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ABSTRACT
The purpose of this paper is to establish a stochastic differential
equation for the Donsker delta measure of the solution of a McK-
ean–Vlasov (mean-field) stochastic differential equation.

If the Donsker delta measure is absolutely continuous with
respect to Lebesgue measure, then its Radon–Nikodym derivative is
called the Donsker delta function. In that case it can be proved that
the local time of such a process is simply the integral with respect to
timeof theDonsker delta function. Thereforewealsoget an equation
for the local time of such a process.

For some particular McKean–Vlasov processes, we find explicit
expressions for their Donsker delta functions andhence for their local
times.
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1. Introduction

The Donsker delta function of a random variable or a stochastic process arises in many
studies, including quantum mechanical particles on a circle [7], financial markets with
insider trading as in [10] and in [3] for financial markets with singular drift. It has also
been used as a tool to determine explicit formulae for replicating portfolios in complete
and incomplete markets [9].

Moreover, the Donsker delta function is also of interest because it can be regarded as
a time derivative of the local time. Therefore, explicit expressions for the Donsker delta
function lead to explicit formulae of the local time.

For example, if we let B be a Brownian motion defined on a filtered probability space
(�,F ,F = {Ft}t≥0,P), then the Donsker delta function δB(t)(x) of a Brownian motion B
at the point x can be regarded as the time derivative of the local time Lt(x) of B. More
precisely, we have

Lt(x) =
∫ t

0
δB(s)(x) ds.

Such an integral exists as an element of the Hida space (S∗) of stochastic distributions, see
Section 2.3.
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In [6], the authors use white noise theory to obtain an explicit solution formula for a
general stochastic differential equation (SDE), and this is used to find an expression for the
Donsker delta function for the solution of an SDE. Subsequently this was also extended to
SDEs driven by Lévy noise in [8].

The main result of the current paper is that the Donsker delta measure of a
McKean–Vlasov process (see below) always satisfies a certain Fokker–Planck type SPDE in
the sense of distributions. Moreover, we use this to find explicit formulae for the Donsker
delta functions forMcKean–Vlasov processes, and hence their local times, in specific cases.

LetX(t) = Xt ∈ R be the solution of aMcKean–Vlasov SDE, i.e. amean-field stochastic
differential equation, of the form (using matrix notation),

dX(t) = α(t,X(t),μX
t ) dt + β(t,X(t),μX

t ) dB(t); X(0) = Z ∈ R.

We call X aMcKean–Vlasov process.
Here the σ -algebra F = {Ft}t≥0 denotes the filtration generated by Z and B(·), Z is a

random variable which is independent of the σ -algebra generated by B(·) and such that
E[|Z|2] < ∞.

Definition 1.1: Define μX
t (dx) = μX

t (dx,ω) to be regular conditional distribution of
X(t) given Ft generated by the Brownian motion B. This means that μX

t (dx,ω) is a Borel
probability measure on R for all t ∈ [0,T], ω ∈ � and∫

R

g(x)μX
t (dx,ω) = E[g(X(t))|Ft](ω),

for all functions g such that E[|g(X(t))|] < ∞.

Sincewe consider only a one-dimensional BrownianmotionB(t) ∈ R, wewill show that
the regular conditional distribution of X(t) given the filtration {Ft}t≥0 can be identified
with the Donsker delta measure in the sense of distribution. See details in Section 3.1

2. Preliminaries

In this section, we review some basic notions and results that will be used throughout this
work.

2.1. Radonmeasures

ARadonmeasure onRd is a Borelmeasurewhich is finite on compact sets, outer regular on
all Borel sets and inner regular on all open sets. In particular, all Borel probabilitymeasures
on Rd are Radon measures.

In the following, we let

• M0 be the set of deterministic Radon measures.
• C0(R

d) be the uniform closure of the space Cc(R
d) of continuous functions with

compact support.
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If we equip M0 with the total variation norm ||μ|| := |μ|(Rd), then M0 becomes
a Banach space, and it is the dual of C0(R

d). See Chapter 7 in Folland [5] for more
information.

If μ ∈ M0 is a finite measure, we define

μ̂(y) := F[μ](y) :=
∫

Rd
e−ixyμ (dx); y ∈ Rd (1)

to be the Fourier transform of μ at y.
In particular, if μ (dx) is absolutely continuous with respect to Lebesgue mea-

sure dx with Radon–Nikodym derivative m(x) = μ (dx)
dx , so that μ (dx) = m(x) dx with

m ∈ L1(Rd), we define the Fourier transform ofm at y, denoted by m̂(y) or F[m](y), by

F[m](y) = m̂(y) =
∫

Rd
e−ixym(x) dx; y ∈ Rd.

