	CSF	and	neuroimaging	modalities.	Hence,	
capturing	 the	best	biomarkers	among	 the	ATN	systems	 is	 increas-
ingly	important.	Taken	together,	these	results	suggest	that	CSF	and	

Neuroimaging-	derived	 biomarkers,	which	 are	 intimately	 related	 to	
the main pathologies, are much more sensitive and accurate than 
plasma-	derived	for	AD	diagnosis.	However,	their	utility	in	the	clinic	is	
limited	in	part	by	their	high	price	and	poor	accessibility,	and	plasma-	
based biomarkers will likely be a potential paramount prospect in 
the	 AD	 field.11	 Hence,	 ongoing	 research	 on	 plasma-	based	 A/T/N	
framework biomarkers should be a part of future attempts to close 
the gaps. Interestingly, several studies based on BioFINDER41 and a 
recent	meta-	analysis42 have confirmed the high accuracy of plasma 
p-	tau	in	diagnosing	AD	compared	to	CSF	biomarkers.	Nevertheless,	
in	the	present	study,	plasma	ATN	biomarkers	were	not	sufficiently	
sensitive	 biomarkers	 to	 differentiate	 AD	 and	 predictive	 cognitive	
performances. One possible explanation, according to method vi-
sion, is that mass spectrometry may not be sensitive enough to mea-
sure	the	plasma	biomarkers	compared	to	Simoa	assays.

We	investigated	the	associations	between	ATN	biomarkers	with	
cognitive	function	measures	and	found	neuroimaging	ATN	biomark-
ers become more closely predictive of cognitive decline value than 
other	ATN	biomarkers,	questioning	the	prognostic	cost	of	CSF	and	
plasma	ATN	biomarkers,	especially	the	presence	of	pathological	neu-
roimaging-	T	(tau-	PET)	and	Neuroimaging-	N	(FDG–	PET)	in	the	brain,	
which appeared to be a super biomarker with a higher r correlation 
index,43 which can be used to future cognitive prediction. Moreover, 
several pieces of evidence point out a high correlation between tau 
levels	and	cognitive	deterioration	across	the	entire	AD	spectrum.44 
To our knowledge, there are a couple of plausible arguments to make 
clear	why	tau-	PET	 is	a	vital	 target	 in	predicting	progressive	cogni-
tive	decline	in	the	clinical	AD	continuum.	In	line	with	other	reports,	
a rapid steeper decline in cognition longitudinally was foreseen by 
tau-	PET	(+)	rather	than	Aβ–	PET	(+),	partially	resulting	from	tau	(+)	
was	often	coupled	with	Aβ	(+)	but	not	vice	versa.45	Aβ deposition is 
the	original	trigger	of	tau	pathology	in	the	AD	continuum,	while	tau	
is the concrete driver of neurodegeneration and cognitive decline.46 
Furthermore, tau diffuses in a relatively stereotypical pattern that is 
tightly related to clinical status is also one of the potential reasons.

FDG–	PET	can	effectively	assess	the	level	of	cortical	metabolism	
in the brain area and is also an important indicator reflecting the 
neurodegeneration	dimension	of	patients	with	AD.47	 Studies	have	
shown	that	in	the	development	course	of	AD,	the	abnormal	Aβ and 
tau	proteins	begin	at	the	early	stage	of	AD	onset,	while	the	abnor-
mal	 glucose	uptake	and	utilization	mainly	occur	 in	 the	middle	 and	
later stages of the disease.48 There are several plausible reasons why 
hypoglycemia is an important biomarker for predicting progressive 
cognitive	decline	in	clinical	AD.	For	example,	impaired	glucose	me-
tabolism in the brain is associated with insulin resistance, which in 
turn	exacerbates	Aβ	deposition.	Stanley	et	al.	showed	that	one	of	the	

F I G U R E  3 Linear	regression	models	of	ATN	biomarkers	with	cognitive	annual	changes.	All	the	biomarker	levels	were	natural	log	
transformed	and	standardized	due	to	non-	normal	distribution.	Cognitive	annual	changes	were	got	through	linear	mixed	models	with	4-	year	
follow-	up	data.	LMM	had	cognitive	test	scores	as	the	dependent	variable	and	included	the	independent	variables'	time	(years	between	
baseline	and	follow-	up	time	points)	for	fixed	effects	and	random	effects,	adjusted	for	sex,	age,	and	years	of	education.	Scatter	plots	showing	
the	correlations	of	CSF,	plasma,	and	neuroimaging	ATN	biomarkers	with	ADNI_MEM	annual	change	(A–	I)	and	ADNI–	EF	annual	change	(J–	R).	
Regression coefficient β and related p-	value	were	calculated	in	each	linear	regression	model.
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12 of 16  |     XIONG et al.

