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Preface
This thesis is submitted in partial fulfillment of the requirements for the degree
of Philosophiae Doctor at the University of Oslo. The research presented here
was conducted at the Department of Informatics, UiO, under the supervision
of professor Frank Eliassen, professor Yan Zhang, and professor Hans-Arno
Jacobsen. This work was funded by the Norwegian Research Council under the
SmartNEM project grant number 267967.

The thesis is a collection of three papers, presented in peer-reviewed scientific
conference and journals in secure computing, machine learning, and energy. The
papers are preceded by an introductory chapter that relates them to each other
and provides background information and motivation for the work. I have been
involved as a main contributor in each one of these papers, and they were written
between 2019 and 2022 for the purpose of supporting the thesis.
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Abstract

Renewable energy sources, such as solar and wind, play a vital role in combatting
climate change and ensuring energy sustainability by reducing greenhouse gas
emissions and air pollution. The advancements in renewable technologies have
made them cost-effective and accessible, promoting a greener future. Integrating
solar panels and other distributed renewable sources into homes and communities
decentralizes and decarbonizes energy systems, while microgrids and peer-to-peer
energy trading empower communities to optimize renewable resource utilization
and engage in sustainable practices. However, there are challenges in apartment
buildings regarding onsite renewable energy adoption due to limited rooftop
space, complex ownership structures, and shared energy consumption patterns
among multiple residents. The lack of specific regulations further complicates
the situation, hindering apartment residents from accessing the benefits of locally
generated clean energy. Therefore, tailored solutions need to be developed to
overcome these barriers and ensure a more sustainable and equitable energy
future for all residents.

In the rapidly evolving energy sector, peer-to-peer (P2P) energy trading
has emerged as a promising and innovative approach for the future smart grid.
P2P energy trading enables direct transactions between energy producers and
consumers, fostering decentralized, efficient, and sustainable energy distribution.
Despite the benefits, P2P energy trading faces challenges, particularly concerning
security vulnerabilities. False data injection attacks pose a significant threat,
allowing malicious actors to manipulate data within the trading system,
disrupting its integrity and potentially causing unauthorized access or financial
losses. Addressing these security concerns is crucial to maintain the reliable
and secure operation of P2P energy trading and to ensure that this innovative
approach contributes positively to the energy landscape.

This dissertation is dedicated to studying the above-mentioned challenges
and contributes to two main categories. First, it focuses on securing energy
trading markets in the smart grid. It analyzes some possible threats that can
occur in a local peer-to-peer energy trading market and then explores the effects
of the attacks. A proper defense is needed after finding possible ways to attack
an energy trading market. Integrating detection methods into security strategies
is vital to counter modern cyber threats like false data injection attacks (FDIAs).
This thesis deploys machine learning-based techniques, which are now an effective
solution for efficient cyber attack detection, to extract valuable insights from data
to identify abnormal patterns. Second, it studies energy sharing in multi-unit
buildings. It investigates the effects of shared distributed renewable energy
sources, including PV panels and battery energy storage systems, in multi-unit
buildings. In this regard, this thesis studies the main principles of energy justice
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Abstract

and analyses how these principles can be applied in energy trading and allocation
processes to achieve fair energy sharing.

In the context of security issues in the P2P energy trading market, this
thesis concludes that the ability to identify and detect potential threats, such as
FDIAs, highlights the role of the P2P trading model as an effective motivator for
traditional energy consumers to transition into prosumers. This shift is driven
by the model’s promotion of low internal prices and the provision of substantial
utility benefits. Conversely, in the absence of robust security measures (i.e.,
machine learning-based attack detection models), prosumers may face significant
economic losses due to these attacks. Consequently, this could diminish the
incentive for participants to either continue as energy-producing prosumers or
make the transition to becoming one.

In the setting of energy sharing in multi-unit buildings, this thesis
demonstrates that developing distributed renewable energy sources in multi-unit
buildings allows different groups of residents to gain financial benefit from the
shared energy systems. Furthermore, this thesis suggests that applying the
principles of energy justice to energy sharing models enables a fair and equitable
energy-sharing system in the buildings, while also removing or reducing barriers
to the active participation of end customers (consumers/prosumers) in the future
smart and decentralized energy grid. In summary, this thesis concludes that
justice principles must be incorporated into the design of energy-sharing models
in the first step. These principles can be implemented in various ways, and their
definition may vary depending on the context or situation. The application of
energy justice principles in the proposed sharing models motivates residents
to utilize the shared DRESs (Distributed Renewable Energy Sources) of their
building, resulting in significant financial benefits for the building.

vi



List of Papers

Paper I

Sara Mohammadi, Frank Eliassen, and Yan Zhang,“Effects of false data injection
attacks on a local P2P energy trading market with prosumers”, In: 2020 IEEE
PES Innovative Smart Grid Technologies Europe (ISGT-Europe) Conference,
October 26-28 2020, pp. 31–35. DOI: 10.1109/ISGT-Europe47291.2020.9248761.

Paper II

Sara Mohammadi, Frank Eliassen, and Yan Zhang, and Hans-Arno Jacobsen,“De-
tecting false data injection attacks in peer to peer energy trading using machine
learning”, In: IEEE Transactions on Dependable and Secure Computing, vol. 19,
no. 5, pp. 3417-3431, 1 Sept.-Oct. 2022, DOI: 10.1109/TDSC.2021.3096213.

Paper III

Sara Mohammadi, Frank Eliassen, and Hans-Arno Jacobsen,“Applying Energy
Justice Principles to Renewable Energy Trading and Allocation in Multi-
Unit Buildings”, In: Energies, vol. 16, no. 3, pp. 1150, 2023, DOI:
https://doi.org/10.3390/en16031150.

vii

https://doi.org/10.1109/ISGT-Europe47291.2020.9248761
https://doi.org/10.1109/TDSC.2021.3096213
https://doi.org/https://doi.org/10.3390/en16031150




Contents

Preface i

Abstract v

List of Papers vii

Contents ix

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Research Objectives . . . . . . . . . . . . . . . . . . . . . . 15
1.4 Research Questions . . . . . . . . . . . . . . . . . . . . . . 16
1.5 Solving Methodologies . . . . . . . . . . . . . . . . . . . . 18
1.6 Contributions of the Included Papers . . . . . . . . . . . . 26
1.7 Suggestions for Future Research . . . . . . . . . . . . . . . 30
1.8 Published Papers during Ph.D. Studies . . . . . . . . . . . 32
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Papers 42

I Effects of false data injection attacks on a local P2P energy
trading market with prosumers 43
I.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 44
I.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . 45
I.3 Threat Analysis . . . . . . . . . . . . . . . . . . . . . . . . 46
I.4 Nummerical Results . . . . . . . . . . . . . . . . . . . . . . 48
I.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

II Detecting false data injection attacks in peer to peer energy
trading using machine learning 55
II.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 56
II.2 P2P energy trading system model . . . . . . . . . . . . . . 58
II.3 False data injection attack models . . . . . . . . . . . . . . 59
II.4 Machine learning model for attack detection . . . . . . . . 66

ix



Contents

II.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . 71
II.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

III Applying Energy Justice Principles to Renewable Energy
Trading and Allocation in Multi-Unit Buildings 83
III.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 84
III.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . 86
III.3 Proposed FESM Framework . . . . . . . . . . . . . . . . . 89
III.4 Players Strategies in Energy Trading . . . . . . . . . . . . 96
III.5 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . 103
III.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 108
.A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

x



List of Figures

1.1 (a): conventional grid, (b): smart grid. Adapted from [Ghi+23] 3
1.2 The AMI network model and its main components. . . . . . . . 6
1.3 P2P energy trading model. . . . . . . . . . . . . . . . . . . . . . 10
1.4 General Anomaly Detection Framework. . . . . . . . . . . . . . . 23

I.1 (a): attacking to some of the prosumers’ smart meters before
the game starts, (b); attacking the beginning of the game by
modifying some of the prosumers’ demands. . . . . . . . . . . . . 48

I.2 (a): internal selling prices before and after FDIAs, (b): internal buying prices
before and after FDIAs, and (c): external buying prices before and after
FDIAs at different time slots. . . . . . . . . . . . . . . . . . . . . . . 52

I.3 profits of prosumers and consumers before and after FDIAs at
different time slots. . . . . . . . . . . . . . . . . . . . . . . . . . 53

II.1 HEM architecture with possible ways of attacks. . . . . . . . . . 62
II.2 Sequence diagram of the proposed threat scenario 1. . . . . . . . 63
II.3 Sequence diagram of the proposed threat scenario 2. . . . . . . . 64
II.4 Final supply amount and the true demand after applying the

threat scenario 1 at the last iteration of the game at different time
slots for groups 1 and 2 households. . . . . . . . . . . . . . . . . 74

II.5 Final supply amount and the true demand after applying the
threat scenario 2 at the last iteration of the game at different time
slots for groups 1 and 2 households. . . . . . . . . . . . . . . . . 75

II.6 average economic loss/ benefits of prosumers and consumers after
applying threat scenarios 1 and 2, for both Group 1 and Group 2
households. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

III.1 Sequence diagram for the proposed fair local energy trading in
FESM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

III.2 (a): Average utility of sellers, (b): Average cost of buyers, of
Building A, (c): Average utility of sellers, (d): Average cost of
buyers, of Building B using Methods 1 and 2, and our method
throughout the day. . . . . . . . . . . . . . . . . . . . . . . . . . 106

III.3 (a) Energy trading prices in Building A, (b) Energy trading prices
in Building B, which are computed by Method 1 and our method
throughout the day. . . . . . . . . . . . . . . . . . . . . . . . . . 107

xi





List of Tables
1.1 Cyber and physical attacks targeting the AMI . . . . . . . . . . 8
1.2 Research questions solved in this dissertation . . . . . . . . . . . 18
1.3 The payoffs of the prisoner’s dilemma . . . . . . . . . . . . . . . 18

I.1 Average utilities of prosumers (A.U.P), consumers (A.U.C), and
suppliers (SUP) under FDIAs on different number of prosumers
(PR.) and consumers (CON.) at time slot 10. . . . . . . . . . . . 50

I.2 Average utilities of prosumers (A.U.P), consumers (A.U.C), and
suppliers (SUP) under normal situation at time slot 10. . . . . . 50

I.3 Number of attacked prosumers at different time slots . . . . . . 51

II.1 Average utilities of the prosumers, consumers, and suppliers, and
the supply and the true demands amounts under FDIAs at the
threat scenario 1, and the economic benefits for the attacker by
adjusting β and c at time slot 11. . . . . . . . . . . . . . . . . . 71

II.2 Average utilities of the prosumers, consumers, and suppliers, and
the supply and the true demands amounts under normal situation
and FDIAs at the threat scenario 2, and the economic benefits
for the attacker at time slot 11. . . . . . . . . . . . . . . . . . . . 71

II.3 Number of attacked prosumers and economic benefits of the
attacker for group 1 and group 2 households after applying threat
scenarios 1 and 2 at different time slots. . . . . . . . . . . . . . . 73

II.4 Optimal values of hyper-parameters for baseline ML models . . 76
II.5 Summary of classification performance comparison on two datasets 78
II.6 Summary of processing time comparison on dataset 1 . . . . . . 78
II.7 Feature values of selected instances for explanation. . . . . . . . 78
II.8 Features importance in the prediction of the selected instances. . 79

III.1 System data for allocating energy generated by PV panels to
residents of Buildings A and B at time slot
10 (O: unit-owner, T: tenant). . . . . . . . . . . . . . . . . . . . 104

III.2 The energy trading step in Buildings A and B at time slot 10. . 104

xiii





Chapter 1

Introduction

1.1 Motivation

Conventional electricity supply systems are based on a centralized generating
facility that supplies the transmission and distribution networks [1]. Such systems
are generally costly, ineffective, and heavily reliant on fossil fuels, which are
scarce and contribute substantially to pollution [2]. The idea of decentralizing
the generation capacity of electricity supply systems has gained popularity
in recent years [3-5]. Distributed generation systems, which primarily rely
on renewable energy sources rather than fossil fuels, are more efficient. The
emergence of renewable energy resources, smart homes, and smart grids presents
an opportunity for individuals to generate energy to meet their own needs while
selling surplus energy to their neighbors for their local needs [Las+17]. As a result,
traditional consumers has become prosumers and peer-to-peer (P2P) energy
trading has experienced significant growth in recent years [Par+21]. Studies
have shown that renewable energy contributes to a country’s economic progress
[Dog+20]. A microgrid (MG) is a local energy grid with control capabilities
that can operate in conjunction with the traditional power grid in connected or
isolated modes. MG integrates distributed energy resources (DER) with storage
devices and flexible loads to form low-voltage distribution systems that facilitate
energy sharing [Ker+21]. With renewable energy resources distributed across
MG, energy traders can engage in P2P energy transactions, allowing residents
to generate, store, and trade energy in a local energy market without the need
for a third party [Bul+18].

However, P2P energy trading requires bi-directional network communication,
making the system vulnerable to various attacks that cause integrity loss.
Therefore, energy trading raises security and privacy concerns for energy traders,
including private data leakage, data breaches, distributed denial of service
(DDoS), man-in-the-middle (MITM) attacks, and False data injection attacks
(FDIAs). The impact of FDIA has been extensively studied for the past decade,
but its impacts on P2P energy trading markets at a local level involving prosumers
have not been well investigated. Examining this aspect is crucial as the presence
of prosumers in a local energy market presents a challenge for energy sellers such
as suppliers. Hence, we are motivated to investigate the possible ways of threats,
such as FDIAs, in the local P2P energy trading markets and their impacts on
the markets. Due to this multitude of threats, it is important to implement
appropriate protection measures to secure energy trading processes in the smart
grid. The security and performance of smart grid systems heavily depend on
precise and dependable attack detection. Machine learning (ML) based attack
detection techniques have the potential to identify and categorize cyber-attacks
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1. Introduction

accurately. They can detect unknown and known anomalies in the complex
cyber-physical data flow in real-time. In this thesis, we use cutting-edge machine
learning techniques as a defense strategy in P2P energy trading.

Although PV deployment in residential sector has mainly focused on detached
houses in most areas, there is growing enthusiasm for maximizing solar self-
consumption and self-sufficiency by installing PV panels on the roof of apartment
buildings. Engaging all apartment residents as energy consumers and every
apartment owner as an investor in PV infrastructure is crucial. However, this can
be challenging. On the positive side, it presents an opportunity to establish new
and innovative business associations among apartment owners and residents that
allow for equitable distribution of the net advantages of rooftop PV production.
Indeed, residents with different preferences and the diversity in load demands in
apartment buildings can hamper the fair and equitable distribution of energy
and benefits. Therefore, it is necessary to develop a framework to establish
an equitable and fair energy-sharing system in multi-unit buildings that allows
various groups of residents to reap the advantages of the shared DRESs within
their building. According to these challenges, we are motivated to investigate
energy sharing in multi-unit buildings and propose novel energy sharing models
considering justice and fairness.

1.2 Background

1.2.1 Smart Grid Concepts

Today, the demand for reliable energy has increased due to the increasing
global population, urbanization, and technological advancements. However, the
conventional electric power infrastructure called ‘the grid’ faces challenges that
hinder its reliability, scalability, and low-cost and effective operations. This has
led to the development of an intelligent and modern grid known as the smart grid
[Dil20]. Figure 1.1 shows the distinct differences between the infrastructure of the
conventional power grid and the components of the smart grid. The conventional
systems operate with a one-directional flow of energy, while smart energy systems
allow for the flow of both energy and information in two directions between
the generation and distribution sides. Unlike the rigid structure of conventional
energy networks, the smart grid allows for electricity to be produced on the
consumer side through renewable power sources such as solar and wind farms or
distributed generation sources [Ghi+23].

This innovation has revolutionized the way we consume, generate, and manage
energy. One of the significant outcomes of this evolution is residential smart
metering, which transforms our houses into smart homes and allows residents
to control and monitor their energy consumption effectively. Smart meters
enable customers to monitor their energy usage patterns, identify energy-saving
opportunities, and optimize their energy consumption to reduce energy bills. This
has enabled households to make more informed decisions regarding their energy
consumption, which results in significant savings. Additionally, smart meters
transmit the energy consumption information of customers to energy industries,
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(a) (b)

Figure 1.1: (a): conventional grid, (b): smart grid. Adapted from [Ghi+23]

enabling the industries to manage energy better. The data transmitted allows
energy industries to forecast and predict energy demand, detect faults and
outages, and improve their energy distribution systems’ overall efficiency.

Environmental concerns and the efficient production and distribution of
power have become important topics. Hence, the primary objective of the
smart grid is to enhance the stability and efficiency of the grid while integrating
renewable energy resources effectively. The smart grid has enabled the effective
management of renewable energy sources, ensuring that energy generation meets
the energy demand and reducing reliance on non-renewable sources such as
fossil fuels. However, integrating digital processes and technologies into power
systems to automate and make them intelligent has also made them vulnerable
to cyber-physical attacks [Ghi+23].

1.2.2 Renewable Energy Resources

These days, the world is moving toward using renewable energy sources to supply
parts of the global energy demands. The main types of renewable are wind, solar,
biomass, geothermal, and hydro. Given that some of the renewables, such as
biomass, geothermal, and hydro, have limited scalability, solar and wind energy
are considered as important sources of renewable energy production [Esm+13].

Various factors are contributing to the growing demand for renewable energy
sources. One of the primary reasons is the growing concern over climate change
and the impact of greenhouse gas emissions on the environment. Using fossil
fuels, such as oil and gas, significantly contributes to global warming, leading to
rising temperatures, sea-level rise, and extreme weather conditions. Therefore,
governments and institutions globally are committed to decreasing carbon
emissions and promoting sustainable energy sources to mitigate the effects of
climate change. Unlike conventional energy sources that require large centralized
power plants, renewable energy systems can be deployed in smaller units, making
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them ideal for remote and rural areas. Furthermore, renewable energy sources
are generally more cost-effective in the long term as they do not require fuel costs
and have lower maintenance costs compared to fossil fuels. With the continuous
advancements in technology and the increasing demand for sustainable energy,
the future of renewable energy looks promising, and solar and wind energy will
continue to play a critical role in meeting the world’s energy needs [Age22].

1.2.2.1 Solar Photovoltaic (PV) Panels

Solar energy is a highly accessible renewable energy source that has become
increasingly popular recently. The energy is generated through solar PV panels
containing multiple solar cells that convert sunlight into direct current (DC)
electricity. Once the DC electricity is generated, it needs to be converted into
usable electricity that can power household appliances. This is done using
an inverter, which converts the DC electricity into alternating current (AC)
electricity that can be used throughout the home [Eneb]. The electricity generated
by the PV panels can be used directly in the home to power appliances or stored
in a battery for later use. In addition, excess electricity can be fed back into the
main grid, allowing homeowners to earn credits on their energy bills. This can
help reduce the overall electricity cost and make solar energy a more attractive
option for homeowners. Overall, solar energy is a versatile and sustainable energy
source that has the potential to meet a significant portion of our energy needs
while also reducing our carbon footprint.

One of the main challenges with renewable energy is that it can be intermittent
[INO20]. Solar energy sources depend on weather conditions and are not always
available when energy demand is at its highest. This issue can lead to power
outages and an unstable grid. Another significant challenge for renewable energy
is storage. Given that energy production from renewable sources is not constant,
it is crucial to establish a dependable and effective energy storage infrastructure
to ensure energy supply during periods of low generation.

1.2.2.2 Battery Energy Storage Systems

Battery energy storage systems (BESS) typically consist of one or more batteries,
a power inverter, and a control system [Enea].The batteries used in BESS can
vary depending on the application and requirements, with some of the most
common types including lithium-ion, lead-acid, and flow batteries. Lithium-ion
batteries are popular because of their ability to sustain long cycles of use, high
energy density, and minimal maintenance requirements, while lead-acid batteries
are more affordable and have a longer track record of use in energy storage
systems. Flow batteries are another type commonly used in large-scale energy
storage applications, as they can store large amounts of energy over long periods.

One of the primary benefits of BESS is that it can provide continuous power
flow during power supply fluctuations due to weather or blackouts [Hid+17]. For
example, if a home or business has a solar panel system installed, a BESS can
store excess energy generated during the day and release it at night when energy
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demand is high. Similarly, if there is a power outage or grid failure, a BESS
can provide backup power to ensure the continuity of critical services. Further
applications of BESSs are peak shaving and load shifting [Hid+17].

Peak shaving is a technique to lower electricity demand during periods of
high energy use, which can reduce energy costs for consumers and utilities. It
involves using BESSs to store excess energy during low-demand periods and
release it during high-demand periods. This helps commercial and industrial
customers with high energy demands during specific times of the day.

Load shifting is a technique that battery energy storage systems can
facilitate to balance energy supply and demand, helping utilities maintain a
stable energy supply. BESS can store excess energy during off-peak hours and
release it during peak hours, reducing the need for utilities to rely on expensive
and inefficient energy sources. This technique can improve the efficiency of the
energy system, reduce energy costs, and contribute to a more sustainable and
reliable energy future.

1.2.3 Cyber Threats in the Smart Grid

Smart grids are modern electricity distribution systems that incorporate advanced
technologies, such as sensors, communication networks, and data analytics, to
monitor and manage the flow of electricity. While these technologies have
improved the efficiency and reliability of the grid, they have also increased
the risk of cyber threats [El +18]. Cyber-security in smart grids is crucial
because a successful cyber-attack can disrupt power supply, cause equipment
damage, and compromise sensitive data. The National Institute of Standards
and Technology (NIST) has determined several criteria, such as confidentiality,
integrity, availability, and accountability, for providing security and protecting
information in the smart grid. Each criterion is detailed below [El +18].

Confidentiality: In general, confidentiality protects information from
unauthorized access. Confidentiality will be lost when an unauthorized disclosure
of information happens. For example, in the smart grid, information such as smart
metering data and billing information exchanged between customers and other
stakeholders must be confidential and protected from the risk of manipulation.
Some confidentiality threat examples are traffic analysis, eavesdropping, etc.

Availability: Availability in the smart grid ensures reliable access to
information and data at any time. In the smart grid, for instance, loss of
availability causes disruption in the process of controlling the system by stopping
the flow of information through the network. Therefore, availability is considered
as the most important security criterion in the smart grid. Some famous examples
of availability threats are Denial of Service (DoS), trojan horse, and service
spoofing.

Integrity: Integrity refers to protecting data against alteration or demolition
by an unauthorized user. A lack of integrity can cause credential misuse, meaning
unauthorized users are able to manipulate data for different purposes in an
undetectable manner. Examples of integrity threats are false data injection
attack, man-in-the-middle, electricity theft, and replay attack.
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Figure 1.2: The AMI network model and its main components.

Accountability: Accountability means the system is traceable and every
action is recordable, and hence helps to minimize or even prevent power theft.
For example, a lack of accountability can affect the monthly electricity bills of
users. An under attacked smart meter provides unreliable data regarding the
cost of electricity. Hence, the customer will receive two different electricity bills,
one from utility and the other one from the smart meter. Some instances of
accountability threats are a physical intrusion, repudiation, etc.

The implementation of the smart grid involves several key components,
with the Advanced Metering Infrastructure (AMI) being a crucial element
that facilitates two-way communication between electric utility companies and
their customers [AS15]. Figure 1.2 illustrates how the AMI integrates various
components, such as the information/communication network, smart meters, and
meter data management system (MDMS) [Wei+18]. The AMI’s communication
network comprises three critical areas: the home area network (HAN), the
wide area network (WAN), and the utility system. Smart meters, the primary
electronic devices installed on the customer side in the AMI, transmit the
customers’ electricity consumption data to the electric utility. The utility then
uses this information to generate electricity bills, enable demand response,
forecast user electricity consumption patterns, and update pricing in real-time.

1.2.3.1 Cyber-Physical Threats in AMI

Ensuring the security of the AMI is a critical aspect of smart grid monitoring and
operation, as well as protecting customer privacy. The AMI serves as a key point
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of interaction between electric utilities and customers, and it is vulnerable to
security breaches. For instance, a malicious attacker could manually manipulate
smart meters and alter the meter readings, which would compromise the integrity
of the reported data. In addition, integrating information and communication
technologies (ICTs) with the AMI provides an opportunity for potential hackers
to launch cyber attacks that could compromise electronic devices and inject
malicious data into the communication network. The widespread deployment
of AMI devices means that these cyber-physical attacks have the potential to
not only disconnect electricity from end consumers but also cause cascading
failures in other connected critical infrastructures, such as transportation and
telecommunications. Therefore, securing the AMI against such threats is of
utmost importance. Smart meters and communication networks are the primary
attack surfaces in the AMI [Wei+18].

Smart Meters Smart meters are electronic devices that track energy
consumption and send the data back to the utility company at regular
intervals. These meters enable dynamic electricity pricing, smart grid system
monitoring, automated operation, and consumption-based customer services.
While traditional meters were vulnerable to physical attacks due to their
significance, smart meters provide cyber attackers with another potential point
of access. Given a large number of deployed smart meters and limited defense
resources, a number of theoretical and demonstrated attacks targeting these
meters have been identified, such as denial of service (DoS) attacks, false data
injection attacks (FDIAs), man-in-the-middle attacks, authentication attacks,
etc. [JAL15], [BWS15], and [Jia+14].

Communication Networks The AMI’s communication network plays
a vital role in connecting the devices through a wireless Frequency Hopping
Spread Spectrum (FHSS) mesh or a similar cellular network. The network also
establishes a link to the consumers’ local HAN using WiFi, Zigbee, or Z-wave
protocols. Then, the communication network connects to the utility’s wide
area network (WAN), typically an Ethernet infrastructure. In addition, the
communication network is spread across an urban area alongside the smart
grid, with the number of devices varying from a few hundred to thousands of
smart meter data collectors. Each collector can serve thousands of smart meters,
leading to thousands or even millions of devices. As a result, vulnerabilities in
the AMI communication network could be exploited or disabled through attacks
on the communication infrastructure, false user requests, unauthorized alteration
of demand side schedules, and illegal market manipulation. Such attacks can
disrupt system operations, causing power shortages, loss of trust, and negative
economic impacts. The potential attacks targeting the communication network
are distributed DoS (DDoS) attacks, FDIAs, data confidentiality attacks, and
physical attacks [Cle08], [Esm+13].

Table 1.1provides an overview of the various cyber and physical attacks
targeting the AMI systems, including the smart meter and the communication
network.
Electricity theft is a significant security challenge for smart meters. This threat is
primarily caused by meter manipulation and FDIA, enabling malicious attackers
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Table 1.1: Cyber and physical attacks targeting the AMI
Attack Target

Smart Meter Communication Network

Physical Attacks - Meter Manipulation
- Energy Fraud Attack

- Physical Attack

Cyber Attacks
Availability - Denial of Service Attack (DoS) - Distributed Denial of Service Attack

Integrity - False Data Injection Attack (FDIA) - False Data Injection Attack (FDIA)

Confidentiality - Man-in-the-middle Attack
- Authentication Attack

- Wifi / Zigbee Attack
- Data Confidentiality Attack

to modify consumption measurements obtained through smart meters. FDIAs
can corrupt real-time data, including frequency, in any smart grid system. FDIAs,
which involve injecting false signals, typically follow predefined attack patterns
and are usually targeted at the metering system and control channels of smart
grids.

1.2.4 Energy Markets

The electricity supply industry underwent restructuring to introduce market
economy principles and promote social benefits through free competition. This
change led to revised roles for electricity market participants. Deregulation
processes in various countries involved separating electricity generation and
retail from the natural monopoly of transmission and distribution and creating
wholesale and retail electricity markets. Deregulation brought about a more
efficient power market that facilitated power exchange between countries and
increased supply security, while also ensuring reasonable electricity prices and
optimal utilization of production resources and capacities. With the expansion
of power transmission and generation capacity, cross-border power transmission
has become more prevalent, resulting in a dynamic market where power can be
more easily bought and sold across regions and countries [Sæt19].

Nord Pool is a collaborative electric power exchange market in the Nordic
region, where electricity is purchased and sold at a price that reflects the balance
of supply and demand, as is typical in other markets [NVE10]. The Nordic
Power Market contains different price zones. The electricity prices in each area
signal whether there is a surplus or shortage of electricity in the market, thereby
providing correct price signals to producers and consumers. Consumers utilizing
the power grid are charged for both the energy they receive and their use of
the grid. The electricity bill usually includes two parts: the cost of the energy
delivered and the grid rental fee. The cost of the energy delivered is calculated
by multiplying the total amount of energy purchased from the supplier in the
billing cycle by the market spot price. The local network company charges the
grid rental fee, which covers all expenses associated with energy transfer and
government taxes, and is determined by the utility tariff. In Norway, the typical
electricity bill for residential buildings is approximately allocated as follows: 45%
for energy usage and 55% for the grid rental fee [NVE10].

Nordpool operates day-ahead and intraday markets and manages the bidding
process for these markets [Nora]. The primary platform for power trading is the
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day-ahead market, where hourly spot prices are established at 12:00 CET for the
following day after all buyers and sellers have submitted their bids to Nord Pool.
These bids indicate the participants’ hourly willingness to buy or sell a specific
amount of power. The day-ahead spot prices are then determined at market
equilibrium by the operator of the market, taking into account the availability
of transmission capacity and the submitted bids [Nor13]. Additionally, the
intraday market complements the day-ahead market and assists in maintaining
the balance between supply and demand [Norb].