We letM denote the set of all randommeasuresμ (dx,ω);ω ∈ � such thatμ (dx,ω) ∈ M0
for each given ω ∈ �.

2.2. The Schwartz space of tempered distributions

We recall now some notions from white noise analysis.

• S = S(Rd) be the Schwartz space of rapidly decreasing smooth real functions on Rd.
It is a Fréchet space with respect to the family of seminorms:

‖f ‖k,α := sup
x∈Rd

{
(1 + |x|k)|∂αf (x)|

}
,

where k = 0, 1, . . ., α = (α1, . . . ,αd) is a multi-index with αj = 0, 1, . . . (j = 1, . . . , d)
and

∂αf := ∂ |α|f
∂xα11 · · · ∂xαdd

for |α| = α1 + · · · + αd.

• S ′ = S ′(Rd) is the space of tempered distributions. It is the dual of S .

2.3. The Hida space (S)∗ of stochastic distributions

We restrict ourselves to the white noise probability space (� = S ′,F = B,P), where B is
the Borel σ -algebra and the probability P is the probability measure onS ′ defined in virtue
of the Bochner–Minlos–Sazonov theorem.

Let J denote the set of all finite multi-indices α = (α1,α2, . . . ,αm), m = 1, 2, . . ., of
non-negative integers αi.

(2N)α =
m∏
j=1
(2j)αj = (2 · 1)α1(2 · 2)α2(2 · 3)α3 · · · (2m)αm . (2)
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If α = (α1,α2, . . .) ∈ J , we put

Hα(ω) :=
m∏
j=1

hαj(θj(ω)) = hα1(θ1)hα2(θ2) · · · hαm(θm), ω ∈ �. (3)

The family {Hα}α∈J constitutes an orthogonal basis of L2(P).

• ((S)k)k∈R is the Hilbert space consisting of all f = ∑
α∈J cαHα ∈ L2(P) such that

‖f ‖2k :=
∑
α∈J α!c2α(2N)αk < ∞, for numbers cα ∈ R.

• The space (S) = ⋂
k∈R

(S)k equipped with the projective topology is the Hida space of
stochastic test functions.

• ((S)−k)k∈R is the Hilbert space consisting of all formal sums F = ∑
α∈J cαHα

equipped with the norm

‖F‖2−k :=
∑
α∈J

α!c2α(2N)
−αk < ∞.

• The space (S)∗ = ⋃
k∈R

(S)−k equipped with the inductive topology is the Hida space
of stochastic distributions. It can be regarded as the dual of (S).

2.4. The Donsker delta function

We now recall some basic definitions:

Definition 2.1: LetY : � → R be a random variable which also belongs to theHida space
(S)∗ of stochastic distributions. Then a continuous function

δY(·) : R → (S)∗ (4)

is called a Donsker delta function of Y if it has the property that∫
R

g(y)δY(y) dy = g(Y) a.s. (5)

for all (measurable) g : R → R such that the integral converges in (S)∗.

The Donsker delta function is related to the regular conditional distribution. The con-
nection is the following: the regular conditional distribution with respect to the σ -algebra
F of a given real random variable Y, denoted by μY (dy) = μY (dy,ω);ω ∈ �, is defined
by the following properties:

• For any Borel set
 ⊆ R, μY(
, ·) is a version of E[1Y∈
|F].
• For each fixed ω ∈ �, μY (dy,ω) is a probability measure on the Borel subsets

of R.

It is well known that such a regular conditional distribution always exists. See, e.g. [4, p. 79].
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From the required properties of μY (dy,ω), we get the following formula:∫
R

f (y)μY (dy,ω) = E[f (Y)|F]. (6)

Definition 2.2: We call μY (dy,ω) the Donsker delta measure of the random variable Y
and denote it by δY (dy,ω).

Comparing this with the definition of the Donsker delta function, we obtain the
following representation of the regular conditional distribution:

Lemma 2.3: Suppose μY (dy,ω) is absolutely continuous with respect to Lebesgue measure
dy on R and that Y is measurable with respect to F . Then the Donsker delta function of Y,
δY(y,ω), is the Radon–Nikodym derivative of μY (dy,ω) with respect to Lebesgue measure
dy, i.e.

