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Abstract
We study the stochastic time-fractional stochastic heat equation

∂α

∂tα
Y (t, x) = λΔY (t, x) + σW (t, x); (t, x) ∈ (0,∞) × R

d , (0.1)

where d ∈ N = {1, 2, ...} and ∂α

∂tα is the Caputo derivative of order α ∈ (0, 2), and
λ > 0 and σ ∈ R are given constants. HereΔ denotes the Laplacian operator,W (t, x)
is time-space white noise, defined by

W (t, x) = ∂

∂t

∂d B(t, x)

∂x1...∂xd
, (0.2)

B(t, x) = B(t, x, ω); t ≥ 0, x ∈ R
d , ω ∈ Ω being time-space Brownian motion with

probability law P. We consider the equation (0.1) in the sense of distribution, and we
find an explicit expression for the S ′-valued solution Y (t, x), where S ′ is the space
of tempered distributions. Following the terminology of Y. Hu [11], we say that the
solution is mild if Y (t, x) ∈ L2(P) for all t, x . It is well-known that in the classical
case with α = 1, the solution is mild if and only if the space dimension d = 1. We
prove that if α ∈ (1, 2) the solution is mild if d = 1 or d = 2. If α < 1 we prove that
the solution is not mild for any d.
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1 Introduction

The fractional derivative of a function was introduced by Niels Henrik Abel in 1823
[1], in connection with his solution of the tautochrone (isochrone) problem inmechan-
ics.

TheMittag-Leffler function Eα(z)was introduced by Gösta Magnus Mittag-Leffler
in 1903 [20]. Later it happened that this function has a connection to the fractional
derivative introduced by Abel, and it appears in solutions of fractional order problems.

The fractional derivatives turn out to be useful in many situations, e.g. in the study
of waves, including ocean waves around an oil platform in the North Sea, and ultra-
sound in bodies. In particular, the fractional heat equation may be used to describe
anomalous heat diffusion, and it is related to power law attenuation. This and many
other applications of fractional derivatives can be found, for example, in the book by
S. Holm [12] and other numerous publications.

In this paper we study the following fractional stochastic heat equation

∂α

∂tα
Y (t, x) = λΔY (t, x) + σW (t, x); (t, x) ∈ (0,∞) × R

d , (1.1)

where d ∈ N = {1, 2, ...} and ∂α

∂tα is the Caputo derivative of order α ∈ (0, 2), and
λ > 0 and σ ∈ R are given constants,

ΔY =
d∑

j=1

∂2Y

∂x2j
(t, x) (1.2)

is the Laplacian operator and

W (t, x) = W (t, x, ω) = ∂

∂t

∂d B(t, x)

∂x1...∂xd
(1.3)

is time-space white noise,

B(t, x) = B(t, x, ω); t ≥ 0, x ∈ R
d , ω ∈ Ω

is time-space Brownian sheet with probability law P. The boundary conditions are:

Y (0, x) = δ0(x) (the point mass at 0), (1.4)

lim
x→+/− ∞ Y (t, x) = 0. (1.5)
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The fractional stochastic heat equation driven... 515

In the classical case, when α = 1, this equation models the normal diffusion of heat
in a random or noisy medium, the noise being represented by the time-space white
noise W (t, x).

- When α > 1 the equation models superdiffusion or enhanced diffusion, where
the particles spread faster than in regular diffusion. This occurs for example in some
biological systems.

- When α < 1 the equation models subdiffusion, in which travel times of the
particles are longer than in the standard case. Such situation may occur in transport
systems.

For more information about super- and subdiffusions, see Cherstvy et al. [9].
We consider the equation (1.1) in the sense of distributions, and in Theorem 2 we

find an explicit expression for the S ′-valued solution Y (t, x), where S ′ is the space of
tempered distributions.

Following the terminology ofY.Hu [11], we say that the solution ismild ifY (t, x) ∈
L2(P) for all t, x . It is well-known that in the classical case with α = 1, the solution
is mild if and only if the space dimension d = 1, see e.g. Y. Hu [11].

We show that if α ∈ (1, 2) the solution is mild if d = 1 or d = 2.
Then we show that if α < 1 then the solution is not mild for any space dimension

d. This phenomenon is in line with the results from regularization with noise, see
Butkovsky et al. [6].

There are many papers dealing with various forms of stochastic fractional differ-
ential equations. Some papers which are related to ours are:

– In the paper by Kochubei et al. [15] the fractional heat equation corresponding to
random time change in Brownian motion is studied.

– The papers by Bock et al. [4], [5] are considering stochastic equations driven by
grey Brownian motion.

– The paper by Liu et al. [17] proves existence and uniqueness of general time-
fractional linear evolution equations in the Gelfand triple setting.

– The paper by Yalçin et al. [25] studies the time-regularity of the paths of solutions
to stochastic partial differential equations driven by additive infinite-dimensional
fractional Brownian noise.

– The paper by Binh et al. [3] studies the spatially-temporally Hölder continuity of
mild random field solution of space time fractional stochastic heat equation driven
by colored noise.

– The paper which is closest to our paper is Chen et al. [8], where, a comprehensive
discussion is given of a general fractional stochastic heat equations with multi-
plicative noise, and with fractional derivatives in both time and space, is given. In
that paper the authors prove existence and uniqueness results as well as regularity
results of the solution, and they give sufficient conditions on the coefficients and
the space dimension d, for the solution to be a random field.