All consumers are responsible for paying a grid rent to the local utility
company in addition to the cost of the energy they receive. The utility
tariff, which contains the expenses associated with operating, maintaining, and
developing the grid and government taxes, determines this fee. The amount a
producer must pay to feed energy into the grid at a specific location is determined
by the Feed-in Utility Tariff (FiUT). The FiUT’s design varies based on the grid
level to which the producer is connected. For example, the tariff structure differs
between the distribution and regional power grid [Liu+17].

1.2.4.1 Local Energy Market

In a conventional power grid, the electricity produced by generators in a
centralized power generation system is transmitted to consumers through
transmission and distribution systems. In the centralized system, power is
produced by several bulk generating units and transmitted to households, and
industrial and commercial consumers [Li+19]. As the level of distributed energy
resources (DERs) integration on the consumer side increases, the centralized
power generation system has been complemented by distributed power generation.
In order to achieve a low-carbon energy transition, it is crucial to increase the
production of renewable energy. This means it is necessary to find new methods
of compensation for those who generate energy at home, called prosumers. This is
particularly important given the growing number of distributed energy resources
(DERs), which could have a significant impact on the energy market. To support
the increase of renewable energy at the residential level, new market approaches
are required to establish fair prices and decentralize and make the energy market
and infrastructure more flexible. It is imperative to establish local energy markets
where renewable energy can be traded directly between producers and consumers
without intermediaries [Li+19].

The current power market restricts consumers from choosing their electricity
supplier and limits prosumers from utilizing their DERs or feeding energy into
the distribution grid. Consequently, prosumers generally strive for high levels
of self-sufficiency and self-consumption within their households but may still
need to procure from the wholesale market. Prosumers’ involvement in the
market creates the opportunity for a new community-based market to leverage
the potential of prosumers and their installed DERs. Local energy communities
can trade energy in two ways: by an intermediate of a global market operator,
or in a full peer-to-peer (P2P) setting [Sot+21].
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Figure 1.3: P2P energy trading model.

Full P2P market: Figure 1.3 shows a P2P energy trading model that
encourages multi-directional trading within a local area. Through P2P
collaboration within a local market, prosumers and consumers can share their
generation and consumption at internal prices before trading with a retailer to
balance any remaining electricity deficit or surplus. Typically, the local pricing
scheme for P2P energy trading is established between the feed-in grid price
and the price of grid electricity, providing benefits for all local participants. In
P2P energy trading, local prosumers have more flexibility in trading energy by
exchanging surplus energy from multiple distributed energy resources (DERs)
between themselves. This flexibility could increase the prosumers’ financial
welfare and result in significant cost savings. When prosumers generate their
consumption energy locally, power flow over long distances can be reduced, and
transformers can be replaced with smaller and cheaper equipment. Thus, local
energy generation can result in major cost savings for the system.

Community-based market: In general, communities consist of members
who share similar interests and objectives. Within a community-based P2P
market, a community manager is responsible for coordinating the trading
activities of community members. The market’s design is founded on a distributed
negotiation process between the community manager and members. The manager
acts as a mediator between the community and the broader power system.

10



Background

The literature contains a significant amount of research on the topic of
energy trading between energy companies and prosumers. The energy market is
undergoing significant changes due to the increasing number of DERs and energy
prosumers. Sousa et al. [Sou+19] conducted a thorough assessment of P2P and
community-based markets, analyzing the opportunities and challenges associated
with these markets. Zhang et al. [Zha+18a] argue that P2P energy trading can
improve the local balance between energy generation and consumption because of
greater variety of energy generators. Furthermore, P2P energy trading supports
the decentralization of the energy market [Men+18].

1.2.4.2 Security of Local Energy Trading Markets

Besides the benefits of local P2P energy trading as outlined in the previous
section, a key challenge is ensuring the security of the market. In order to ensure
the security of local P2P energy trading, it is essential to address potential
challenges and implement security measures from the outset. Without such
measures, the market may become vulnerable to a range of insider and outsider
attackers who could cause damage, disrupt trading, or manipulate the system
for their benefit. It is, therefore, crucial to consider security as an integral part
of the design process and to implement a range of measures that protect against
threats and ensure the reliability and integrity of the market.

It is crucial to maintain the integrity of the data to ensure the security of
an energy trading market [WL13]. False data injection (FDI) is a common
technique used to compromise the integrity of energy markets. FDI attacks
(FDIAs) typically involve deceptive actions that seek to disrupt the consistency
of the power grid or manipulate output data from power equipment for personal
gain. FDIAs can have a significant impact on the physical power system and
its economic value. Such attacks can be targeted at the power distribution
system in the smart grid, where the attacker seeks out optimal energy flow routes
through nodes connected to energy production, distribution, or consumption.
The distribution system employs several measurement tools, such as smart
meters, smart relays, and voltage control regulators, to differentiate between
nodes. These nodes communicate and share information to ensure proper
system operation. The attacker uses energy-deception tactics on different nodes
by injecting malicious energy information, response messages, or requests to
manipulate the system. Such manipulation creates an imbalanced distributed
power system based on false supply or demand, resulting in increased costs for
distributed energy. The FDI attack also affects the energy market, with smart
meters and AMI calculating energy settlement prices [Hab+23].

Extensive research is being focused on investigating the design and defence
measures of FDIAs since Liu et al. suggested that attackers could utilize FDIAs
against state estimation to avoid being detected by residual-based bad data
detection methods [Liu+14]. Liang et al. [Lia+16] conducted a comprehensive
review of construction techniques for FDIAs. Meanwhile, several approaches
using statistical and probabilistic techniques have been proposed to defend
against FDIAs, such as Kalman filter [Man+14] and sparse optimization [Liu+14].
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However, these techniques rely on information on state of the system operation
and distributions of measurement data, and the detection of FDIAs will become
ineffective once those prerequisites change. Due to the rapid development
of advanced metering infrastructure, which collects a large amount of data,
machine learning and data-driven techniques are now widely used in power
system operations. This is because they possess the capability to extract valuable
information and can be easily extended to different applications [ZWC20].

Several machine learning techniques have been utilized to detect FDIAs in
smart power grids. The most common approach involves using supervised
learning classifiers to identify false data [YTH16], [Oza+15], [FS17], and
[Gan+19]. These techniques leverage historical data to reflect the statistical
characteristics of the power system and enable the training model to make
better decisions if redundant power system measurements are available. Training
data may include class labels for normal and tampered data, and the model
uses this data to predict whether a new observation is false data or normal
data. In the literature, supervised machine learning algorithms, such as support
vector machine (SVM) [Oza+15] and [ZWX18], artificial neural network (ANN)
[FS17], [ref48], and [XJL19], and k-nearest neighbor (KNN) [YTH16], have been
utilized to detect FDIAs. Supervised learning techniques have a disadvantage
in that they require a large amount of labeled data, which can be difficult to
obtain. To address this issue, semi-supervised learning techniques have been
developed, which make use of partially labeled samples. This approach aims to
label unlabeled data points by leveraging information from a limited number
of labeled data points. Semi-supervised algorithms have also been utilized in
[Oza+15] and [FS17].

1.2.5 Renewable Energy Communities

As defined in the recast of the European Renewable Energy Directive (RED
II) [Par+18], a renewable energy community (REC) is a legal association that
generates, shares, and manages cost-effective renewable energy autonomously,
decreasing carbon emissions. The members of a REC can be individuals, e.g.,
people who live in the same neighborhood or building, or any public or private
entity that intends to build a REC. The establishment of more renewable energy
communities can increase both the share of renewable energy and flexibility in
electricity supply and electricity systems, respectively. According to the reviews
of Lode et al. [Lod+22] and Bauwens et al. [Bau+22], the topic of REC has
achieved great attention from REC developers and the research community.
Although the RED II supports a framework to develop RECs, there are still
challenges to an extensive uptake of RECs [Hoi+21]. Ines et al. [Inê+20]
compared the local regulations of nine different European countries. They
showed that the first challenge in developing RECs is to overcome the obstacles
of local regulations for the purpose of benefiting the advantages provided by
the legitimate framework at the EU level. In addition to the regulation issue,
another challenge is understanding a citizen’s incentive to participate in a REC.
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Conradie et al. [Con+21] showed that some of the motivators could be financial
benefits, connection with RESs, and environmental impact.

1.2.5.1 Renewable Energy Sharing in Multi-Unit Buildings

The use of renewable energy sources has been considered as a practical way to
supply some of the energy demand in buildings, particularly in urban areas,
as they can provide flexibility in electricity systems and increase the share of
renewable energy. While solar PV panels have become a popular solution for
detached houses, their implementation in multi-unit buildings has been relatively
limited [CBE17]. Despite the widespread adoption of distributed renewable
energy sources (DRESs) in residential settings, the lack of a legal framework
hinders the installation of PV panels and battery energy storage systems (BESSs)
in buildings with several apartment units. The main reason for the low adoption
of DRES sharing in multi-unit buildings is the absence of regulations that
ensure proper taxation, grid rent, and settlement [Fin+18]. These challenges
highlight the need for more regulatory support to enable the implementation
of renewable energy solutions in buildings, especially in multi-unit dwellings.
Furthermore, incompatible motivations between landlords, tenants, and owner-
occupiers can prevent the deployment of PV panels in multi-unit buildings.
According to [SMD20], barriers for multi-unit owners to not install PV panels are
the challenge of coordination with other parties, the high installation cost, and
the fear of renters of high management fees. Different energy sharing approaches
that can be applied inside buildings have been discussed by the regulatory body,
RME [59]. Equal sharing is one of the approaches studied in the RME proposal.
In an equal sharing solution, all residents receive the same share of energy
produced by shared PV panels in the buildings. The other solution is unequal
sharing, in which residents receive different shares of energy according to, e.g.,
the size of the units, the cost that each resident invests in the shared PV panels,
etc. Dynamic sharing is the third sharing solution in which residents receive
energy based on their consumption at various time slots in a day. This sharing
model attempts to maximize the utilization of the energy produced by PV panels
in buildings.

Given that the units of multi-unit buildings are occupied by different groups
of residents, e.g., tenants and unit owners with different preferences, the process
of sharing energy from shared DRESs between these groups can be unjust and
challenging. For instance, from the perspective of investing in shared DRESs,
some residents could not afford the investment economically, or there might be
a group of residents, such as tenants, who want to enjoy the benefits of shared
DRESs for a short period because long-term investment is not affordable for
them. In this regard, it is necessary to establish policy approaches to confirm
efficient, fair, and equitable allocation and distribution of energy, costs, and
benefits in multi-unit buildings, considering different groups of residents.
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1.2.5.2 Fairness in Renewable Energy Sharing

The current global conditions show an increase in inequality in different parts of
society in terms of environment, economy, and society. A wide range of energy
research is currently addressing renewables, technologies, distributed sources,
and how to achieve economic benefits for different stakeholders. However, the
"fairness" of those systems has received much less attention. Therefore, in the
energy field, more attention is needed to design systems that are "fair" for
different groups of stakeholders. The issue of fairness in energy systems has
been interpreted from different perspectives, such as sharing of benefits, energy
democracy, energy vulnerability, or public acceptance, in the literature.

Perlaviciute et al. [60] discussed that the various motives for social acceptance,
of which fairness is one, should be considered when designing a project from
scratch and during the implementation stage. One study [RSM22] shows that
if energy is transparently and equitably shared in a sharing method, then the
method is fair. Other studies present different interpretations [Per+21], [Jaf+20],
and [Lov+20]. According to [Per+21], fairness is associated with the willingness-
to-pay of a prosumer, equal satisfaction is another interpretation of fairness that
is supported by Jafari et al. [Jaf+20], and Lovati et al. [Lov+20] proposed a
peer-to-peer (P2P) energy trading model in which fairness has been achieved
by transparency. Some works present different methods to assess fairness in the
context of energy systems. For example, the standard deviation and variance
are famous indices to quantify fairness [65]. Evelyn et al. proposed fairness
ratios based on two factors of equality and equity to assess the fairness of
the distribution of reliability between end-users in power systems. Long et al.
[LZW19] proposed several indexes, including the equality index and participation
willingness index, to evaluate their proposed P2P energy trading mechanism,
while Chakraborty et al. [CBK20] used the Nash social welfare index for the
same purpose. According to the literature, a common framework for evaluating
fairness and justice in energy-sharing solutions is missing. Energy justice can be
used as an evaluation framework to evaluate fairness in energy sharing models
based on its three main principles that are studied in the following section.

1.2.5.3 Energy Justice

Energy justice is crucial to our global efforts to address climate change and
transition to sustainable energy systems. It is an essential concept that
helps ensure that energy systems are equitable and just, providing access to
affordable and reliable energy to all members of society while accounting for the
environmental, economic, and social impacts of producing and using energy.

As a decision-making tool, energy justice empowers stakeholders such as
consumers and producers to make informed choices grounded in fairness and
equity considerations. By accounting for the distribution of costs and benefits
associated with energy services, energy justice helps ensure that the burdens and
benefits of energy production and consumption are equitably shared across society.
This is particularly important as we transition to cleaner, more sustainable energy
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systems, as it can help prevent the creation of new forms of energy injustice that
disproportionately affect vulnerable and marginalized communities.

In recent years, scholars have worked to develop a shared understanding
of energy justice that encompasses both the fair distribution of energy-related
costs and benefits and equitable decision-making processes [SD15]. By doing
so, they have sought to promote a more comprehensive understanding of the
issues and challenges associated with energy justice and to provide a framework
for addressing these challenges in a just and equitable manner. In general,
energy justice represents a critical step towards creating a more sustainable,
equitable, and just energy system that benefits all members of society. Energy
justice integrates three distinct but interrelated principles: distributive justice,
procedural justice, and recognition justice [McC+13]. Each principle addresses
a unique aspect of justice that complements the others [McC+13].

Recognition justice ensures equal access to opportunities and resources in
energy systems for all stakeholders, especially vulnerable groups. The unique
needs and challenges of different stakeholder groups must be recognized and
addressed to promote recognition justice in energy-sharing models. This may
involve implementing targeted policies and programs to increase access to energy-
efficient technologies for low-income households and ensure tenants have equal
access to renewable energy technologies. Prioritizing recognition justice in
designing and implementing energy-sharing models can lead to a more just and
sustainable energy future for all.

Distributive justice focuses on ensuring a fair and balanced distribution
of benefits and risks amongst stakeholders in energy systems. This means
considering costs, profit, the deployment of DRESs, and the energy generated by
shared Photovoltaic (PV) panels and assessing how these are distributed among
all parties involved. This principle emphasizes the importance of fairness and
equity in energy systems, and calls for a comprehensive analysis of the allocation
of resources and benefits to ensure that everyone can reap the rewards of a
sustainable energy future.

Procedural justice emphasizes the need for all stakeholders affected by
energy systems to have equitable participation in decision-making. When
designing energy-sharing models for multi-unit buildings, it is crucial to prioritize
the involvement of residents using transparent procedures. By promoting
transparency and involving all relevant parties in the decision-making process,
we can create sustainable and fair energy systems that meet the needs of all
involved.

1.3 Research Objectives

Generally, this thesis targets two main objectives. The first objective focuses on
securing energy trading markets in the smart grid, while the second one mainly
targets energy sharing in multi-unit buildings.

Objective I. Securing energy trading markets in local area in the smart
grids. As stated before, a key challenge is ensuring the security of energy trading
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markets that should be taken into consideration as a part of the original design.
Cyber-security in energy trading markets is important because a successful attack
can disrupt energy demand and supply, steal energy, and cause equipment, e.g.,
substation components, damage. We mentioned that data integrity preservation
is crucial to guarantee the security of an energy trading market. There are
different cyber and physical attacks targeting the integrity loss of energy trading
markets of which FDIAs are the most common ones. Precisely, cyber attacks
target digital systems and data, while physical attacks involve tangible harm to
people or physical infrastructure. Various methods, such as physical protection
and cyber-oriented approaches, have been used to mitigate such attacks. In
this dissertation, we aim to, first, experimentally explore the possible ways of
attacks and effects of FDIAs in local P2P energy trading markets, and then
utilize data-driven ML methods, which are powerful tools in identifying potential
threats, to detect the FDIAs.

Objective II. Effective and fair renewable energy sharing in multi-unit
buildings in the smart grids. As previously discussed, DRESs solutions for multi-
unit buildings have been relatively limited due to the absence of regulations
that guarantee electricity tax, grid rent, and settlements are in line. In this
dissertation, we aim to investigate the effects of shared DRESs, including PV
panels and BESSs, in multi-unit buildings. There are several challenges with
developing shared DRESs for multi-unit buildings. One of the main challenges
is related to the different preferences of residents, which makes the process of
energy sharing from shared DRESs unjust for some groups of residents. In
this regard, the other goal of this thesis is to develop an energy-sharing model
that enables the efficient and fair distribution of energy, costs, and benefits in
multi-unit buildings considering different groups of residents.

1.4 Research Questions

To meet the research objectives of this dissertation, we aim to respond the
following research questions:

RQ1: how to address the challenge of compromising the integrity of local
energy trading markets in the smart grid caused by FDIAs?

This question is an attempt toward Objective I to ensure the security of
energy trading markets, specifically local P2P energy trading markets. In this
regard, an initial step is to find the possible ways to attack an energy trading
market and then explore the effects of the attacks. To this end, we need to study
the following sub-questions:

• what are the situations in which a P2P energy trading market can be
attacked?

• what kind of new cyber-attacks in P2P energy trading markets can be
imagined?

RQ2: how to defend against cyber-security threats in the smart grid?
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This question complements RQ1 to achieve Objective I. After finding possible
ways to attack an energy trading market, a proper defense is needed. There are
various techniques for defense strategies against cyber-attacks, for example,
FDIAs. The countermeasures of FDIAs can be classified into prevention-
based and detection-based methods. Prevention-based methods can help to
harden a system against attack; detection-based methods focus on detecting and
remediating threats that have breached the system. However, prevention-based
methods can manage a potential security breaches, it is not always effective.
Integrating detection-based methods to security strategy is becoming crucial
to protect against modern cyber-attacks, such as FDIAs. By detecting signs
that shows that a breach has happened, a quick response and remediation step
can take place to avoid the spread of both known and unknown attacks. Today,
ML-based techniques are performed as a good solution for efficiently detecting
cyber-attacks. ML-based methods are able to extract valuable information from
data to detect abnormal patterns. To find a proper defence solution in an energy
trading market we need to answer the following sub-questions:

• what kind of measures can be used to defend against the identified kinds
of attacks in local P2P energy trading markets?

• how can machine learning be applied to defend against the attacker both
considering existing approaches and identifying the need for new solution?

RQ3: how to address renewable energy sharing in buildings in the smart
grid related to the effects of developing DRESs and sharing energy generated by
DRESs in multi-unit buildings?

This question relates to Objective II to study renewable energy sharing in
multi-unit buildings in the smart grid. As we mentioned before, PV panels
are a settled and approved solution for detached houses, while PV solutions
for multi-unit buildings have been relatively limited. In this thesis, we aim to
show the benefits that residents of multi-unit buildings can achieve by using and
sharing energy generated from shared DRESs, such as PV panels and BESSs, in
the buildings. In this regard, we need to answer the following sub-questions:

RQ4: how to address fairness and justice in energy sharing in the smart
grid?

Along with RQ3, answering RQ4 helps us to achieve Objective II. The main
challenge in sharing DRESs in multi-unit buildings is related to fairness and
justice. This means that energy from shared DRESs should be shared fairly
among different groups of residents of the buildings. First, we need to know
what fairness could be in this situation, and then how to achieve fairness in
energy sharing in multi-unit buildings. We study the benefits of developing
DRESs and fairly sharing the DRESs in multi-unit-buildings by considering
how to define fairness in renewable energy sharing and how to apply justice to
renewable energy sharing in multi-unit buildings to achieve fair energy sharing.

The research questions solved by each paper in this dissertation are
summarized in Table 1.2.
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Table 1.2: Research questions solved in this dissertation

Paper I RQ1
Paper II RQ1, RQ2
Paper III RQ3, RQ4

1.5 Solving Methodologies

1.5.1 Game Theory

Game theory has gained widespread recognition as a valuable tool in various
fields, including the domain of smart grids. This section presents some key
concepts associated with game theory, including the types and structure of
games and the Nash equilibrium. Additionally, it covers different categories of
games, such as non-cooperative and cooperative games. Game theory offers
a framework to analyze and describe strategic situations by investigating the
stakeholders’ interactions and decisions.

Table 1.3: The payoffs of the prisoner’s dilemma

Prisoner 1 confesses Prisoner 1 remains silent
Prisoner 2 confesses 5, 5 1, 9

Prisoner 2 remains silent 9, 1 2, 2

In game theory, a game is a situation where two or more individuals, known
as players, have to make decisions that will affect the outcome of the game.
Each player is provided with a range of potential actions or strategies that they
can choose from, and the payoffs or outcomes associated with each possible
combination of strategies determine the final outcome of the game. The payoffs
represent the players’ preferences or utility functions, which are mathematical
representations of how much each player values the possible outcomes of the
game. For example, in a simple two-player game, one player may prefer to win
with a high score, while the other may prefer to win with a low score. These
preferences are typically represented as numerical values, and the players aim
to maximize their payoff by choosing the best possible strategy. Payoffs are
essential in game theory, as they allow us to model and analyze the strategic
interactions between players.

To better understanding the structure of games, we consider a simple example
of the prisoner’s dilemma, which is a classic game in game theory. In this game,
two criminals (players) are arrested and interrogated separately. They are each
given the opportunity to confess and betray the other criminal or remain silent
(actions). If both remain silent, they will each receive a moderate sentence of
two years in jail. If both confess, they will both receive a severe sentence of
five years in jail. However, if one confesses and the other remains silent, the
confessor will receive a sentence of one year in jail, while the one who remained
silent will receive a severe sentence of nine years. The payoffs for each outcome
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are the years of prison sentences that are represented in Table 1.3.
To define the best strategy for the players, we need to introduce Nash

equilibrium. Nash equilibrium is a fundamental concept in the game theory
that refers to a state in which no player can increase their payoff by unilaterally
changing their strategy, given the strategies of the other players. In other words,
it is a stable outcome of the game, where each player is making the best decision
they can, given what the other players are doing. To find the Nash equilibrium
in the prisoner’s dilemma game, we need to look for a combination of strategies
where neither player can improve their payoff by changing their strategy, given
the other player’s strategy. In this case, the Nash equilibrium is (confess, confess).

In game theory, games can be categorized into different types based on
their characteristics and assumptions. Some of the most commonly studied
game types are cooperative games, non-cooperative games, and Stackelberg
games. A Non-cooperative game involves players making decisions independently
without requiring formal agreement or coordination. The Prisoner’s Dilemma
is a famous example of a non-cooperative game where two individuals must
choose between cooperating or defecting. A cooperative game involve players
being able to coordinate their decisions and create binding agreements. The
distinguishing feature of cooperative games is the formation of a coalition where
players collaborate to achieve a shared goal. In a Stackelberg game, one player
takes the lead and moves first, while the other follows and moves second. The
leader has an advantage as they know the follower’s strategy and can use this
information to make their move. This type of game is often used to model
situations where one player has more power or information than the other.

1.5.1.1 Application of Game Theory in the Smart Grid

The smart grid involves various stakeholders, including consumers, prosumers,
suppliers, and operators, whose interactions are crucial for maintaining the grid’s
stable operation. As a result, game theory has been utilized to examine the
interactions between these entities. The use of Game Theory in energy trading
has shown potential for designing pricing strategies, with both cooperative and
non-cooperative game concepts being applicable from various perspectives. The
cooperative game approach guarantees that each prosumer can earn some profit
by participating in the game, rather than acting alone. A cooperative game
solution is proposed in [MMM20] to distribute benefits fairly among community
members. In a non-cooperative game, each prosumer aims to maximize their
individual profit, and eventually, an equilibrium is reached among all prosumers.
In [Cui+20]and [WH16], a non-cooperative game was employed to represent the
interactions between buyers and sellers in an energy trading problem.

1.5.2 Optimization Theory

An optimization problem is a mathematical problem that involves finding the
best solution from all possible solutions within a given set of constraints. The
components of an optimization problem include:
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1. Decision variables: the decision variables, which need to be determined
before solving the optimization problem, are the variables that can be
manipulated and adjusted to obtain the best possible solution.

2. Objective function: The objective function defines the quantity to be
optimized. It can be a function of one or more variables, and the goal is
to maximize or minimize this function.

3. Constraints: constraints are limitations or restrictions that must be satisfied
for the solution to be considered feasible. They can be expressed as
equations or inequalities, and they limit the possible values that the
decision variables can take.

A typical optimization problem with three constraints can be expressed
generally as follows:

max
x1,...,xn

f(x)

Subject to g1(x) ≤ b1

g2(x) ≥ b2

h1(x) = c1

(1.1)

In (1.1), x is the decision variable, f is the objective function to be maximized,
g1 and g2 are inequality constraints, h1 is equality constraint, and b1, b2, and c1
are constants. Suppose a variable x∗ satisfies the constraints of Problem (1.1)
and has the highest objective value compared to all other choices. In that case,
x∗ is considered optimal or a solution of Problem (1.1). This means that for all
feasible solutions x f(x) ≤ f(x∗).

Optimization theory seeks to develop mathematical models and algorithms to
solve optimization problems, including linear and nonlinear programming, convex
optimization, etc. In this context, we focus on discussing a group of optimization
theories that are utilized for resolving convex optimization problems. These types
of problems are considered more well-defined, and thus their solution methodology
is relatively established. However, in cases where the optimization problem is
non-convex, it may be necessary to utilize transformations or approximations to
transform it into a convex optimization problem [BV04].

A convex optimization problem involves optimizing a convex objective
function subject to constraints that are also convex functions. The convexity of
the objective function depends on whether it is a minimization or maximization
problem. For minimization problems, the objective function must be convex,
while for maximization problems, it must be concave. Linear functions are a
specific type of convex function, which means that linear programming problems
are convex optimization problems. When both the objective function and the
feasible region are convex, there exists only one optimal solution that is globally
optimal. This means that any other solution that may exist will be suboptimal,
which makes convex optimization problems more attractive than non-convex
problems since it ensures that the obtained solution is the best possible one.
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1.5.2.1 Application of Optimization Theory in the Smart Grid

An optimization framework that enables the equitable allocation of DERs among
multiple consumers was utilized in [Fle+18]. The proposed approach in [Fle+18]
combines optimization and game theoretical models to achieve an optimal
solution. An optimization model is proposed in [Jin+20] that assessed P2P
multi-energy trading between residential and commercial prosumers while taking
into account integrated demand-side management, including demand response
and three types of storage. The optimization model aimed to find optimal
trading prices for both electricity and heating through a Nash-type formulation
that ensured fair benefit allocation between two prosumers.

1.5.3 Anomaly Detection

Anomaly detection, also known as outlier detection, involves detecting infrequent
items, events, or observations that deviate significantly from the majority of the
data, arousing suspicion [Flo18]. In general, anomalous data is often associated
with some issue or uncommon occurrence. The energy trading process in a smart
grid is vulnerable to a wide range of threats, making it crucial to prioritize
its security. To this end, researchers have undertaken remarkable efforts to
identify and mitigate attacks, such as false data injection attacks (FDIAs),
in the electric power grid [CJM15], [BZ14], and [AMT15]. Various methods
have been explored, including physical protection approaches and cyber-oriented
approaches. Physical protection approaches pose challenges regarding the cost
and feasibility of implementing protection schemes for measurement devices.
The costs associated with implementing physical protection measures can be
prohibitively high, and smaller power grids may not have the necessary resources
or infrastructure to support such measures. Additionally, the feasibility of
implementing such measures may be limited by the physical layout of the grid
and environmental factors [Ahm+19].

In recent years, data-driven machine learning (ML) methods have been
utilized for cyber-physical security analysis by predicting and identifying threats
and anomalies in a system [Esm+14]. Since physical sensors like phasor
measurement units can have flaws that result in bad or missing data, detecting
and identifying anomalies in power grid data is essential for accurate performance
analysis. By leveraging ML techniques, it is possible to improve the accuracy
of performance analysis and mitigate the impact of physical sensor flaws on
the analysis results. Effective security measures are critical for the reliable
operation of smart grids, and using ML-based techniques can be a powerful
tool in identifying and mitigating potential threats. In the following sections,
we introduce the basics of machine learning, second we study machine leaning
methods for attack detection. In the end, we study anomaly detection in the
smart grid.
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1.5.3.1 Introduction on Machine Learning

Machine learning is a vast and multidisciplinary field that encompasses multiple
areas of study, including computer science, probability and statistics, psychology,
and brain science. The primary objective of machine learning is to imitate
human learning activities using computers effectively. By doing so, machines
can automatically discover and acquire knowledge. Machine learning approaches
can be categorized into three primary groups based on the types of feedback
they receive:

• Supervised learning: supervised learning involves feeding training samples
with known category labels into classification or regression models during
the training phase [IBM]. Some of the typical supervised learning
techniques include support vector machine (SVM), decision tree (DT),
artificial neural network (ANN), etc. One of the key advantages of
supervised learning is that it can achieve high accuracy if the training
data is representative and the model is appropriately designed and tuned.
However, it requires labeled data, which can be time-consuming and
expensive to obtain.