δY(y,ω) = μY (dy,ω)
dy

. (7)

We will prove in Theorem 3.3 that the Donsker delta function can be regarded as a
stochastic distribution in S ′, satisfying a Fokker–Planck type SPDE in the sense of distri-
butions. It can also be represented as an element of the Hida stochastic distribution space
(S)∗, and as such it can in some cases be expressed explicitly in terms of Wick calculus.
For example, if Y(t) = B(t), we have

δB(t)(x) = (2π t)−
1
2 exp


(
− (B(t)− x)
2

2t

)
∈ (S)∗, (8)

where 
 denotes Wick multiplication and exp
 denotes Wick exponential. Note that even
though theDonsker delta function can only be represented as a distribution, its conditional
expectation can be a real-valued stochastic process. For example, for t<T we have

E[δB(T)(x)|Ft] = (2π(T − t))−
1
2 exp

[
− (B(t)− x)2

2(T − t)

]
. (9)

For more examples, we refer to e.g. [1] or [9].

3. The Donsker delta equation for McKean–Vlasov processes

3.1. The general multidimensional Fokker–Planck equation

To explain the background for this section, let us recall the general multidimensional
situation studied in [2], whereX(t) ∈ Rd is aMcKean–Vlasov diffusion, of the form (using
matrix notation),

dX(t) = b(t,X(t),μX
t ) dt + σ(t,X(t),μX

t ) dB(t), X(0) = Z, (10)

where B is a multi-dimensional Brownian motion.
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Here Z is a random variable which is independent of the σ -algebra generated by B(·)
and such that

E[|Z|2] < ∞.

Define the σ -algebra F = {Ft}t≥0 to be the filtration generated by Z and B(·).
Let M denote the set of all Borel measures on Rd. We assume that the coefficients

b(t, x,μ) : [0,T] × Rd × M → Rd and σ(t, x,μ) : [0,T] × Rd × M → Rd are bounded
and F-predictable processes for all x,μ, and that b and σ are continuous with respect to t
and x for all μ.

One can check that under some assumptions, such as Lipschitz and linear growth
conditions, there exists a unique solution of Equation (10).

Definition 3.1: Fix one of the Brownian motions, say B1 = B1(t,ω), with filtration
{F (1)

t }t≥0. We define μX
t = μX

t (dx,ω) to be regular conditional distribution of X(t) given
F (1)
t . Thismeans thatμX

t (ω, dx) is a Borel probabilitymeasure onRd for all t ∈ [0,T],ω ∈
� and ∫

Rd
g(x)μX

t (dx,ω) = E[g(X(t))|F (1)
t ](ω) (11)

for all functions g such that E[|g(X(t))|] < ∞.

The following version of the stochastic Fokker–Planck integro-differential equation
for the conditional law for McKean–Vlasov jump diffusions was proved by Agram and
Øksendal [2]. For simplicity we consider only the case without jumps here.

Theorem 3.2 (Conditional stochastic Fokker–Planck equation [2]): Let X(t) be as
in (10) with d ≥ 2 and let μX

t := μX
t (dx,ω) be the regular conditional distribution of X(t)

given F (1)
t .

Then for a.a. ω ∈ � the conditional law μX
t ∈ S ′ and it satisfies the following SPDE (in

the sense of distributions):

dμX
t = A∗

0μ
X
t dt + A∗

1μ
X
t dB1(t), μ0 = L(X(0)). (12)

Here A∗
0,A

∗
1 are the integro-differential operator and the differential operator which are given

respectively by

A∗
0μ = −

d∑
j=1

Dj[bjμ] + 1
2

d∑
n,j=1

Dn,j[(σσT)n,jμ] (13)

and

A∗
1μ = −

d∑
j=1

Dj[b1,jμ]. (14)

In the above Dj,Dn,j denote ∂
∂xj and

∂2

∂xn∂xj respectively, in the sense of distributions, and

Dj[bjμ] = ∂
∂xj [bj(t, x,μ)μ

X
t (dx)]|μ=μX

t
, and similarly with the other terms.
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3.2. The Fokker–Planck equation for the Donskermeasure

In [2], the theorem above was proved under the assumption that d ≥ 2. However, the proof
also works if d = 1 andF (1)

t = Ft . Note that in this case, since X(t) isFt-measurable, the
identity (11) states that ∫

Rd
g(x)μX

t (dx,ω) = g(X(t)) (15)

for all functions g such that
∫

Rd |g(x)|μX
t (dx,ω) < ∞.