Our paper, however, is dealingwith additive noise and amore special class of fractional
heat equations. As in [8] we find explicit solution formulae in the sense of distributions
and give conditions under which the solution is a random field in L2(P).
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We refer to Holm [12], Ibe [13], Kilbas et al. [14], Machado et al. [18], [19] and
Samko et al. [22] for more information about fractional calculus operators and their
applications.

2 Preliminaries

2.1 The space of tempered distributions

For the convenience of the readerwe recall some of the basic properties of the Schwartz
space S of rapidly decreasing smooth functions and its dual, the space S ′ of tempered
distributions.

Let n be a given natural number. Let S = S(Rn) be the space of rapidly decreasing
smooth real functions f on Rn equipped with the family of seminorms:

‖ f ‖k,α := sup
y∈Rn

{
(1 + |y|k)|∂α f (y)|} < ∞,

where k = 0, 1, ..., α = (α1, ..., αn) is a multi-index with α j = 0, 1, ... ( j = 1, ..., n)

and

∂α f := ∂ |α|

∂ yα1
1 · · · ∂ yαn

n
f

for |α| = α1 + ... + αn .
Then S = S(Rn) is a Fréchet space.
Let S ′ = S ′(Rn) be its dual, called the space of tempered distributions. Let B

denote the family of all Borel subsets of S ′(Rn) equipped with the weak* topology.
If Φ ∈ S ′ and f ∈ S we let

Φ( f ) or 〈Φ, f 〉 (2.1)

denote the action of Φ on f .

Example 1 – (Evaluations) For y ∈ R define the function δy on S(R) by 〈δy, φ〉 =
φ(y). Then δy is a tempered distribution.

– (Derivatives) Consider the function D, defined for φ ∈ S(R) by D[φ] = φ′(y).
Then D is a tempered distribution.

– (Distributional derivative)
Let T be a tempered distribution, i.e. T ∈ S ′

(R). We define the distributional
derivative T

′
of T by

T
′ [φ] = −T [φ ′ ]; φ ∈ S.

Then T
′
is again a tempered distribution.

In the following we will apply this to the case when n = 1 + d and y = (t, x) ∈
R × R

d .
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The fractional stochastic heat equation driven... 517

2.2 The Mittag-Leffler functions

Definition 1 TheMittag-Leffler functionof twoparametersα, β is denotedby Eα,β(z)
and defined by:

Eα,β(z) =
∞∑

k=0

zk

Γ (αk + β)
, (2.2)

where z, α, β ∈ C, Re(α) > 0 and Re(β) > 0, and Γ is the Gamma function.
For β = 1 we obtain the Mittag-Leffler function of one parameter α denoted by

Eα(z) and defined as:

Eα(z) =
∞∑

k=0

zk

Γ (αk + 1)
, (2.3)

where z, α ∈ C, Re(α) > 0.

Remark 1 Note that Eα(z) = Eα,1(z) and that

E1(z) =
∞∑

k=0

zk

Γ (k + 1)
=

∞∑

k=0

zk

k! = ez . (2.4)

2.3 The (Abel-)Caputo fractional derivative

In this sectionwe present the definitions and some properties of the Caputo derivatives.

Definition 2 The (Abel-)Caputo fractional derivative of order α > 0 of a function f
such that f (x) = 0 when x < 0 is denoted by Dα f (x) or dα

dxα f (x) and defined by

Dα f (x) : =
{

1
Γ (n−α)

∫ x
0

f (n)(u)du
(x−u)α+1−n ; n − 1 < α < n

dn
dxn f (x); α = n.

(2.5)

Here n is an smallest integer greater than or equal to α.
If f is not smooth these derivatives are interpreted in the sense of distributions.

2.3.1 Laplace transform of Caputo derivatives

Some of the properties of the Laplace transform that we will need are:

L[ ∂α

∂tα
f (t)](s) = sα(L f )(s) − sα−1 f (0). (2.6)

L[Eα(bxα)](s) = sα−1

sα − b
. (2.7)

qL[xα−1Eα,α(−bxα)](s) = 1

sα + b
. (2.8)

123
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2.4 Time-space white noise

Let n be a fixed natural number. Later we will set n = 1 + d. Define Ω = S ′(Rn),
equipped with the weak-star topology. This space will be the base of our basic proba-
bility space, which we explain in the following:

As events we will use the family F = B(S ′(Rn)) of Borel subsets of S ′(Rd), and
our probability measure P is defined by the following result:

Theorem 1 (The Bochner–Minlos theorem) There exists a unique probability mea-
sure P on B(S ′(Rn)) with the following property:

E[ei〈·,φ〉] :=
∫

S ′
ei〈ω,φ〉dμ(ω) = e− 1

2 ‖φ‖2; i = √−1

for all φ ∈ S(Rn), where ‖φ‖2 = ‖φ‖2
L2(Rn)

, 〈ω, φ〉 = ω(φ) is the action of

ω ∈ S ′(Rn) on φ ∈ S(Rn) and E = EP denotes the expectation with respect to P.