• Unsupervised learning: this technique involves inducing models using
training samples that have no corresponding category labels [Mis17].
Examples of unsupervised learning techniques include clustering and auto-
encoder. These techniques can be used to discover hidden patterns,
structures, or relationships in data, which can help to gain insights
and inform decision-making. However, evaluating the performance of
unsupervised learning models can be challenging since there are no
predefined labels to compare the results against.

• Reinforcement learning: reinforcement learning optimizes behavior strate-
gies via trial and error [Bha18]. This learning type differs from the other
two types of techniques mentioned above, as it does not rely on a pre-
existing dataset with labeled examples. Instead, the algorithm learns
through repeated interactions with the environment, receiving feedback in
the form of rewards or penalties based on its actions.

1.5.3.2 Anomaly Detection based on Machine Learning Methods

Figure 1.4 shows a general framework for anomaly detection utilizing machine
learning [RAH18]. The first crucial step is data pre-processing, which
encompasses filtering, data labeling, and feature selection. It is also critical
to understand the data to make suitable design decisions. After selecting the
features, training the model using prior knowledge of the system or data is
necessary. This prior knowledge may take the form of defining a standard
(normal) data profile to identify outliers as anomalies. After training the model,
it can be employed to categorize new data to assess its effectiveness. It is crucial
to incorporate data samples that represent the anomalous state during this step,
regardless of whether they were utilized during the training phase. Choosing
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Figure 1.4: General Anomaly Detection Framework.

appropriate metrics for the application environment is a challenge during the
evaluation phase of this algorithm, as this is necessary to analyze the outcomes
thoroughly.

The performance of attack detection algorithms can be evaluated based on
accuracy, detection (recall), precision, and false negative rates. The accuracy
rate measures the percentage of correctly predicted test samples. Precision
and recall measure the relevance of the output generated by attack detection
algorithms. Precision is calculated as the ratio of correctly classified positive
samples to all samples classified as positive. Recall is calculated as the ratio
of correctly classified positive samples to all correctly classified samples. False
negative rate is the probability that an actual attack will be missed by the test
measures. The computation for accuracy, precision, recall, and false negative
are as follows:

Accuracy = TP + TN

TP + TN + FP + FN

False negative rate = FN

FN + TP

Precision = TP

TP + FP

Recall = TP

TP + FN

(1.2)

where true positive (TP) and true negative (TN) represent the number of correctly
classified attack and normal data, respectively. On the other hand, false positive
(FP) and false negative (FN) represent the number of normal data and attack
data that are classified as attack and normal data, respectively.

Numerous techniques have been employed for detecting anomalies, but this
thesis will concentrate on methods that leverage computational intelligence,
particularly pattern recognition through machine learning. This approach
involves utilizing a known dataset to establish the input/output relationship of
the system, which can subsequently be used to classify an unknown dataset. In
terms of interpretability, here we study several well-known interpretable (DT
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and K-Means), semi-interpretable (SVM), and non-interpretable (Artificial NN)
machine learning classifiers.

DTs are a widely used tool for classification and prediction, characterized
by their structure consisting of nodes, arcs, and leaves. The feature attributes,
which are most informative among the attributes not yet considered in the path
from the root, are labeled on each node. The arcs out of a node are labeled
with feature values for the node’s feature, while each leaf is labeled with a
category or class. A decision tree traverses from the tree’s root to a leaf node
to classify a data point. The leaf node provides the classification of the data
points. Compared to other algorithms, DTs are highly interpretable and easy
to understand, and they need less effort for data preparation in pre-processing.
One limitation of Decision trees is that they are unstable. This means that
small modifications in the data can lead to significant changes in the model’s
predictions. Hence, they may not be well-suited for handling dynamic data that
undergoes changes over time [RAH18].

K-means algorithm is a conventional clustering approach that partitions
data into k clusters, ensuring that data in the same cluster are similar while data
in different clusters have low similarities. The K-means algorithm’s sensitivity
to outliers results in a superior detection performance. These algorithms possess
low complexity and a high detection rate. Their drawback is the need to specify
k, as well as their sensitivity to noise and outlier data points [RAH18].

SVMs are generally considered supervised learning classifiers that rely on
labeled training data to map samples to one of two classes [44]. These SVM
models are considered as binary or two-class linear models. Binary SVMs can
handle nonlinear data by transforming them into a high-dimensional feature
space utilizing the Kernel method. Unsupervised learning is frequently required
in anomaly detection approaches because of the lack of training data. In such
situations, one-class SVMs can be utilized, wherein the "normal" class is the
only class, and anything that deviates from the norm is classified as an anomaly.
The lack of training data is a significant disadvantage of binary SVMs, which is
likewise applicable to multi-class SVMs since they are an extension of binary
SVMs that enable categorizing samples into multiple classes [RAH18].

ANNs simulate the problem-solving capabilities of the biological brain to
enable computational systems to learn in a similar way. Due to their ability
to identify patterns in the input/output relationships of given datasets, neural
networks are promising candidates for anomaly detection systems. Nevertheless,
their inability to handle unseen data is a significant limitation in such applications,
and thus ANNs are rarely utilized in isolation [RAH18].

Black-box anomaly detection models (e.g., ANNs and SVMs) can pose
significant risks in critical applications. Since they do not provide reasons behind
their predictions (i.e., explanations), it diminishes trust into their decision-
making mechanism. Using explainable anomaly detection models that offer clear
indications of why a particular data point is identified as an anomaly can be
effective in increasing trust into the system and avoiding wrong decisions. In
certain applications, providing such explanations can be equally vital as the
detection accuracy. However, deriving explanations from black-box anomaly
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detection models remains a challenging problem due to their complex structure.
Therefore, developing inherently interpretable anomaly detection models is
important. However, the primary challenge lies in achieving a well-balanced
trade-off between the model interpretability and the predictive performance.

1.5.3.3 Anomaly Detection in the Smart Grid

Several machine learning-based detection methods have been proposed in the
literature to perform complicated tasks such as detecting FDIAs in the smart
grid. The frequent use of SVM in detecting FDIAs is mainly related to its
simplicity, as demonstrated in several studies [Esm+14], [Jin+16], and [Wan+19].
However, the selection of the kernel function and the high memory and CPU
time requirements during training are the primary limitations of this algorithm.
Studies such as [Wan+17], [KPJ18], and [El +17] have utilized Feedforward neural
networks (FNNs) for FDIA detection, while Recurrent neural networks (RNN),
which mimic the dynamical behavior of smart grids through internal memory and
feedback loops, have been proposed in [AKE18] and [Aya+18]. A Deep neural
network (DNN) has been employed in [VR17] to improve the precision of FDIA
detection by incorporating more hidden layers. Additionally, Convolutional
neural network (CNN), a special type of DNN that extracts different features
in samples, has shown promising results in FDIA detection, as highlighted in
[Wan+19]. Another algorithm used for FDIA detection is Autoencoder (AE),
a deep neural network that compresses and expands measurement samples
nonlinearly. The detection in AE is based on the error between the input and the
decoded sample, and an alarm is raised when the error exceeds a certain level,
as demonstrated in [Zha+18b]. However, a significant drawback of using the
backpropagation method for training neural networks is the extensive amount of
time required. Other supervised learning techniques used for detecting FDIA in
smart grids are margin classifier (MC), a generalized form of SVM with more
accurate performance, as shown in [Wan+17], and structure learning (SL) [SJ15],
which is a prediction method based on the covariance of the samples’ structure
rather than their actual values. However, the main drawbacks of supervised
learning approaches are the requirement for extensive learning and labeled data.

Studies such as [Zan+17] and [VV17] have applied K-means clustering in
detecting FDIA. The main advantage of this method is its simplicity; however,
it is highly sensitive to noise in the samples, which is a significant drawback.
An extended version of K-means clustering is Fuzzy clustering (FC), or soft
clustering, where a sample can belong to multiple clusters with varying degrees
of membership. This results in a more detailed clustering process where clusters
can overlap rather than having clearly defined boundaries. FDIA detection
using FC was demonstrated in [Wan+19] and [VV17], where it yielded a slightly
improved detection accuracy compared to the K-means clustering method.The
above approaches generally suffer from a trade-off between transparency, speed,
and accuracy, limiting their ability to achieve optimal results. For instance,
some approaches that show high accuracy, such as DNNs and RNNs, suffer from
low transparency owing to their inherent complexity. Conversely, transparent
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methods such as DTs perform poorly in processing large datasets, resulting in
slow speed.

1.6 Contributions of the Included Papers

This dissertation includes three papers (papers I-III) which are briefly presented
in this section.

1.6.1 Paper I

S. Mohammadi, F. Eliassen, and Y. Zhang, "Effects of false data injection
attacks on a local P2P energy trading market with prosumers," 2020 IEEE
PES Innovative Smart Grid Technologies Europe (ISGT-Europe), The Hague,
Netherlands, 2020, pp. 31-35.

In Section 1.5.2, we mentioned that a key challenge in local P2P energy
trading is ensuring the security of the market. We also observed that FDIAs
are one of the most popular approaches to attacking an energy trading market.
There are some works that studied FDIA scenarios in P2P energy trading
markets and possible defense methods [IMO18] and [Liu+14]. However, those
works considered consumers only in energy neighbourhoods. When there are
prosumers, the higher benefits that they gain from trading between themselves
rather than with the grid, encourages consumers to become prosumers. Hence,
it is a challenge for the suppliers. In this case, a malicious supplier may want
to discourage consumers from becoming prosumers. In this regard, attacks can
be orchestrated by a malicious supplier who engages an attacker acting as a
prosumer, to gain more utility. The attacker tries to modify the demands of
prosumers by increasing their energy consumption demand to increase the profit
of the energy supplier and reduce the profit of prosumers. Therefore, it is of
high interest to study the effects of FDIA on P2P energy trading where there
are prosumers and consumers.

In paper I, we study the following research questions: "RQ1.1: what kind of
measures can be used to defend against the identified kinds of attacks in local P2P
energy trading markets?" and "RQ1.2: what kind of known cyber-attacks can be
applied in P2P energy trading markets?". Therefore, in the paper, we explored
the vulnerability of local P2P energy trading to FDIAs. A threat scenario, in
which FDIAs are executed, in a P2P energy trading market including prosumers
is proposed, and the resulting benefits for the attacker is investigated. We chose
an exploratory approach to quantify threats. In particular, we investigated a
game theoretic approach to P2P trading. We analyzed the effects of FDIAs,
when there are different numbers of attacked prosumers, on the price and revenue
of prosumers and the attacker in different time slots, and compared them with
the normal situation (without attack).
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1.6.2 Paper II

S. Mohammadi, F. Eliassen, Y. Zhang, and H. -A. Jacobsen, "Detecting False
Data Injection Attacks in Peer to Peer Energy Trading Using Machine Learning,"
in IEEE Transactions on Dependable and Secure Computing, vol. 19, no. 5, pp.
3417-3431, 1 Sept.-Oct. 2022.

In Paper I, we assumed the attack occurs before the game starts to reap
benefits for the energy sellers (e.g., suppliers) by causing a reduction in incentives
of becoming or remaining energy selling prosumers. We observed from the
experiments that the profits of prosumers decreased after the FDIAs (when the
prosumers’ demand was increased by the attacker before the game started). This
effect (reduction in prosumers’ profits) could possibly reduce the consumers’
motivation to become prosumers. We concluded that the attacker could not gain
energy for free by only modifying the prosumers’ demand at the beginning of the
game or before the game started. This is due to the iterative nature of the game
where prosumers will update their demands based on the new price in subsequent
iterations. Subsequently, the game will converge with supply/demand balance
and there will be no extra energy for the attacker.

Extending Paper I, in Paper II, we studied how energy could be gained for
free through FDIA in local P2P energy trading scenarios. In this paper we
studied RQ1.1 and RQ1.3 which are as follows: "RQ1.1: what kind of measures
can be used to defend against the identified kinds of attacks in local P2P energy
trading markets?" and "RQ1.3: what kind of new cyber-attacks in P2P energy
trading markets can be imagined?". Accordingly, we developed a novel FDIA
model based on two threat scenarios, in which the attacker tried to gain energy
for free by intruding into the game realizing a P2P energy trading market. We
assumed the FDIA is motivated by the desire to gain free energy and reap
economic benefits for the attacker. Here, the attacker’s goal to gain energy for
free was realized by a novel way of manipulating the trading data with the effect
that, in the end, the supply was greater than the “true” demand. In such a case,
we assumed an attacker can use a “hidden” battery as a measure to prevent grid
imbalance by consuming the resulting surplus energy. The opposite case is of no
interest to the attacker as this would require the “hidden” battery to “supply”
energy (discharge the battery) to prevent imbalance.

The trading game is iterative, and in order for the attacker to gain free energy,
we found that the false data needs to be injected in all iterations. An essential
issue, which was not studied in Paper I, is that the attack should not violate
the convergence criteria of the game. Convergence happens in an iteration when
no agent tries to modify its decision from the previous iteration. Violating the
convergence condition disrupts trading. In Paper II, we referred to this problem
as the convergence issue. We mathematically proved the convergence of the
game given the injection method of the false data showing the effectiveness of
our FDIA model. In this paper, we also studied the following research questions:
"RQ2.1: what kind of measures can be used to defend against the identified kinds
of attacks in local P2P energy trading markets?" and "RQ2.2: how can machine
learning be applied to defend against the attacker both considering existing
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approaches and identifying the need for new solution?". Hence, we introduced a
highly accurate interpretable ML model together with a transparent decision-
making process which rendered the model suitable for attack detection in P2P
energy trading.

1.6.3 Paper III

S. Mohammadi, F. Eliassen, and H. -A. Jacobsen. "Applying Energy Justice
Principles to Renewable Energy Trading and Allocation in Multi-Unit Buildings",
Energies 2023, 16, 1150.

In Section 1.6.1, we mentioned that DRESs have been widely approved at the
residential scale, especially in detached houses, but the lack of a legal framework
prevents the installation of PV panels and BESSs in multi-unit buildings. Recent
studies related to PV panel allocation in multi-unit buildings have focused more
on evaluating the technical performance [GCG21] and analyzing the economic and
technical feasibility of PV panels in microgrids [Qad22] and [WMC22]. However,
shared DRESs, including PV panels and BESSs, in multi-unit buildings have
not been investigated well.

The diversity of residents in multi-unit buildings, including tenants and unit
owners, can make it challenging to share energy from shared DRESs. This
process can be unfair for some residents, as some of them may not be able to
afford the investment or may only want to enjoy the benefits for a short time.
In this regard, in Paper III, we studied the following research questions: "RQ3.1:
what are the effects of developing DRESs for multi-unit buildings" and "RQ3.2:
how energy generated by DRESs can be shared in multi-unit buildings?". We
proposed an energy-sharing model that enabled efficient, fair, and equitable
allocation and distribution of energy, costs, and benefits in multi-unit buildings,
considering different groups of residents.

In Section 1.6.3 we concluded that energy justice provides an effective decision-
making tool that helps stakeholders, e.g., consumers and producers, to make
more rational energy decisions. In general, energy justice addresses the equitable
sharing of energy, costs, and benefits and identifies injustices within energy
systems [SD15] and [Sar17]. The value of energy justice has not been studied
within the concept of energy sharing in multi-unit buildings. Therefore, a set
of steps has to be formulated to enable a fair and just energy-sharing system
in multi-unit buildings where different groups of residents can participate and
gain benefit from the shared DRESs in their building. Applying the principles of
energy justice in energy sharing models removes or reduces barriers to the active
participation of end customers (consumers/prosumers) in the future smart and
decentralized energy grid. Therefore, it is of most interest to analyse how energy
justice’s principles can be applied in the energy trading and allocation processes
to achieve fair energy sharing.

In Paper III, we proposed a new fair energy sharing model (FESM), which
focused on energy allocation and trading inside different multi-unit buildings,
considering energy justice principles. The basis for our definition of FESM was a
network behind the meter in which the shared systems (PV panels and BESSs)
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can be owned by the main owner of a multi-unit building or a group of residents
living in the building. Although FESM and community-based microgrids have
similarities in their configurations (e.g., both rely on centralized renewable
sources), they have an important difference. In community microgrids, shared
DRESs are located in front of the meter that are controlled by utility companies
(i.e., they are controlled in an aggregate manner) that incur extra costs for the
users who use the shared systems (e.g., there will be administrative costs). Since
users of community DRESs do not own DRESs, they are deprived of having
access to any of the tax credits and incentives of DRESs. However, in FESM,
shared DRESs are installed behind the meter and are not controlled by utility
companies; hence, additional costs are eliminated for users. Moreover, users in
FESM can own a portion of DRESs and take advantage of the tax benefits.

After allocating shared DRESs and energy to the residents by the energy
management operator (EMO) of the buildings, energy trading was enabled in
FESM with expected prominent benefits such as cost-savings and carbon footprint
reduction. The EMO of the buildings monitored and controled the trading stage
and computed the trading price. During the energy trading process, the interests
of sellers and buyers were protected, and they were given the opportunity to
determine the amount of energy they want to sell and buy based on certain
factors, such as priority factors, or after seeing the price. The priority factor
was defined as one of the main elements of FESM to retain the fairness and
interests of both buyers and sellers during energy trading. Moreover, in this
paper, we studied research questions RQ4.1 and RQ4.2 as follows: "RQ4.1: how
fairness can be defined in renewable energy sharing" and "RQ4.2: how can justice
be applied to renewable energy sharing in multi- unit buildings to achieve fair
energy sharing?". Hence, we analyzed justice and fairness in energy allocation
and trading processes according to the main principles of energy justice. These
analyzes helped to understand that justice can be defined differently for each
building according to the building conditions (e.g., resident preferences, types of
residents, etc.). Moreover, the revenue of the shared DRESs’ users living in the
multi-unit buildings were examined under different energy allocation processes.
In addition to fairness and justice, the experimental results showed that our
method increased the sellers’ profit by 59.7–127% and decreased the buyers’
cost by 8–21%, compared to the baseline methods. Moreover, applying the
energy justice principles in the proposed sharing models could act as an efficient
incentive for the residents of the multi-unit buildings to invest in the shared
distributed renewable energy sources.

1.6.4 Main Contributions of the Dissertation

The main contributions of this dissertation can be summarized as follows:

• Studied the security issues in the smart grid focusing on AMI and
its important components including smart meters and communication
networks;
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• Studied local energy trading markets in the smart grid and analysing its
security issues focusing on FDIAs;

• Analysed and experimentally explored the consequences of FDIAs in a
game-theoretic approach to P2P energy trading;

• Proposed two threat scenarios based on a novel false data injection attack
model;

• Presented a solution for how the attacker may gain energy for free under
the game-theoretic approach to P2P energy trading and prevent imbalance
in demand-response caused by a FDIA;

• Proposed a reliable and transparent machine learning model for accurate
and interpretable detection of FDIAs;

• Studied the challenges related to the establishment of renewable energy
communities;

• Studied and explored the challenges of renewable energy sharing in multi-
unit buildings focusing on fairness issues;

• Presented a novel fair energy sharing framework FESM plus two different
applications of it;

• Studied energy justice and its main principles;

• Applied the main principles of energy justice in a systematic way in the
design of energy allocation and trading processes to create justice and
fairness.

1.7 Suggestions for Future Research

In this section, we discuss possible future directions to stimulate more studies
into the extension or exploitation of the introduced methods in this dissertation.
We categorized the ideas based on the researched topics below.

• Privacy-Preserving in using shared DRESs: In Paper III, a fair
energy sharing model is proposed to enable using of shared DRESs in
multi-unit buildings. However, we did not studied privacy issues related
to residents who participate in energy sharing. Privacy concerns are
dependent on the context in which they arise. Individuals have varying
areas of concern, and some privacy issues may prevent data sharing more
than other concerns. In literature, it has been found that the main privacy
issue is that sharing the details of energy consumption data could expose
home life information and intrude upon decision-making, autonomy, and
control [103]. For future research, it is of interest to explore how to achieve
trust among participants and how much information they should share
during energy trading.
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• Energy justice as an interactive tool: In Paper III, we have applied
energy justice principles in the design of energy-sharing processes to
make justice. As a future work, it might be interesting to develop the
proposed framework into an interactive tool for exploring and comparing
the effects of different approaches to energy justice. As an interactive
tool, energy justice can be used to engage stakeholders in discussions and
decision-making processes related to energy policies and projects. This tool
identifies potential energy justice issues, such as the unequal distribution
of energy benefits and burdens and the exclusion of specific communities
from decision-making processes.

• Uncertainty: Another interesting topic that could be studied in the
future is uncertainty. In this thesis, uncertainty can be explored in the
context of cybersecurity issues in P2P energy trading markets, as well as
within PV generation and consumption.

In the context of local energy trading markets, cybersecurity is critical in
ensuring the secure exchange of energy resources and data. Effective risk
management within this context involves the identification, assessment,
and mitigation of potential risks to protect the integrity of the energy
trading ecosystem. A robust cybersecurity framework tailored to these
markets can address uncertainty through various strategies, such as
risk assessment, risk mitigation, incident response, and monitoring and
adaptation. Addressing uncertainties in cybersecurity within local energy
trading markets necessitates a comprehensive strategy that includes
redundancy, resiliency, diversity, and the establishment of a robust
risk management framework. These approaches are essential for local
energy trading markets to effectively manage the constantly evolving and
unpredictable nature of cyber threats. While it is not feasible to eliminate
all uncertainties entirely, adopting a proactive and flexible approach can
substantially enhance the posture and resilience of cybersecurity operating
within these markets, helping them withstand and respond to the challenges
faced by unknown cyber threats.

There are multiple factors that affect solar PV generation, including weather
conditions, location, and the efficiency of the solar panels. When it comes
to weather conditions, events like cloud cover or storms can reduce the
amount of sunlight that can reach the solar panels, which leads to lower
energy production. Additionally, the efficiency of solar panels can fluctuate
based on factors such as temperature and shading. The instability in
solar energy production causes a challenge for grid operators, who must
continually balance supply and demand in real-time. At times, surplus
solar energy can be injected back into the grid, which may cause issues for
grid stability, and necessitates the requirement of flexible backup power
sources. On the consumption side, uncertainty in solar energy demand
patterns can be impacted by several factors, including weather conditions,
consumer behavior, and the availability of energy storage technologies. For
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instance, changes in consumer behavior, such as increased use of energy-
efficient appliances or changes in work-from-home policies, can change
overall electricity demand and energy consumption times.

Uncertainties in solar PV generation and consumption can create challenges
for the normal conduct of peer-to-peer (P2P) energy trading. One of the
significant challenges is the difference between the actual demand and
production and the predicted ones. This means that since the trading
amounts of energy consumption and generation is based on predictions
about the future, there will always be inaccuracies compared to the hour
of actual consumption and generation. This problem usually creates
some imbalance that needs to be compensated during the hour of actual
consumption/generation to maintain grid balance.

Uncertainties can happen because of different factors such as weather
conditions, deliberate changes in energy demand, or technical issues.
For example, if a prosumer deliberately overestimates their solar energy
production and sells more energy than they produce, it can create a shortage
of energy for other consumers or the grid, leading to potential reliability
issues. On the other hand, if a consumer deliberately underestimates
their energy consumption and does not purchase enough energy from
the grid or other prosumers, it can lead to potential energy shortages
for themselves and the grid. One possible solution to address these
intentional overestimations/underestimations, which can be categorized as
FDIAs, could be to consider penalties to discourage them. For example,
a penalty could be a higher energy price for the energy sold beyond the
actual production or purchased beyond the actual consumption. However,
these penalties could also affect the benefits of consumers/prosumers. For
example, if a consumer overestimates their solar energy production and
is penalized, it could affect their profits and savings from selling excess
energy.

Therefore, similar to the wholesale market that maintain the grid balance
using the balancing market, a solution for uncertainties in P2P energy
trading markets may be needed to balance the market and for scalability
reasons this may need to be handled locally (e.g., a role for the coordinator
of the energy trading market).
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I

Abstract

In the energy sector, peer-to-peer (P2P) energy trading is a promising
method for the future smart grid. Despite all the benefits, this method
is vulnerable to some malicious attacks, e.g., false data injection attacks
(FDIAs). This paper explores the vulnerability of local P2P energy trading
to FDIAs. Previous works on FDIAs in energy neighborhoods consider
consumers only, or do not consider the effect of including prosumers. We
consider the situation where an attacker tries to modify the participants’
demands to gain some benefits. Through simulations using real datasets,
we demonstrate possible effects of FDIAs on both selling and buying energy
prices in P2P energy trading involving both prosumers and local energy
suppliers. From the simulations, we learn that the best chance for an
attacker to remain undetected is to target a high number of prosumers and
only modify their demand with a small fraction. Moreover, by comparing
the results from the attack scenario with the normal situation, we observe
that an attack generally leads to less favorable energy prices and thus
reduced incentives to become or even remain an energy-selling prosumer.
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I.1 Introduction

Electricity markets are being enabled by new regulations to build the future grid.
Unlike centralized markets, new market models are based on decentralization of
energy resources. Local energy communities can trade energy in two ways: by
an intermediate of a global market operator, or in a peer to peer (P2P) setting.
In P2P energy trading, local prosumers have more flexibility in trading energy
by exchanging surplus energy from multiple distributed energy resources (DERs)
between themselves. This flexibility could increase the prosumers’ financial
welfare and result in significant cost savings for them. When prosumers generate
their consumption energy locally, power flow over long distances can be reduced,
and transformers can be replaced with smaller and cheaper equipment. Thus,
local energy generation can result in major cost savings for the system [Le +20].

Besides the benefits of local P2P energy trading as outlined above, a key
challenge is ensuring the security of the market. This should be addressed as a
part of the original design. If no security measures are taken, it can facilitate the
way for insider and outsider attackers to penetrate the market, or cause faulty
energy trading behaviours.

One of the most popular approaches to attack cyber physical systems is
false data injection (FDI). The concept of FDI attacks (FDIAs) mainly refers
to the deception attacks, which means that the attack aims to take down the
consistency of power grid or to gain more benefits by tampering output data
of power equipment [Zha+19a]. There are several works which studied FDIA
scenarios in P2P energy trading, as well as possible defense methods [Kos+10],
[Liu+14], [GCG21], and [BZ14]. However, those works considered consumers
only in energy neighbourhoods. To the best of our knowledge, there are no
works analysing threat scenarios in P2P energy trading with both prosumers and
consumers. When there are prosumers, the higher benefits that they gain from
trading between themselves rather than with the grid, encourages consumers to
become prosumers [Zha+19b]. Therefore, this is a challenge for the suppliers.
In this case, a malicious supplier may want to discourage consumers to become
prosumers.

We choose an exploratory approach to quantify threats. In particular, we
investigate a game theoretic approach to P2P trading. Game theory in P2P
energy trading can simulate participants´ behaviour and their interactive trading
with each other, and easily incorporate motivation (incentives) and pricing plan
as a part of the game framework development. It can also create trust between
participants within the network, and motivate them to cooperate in a game
situation. Moreover, its potential to merge with some promising signal processing
techniques like machine learning and fuzzy logic makes it useful [Tus+18]. In our
investigation, the behaviour of all trading participants, including their individual
preferences is modelled.

In this paper, a threat scenario, in which FDIAs are executed, in a P2P energy
trading market including prosumers is proposed, and the resulting benefits for the
attacker is investigated. We analyse the effects of FDIAs, when there are different
number of attacked prosumers, on price and revenue of prosumers and attacker
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in different time slots, and compare them with the normal situation (without
attack). We use a real dataset from Austin, Texas for doing the experiments. The
experiments show that all prices and the average utility of prosumers increase
and decrease respectively, by increasing the amount of attacked prosumers’
demands. This leads to reducing the motivation of becoming or even remaining
an energy-selling prosumer. The contributions of this paper are as follows:

• We analyse a threat scenario based on False Data Injection Attacks in a
P2P energy trading model including prosumers.

• The consequences of false data injection attacks in a game-theoretic
approach to P2P energy trading are analysed and experimentally explored.

The rest of the paper is organized as follows. Section 2 describes the system
model. Section 3 details the threat scenario. Section 4 demonstrates the
numerical simulation results followed by the conclusion in Section 5.

I.2 System Model

The trading model that we explore in our work is adapted from [Zha+19b]. In
this model, a community-based P2P market is designed that includes different
market participants such as pure consumers, prosumers (with solar generation),
local suppliers (with their own energy generation from solar farms, wind parks,
or conventional power plants), and one community coordinator. The behaviour
of the participants is modelled as two non-cooperative games.

The market is modeled as a multi-agent system that consists of three types
of agents; prosumer agent (both consumers and prosumers are considered as
prosumers), supplier agent, and coordinator agent. In the game, both suppliers
and prosumers try to maximize their own profit. The coordinator’s job is to
set up two pricing models that include an external pricing model for importing
energy from suppliers to the local community, and an internal pricing model
for the internal trading between local prosumers. In the following, the different
players in the game are briefly described.