F I G U R E  4 Regional	and	global	associations	of	CSF	Aβ42/40	level	with	baseline	and	4-	year-	later	cerebral	tau	pathology	and	
glycometabolism.	(A)	CSF	Aβ42/40	level	versus	baseline	tau-	PET	SUVR	using	Voxel-	wise	analyses	(adjusted	for	age	and	sex	et	al.),	(B)	CSF	
Aβ42/40	level	versus	4-	year-	later	tau-	PET	SUVR,	(C)	CSF	Aβ42/40	level	versus	baseline	FDG–	PET	SUVR,	(D)	CSF	Aβ42/40	level	versus	4-	year-	
later	FDG–	PET	SUVR.	Significant	associations	in	voxel-	wise	analyses	were	determined	based	on	an	FWE-	corrected	threshold	of	p < 0.05	at	
the	cluster	level.	Color	panels	on	the	bottom	display	spearman	correlation	coefficients	(r).

(A)

(B)

(C)

(D)
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    |  13 of 16XIONG et al.

F I G U R E  5 A	combination	model	of	the	top	three	ATN	biomarkers	diagnose	AD.	We	arranged	the	“A”,	“T”,	and	“N”	components	to	form	
a	serial	multivariate	logistic	model	and	ranked	the	ATN	biomarker	features	according	to	their	diagnostic	value	in	this	model	(A,	B).	The	
accuracy	of	the	top	three	ATN	biomarkers	distinguishing	AD	from	CN	groups	is	evidenced	by	AUCs,	as	shown	in	(C).	The	best	diagnosis	
model	used	in	AD	versus	CN	included	CSF-	A	(CSF	Aβ42/40),	neuroimaging-	T	(tau-	PET),	and	neuroimaging-	N	(FDG–	PET)	with	an	accuracy	
of	1.000,	followed	by	neuroimaging-	A	(Aβ-	PET),	Plasma-	T	(plasma	p-	tau181)	and	neuroimaging-	N	(FDG–	PET)	with	an	accuracy	of	0.966,	
and	CAF-	A	(CSF	Aβ42/40),	CSF-	T	(CSF	p-	tau181)	and	neuroimaging-	N	(FDG–	PET)	showed	a	similarly	high	AUC	0.962	(C).	The	best	diagnosis	
models	discriminated	MCI	versus	CN,	and	MCI	versus	AD	were	displayed	in	Figure S5.

(A) (C)

(B)
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14 of 16  |     XIONG et al.

characteristics	of	AD	was	a	damaged	insulin	signal	in	the	brain	and	
abnormal	insulin	levels	in	plasma	and	CSF.49

Alternatively,	 voxel-	wise	 analyzed	 CSF-	A	 related	 to	 tau	 accu-
mulation	 and	FDG–	PET	more	 strongly	 in	 subjects	with	MCI	 stage	
than	CN	and	AD.	The	lack	of	correlation	of	cognition	with	Aβ out-
side	MCI	is	reasonable,	given	floor	and	ceiling	effects	in	CN	and	AD.	
Furthermore,	 baseline	 CSF-	A,	 more	 pronounced,	 was	 associated	
with	PET-	measured	tau	aggregation	4 years	later	in	participants	with	
CN	(p = 0.042),	and	no-	significant	correlation	was	found	in	terms	of	
neurodegeneration	in	CN	(p = 0.271)	and	MCI	groups	(p = 0.925).	To	
our	knowledge,	elevated	Aβ is necessary for tau accumulation in the 
AD	continuum.	Consistent	with	this	finding,	several	studies	reported	
that	 once	 individuals	 with	 elevated	 Aβ and cognitive impairment, 
such	as	the	MCI	stage,	the	speed	of	tau	accumulation	is	up	to	2-	fold	
higher.50,51 Interestingly, David et al. demonstrated that participants 
with	elevated	Aβ could lead to tau accumulation in the context of 
high-	Aβ	levels	(>68	centiloid).52 Notably, across the disease progres-
sion,	given	that	ATN	biomarkers	have	differing	 importance	 in	pre-
dicting	clinical	dementia	capacity.	Tyler	et	al.	reported	that	Aβ has 
higher	importance	in	predicting	early	cognitive	impairment	(CN	and	
MCI)	but	may	not	be	sufficient	 to	 lead	 to	clinical	AD,	and	glucose	
uptake has a higher role in the later stage.53