We will call the triplet (S ′(Rn),B(S ′(Rn)),P) the white noise probability space,
and P is called the white noise probability measure.

The measure P is also often called the (normalised) Gaussian measure on S ′(Rn).
It follows from the definition of P that E[〈ω, φ〉] = 0 and

E[〈ω, φ〉2] = ‖φ‖2(the Ito isometry).

Using the Ito isometry it is not difficult to prove that if φ ∈ L2(Rn) and we choose
φk ∈ S(Rn) such that φk → φ in L2(Rn), then

〈ω, φ〉 := lim
k→∞〈ω, φk〉 exists in L2(P)

and is independent of the choice of {φk}. In particular, if we define

B̃(x) := B̃(x1, · · · , xn, ω) = 〈ω, χ[0,x1]×···×[0,xn ]〉; x = (x1, · · · , xn) ∈ R
n,

where [0, xi ] is interpreted as [xi , 0] if xi < 0, then B̃(x, ω) has an x-continuous
version B(x, ω), which becomes an n-parameter Brownian motion, in the following
sense:

By an n-parameter Brownian motion we mean a family {B(x, ·)}x∈Rn of random
variables on a probability space (Ω,F ,P) such that

– B(0, ·) = 0 almost surely with respect to P,

– {B(x, ω)} is a continuous and Gaussian stochastic process
– For all x = (x1, · · · , xn), y = (y1, · · · , yn) ∈ R

n+, B(x, ·), B(y, ·) have the
covariance

∏n
i=1 xi ∧ yi .
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The fractional stochastic heat equation driven... 519

For general x, y ∈ R
n the covariance is

∏n
i=1

∫
R

θxi (s)θyi (s)ds, where
θx (t1, . . . , tn) = θx1(t1) · · · θxn (tn), with

θx j (s) =
⎧
⎨

⎩

1 if 0 < s ≤ x j
−1 if x j < s ≤ 0
0 otherwise.

It can be proved that the process B̃(x, ω) defined above has a modification B(x, ω)

which satisfies all these properties. This process B(x, ω) then becomes an n-parameter
Brownian motion.

We remark that for n = 1 we get the classical (1-parameter) Brownian motion B(t)
if we restrict ourselves to t ≥ 0. For n ≥ 2 we get what is often called the Brownian
sheet.

With this definition of Brownian motion it is natural to define the n-parameter
Wiener–Itô integral of φ ∈ L2(Rn) by

∫

Rn

φ(x)dB(x, ω) := 〈ω, φ〉; ω ∈ S ′(Rd).

We see that by using the Bochner–Minlos theorem we have obtained an easy con-
struction of n-parameter Brownian motion that works for any parameter dimension n.
Moreover, we get a representation of the space Ω as the dual S ′(Rd) of the Fréchet
space S(Rd). This is an advantage in many situations, for example in the construction
of the Hida-Malliavin derivative, which can be regarded as a stochastic gradient on
Ω . See e.g. [10] and the references therein.

In the following we put n = 1 + d and let

B(t, x) = B(t, x, ω); t ≥ 0, x ∈ R
d , ω ∈ Ω

denote the (1-dimensional) time-space Brownian motion (also called the Brownian
sheet) with probaility law P. Since this process is (t, x)-continuous a.s., we can for
a.a. ω ∈ Ω define its derivatives with respect to t and x in the sense of distributions.
Thus we define the time-space white noise W (t, x) = W (t, x, ω) by

W (t, x) = ∂

∂t

∂d B(t, x)

∂x1...∂xd
. (2.9)

In particular, for d = 1 and x1 = t and get the familiar identity

W (t) = d

dt
B(t) in S ′

.

The process (2.9) can also be interpreted as an element of the Hida space (S)∗
of stochastic distributions, and in that setting it has been proved (see Lindstrøm, Ø.,
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Ubøe [16] and Benth [2]) that the Ito-Skorohod integral with respect to B(dt, dx) can
be expressed as

∫ T

0

∫

Rd
f (t, x, ω)B(dt, dx) =

∫ T

0

∫

Rd
f (t, x, ω) � W (t, x)dtdx, (2.10)

where � denotes the Wick product.
In particular, if f (t, x, ω) = f (t, x) is deterministic, this gives

∫ T

0

∫

Rd
f (t, x)B(dt, dx) =

∫ T

0

∫

Rd
f (t, x)W (t, x)dtdx . (2.11)

This is the interpretation we are using in this paper.

3 The solution of the fractional stochastic heat equation

Theorem 2 The unique solution Y (t, x) ∈ S ′ of the fractional stochastic heat equation
(1.1) - (1.5) is given by

Y (t, x) = I1 + I2, (3.1)

where

I1 = (2π)−d
∫

Rd
eixy Eα(−λtα|y|2)dy = (2π)−d

∫

Rd
eixy

∞∑

k=0

(−λtα|y|2)k
Γ (αk + 1)

dy,

(3.2)

and

I2 = σ(2π)−d
∫ t

0
(t − r)α−1

∫

Rd

(∫

Rd
ei(x−z)y Eα,α(−λ(t − r)α|y|2)dy

)
B(dr , dz)

= σ(2π)−d
∫ t

0
(t − r)α−1

∫

Rd

(∫

Rd
ei(x−z)y

∞∑

k=0

(−λ(t − r)α|y|2)k
Γ (αk + α))

dy

)
B(dr , dz),

(3.3)

where |y|2 = y2 = ∑d
j=1 y

2
j .