Suppliers compete with each other based on supply function equilibrium
as in [JT06]. Let N = 1, ..., N define a set of suppliers. Here, it is assumed
that supplier j ∈ N submits a parameter wj ≥ 0 to the coordinator. This
parameter indicates that an external price pext > 0, supplier j is willing to
supply S(pext, wj) units of power (which is known as the supplier’s bid) given
by:

S(pext, wj) = D − ( wj

pext
) (I.1)

pext = Σj∈M Sj,t

Σj∈M Dj,t
(I.2)

The parameter wj may be understood as the revenue that supplier j is
willing to forgo, because when the price is pext , pextD is the total revenue, and
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pextS(pext, wj) = pextD − wj is the revenue of supplier j when the price is pext.
The external price for supplier j at time slot t is given by the equation I.2.

In the prosumer side game, there are pure consumers (without generation)
and prosumers (with generation). When the difference between generation and
consumption is greater than zero, then prosumer acts as a seller. Otherwise, the
prosumer act as a buyer. The prosumers try to adjust their energy consumption
based on the internal prices (buying and selling prices) which are calculated by
the coordinator to clear the market. As proposed in [Liu+14] the utility of the
prosumer i at time slot t (Utilityi,t(.)) is expressed as follows:

Utilityi,t(xi,t) =
{

ki,tln(1, xi,t) + ps
t (Eg

i,t − xi,t), Eg
i,t − xi,t > 0

ki,tln(1, xi,t) + pb
t(Eg

i,t − xi,t), Eg
i,t − xi,t ≤ 0

(I.3)

ps
t = µt

Ed
t − Es

t

Σj∈M Dj,t
, pb

t = λt
Ed

t − Eb
t

Σj∈M Dj,t
(I.4)

where ki,tln(1, xi,t) is the utility that the prosumer i gets by consuming xi,t

amount of energy at time slot t . ki,t is the reference parameter of prosumer
i; a prosumer with high ki,t is more interested to consume more of its energy
to gain maximum utility. Eg

i,t is the amount of energy that prosumer i is able
to generate at time slot t. ps

t and pb
t are internal selling and buying prices

at time slot t, and µt and λt are predefined parameters. ps
t (Eg

i,t − xi,t) and
pb

t(E
g
i,t − xi,t) are the revenue that prosumer i gains by selling excess energy

and the price of buying energy at time slot t, respectively. Ed
t and Ed

t are total
energy supply and demand at time slot t, respectively. Prosumers update their
energy buying/selling request Eg

i,t − xi,t only by updating xi,t [Liu+14].
The coordinator gathers all the bids from the suppliers, and the requests for

selling and buying energy from the prosumers. Subsequently, it calculates both
internal and external prices based on the model of internal and external pricing
respectively. Details of these pricing models can be found in [Liu+14].

In the game, first, the prosumers send their energy buying/selling requests
to the coordinator. Second, the coordinator will calculate the net load, which is
equal to the difference between the sum of energy generation and consumption
from the prosumer-side, and send it to the suppliers. Then, the suppliers send
their bids to the coordinator, and the coordinator calculates both external
and internal prices, and send them to both suppliers and prosumers. Finally,
the suppliers and prosumers update their bids based on those prices, and the
algorithm will continue until the results from all participants converge; i.e., when
the difference between the new external price and the previous one is sufficiently
small [Liu+14].

I.3 Threat Analysis

Although a local P2P electricity market based on game theory could provide
financial benefits to users and general environmental benefits, it may also bring an
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opportunity for FDIAs by insiders or outsiders to reduce their cost or maximize
their benefits. In this section, we design a threat scenario that is based on false
demands.

I.3.1 Threat Scenario

In this threat scenario, attacks can be orchestrated by a malicious supplier who
engages an attacker acting as a prosumer, to gain more utility. The attacker
aims to find the best way of modifying the prosumers’/ consumers’ demand
requests to minimize the chance of being detected.

a) Possible ways to attack
As it can be seen from Figure III.3, we consider two ways of attack. First,

before the game starts (before the calculation of the prosumers’ bids by their
smart meters), and second, at the beginning of the game (after the calculation of
the prosumers’ bids by their smart meters). In the first method (Figure I.1(a)),
the attacker tries to intercept or modify the hardware/firmware code of the other
prosumers’ smart meters to make a disturbance in the process of calculating
consumptions (to modify the demands). There are different ways to attack a
smart meter; as explained in the following;

b) Possible threats for a smart meter
A smart meter has five main components which are control unit, smart

meter collector, metrology system, home area network (HAN), and the optical
interface [KKK19]. Each of these components has various targeting attacks;
e.g., the vulnerability of the control unit and metrology system are hardware
and firmware reverse engineering. The smart meter collector is a radio system
that communicates among the data collector in the AMI and the smart meter.
Here, the dedicated design of the data and the data itself could be a target for a
possible attack that may lead to an outage of the power grid, electricity theft and
denial of power. The responsibility of HAN is to transfer real-time consumption
readings from the smart meter to other devices in the user’s premises. Data theft
and denial of data are the main attack types in this context. Finally, the optical
interface is applied for configuring and installing the smart meter. A severe
denial of power and grid disruption could happen by interception or firmware
attack.

In the second way of attack (Figure I.1(b)), the attacker tries to connect
to the communication network in the first round of the game to disrupt the
legitimate communication between a victim prosumer and the coordinator. Here,
the attacker controls the flow of the bids information in communication links
to falsify some of the bids’ by modifying their demands, which are sent by the
prosumers’ smart meters. One other possibility is that the attacker also modifies
the bids during the game. There is, however, a risk that this would cause the
game not to converge and thus cause disruption of the trading. Although this
could be a possible approach of an attacker, we do not consider this case in the
scenario, but leave it as future work.

After the attack happened, the coordinator receives false demands from some
of the attacked prosumers, and the sum of the bids will be calculated by the
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(a)

(b)

Figure I.1: (a): attacking to some of the prosumers’ smart meters before the
game starts, (b); attacking the beginning of the game by modifying some of the
prosumers’ demands.

coordinator based on the wrong amounts. As a consequence, all the processes of
the game will be done based on the false initial demands. After finishing the
game during a time slot, the final internal and external prices and amount of
energy to sell or to buy will be sent by the coordinator to all participants.

I.4 Nummerical Results

In the simulations, a real dataset from Austin, Texas [Dat19] is used. The use
case focuses on the 1st day of August 2018, with efficient solar generation. The
dataset has five main features; user (prosumer/consumer) ID, generation, sum
of the loads, shiftable-load, base-load. We apply the attack data by modifying
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the shiftable and/or base loads, and by updating the sum of the loads based on
the modified shiftable/ base loads.

The P2P system model contains 50 households; 20 of them are prosumers who
are equipped with rooftop PV panels, while the remaining 30 are consumers with
zero energy generation, and one attacker that intercepts prosumer/coordinator
communication at the network level. Three companies act as suppliers in this
P2P market. A buying prosumer has larger consumption than generation, while
the opposite is the case for a selling prosumer.

We perform the simulations at a specific time slot of the dataset with different
attack configurations to learn about the effects on energy trading with our threat
scenario. We vary the attack configuration by increasing or decreasing the
demand of both prosumers and consumers by different amounts, at the same
time or separately, as well as the number of attacked prosumers/consumers.
Furthermore, for prosumers, we assume the demand should not be modified in a
way that causes its role towards the coordinator to be changed from seller to
buyer or vice versa; this would make the attack easier to detect. We did some
initial experiments to figure out how much an attacker had to change the demand
to have a significant effect on trading in terms of prices and external supply.
The range of both shiftable and base loads in the dataset is (0kw, 6kw]. When
increasing the shiftable and/or base loads by less than 2kw on different percent
of prosumers, we could not see any significant effects on the trading results.
After initial experiments we increase shiftable and/or base loads of buyers in
the experiments as described in the following. We distinguish between true
demands in the range [3kw, 6kw] and [1kw, 3kw). These we refer to as R1 and
R2 respectively. Let d and d

′ denote the true and false demands, respectively. A
small increase we define as up to three times of a true demand in R1 (d′ = 3d),
and up to five times of a true demand in R2 (d′ = 5d). On the other hand, a
large increase we define as up to 30 times a true demand (d′ = 30d) in R1 and
up to 10 times a true demand (d′ = 10d) in R2. Increase by less than twofold are
usually used for increasing the sellers’ demands because of keeping their roles.

Besides keeping the buyers’ role, on the other hand, the attacker should not
reduce the loads to the extent that the total load turns from positive to negative.
Therefore, we decrease shiftable and/or base loads of sellers and consumers as
follows; at least 1

3 times of a true demand (d′ = d
3 ) in R1 and 1

5 times of a true
demand (d′ = d

5 ) in R2 we refer to as a small decrease, while a large decrease we
define as setting the false demand to at least 10% and 1% of the true demand
(d′ = d

10 and d
′ = d

100 ) in R1 and R2 respectively. Tuning the false demands
to more than 50% of the true ones are usually used for decreasing the buyers’
demands to keep their roles. Table I summarizes the effects of attacks with
different configurations at time slot 10, and Table I.2 shows the result of the
experiments in the normal situation (without attacks) in the same time slot. We
can see from Table I.1 that the consumption data (shiftable/ base loads) are
modified based on the ways we explained and the ranges of modified data are
determined. In the different experiments, the percentage of attacked consumers
and prosumers separately and together are 20%, 50% and 70%, respectively. The
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Table I.1: Average utilities of prosumers (A.U.P), consumers (A.U.C), and
suppliers (SUP) under FDIAs on different number of prosumers (PR.) and
consumers (CON.) at time slot 10.

Number of
attacked
participants (%)

Increasing demand
(small increase)

Increasing demand
(large increase)

Decreasing demand
(small decrease)

Decreasing demand
(large decrease)

A.U.
P

A.U.
C

A.U.
S

Sup
A.U.
P

A.U.
C

A.U.
S

Sup
A.U.
P

A.U.
C

A.U.
S

Sup
A.U.
P

A.U.
C

A.U.
S

Sup

Pr.
20% 0.13 0.23 4.21 110.4 -16.2 -0.4 43.6 409 0.54 0.24 2.76 104.9 0.49 0.31 2.42 102
50% -1.2 0.12 7.22 169.9 -169.7 -1.9 399 1225 0.52 0.22 2.70 103.8 0.52 0.32 2.35 96
70% -2.7 0.04 10.6 204.4 -239.8 -2.3 558 1447 0.7 0.37 1.69 88.5 0.6 0.37 1.88 87.2

Con.
20% 0.53 0.28 2.33 98.2 0.55 0.32 2.39 102.3 0.55 0.35 1.85 91.15 0.51 0.24 2.84 110
50% 0.54 0.29 2.48 101.6 0.53 0.25 2.75 108.5 0.54 0.24 2.67 105.3 0.50 0.34 2.03 90.1
70% 0.56 0.31 2.61 106.6 0.50 0.09 3.65 120.3 49.8 0.25 2.68 106.9 0.55 0.34 2.02 91.7

Pr.&
Con.

20% 0.49 0.17 3.15 112.1 0.52 0.26 2.52 104.3 0.51 0.28 2.50 103.5 0.52 0.25 2.71 108
50% 0.49 0.16 3.18 117.6 0.54 0.25 2.77 108.8 0.54 0.30 2.24 99.40 0.52 0.27 2.60 106
70% 0.53 0.26 2.53 105 0.50 0.29 2.28 100.9 0.53 0.26 2.69 107.8 0.53 0.28 2.48 104

Table I.2: Average utilities of prosumers (A.U.P), consumers (A.U.C), and
suppliers (SUP) under normal situation at time slot 10.

A.U.P A.U.C A.U.S Sup (KW)
0.5019 0.3460 1.9816 94.8453

following observations can be made by comparing Table I.1 and Table I.2:
1) The attacker should increase the demands: compared with the normal

situation, the utility of the malicious supplier is higher when the attacker increases
the consumptions by both low and high amounts. The reason is that the sellers
will sell less energy and buyers will buy more when their consumptions increase;
based on the conditions in the right part of the equation I.3, and then the
suppliers have to supply more energy (equation I.1) which leads to the higher
utility.

2) The attacker should attack just prosumers: when the attacker attacks
consumers (increases their demands), the average utility of the consumers and
prosumers decrease and increase respectively in comparison with the normal
situation. This is because sellers will sell more energy; based on equation I.3, and
thus gain more utility. In contrast, the buyers will buy more, which results in
lower utility. This situation encourages consumers to become prosumers which is
contrary to the malicious supplier’s goal. So, by attacking just to the prosumers,
the average utility of the prosumers gets lower than the consumer’s average
utility which again may discourage consumers to become prosumers. This will
be economically beneficial for the malicious supplier.

3) The attacker should increase the demands of a high number of prosumers
with a low amount for each prosumer: Increasing the consumption by a high
amount could be suspicious and noticed by the coordinator by checking the
prosumer’s history. For this reason, the attacker should increase the demands by
a low amount i.e., with a low difference between the false demand and the real
one. The attacker in our threat scenario wants to reduce the chance of being
detected. Therefore, for being undetectable, the attacker should aim to attack a
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Table I.3: Number of attacked prosumers at different time slots

Time slots Percent of prosumers (%)
7:00 40%
8:00 50%
9:00 60%
10:00 70%
11:00 80%
12:00 90%
13:00 95%
14:00 85%
15:00 65%
16:00 80%
17:00 75%
18:00 70%
19:00 55%

high number of prosumers by increasing their demands by a low amount instead
of attacking a small number of prosumers and increase each of their demands by
a high amount.

We apply the attack on the different percentage of prosumers in all time slots
during the day to see the effects on both prices and utilities. Table I.3 shows
the percentage of attacked prosumers for which the most benefits are achieved
for the attacker at each time slots (from 7:00 A.M to 19:00 P.M). Both internal
and external prices under normal and attacked situations at similar time slots
with Table I.3 are investigated in Figure I.2. As can be seen from Figure I.2,
all prices increase after the attack; this is due to the increase in the demands.
Figure I.3, illustrates the profits of prosumers and consumers before and after
the FDIAs, showing the decrease in profits. We can see that prosumers with
solar generation get much more profits than consumers when there is no FDIAs.
This may motivates consumers to become prosumers. While those motivations
will be lost by decreasing the profits of prosumers and becoming lower than
consumers’ profits after the FDIAs; this has a high benefit for the malicious
supplier.

One lesson that we learnt from the experiments is that the game theoretic
approach by itself can contribute to security. One effect of the approach is that
an attacker cannot gain free energy by changing the demand at the beginning of
the game. When the attacker increases the demands at the start of the game,
the participants will in subsequent iterations update their demands based on the
new price as normal, and finally, the game will converge with supply/demand
balance and there will be no extra energy for the attacker. Alternatively, the
attacker could manipulate the demands in each iteration of the game. From the
experiments we observe that the game sometimes does not converge and thus
cause disruption of trading. The way the demands are modified, must therefore
be carefully considered by the attacker.
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(a) (b)

(c)

Figure I.2: (a): internal selling prices before and after FDIAs, (b): internal buying prices
before and after FDIAs, and (c): external buying prices before and after FDIAs at different
time slots.

I.5 Conclusion

In this paper we analyzed threat scenarios and experimentally explored the
effects of false data injection attacks in a P2P energy trading model including
their consequences on prosumers during trading. The effects were explored
by comparing the trading outcome in a normal situation with the outcome of
trading when under attack. The experimental results indicate that if the attacker
modify the demands of prosumers by increasing their consumption demand,
it will increase the profit of external energy suppliers and reduce the profit
of prosumers. This reduction in profit may reduce the incentives to become
or even remain an energy-selling prosumer. While, without FDIAs, the P2P
trading model acts as an efficient incentive for pure energy consumers to become
prosumers, due to the low internal prices and high utilities that it promotes. As
future work, we will propose a novel mitigation technique to detect such false
data injection attacks in local P2P energy trading.
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Abstract

In peer-to-peer (P2P) energy trading, the incorporation of distributed
energy resources with unprotected data, originating from sources such as
home energy management systems that are connected through the Internet,
provokes vulnerabilities that can manifest security breaches. In this paper,
two threat scenarios based on a novel false data injection attack (FDIA)
model in a local P2P energy trading system are explored. In these scenarios,
an attacker gains free energy by manipulating prosumers’ consumption
and demand. Precise and fast attack detection is needed to guarantee
suitable countermeasures to prevent potential risks. We propose a novel
instance-based machine learning (ML) classifier for detecting FDIAs. In
contrast to black-box ML models, our algorithm provides a transparent
decision-making procedure with significant predictive performance. We
apply our detection model to a real-world dataset from Austin, Texas. Our
experimental results show superior performance as compared to several
popular interpretable and non-interpretable ML methods. On average,
we achieve a 96.10% detection rate, a 96.18% accuracy rate, and a false
negative rate of 1.97% with our approach.
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II. Detecting false data injection attacks in peer to peer energy trading using
machine learning

II.1 Introduction

Peer-to-peer (P2P) energy trading [Zha+18] has emerged as a new energy
management model in which the participants of the network, the prosumers,
share a portion of their energy resources with one another without any direct
action of a central controller. One of the benefits of a P2P trading platform is
that a prosumer in need of energy can buy energy from other prosumers in the
same network who have surplus energy to sell at a lower price as compared to the
main grid selling price. Prosumers with excess energy, on the other hand, can
reap more economic benefits by taking part in P2P energy trading in contrast
to the feed-in tariff scheme [Tus+19].

Data integrity preservation is fundamental to certify the security of an energy
trading market [WL13]. The integrity loss of an energy market is caused by
corruption of data exchanges that result from attacks like False Data Injection
Attacks (FDIAs), replay attacks, and man-in-the-middle attacks [El +19]. For
the last decade, the impact of FDIA have been extensively studied. For example,
Jiongcon et al. [Che+16] illustrate how FDIA can result in rescheduling of
unessential generation and in load shedding by injecting false data, which causes
unstable load conditions. Wu et al. [Wu+17] studied the effects of FDIA on
frequency control of the smart grid and demonstrated how a simple FDIA could
spread and lead to a blackout. The impact of FDIA on electricity markets are
studied in [XMS10] and [Taj17]. Xie et al. [XMS10] present an FDIA against the
state estimation with the knowledge of the system to cause financial misconduct,
while Tajer et al. [Taj17] proposed a new FDIA on the locational marginal prices
that can have a potential impact on the energy market without having full
knowledge of the grid. However, none of the existing approaches investigate
the impact of FDIA on a local P2P energy trading market with prosumers; this
aspect is however important to study because the existence of prosumers in a
local energy market constitutes a challenge for the energy sellers (e.g., suppliers).

Due to this multitude of threats, it is of utmost importance to secure the
energy trading process in a smart grid. Researchers have made remarkable
efforts on the identification and mitigation of FDIAs in the electric power
grid [BZ14],[AMT15],[Ahm+19] . Some works are based on physical protection
approaches while others are cyber-oriented approaches. From the physical
security viewpoint, it poses challenges in cost and feasibility of implementing the
physical protection scheme of measurement devices. For example, Chaojun
et al. [BZ14] proposed a physical protection method by locking the basic
measurement devices in boxes that are cost-intensive. On the other hand, Bi et
al. [AMT15] proposed an optimal solution where they use a graphical method to
protect the vulnerable components. To solve the problem of identifying those
vulnerable components, Anwar et al. [Ahm+19] suggested an optimization-
based hybrid cluster technique to order components in the grid based on
their vulnerabilities to protect them. In recent years, data-driven machine
learning (ML) methods have been used for cyber-physical security analysis by
predicting and identifying threats and anomalies in a system [IBM]. Since
physical sensors (e.g., phasor measurement units) often have flaws that causes
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bad or missing data and can disrupt the analysis of true event data, detecting
and identifying anomalies in power grid data is highly essential for accurate
performance [Esm+14]. There are some anomaly detection methods that enhance
the security of a power system. Such techniques are based on support vector
machines (SVM) [FS17],[Hin+14a], naïve Bayes (NB) methods [PMA15], K-
nearest neighbour (KNN) methods [FS17],[Hin+14b], artificial neural networks
(ANN) [El +17], and recurrent neural networks (RNN) [FGL19] that have been
applied on different attack scenarios such as cyber and physical layer attacks and
power system disturbance attacks. However, we are not aware of any approach
that applies ML algorithms as a defense strategy in P2P energy trading.

In this paper, we extend our own prior work [MEZ20] in which a game-
theoretic approach to P2P energy trading was adopted to analyze FDIA.
The vulnerability of local P2P energy trading, including both prosumers and
consumers, to FDIAs was discussed as well. We also analyzed the effects of
FDIAs on price and economic benefit and loss of both prosumers and attacker
after applying the proposed attack model at different time slots over a day.

In our prior work, we assumed the attack occures before the game starts
to reap benefits for the energy sellers (e.g., suppliers) by causing a reduction
in incentives of becoming or remaining energy selling prosumers. We observed
from the experiments that the profits of prosumers decreased after the FDIAs
(when the prosumers’ demand was increased by the attacker before the game
started.) This effect (reduction in prosumers’ profits) could possibly reduce the
consumers’ motivation to become prosumers. We concluded that the attacker
could not gain energy for free by only modifying the prosumers’ demand at the
beginning of the game or before the game started. This is due to the iterative
nature of the game where prosumers will update their demands based on the
new price in subsequent iterations. Subsequently, the game will converge with
supply/demand balance and there will be no extra energy for the attacker.

Extending our prior work, in this paper, we study how energy could be gained
for free through FDIA in local P2P energy trading scenarios. We develop a novel
FDIA model based on two threat scenarios, in which the attacker tries to gain
energy for free by intruding into the game realizing a P2P energy trading market,
and a novel ML model for detecting this kind of attacks. We assume the FDIA
is motivated by the desire to gain free energy and reap economic benefits for the
attacker. Here, the attacker’s goal to gain energy for free is realized by a novel
way of manipulating the trading data with the effect that, in the end, the supply
is greater than the “true” demand. In such a case, we assume an attacker can
use a “hidden” battery as a measure to prevent grid imbalance by consuming
the resulting surplus energy. The opposite case is of no interest to the attacker
as this would require the “hidden” battery to “supply” energy (discharge the
battery) to prevent imbalance.

The trading game is iterative, and in order for the attacker to gain free energy,
we find that the false data needs to be injected in all iterations. An essential
issue, which is not studied in [MEZ20], is that the attack should not violate the
convergence criteria of the game. Convergence happens in an iteration when
no agent tries to modify its decision from the previous iteration. Violating the
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convergence condition disrupts trading. Below, we refer to this problem as the
convergence issue. We mathematically prove the convergence of the game given
the injection method of the false data showing the effectiveness of our FDIA
model. Most importantly, we introduce a highly accurate interpretable ML
model together with a transparent decision-making process which renders the
model suitable for attack detection in P2P energy trading.

We observe from our experiments that gaining free energy by the attacker
causes an economic loss for prosumers, which means that the incentive of
remaining or becoming energy selling prosumers is reduced. Consequently, this
effect may be highly beneficial for energy sellers (e.g., suppliers). The efficiency of
the proposed detection algorithm is evaluated using several case studies available
in a real-world dataset from Austin, Texas [Tus+19], and it is compared with
a number of popular interpretable (DT, KNN, NB), semi-interpretable (SVM),
and non-interpretable (ensemble and deep neural network) machine learning
classifiers. Our experiments demonstrate that under the attack, all prices increase
and the average payoff (utility) of prosumers decreases. We also show how the
attacker may gain economic benefits by acquiring free energy when it adversely
increases the demand. Moreover, the experimental results illustrate that the
proposed detection algorithm has higher accuracy and lower false negative rates
as compared to the baseline ML algorithms.

The main contributions of this paper are as follows:

1. We propose two threat scenarios based on a novel false data injection attack
model. The paper proposes an attack model that is able to manipulate
the game by applying FDIAs and analyses its effects in a game-theoretic
framework for a P2P energy trading market including prosumers.

2. We present a solution for how the attacker may gain energy for free under
the game-theoretic approach to P2P energy trading and prevent imbalance
in demand-response caused by a FDIA.

3. Most importantly, we propose a reliable and transparent machine learning
model for accurate and interpretable detection of FDIAs.

The rest of this paper is organized as follows. Section 2 describes the P2P
system model. Section 3 describes the false data injection attack model, which
consists of two new threat scenarios; we then introduce our machine learning
model for attack detection in Section 4. Section 5 presents experimental results
followed by our conclusions in Section 6.

II.2 P2P energy trading system model

A community-based P2P market is designed based on the model in [MEZ20]. The
market is modeled as a multi-agent system that consists of four types of agents;
M prosumer agents modeling prosumers including pure consumers (without
generation) and prosumers (with solar generation), N supplier agents modeling
suppliers (with their own energy generation from solar farms, wind parks,
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or conventional power plants), one coordinator agent modeling a community
coordinator, and one attacker agent who acts as an attacker during the game.
In the game, both suppliers and prosumers try to maximize their own profit,
and their behavior is modeled as a non-cooperative game. In the following, the
process of trading in the game is briefly described.

The suppliers are equipped with their own energy production means. They
want to sell the generated energy to the neighborhood prosumers, such as
when the local solar generation from the prosumers cannot satisfy the demand.
Prosumers decide how much energy they should buy or sell for each hour of the
day according to their own solar power generation and load consumption. After
that, they send their demand (buying/selling requests) to the coordinator. In
the meantime, the attacker intercepts the communication to falsify the demand
from the prosumers’ side of the game.

After having received all demand requests from prosumers, including the
falsified demands from the attacker, the coordinator calculates the net load,
which is equal to the difference between the sum of energy generation and
consumption from the prosumer-side and sends it to the suppliers. The suppliers
then send their bids to the coordinator, and the coordinator calculates both
external and internal prices, which are used for trading among local prosumers
and with suppliers, respectively, and sends them to both suppliers and prosumers.
Finally, the suppliers and prosumers update their bids and demands based on
those prices. The attacker also falsifies the updated demands of the attacked
prosumers and forwards the falsified demands to the coordinator. The process
of modifying the demands by the attacker happens in each iteration of the
game such that at the end of the game, more energy than the ’true’ demand is
supplied. This extra energy can be consumed by the attacker for free through
suitable means such as a ’hidden battery.’ The procedure above is repeated until
convergence, i.e., when the difference between the last calculated external price
and the one in the previous iteration is sufficiently small.

II.3 False data injection attack models

In general, FDIA injects false data as an input or manipulates the existing data
in the power system. FDIAs can happen through a communication channel
by an adversary or a third-party attacker to manipulate information (bid or
price offers) which are exchanged among market participants (e.g., prosumers,
consumers, suppliers, etc.) to cause financial loss for them or create a disturbance
in the market process [DSR21]. On the other hand, an adversary could be one of
the market participants like a malicious prosumer who can directly inject false
data into the market system or attack through devices (smart meter, HEM unit,
etc.) to gain own financial benefits [DSR21],[BNK20],[LH15]. During FDIA, the
market operator (the coordinator) makes decisions based on false information,
which do not match with the true market scenario. In this section, we design
two threat scenarios that are based on FDIA adversely changing demands.
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II.3.1 Threat scenario 1

Attack motivations: In this threat scenario, an attack can be undertaken by
a malicious energy seller like a supplier who engages an attacker in a prosumer
role. The other possible motivation can be to make a profit for the suppliers
which could be achieved by decreasing the incentives to become an energy
selling prosumer [MEZ20]. Here, the attacker attempts to find the best way of
modifying the prosumers/consumers’ demands to gain benefits or for the purpose
of sabotage while minimizing the chance of being detected.

Problem formulation: In order to satisfy the objective of the attacker and
at the same time to avoid injecting forged data randomly but rather follow a
specific pattern of FDIA behaviour, we suggest the demand falsification follows a
pattern given by II.1. Here, the falsified demand of prosumer i can be expressed
as a function of the prosumer’s true demand, as follows:

d
′

i,t = di,t(1 + β × f(di,t)) (II.1)

where d
′

i,t is the falsified amount of energy, and di,t is the demand declared by
the prosumer i in an iteration of the game at time slot t, f(.) is a bounded, non-
negative monotonically increasing function and β is a scaling constant that can
be negative or positive depending on the attacker’s goal (increasing or decreasing
the demands). We will show that for a suitable choice of function f and β,
the game can be proven to converge. Intuitively, to make the attacker hard to
detect, the demands should only be modified by a small amount in proportion
to the true demand. In this case, a sigmoid function can be useful to model
the FDIAs’ behavior. In addition to the fact that the sigmoid function has all
the mentioned features of function f , another reason that makes it superior to
similar functions (e.g., the trapezoidal or triangular functions) is that it does
not require knowledge of historical data for its definition. We choose to use
a common type of sigmoid function, the logistic function, which is defined as
follows;

S(x) = 1
1 + e−x

(II.2)

It is easy to see that S(.) has codomain (0, 1). We substitute II.2 into II.1
for f(.) and get

d
′

i,t = di,t(1 + β × ( 1
1 + e−di,t

)) (II.3)

In order for II.3 to be applicable to any demand profile, the value of β should
be determined based on the magnitude of the true demand. According to our
earlier experience [Pil+20], modifying the demand in an arbitrary way (i.e.,
selecting a random value for β) causes the demand modification method to work
only on a specific group of household demands. Due to this, β should be defined
by some functional relationships with the true demand; β = f(demand). Here,
we choose β = ( demand

c ) for some variable c. Keeping the prosumers’ role is an
important factor that is achieved by considering a suitable dependency for c
with the demand. If we consider c as a constant value then we need to have a
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priori knowledge of the demand to select a proper c, and hence it does not work
correctly for keeping the role of the prosumers. Overall, the attacker should
learn the demand during the attack to find the right values for β and c. In light
of such considerations, II.3 should work well on any demand profile.