In particular, if we choose d = 1 in the above we get that the conditional law coincides
with the Donsker measure, i.e.

μX
t (x,ω) = δX(t) (dx,ω). (16)

Therefore we get the following Fokker–Planck equation for the Donsker measure:

Theorem 3.3: Assume that X(t) is as in (10), but with d = 1.
Then the Donsker deltameasureμX

t = δX(t) (dx,ω) satisfies the following equation (in the
sense of distribution):

dμX
t =

{
−D[b(t, x,μ)μX

t ]|μ=μX
t

+ 1
2
D2[σ 2(t, x,μ)μX

t ]|μ=μX
t

}
dt

− D[σ(t, x,μ)μX
t ]|μ=μX

t
dB(t);

μ0 = L(X(0)), (17)

where D = ∂
∂x and D

2 = ∂2

∂x2 .

4. Local time

In this section, we first recall the definition of local time of a stochastic process Y(·):

Definition 4.1: The local time Lt(y) of Y(·) at the point y and at time t is defined by

Lt(y) = lim
ε→0

1
2ε
λ({s ∈ [0, t];Y(s) ∈ (y − ε, y + ε)}),

where λ denotes Lebesgue measure on R and the limit is in L2(P).

In the white noise context, the local time can be represented as the integral of the
Donsker delta function. More precisely, we have the following result:

Theorem 4.2: The local time Lt(x) of X at the point x and the time t is given by

Lt(x) =
∫ t

0
δX(s)(x) ds, (18)

where the integration takes place in (S)∗ (or in S ′ for each ω).
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Proof: For completeness, we give the proof.
By definition of the local time and the Donsker delta function, we have

Lt(z) = lim
ε→0

∫ t

0
χ(z−ε,z+ε)(Y(s)) ds

= lim
ε→0

∫ t

0

(∫
R

χ(z−ε,z+ε)(y)δY(s)(y) dy
)

ds

= lim
ε→0

∫
R

χ(z−ε,z+ε)(y)
(∫ t

0
δY(s)(y) ds

)
dy =

∫ t

0
δY(s)(z) ds,

because the function y �→ δY(s)(y) is continuous in (S)∗ (and in S ′). �

Remark 4.3: Note that even though we in general can only say that δX(t)(x) ∈ (S)∗, Lt(x)
usually exists as a real-valued stochastic process.

5. Explicit solutions

In this section, we find explicitly the Donsker delta function for some particular McK-
ean–Vlasov processes and accordingly their local time.

Suppose that μX
t is absolutely continuous, i.e.

μX
t (dx) = mX(t, x) dx. (19)

Then (10) gets the form

dX(t) = b(t,X(t),mX
t ) dt + σ(t,X(t),mX

t ) dB(t); X(0) = Z, (20)

wheremX
t (x) = mX(t, x) and (17) becomes a stochastic partial differential equation (SPDE),

as follows:

Theorem 5.1: Suppose (19) holds. Then the Donsker delta function mX(t, x) = δX(t)(x) is
the solution in (S)∗ of the following SPDE:

dtmX(t, x) =
{
− ∂

∂x
[b(t, x,m)mX(t, x)] + 1

2
∂2

∂x2
[σ 2(t, x,m)mX(t, x)]

}
dt (21)

− ∂

∂x
[σ(t, x,m)mX(t, x)] dB(t); t ≥ 0,

m(0, x) = ∂

∂x
L(X(0)). (22)

5.1. Brownianmotion

Consider the special case when X(t) = B(t);B(0) = Z. Then b = 0 and σ = 1 and
Equation (17) becomes

∂mX

∂t
(t, x) = 1

2
∂2mX

∂x2
(t, x)+ ∂mX

∂x
(t, x) 
 Ḃ(t); t ≥ 0, (23)

m(0, x) = ∂

∂x
L(X(0)). (24)
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We can easily verify by Wick calculus that a solution in (S)∗ of Equation (23) is

δB(t)(x) = (2π t)−
1
2 exp


(
− (B(t)− x)
2

2t

)
, (25)

which is in agreement with (8). The details are as follows:
Try

mX(t, x) = 1√
2π t

exp

[
− (x − B(t))
2

2t

]
.