Proof a) First assume thatY (t, x) is a solution of (1.1).We apply theLaplace transform
L to both sides of (1.1) and obtain (see (2.6)):

sαỸ (s, x) − sα−1Y (0, x) = λΔ̃Y (s, x) + σ W̃ (s, x). (3.4)
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The fractional stochastic heat equation driven... 521

Applying the Fourier transform F , defined by

Fg(y) =
∫

R

e−i xyg(x)dx =: ĝ(y); g ∈ L1(Rd), (3.5)

we get, since Ŷ (0, y) = 1,

sα̂̃Y (s, y) − sα−1 = λ

d∑

j=1

y2j
̂̃Y (s, y) + σ ̂̃W (s, y), (3.6)

or,

(
sα + λ|y|2

) ̂̃Y (s, y) = sα−1Ŷ (0+, y) + σ ̂̃W (s, y). (3.7)

Hence

̂̃Y (s, y) = sα−1

sα + λ|y|2 + σ ̂̃W (s, y)

sα + λ|y|2 . (3.8)

Since the Laplace transform and the Fourier transform commute, this can be written

˜̂Y (s, y) = sα−1

sα + λ|y|2 + σ ˜̂W (s, y)

sα + λ|y|2 . (3.9)

Applying the inverse Laplace operator L−1 to this equation we get

Ŷ (t, y) = L−1
( sα−1

sα + λ|y|2
)
(t, y) + L−1

( σ ˜̂W (s, y)

sα + λ|y|2
)
(t, y)

= Eα,1(−λ|y|2tα) + L−1
( σ ˜̂W (s, y)

sα + λ|y|2
)
(t, y), (3.10)

where we recall that

Eα,β(z) =
∞∑

k=0

zk

Γ (αk + β)
(3.11)

is the Mittag-Leffler function.

It remains to find L−1
(

σ ̂̃W (s,y)
sα+λ|y|2

)
: Recall that the convolution f ∗g of two functions

f , g : [0,∞) �→ R is defined by

( f ∗ g)(t) =
∫ t

0
f (t − r)g(r)dr; t ≥ 0. (3.12)
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The convolution rule for Laplace transform states that

L

(∫ t

0
f (t − r)g(r)dr

)
(s) = L f (s)Lg(s),

or

∫ t

0
f (t − w)g(w)dw = L−1 (L f (s)Lg(s)) (t). (3.13)

By (2.8) we have

L−1
(

1

sα + λ|y|2
)

(t) = tα−1Eα,α(−λtα|y|2)

=
∞∑

k=0

tα−1(−λtα|y|2)k
Γ (αk + α)

=
∞∑

k=0

(−λ|y|2)k tα(k+1)−1

Γ (α(k + 1))

=
∞∑

k=0

(−λtα|y|2)k tα−1

Γ (α(k + 1))

=: Λ(t, y). (3.14)

In other words,

σ

sα + λ|y|2 = σ LΛ(s, y). (3.15)

Combining with (3.13) we get

L−1
(

σ

sα + λ|y|2
̂̃W (s, y)

)
(t) = L−1

(
L (σΛ(s, y)) ˜̂W (s, y)

)
(t) (3.16)

= σ

∫ t

0
Λ(t − r , y)Ŵ (r , y)dr . (3.17)

Substituting this into (3.10) we get

Ŷ (t, y) = Eα,1

(
−λtα|y|2

)
+ σ

∫ t

0
Λ(t − r , y)Ŵ (r , y)dr . (3.18)

Taking inverse Fourier transform we end up with

Y (t, x) = F−1
(
Eα,1

(
−λtα |y|2

))
(x) + σ F−1

(∫ t

0
Λ(t − r , y)Ŵ (r , y)dr

)
(x). (3.19)
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Now we use that

F

(∫

R

f (x − z)g(z)dz

)
(y) = F f (y)Fg(y),

or
∫

R

f (x − z)g(z)dz = F−1
(
F f (y)Fg(y)

)
(x). (3.20)

This gives

F−1
(∫ t

0
Λ(t − r , y)Ŵ (r , y)dr

)
(x)

=
∫ t

0
F−1 (

Λ(t − r , y)Ŵ (r , y)
)
(x)dr

=
∫ t

0
F−1

(
F

(
F−1Λ(t − r , y)

)
(y)FW (r , x)(y)

)
(x)dr

=
∫ t

0

∫

Rd

(
F−1Λ(t − r , y)(x − z)

)
W (r , z)dzdr

=
∫ t

0

∫

Rd

(
(2π)−d

∫

Rd
ei(x−z)yΛ(t − r , y)dy

)
W (r , z)dzdr

= (2π)−d
∫ t

0

∫

Rd

(∫

Rd
ei(x−z)yΛ(t − r , y)dy

)
B(dr , dz).