When the attacker modifies the demand during the game, the convergence
issue can be asserted by proving the uniqueness of the prosumer-side game. Let
L = {1, . . . , l} and M = {1, . . . , m} where L is a subset of M denoting the
victim prosumers and all prosumers, respectively. Prosumer i ∈ M is able to
generate Eg

i,t and consumes xi,t amounts of energy at time slot t. It should be
noted that Eg

i,t = 0 for a pure consumer. Prosumers use internal selling price
(ps

t ) and internal buying price (pb
t) for trading with other prosumers. Internal

prices are defined to be a function of the aggregated net load (Ed
t - Es

t ) and bids
from all prosumers and suppliers, respectively. In this model, the payoff of the
prosumer i at time slot t (Utilityi,t(.)) and both selling and buying prices are
expressed as follows [JT06]:

Utilityi,t(xi,t) ={
ki,tln(1 + xi,t) + ps

t (Eg
i,t − xi,t), Eg

i,t − xi,t > 0
ki,tln(1 + xi,t) + pb

t(Eg
i,t − xi,t), Eg

i,t − xi,t ≤ 0
,

(II.4)

pb
t = λt(

Ed
t − Es

t∑
j∈M

βj,t
), ps

t = µt(
Ed

t − Es
t∑

j∈M

βj,t
) (II.5)

where ki,tln(1 + xi,t) is the utility that the prosumer i gets by consuming xi,t

amount of energy at time slot t. The energy consumption xi,t is bounded by
the minimum and maximum load consumptions which are denoted as xmin

i,t and
xmax

i,t respectively. xmin
i,t is the base load that should always be supplied, while

the consumptions should not be more than xmax
i,t . ki,t is the reference parameter

of prosumer i at time slot t; a prosumer with high ki,t is more interested to
consume more of its energy to gain maximum utility. µt and λt are predefined
parameters. ps

t (Eg
i,t − xi,t) and pb

t(E
g
i,t − xi,t) are the revenue that prosumer

i gains by selling excess energy and the price of buying energy at time slot t,
respectively.

Second, the utility function in II.4 is changed by replacing the true demand
(Eg

j,t − xj,t, j ∈ L) with the falsified demand (d′

j,t, j ∈ L) of |L| prosumers. The
modified utility function for L prosumers is given by II.6.

Utilityj,t(d
′

j,t) ={
kj,tln(1 + (Eg

j,t − d
′

j,t)) + ps
t (d′

j,t), d
′

j,t > 0
kj,tln(1 + (Eg

j,t − d
′

j,t)) + pb
t(d′

j,t), d
′

j,t ≤ 0
,

(II.6)

Now, we are going to prove the existence of the Nash equilibrium by showing
the uniqueness of the prosumer-side game with the presence of the attacker;
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Figure II.1: HEM architecture with possible ways of attacks.

Let d∗
t denote the Nash equilibrium strategies of |M | prosumers at time slot

t, and

Utilityi,t(dt
∗) ≥ (Utilityi,t(di,t, d−i,t

∗)), ∀i ∈ M . (II.7)

where d∗
−i,t represents the set of demands (including both modified and non-

modified demands) from all other |M | prosumers who use Nash equilibrium
strategy, except prosumer i, and dt

∗ = {d∗
i,t}.

Theorem II.3.1. The prosumer-side game, that is formulated with II.4 and II.6,
is an |M |-person game, and has a unique pure strategy Nash equilibrium.

Proof. There exists a unique strategy Nash equilibrium for this game if the
following optimization problem, which is the combination of the utility functions
II.4 and II.6, is strictly concave and has a unique solution [Ros65].

maximize Utilityi,t(di,t, d−i,t)
subject to Eg

i,t − xmax
i,t ≤ di,t ≤ Eg

i,t − xmin
i,t

(II.8)

II.8 applies to both sellers and buyers in the following way. The constraint in
II.8 shows that the demand should not be less than the difference between the
generation and the maximum load and should not be more than the difference
between the generation and the base load for sellers (E > 0). The constraint
also indicates that the demand should not be less than the negative maximum
load and should not be more than the negative base load for consumers (E = 0).
It can be seen that the utility (payoff) function in II.8 is strictly concave as its
second order derivative is always negative. The choice of II.1 and the choice of
β and f(.) ensure this result. So, there exists a unique solution for II.8, and the
existence of the Nash equilibrium of this game is proven. ■

Attack process: The threat scenario takes place in two steps; first, the
attacker intercepts or intrudes into a targeted home energy management (HEM)
system in the first round of the game to make a disturbance in the process of
calculating consumptions. Second, the attacker connects to the communication

62



False data injection attack models

Figure II.2: Sequence diagram of the proposed threat scenario 1.

network during the game to intrude into the legitimate communication between
the victim prosumer and the coordinator. The attacker intrudes into the targeted
prosumers’ HEM system as explained next.

Fig. II.1 illustrates components of the HEM system and possible ways of
attacks. The HEM unit considers priority settings for appliances and controls
the total consumption of the household. Smart plugs provide and transfer their
data to the HEM unit through a Zigbee network. The household consumption
data are provided by the HEM unit and could be shared with other households
(prosumers) and the coordinator through web services. The physical HEM system
could be threatened by an adversary to modify the household consumptions
[Anu+18] that can happen in two ways [Sah+14]; an insider attack by attacking
directly the physical HEM host, or an outsider attack (that we consider in our
threat scenario) by attacking through the web network. The attacked HEM unit
(attack 1) provides false consumption data to the web server and then to the
coordinator that causes wrong demand within a neighborhood. After attacking
the HEM system, the attacker controls the flow of the demand information in
communication links between the web server and the coordinator to falsify some
of the demand sent by the prosumers’ HEM systems.

Fig. II.2 depicts the sequence diagram of threat scenario 1. As can be seen
from the figure, the attacker acts at the beginning of the game by falsifying
some of the initial consumptions (shiftable loads+base loads) of the prosumers,
and during the game by modifying the updated victim prosumers’ demands.
In the first round of the game, the attacker modifies the shiftable and/or base
loads of the targeted prosumers by attacking their HEM systems. In each game
iteration, the coordinator calculates both internal and external prices based on
the falsified demands, and prosumers update their demands based on the false
prices. As explained above, the attacker’s challenge is to modify the demand
only in such a way that the game converges. In the converging iteration, the
victim prosumers send their last updated demands to the coordinator, and the
attacker changes the demands before the coordinator receives them. Finally, the
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Figure II.3: Sequence diagram of the proposed threat scenario 2.

coordinator sends the final prices to both suppliers and prosumers, and suppliers
supply energy based on the falsified demands.

Attack effects: At this point, the supplied amount of energy will differ
from the total true demand of the prosumers. This will generally lead to grid
imbalance. If the suppliers provide more energy than the true demand, the extra
energy will not be consumed by the prosumers. This is because the attacked
prosumers will not be aware that their last demand has been increased by the
attacker. This creates an opportunity for the attacker to consume this extra
energy for free, e.g., by installing a battery on the grid side of his house’s
smart meter. In this way, the smart meter cannot record the amount of energy
consumed by the battery storage, which provides the energy free to the attacker.

II.3.2 Threat scenario 2

Attack motivation: In this threat scenario the attack could be aimed at a
sabotage or gaining free energy similar to threat scenario 1. Since attacking
many of prosumers’ HEM systems is challenging, we present an alternative attack
scenario to gain energy for free by the attacker that does not involve attacking
individual HEM systems. This attack scenario is illustrated in Fig. II.3.

Problem formulation: In this threat scenario, the attacker manipulates
the total demand which is calculated by the coordinator. Afterward, all prices
will be changed based on the modified total demand by the attacker. We follow
the total demand falsification based on II.3. In this threat scenario, the attacker
learns just the total demand of all prosumers during the attack and thus does
not need to consider and be aware of the prosumer’s role. For this reason, in
this case, II.3 works for all demand profiles even without the variable β. So,
for the above reasons, we set β equal to 1. The falsified total demand D

′

t of all
prosumers is given by II.9.

D
′

t = Dt(1 + ( 1
1 + e−Dt

)) (II.9)
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In this case, when the attacker manipulates the total demand during the
game, convergence can be proven by affirming the uniqueness of the internal
prices II.5 [JT06]. Let Dt=Ed

t -Es
t denotes the net loads of all prosumers. The

internal prices in II.5 is changed by replacing the true total demand (Dt=Ed
t -Es

t )
with the falsified demand (D′

t). The modified internal prices are as follow,

pb
t = λt(

D
′

t∑
j∈M βj,t

), ps
t = µt(

D
′

t∑
j∈M βj,t

) (II.10)

The uniqueness of the internal prices and hence the convergence can be
proved in the following way.

Theorem II.3.2. The coordinator-side game, that is formulated with II.10, is a
one person game, and has a unique pair of internal prices.

Proof. There exists a unique internal prices pair in this game if the following
price functions have unique answers at each time.

pb
t = λt(

Dt(1 + ( 1
1+e−Dt

))∑
j∈M βj,t

),

ps
t = µt(

Dt(1 + ( 1
1+e−Dt

))∑
j∈M βj,t

)

(II.11)

Since the sigmoid function is a monotonically increasing function, here, it has a
unique value for a certain amount of total demand. Therefore, considering Dt,
and one of the pre-set coefficients (λt or µt), a unique pair of internal prices can
be easily found. ■

Attack process: According to Fig. II.1, the attack (attack 2) takes place at
the network level targeting the communication between the coordinator and the
suppliers. As seen in Fig. II.3, the attacker alters the total demand calculated
by the coordinator, then modifies both external and internal prices based on the
new total demand. Those modifications are implemented in all iterations until
the game converges.

Attack effects: At the end of the game, suppliers will provide more energy
than the real demand, resulting in grid imbalance unless the attacker consumes
the surplus energy by charging his hidden battery.

II.3.3 Attack challenges and possible solutions

Generally, getting free energy poses some challenges for the attacker. One
challenge concerns the hidden battery capability to consume all the extra supplied
energy beyond the true demand, caused by the attack. Typical capacities of
batteries that the attacker might use include EV batteries with capacity in the
range of 10 kWh to 100 kWh [EV] [Wik], and home Battery Energy Storage
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Systems (BESS) with capacity around 2-13.5 kWh [Sol20]. If the attacker wants
to ensure that the extra energy does not cause imbalance, the trading game needs
to be controlled in such a way that the extra energy does not exceed the battery
capacity. One possible solution to this dilemma could be fake convergence which
means that the attacker modifies the last external price to make it close enough
to the previous one. To realize the fake convergence, first, the attacker should
listen to the communication link between the suppliers, when they send their
bids, and the coordinator all the time during the game. In that way, the attacker
is able to be aware of when the surplus supplied energy is getting close to the
battery’s capacity and terminate the game at the point by modifying the last
calculated external price to a value close enough to the previous one. In this
case, the grid balance could be retained by controlling the value of surplus energy
which is provided by the suppliers through the game. If the extra supplied energy
goes beyond the battery’s capacity, there will be an imbalance in the network.
This may cause a blackout depending on the magnitude of the imbalance and
the protection mechanisms in the distribution network.

II.4 Machine learning model for attack detection

Detecting malicious activities within a P2P energy trading market is challenging
due to the various groups of participants. These systems are vulnerable toward
different attacks such as unauthorized device (e.g., HEM units, Smart Meters,
etc.) access, software vulnerabilities, and malware. These attacks are able
to spoof and interfere with transaction messages to falsify data like price, the
value of energy buying or selling requests, etc. Several approaches have been
suggested for the purpose of detecting attacks in the energy markets. Two main
methods are model-based and data-driven detection algorithms. In contrast to
the model-based algorithms, data-driven algorithms (e.g., ML algorithms) act
independently of the system’s parameters and models in the attack detection
process, making them more efficient.

Detecting malicious activities can be considered as an ML classification
problem where the duty of the ML model is to classify a new activity as either
normal or attack. The majority of the state-of-the-art ML algorithms (e.g., deep
neural networks and random forests) demonstrated a high accuracy rate while
suffering from a non-interpretable, complex decision-making process that makes
them appear as black-boxes. Recently, the accuracy and interpretability of ML
models are becoming inseparable elements. It is obvious that every machine
learning model has pitfalls when it comes to detecting new, unseen instances due
to several reasons, for example, inadequate training data, lack of expressiveness
of the model, the bias in the data, etc. Imagine a black-box model (say a deep
neural network) is used for classifying activities in a P2P energy trading system.
In this case, the model can only predict the label of the activity (normal or
attack) without providing any explanation about the prediction. Here, we only
have one choice which is to trust in the prediction which can be correct or
incorrect. In contrast, consider a transparent, interpretable ML model that
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outputs explanations along with the prediction of the new instance. In this
case, the user can look into the explanations and decide about the correctness
of the prediction. As we mentioned earlier, for many reasons, ML models may
have bugs in some regions of the decision boundary, which can lead to mis-
prediction. The provided explanations aids the expert on P2P energy trading
whether to trust the generated prediction of the model or neglect it. Moreover,
an interpretable model is considered as a knowledge extractor which reveals some
hidden patterns in the data and enhances the knowledge of the domain expert
about the system. Therefore, we are interested in a ML model that provides a
high level of prediction accuracy with a transparent decision-making mechanism.

In this section, we propose a highly accurate interpretable machine learning
classifier that benefits from a computationally-efficient training phase and
straight-forward testing phase. The proposed method consists of three main steps
including training phase, testing phase, and attack detection. The training and
testing phases are described in Algorithm 1. The created model of our algorithm
consists of clusters of ground-truth training data (e.g., Austin, Texas, July 2018
dataset) that act as prototypes for classifying new test data. Both training
and testing are reliable and simple procedures with a negligible computational
burden. The interpretability is provided in the sense that a single cluster and
eventually a single member of the cluster is decisive about the label of a new
input. Therefore, by visualizing the cluster that the new input belongs to and
comparing the input with the instance of the cluster (decisive instance), the
interpretability is provided. The main phases of the proposed algorithm are
described below.

II.4.1 Training phase

The output of this step is a model in the form of data clusters used to determine
the label of new inputs in the test phase. The training phase in Algorithm 1
includes five main steps (step 1 to step 5). In this algorithm, the initialization
is done as the first step. In step 2, the mutual information (MI) between each
sample and all other data points is computed. The incentive of considering MI
is its susceptibility to measure dependency between two random variables that
lead to a non-negative value and its sensitivity to both linear and non-linear
correlations [MDK18]. The mutual information between two discrete data point
d1 and d2 can be described in the following way:

MI(d1; d2) = H(d1) + H(d2) − H(d1; d2) (II.12)

where H(d1) and H(d2) are information entropies. Entropy is the degree of
the uncertainty between two random variables d1 and d2. H(d1; d2) is the joint
entropy of d1 and d2. Hence, the entropy and the joint entropy of two variables
can be described by the probability and joint probability of them, respectively.
H(d1), H(d2) and H(d1; d2) are defined as specified below:

H(d1) = −p(d1) log p(d1) (II.13)
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Algorithm 1 Proposed interpretable ML classifier
1: Input : Training dataset D = {d1, d2, ..., dn}, Test dataset T =

{t1, t2, . . . , tm}.
2: Output : A predicted class (Y ) for a test data ti ∈ T .
3: [Training phase]
4: Step1. Initialization: Set G= number of main groups, g= number of

subgroups, Candidates = ∅, and Dnew = ∅.
5: Step2. Compute MI(di; dj), di and dj ∈ D, i = 1, . . . , n ,j = 1, . . . , n.

Insert the results in Matrix1.
6: Step3. Create G groups by applying K-means clustering on Matrix1.
7: Step4. Do the following steps for each group in G:

Step4.1. Compute LCC(di; dj),
Step4.2. Create g subgroups by applying

K-means clustering on Matrix2.
8: Step5. Do the following steps for each subgroup in g:

Step5.1. Compute:
argmaxdi

(MLCC(di; d−i)),
(d−i: all set of data in a subgroup in g except di.) Then, set:

Candidates = Candidates ∪ di,
Dnew = Candidates.

9: [Testing phase]
10: Step1. Compute:

argmaxdi
(LCC(ti; di)), ti ∈ T , di ∈ Dnew

11: Step2. Do the following step for each data dj in subgroup g that di ∈ g and
Dnew:

Step2.1 Compute:
argmindj

(E = LCC(di; dj) − LCC(ti; dj)),
12: Step3. Set:

Y = class of dj

H(d2) = −p(d2) log p(d2) (II.14)

H(d1, d2) = −p(d1, d2) log p(d1, d2) (II.15)

p(d1) and p(d2) are probability of d1 and d2, and p(d1, d2) is the joint probability
of them. The results of computing MI between every data point is collected in a
matrix as follows:

Matrix1 =

r1,1 · · · r1,j

...
. . .

...
ri,1 · · · ri,j


ri,j = MI(d1; d2), d ∈ D

i = 1, 2, ..., n, j = 1, 2, ..., n

(II.16)

where n is equal to the number of samples in the dataset D.
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In the next step, a K-means clustering algorithm is applied to each row of
the Matrix1 to generate G groups. Then, steps 2 and 3 are repeated for data
in each G group to make g subgroups (step 4). The difference between step 2
and step 4 is in the manner in which the dependency between each data point
is determined by the Linear Correlation Coefficient (LCC) measure [Amb+16].
The simplicity and low computational cost of the LCC make it a popular method.
The linear correlation coefficient of two variables d1 and d2 can be defined as
follow:

LCC(d1,d2) = Cov(d1, d2)
σd1σd2

(II.17)

where Cov(d1, d2) is the covariance between d1 and d2; σd1 and σd2 are standard
deviations of d1 and d2, respectively.

To discover the relation between more than two variables, all those variables
should be considered at once to promote the accuracy. Thus, in such cases, the
multivariate linear correlation coefficient (MLCC), which is able to determine the
dependency of more than two variables at the same time, has better performance
than the LCC [MMG17]. Here, the MLCC between each sample and remaining
samples in each subgroup in g is calculated to select a candidate data point
that has the maximum MLCC (step 5). After selecting candidate data points,
we include them in a new data (Dnew). The selection of such candidate data
through data clustering contributes to the interpretability of the testing phase.
The square of the MLCC between independent variables an and the dependent
variable b is obtained by II.18.

MLCC2 = corrT R−1
aa corr,

corr = (ra1,b, ra2,b, ..., ran,b)T ,

Raa =

ra1,a1 · · · ra1,an

...
. . .

...
ran,a1 · · · ran,an

 (II.18)

where corr is the vector of correlations ran,b between the independent variables
an and the dependent variable b, and corrT is the transpose of corr. Matrix
Raa shows the correlation between independent variables, and R−1

aa is the inverse
of matrix Raa.

II.4.2 Testing phase

We determine the label of a new data point by measuring its similarity with the
created clusters in the training phase through this step. Since the dimensions of
the dataset are reduced by selecting some candidate data in the training phase,
the testing phase’s process speeds up. The testing phase has three main steps
(step 1 to step 3). First, the LCC between the test data (ti) and each candidate
data (di) from Dnew is calculated. Then, the candidate data, which has the
maximum dependency with the test data, is selected. Afterward, the evaluation
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function E for all members of subgroup g, where the selected candidate di (in
step 1 (test phase)) belongs, and the test data is computed (step 2). In other
words, the data which has a maximum correlation with the test data ti and the
candidate data di is selected, and its class is considered as the class of the test
data ti (step 3). The evaluation function E increases the labeling accuracy by
considering the relations of each selected subgroup’s member with both test data
and the subgroup’s candidate rather than comparing the test data with only
the chosen candidate data or the selected subgroup’s members. The process of
labeling explicitly states the reason for selecting the label, and it is easy to track
which label belongs to which data in which subgroup; this makes the testing
phase highly interpretable.

II.4.3 Attack detection

In this work, we have two classes of events, namely attack (FDI) event and
normal event, for decision making. After data pre-processing and applying FDI
attack, the proposed classifier will be trained to differentiate attack events from
normal ones. Specifically, it predicts the status of a new input (whether attack
or normal event) in the testing phase by measuring the similarity between the
input and a set of candidate data that is determined in the training phase of the
model. Since the label of a new input is selected according to the label of some
candidate ground-truth data, our attack detection model can be classified as a
prototype-based interpretable model. Therefore, the behavior of the model is
transparent as its decisions are made according to the similarity of the test data
to some representative ground-truth data (determined in the training phase).

The proposed ML classifier for detecting false data injection attacks in the
P2P energy trading system is described as follows. The first step is data pre-
processing, in which the relevant features are selected and/or generated. In this
work, we need six main features for each household, including the household’s
identification number (user ID), energy generation (KWh), shiftable loads, base
loads, energy consumption (shiftable loads+base loads), and household’s energy
buying or selling request. After applying the FDIAs on the dataset and before
feeding the data to the classifier, it is important to label the data. The original
dataset has one class corresponding to the normal demands and consumptions
(Normal event).

After applying FDIAs, the dataset will include an additional class corre-
sponding to the falsified data (FDI event). Now, the data is ready for the next
step, i.e., training the classifier. After the training phase, the test data is given
to the classifier for making a decision. When the prediction is an FDI event, it
means that the victim prosumer is detected. The classifier model is executed
in the first round of the game before the attack takes place in threat scenario 1
(Fig. II.2), and during the game in threat scenario 2 (Fig. II.3).
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Table II.1: Average utilities of the prosumers, consumers, and suppliers, and the
supply and the true demands amounts under FDIAs at the threat scenario 1,
and the economic benefits for the attacker by adjusting β and c at time slot 11.

Increasing demands (+β for buyers)
Increasing demands (+β for sellers)

Increasing demands (+β for buyers)
Decreasing demands (−β for sellers)

βb= consumption / (c=average of the consumptions)
(In the first round of the game)

βb = demand / (c=average of the demands)
(During the game)

βb = consumption / (c=average of the consumptions)
(In the first round of the game)

βb = demand / (c=average of the demands)
(During the game)

βs = d/(c=0.5d) βs = d/(c=d) βs = d/(c=1.5d) βs = -d/(c=d) βs = -d/(c=1.5d) βs = -d/(c=2d)
Num. of attacked prosumers 12 11 13 11 11 11
Average utility of prosumers -0.15 -0.12 -0.19 -0.36 -0.46 -0.27
Average utility of consumers -0.09 -0.10 -0.09 -0.22 -0.40 -0.13
Average utility of suppliers 16.41 16.49 16.64 22.26 20.92 16.77
Internal buying price ($) 0.72 0.65 0.65 0.70 0.64 0.64
Internal selling price ($) 0.41 0.37 0.37 0.40 0.36 0.36

External buying price ($) 0.74 0.67 0.67 0.72 0.66 0.66
Final supply(kw) 130.15 136.50 135.34 150.32 144.15 142.69

True demands (kw) 80.06 64.44 54.44 56.07 54.44 54.44
Economic benefits ($) 36.06 46.84 52.59 65.97 57.41 56.48

Table II.2: Average utilities of the prosumers, consumers, and suppliers, and the
supply and the true demands amounts under normal situation and FDIAs at
the threat scenario 2, and the economic benefits for the attacker at time slot 11.

Threat scenario 2 Normal situation
Average utility of prosumers 0.33 0.82
Average utility of consumers 0.49 -0.50
Average utility of suppliers 5.01 4.67

Internal buying price 0.38 0.35
Internal selling price 0.23 0.20

External price 0.40 0.36
Supply 170.94 160.47

True total demand 85.47 -
Economic benefit ($) 32.48 -

II.5 Experimental Results

II.5.1 Description of the dataset

We generated attack datasets [Moh+21]
1 based on real data from Austin, Texas [Tus+19]. The use case focuses on

the 1st day of August 2018, with efficient solar generation. A day is divided into
T time slots, and the length of a time slot equals one hour. The evaluation of the
model’s performance is done from 7 to 19 because there is no solar generation
during the evening. The dataset has six main features; user (prosumer/consumer)
ID, energy generation, shiftable loads, base loads, energy consumption (shiftable
loads+base loads), and household’s demand (it is equal to the difference between
the generation and the consumption). Attack data in the threat scenario 1 is
generated by modifying at least once (e.g., in the first round of the game) the
shiftable load and/or the base load of prosumers (who act as buyers), and by
updating the sum of the consumptions based on the modified shiftable/base
loads. The first day of August 2018 dataset is used for training our machine

1The attack datasets are available online at AttackDatasets-Austin-Texas-2018.
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learning classifier, and the data from the month prior (the first day of July 2018)
is chosen as testing data. Moreover, we assume that the attacker has an EV
including a battery, which is used as the hidden battery, with 100 kWh capacity.

The P2P system model contains two groups of households; group 1 contains
50 households where 20 of them are prosumers who are equipped with rooftop
PV panels that one of them is the attacker, while the remaining 30 are consumers
with zero energy generation. Group 2 includes 23 households (13 prosumers
and 10 consumers) and one attacker that intercepts prosumer/coordinator
communication at the network level. Three companies act as suppliers in
this P2P market. First, we perform the simulations at a specific time slot for
the households in group 1 with different attack configurations to learn about the
effects on energy trading with our threat scenario. Then, we apply the other
group to see the validity of the final selected attack configurations on group 1.

We vary the attack configuration by adjusting the variable c (in II.3) to
different values and by setting the parameter β (in II.3) to positive and negative
to increase and decrease the demand of prosumers, respectively. Furthermore,
we assume the demand should not be modified in a way that causes the role of
a prosumer towards the coordinator to be changed from seller to buyer or vice
versa; this would make the attack easier to detect. We apply II.3 on a number of
prosumers’ energy buying or selling requests (demands), which are calculated by
subtracting a prosumer’s generation from its consumptions (shiftable load+base
load), at a specific time slot (11:00 A.M). We first do some initial experiments
to learn how much an attacker has to change the demand of prosumers to have a
significant effect on the trading result in terms of prices and external supply, by
determining corresponding values for c in the definition of β (II.3). Due to the
fact that the magnitude of the prosumers’ demands is different at each time slot
of the day, the number of prosumers that is attacked is different at each time.
Therefore, the minimum number of prosumers that the attacker needs to attack
to gain economic benefits will be determined after some initial experiments.

II.5.2 Performance evaluation

II.5.2.1 Attack analyses

Table II.1 and Table II.2 summarize the effects of the threat scenarios 1 and 2
respectively on group 1 households with different configurations of parameter
β (in threat scenario 1) at time slot 11, and the result of the experiments in
the normal situation (without attacks) at the same time slot is presented in
the Table II.2. As it can be seen from Table II.1, the parameter β is different
for sellers (βs) and buyers (βb). When β in II.3 is positive, it means that the
prosumer’s demand/consumption increases, while the opposite happens when
it is negative. When the attacker changes the demand during the game (Fig
2, step 3.1), it just affects the prices in II.5, and the victim prosumer is not
aware of the modified demand and updates its demand based on its previous
unchanged selling or buying request. For this reason, it is necessary to alter the
target prosumer’s consumption at least once in the first round of the game (Fig.
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Table II.3: Number of attacked prosumers and economic benefits of the attacker
for group 1 and group 2 households after applying threat scenarios 1 and 2 at
different time slots.

Threat scenario 1 Threat scenario 2

Time slots
Num. of

attacked prosumers
(group 1)

Num. of
attacked prosumers

(group 2)

Economic
benefits ($)

(group1)

Economic
benefits ($)
(group 2)

Economic
benefits ($)

(group1)

Economic
benefits ($)
(group 2)

7:00 5 7 27.16 11.33 16.15 8.12
8:00 5 4 18.05 10.78 13.30 7.57
9:00 14 5 45.30 17.39 19.46 30.56
10:00 13 8 54.48 21.86 12.37 9.62
11:00 11 10 65.97 55.15 28.29 24.34
12:00 9 7 51.78 46.03 15.91 13.54
13:00 14 5 46.76 33.99 16.58 18.65
14:00 13 6 45.02 43.39 31.05 13.35
15:00 14 7 37.50 40.47 17.52 14.44
16:00 12 8 33.95 35.16 16.89 12.68
17:00 12 9 48.77 24.10 9.01 6.44
18:00 10 4 52.92 15.34 15.65 10.93
19:00 8 5 58.42 23.03 28.60 11.89

II.3, step 1). Following that, βb depends on both consumptions and demands
in the beginning and during the game, respectively. The constant c in βb and
βs should not be independent of the consumption or the demand values. After
performing some initial experiments, we find that a suitable value for c in the
parameter βb can be the average of the attacked prosumers’ consumptions and
demands.