Then

∂mX

∂t
(t, x) = −1

2
t−3/2
√
2π

exp

[
− (x − B(t))
2

2t

]
+ 1√

2π t
exp


[
− (x − B(t))
2

2t

]


(

−x − B(t)
t

)

 Ḃ(t)

+ 1√
2π t

exp

[
− (x − B(t))
2

2t

]
(x − B(t))2

2t2
,

and

∂mX

∂x
= 1√

2π t
exp


[
− (x − B(t))
2

2t

]


(

−x − B(t)
t

)
,

and

∂2mX

∂x2
(t, x) = 1√

2π t
exp


[
− (x − B(t))
2

2t

]


(
x − B(t)

t

)
2

+ 1√
2π t

exp

[
− (x − B(t))
2

2t

](
−1
t

)
.

Collecting the terms we see that

mX(t, x) = 1√
2π t

exp

(

− (x − B(t))
2

2t

)
,

satisfies the Fokker–Planck equation (23) for the conditional law of B(t).
From white noise theory, we know that

• E[X 
 Y] = E[X]E[Y]
• E[exp
 Y] := E[

∑∞
n=0

1
n!Y


n] = ∑∞
n=0

1
n!E[Y


n] = ∑∞
n=0

1
n!E[Y]

n = exp(E[Y])
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for all random variables X, Y with a finite expectation (independent or not). From this
we see that

E[δB(t)(x)] = 1√
2π t

exp
(
E
[
− (x − B(t))
2

2t

])
= 1√

2π t
exp

(
− (x − E[Z])2

2t

)
. (26)

In particular, if X(0) = Z = z (constant) ∈ R a.e., then

E[δB(t)(x)] = 1√
2π t

exp
(

− (x − z)2

2t

)
, (27)

which has a singularity at x = z.

5.2. Coefficients not depending on x

The next result shows that, under some conditions, the Donsker delta function can be an
ordinary function if the initial value X(0) has a density.

Theorem 5.2: Assume that X(t) is the solution of the following McKean–Vlasov equation:

dX(t) = α(t,μX
t ) dt + β(t,μX

t ) dB(t); X(0) = Z, (28)

where the coefficients α(t, x,μ) = α(t,μ) and β(t, x,μ) = β(t,μ) do not depend on x.
Suppose that X(0) = Z is a random variable (independent of B) with density

h(z) = ∂

∂z
L(Z)(z); z ∈ R. (29)

(1) Define

Yt(x) = h
(
x −

∫ t

0
α(s,μX

s ) ds −
∫ t

0
β(s,μX

s ) dB(s)
)

= h(K(t, x)), (30)

where

K(t, x) = x −
∫ t

0
α(s,μX

s ) ds −
∫ t

0
β(s,μX

s ) dB(s).

Then Y(t, x) is the Donsker delta function of X(t).
(2) The solution X(t) of (28) is given by

X(t) =
∫

R

xYt(x) dx. (31)

Proof: (1) We show that Y(t, x) satisfies Equation (21).
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By the Ito formula, we have

dtY(t, x) = h′(K(t, x))dtK(t, x)+ 1
2
h′′(K(t, x))β2(t) dt

=
{
−α(t,μX

t )h
′(K(t, x))+ 1

2
β2(t,μX

t )h
′′(K(t, x))

}
dt

− β(t,μX
t )h

′(K(t, x)) dB(t). (32)

Since

h′(K(t, x)) = d
dz

h(z)z=K(t,x) = ∂

∂x
Y(t, x), (33)

we see that Equation (32) can be written as

dtY(t, x) =
[
−α(t,μX

t )
∂

∂x
Y(t, x)+ 1

2
β2(t,μX

t )
∂2

∂x2
Y(t, x)

]
dt

− β(t,μX
t )
∂

∂x
Y(t, x) dB(t), (34)

which is the same as Equation (21).
Since Y(0, x) = h(x) = m(0, x), we conclude by uniqueness that Y(t, x) = m(t, x)

for all t.
(2) This follows from the definition of the Donsker delta function.