Combining this with (3.19), (3.11) and (3.14) we get

Y (t, x) = F−1(

∞∑

k=0

(−λtα|y|2)k
Γ (αk + 1)

)

+ σ(2π)−d
∫ t

0

∫

Rd

(∫

Rd
ei(x−z)yΛ(t − r , y)dy

)
B(dr , dz)

= (2π)−d
∫

Rd
eixy

∞∑

k=0

(−λtα|y|2)k
Γ (αk + 1)

dy

+ σ(2π)−d
∫ t

0
(t − r)α−1

∫

Rd

(∫

Rd
ei(x−z)y

∞∑

k=0

(−λ(t − r)α|y|2)k
Γ (α(k + 1))

dy

)
B(dr , dz).

This proves uniqueness and also that the unique solution (if it exists) is given by
the above formula.

b) Next, define Y (t, x) by the above formula. Then we can prove that Y (t, x)
satisfies (1.1) by reversing the argument above. We skip the details. ��
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3.1 The classical case (˛ = 1)

It is interesting to compare the above result with the classical casewhen,α=1: Ifα = 1,
we get Y (t, x) = I1 + I2, where

I1 = (2π)−d
∫

Rd
eixy

∞∑

k=0

(−λt |y|2)k
k! dy

and

I2 = σ(2π)−d
∫ t

0

∫

Rd

∫

Rd
ei(x−z)y

∞∑

k=0

(−λ(t − r)|y|2)k
k! dyB(dr , dz),

where we have used that Γ (k + 1) = k!
By the Taylor expansion of the exponential function, we get

I1 = (2π)−d
∫

Rd
eixye−λt |y|2dy

= (2π)−d
( π

λt

) d
2
e− |x |2

4λt

= (4πλt)−
d
2 e− |x |2

4λt ,

where we used the general formula

∫

Rd
e−(

a|y|2+2by
)
dy =

(π

a

) d
2
e
b2
a ; a > 0; b ∈ C

d . (3.21)

Similarly,

I2 = σ(2π)−d
∫ t

0

∫

Rd

∫

Rd
ei(x−z)y

∞∑

k=0

(−λ(t − r)|y|2)k
k! dyB(dr , dz)

= σ(2π)−d
∫ t

0

∫

Rd

(
π

λ(t − r)

) d
2

e− |x−z|2
4λ(t−r) B(dr , dz)

= σ(4πλ)
− d
2

∫ t

0

∫

Rd
(t − r)−

d
2 e− |x−z|2

4λ(t−r) B(dr , dz).

Summarising the above, we get, for α = 1,

Y (t, x) = (4πλt)−
d
2 e− |x |2

4λt

+ σ(4πλ)−
d
2

∫ t

0

∫

Rd
(t − r)−

d
2 e− |x−z|2

4λ(t−r) B(dr , dz). (3.22)
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This is in agreement with a well-known classical result. See e.g. Section 4.1 in Y. Hu
[11].

4 When is Y(t, x) amild solution?

It was pointed out already in 1984 by John Walsh [24] that (classical) SPDEs driven
by time-space white noise W (t, x); (t, x) ∈ [0,∞) × R

d may have only distribution
valued solutions if d ≥ 2. Indeed, the solution Y (t, x) that we found in the previ-
ous section is in general distribution valued. But in some cases the solution can be
represented as an element of L2(P). Following Y. Hu [11] we make the following
definition:

Definition 3 The solution Y (t, x) is called mild if Y (t, x) ∈ L2(P) for all t > 0, x ∈
R
d .

The second main issue of this paper is the following:

Problem 1 For what values of α ∈ (0, 2) and what dimensions d = 1, 2, ... is Y (t, x)
mild?

A partial answer is given in the following:

Theorem 3 Let Y (t, x) be the solution of the α-fractional stochastic heat equation.
Then the following holds:

a) If α = 1, then Y (t, x) is mild if and only if d = 1.
b) If α > 1 then Y (t, x) is mild if d = 1 or d = 2.
c) If α < 1 then Y (t, x) is not mild for any d.

Proof Recall that Y (t, x) = I1 + I2, with

I1 = (2π)−d
∫

Rd
eixy

∞∑

k=0

(−λtα |y|2)k
Γ (αk + 1)

dy, (4.1)

I2 = σ(2π)−d
∫ t

0
(t − r)α−1

∫

Rd

⎛

⎝
∫

Rd
ei(x−z)y

∞∑

k=0

(−λ(t − r)α |y|2)k
Γ (α(k + 1))

dy

⎞

⎠ B(dr , dz). (4.2)

a) The case α = 1:
This case is well-known, but for the sake of completeness we prove this by our

method: By (3.22) and the Ito isometry we get

E[Y 2(t, x)] = J1 + J2, (4.3)

where

J1 = I 21 = (4πλt)−de− ‖x‖2
2λt (4.4)

and, by using (3.21),
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J2 = σ 2(4πλ)−d
∫ t

0
(t − r)−d(2πλ(t − r))

d
2 dr

= σ 22−d(2πλ)−
d
2

∫ t

0
(t − r)−

d
2 dr , (4.5)

which is finite if and only if d = 1.

b) The case α > 1 : By the Itô isometry we have E
[
Y 2 (t, x)