As can be seen from Table II.1, there are two main columns where the attacker
increases the demands of both sellers and buyers (left side) and increases and
decreases the demands of buyers and sellers respectively (right side). In the left
side of the table, the positive signs for βb and βs display an increase in demands
or consumptions (by considering +βb or +βs as β in II.3. Three value ranges for
the constant c (c > demand, c = demand, and c < demand) are tested when
both selling and buying requests are increased by the attacker. On the right side
of the table, the positive sign for βb and negative sign for βs depict an increase in
buyers’ demands/consumptions and a decrease in sellers’ demands. In this case,
the attacker should consider positive values (c ≥ demand) in βs when decreasing
the selling requests to handle the challenge of keeping the role of the sellers,
otherwise (if c < demand) the role of the seller will be changed to the buyer. In
this table, some important factors affected by the attack (including the number
of attacked prosumers, average utilities of the participants, internal and external
prices, the final supply amount, true demand, and the economic benefits for the
attacker) are investigated. Here, the number of attacked prosumers includes
the minimum numbers that lead to the lower average utility of prosumers than
consumers. The true demand in the table is the last adjusted true demand
that the prosumers (coordinator) submit(s) in the last iteration of the game
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Figure II.4: Final supply amount and the true demand after applying the threat
scenario 1 at the last iteration of the game at different time slots for groups 1
and 2 households.

before being changed by the attacker. The difference between the final amount
of energy supply and the true demand corresponds to the amount of free energy
that the attacker can acquire. The attacker’s economic benefits are obtained by
multiplying the internal buying price (at time slot 11) by the difference between
the final total energy supply and the total true demand.

By comparing Table II.1 with the normal situation, the utility of the suppliers
is increased, and the attacker gains economic benefits when increasing the
demands (both selling and buying requests) or increasing and decreasing the
buying and selling requests, respectively. Hence, the suppliers have to supply
more energy corresponding to the falsified demands, which results in higher utility
for the suppliers. According to Table II.1, the attacker gains more economic
benefits when decreasing the selling request into the possible lowest amount
(without changing the role) by adjusting the constant c in II.3 for parameter βs

to a value equal to the demand. As a result, selling less and buying more leads
to more energy being supplied by the suppliers, which causes greater utility loss
for the prosumers than the consumers (according to II.4). This situation may
discourage consumers to become prosumers. This will be economically beneficial
for the suppliers. Regarding to the Table II.2, the similar factors from the Table
II.1 except the number of attacked prosumers are considered. This is because
the attacker only attacks the total demand (Fig 3, step 5) in the threat scenario
2. By comparing the results under FDIAs with the normal situation in Table
II.2, suppliers supply more energy, resulting in more utility for the suppliers and
economic profits for the attacker.

We apply the FDIA to the prosumers at all time slots of the day for both
group 1 and group 2 households to see the effects on all prices, economic benefits,
demands, and supplies. The battery can not be used at all time slots, since it
needs to be discharged or consumed to be able to be charged again in later time
slots. Hence, the attacker can only attack at certain times of the day. Fig. II.4
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Figure II.5: Final supply amount and the true demand after applying the threat
scenario 2 at the last iteration of the game at different time slots for groups 1
and 2 households.

Figure II.6: average economic loss/ benefits of prosumers and consumers after
applying threat scenarios 1 and 2, for both Group 1 and Group 2 households.

and Fig. II.5 illustrate the effects of the attack, including final supply amount
and the true demand after applying threat scenarios 1 and 2 at all time slots
of the day. In some cases, the attacker has to cause a fake convergence before
the supply value rising higher than the battery capacity. Given this, the fake
convergence happens at several hours of the day (9 to 19 and 11 to 16 for group
1 and group 2, respectively) in threat scenario 1 where the difference between
the true demand and the final supply value is more than the battery capacity
(100 KWh). The convergence always happens before the supplied energy gets
higher than the battery capacity during the threat scenario 2.

The number of attacked prosumers and the economic benefits that the attacker
gains through both threat scenarios at each time slot are listed in Table II.3. In
this table, the economic benefits column shows the profits that the attacker can
gain by attacking the minimum number of prosumers and the coordinator over
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Table II.4: Optimal values of hyper-parameters for baseline ML models
Threat scenario 1 Threat scenario 2

Methods Dataset 1 (group 1) Dataset 2 (group 2) Dataset 1 (group 1) Dataset 2 (group 2)

MLPNN hidden layer size:10
Neuron numbers:20

hidden layer size:10
Neuron numbers:10

hidden layer size:15
Neuron numbers:20

hidden layer size:20
Neuron numbers:25

Ensemble
Method: AdaBoostM1

Number of learning cycles: 300
Learners: tree

Method: AdaBoostM1
Number of learning cycles: 200

Learners: tree

Method: AdaBoostM1
Number of learning cycles: 200

Learners: tree

Method: AdaBoostM1
Number of learning cycles: 250

Learners: tree

DT
Maximum number of splits: 8

Minimum leaf size: 8
Minimum parent size: 10

Maximum number of splits: 10
Minimum leaf size: 8

Minimum parent size: 15

Maximum number of splits: 10
Minimum leaf size: 8

Minimum parent size: 12

Maximum number of splits: 20
Minimum leaf size: 10

Minimum parent size: 25

KNN Distance metric: Euclidean
Number of neighbours: 3

Distance metric: Correlation
Number of neighbours: 5

Distance metric: Euclidean
Number of neighbours: 5

Distance metric: Correlation
Number of neighbours: 4

NB Distribution names: Kernel
Kernel type: Gaussian

Distribution names: Kernel
Kernel type: Gaussian

Distribution names: Kernel
Kernel type: Gaussian

Distribution names: Kernel
Kernel type: Gaussian

SVM
Kernel function: Linear

Box constraint level: 200
Kernel scale: 20

Kernel function: Linear
Box constraint level: 200

Kernel scale: 10

Kernel function: Linear
Box constraint level: 100

Kernel scale: 10

Kernel function: Linear
Box constraint level: 300

Kernel scale: 10

the threat scenarios 1 and 2, respectively, at each time slot of the day.
Fig. II.6 demonstrates the average economic loss (negative values) or economic

benefits (positive values) of both prosumers and consumers generated after the
FDIAs throughout the day. The figure shows that all of the prosumers make
financial losses, while some of the consumers gain economic profits after the
attack. We can see that prosumers with solar generation obtain much more
economic benefits than consumers when there is no FDIAs (normal situation).
This may motivate consumers to become prosumers, while this incentive could
be lost by decreasing the financial benefits of prosumers after the FDIAs that
cause a greater economic loss for prosumers relative to consumers.

II.5.2.2 Classifier system evaluation

To evaluate the performance of our proposed classifier system, four performance
metrics are applied. These metrics are defined as follows:

Detection rate (DR) = TP

TP + FN
(II.19)

Accuracy rate (AR) = TP + TN

TP + TN + FN + FP
(II.20)

Precision rate (PR) = TP

TP + FP
(II.21)

False negative rate (FNR) = FN

FN + TP
(II.22)

where true positive (TP ) and true negative (TN) show the number of attack
data and the number of normal data which are classified correctly, respectively.
False positive (FP ) and false negative (FN) show the number of normal data
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and attack data, which are classified as attack and normal data, respectively. As
a mitigation solution, we apply the machine learning detection model in the first
round of the game to prevent entering the FDIAs in the game. To evaluate the
efficiency of the proposed algorithm, we conduct a comparison between some
popular interpretable machine learning algorithms (such as Naïve Bayes (NB), K-
Nearest Neighbours (KNN), and decision tree (DT)), a semi-interpretable model
(support vector machine (SVM)), and also robust none-interpretable classifiers
(ensemble and multi-layer perceptron neural network (MLPNN) methods). The
proposed model has been developed in MATLAB programming language. We
used the Statistics and Machine learning Toolbox [Mat] for implementing the ML
models with tuned hyper-parameters. We performed a random search method to
find optimal values of hyper-parameters for each ML model. Table II.4 describes
the optimal values of hyper-parameters on both datasets under threat scenarios 1
and 2. The average results of DR, AR, and FNR of our method and the baseline
algorithms on both household groups are summarized in Table II.5. The results
indicate a better performance of our proposed algorithm. Overall, the introduced
method has a remarkable increase in DR and AR, and a decrease in FNR in
comparison with the baseline methods. Moreover, our model’s processing time
is compared with the ML models. The training and testing time on dataset
1 including threat scenario 1’s attacks, that has more data than other attack
datasets, are available in Table II.6. It can be observed that our model’s testing
time is lower than other baseline methods. The reason is new data should
be tested with only one cluster of data selected in the training phase of our
model that accelerates the process. Our model’s training time is slightly slower
than other ML models which is negligible considering our model’s transparency
and the improved performance. Here the purpose is to compromise between
transparency, speed-up, and accuracy to get the best possible result.

II.5.2.3 Interpretability of the proposed classifier

Our proposed ML algorithm follows a transparent mechanism for making
predictions. This allows us to understand the rationale behind its decision
through various techniques, for example, visualizing the distribution of a cluster
that a test sample is allocated to and extracting importance of features in
each prediction. Since our model makes decisions based on clusters of ground-
truth data, constructing a linear regression model on a cluster provides reliable
and faithful explanations concerning the cluster and the test sample. Here,
we demonstrate an example of the utility of such a model in increasing the
understandability of the prediction which consequently enhances the expert’s
trust into the model. We have selected a normal and an attack instance from
the threat scenario 1 (presented in Table II.7) that are correctly classified via
our proposed detection model. For each sample, we retrieved the cluster that
the sample was assigned to and created linear regression model using the cluster
data and its ground-truth labels. Later, we extract the coefficient of each feature
from the linear model. The intuition for applying this approach is explaining
local neighborhoods of the dataset (created clusters in the training phase) for
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Table II.5: Summary of classification performance comparison on two datasets
Threat scenario 1 Threat scenario 2

Dataset 1 (group 1) Dataset 2 (group 2) Dataset 1 (group 1) Dataset 2 (group 2)
Methods DR% AR% PR% FNR% DR% AR% PR% FNR% DR% AR% PR% FNR% DR% AR% PR% FNR%

Our Method 96.41 91.22 93.36 2.01 98.12 90.97 94.63 1.88 94.02 93.92 93.91 2.13 98.18 98.43 96.15 1.81
MLPNN 92.19 90.34 88.12 7.06 93.14 88.79 92.36 7.85 90.19 93.57 91.87 9.02 95.42 96.28 95.91 4.64
Ensemble 91.06 90.43 85.18 10.93 78.13 83.39 71.90 21.86 88.91 84.42 83.23 16.43 93.21 91.45 94.30 6.83

DT 83.35 91.45 89.96 16.64 80.59 85.22 81.73 18.40 85.32 81.43 83.16 16.64 90.25 91.12 89.37 9.21
KNN 79.78 90.72 84.33 20.21 76.36 86.56 82.42 23.63 90.32 89.65 88.43 9.65 94.82 90.32 95.02 6.24
NB 54.30 85.84 79.14 45.61 19.52 71.56 59.70 80.47 36.71 69.30 61.33 63.28 75.28 80.95 73.77 24.71

SVM 57.52 88.00 87.99 42.47 77.03 87.09 81.76 24.96 83.24 90.23 90.45 16.85 79.20 81.62 78.71 18.40

Table II.6: Summary of processing time comparison on dataset 1
Methods Training time (s) Test time (s)

Our Method 3.465 0.043
MLPNN 2.783 1.642
Ensemble 2.267 1.231

DT 1.783 0.875
KNN 1.954 0.965
NB 1.451 0.721

SVM 1.398 0.652

Table II.7: Feature values of selected instances for explanation.
Values

Features Normal sample Attack sample
Generation 0.315 0.2274
Demand -0.1292 -1.9802
Shiftable load 0.1225 0.7023
Base load 0.3218 09891
Consumption 04443 1.6915

understanding the local behavior of the original model. The extracted coefficients
for features are listed in Table II.8. For each normal and attack sample, important
features are sorted in a descending order. By observing the achieved results
it can be clearly seen that two features "Consumption" and "Demand" in the
attack instance have had the most influence in the prediction (1.744 and 1.550,
respectively) which is the result of the attack strategy that specifically targets
these two features. While for the normal sample, the top two important features
are "Demand" and "Generation".

II.6 Conclusion

In this paper, two attack scenarios are studied to model the false data injection
attack using the sigmoid function in local P2P energy trading. We considered
a game-theoretic approach to evaluate our attack scenario. In the first threat
scenario, the attacker attempts to gain economic benefits through achieving
free energy by increasing both prosumers’ consumptions (in the first round of
the game by attacking their HEM systems) and demands (during the game
by attacking the network communication between the HEM system and the
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Table II.8: Features importance in the prediction of the selected instances.
Features importance

Attack sample Normal sample
Actual Label: 2

Predicted Label: 2
Actual Label: 1

Predicted Label: 1
High importance

Consumption = 1.774 Demand = 1.554
Demand = 1.550 Generation = 1.455

Generation = 1.408 Consumption = 1.273
Shiftable load = 0.351 Base load = 0.604

Base load = 0 Shiftable load = 0
Low importance

coordinator) by intruding into the game. We proposed the second threat scenario
that settled the challenge of attacking a number of prosumers’ HEM systems
by modifying the total demand, which is computed by the coordinator, before
sending it to the suppliers. The attacker uses a hidden battery to save the surplus
supplied energy, while the battery itself has some challenges like its capacity.
Due to the battery challenge, we presented how the attacker could control the
game not to cause more energy than the battery capacity. As a result of the
proposed FDIAs scenarios, all prosumers experienced a remarkable economic
loss compared with consumers, which led to a loss of incentive for participants
to remain or become an energy selling prosumer. This has a high benefit for
suppliers.

In view of the fact that stealing energy may happen in a P2P energy trading
market, an early and accurate detection of such attacks is necessary. Hence, a
reliable and interpretable classifier is proposed to increase detection and accuracy
rates while decreasing the false negative rate. The efficiency of the proposed
approach is verified in comparison to the three popular interpretable ML methods,
such as decision tree, KNN, naive Bayes, a semi-interpretable like SVM, and
two robust non-interpretable ML classifiers, such as ensemble and multi-layer
perceptron neural network, on two different groups of households from Austin,
Texas. The results illustrate higher detection rate (DR) and accuracy rate (AR)
and lower false negative rate (FNR), and fast testing time compared to the other
methods on both groups of households.

Acknowledgements. This work is supported by the Norwegian Research Council
under the SmartNEM project (project number: 267967).

References

[Ahm+19] Ahmed, A. et al. “Cyber physical security analytics for anomalies
in transmission protection systems”. In: IEEE Transactions on
Industry Applications vol. 55, no. 6 (2019), pp. 6313–6323.

79



II. Detecting false data injection attacks in peer to peer energy trading using
machine learning

[Amb+16] Ambusaidi, M. A. et al. “Building an intrusion detection system us-
ing a filter-based feature selection algorithm”. In: IEEE transactions
on computers vol. 65, no. 10 (2016), pp. 2986–2998.

[AMT15] Anwar, A., Mahmood, A. N., and Tari, Z. “Identification of
vulnerable node clusters against false data injection attack in an
AMI based smart grid”. In: Information Systems vol. 53 (2015),
pp. 201–212.

[Anu+18] Anuebunwa, U. R. et al. “Investigating the impacts of cyber-attacks
on pricing data of home energy management systems in demand
response programs”. In: 2018 IEEE Power & Energy Society General
Meeting (PESGM). IEEE. 2018, pp. 1–5.

[BNK20] Barreto, C., Neema, H., and Koutsoukos, X. “Attacking electricity
markets through iot devices”. In: Computer vol. 53, no. 5 (2020),
pp. 55–62.

[BZ14] Bi, S. and Zhang, Y. J. “Graphical methods for defense against
false-data injection attacks on power system state estimation”. In:
IEEE Transactions on Smart Grid vol. 5, no. 3 (2014), pp. 1216–
1227.

[Che+16] Chen, J. et al. “Impact analysis of false data injection attacks on
power system static security assessment”. In: Journal of Modern
Power Systems and Clean Energy vol. 4, no. 3 (2016), pp. 496–505.

[DSR21] Dasgupta, R., Sakzad, A., and Rudolph, C. “Cyber attacks in
transactive energy market-based microgrid systems”. In: Energies
vol. 14, no. 4 (2021), p. 1137.

[El +17] El Hariri, M. et al. “Online false data detection and lost packet
forecasting system using time series neural networks for IEC 61850
sampled measured values”. In: 2017 IEEE Power & Energy Society
Innovative Smart Grid Technologies Conference (ISGT). IEEE.
2017, pp. 1–5.

[El +19] El Mrabet, Z. et al. “Detection of the false data injection attack
in home area networks using ANN”. In: 2019 IEEE International
Conference on Electro Information Technology (EIT). IEEE. 2019,
pp. 176–181.

[Esm+14] Esmalifalak, M. et al. “Detecting stealthy false data injection using
machine learning in smart grid”. In: IEEE Systems Journal vol. 11,
no. 3 (2014), pp. 1644–1652.

[EV] EV. Electric vehicle (EV). url: https://batteryuniversity.com/learn/
article/electric_vehicle_ev (visited on 07/21/2020).

[FGL19] Fenza, G., Gallo, M., and Loia, V. “Drift-aware methodology for
anomaly detection in smart grid”. In: IEEE Access vol. 7 (2019),
pp. 9645–9657.

80

https://batteryuniversity.com/learn/article/electric_vehicle_ev
https://batteryuniversity.com/learn/article/electric_vehicle_ev


References

[FS17] Foroutan, S. A. and Salmasi, F. R. “Detection of false data injection
attacks against state estimation in smart grids based on a mixture
Gaussian distribution learning method”. In: IET Cyber-Physical
Systems: Theory & Applications vol. 2, no. 4 (2017), pp. 161–171.

[Hin+14a] Hink, R. C. B. et al. “Machine learning for power system disturbance
and cyber-attack discrimination”. In: 2014 7th International
symposium on resilient control systems (ISRCS). IEEE. 2014, pp. 1–
8.

[Hin+14b] Hink, R. C. B. et al. “Machine learning for power system disturbance
and cyber-attack discrimination”. In: 2014 7th International
symposium on resilient control systems (ISRCS). IEEE. 2014, pp. 1–
8.

[IBM] IBM. What is supervised learning? url: https://www.ibm.com/
topics/supervised-learning (visited on 05/29/2023).

[JT06] Johari, R. and Tsitsiklis, J. N. “Parameterized supply function
bidding: equilibrium and welfare”. In: Mathematics of Operations
Research (2006).

[LH15] Liu, Y. and Hu, S. “Cyberthreat analysis and detection for energy
theft in social networking of smart homes”. In: IEEE Transactions
on Computational Social Systems vol. 2, no. 4 (2015), pp. 148–158.

[Mat] Mathworks. Statistics and Machine Learning Toolbox.
[MDK18] Mohammadi, S., Desai, V., and Karimipour, H. “Multivariate

mutual information-based feature selection for cyber intrusion
detection”. In: 2018 IEEE electrical power and energy Conference
(EPEC). IEEE. 2018, pp. 1–6.

[MEZ20] Mohammadi, S., Eliassen, F., and Zhang, Y. “Effects of false
data injection attacks on a local P2P energy trading market with
prosumers”. In: 2020 IEEE PES Innovative Smart Grid Technologies
Europe (ISGT-Europe). IEEE. 2020, pp. 31–35.

[MMG17] Mohammadi, S., Mirvaziri, H., and Ghazizadeh-Ahsaee, M. “Multi-
variate correlation coefficient and mutual information-based feature
selection in intrusion detection”. In: Information Security Journal:
A Global Perspective vol. 26, no. 5 (2017), pp. 229–239.

[Moh+21] Mohammadi, S. et al. AttackDatasetAustinT exas2018. 2021.
[Pil+20] Pilz, M. et al. “Security attacks on smart grid scheduling and their

defences: a game-theoretic approach”. In: International Journal of
Information Security vol. 19 (2020), pp. 427–443.

[PMA15] Pan, S., Morris, T. H., and Adhikari, U. “A Specification-based
Intrusion Detection Framework for Cyber-physical Environment
in Electric Power System.” In: Int. J. Netw. Secur. vol. 17, no. 2
(2015), pp. 174–188.

81

https://www.ibm.com/topics/supervised-learning
https://www.ibm.com/topics/supervised-learning


II. Detecting false data injection attacks in peer to peer energy trading using
machine learning

[Ros65] Rosen, J. B. “Existence and uniqueness of equilibrium points
for concave n-person games”. In: Econometrica: Journal of the
Econometric Society (1965), pp. 520–534.

[Sah+14] Saha, A. et al. “On security of a home energy management system”.
In: IEEE PES Innovative Smart Grid Technologies, Europe. IEEE.
2014, pp. 1–5.

[Sol20] Solarguide. Solar Battery Storage: The Best Solar Batteries. 2020.
url: https: / /www.solarguide.co.uk/solar- batteries (visited on
06/15/2020).

[Taj17] Tajer, A. “False data injection attacks in electricity markets by
limited adversaries: Stochastic robustness”. In: IEEE Transactions
on Smart Grid vol. 10, no. 1 (2017), pp. 128–138.

[Tus+19] Tushar, W. et al. “A motivational game-theoretic approach for
peer-to-peer energy trading in the smart grid”. In: Applied energy
vol. 243 (2019), pp. 10–20.

[Wik] Wikipedia. Electric vehicle battery. url: https://en.wikipedia.org/
wiki/Electric_vehicle_battery (visited on 11/21/2020).

[WL13] Wang, W. and Lu, Z. “Cyber security in the smart grid: Survey and
challenges”. In: Computer networks vol. 57, no. 5 (2013), pp. 1344–
1371.

[Wu+17] Wu, Y. et al. “Resonance attacks on load frequency control of smart
grids”. In: IEEE Transactions on Smart Grid vol. 9, no. 5 (2017),
pp. 4490–4502.

[XMS10] Xie, L., Mo, Y., and Sinopoli, B. “False data injection attacks in
electricity markets”. In: 2010 First IEEE International Conference
on Smart Grid Communications. IEEE. 2010, pp. 226–231.

[Zha+18] Zhang, C. et al. “Peer-to-Peer energy trading in a Microgrid”. In:
Applied Energy vol. 220 (2018), pp. 1–12.

82

https://www.solarguide.co.uk/solar-batteries
https://en.wikipedia.org/wiki/Electric_vehicle_battery
https://en.wikipedia.org/wiki/Electric_vehicle_battery


Paper III

Applying Energy Justice Principles
to Renewable Energy Trading and
Allocation in Multi-Unit Buildings

Sara Mohammadi, Frank Eliassen, and Hans-Arno Jacobsen
Published in Energies, vol. 16, no. 3, pp. 1150, 2023, doi:
https://doi.org/10.3390/en16031150.

III

Abstract

Although rooftop PV panels and battery energy storage systems have
been well established for detached residential buildings, there is still a
lack of access to the advantages of onsite renewable energy generation
and consumption for residents of multi-unit buildings. To understand the
effects of developing distributed renewable energy sources for multi-unit
buildings, a new fair energy-sharing model in which different groups of
residents can gain benefit from the shared energy systems is proposed.
Despite the potential benefits of developing renewable technologies in
multi-unit buildings, the energy trading and allocation processes in the
buildings can be unfair for some groups of residents. Accordingly, this
work studies the main principles of energy justice and analyses how these
principles can be applied in the energy trading and allocation processes
to achieve fair energy sharing. In addition to fairness and justice, the
experimental results show that our method increases the sellers’ profit by
59.7%–127% and decreases the buyers’ cost by 8%–21%, compared to the
baseline methods. Moreover, applying the energy justice principles in the
proposed sharing models acts as an efficient incentive for the residents
of the multi-unit buildings to invest in the shared distributed renewable
energy sources.
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III.1 Introduction

Solar photovoltaic (PV) generation is one of the main technologies for
decentralizing and decarbonizing energy systems. To date, PV panels are
a settled and approved solution for detached houses, while PV solutions for
multi-unit buildings have been relatively limited. Recent studies focus mainly
on PV usage in single residential buildings [Com+15] as well as commercial
buildings [Liu+14], [Liu+17]. Although distributed renewable energy sources
(DRESs) have been widely approved at the residential scale, especially in detached
houses, the lack of a legal framework prevents the installation of PV panels and
battery energy storage systems (BESSs) in buildings that are composed of several
apartment units. The primary reason for the low uptake of sharing DRESs in
multi-unit buildings is the lack of regulations to ensure that electricity tax, grid
rent, and settlements are in line [CBE17]. Recent studies related to PV panel
allocation in multi-unit buildings have focused more on evaluating the technical
performance [GCG21] and analyzing the economic and technical feasibility of
PV panels in microgrids [Qad22], [WMC22]. However, shared DRESs, including
PV panels and BESSs, in multi-unit buildings have not been investigated well.

Given that the units of multi-unit buildings are occupied by different groups
of residents, e.g., tenants and unit owners with different preferences, the process
of sharing energy from shared DRESs between these groups can be unjust and
challenging. For instance, from the perspective of investing in shared DRESs,
some residents could not afford the investment economically, or there might be
a group of residents, such as tenants, who want to enjoy the benefits of shared
DRESs for a short period because long-term investment is not affordable for
them. In this regard, this study proposes an energy-sharing model that enables
efficient, fair, and equitable allocation and distribution of energy, costs, and
benefits in multi-unit buildings, considering different groups of residents.

Energy justice provides an effective decision-making tool that helps stake-
holders, e.g., consumers and producers, to make more rational energy decisions
[Sar17]. In recent years, scholars have reached a joint definition of energy justice
in which the costs and benefits of energy services are fairly distributed, and
equitable energy decision-making is provided[SD15]. In general, energy justice ad-
dresses the equitable sharing of energy, costs, and benefits and identifies injustices
within energy systems [Sar17], [SD15]. Energy justice integrates three different,
but interconnected principles that include distributive justice, procedural justice,
and recognition justice [McC+13]. Each principle relates to a particular aspect
of justice that complements each other. Distributive justice refers to whether
all groups share equally in specific services and goods. Procedural justice deals
with the equitable participation of stakeholders in decision-making processes.
Recognition of justice gives attention to the demands and rights of different
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groups in society, especially underrepresented or vulnerable groups, to decrease
social inequalities [McC+13]. The value of energy justice has not been studied
within the concept of energy sharing in multi-unit buildings. Therefore, a set
of steps has to be formulated to enable a fair and just energy-sharing system
in multi-unit buildings where different groups of residents can participate and
gain benefit from the shared DRESs in their building. Applying the principles of
energy justice in energy-sharing models removes or reduces barriers to the active
participation of end customers (consumers/prosumers) in the future smart and
decentralized energy grid.

In this paper, a new fair energy sharing model (FESM) is proposed, which
focuses on energy allocation and trading inside different multi-unit buildings,
considering energy justice principles. The basis for our definition of FESM is a
network behind the meter in which the shared systems (PV panels and BESSs)
can be owned by the main owner of a multi-unit building or a group of residents
living in the building. Although FESM and community-based microgrids have
similarities in their configurations (e.g., both rely on centralized renewable
sources), they have an important difference. In community microgrids, shared
DRESs are located in front of the meter that are controlled by utility companies
(i.e., they are controlled in an aggregate manner) that incur extra costs for the
users who use the shared systems (e.g., there will be administrative costs) [WZ].
Since users of community DRESs do not own DRESs, they are deprived of having
access to any of the tax credits and incentives of DRESs. However, in FESM,
shared DRESs are installed behind the meter and are not controlled by utility
companies; hence, additional costs are eliminated for users. Moreover, users in
FESM can own a portion of DRESs and take advantage of the tax benefits.

After allocating shared DRESs and energy to the residents by the energy
management operator (EMO) of the buildings, energy trading is enabled in
FESM with expected prominent benefits such as cost-savings and carbon footprint
reduction. The EMO of the buildings monitors and controls the trading stage and
computes the trading price. During the energy trading process, the interests of
sellers and buyers are protected, and they are given the opportunity to determine
the amount of energy they want to sell and buy based on certain factors, such
as priority factors, or after seeing the price. The priority factor is defined as
one of the main elements of FESM to retain the fairness and interests of both
buyers and sellers during energy trading. Justice and fairness are analyzed
in energy allocation and trading processes according to the main principles of
energy justice. These analyzes help to understand that justice can be defined
differently for each building according to the building conditions (e.g., resident
preferences, types of residents, etc.). Moreover, the revenue of the shared DRESs’
users living in the multi-unit buildings are examined under different energy
allocation processes. The experimental results show that our method is highly
beneficial for all participants as their revenue increases dramatically compared
to the baseline methods.

The main contributions of this work are as follows:

1. We present a novel fair energy sharing framework FESM plus two different
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applications of it. In FESM energy demand of buildings is supplied by
shared distributed renewable energy sources, including PV panels and
battery energy storage systems. FESM is a behind-the-meter network that
enables energy allocation and trading inside the buildings.

2. To the best of our knowledge, this work is the first to apply the main
principles of energy justice, including procedural justice, recognition justice,
and distributive justice, in a systematic way in the design of energy
allocation and trading processes to create justice and fairness. Moreover,
we propose a novel priority factor to prioritize users to secure fair sharing
of energy generated by shared DRESs for residents.

3. A new and simple pricing mechanism is proposed that increases the profits
for sellers and decreases the cost for buyers, and makes the overall operation
of the system simple.

The rest of the paper is organized as follows. In the following section, first,
we present a brief overview of the shared renewable energy system in multi-
unit buildings by discussing the status quo of energy sharing in four countries,
including Germany, Austria, France, and Norway. Then, fairness in energy
sharing is reviewed, and we discuss how energy justice principles can be applied
in an energy-sharing process. The details of the FESM network are presented in
Section III.3; then, the strategies for energy trading for all participants, such as
sellers, buyers, and energy management operators, are summarized in Section
III.4. Section III.5 presents comprehensive experimental results, and the paper
is concluded in Section III.6.