�

5.2.1. Constant coefficients
As a special case of the case above, suppose that

dX(t) = α dt + β dB(t), X(0) = Z, (35)

where α and β are constants. Then by Theorem 5.2, the Donsker delta function is

δX(t)(x) = h(x − αt − βB(t)). (36)

5.3. Mean-field geometric Brownianmotion

Suppose that X(t) is a McKean–Vlasov process of the form

dXt = α(t,μX
t )Xt dt + β(t,μX

t )Xt dBt ; X0 = Z > 0. (37)

We call this amean-field geometric Brownian motion. For such processes, we have:

Theorem 5.3: (i) The Donsker delta function mX
t (x) for the mean-field geometric Brown-

ian motion X(t) is

mX
t (x) = δXt (x) = 1

x
H
(
ln x −

∫ t

0
α(s,μX

s ) ds −
∫ t

0
β(s,μX

s ) dB(s)
)
, (38)

where

H(z) = ∂

∂z
L(lnZ)(z); z ∈ R. (39)
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(ii) The solution X(t) of the mean-field geometric Brownian motion equation (37) can be
written as

X(t) =
∫ ∞

0
H
(
ln x −

∫ t

0
α(s,μX

s ) ds −
∫ t

0
β(s,μX

s ) dB(s)
)

dx

=
∫

R

euH
(
u −

∫ t

0
α(s,μX

s ) ds −
∫ t

0
β(s,μX

s ) dB(s)
)

du. (40)

Proof: (i) The corresponding Fokker–Planck equation for the Donsker delta function
mt = mX

t (x) = δX(t)(x) is

dmt(x) =
{
− ∂

∂x
[α(t,m)xmt(x)] + 1

2
β2(t,m)

∂2

∂x2
[x2mt(x)]

}
dt

− β(t,m)
∂

∂x
[xmt(x)] dBt

= {−α(t,m)mt(x)− α(t,m)xm′
t(x)

+ 1
2
β2(t,m)[2mt(x)+ 4xm′

t(x)+ x2m′′
t (x)]

}
dt

− β(t,m)[mt(x)+ xm′
t(x)] dBt ; m0(x) = ∂

∂x
L(Z)(x). (41)

This is a stochastic partial differential equation in mt(x). It seems difficult to find
directly an explicit solution of this equation. However, we can find the solution
mt(x) = δX(t)(x) by proceeding as follows:

The solution of (37) is

Xt = Z exp
(∫ t

0
β(s,ms) dB(s)+

∫ t

0
{α(s,ms)− 1

2
β2(s,ms)} ds

)
= exp(Yt),

where

Yt = lnZ +
∫ t

0
β(s,ms) dB(s)+

∫ t

0
{α(s,ms)− 1

2
β2(s,ms)} ds.

By Theorem 5.2, we know that

δYt (x) = H
(
x −

∫ t

0
α(s,μs) ds −

∫ t

0
β(s,μs) dB(s)

)
,

where

H(z) = ∂

∂z
L(lnZ)(z).

By definition we have ∫
R+

g(y)δYt (y) dy = g(Yt).
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With g(y) = exp(y), this gives∫
R

exp(y)δYt (y) dy = exp(Yt) = Xt .

Hence, substituting exp(y) = x,

Xt =
∫

R

exp(y)δYt (y) dy =
∫

R+
xδYt (ln(x))

dx
x
.

From this we deduce that

mt(x) = δXt (x) = δYt (ln(x))
x

= 1
x
H
(
ln x −

∫ t

0
α(s,μs) ds −

∫ t

0
β(s,μs) dB(s)

)
(42)

is the Donsker delta function of Xt .
(ii) This part follows by the definition of the Donsker delta function.

�

5.4. An example related to the Burgers equation

Suppose the McKean–Vlasov equation has the form

dX(t) = αm(t,X(t)) dt + β dB(t); X(0) = Z, (43)

wherem(t, x) = ∂
∂xμ

X(t, x) = ∂
∂xL(X(t))(x) ∈ L2([0,T] × R).

Then the corresponding FP equation for the Donsker functionm(t, x) is

dm(t, x) =
{
−α ∂

∂x
(m2(t, x))+ 1

2
β2
∂2

∂x2
m(t, x)

}
dt − β

∂

∂x
m(t, x) dB(t), (44)

m(0, x) = h(x) = ∂

∂x
Z(x). (45)

This is a stochastic Burgers equation. It is well known that by using the Cole–Hopf trans-
formation the equation can be transformed into the classical heat equation. The details are
as follows: if we introduce a new function ψ = ψ(t, x) such that

m := ψx := ∂

∂x
ψ , (46)

then we see that the Burgers equation (44) becomes the following equation in ψ :

(ψx)t = −2αψx(ψx)x + 1
2
β2(ψx)xx − βψxx 
 Ḃ(t). (47)

Integrating with respect to x this gives

ψt = −α(ψx)
2 + 1

2
β2ψxx − βψx 
 Ḃ(t). (48)
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Now define the function ϕ = ϕ(t, x) by