] = J1 + J2, where

J1 = (2π)−2d

(∫

Rd
eixy

∞∑

k=0

(−λtα|y|2)k
Γ (αk + 1)

dy

)2

= (2π)−2d
(∫

Rd
eixy Eα(−λtα|y|2)dy

)2

(4.6)

and

J2 = σ 2(2π)−2d
∫ t

0

∫

Rd
(t − r)2α−2

⎛

⎜⎝
∫

Rd
ei(x−z)y

∞∑

k=0

(
−λ(t − r)α |y|2

)k

Γ (αk + α))
dy

⎞

⎟⎠

2

dzdr

= σ 2(2π)−2d
∫ t

0

∫

Rd
(t − r)2α−2

(∫

Rd
ei(x−z)y Eα,α(−λ(t − r)α |y|2)dy

)2
dzdr . (4.7)

By Abel’s test and Lemma 2 (Appendix) and (3.21) we get

J1 = (2π)−2d
( ∫

Rd

( ∞∑

k=0

eixy
(−λtα|y|2)k
Γ (k + 1)

Γ (k + 1)

Γ (αk + 1)

)
dy

)2

≤ C1

( ∫

Rd
eixy

∞∑

k=0

(−λtα|y|2)k
Γ (k + 1)

dy
)2

= C1

( ∫

Rd
eixye−λtα |y|2dy

)2

= C1

( π

λtα

)d
e− 2|x |2

λtα < ∞ for all t > 0, x ∈ R
d and for all d.

By the Plancherel theorem, Lemma 3 (Appendix) and (3.21) we get

J2 = σ 2(2π)−2d
∫ t

0
(t − r)2α−2

∫

Rd

( ∞∑

k=0

(−λ(t − r)α|x − z|2)k
Γ (αk + α)

)2

dzdr

= σ 2(2π)−2d
∫ t

0

∫

Rd
(t − r)2α−2

∫

Rd

( ∞∑

k=0

(−λ(t − r)α|x − z|2)k
Γ (k + 1)

Γ (k + 1)

Γ (αk + α)

)2

dzdr
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≤ C2

∫ t

0
(t − r)2α−2

∫

Rd

( ∞∑

k=0

(−λ(t − r)α|x − z|2)k
Γ (k + 1)

)2

dzdr

= C2

∫ t

0
(t − r)2α−2

∫

Rd

(
e−λ(t−r)α |x−z|2)2 dzdr

= C2

∫ t

0
(t − r)2α−2

∫

Rd

(
e−2λ(t−r)α |x−z|2) dzdr

= C2

∫ t

0
(t − r)2α−2

(
π

2λ(t − r)α

) d
2

dr

= C3

∫ t

0
(t − r)2α−2(t − r)−

αd
2 dr

= C3

∫ t

0
(t − r)2α−2− αd

2 dr .

This is finite if and only if 2α − 2 − αd
2 > −1, i.e. d < 4 − 2

α
.

If α = 1 + ε, then 4 − 2
α

= 2 + 2ε
1+ε

> 2 for all ε > 0. Therefore J2 < ∞ for
d = 1 or d = 2, as claimed.

c) The case α < 1 :
By (4.2) we see that

J2 = σ 2(2π)−2d
∫ t

0
(t − r)2α−2

∫

Rd

(
Eα,α(−λ(t − r)α|x − z|2))2dzdr

= σ 2(2π)−2d
∫ t

0
(t − r)2α−2

∫

Rd

(
Eα,α(−λ(t − r)α|y|2))2dydr .

Choose β such that 0 < α ≤ β ≤ 1.
A result of Pollard [21], as extended by Schneider [23], states that the map

x �→ h(x) := Eα,β(−x); x ∈ R
d (4.8)

is completely monotone, i.e,

(−1)n
dn

dxn
h(x) ≥ 0;

for all n = 0, 1, 2, ...; x ∈ R
d . (4.9)

Therefore by Bernstein’s theorem there exists a positive, σ -finite measure μ on R
+

such that

Eα,β(−x) =
∫ ∞

0
e−xsμ(ds). (4.10)

123



528 R. Y. Moulay Hachemi, B. Øksendal

In fact, it is known thatμ is absolutely continuouswith respect to Lebesguemeasure
and

tβ−1Eα,β(−tα) =
∫ ∞

0
e−st Kα,β(s)ds, (4.11)

where

Kα,β(s) = sα−β [sin((β − α)π) + sα sin(βπ)]

π
[
s2α + 2sα cos(απ) + 1

] . (4.12)

See Capelas de Oliveira et al. [7], Section 2.3.
Putting tα = x this can be written

Eα,β(−x) = x
1−β
α

∫ ∞

0
e−sx

1
α Kα,β(s)ds; x > 0. (4.13)

This gives

Eα,β(−ρ|y|2) = ρ
1−β
α |y| 2(1−β)

α

∫ ∞

0
e−sρ

1
α |y| 2α Kα,β(s)ds. (4.14)

It follows that

(
Eα,β(−ρ|y|2))2 ∼ (

ρ
1−β
α |y| 2(1−β)

α ρ
−1
α |y| −2

α
)2

= ρ− 2β
α |y|− 4β

α . (4.15)

Hence, by using polar coordinates we see that

∫

Rd

(
Eα,β(−ρ|y|2))2dy ∼

∫ ∞

0
R− 4β

α Rd−1dR = ∞, (4.16)

for all d.
Therefore J2 = ∞ for all d. ��

Remark 2 – See Y. Hu [11], Proposition 4.1 for a generalisation of the above result
in the case α = 1.