III.2 Background

III.2.1 Shared Renewable Energy Systems

Renewable energy sources have been potentially considered as a practical solution
to supply parts of the load in buildings, especially in urban areas [PD20]. The
establishment of more renewable energy communities can increase both the share
of renewable energy and flexibility in electricity supply and electricity systems,
respectively. Currently, many European countries have not fully considered the
particulars of renewable energy communities in their energy support frameworks.
However, Germany has the most experience with community energy [Inê+20].
In the following, we briefly review the current situation of energy sharing in
multi-unit buildings in four countries.

Germany and Austria: In Germany and Austria, shared PV systems can be
implemented legally in multi-unit buildings. Germany makes the hardest efforts
to increase the uptake of shared PVs in buildings among European countries
[PD20]. In [59], a techno-economic analysis of the self-consumption of rooftop
solar panels for different types of buildings in Germany, including multi-unit
buildings, is performed. In the course of different projects in Germany, it has
been proven that energy generated from PV panels can be successfully shared
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in buildings under a novel concept called the “Mieterstrommodel” [RSM22].
Under this scheme, landlords or owner communities known as ‘legal suppliers’
may generate energy from rooftop PV panels and sell it to their tenants [PC21].
Tenants receive the same feed-in tariff compensation for extra energy fed into the
grid. However, they receive an extra ‘tenant-electricity surcharge’ for their self-
consumed energy [PC21]. In July 2017, Austria also adopted relevant legislation
to enable the uptake of shared PV panels in multi-unit buildings. In Austria,
suppliers are also able to supply the energy demand of residents via energy
produced by their buildings’ PV panels [PD20].

France: On 8 November 2019, law no. 2019-1147 was approved in France. It
regulates collective electricity self-consumption (In French: autoconsommation
collective d’électricité) of energy and climate [Per+21]. In France, users willing
to contribute to a collective self-consumption (CSC) operation can establish
themselves as an Organizing Moral Person (OMP) responsible for sharing locally
produced energy among users. Moreover, each user must be connected to
the public distribution network via a meter. The OMP considers the energy
sharing ratio equal to the ratio of the total consumption of one household to the
consumption of all households. Other sharing ratios among users can be defined
by the OMP, and communicated to the distributed system operator (DSO). ,
among users and sends it to the DSO. Each user’s bill is calculated based on
the consumption of the household minus the community generation assigned to
the household by the supplier, which the user has chosen. CSC communities
can be considered platforms for creating innovation in energy sharing. However,
community-wide operating rules that adopt consumption practices for single
houses, buildings, or neighborhoods are essential for any energy community
[Per+21].

Norway: In Norway, customers in detached houses, with both consumption
and production behind their connection point, can today utilize their own
production without paying grid rent and other fees [Jaf+20]. However, customers
in multi-unit buildings do not enjoy the same benefits. This means that, according
to the current regulations, it is not possible for customers in multi-unit buildings
who have several measuring points to use their own production without paying
grid rent and fees [Jaf+20]. Recently, a new regulation was proposed by the
regulating body, RME [Jaf+20], which, if approved, will change the rule of
sharing energy in buildings. In the RME proposal, different sharing models
that can be applied inside the buildings and how energy can be allocated to the
residents who joined the sharing solution are discussed. Below, the proposed
sharing solutions are reviewed.

1. Equal sharing: the simplest way is allocating the production of shared
PV panels to residents equally. This means that all residents receive the
same share. Although this sharing model is easily managed by network
companies, it poses some weaknesses. This model is fair when all building
units have the same area, but this is not fair for units with different areas.
A larger unit requires more energy than a smaller one.

2. Unequal sharing: unequal sharing means that each resident receives
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different shares of the energy generated by the shared PV panels in the
building, e.g., based on the size of the units, the cost that each resident
invests in the shared PV panels, etc. In FESM, we focus on the unequal
sharing model as a guideline for specializations of the framework that we
explore in this paper.

3. Dynamic sharing: in this model, residents receive energy based on their
consumption at various time slots in a day. This sharing model attempts to
maximize the utilization of the energy produced by PV panels in buildings.
In this case, the energy is sent back to the grid only for hours, where
the total generation exceeds the total consumption in the building. The
dynamic share of a resident at a time slot is the ratio of the resident’s
consumption to the total consumption of the residents at that time slot.

Legalizing the shared use of PV panels in multi-unit buildings and giving the
right to the residents to trade their shared energy with neighbors inside their
building benefits the residents (e.g., financial benefits) and the environment (e.g.,
carbon reduction). To realize that, the above regulations need to be developed
with the intention of legalizing energy trading inside multi-unit buildings.

III.2.2 Fairness in Renewable Energy Sharing

Fairness in energy sharing has been interpreted in different ways in the literature.
For example, one study [Lov+20] shows that if energy is transparently and
equitably shared in a sharing method, then the method is fair. Other studies
present different interpretations [Pau+18], [Wu+16], [Cui+20]. According to
[Pau+18], fairness is associated with the willingness-to-pay of a prosumer, equal
satisfaction is another interpretation of fairness that is supported by Jafari et
al. [Wu+16], and Lovati et al. [Cui+20] proposed a peer-to-peer (P2P) energy
trading model in which fairness has been achieved by transparency.

There are several works that use game theoretical approaches to conduct
energy sharing in buildings [Fin+18], [Cic10]. For instance, Cui et al. [Par+16]
proposed a non-cooperative game to manage the energy-sharing process, and
they believe that energy sharing is fair when all participants gain benefits.
A contribution-based and non-pricing energy trading mechanism between
microgrids was proposed by Park et al. [LAG16], but they did not show how
to calculate the contribution factor. Jadhav et al. [JPG18] extended the work
in [LAG16] by proposing a priority factor for buyer microgrids according to
their contributions and energy demand. However, prioritizing buyers based
on their energy demand makes buyers with the highest demand receive more
energy which can be unfair. The authors in [JPG18] also presented an energy
trading mechanism based on Nash bargaining theory in which a trading price was
computed based on minimizing the total cost of buyer microgrids. In [LAG16],
[JPG18], only the interests of the buyer microgrids are considered, which makes
the energy trading unfair to the seller’s microgrids. In this work, the energy
trading method used in [LAG16] is extended in such a way that the benefits of
both buyers and sellers are supported in the calculation of the energy trading
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price. In addition, the priority factor is modified and calculated for both sellers
and buyers according to the trading situations.

Some works present different energy-sharing methods and compute a proper
fairness index to evaluate the performance of their methods. For example, Long
et al. [LZW19] proposed several indexes, including the equality index and
participation willingness index, to evaluate their proposed P2P energy trading
mechanism, while Chakraborty et al. [CBK20] used the Nash social welfare
index for the same purpose. According to the literature, a common framework
for evaluating fairness and justice in energy-sharing solutions is missing. Energy
justice can be used as an evaluation framework to evaluate fairness in energy-
sharing models based on its three main principles. In the following, we will study
how justice and fairness can be achieved in energy-sharing systems through the
main principles of energy justice.

Recognition justice: This principle of energy justice takes care of different
groups of stakeholders, especially vulnerable groups, to have equal access
to opportunities and resources in energy systems [SD15], [McC+13]. When
recognition justice is considered in designing an energy-sharing model, we have
to explore to what extent different groups (e.g., low and high-income groups,
tenants, and unit owners) have access to technologies used in the model.

Distributive justice: This principle is about benefit and risk being equitably
distributed among stakeholders in energy systems [SD15], [McC+13]. According
to this principle, we have to evaluate how cost, profit, DRESs, and energy
generated by shared PV panels are distributed among stakeholders (e.g., residents
and owners of multi-unit buildings).

Procedural justice: This principle emphasizes that all stakeholders affected
by the energy systems have to participate equitably in decision-making [SD15],
[McC+13]. In designing an energy-sharing model for multi-unit buildings, we
have to focus on how residents can significantly participate in decision-making
with transparent procedures.

III.3 Proposed FESM Framework

We assume a building that has an owner who can be a legal entity such as a
person, a company, a municipality, or a cooperative, etc. The energy-sharing
model is decided by the owner of the building. The energy-sharing model is
the basis for energy allocation and trading. The energy allocation and trading
processes in the building are handled by EMO, who could be the owner of the
building, a third party, or consortium of residents, etc. The building is comprised
of N units denoted by the set U = {1, 2, . . . , N}. Each unit has an owner and can
be occupied by the owner, called unit-owner, or a tenant. Let |UO| = NO, where
UO ⊆ U and NO < N , and |UT | = NT , where UT ⊆ U − UO and NT = N − NO,
be the sets of unit-owners and tenants, respectively, who live in the building.
Each unit is characterized by a set of parameters, such as the area of the unit
and the number of members living in the unit, that can be input into the sharing
model. The building can be equipped with a number of PV panels that belong
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to the set PV = {1, . . . , P}. PV panels have an owner that can be the owner
of the building, a third party, or a legal entity formed by residents who each
own a share. Depending on the sharing model, the residents can lease a share of
the PV panels from the owner. Since PV panels may produce more energy than
residents need during some time slots in a day, a set of BESSs B = {0, 1, . . . , B}
are shared between residents of buildings. Similar to PV panels, each BESS has
an owner that can be the owner of the building or a group of residents. Both
unit owners and tenants can lease a share of BESSs. Residents can trade their
excess energy generated by PV panels inside the building.

In FESM, the allocation process refers to the step where the EMO of the
building allocates a fair share of energy generated from PV panels or the energy
saved into the shared batteries to the residents of the building. The unequal
sharing model proposed by the RME proposal [Jaf+20] (see Section III.2.1) is used
for the allocation process in the building. Compared with other sharing models,
the unequal sharing model allows the owner of the building to allocate a fair and
different share of energy (i.e., x% × GenerationP V , where GenerationP V is the
total generation of PV panels) or capacity of BESSs (i.e., x% × BESScapacity,
where BESScapacity is the total capacity of BESS) to the residents. The allocated
share (x%) can vary between the residents participating in the sharing solution
as long as

∑
x = 100, and can be based on different factors, such as the resident’s

need or the amount the resident invests in DRESs, etc. In the allocation process,
recognition justice will be achieved when all groups of residents, including
tenants, unit owners, low-income families, etc., have the opportunity to exploit
the building’s DRESs. In the building, a fair share of energy can be allocated to
each unit of the building based on factors such as the area of the unit, family
members living in the unit, etc. Hence, in this case, distributive justice will be
achieved by distributing energy generated by DRESs among the units based
on unit characteristics. In other cases, residents can invest in DRESs based on
their ability to pay. In this situation, distributive justice is realized by allocating
energy to the residents in proportion to the cost that they have invested in
DRESs. Moreover, in the energy allocation process, residents can participate
in decision-making in which, for example, they can decide whether to invest in
DRESs or pay only for their consumption. Therefore, procedural justice will
also be fulfilled in the allocation process.

After the allocation step, energy trading takes place in one step, where
local energy is traded between the residents of the building. During energy
trading, justice is realized so that participants, including sellers, buyers, and the
EMO of the building, can participate in decision-making processes (procedural
justice), and all groups of residents have the opportunity to participate in energy
trading (recognition justice) and gain financial benefit by selling or buying excess
energy from DRESs (distributive justice). The following sections discuss the fair
energy allocation and trading processes within the proposed framework for two
different multi-unit buildings, i.e., Building A and B, illustrating two different
approaches to applying the principles of energy justice. These two approaches
will be experimentally compared with regard to distributive justice, recognition
justice, and procedural justice.
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III.3.1 Building A

Building A has an owner who is a person. This building consistents of NA units
identified by the set UA such that UA ⊆ U , UA = NA, and NO,A and NA,T of the
units, where NA,O < NA and NA,T = NA − NA,O, are occupied by unit-owners
and tenants, respectively. Building A is equipped with P rooftop PV panels and
B BESSs funded by the owner of the building. The EMO of Building A is the
building owner who allocates a fair share of DRESs and energy generated by
the PV panels to each unit of the building. After the allocation process, energy
trading managed by the EMO of the building takes place in one step, where
the local surplus energy is traded between the building occupants. The possible
ways of allocating energy in Building A are discussed in the following.

Energy allocation: In building A, the EMO of the building allocates a
certain share of PV panels and BESSs to each unit of the building, giving all
residents the opportunity to enjoy the benefits of shared DRESs in their building.
The allocation process in Building A is based on the unequal sharing model
[Jaf+20]. In this regard, the EMO of the building allocates xi% of PV panels
(i.e., xi%PV area,A) and BESSs (i.e., xi%BESScapacity,A ), where xi is based on
the area of unit i and the number of family members living in the unit. The
PV panel share (PV share,A

i ) and BESS share (BESSshare,A
i ) for the ith unit in

Building A are computed as follows:

PV share,A
i = (α Unitarea,A

i

Unitarea,total,A
+ (1 − α) MembersA

i

Memberstotal,A
)PV area,A,

∀i ∈ UA

(III.1)

BESSshare,A
i = BESScapacity,A(α Unitarea,A

i

Unitarea,total,A
+

(1 − α) MembersA
i

Memberstotal,A
), ∀i ∈ UA

(III.2)

where PV area,A and Unitarea,A
i are the total area of the PV panels and the area

of the ith unit in Building A, respectively. MembersA
i and Memberstotal,A

i are
the number of members who live in unit i and the total number of residents
living in Building A, respectively. In the above equations, α is a weight factor
that gives importance to the number of family members living in a unit and the
area of the unit while allocating PV panels and BESSs. In this work, the value
of α is set to 0.5 to give equal importance to both numbers of family members
and the area of the unit. In Equation III.2, BESScapacity,A is the total capacity
of the building’s battery.

If the shared PV panels in building A generate GP V,A
i amount of energy

at time slot t, unit i will receive Eallocated,A
i share of energy according to the

following equation:

Eallocated,A
i,t = PV share,A

i GP V,A
i , ∀i ∈ UA (III.3)

In Building A, residents can decide whether to lease their share or just pay for
their consumption. The latter is most suitable for temporary residents, such as
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tenants or residents who cannot afford the lease cost. leasing PV panels/BESSs
allows residents to sell the remaining energy from their share; otherwise, the
remaining energy belongs to the building owner. The lease cost for a resident
who leases a share of a PV panel is computed as a certain percentage of the
benefit that the resident gain by using the PV panel. The percentage value is
defined by the building owner and should not be set too high to avoid loss of
benefit. Hence, the value is set to 10%.

III.3.2 Building B

Similar to Building A, Building B has an owner who is a person and acts as the
EMO of the building. We assume that Building B does not possess PV panels
and BESSs. Hence, a group of or all building residents decide to install PV panels
on the roof of the building with the permission of the building owner. In this
case, residents who cooperate to buy PV panels or BESSs are considered owners
of PV panels or BESS, respectively. Building B has NB units; let |UB | = NB,
where UB ⊆ U , be the set of the units. In the building, there are NB,O and
NB,T units, where NB,O < NB and NB,T = NB − NB,O, that are occupied by
unit-owners and tenants.

Energy allocation: In Building B, npv−o of unit-owners buy PV panels for
the building. Let UB,O be the set of such unit-owners such that |UB,O| = npv−o,
where npv−o ≤ NB,O. A number of those unit-owners (i.e., mpv−o of npv−o, where
mpv−o ≤ npv−o) live in the building, and the rest (i.e., npv−o − mpv−o = NB,T )
rent their units. In this building, the EMO of the building defines an ownership
concept to distribute energy to unit-owner i, where i ∈ UB,O, based on the size
of the unit owner’s investment in PV panels. Given that the ownership factor
varies for each unit-owner i, the EMO of the building follows the unequal sharing
model [Jaf+20] for allocating the energy generation of the PV panels in the
building. The ownership factor (OwnershipP V,B

i ) for the ith unit-owner who
owns a share of PV panels and lives in Building B, where i ∈ UB,O, is equal to
the ratio of the cost (CtP V,B

i ) that is invested by the unit-owner to the total
cost (CtP V,total,B), and can be written as follows:

OwnershipP V,B
i = CtP V,B

i

CtP V,total,B
, ∀i ∈ UB,O, (III.4)

In addition, the amount of energy Eallocated,B
i that the ith unit-owner in

Building B will receive is computed as follows:

Eallocated,B
i,t = OwnershipB

i GP V,B
t , ∀i ∈ UB,O, (III.5)

where GP V,B
t is the amount of energy generated by the PV panels in Building B

at time slot t.
The investment cost (Costinvestment,B

i ) of unit-owner i per day in Building
B is given by the following Equation.

Costinvestment,B
i = CtP V,B

i

PaybackB
(III.6)
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where PaybackB is the period of time it will take the unit-owner i to pay off
the total cost of the PV panel share. Similar to Building A, the lease cost for
the tenant who leases a share of PV panels from their unit owner is a certain
percentage of the tenant’s benefit and is set to 10%.

Residents of Building B can also contribute to buying BESSs for the building.
Let us assume there are nb−o unit-owners who pay for a share of BESSs, and
|UB,b−o| = nb−o, where nb−o ≤ NB,O, is the set of such unit-owners. The
ownership factor Ownershipbattery,B

j for the jth unit-owner who owns a share
of BESSs, where j ∈ UB,b−o, is computed as follows:

Ownershipbattery,B
j =

Ctbattery,B
j

Ctbattery,total,B
, ∀j ∈ UB,b−o, (III.7)

In addition, the share of BESS BESSshare,B
j that is allocated to the jth

unit-owner in Building B is:

BESSshare,B
j = Ownershipbattery,B

j BESScapacity,B , ∀j ∈ UB,b−o, (III.8)

Generally speaking, residents can charge their share of the battery. If some
residents have available capacity in the battery, they can allow other residents
to use their capacity at a specific time slot in a day until an agreed-upon time.

Regarding investing in PV panels and BESSs, there are some situations that
should be taken into consideration. In Building B, unit owners who do not live
in the building and own a share of PV panels or BESSs can lease a part of their
share to their tenant. In this case, tenants benefit from energy generated by PV
panels by paying for their energy consumption or a fee in excess of their housing
rent. In the latter case, tenants can sell the excess energy from their share of
PV panels. There might be residents who do not have the opportunity to use
PV panels/BESSs in the building. Examples can be tenants whose unit-owners
do not invest in PV panels/BESSs, residents who cannot afford the investment
cost, residents who just moved into the building and want to own a share of PV
panels and there is no available space on the roof of the building for installing
PV panels, etc. This issue of fairness is outside the scope of this paper.

III.3.3 Overview of Fair Local Energy Trading in FESM

Regardless of the group of the building, the EMO of the building has the duty
to fulfill the energy demand of all residents. The residents with extra and lack of
energy are considered sellers and buyers, respectively. A non-cooperative game
takes place between buyers and sellers separately to adjust their energy demand
through the game. In contrast to cooperative energy trading games in which
participants try to maximize social benefit
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Figure III.1: Sequence diagram for the proposed fair local energy trading in
FESM .

via cooperation based on a particular agreement, in non-cooperative games,
participants compete to maximize their own financial benefits (i.e., sellers and
buyers compete to maximize their benefits and minimize their costs, respectively)
[HL22]. Hence, defining the energy trading price is important in effective energy
trading and fair distribution of profit. In this paper, it is assumed energy trading
takes place inside the building as depicted in Figure III.1.

As seen from Figure III.1, first, residents send their selling and buying requests
to the EMO of the building. The EMO of the building then decides the trading
price in a way that benefits sellers and buyers. The trading price should be
bound by the grid buying and selling prices. By considering this, both sellers and
buyers prefer to trade energy in the building rather than in the main grid. When
seeing the trading price, each seller is allowed to decide its strategy by adjusting
its consumption to maximize its own benefit. The sellers then update the EMO
on their excess energy, and the buyers are notified by the EMO. In the next step,
the EMO calculates the priority factor for each buyer or seller depending on the
situation (i.e., buyers are prioritized when the total energy demand of buyers is
higher than the total excess energy, and sellers are prioritized in the opposite
situation). The EMO considers the priority factor for the purpose of obtaining a
fair and stable energy trading system. The priority factor of a buyer/seller is
calculated based on the number of times the buyer/seller contributed as seller
and buyer in the previous energy trading steps until now, the ownership factor
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of the buyer, the number of family members of the buyer, the area of the buyer’s
unit, and the amount of energy the seller want to sell. In this trading model,
a participant with a higher priority factor can trade more energy than other
participants. The priority factors are sent by the EMO to the corresponding
buyers or sellers. Depending on the situation, the buyer (seller) decides on how
much energy to buy (sell) to maximize its benefits based on the buyer’s (seller’s)
priority factor and the updated total excess energy available in the building
(the total energy demand of buyers). After receiving the strategies, the EMO
allocates a specific amount of energy to each buyer (seller) based on the buyer’s
(seller’s) strategy, the priority factor of the buyer (seller), and the total energy
demand (excess energy). If, after the trading process, there is still excess energy
in the building, the energy is fed into the main grid, typically based on a pre-set
feed-in tariff, or if there is still unsatisfied demand, it is fulfilled by the main
grid at market price.

III.3.4 The Proposed Energy Trading Model

In this section, the proposed local energy trading inside the building is described
in detail.

Let Ci,t denote the energy demand of the ith resident at time slot t.
Moreover, resident i can have a share in BESSs and Esaved

i,t of energy saved in
the battery during a given time interval of the day. After allocating energy
to all residents based on their share of PV panels or ownership factors, if
Eallocated

i,t + Esaved
i,t < Ci,t, the resident i needs to buy energy from sellers inside

the building. Let Rb
t be the set of residents who act as buyers at time slot t. If

Eallocated
i,t + Esaved

i,t > Ci,t for some residents in the building, then these residents
are considered sellers. Let Rs

t be the set of such sellers in the building at time
slot t.

In the first stage, buyers send their buying demand to the EMO of the
building. The energy demand of buyer i ∈Rb,t is given by:

Di,t = |(Eallocated
i,t + Esaved

i,t ) − Ci,t|, ∀i ∈ Rb
t . (III.9)

and the total energy demand of all buyers in the building at time slot t is

Dtotal
t =

∑
i∈Rb

t

Di,t (III.10)

The excess energy of the ith seller after fulfilling its essential needs is equal
to its minimum consumption at time slot t, i.e., Ci,t = Consi,t

min, is

Eexcess
i,t = (Eallocated

i,t + Esaved
i,t ) − Consmin

i,t , ∀i ∈ Rs
t (III.11)

and the total excess energy from solar panels at time slot t is given by

Eexcess,total
t =

∑
i∈Rs

t

Eexcess
i,t . (III.12)

95



III. Applying Energy Justice Principles to Renewable Energy Trading and
Allocation in Multi-Unit Buildings

According to Step 4 in Figure III.1, sellers have the opportunity to manage
their energy consumption. This means that the seller i ∈ Rs,t intends to adjust
its consumption Consi,t s.t. Consi,t ≥ Consmin

i,t and sells its surplus energy
((Eallocated

i,t + Esaved
i,t ) − Consi,t) to the neighboring buyers via the proposed

energy trading model. In this regard, the updated excess energy of the ith seller
after settling its energy consumption is as follows:

Eexcess∗

i,t = (Eallocated
i,t + Esaved

i,t ) − Consi,t, ∀i ∈ Rs
t (III.13)

and consequently, the total excess energy available in the building at time slot t
is updated as follows:

Eexcess∗,total
t =

∑
i∈Rs

t

Eexcess∗

i,t . (III.14)

Following that, available energy in the building is traded between participants.
Finally, after energy trading is completed, if there are still residents with
unsatisfied demand, the energy demand is purchased from the main grid via the
EMO of the building. In contrast, the EMO sells the extra energy to the main
grid.

III.4 Players Strategies in Energy Trading

In this section, the strategies of the participants, including the EMO of the
building, buyers, and sellers, in the proposed fair energy trading model are
discussed. In the model, the purpose of each seller is to maximize its utility
by adjusting its consumption after knowing the trading price determined by
the EMO of the building. Furthermore, each seller attempts to sell as much
of its excess energy as possible when the total excess energy is more than the
total energy demand in the building. Buyers’ goal is to gain as much energy
as possible by setting their strategy to meet their own energy demands. At
the same time, the EMO of the building tries to maximize the welfare of the
building.

III.4.1 Buyers Strategies

Buyers intend to gain as much energy as possible from the local energy market
via the EMO of the building, bounded by their energy demand. To this end,
buyers participate in a non-cooperative game where they decide their strategy
to request a certain amount of energy from the EMO. Thereafter, the EMO
allocates energy to each buyer according to their strategy, priority, and the total
amount of excess energy available in the building. To allocate energy fairly to
each buyer, the priority factor is used to prioritize buyers. The priority factor is
also used as an incentive factor to encourage local energy trading.
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III.4.1.1 Priority Factor for Buyers

While determining the priority for a buyer in the energy trading step, three
factors are considered:

1. Total previous contributions of the buyer as seller or buyer

2. Number of family members of the buyer

3. Area of the buyer’s unit (m2)

Thus, the priority factor Prb
i,t of the ith buyer at time slot t is calculated as

follows:

Prb
i,t =

(βCs
i,t) + Cb

i,t

Ctotal
t

+ Unitarea
i

Unitarea,total
+ Membersi

Memberstotal
, ∀i ∈ Rb

t (III.15)

The first part of Equation III.15 refers to the contribution factor, Here, Cs
i,t

and Cb
i,t are the number of times the buyer contributed as seller and buyer,

respectively, until the present time slot t, and Ctotal
t is the total contribution

as seller and buyer by the buyers until the present time slot t. Here, β is a
scaling factor such that when β > 1, more importance is given to the past
contributions made as sellers, which will encourage participants to consume less
and save energy to act as sellers in the future. In general, the contribution
factor motivates participants to trade among themselves instead of trading with
the main grid. The second and third parts of the equation are the number
of family members for a particular buyer i and the area of the buyer’s unit
(m2), respectively, which indicate that the priority factor should be a function
of the number of family members and the area of the unit. Memberstotal and
Unitarea,total are the total number of family members of all buyers and the total
area of all buyer units who live in the building.

III.4.1.2 Utility of Buyers

In this section, the utility function of buyer i U b
i,t, living in the building at time

slot t, which is always a non-negative function, is defined. The utility of buyer
i is computed based on the priority factor of the buyer and the ratio between
the strategy of the buyer to the energy allocated by the EMO of the building
(i.e., AEb

i,t

Sb
i,t

). There are some assumptions regarding the utility of the buyer
that must be taken into consideration. The first assumption is that U b

i,t must

be a strictly increasing function of AEb
i,t

Sb
i,t

, which means fulfillment increases by
the ratio between the amount of energy that is allocated to the buyer and the
required energy of the buyer as its strategy. Second, the utility function must be
a concave function of AEb

i,t, i.e., as the allocated energy increases, the increasing
rate of satisfaction decreases. Since the EMO of the building allocates more
energy to buyers who have high priority, the utility function must be proportional
to the priority factor considering a weight (θ > 0) factor for the priority. The
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weight factor (θ), which is a dynamic value selected by the EMO of the building,
gives importance to the priority during energy trading. Therefore, the utility
function of buyer i (U b

i,t) is computed using a modified version of the function
given in [LAG16]:

U b
i,t = (Prb

i,t)θ log(1 +
AEb

i,t

Sb
i,t

), ∀i ∈ Rb
t (III.16)

where Prb
i,t is the priority factor of the ith buyer at time slot t. AEb

i,t and Sb
i,t

are the energy allocated to buyer i by the EMO of the building and the demand
strategy of the ith buyer at time slot t, respectively.

Each buyer demands a different amount of energy; however, the buyer desires
to obtain as much energy as possible, bounded by the initial demand of the buyer
(e.g., the buyer i should decide its strategy from [0, Di,t]). Accordingly, buyers
participate in a non-cooperative game using Algorithm 2 to ask for a certain
portion of excess energy available from the EMO of the building. Algorithm 2
gives the optimal strategy (Sb

i,t) for each buyer i participating in the game at
time slot t. The existence and uniqueness of the Nash equilibrium solution of
the game have been proven in [LAG16]. The utility function of all buyers U(Sb)
is defined as follows [JPG18]:

U(Sb) = argmax
AEb

[
∑

i∈Rb
t

(Prb
i,t)β log(1 +

AEb
i,t

Sb
i,t

)]

s.t. 0 ≤ AEb
i,t ≤ Sb

i,t, ∀i ∈ Rb
t∑

i∈Rb
t

AEb
i,t ≤ Eexcess∗

i,t .

(III.17)

where Sb
i,t is the strategy of the ith buyer at time slot t. A non-cooperative

game is used to formulate competition among buyers.
Algorithm 3 provides the optimal solution of the problem in Equation

III.17, which is a revised version of the famous water-filling problem [Zha+19].
According to the water-filling problem [LAG16], there are N tanks, and any
two tanks are connected by a pipe. Let M = {1, 2, . . . , N} be the set of
all the tanks, {(Prb

1)β , (Prb
2)β , . . . , (Prb

N )β} be the set of tank widths, and
{ Sb

1
(P rb

1)β ,
Sb

2
(P rb

2)β , . . . ,
Sb

N

(P rb
N

)β } be the set of tank heights. It is assumed that tank

i has to be on the base of height Sb
i

(P rb
i
)β for all i ∈ M . The total volume of the

water that is used to fill the set of tanks is Eexcess∗

i,t . Therefore, tank i is filled
by pouring AEb

i,t volume of water which is the optimal solution for tank i.