ψ = γ lnϕ, (49)

for some constant γ . Then in terms of ϕ the above equation gets the form

γ
ϕt

ϕ
= −αγ 2

(
ϕx

ϕ

)2
+ 1

2
γβ2

(
ϕx

ϕ

)
x
− βγ

ϕx

ϕ

 Ḃ(t)

= −αγ 2
(
ϕx

ϕ

)2
+ 1

2
γβ2

(
ϕϕxx − (ϕx)

2

ϕ2

)
x
− βγ

ϕx

ϕ

 Ḃ(t)

= −αγ 2
(
ϕx

ϕ

)2
+ 1

2
γβ2

(
ϕxx

ϕ

)
− 1

2
γβ2

(
ϕx

ϕ

)2
− βγ

ϕx

ϕ

 Ḃ(t). (50)

This simplifies to

ϕt = −(γ α + 1
2
β2)

(
ϕx

ϕ

)2
+ 1

2
β2ϕxx − βϕx 
 Ḃ(t). (51)

If we choose

γ = −β
2

2α
, (52)

the equation for ϕ reduces to the (linear) stochastic heat equation

ϕt = 1
2
β2ϕxx − βϕx 
 Ḃ(t), (53)

ϕ(0, x) = k(x)(to be determined), (54)

or, using Ito differential notation,

dϕ(t, x) = 1
2
β2ϕxx(t, x) dt − βϕx(t, x) dB(t); t ≥ 0, (55)

ϕ(0, x) = k(x). (56)

To find an expression for the solution of (53), define an auxiliary process R(t) = R(x)(t) by

R(t) = x − βB(t)+ βB̃(t); t ≥ 0, (57)

where B̃ is an auxiliary Brownian motion with law P̃ and independent of B. Then by the
Feynman–Kac formula

ϕ(t, x) := Ẽ[k(R(x)(t))] = Ẽ[k(x − βB(t)+ βB̃(t))], (58)

where Ẽ denotes expectation with respect to P̃ and k(z) = ϕ(0, z), solves Equation (53).
Going back tom, we get

m(t, x) = ψx(t, x) = γ
∂

∂x
lnϕ(t, x)) = γ

ϕx(t, x)
ϕ(t, x)

= γ
Ẽ[kx(x − βB(t)+ βB̃(t))]
Ẽ[k(x − βB(t)+ βB̃(t))]

. (59)
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In particular, setting t = 0 we get

h(x) := m(0, x) = γ
Ẽ[kx(x)]
Ẽ[k(x)]

= γ
kx(x)
k(x)

, (60)

from which we deduce that

k(x) = exp
(
1
γ

∫ x

0
h(y) dy

)
. (61)

We summarize what we have proved as follows:

Theorem 5.4: (1) The Donsker delta function m(t, x) = δX(t)(x) for the solution X(t) of
the McKean–Vlasov equation (43) is given by

m(t, x) = γ
ϕx(t, x)
ϕ(t, x)

= γ
Ẽ[kx(x − βB(t)+ βB̃(t))]
Ẽ[k(x − βB(t)+ βB̃(t))]

, (62)

where

k(x) = exp
(
1
γ

∫ x

0
m(0, y) dy

)
= exp

(
1
γ

∫ x

0
L(Z)(y) dy

)
(63)

and

γ = −β
2

2α
. (64)

(2) The solution X(t) of (43) is given by

X(t) =
∫

R

xm(t, x) dx (65)

with m(t, x) as in part 1.

5.5. A solution approach based on Laplace and Fourier transforms

Consider the Fokker–Planck equation, with μ = μX
t ,

dμt =
{
−D[αμ] + 1

2
D2[β2μ]

}
dt − −D[βμ] dB(t); μ0 = δx0 , (66)

for the McKean–Vlasov equation (35). If α,β are constants, this becomes

dμt =
{
−αD[μ] + 1

2
β2D2[μ]

}
dt − βD[μ] dB(t); μ0 = δx0 . (67)

If dμt = m(t, x) dx, the equation can be written as

∂

∂t
m(t, x) = −α ∂

∂x
m(t, x)+ 1

2
β2
∂2

∂x2
m(t, x)+ β

∂

∂x
m(t, x) 
 ◦

B(t). (68)



16 N. AGRAM AND B. ØKSENDAL

Let

f̃ (s) = Lf (s) =
∫ s

0
e−stf (t) dt denote the Laplace transform (69)

and

f̂ (y) = Ff (y) =
∫

R

e−ixyf (x) dx denote the Fourier transform. (70)