– In the cases α > 1, d ≥ 3 we do not know if the solution Y (t, x) is mild or not.
This is a topic for future research.

5 Applications

5.1 Example 1

Let us consider the following heat equation where α < 1. In this case our equation
models subdiffusion, in which travel times of the particles are longer than in the
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standard case. Such situation may occur in transport systems. For α = 1
2 and d = 2

we get

∂
1
2

∂t
1
2

Y (t, x) = λΔY (t, x) + σW (t, x); (t, x) ∈ (0,∞) × R
2. (5.1)

The solution is given by:

Y (t, x) = I1 + I2, (5.2)

where

I1 = (2π)−2
∫

R2
eixy E 1

2
(−λt

1
2 |y|2)dy = (2π)−2

∫

R2
eixyerf(−λt

1
2 |y|2) 1

2 dy,

(5.3)

(with erf(z) = 2√
π

∫ z
0 exp(−t2)dt) and

I2 = σ(2π)−2
∫ t

0
(t − r)

1
2−1

∫

R2

(∫

R2
ei(x−z)y E 1

2 , 12
(−λ(t − r)

1
2 |y|2)dy

)
B(dr , dz). (5.4)

By Theorem 3 this solution is not mild.

5.2 Example 2

Next, let us consider the heat equation for α = 3
2 . In this case the equation models

superdiffusion or enhanced diffusion, where the particles spread faster than in regular
diffusion. This occurs for example in some biological systems. Now the equation gets
the form

∂
3
2

∂t
3
2

Y (t, x) = λΔY (t, x) + σW (t, x); (t, x) ∈ (0,∞) × R
2. (5.5)

By Theorem 2 the solution is

Y (t, x) = I1 + I2, (5.6)

where

I1 = (2π)−2
∫

R2
eixy E 3

2
(−λt

3
2 |y|2)dy = (2π)−2

∫

R2
eixy

∞∑

k=0

(−λt
3
2 |y|2)k

Γ ( 32k + 1)
dy,

(5.7)
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and

I2 = σ(2π)−2
∫ t

0
(t − r)

3
2−1

∫

R2

(∫

R2
ei(x−z)y E 3

2 , 32
(−λ(t − r)

3
2 |y|2)dy

)
B(dr , dz)

= σ(2π)−2
∫ t

0
(t − r)

1
2

∫

R2

(∫

Rd
ei(x−z)y

∞∑

k=0

(−λ(t − r)
3
2 |y|2)k

Γ ( 32k + 3
2 ))

dy

)
B(dr , dz).

(5.8)

By Theorem 3 this solution is mild.

6 Conclusions

Westudy the time-fractional stochastic heat equation driven by time-spacewhite noise,
interpreted in the sense of distribution. The time derivative is taken in the sense of
Caputo, with parameter α ∈ (0, 2). We find an explicit expression for the solution in
general, and use this to prove that

– if α > 1 the solution is mild if the space dimension d is either 1 or 2.
– If α < 1 the solution is not mild for any d.

7 Appendix

Lemma 1 (Abel’s test)
Suppose

∑∞
n=1 bn is convergent and put M = sup

n
|bn|. Let {ρn} be a bounded

monotone sequence, and put R = sup
n

|ρn|. Then ∑∞
n=1 bnρn is convergent, and

| ∑∞
n=1 bnρn| ≤ MR + R| ∑∞

n=1 bn|.

Proof By summation by parts we have, with BN = ∑N
k=1 bk; N = 1, 2, ...,

N∑

k=1

bkρk =
N∑

k=0

ρk(Bk − Bk−1) (7.1)

=
N−1∑

k=1

Bk(ρk − ρk+1) + ρN BN . (7.2)

Note that

∣∣∣∣
N−1∑

k=0

Bk(ρk − ρk+1)| ≤ M

∣∣∣∣
N−1∑

k=0

ρk − ρk+1| = M(ρ1 − ρn) (7.3)

≤ MR. (7.4)
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Hence

∣∣∣∣∣

N∑

k=1

bkρk

∣∣∣∣∣ ≤ MR + R|BN |. (7.5)

��
Lemma 2 Suppose α > 1. Define

ρk = Γ (k + 1)

Γ (αk + 1)
; k = 1, 2, ... (7.6)

Then {ρk}k is a decreasing sequence.

Proof This follows by considering

ρk+1

ρk
, (7.7)

and using that α > 1. ��
Lemma 3 Suppose α > 1. Define

rk = Γ (k + 1)

Γ (αk + α)
; k = 1, 2, ... (7.8)

Then {rk}k is a decreasing sequence.

Proof Consider

rk+1

rk
= k + 1

αk + 2α − 1
· Γ (αk + α)

Γ (αk + 2α − 1)
< 1.

��
Acknowledgements We are grateful to Wolfgang Bock for helpful comments.