III.4.2 Sellers Strategies

It is assumed that sellers are interested in selling their excess energy to
buyers at an appropriate price rather than selling them to the main grid
at a lower price. Each seller i gains a payoff by trading its excess energy
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(((Eallocated
i,t +Esaved

i,t )−Consi,t) with neighbouring buyers and also by managing
its consumption Consi,t subject to Consi,t ≥ Consmin

i,t after seeing the trading
price P tr. The payoff of the ith seller (Us

i,t) at time slot t is defined as follows:

Us
i,t = ri,t ln(1 + Consi,t) + P tr

t ((Eallocated
i,t + Esaved

i,t ) − Consi,t),
(Eallocated

i,t + Esaved
i,t ) − Consi,t > 0, ∀i ∈ Rs

t

(III.18)

The above equation is inspired by the utility function in [PF05]. The first
part of the equation expresses the utility that is achieved by seller i through
consuming Consi,t amount of energy, where ri,t > 0 is the preference parameter
of the seller at time slot t. A seller with high ri,t is more interested in consuming
more of its energy to maximize its utility. The second part of the equation
represents the profit that the ith seller achieves by selling its excess energy to
neighboring buyers at trading price P tr

t , which is calculated by the EMO of the
building. Each seller i has the objective of maximizing its utility by adjusting
its own energy consumption Consi,t. Therefore, the objective of the seller i at
time slot t is as follows:

max
Consi,t

(Us
i,t)

s.t. Consi,t ≥ Consmin
i,t , ∀i ∈ Rs

t

(III.19)

The objective in Equation III.21 can be achieved by computing the first-order
derivative of (15), which is:

ri,t

1 + Consi,t
− P tr

t = 0 (III.20)

and hence Equation (21) is achieved by further solving Equation (20):

Consi,t = ri,t

P tr
t

− 1 (III.21)

According to Equation III.21, each seller’s decision on its energy consumption
is affected by the trading price, which is set by the EMO of the building. It
can also be observed that the seller’s consumption and the trading price are
inversely proportional to each other, which means that sellers are encouraged to
reduce their energy consumption and sell more energy when the trading price is
high and vice-versa. It is important to note that ri,t should be large enough in
such a way that Equation III.21 is always positive for all Consi,t ≥ Consmin

i,t .
Moreover, the lease cost or the investment cost of the seller is subtracted from
the total utility of the seller at the end of the day.

We also study the situation where the total excess energy at each trading
stage is more than the total energy demand. In this case, after the sellers adjust
their consumption, they can also decide their strategy (i.e., demand for selling
energy) by participating in a non-cooperative game to sell as much energy as
possible to the local energy market, limited by their available excess energy.
Similar to Algorithms 2 and 4 uses a non-cooperative game among sellers when
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the total excess energy is more than the total demand of buyers. In Algorithm
4, each seller chooses its strategy based on some important factors, such as the
seller’s priority factor and its updated excess energy. The EMO of the building
then uses Algorithm 5 to decide on how much energy each seller should sell
based on the seller’s priority factor, the amount of the seller’s excess energy, and
the total demand of buyers.

Priority Factors for Sellers

For each seller i, the EMO of the building calculates the priority factor to
prioritize sellers when there is more energy to sell compared to the total energy
demand of the buyers. The priority factor of the ith seller relies on the ratio of
the number of contributions the seller has made until the present time slot t as
a seller (Cs

i,t) to the total contributions of the sellers and the ratio of the excess
energy that the seller intends to sell to the total excess energy in the building.
Hence, the following equation is used to calculate the priority factor of the ith
seller at time slot t Prs

i,t:

Prs
i,t =

Cs
i,t

Ctotal
t

+
Eexcess∗

i,t

Et
excess∗,total

, ∀i ∈ Rs
t (III.22)

where Cs
i,t and Ctotal

t are the number of contributions the seller i has made and
the total contributions that have been made by sellers who live in the same
building as the seller i. Eexcess∗

i,t and Et
excess∗,total are the excess energy that

seller i wants to sell energy at and the total excess energy available in the
building. When the total excess energy is more than the total energy demand,
the utility function of the ith seller is directly proportional to its priority factor
and the ratio of the amount of energy decided by the EMO that the seller i can
sell and the seller’s strategy. Thus, the utility function of the seller i (Us

i,t) at
time slot t is defined as follows:

Us
i,t = (Prs

i,t)β log(1 +
AEs

i,t

Ss
i,t

), ∀i ∈ Rs
t (III.23)

where Prs
i,t is the priority factor of seller i at time slot t. AEs

i,t is the amount of
energy to be sold by the seller i, and Ss

i,t is the selling strategy of the seller i at
time slot t.

III.4.3 Building’s EMO Strategy

The EMO of the building has several roles to maximize the building’s welfare,
i.e., the sum of the fulfillment of all buyers and sellers in the building. In this
regard, one of the main functions of the EMO is to determine the trading price,
P tr, for energy trading inside the building. The trading price should be bounded
by the grid buying and selling prices, Gb,p and Gs,p, respectively. The EMO
should compute the trading price in a way that is at the fulfillment level of
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buyers and sellers. Hence, the objective of the EMO is defined as follows:

max
P tr

t

[ 1
Ctb

t

+
∑

i∈Rm

Us
i,t]

s.t. Gb,p ≤ P tr
t ≤ Gs,p

(III.24)

The above equation expresses the aim to maximize the building’s welfare.
According to Equation III.24, the satisfaction of sellers and buyers is met by
simultaneously maximizing the inverse ratio ( 1

Ctb
t
) of the total cost of buyers

(i.e., minimizing the total cost of buyers) and the total utility of sellers at time
slot t.

During energy trading, in addition to the cost of buying energy from
neighboring sellers, the total cost of buyers (Ctb

t) at time slot t also relies
on the cost of the remaining energy purchased from the main grid to keep the
energy balance, and is calculated as follows:

Ctb
t =

{
(Eexcess∗,total

t P tr
t ) + (Dtotal

t − Eexcess∗,total
t )Gs,p, if Dtotal

t ≥ Eexcess∗,total
t

Dtotal
t P tr

t , otherwise
(III.25)

Now, we can use the first-order optimality condition of the EMO’s objective
function (i.e., Equation III.24) in the cost function (i.e., Equation III.25) and in
the sellers’ utility function to obtain the trading price in trading step. Hence,
we have the following equation by using the first-order optimality of Equation
III.24 in Equations III.25 and III.18:

δ( 1
Ctb

t
)

δP tr
t

+
δ(

∑
i∈Rm

Us
i,t)

δP tr
t

= 0 (III.26)

After solving Equation III.26; we have

P tr =


1−(Dtotal

t −Eexcess∗,total
t )Gs,p

Eexcess∗,total
t

, if Dtotal
t ≥ Eexcess∗,total

t and P tr > Gb,p

Gb,p + ε, if P tr < Gb,p

(III.27)

where ε > 0 is a very small value to keep the trading price P tr
t higher than the

grid buying price Gb,p at time slot t. The other main function of the EMO to
maximize the building’s welfare is to fairly distribute energy generated from the
building’s PV panels and energy stored in BESSs among residents. Moreover,
the EMO attempts to fairly allocate energy to participants during energy trading
to maximize the building’s welfare. Let U b

i,t(AEb
i,t) and Utilitys

j,t(AEs
j,t) be the

fulfillment of buyer i when the total demand exceeds the total excess energy
and the satisfaction of seller j when the total excess energy is higher than the
total energy demand, respectively, from the perspective of the EMO of the
building.

∑
i∈Rb

t
AEb

i and
∑

j∈Rs
t

are the social welfare of the system during
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energy trading. The optimization problem to determine the amount of energy
that the seller j should sell (AEs

j,t amount of energy) at time slot t is given by

max
AEs

[
∑

j∈Rs
t

(Prs
j,t)β log(1 +

AEs
j,t

Ss
j,t

)]

s.t. 0 ≤ AEs
j,t ≤ Ss

j,t, ∀j ∈ Rs
t∑

j∈Rs
t

AEs
j,t ≤ Dtotal

t

(III.28)

According to Theorem 1 in [LAG16], the optimal amount of energy that
should be sold by each seller at time slot t (AE∗,s

t = {AE∗,s
j,t |j ∈ Rs

t ), when the
total excess energy exceeds the total energy demand is computed as follows:

AE∗,s
j,t =


(h(Prs

j,t)β − Ss
j,t), if 0 < (h(Prs

j,t)β − Ss
j,t) < Ss

j,t

Ss
j,t, if (h(Prs

j,t)β − Ss
j,t) ≥ Ss

j,t

0, otherwise
(III.29)

where h is a real number satisfying
∑

j∈Rs
t

AEs
j,t = Dtotal

t .

Similarly, the optimization problem for allocating energy to buyer i at time
slot t is as follows:

max
AEb

t

[
∑

i∈Rb
t

(Prb
i,t)β log(1 + AEb

it

Sb
i,t

)]

s.t. 0 ≤ AEb
i,t ≤ Sb

i,t, ∀i ∈ Rb
t∑

i∈Rb
t

AEb
i,t ≤ Eexcess∗,total

t

(III.30)

By using Theorem 1 in [LAG16], the optimally allocated energy AE∗,b =
{AE∗,b

i,t |i ∈ Rb
t}, when the total energy demand exceeds the total excess energy,

is given as follows:

AE∗,b
i,t =


(hPrb

i,t
β − Sb

i,t), if 0 < (h(Prb
i,t)β − Sb

i,t) < Sb
i,t

Sb
i,t, if (h(Prb

i,t)β − Sb
i,t) ≥ Sb

i,t

0, otherwise
(III.31)

where h is also a real number such that
∑

i∈Rb
t

AEb
i,t = Eexcess∗,total

t .

Problems (28) and (30) are different versions of the water-filling problem
[Zha+19], and their optimal solutions are given by Algorithms 3 and 5 by
performing a modified version of the water-filling algorithm given in [LAG16].
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III.5 Evaluation Results

III.5.1 Description of the Dataset

Below, two multi-unit buildings with ten units in each building are assumed,
which follow the sharing model Building A and Building B, respectively. All
units are allocated real household load profiles. To illustrate the potential of the
proposed fair energy allocation and trading, data from Austin, Texas [Dat19]
is used. Building A is equipped with three PV panels and one BESS. Building
B is equipped with two PV panels and one BESS. The capacity of each PV
panel is 10 kW and costs about $20,000 [Sena]. Tesla Powerwall batteries with a
usable energy capacity of 13.5 kWh are considered storage systems [TES]. The
performance of the proposed energy trading model is evaluated from 9 to 19
o’clock each day because there is no solar generation during the early morning
and the evening, and the length of the time slot is one hour. The grid selling
and buying prices are set to 0.8 cents/kWh and 2.4 cents/kWh, respectively, and
the values of β and α are set to 1.5 and 0.5. The PV panels’ payback period
for Buildings A and B are assumed 12.5 and 10 years, respectively [Har+17].
The proposed model has been developed in the Python programming language.
The Gurobi solver [Senb] is used to solve the involved optimization problems in
Pyomo [Opt16].

III.5.2 Performance Evaluation

III.5.2.1 Energy Trading Analyses

Data used for allocating energy generated by PV panels to residents at time slot
10 is given in Table III.1. The Type of Residents column in the table denotes
whether a resident is a unit owner or a tenant. In Building A, Units 1–5 are
occupied by the owner of units, and Units 6–10 are occupied by tenants. Units
1–4 and 6–8 of the building lease a share of PV panels and BESSs from the
building owner, while Units 5, 9, and 10 pay for their energy consumption. In
Building B, Units 1–3 and 6–8 are occupied by their owner, and the rest are
occupied by tenants. In this building, the owners of Units 1–5 buy PV panels,
separately, while the owners of Units 6–8 cooperate in buying PV panels. The
owners of Units 9 and 10 in Building B do not contribute to buying PV panels.
All the unit owners in Building B except Units 5, 9, and 10 contribute to paying
for a share of the BESS’s cost. The EMO of the building decides the amount of
energy to be allocated to the residents of the building utilizing the resident’s
share of PV panels or the ownership factor and the total energy generated by
the PV panels of the building. After allocating energy to the relevant residents,
energy trading takes place. The overall process of our energy trading method
during time slot 10 is depicted in Table III.2.
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As can be seen from Table III.2, units 1, 3, and 5 of Building A act as buyers
because the energy allocated to the units is less than their minimum energy
consumption at time slot 10. In contrast, units 2, 4, and 6–10 of the building act
as sellers. The EMO of the building has information, such as energy consumption
and the selling and buying energy demands of the residents, and preference
parameters of the sellers in the building. According to this information, the
EMO is able to calculate a trading price in the range [0.8, 2.4] using Equation
III.27 for the building. Trading prices calculated by the EMO of Buildings A
and B are 1.74 and 1.81 Cents/kWh, respectively. By seeing the trading price,
several sellers modified their excess energy; for example, units 4, 9, and 10 of
Building A decreased their excess energy from 3.72 kWh, 0.32 kWh, and 0.39
kWh to 2.72 kWh, 0 kWh, and 0 kWh, respectively. Therefore, the total excess
energy available from residents as sellers in Building A decreases from 9.32 kWh
to 7.61 kWh. Given that units 5, 9, and 10 in Building A and unit 5 in Building
B pay only for their energy consumption, the rest of their excess energy belongs
to the building owner and the unit owner, respectively. To this end, the total
energy that goes back to the owner of Buildings A and unit 5 in Building B are
0.71 kWh and 0 kWh, respectively.

It can be observed from Table III.2 that the total excess energy available
for sale in Building A is higher than the total buying energy demand, while
the opposite is true for Building B. Accordingly, the EMO of Buildings A and
B calculates a priority factor for each seller and each buyer of their building,
respectively. Based on the priority factor, each seller/buyer decides its strategy.
Then, the EMO of Building A decides how much energy each seller should sell,
and the EMO of Building B allocates an optimal amount of energy to the buyers
of the building. By observing the decision of the EMO, sellers and buyers with
higher priority sell and buy more energy, respectively. After fulfilling the local
demands by the EMO at time slot 10, the total energy required for Building B
is 0.29 kWh, and the total excess energy available from Building A is 6.32 kWh.

To emphasize the advantages of our method, we compared our results with
the method in [JPG18], called Method 1, and the situation where energy can
only be fed into the main grid for a fixed tariff, called Method 2. All three
methods follow the energy allocation process performed in each building, while
the energy trading process is different in each method. The average utility of
sellers after subtracting the lease cost and the investment cost of sellers from
their utility throughout the day are illustrated in Figures III.2(a) III.2(c). The
average cost of buyers after adding the lease cost and investment cost of buyers
to their cost throughout the day is shown in Figures III.2(b) III.2(d). In general,
the figure shows that the average revenue of sellers and the average cost of buyers
increases and decrease, respectively, when using our method. In comparison with
our method, Method 1 only minimizes the total cost of buyers in calculating an
energy trading price. Accordingly, the energy trading prices computed in Method
1 (see Figure III.3) are mostly close to the grid buying price, which makes sellers
prefer consuming the whole or a part of their excess energy rather than selling
them at a low price. For this reason, compared to our method, buyers have to
buy most of their energy demand from the main grid at a high price, which
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(a) (b)

(c) (d)

Figure III.2: (a): Average utility of sellers, (b): Average cost of buyers, of Building
A, (c): Average utility of sellers, (d): Average cost of buyers, of Building B using
Methods 1 and 2, and our method throughout the day.

increases the total cost of buyers in Method 1 (see Figure ??b,d). As can be
observed from Figure III.3, the trading prices calculated by our method are
close to the average feed-in tariff prices. This is due to considering the financial
benefits of sellers and buyers in calculating the energy trading price, which
encourages sellers to sell their excess energy to their neighbors and supports
buyers to buy energy at a lower price than the grid tariff price. Therefore, all
sellers and buyers make significant financial benefits when utilizing our method.

III.5.2.2 Energy Justice Analyses

The proposed framework is specialized into two cases with the aim of analyzing
what is fair for each building. This means that fairness in energy sharing can
vary from building to building. Analyzing all three principles of energy justice
in the design of energy-sharing models in Building A and B helps to understand
how design choices can lead to justice. In the following, the energy allocation
and trading processes in the buildings are evaluated according to the principles
of energy justice.
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(a) (b)

Figure III.3: (a) Energy trading prices in Building A, (b) Energy trading prices
in Building B, which are computed by Method 1 and our method throughout
the day.

From the perspective of recognition justice, Buildings A and B support
different groups of residents with different preferences to enjoy the benefits of
shared DRESs in their building. Given that each unit of Building A has already
been allocated a specific share according to its unit characteristics, new residents
(i.e., residents who just moved into the building) have the opportunity to use the
shared DRESs of the building. Moreover, unit-owners and temporary residents
(e.g., tenants) can lease the allocated share of PV panels/BESSs as long as they
live in the building (e.g., units 1–4 as unit-owners and units 6–8 as tenants lease
a share of PV panels from the owner of Building A), or can pay only for their
energy consumption if they do not afford the lease cost (e.g., units 5, 9, and 10 in
Building A pay only for their energy consumption). In the case of Building B, the
building owner cooperates with the residents of the building by allowing them to
install PV panels on the roof of the building. The sharing model in Building B
enables residents to participate in the purchase of PV panels/BESSs either alone
(e.g., units 1–5 whose owners separately buy a share of PV panels/BESSs) or in
collaboration with other units (e.g., units 6, 7, and 8 whose owners collaborate
in buying PV panels/BESSs). The sharing model in Building B also considers
tenants whose unit owner owns a share of PV panels/BESSs and those tenants
who wish to benefit from PV panels/BESSs. In this case, tenants can lease a
part of the share from their unit owner (e.g., unit 4 in Building B) or just pay
for their energy consumption (e.g., unit 5 in Building B).

From a distributive perspective, it should be seen how energy, profits, and
costs are distributed among residents of Buildings A and B using the proposed
sharing models. The sharing model of Building A enables the EMO of the building
to allocate a specific share of PV panels and/or BESSs to the residents according
to their unit characteristics. Accordingly, the amount of energy distributed
among residents is based on the cost they pay for leasing the share of PV
panels/BESSs or their energy consumption. In this sharing model, residents gain
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financial profit by participating in energy trading in the building, and the EMO
makes financial profit by leasing the share of PV panels/BESSs to each resident,
selling energy to the residents who pay for their energy consumption, and selling
excess energy available from residents who did not lease PV panels/BESSs share.
The sharing model in Building B follows the distribution principle in distributing
PV panels/BESSs costs among residents. This means that residents in Building
B can either participate in buying PV panels/DRESs considering their ability
to pay (e.g., Units 1–5 and Units 6–8 buy PV panels/BESSs separately and
together, respectively) or lease a part of the share of PV panels/BESSs from
their unit owner (e.g., units 4 lease the share from the unit owner). In this
building, energy is distributed among residents according to their ownership
factor. In relation to justice in the distribution of profits among residents in
Building B, the sharing model in the building supports energy trading in which
participants benefit by selling their excess energy available from their share of
PV panels/BESSs or buying energy from their neighbors in the building.

With respect to procedural justice, the sharing model in Buildings A and B
encourages resident participation in decision-making during energy allocation
and trading processes. In the energy allocation process, residents in Building A
can participate in decision-making to decide whether to lease the share of PV
panels/BESSs from the building owner or pay only for their energy consumption.
The residents of Building B can also make a decision on buying PV panels/BESSs
separately or in collaboration with their neighbors. The sharing model in
Buildings A and B also supports all stakeholders, such as sellers, buyers, and the
EMO, in decision-making during energy trading. This means that sellers/buyers
are given the opportunity to decide how much energy they should sell/buy to
gain more profit. In addition to some factors like unit characteristics which
are fixed, sellers/buyers are given the opportunity to increase the chance of
selling/buying more energy by participating in previous energy trading in their
building (i.e., they can increase their priority by participating in more energy
trading). Moreover, the EMO of the building decides on the trading price and
allocates energy to participants with the purpose of maximizing their profits.

III.6 Conclusions

In this paper, a fair energy sharing framework (FESM) is proposed to enable fair
and reliable energy allocation and trading in multi-unit buildings. Two different
specializations of the framework, referred to as Buildings A and B, that followed
different energy-sharing models, are presented. An energy management operator
is used for each multi-unit building to coordinate the energy allocation and
trading processes among all residents in the building. The processes of energy
allocation and trading in our sharing model show that residents receive and trade
energy fairly using the characteristics of a unit or ownership factor and priority.
To certify fairness between buyers and sellers in all trading stages, this work
gives both groups the opportunity to decide on their strategy by participating in
a non-cooperative game to increase their financial profit. A simple trading price
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mechanism is proposed to maximize the profits of sellers and buyers and simplify
the trading stages. The efficiency of our method is verified in comparison with
the baseline methods on real data from Austin, Texas. The results illustrate
high financial profit for sellers and low costs for buyers during the day.

We also analyzed justice in the proposed energy allocation and trading
processes for both cases of the framework with respect to the main principles of
energy justice. From the recognition justice perspective, justice is achieved when
the sharing models ensure the accessibility to the benefits of shared DRESs in
the buildings for different groups of residents. For example, recognition justice is
realized in the proposed sharing models by giving tenants and low-income families
the opportunity to use the DRESs of their building via renting or investing
in a share of PV panels/BESSs individually or in cooperation with neighbors
or paying for their consumption. Justice as distribution in the sharing models
results in fair distribution of cost, benefits, and energy. To reach distributive
justice in the proposed sharing models, for example, some factors, such as the
unit characteristics, ownership factor, and priority factor, are utilized to perform
a fair distribution of energy and benefits among residents during both energy
allocation and trading. Procedural justice enables all stakeholders in the sharing
model to participate in making decisions on the distribution of cost/benefits,
accessing the shared DRESs, etc. Procedural justice is achieved in the proposed
sharing models by enabling residents to decide how to use the shared DRESs of
their building (i.e., the residents can rent or invest in a share of the DRESs) and
their buying or selling strategy. In sum, analyzing the main principles of energy
justice in this work is useful in understanding that justice principles have to be
applied in the design of energy-sharing models in the first step. These principles
can be applied in different ways, and depending on the context or situation
justice’s definition can be different. Applying the energy justice principles in the
proposed sharing models motivates the residents to use the shared DRESs of
their building, which leads to high financial benefits for the building.

Future research could explore how to achieve trust among participants and
how much information they should share during energy trading. Future research
might also be to develop the proposed framework into an interactive tool for
exploring and comparing the effects of different approaches to energy justice. It
may also be relevant to study how errors in intraday (<1 h) forecasting of PV
power generation may influence the trading results on seller profit and buyer
cost.
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Appendix .A

Algorithm 2 Optimal strategy for buyers
1: Input :

• Energy demand of all buyers (Di,t) and their priority factors (P rb
i,t) at time slot t.

• Two vectors, including buyers and their priority factors, sorted on the value of Di,t

(P rb
i,t

)
in

ascending order.

2: Output :

• The vector of the optimal strategy of buyers Sb
t sorted in the original order.

3: Initialization :

• Filling index j = 1;

• Nt = Number of buyers at time slot t, Mt =set of buyers at time slot t;

• Filling width ω =
∑

i∈Mt
(P rb

i,t);

• Eex
t = total extra energy available from sellers at time slot t;

• Energy height h = 0;

• For exception handling DN+1,t = ∞ and P rb
N+1,t = 1

4: W hile(Eex
t > 0)

if (ω( Dj,t

(P rb
j,t

)
− h) < Eex

t ):

Eex
t = Eex

t − ω( Dj,t

(P rb
j,t

)
− h); h = Dj,t

(P rb
j,t

)
;

ω = ω − (P rb
j,t); Sb

j,t = Dj,t; j = j + 1;
else

h = h +
Eex

t
ω ; Eex

t = 0;
for k = j : N

Sb
k,t = h(P rb

k,t);
End

5: Sort the optimal strategy of buyers Sb
t in original order.
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Algorithm 3 Allocating Energy to Buyers by EMO
1: Input :

• Strategies of all buyers (Sb
t ) and their priority factors (P rb

i,t).

• Three vectors, including buyers, their strategies, and their priority factors sorted on the

value of
Sb

i,t

(P rb
i,t

)
in ascending order.

2: Output :

• The vector of the allocated energy of buyers AEb
t sorted in the original order.

3: Initialization :

• Filling index j = 1 and k = 2;

• Filling width ω = (P rb
1,t);

• Eex
t = total extra energy available from sellers;

• Energy height h =
Sb

1,t

(P rb
1,t

)
;

• The vector of all buyers’ allocated energy AEb
t = 0

• For exception handling Sb
N+1,t = ∞ and P rb

N+1,t = ∞

4: W hile(Eex
t > 0)

if (
2Sb

j,t

(P rb
j,t

)
>

Sb
k,t

(P rb
k,t

)
) and (ω(

Sb
k,t

(P rb
k,t

)
− h) < Eex

t ):

Eex
t = Eex

t − ω(
Sb

k,t

(P rb
k,t

)
− h); h =

Sb
k,t

(P rb
k,t

)
;

ω = ω + (P rb
k,t); k = k + 1;

elseif (
2Sb

j,t

(P rb
j,t

)
≤

Sb
k,t

(P rb
k,t

)
) and (ω(

2Sb
j,t

(P rb
j,t

)
− h) < Eex

t ):

Eex
t = Eex

t − ω(
2Sb

j,t

(P rb
j,t

)
− h);

AEb
j,t = Sb

j,t; ω = ω − (P rb
j,t);

h =
2Sb

j,t

(P rb
j,t

)
; j = j + 1;

else : h = h +
Eex

t
ω ; Eex

t = 0;
for i = j : k

AEb
i,t = (P rb

i,t)(h −
Sb

i,t

(P rb
i,t

)
);

End
5: Sort the allocated energy AEb

t in original order.
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Algorithm 4 Optimal strategy for sellers
1: Input :

• Excess energy of all sellers (Eexcess
i,t ) and their priority factors (P rs

i,t) at time slot t.

• Two vectors, including sellers and their priority factors, sorted on the value of
Eexcess

i,t
(P rs

i,t
)

in ascending order.

2: Output :

• The vector of the optimal strategy of sellers Ss
t sorted in the original order.

3: Initialization :

• Filling index j = 1;

• Nt = Number of sellers at time slot t, Mt =set of sellers at time slot t;

• Filling width ω =
∑

i∈Mt
(P rs

i,t);

• Dt = total demand of buyers at time slot t;

• Energy height h = 0;

• For exception handling Eexcess
N+1,t = ∞ and P rs

N+1,t = 1

4: W hile(Dt > 0)

if (ω(
Eexcess

j,t
(P rs

j,t
) − h) < Dt):

Dt = Dt − ω(
Eexcess

j,t
(P rs

j,t
) − h); h =

Eexcess
j,t

(P rs
j,t

) ;

ω = ω − (P rs
j,t); Ss

j,t = Eexcess
j,t ; j = j + 1;

else
h = h + Dt

ω ; Dt = 0;
for k = j : N

Ss
k,t = h(P rs

k,t);
End

5: Sort the optimal strategy of sellers Ss
t in original order.
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Algorithm 5 Determining energy for sale by EMO
1: Input :

• Strategies of all sellers (Ss
t ) and their priority factors (P rs

i,t).

• Three vectors, including sellers, their strategies, and their priority factors sorted on the

value of
Ss

i,t
(P rs

i,t
) in ascending order.

2: Output :

• The vector of the allocated energy of sellers AEs
t sorted in the original order.

3: Initialization :

• Filling index j = 1 and k = 2;

• Filling width ω = (P rs
1,t);

• Dt = total demand of buyers at time slot t;

• Energy height h =
Ss

1,t
(P rs

1,t
) ;

• The vector of all buyers’ selling amount of energy AEs
t = 0

• For exception handling Ss
N+1,t = ∞ and P rs

N+1,t = ∞

4: W hile(Dt > 0)

if (
2Ss

j,t
(P rs

j,t
) >

Ss
k,t

(P rs
k,t

) ) and (ω(
Ss

k,t
(P rs

k,t
) − h) < Dt):

Dt = Dt − ω(
Ss

k,t
(P rs

k,t
) − h); h =

Ss
k,t

(P rs
k,t

) ;

ω = ω + (P rs
k,t); k = k + 1;

elseif (
2Ss

j,t
(P rs

j,t
) ≤

Ss
k,t

(P rs
k,t

) ) and (ω(
2Ss

j,t
(P rs

j,t
) − h) < Dt):

Dt = Dt − ω(
2Ss

j,t
(P rs

j,t
) − h);

AEs
j,t = Ss

j,t; ω = ω − (P rs
j,t);

h =
2Ss

j,t
(P rs

j,t
) ; j = j + 1;

else : h = h + Dt
ω ; Dt = 0;

for i = j : k

AEs
i,t = (P rs

i,t)(h −
Ss

i,t
(P rs

i,t
) );

End
5: Sort the vector of determined energy for sale AEs

t in the original order.
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