Then

L
(
∂

∂t
f (t)

)
(s) = s(Lf )(s)− f (0) (71)

and

L(exp(bt))(s) = 1
s − b

(72)

and

F[Dnw](y) = (iy)nF[w](y). (73)

Hence, applying the Laplace and Fourier transform to (68), we get

ŝ̃m(s, y)− m̂(0, x0) = −iαŷ̃m(s, y)+ 1
2
β2(iy)2̂̃m(s, y)+ βiy(m̂(., y) 
 ◦

B(.))(s)

or ˜̂m(s, y)[s + iαy + 1
2
β2y2] = m̂(0, x0)+ βiy( ˜m̂(., y) 
 ◦

B(.))(s)

or

˜̂m(s, y) = m̂(0, x0)
s + iαy + 1

2β
2y2

+ βiy
s + iαy + 1

2β
2y2
(

˜m̂(., y) 
 ◦
B(.))(s)

= m̂(0, x0)
s + iαy + 1

2β
2y2

+ βiyL(e(−iαy− 1
2β

2y2)t(s) ˜m̂(., y) 
 ◦
B(.))(s). (74)

Put g(t) = e(−iαy− 1
2β

2y2)t and h(t) = m̂(t, y) 
 ◦
B(t)).

Taking inverse Laplace transform, we get

m̂(t, y) = m̂(0, x0) exp((iαy − 1
2
β2y2)t)+ βiyL−1(Lg · Lh)(t, y)

= m̂(0, x0) exp((iαy − 1
2
β2y2)t)+ βiy(g ∗ h)(t, y),

where

(g ∗ h)(t) =
∫ t

0
g(s)h(t − s) ds.

Recall that ∫
R

e−ay2−2by dy =
√
π

a
e
b2
a ; a > 0. (75)
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Hence

F−1(g) = 1
2π

∫
R

eiαyt−
1
2β

2y2t+iyx dy = 1
2π

∫
R

e−
1
2β

2ty2−2yi
( 1
2αt− 1

2 x
)
dy

= 1
2π

√
π

1
2β

2t
exp

(
i2( 12αt + 1

2x)
2

1
2β

2t

)

= 1√
2πβ2t

exp
(

− (αt + x)2

2β2t

)

= 1√
2πβ2t

exp
(

− x2

2β2t
− αx
β2

)
exp

(
− α2t
2β2

)
=: k(t, x).

Therefore g(t, x) = F[k(t, .)](y)] and (75) can be written as

m̂(t, y) = m̂(0, x0)F[k](t, y)

+ βiy
∫ t

0
F[k(t − s, .)](y)F[m(s, y) 
 ◦

B(s))] ds.

Taking inverse Fourier transform we get, with k′ = d
dxk(t, x)

m(t, x) = m(0, x0) ∗ k)(t, x)

+F−1
[
β

∫ t

0
F[k′(t − s, ·)](y)F[m(s, y) 
 ◦

B(s))
]]
(t, x)

=
∫

R

δx0(x − y)k(t, y) dy

+ β

∫ t

0

(∫
R

k′(t − s, x − y)m(s, y) 
 ◦
B(s) ds dy

= k(t, x − x0)+ β

∫
R

(∫ t

0
k′(t − s, x − y)m(s, y) dB(s)

)
dy.

We have proved the following:

Theorem 5.5: Suppose α and β are constants and that the Donsker delta measure is
absolutely continuous with respect to Lebesgue measure. Then the Donsker delta function
m(t, x) = δX(t)(x) of the corresponding McKean–Vlasov process is a solution in (S)∗ of the
following stochastic Volterra equation:

m(t, x) = k(t, x − x0)+ β

∫
R

(∫ t

0
k′(t − s, x − y)m(s, y) dB(s)

)
dy,

where

k(t, z) = 1√
2πβ2t

exp
(

− z2

2β2t
− αz
β2

)
exp

(
− α2t
2β2

)
; k′(u, z) = d

dz
k(u, z).
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Remark 5.6: If α = 0,β = 1, we get

k(t, z) = 1√
2π t

exp
(

−z2

2t

)
k′(u, z) = − z

u
1√
2πu

exp
(

− z2

2u

)
.

For comparison, recall that the density of Brownian motion at t, x (when starting at x0) is

p(t, x) = 1√
2π t

exp
(

− (x − x0)2

2t

)
.
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