We	employed	AD	biomarkers	from	all	arms	of	the	A/T/N	frame-
work	(CSF,	plasma,	and	Neuroimaging)	in	a	random	analysis	mode	to	
generate	the	best	optimal	cross-	tissue	model	to	accurately	diagnose	
AD	and	to	rank	models	in	order	of	their	importance	in	the	diagno-
sis	accuracy	(AUC	values).	The	best-	combined	diagnosis	model	dis-
criminated	AD	 from	 cognitively	 unimpaired	 participants,	 including	
CSF-	A,	 neuroimaging-	T,	 and	Neuroimaging-	N,	with	 an	 accuracy	of	
1.000	(The	real	AUC	value	is	close	to	1	based	on	the	limited	sample	
size).	Since	not	all	subjects	with	AD	in	ADNI	were	required	to	be	Aβ 
positive, it is hard to reach the conclusion that an algorithm including 
A	has	an	accuracy	of	1.00	to	separate	AD	and	CN.	The	remarkable	
thing that should be noted is that PET will have limited acceptance 
in clinical practice, and performing multiple PET scans for T and N in 
one	patient	is	quite	unlikely	to	become	clinical	routine.	One	short-
coming	of	this	project	was	that	only	FDG–	PET	was	considered	for	N	
as a neuroimaging marker rather than a brain MRI. Indeed, the dis-
advantage	of	this	multimodal	diagnosis	model,	including	Aβ and tau 
PET	scans	and	CSF	biomarkers,	can	be	complicated	and	challenging	
to	 acquire	 in	 clinical	 settings.	Moreover,	 our	 findings	 on	CSF-		Aβ, 
tau-	PET,	or	FDG–	PET	as	a	single,	AD-	specific	diagnosis	biomarker	
are	enough	to	differentiate	AD	from	CN.	The	other	limitations	of	this	
study	including	the	follow-	up	was	relatively	short	(4 years).	Notably,	
the major concern about this project is the lack of an external cohort 
to validate these findings. Moreover, there are many comparisons 
made	to	develop	the	classification	models,	which	would	require	reit-
erating findings and reproducing them in unseen data sets.

Despite	the	participants	from	the	ADNI	cohort	being	huge,	we	
restricted	 the	 patient	 inclusion	 to	 those	we	 had	 results	 for	 CSF,	
plasma,	and	neuroimaging	ATN	biomarkers,	which	limited	the	sam-
ple	 size	 of	 the	 results	 and	 required	 validation	 in	 other	 cohorts,	
which may prove useful for the future prediction and diagnosis of 

AD.	 In	 addition,	 18F-	Flortaucipir	 (tau-	PET)	 displays	 considerable	
off-	target	binding	in	the	hippocampus,	basal	ganglia,	or	other	un-
specific binding regions, which may confuse the assessment of tau 
pathology.54

5  |  CONCLUSIONS

Our	detailed	analysis	of	 the	ADNI	data	enables	us	to	suggest	 that	
CSF,	 plasma,	 and	 neuroimaging	 biomarkers	 differ	 considerably	
within	 the	ATN	framework;	among	these	biomarkers,	CSF-	A,	neu-
roimaging-	T,	and	neuroimaging-	N	are	likely	correlating	well	with	AD	
clinical	diagnosis.	Moreover,	our	findings	suggest	tau-	PET	and	FDG–	
PET as reliable biomarkers for predicting cognitive decline.
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