Funding Open access funding provided by University of Oslo (incl Oslo University Hospital)

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/


532 R. Y. Moulay Hachemi, B. Øksendal

References

1. Abel, N.H.: Oppløsning av et par oppgaver ved hjelp av bestemte integraler (in Norwegian). Magazin
for naturvidenskaberne 55–68 (1823)

2. Benth, F.E.: Integrals in the Hida distribution space (S)*. In: Lindstrøm, B., Øksendal, B., Üstünel,
A.S. (eds.) Stochastic Analysis and Related Topics, 8, pp. 89–99. Gordon & Breach (1993)

3. Binh, T.T., Tuan,N.H.,Ngoc, T.B.:Hölder continuity ofmild solutions of space-time fractional stochas-
tic heat equation driven by colored noise. Eur. Phys. J. Plus 136(9), 1–21 (2021)

4. Bock, W., Grothaus, M., Orge, K.: Stochastic analysis for vector valued generalized grey Brownian
motion. arXiv:2111.09229v1 (2021)

5. Bock, W., da Silva, J.L.: Wick type SDEs driven by grey Brownian motion. AIP Conf. Proc. 1871(1),
020004 (2017)

6. Butkovsky,O.,Mytnik, L.: Regularization by noise and flows of solutions for a stochastic heat equation.
Ann. Probab. 47(1), 165–212 (2019)

7. Capelas de Oliveira, E., Mainardi, F., Vaz, J.: Models based on Mittag Leffler functions for anomalous
relaxation in dielectrics. arXiv:1106.1761v2 (2014)

8. Chen, L., Hu, Y., Nualart, D.: Nonlinear stochastic time-fractional slow and fast diffusion equations
on Rd . Stoch. Process. Appl. 129, 5073–5112 (2019)

9. Cherstvy, A.G., Chechkin, A.V., Metzler, R.: Anomalous diffusion and ergodicity breaking in hetero-
geneous diffusion processes. New J. Phys. 15(8), 083039 (2013)

10. GiuliaDiNunno,G., Øksendal, B., Proske, F.:MalliavinCalculus for Lévy ProcesseswithApplications
to Finance. Springer (2008)

11. Hu, Y.: Some recent progress on stochastic heat equations. Acta Math. Sci. 39B(3), 874–914 (2019)
12. Holm, S.: Waves with Power-Law Attenuation. Springer (2019)
13. Ibe, O.C.: Markov Processes for Stochastic Modelling, 2nd edn. Elsevier (2013)
14. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equa-

tions. Elsevier Science B.V. (2006)
15. Kochubei, A.N., Kondratiev, Y., da Silva, J.L.: On fractional heat equation. Fract. Calc. Appl. Anal.

24(1), 73–87 (2021). https://doi.org/10.1515/fca-2021-0004
16. Lindstrøm, T., Øksendal, B., Ubøe, J.: Wick multiplication and Ito-Skorohod stochastic differential

equations. In: Albeverio, S., et al. (eds.) Ideas and Methods in Mathematical Analysis, Stochastics and
Applications, pp. 183–206. Cambridge University Press, Cambridge (1992)

17. Liu, W., Röckner, M., da Silva, J.L.: Quasilinear (stochastic) partial differential equations with time-
fractional derivatives. SIAM J. Math. Anal. 50(3), 2588–2607 (2018)

18. Machado, J.A.T., Kiryakova, V.: The chronicles of fractional calculus. Fract. Calc. Appl. Anal. 20(2),
307–336 (2017). https://doi.org/10.1515/fca-2017-0017

19. Machado, J.A.T., Kiryakova, V.: Recent history of the fractional calculus: data and statistics. In:
Kochubei, A., Luchko, Yu. (eds.) Handbook of Fractional Calculus with Applications: Basic Theory,
vol. 1, pp. 1–21. Walter de Gruyter GmbH, Berlin (2019). https://doi.org/10.1515/9783110571622-
001

20. Mittag-Leffler, M.G.: Sur la nouvelle fonction E(x). C. R. Acad. Sci. Paris 137, 554–558 (1903)
21. Pollard, H.: The completely monotone character of the Mittag–Leffler function Eα(−x). Bull. Am.

Math. Soc. 54, 1115–1116 (1948)
22. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives. Theory and Applica-

tions. Gordon and Breach Science Publishers, New York (1993)
23. Schneider, W.B.: Completely monotone generalized Mittag–Leffler functions. Expositiones Mathe-

maticae 14, 3–16 (1996)
24. Walsh, J.: An introduction to stochastic partial differential equations. In: LectureNotes inMathematics,

vol. 1180. Springer (1984)
25. Yalçin, S., Viens, F.: Time regularity of the evolution solution to fractional stochastic heat equation.

Discret. Contin. Dyn. Syst. B 6(4), 895–910 (2006)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://arxiv.org/abs/2111.09229v1
http://arxiv.org/abs/1106.1761v2
https://doi.org/10.1515/fca-2021-0004
https://doi.org/10.1515/fca-2017-0017
https://doi.org/10.1515/9783110571622-001
https://doi.org/10.1515/9783110571622-001

	The fractional stochastic heat equation driven by time-space white noise
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 The space of tempered distributions
	2.2 The Mittag-Leffler functions
	2.3 The (Abel-)Caputo fractional derivative
	2.3.1 Laplace transform of Caputo derivatives

	2.4 Time-space white noise

	3 The solution of the fractional stochastic heat equation
	3.1 The classical case (α = 1)

	4 When is Y(t,x) a mild solution?
	5 Applications
	5.1 Example 1
	5.2 Example 2

	6 Conclusions
	7 Appendix
	Acknowledgements
	References




